1
|
Hassinan CW, Sterrett SC, Summy B, Khera A, Wang A, Bai J. Dimensionality of locomotor behaviors in developing C. elegans. PLoS Comput Biol 2024; 20:e1011906. [PMID: 38437243 PMCID: PMC10939432 DOI: 10.1371/journal.pcbi.1011906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 03/14/2024] [Accepted: 02/12/2024] [Indexed: 03/06/2024] Open
Abstract
Adult animals display robust locomotion, yet the timeline and mechanisms of how juvenile animals acquire coordinated movements and how these movements evolve during development are not well understood. Recent advances in quantitative behavioral analyses have paved the way for investigating complex natural behaviors like locomotion. In this study, we tracked the swimming and crawling behaviors of the nematode Caenorhabditis elegans from postembryonic development through to adulthood. Our principal component analyses revealed that adult C. elegans swimming is low dimensional, suggesting that a small number of distinct postures, or eigenworms, account for most of the variance in the body shapes that constitute swimming behavior. Additionally, we found that crawling behavior in adult C. elegans is similarly low dimensional, corroborating previous studies. Further, our analysis revealed that swimming and crawling are distinguishable within the eigenworm space. Remarkably, young L1 larvae are capable of producing the postural shapes for swimming and crawling seen in adults, despite frequent instances of uncoordinated body movements. In contrast, late L1 larvae exhibit robust coordination of locomotion, while many neurons crucial for adult locomotion are still under development. In conclusion, this study establishes a comprehensive quantitative behavioral framework for understanding the neural basis of locomotor development, including distinct gaits such as swimming and crawling in C. elegans.
Collapse
Affiliation(s)
- Cera W Hassinan
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Molecular and Cellular Biology Program, University of Washington, Seattle, Washington, United States of America
| | - Scott C Sterrett
- Graduate Program in Neuroscience, University of Washington, Seattle, Washington, United States of America
| | - Brennan Summy
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Arnav Khera
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Angie Wang
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Pomona College, Claremont, California, United States of America
| | - Jihong Bai
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Molecular and Cellular Biology Program, University of Washington, Seattle, Washington, United States of America
- Graduate Program in Neuroscience, University of Washington, Seattle, Washington, United States of America
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
2
|
Akiyama T, Raftery LA, Wharton KA. Bone morphogenetic protein signaling: the pathway and its regulation. Genetics 2024; 226:iyad200. [PMID: 38124338 PMCID: PMC10847725 DOI: 10.1093/genetics/iyad200] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/27/2023] [Indexed: 12/23/2023] Open
Abstract
In the mid-1960s, bone morphogenetic proteins (BMPs) were first identified in the extracts of bone to have the remarkable ability to induce heterotopic bone. When the Drosophila gene decapentaplegic (dpp) was first identified to share sequence similarity with mammalian BMP2/BMP4 in the late-1980s, it became clear that secreted BMP ligands can mediate processes other than bone formation. Following this discovery, collaborative efforts between Drosophila geneticists and mammalian biochemists made use of the strengths of their respective model systems to identify BMP signaling components and delineate the pathway. The ability to conduct genetic modifier screens in Drosophila with relative ease was critical in identifying the intracellular signal transducers for BMP signaling and the related transforming growth factor-beta/activin signaling pathway. Such screens also revealed a host of genes that encode other core signaling components and regulators of the pathway. In this review, we provide a historical account of this exciting time of gene discovery and discuss how the field has advanced over the past 30 years. We have learned that while the core BMP pathway is quite simple, composed of 3 components (ligand, receptor, and signal transducer), behind the versatility of this pathway lies multiple layers of regulation that ensures precise tissue-specific signaling output. We provide a sampling of these discoveries and highlight many questions that remain to be answered to fully understand the complexity of BMP signaling.
Collapse
Affiliation(s)
- Takuya Akiyama
- Department of Biology, Rich and Robin Porter Cancer Research Center, The Center for Genomic Advocacy, Indiana State University, Terre Haute, IN 47809, USA
| | - Laurel A Raftery
- School of Life Sciences, University of Nevada, 4505 S. Maryland Parkway, Las Vegas, NV 89154, USA
| | - Kristi A Wharton
- Department of Molecular Biology, Cell Biology, and Biochemistry, Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA
| |
Collapse
|
3
|
Hassinan CW, Sterrett SC, Summy B, Khera A, Wang A, Bai J. A Quantitative Analysis of Locomotor Patterns in Developing C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.03.543584. [PMID: 37333370 PMCID: PMC10274735 DOI: 10.1101/2023.06.03.543584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Adult animals display robust locomotion, yet the timeline and mechanisms of how juvenile animals acquire coordinated movements and how these movements evolve during development are not well understood. Recent advances in quantitative behavioral analyses have paved the way for investigating complex natural behaviors like locomotion. In this study, we tracked the swimming and crawling behaviors of the nematode Caenorhabditis elegans from postembryonic development through to adulthood. Our principal component analyses revealed that adult C. elegans swimming is low dimensional, suggesting that a small number of distinct postures, or eigenworms, account for most of the variance in the body shapes that constitute swimming behavior. Additionally, we found that crawling behavior in adult C. elegans is similarly low dimensional, corroborating previous studies. However, our analysis revealed that swimming and crawling are distinct gaits in adult animals, clearly distinguishable within the eigenworm space. Remarkably, young L1 larvae are capable of producing the postural shapes for swimming and crawling seen in adults, despite frequent instances of uncoordinated body movements. In contrast, late L1 larvae exhibit robust coordination of locomotion, while many neurons crucial for adult locomotion are still under development. In conclusion, this study establishes a comprehensive quantitative behavioral framework for understanding the neural basis of locomotor development, including distinct gaits such as swimming and crawling in C. elegans.
Collapse
Affiliation(s)
- Cera W. Hassinan
- Basic Sciences Division, Fred Hutchinson Cancer Center, 1100 Fairview Avenue N., Seattle, WA 98109, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98019, USA
| | - Scott C. Sterrett
- Graduate Program in Neuroscience, University of Washington, Seattle, WA 98109, USA
| | - Brennan Summy
- Basic Sciences Division, Fred Hutchinson Cancer Center, 1100 Fairview Avenue N., Seattle, WA 98109, USA
| | - Arnav Khera
- Basic Sciences Division, Fred Hutchinson Cancer Center, 1100 Fairview Avenue N., Seattle, WA 98109, USA
| | - Angie Wang
- Basic Sciences Division, Fred Hutchinson Cancer Center, 1100 Fairview Avenue N., Seattle, WA 98109, USA
- Pomona College, 333 N College Way, Claremont, CA 91711, USA
| | - Jihong Bai
- Basic Sciences Division, Fred Hutchinson Cancer Center, 1100 Fairview Avenue N., Seattle, WA 98109, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98019, USA
- Graduate Program in Neuroscience, University of Washington, Seattle, WA 98109, USA
- Department of Biochemistry, University of Washington, WA 98195, USA
| |
Collapse
|
4
|
Ocker GK, Buice MA. Flexible neural connectivity under constraints on total connection strength. PLoS Comput Biol 2020; 16:e1008080. [PMID: 32745134 PMCID: PMC7425997 DOI: 10.1371/journal.pcbi.1008080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/13/2020] [Accepted: 06/19/2020] [Indexed: 12/23/2022] Open
Abstract
Neural computation is determined by neurons’ dynamics and circuit connectivity. Uncertain and dynamic environments may require neural hardware to adapt to different computational tasks, each requiring different connectivity configurations. At the same time, connectivity is subject to a variety of constraints, placing limits on the possible computations a given neural circuit can perform. Here we examine the hypothesis that the organization of neural circuitry favors computational flexibility: that it makes many computational solutions available, given physiological constraints. From this hypothesis, we develop models of connectivity degree distributions based on constraints on a neuron’s total synaptic weight. To test these models, we examine reconstructions of the mushroom bodies from the first instar larva and adult Drosophila melanogaster. We perform a Bayesian model comparison for two constraint models and a random wiring null model. Overall, we find that flexibility under a homeostatically fixed total synaptic weight describes Kenyon cell connectivity better than other models, suggesting a principle shaping the apparently random structure of Kenyon cell wiring. Furthermore, we find evidence that larval Kenyon cells are more flexible earlier in development, suggesting a mechanism whereby neural circuits begin as flexible systems that develop into specialized computational circuits. High-throughput electron microscopic anatomical experiments have begun to yield detailed maps of neural circuit connectivity. Uncovering the principles that govern these circuit structures is a major challenge for systems neuroscience. Healthy neural circuits must be able to perform computational tasks while satisfying physiological constraints. Those constraints can restrict a neuron’s possible connectivity, and thus potentially restrict its computation. Here we examine simple models of constraints on total synaptic weights, and calculate the number of circuit configurations they allow: a simple measure of their computational flexibility. We propose probabilistic models of connectivity that weight the number of synaptic partners according to computational flexibility under a constraint and test them using recent wiring diagrams from a learning center, the mushroom body, in the fly brain. We compare constraints that fix or bound a neuron’s total connection strength to a simple random wiring null model. Of these models, the fixed total connection strength matched the overall connectivity best in mushroom bodies from both larval and adult flies. We also provide evidence suggesting that neural circuits are more flexible in early stages of development and lose this flexibility as they grow towards specialized function.
Collapse
Affiliation(s)
- Gabriel Koch Ocker
- Allen Institute for Brain Science, Seattle, Washington, United States of America
- * E-mail:
| | - Michael A. Buice
- Allen Institute for Brain Science, Seattle, Washington, United States of America
- Department of Applied Mathematics, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
5
|
Berke B, Le L, Keshishian H. Target-dependent retrograde signaling mediates synaptic plasticity at the Drosophila neuromuscular junction. Dev Neurobiol 2020; 79:895-912. [PMID: 31950660 DOI: 10.1002/dneu.22731] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 12/26/2022]
Abstract
Neurons that innervate multiple targets often establish synapses with target-specific strengths, and local forms of synaptic plasticity. We have examined the molecular-genetic mechanisms that allow a single Drosophila motoneuron, the ventral Common Exciter (vCE), to establish connections with target-specific properties at its various synaptic partners. By driving transgenes in a subset of vCE's targets, we found that individual target cells are able to independently control the properties of vCE's innervating branch and synapses. This is achieved by means of a trans-synaptic growth factor secreted by the target cell. At the larval neuromuscular junction, postsynaptic glutamate receptor activity stimulates the release of the BMP4/5/6 homolog Glass bottom boat (Gbb). As larvae mature and motoneuron terminals grow, Gbb activates the R-Smad transcriptional regulator phosphorylated Mad (pMad) to facilitate presynaptic development. We found that manipulations affecting glutamate receptors or Gbb within subsets of target muscles led to local effects either specific to the manipulated muscle or by a limited gradient within the presynaptic branches. While presynaptic development depends on pMad transcriptional activity within the motoneuron nucleus, we find that the Gbb growth factor may also act locally within presynaptic terminals. Local Gbb signaling and presynaptic pMad accumulation within boutons may therefore participate in a "synaptic tagging" mechanism, to influence synaptic growth and plasticity in Drosophila.
Collapse
Affiliation(s)
- Brett Berke
- Molecular, Cellular, and Developmental Biology Department, Yale University, New Haven, CT, USA
| | - Linh Le
- University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Haig Keshishian
- Molecular, Cellular, and Developmental Biology Department, Yale University, New Haven, CT, USA
| |
Collapse
|
6
|
Tenedini FM, Sáez González M, Hu C, Pedersen LH, Petruzzi MM, Spitzweck B, Wang D, Richter M, Petersen M, Szpotowicz E, Schweizer M, Sigrist SJ, Calderon de Anda F, Soba P. Maintenance of cell type-specific connectivity and circuit function requires Tao kinase. Nat Commun 2019; 10:3506. [PMID: 31383864 PMCID: PMC6683158 DOI: 10.1038/s41467-019-11408-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 07/13/2019] [Indexed: 01/05/2023] Open
Abstract
Sensory circuits are typically established during early development, yet how circuit specificity and function are maintained during organismal growth has not been elucidated. To gain insight we quantitatively investigated synaptic growth and connectivity in the Drosophila nociceptive network during larval development. We show that connectivity between primary nociceptors and their downstream neurons scales with animal size. We further identified the conserved Ste20-like kinase Tao as a negative regulator of synaptic growth required for maintenance of circuit specificity and connectivity. Loss of Tao kinase resulted in exuberant postsynaptic specializations and aberrant connectivity during larval growth. Using functional imaging and behavioral analysis we show that loss of Tao-induced ectopic synapses with inappropriate partner neurons are functional and alter behavioral responses in a connection-specific manner. Our data show that fine-tuning of synaptic growth by Tao kinase is required for maintaining specificity and behavioral output of the neuronal network during animal growth.
Collapse
Affiliation(s)
- Federico Marcello Tenedini
- Neuronal Patterning and Connectivity laboratory, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251, Hamburg, Germany
| | - Maria Sáez González
- Neuronal Patterning and Connectivity laboratory, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251, Hamburg, Germany
| | - Chun Hu
- Neuronal Patterning and Connectivity laboratory, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251, Hamburg, Germany
| | - Lisa Hedegaard Pedersen
- Neuronal Patterning and Connectivity laboratory, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251, Hamburg, Germany
| | - Mabel Matamala Petruzzi
- Neuronal Patterning and Connectivity laboratory, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251, Hamburg, Germany
| | - Bettina Spitzweck
- Neuronal Patterning and Connectivity laboratory, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251, Hamburg, Germany
| | - Denan Wang
- Neuronal Patterning and Connectivity laboratory, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251, Hamburg, Germany
| | - Melanie Richter
- Neuronal Development laboratory, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251, Hamburg, Germany
| | - Meike Petersen
- Neuronal Patterning and Connectivity laboratory, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251, Hamburg, Germany
| | - Emanuela Szpotowicz
- Electron microscopy unit, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251, Hamburg, Germany
| | - Michaela Schweizer
- Electron microscopy unit, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251, Hamburg, Germany
| | - Stephan J Sigrist
- Institute of Biology, Free University Berlin, Takustr. 6, 14195, Berlin, Germany
| | - Froylan Calderon de Anda
- Neuronal Development laboratory, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251, Hamburg, Germany
| | - Peter Soba
- Neuronal Patterning and Connectivity laboratory, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251, Hamburg, Germany.
| |
Collapse
|
7
|
Hill T, Koseva BS, Unckless RL. The Genome of Drosophila innubila Reveals Lineage-Specific Patterns of Selection in Immune Genes. Mol Biol Evol 2019; 36:1405-1417. [PMID: 30865231 PMCID: PMC6573480 DOI: 10.1093/molbev/msz059] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Pathogenic microbes can exert extraordinary evolutionary pressure on their hosts. They can spread rapidly and sicken or even kill their host to promote their own proliferation. Because of this strong selective pressure, immune genes are some of the fastest evolving genes across metazoans, as highlighted in mammals and insects. Drosophila melanogaster serves as a powerful model for studying host/pathogen evolution. While Drosophila melanogaster are frequently exposed to various pathogens, little is known about D. melanogaster's ecology, or if they are representative of other Drosophila species in terms of pathogen pressure. Here, we characterize the genome of Drosophila innubila, a mushroom-feeding species highly diverged from D. melanogaster and investigate the evolution of the immune system. We find substantial differences in the rates of evolution of immune pathways between D. innubila and D. melanogaster. Contrasting what was previously found for D. melanogaster, we find little evidence of rapid evolution of the antiviral RNAi genes and high rates of evolution in the Toll pathway. This suggests that, while immune genes tend to be rapidly evolving in most species, the specific genes that are fastest evolving may depend either on the pathogens faced by the host and/or divergence in the basic architecture of the host's immune system.
Collapse
Affiliation(s)
- Tom Hill
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS
| | | | - Robert L Unckless
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS
| |
Collapse
|
8
|
Politano SF, Salemme RR, Ashley J, López-Rivera JA, Bakula TA, Puhalla KA, Quinn JP, Juszczak MJ, Phillip LK, Carrillo RA, Vanderzalm PJ. Tao Negatively Regulates BMP Signaling During Neuromuscular Junction Development in Drosophila. Dev Neurobiol 2019; 79:335-349. [PMID: 31002474 DOI: 10.1002/dneu.22681] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 03/15/2019] [Accepted: 04/15/2019] [Indexed: 12/15/2022]
Abstract
The coordinated growth and development of synapses is critical for all aspects of neural circuit function and mutations that disrupt these processes can result in various neurological defects. Several anterograde and retrograde signaling pathways, including the canonical Bone Morphogenic Protein (BMP) pathway, regulate synaptic development in vertebrates and invertebrates. At the Drosophila larval neuromuscular junction (NMJ), the retrograde BMP pathway is a part of the machinery that controls NMJ expansion concurrent with larval growth. We sought to determine whether the conserved Hippo pathway, critical for proportional growth in other tissues, also functions in NMJ development. We found that neuronal loss of the serine-threonine protein kinase Tao, a regulator of the Hippo signaling pathway, results in supernumerary boutons which contain a normal density of active zones. Tao is also required for proper synaptic function, as reduction of Tao results in NMJs with decreased evoked excitatory junctional potentials. Surprisingly, Tao function in NMJ growth is independent of the Hippo pathway. Instead, our experiments suggest that Tao negatively regulates BMP signaling as reduction of Tao leads to an increase in pMad levels in motor neuron nuclei and an increase in BMP target gene expression. Taken together, these results support a role for Tao as a novel inhibitor of BMP signaling in motor neurons during synaptic development and function.
Collapse
Affiliation(s)
- Stephen F Politano
- Department of Biology, John Carroll University, University Heights, Ohio, 44118
| | - Ryan R Salemme
- Department of Biology, John Carroll University, University Heights, Ohio, 44118
| | - James Ashley
- Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois, 60637
| | | | - Toren A Bakula
- Department of Biology, John Carroll University, University Heights, Ohio, 44118
| | - Kathryn A Puhalla
- Department of Biology, John Carroll University, University Heights, Ohio, 44118
| | - John P Quinn
- Department of Biology, John Carroll University, University Heights, Ohio, 44118
| | - Madison J Juszczak
- Department of Biology, John Carroll University, University Heights, Ohio, 44118
| | - Lauren K Phillip
- Department of Biology, John Carroll University, University Heights, Ohio, 44118
| | - Robert A Carrillo
- Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois, 60637
| | - Pamela J Vanderzalm
- Department of Biology, John Carroll University, University Heights, Ohio, 44118
| |
Collapse
|
9
|
DePew AT, Aimino MA, Mosca TJ. The Tenets of Teneurin: Conserved Mechanisms Regulate Diverse Developmental Processes in the Drosophila Nervous System. Front Neurosci 2019; 13:27. [PMID: 30760977 PMCID: PMC6363694 DOI: 10.3389/fnins.2019.00027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 01/11/2019] [Indexed: 01/26/2023] Open
Abstract
To successfully integrate a neuron into a circuit, a myriad of developmental events must occur correctly and in the correct order. Neurons must be born and grow out toward a destination, responding to guidance cues to direct their path. Once arrived, each neuron must segregate to the correct sub-region before sorting through a milieu of incorrect partners to identify the correct partner with which they can connect. Finally, the neuron must make a synaptic connection with their correct partner; a connection that needs to be broadly maintained throughout the life of the animal while remaining responsive to modes of plasticity and pruning. Though many intricate molecular mechanisms have been discovered to regulate each step, recent work showed that a single family of proteins, the Teneurins, regulates a host of these developmental steps in Drosophila – an example of biological adaptive reuse. Teneurins first influence axon guidance during early development. Once neurons arrive in their target regions, Teneurins enable partner matching and synapse formation in both the central and peripheral nervous systems. Despite these diverse processes and systems, the Teneurins use conserved mechanisms to achieve these goals, as defined by three tenets: (1) transsynaptic interactions with each other, (2) membrane stabilization via an interaction with and regulation of the cytoskeleton, and (3) a role for presynaptic Ten-a in regulating synaptic function. These processes are further distinguished by (1) the nature of the transsynaptic interaction – homophilic interactions (between the same Teneurins) to engage partner matching and heterophilic interactions (between different Teneurins) to enable synaptic connectivity and the proper apposition of pre- and postsynaptic sites and (2) the location of cytoskeletal regulation (presynaptic cytoskeletal regulation in the CNS and postsynaptic regulation of the cytoskeleton at the NMJ). Thus, both the roles and the mechanisms governing them are conserved across processes and synapses. Here, we will highlight the contributions of Drosophila synaptic biology to our understanding of the Teneurins, discuss the mechanistic conservation that allows the Teneurins to achieve common neurodevelopmental goals, and present new data in support of these points. Finally, we will posit the next steps for understanding how this remarkably versatile family of proteins functions to control multiple distinct events in the creation of a nervous system.
Collapse
Affiliation(s)
- Alison T DePew
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA, United States
| | - Michael A Aimino
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA, United States
| | - Timothy J Mosca
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
10
|
Wasserman SS, Shteiman-Kotler A, Harris K, Iliadi KG, Persaud A, Zhong Y, Zhang Y, Fang X, Boulianne GL, Stewart B, Rotin D. Regulation of SH3PX1 by dNedd4-long at the Drosophila neuromuscular junction. J Biol Chem 2018; 294:1739-1752. [PMID: 30518551 DOI: 10.1074/jbc.ra118.005161] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 11/12/2018] [Indexed: 11/06/2022] Open
Abstract
Drosophila Nedd4 (dNedd4) is a HECT E3 ubiquitin ligase present in two major isoforms: short (dNedd4S) and long (dNedd4Lo), with the latter containing two unique regions (N terminus and Middle). Although dNedd4S promotes neuromuscular synaptogenesis (NMS), dNedd4Lo inhibits it and impairs larval locomotion. To explain how dNedd4Lo inhibits NMS, MS analysis was performed to find its binding partners and identified SH3PX1, which binds dNedd4Lo unique Middle region. SH3PX1 contains SH3, PX, and BAR domains and is present at neuromuscular junctions, where it regulates active zone ultrastructure and presynaptic neurotransmitter release. Here, we demonstrate direct binding of SH3PX1 to the dNedd4Lo Middle region (which contains a Pro-rich sequence) in vitro and in cells, via the SH3PX1-SH3 domain. In Drosophila S2 cells, dNedd4Lo overexpression reduces SH3PX1 levels at the cell periphery. In vivo overexpression of dNedd4Lo post-synaptically, but not pre-synaptically, reduces SH3PX1 levels at the subsynaptic reticulum and impairs neurotransmitter release. Unexpectedly, larvae that overexpress dNedd4Lo post-synaptically and are heterozygous for a null mutation in SH3PX1 display increased neurotransmission compared with dNedd4Lo or SH3PX1 mutant larvae alone, suggesting a compensatory effect from the remaining SH3PX1 allele. These results suggest a post-synaptic-specific regulation of SH3PX1 by dNedd4Lo.
Collapse
Affiliation(s)
- Samantha S Wasserman
- Hospital for Sick Children, Cell Biology and Developmental and Stem Cell Biology programs, University of Toronto, Ontario M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Ontario M5G 0A4, Canada
| | - Alina Shteiman-Kotler
- Hospital for Sick Children, Cell Biology and Developmental and Stem Cell Biology programs, University of Toronto, Ontario M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Ontario M5G 0A4, Canada
| | - Kathryn Harris
- Department of Cell and System Biology, University of Toronto, Ontario M5G 0A4, Canada
| | - Konstantin G Iliadi
- Hospital for Sick Children, Cell Biology and Developmental and Stem Cell Biology programs, University of Toronto, Ontario M5G 0A4, Canada
| | - Avinash Persaud
- Hospital for Sick Children, Cell Biology and Developmental and Stem Cell Biology programs, University of Toronto, Ontario M5G 0A4, Canada
| | - Yvonne Zhong
- Hospital for Sick Children, Cell Biology and Developmental and Stem Cell Biology programs, University of Toronto, Ontario M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Ontario M5G 0A4, Canada
| | - Yi Zhang
- Department of Gastrointestinal Surgery, Jilin University, Changchun 130033, China
| | - Xuedong Fang
- Department of Gastrointestinal Surgery, Jilin University, Changchun 130033, China
| | - Gabrielle L Boulianne
- Hospital for Sick Children, Cell Biology and Developmental and Stem Cell Biology programs, University of Toronto, Ontario M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Ontario M5G 0A4, Canada
| | - Bryan Stewart
- Department of Cell and System Biology, University of Toronto, Ontario M5G 0A4, Canada
| | - Daniela Rotin
- Hospital for Sick Children, Cell Biology and Developmental and Stem Cell Biology programs, University of Toronto, Ontario M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Ontario M5G 0A4, Canada.
| |
Collapse
|
11
|
Ormerod KG, Jung J, Mercier AJ. Modulation of neuromuscular synapses and contraction in Drosophila 3rd instar larvae. J Neurogenet 2018; 32:183-194. [PMID: 30303434 DOI: 10.1080/01677063.2018.1502761] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Over the past four decades, Drosophila melanogaster has become an increasingly important model system for studying the modulation of chemical synapses and muscle contraction by cotransmitters and neurohormones. This review describes how advantages provided by Drosophila have been utilized to investigate synaptic modulation, and it discusses key findings from investigations of cotransmitters and neurohormones that act on body wall muscles of 3rd instar Drosophila larvae. These studies have contributed much to our understanding of how neuromuscular systems are modulated by neuropeptides and biogenic amines, but there are still gaps in relating these peripheral modulatory effects to behavior.
Collapse
Affiliation(s)
- Kiel G Ormerod
- a Department of Biology , Massachusetts Institute of Technology , Cambridge , MA , USA
| | - JaeHwan Jung
- b Department of Biological Sciences , Brock University , St. Catharines , Canada
| | - A Joffre Mercier
- b Department of Biological Sciences , Brock University , St. Catharines , Canada
| |
Collapse
|
12
|
Unraveling Synaptic GCaMP Signals: Differential Excitability and Clearance Mechanisms Underlying Distinct Ca 2+ Dynamics in Tonic and Phasic Excitatory, and Aminergic Modulatory Motor Terminals in Drosophila. eNeuro 2018; 5:eN-NWR-0362-17. [PMID: 29464198 PMCID: PMC5818553 DOI: 10.1523/eneuro.0362-17.2018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 01/27/2018] [Accepted: 02/02/2018] [Indexed: 11/21/2022] Open
Abstract
GCaMP is an optogenetic Ca2+ sensor widely used for monitoring neuronal activities but the precise physiological implications of GCaMP signals remain to be further delineated among functionally distinct synapses. The Drosophila neuromuscular junction (NMJ), a powerful genetic system for studying synaptic function and plasticity, consists of tonic and phasic glutamatergic and modulatory aminergic motor terminals of distinct properties. We report a first simultaneous imaging and electric recording study to directly contrast the frequency characteristics of GCaMP signals of the three synapses for physiological implications. Different GCaMP variants were applied in genetic and pharmacological perturbation experiments to examine the Ca2+ influx and clearance processes underlying the GCaMP signal. Distinct mutational and drug effects on GCaMP signals indicate differential roles of Na+ and K+ channels, encoded by genes including paralytic (para), Shaker (Sh), Shab, and ether-a-go-go (eag), in excitability control of different motor terminals. Moreover, the Ca2+ handling properties reflected by the characteristic frequency dependence of the synaptic GCaMP signals were determined to a large extent by differential capacity of mitochondria-powered Ca2+ clearance mechanisms. Simultaneous focal recordings of synaptic activities further revealed that GCaMPs were ineffective in tracking the rapid dynamics of Ca2+ influx that triggers transmitter release, especially during low-frequency activities, but more adequately reflected cytosolic residual Ca2+ accumulation, a major factor governing activity-dependent synaptic plasticity. These results highlight the vast range of GCaMP response patterns in functionally distinct synaptic types and provide relevant information for establishing basic guidelines for the physiological interpretations of presynaptic GCaMP signals from in situ imaging studies.
Collapse
|
13
|
Gerhard S, Andrade I, Fetter RD, Cardona A, Schneider-Mizell CM. Conserved neural circuit structure across Drosophila larval development revealed by comparative connectomics. eLife 2017; 6:e29089. [PMID: 29058674 PMCID: PMC5662290 DOI: 10.7554/elife.29089] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 10/22/2017] [Indexed: 11/14/2022] Open
Abstract
During postembryonic development, the nervous system must adapt to a growing body. How changes in neuronal structure and connectivity contribute to the maintenance of appropriate circuit function remains unclear. Previously , we measured the cellular neuroanatomy underlying synaptic connectivity in Drosophila (Schneider-Mizell et al., 2016). Here, we examined how neuronal morphology and connectivity change between first instar and third instar larval stages using serial section electron microscopy. We reconstructed nociceptive circuits in a larva of each stage and found consistent topographically arranged connectivity between identified neurons. Five-fold increases in each size, number of terminal dendritic branches, and total number of synaptic inputs were accompanied by cell type-specific connectivity changes that preserved the fraction of total synaptic input associated with each pre-synaptic partner. We propose that precise patterns of structural growth act to conserve the computational function of a circuit, for example determining the location of a dangerous stimulus.
Collapse
Affiliation(s)
- Stephan Gerhard
- Janelia Research CampusHoward Hughes Medical InstituteAshburnUnited States
| | - Ingrid Andrade
- Janelia Research CampusHoward Hughes Medical InstituteAshburnUnited States
| | - Richard D Fetter
- Janelia Research CampusHoward Hughes Medical InstituteAshburnUnited States
| | - Albert Cardona
- Janelia Research CampusHoward Hughes Medical InstituteAshburnUnited States
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUnited Kingdom
| | | |
Collapse
|
14
|
Deshpande M, Rodal AA. The Crossroads of Synaptic Growth Signaling, Membrane Traffic and Neurological Disease: Insights from Drosophila. Traffic 2015; 17:87-101. [PMID: 26538429 DOI: 10.1111/tra.12345] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 10/29/2015] [Accepted: 10/29/2015] [Indexed: 12/13/2022]
Abstract
Neurons require target-derived autocrine and paracrine growth factors to maintain proper identity, innervation, homeostasis and survival. Neuronal growth factor signaling is highly dependent on membrane traffic, both for the packaging and release of the growth factors themselves, and for regulation of intracellular signaling by their transmembrane receptors. Here, we review recent findings from the Drosophila larval neuromuscular junction (NMJ) that illustrate how specific steps of intracellular traffic and inter-organelle interactions impinge on signaling, particularly in the bone morphogenic protein, Wingless and c-Jun-activated kinase pathways, regulating elaboration and stability of NMJ arbors, construction of synapses and synaptic transmission and homeostasis. These membrane trafficking and signaling pathways have been implicated in human motor neuron diseases including amyotrophic lateral sclerosis and hereditary spastic paraplegia, highlighting their importance for neuronal health and survival.
Collapse
Affiliation(s)
| | - Avital A Rodal
- Department of Biology, Brandeis University, Waltham, MA, USA
| |
Collapse
|
15
|
Retrograde BMP signaling at the synapse: a permissive signal for synapse maturation and activity-dependent plasticity. J Neurosci 2013; 33:17937-50. [PMID: 24198381 DOI: 10.1523/jneurosci.6075-11.2013] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
At the Drosophila neuromuscular junction (NMJ), the loss of retrograde, trans-synaptic BMP signaling causes motoneuron terminals to have fewer synaptic boutons, whereas increased neuronal activity results in a larger synapse with more boutons. Here, we show that an early and transient BMP signal is necessary and sufficient for NMJ growth as well as for activity-dependent synaptic plasticity. This early critical period was revealed by the temporally controlled suppression of Mad, the SMAD1 transcriptional regulator. Similar results were found by genetic rescue tests involving the BMP4/5/6 ligand Glass bottom boat (Gbb) in muscle, and alternatively the type II BMP receptor Wishful Thinking (Wit) in the motoneuron. These observations support a model where the muscle signals back to the innervating motoneuron's nucleus to activate presynaptic programs necessary for synaptic growth and activity-dependent plasticity. Molecular genetic gain- and loss-of-function studies show that genes involved in NMJ growth and plasticity, including the adenylyl cyclase Rutabaga, the Ig-CAM Fasciclin II, the transcription factor AP-1 (Fos/Jun), and the adhesion protein Neurexin, all depend critically on the canonical BMP pathway for their effects. By contrast, elevated expression of Lar, a receptor protein tyrosine phosphatase found to be necessary for activity-dependent plasticity, rescued the phenotypes associated with the loss of Mad signaling. We also find that synaptic structure and function develop using genetically separable, BMP-dependent mechanisms. Although synaptic growth depended on Lar and the early, transient BMP signal, the maturation of neurotransmitter release was independent of Lar and required later, ongoing BMP signaling.
Collapse
|
16
|
Dendritic growth gated by a steroid hormone receptor underlies increases in activity in the developing Drosophila locomotor system. Proc Natl Acad Sci U S A 2013; 110:E3878-87. [PMID: 24043825 DOI: 10.1073/pnas.1311711110] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
As animals grow, their nervous systems also increase in size. How growth in the central nervous system is regulated and its functional consequences are incompletely understood. We explored these questions, using the larval Drosophila locomotor system as a model. In the periphery, at neuromuscular junctions, motoneurons are known to enlarge their presynaptic axon terminals in size and strength, thereby compensating for reductions in muscle excitability that are associated with increases in muscle size. Here, we studied how motoneurons change in the central nervous system during periods of animal growth. We find that within the central nervous system motoneurons also enlarge their postsynaptic dendritic arbors, by the net addition of branches, and that these scale with overall animal size. This dendritic growth is gated on a cell-by-cell basis by a specific isoform of the steroid hormone receptor ecdysone receptor-B2, for which functions have thus far remained elusive. The dendritic growth is accompanied by synaptic strengthening and results in increased neuronal activity. Electrical properties of these neurons, however, are independent of ecdysone receptor-B2 regulation. We propose that these structural dendritic changes in the central nervous system, which regulate neuronal activity, constitute an additional part of the adaptive response of the locomotor system to increases in body and muscle size as the animal grows.
Collapse
|
17
|
Abstract
L-glutamate is the primary neurotransmitter at excitatory synapses in the vertebrate CNS and at arthropod neuromuscular junctions (NMJs). However, the molecular mechanisms that trigger the recruitment of glutamate receptors at the onset of synaptogenesis and promote their stabilization at postsynaptic densities remain poorly understood. We have reported the discovery of a novel, evolutionary conserved molecule, Neto, essential for clustering of ionotropic glutamate receptors (iGluRs) at Drosophila NMJ. Neto is the first auxiliary subunit described in Drosophila and is the only non-channel subunit absolutely required for functional iGluRs. Here we review the role of Drosophila Neto in synapse assembly, its similarities with other Neto proteins and a new perspective on how glutamatergic synapses are physically assembled and stabilized.
Collapse
Affiliation(s)
- Young-Jun Kim
- 1Program in Cellular Regulation and Metabolism; NICHD; NIH; Bethesda, MD USA
| | | |
Collapse
|
18
|
Menon KP, Carrillo RA, Zinn K. Development and plasticity of the Drosophila larval neuromuscular junction. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2013; 2:647-70. [PMID: 24014452 DOI: 10.1002/wdev.108] [Citation(s) in RCA: 174] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The Drosophila larval neuromuscular system is relatively simple, containing only 32 motor neurons in each abdominal hemisegment, and its neuromuscular junctions (NMJs) have been studied extensively. NMJ synapses exhibit developmental and functional plasticity while displaying stereotyped connectivity. Drosophila Type I NMJ synapses are glutamatergic, while the vertebrate NMJ uses acetylcholine as its primary neurotransmitter. The larval NMJ synapses use ionotropic glutamate receptors (GluRs) that are homologous to AMPA-type GluRs in the mammalian brain, and they have postsynaptic scaffolds that resemble those found in mammalian postsynaptic densities. These features make the Drosophila neuromuscular system an excellent genetic model for the study of excitatory synapses in the mammalian central nervous system. The first section of the review presents an overview of NMJ development. The second section describes genes that regulate NMJ development, including: (1) genes that positively and negatively regulate growth of the NMJ, (2) genes required for maintenance of NMJ bouton structure, (3) genes that modulate neuronal activity and alter NMJ growth, (4) genes involved in transsynaptic signaling at the NMJ. The third section describes genes that regulate acute plasticity, focusing on translational regulatory mechanisms. As this review is intended for a developmental biology audience, it does not cover NMJ electrophysiology in detail, and does not review genes for which mutations produce only electrophysiological but no structural phenotypes.
Collapse
Affiliation(s)
- Kaushiki P Menon
- Broad Center, Division of Biology, California Institute of Technology, Pasadena, CA, USA
| | | | | |
Collapse
|
19
|
Kim YJ, Bao H, Bonanno L, Zhang B, Serpe M. Drosophila Neto is essential for clustering glutamate receptors at the neuromuscular junction. Genes Dev 2012; 26:974-87. [PMID: 22499592 DOI: 10.1101/gad.185165.111] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Neurotransmitter receptor recruitment at postsynaptic specializations is key in synaptogenesis, since this step confers functionality to the nascent synapse. The Drosophila neuromuscular junction (NMJ) is a glutamatergic synapse, similar in composition and function to mammalian central synapses. Various mechanisms regulating the extent of postsynaptic ionotropic glutamate receptor (iGluR) clustering have been described, but none are known to be essential for the initial localization and clustering of iGluRs at postsynaptic densities (PSDs). We identified and characterized the Drosophila neto (neuropilin and tolloid-like) as an essential gene required for clustering of iGluRs at the NMJ. Neto colocalizes with the iGluRs at the PSDs in puncta juxtaposing the active zones. neto loss-of-function phenotypes parallel the loss-of-function defects described for iGluRs. The defects in neto mutants are effectively rescued by muscle-specific expression of neto transgenes. Neto clustering at the Drosophila NMJ coincides with and is dependent on iGluRs. Our studies reveal that Drosophila Neto is a novel, essential component of the iGluR complexes and is required for iGluR clustering, organization of PSDs, and synapse functionality.
Collapse
Affiliation(s)
- Young-Jun Kim
- Program in Cellular Regulation and Metabolism, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
20
|
Knight D, Xie W, Boulianne GL. Neurexins and neuroligins: recent insights from invertebrates. Mol Neurobiol 2011; 44:426-40. [PMID: 22037798 PMCID: PMC3229692 DOI: 10.1007/s12035-011-8213-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 10/17/2011] [Indexed: 11/28/2022]
Abstract
During brain development, each neuron must find and synapse with the correct pre- and postsynaptic partners. The complexity of these connections and the relatively large distances some neurons must send their axons to find the correct partners makes studying brain development one of the most challenging, and yet fascinating disciplines in biology. Furthermore, once the initial connections have been made, the neurons constantly remodel their dendritic and axonal arbours in response to changing demands. Neurexin and neuroligin are two cell adhesion molecules identified as important regulators of this process. The importance of these genes in the development and modulation of synaptic connectivity is emphasised by the observation that mutations in these genes in humans have been associated with cognitive disorders such as Autism spectrum disorders, Tourette syndrome and Schizophrenia. The present review will discuss recent advances in our understanding of the role of these genes in synaptic development and modulation, and in particular, we will focus on recent work in invertebrate models, and how these results relate to studies in mammals.
Collapse
Affiliation(s)
- David Knight
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | | | | |
Collapse
|
21
|
Tsurudome K, Tsang K, Liao EH, Ball R, Penney J, Yang JS, Elazzouzi F, He T, Chishti A, Lnenicka G, Lai EC, Haghighi AP. The Drosophila miR-310 cluster negatively regulates synaptic strength at the neuromuscular junction. Neuron 2011; 68:879-93. [PMID: 21145002 DOI: 10.1016/j.neuron.2010.11.016] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2010] [Indexed: 12/25/2022]
Abstract
Emerging data implicate microRNAs (miRNAs) in the regulation of synaptic structure and function, but we know little about their role in the regulation of neurotransmission in presynaptic neurons. Here, we demonstrate that the miR-310-313 cluster is required for normal synaptic transmission at the Drosophila larval neuromuscular junction. Loss of miR-310-313 cluster leads to a significant enhancement of neurotransmitter release, which can be rescued with temporally restricted expression of mir-310-313 in larval presynaptic neurons. Kinesin family member, Khc-73 is a functional target for miR-310-313 as its expression is increased in mir-310-313 mutants and reducing it restores normal synaptic function. Cluster mutants show an increase in the active zone protein Bruchpilot accompanied by an increase in electron dense T bars. Finally, we show that repression of Khc-73 by miR-310-313 cluster influences the establishment of normal synaptic homeostasis. Our findings establish a role for miRNAs in the regulation of neurotransmitter release.
Collapse
Affiliation(s)
- Kazuya Tsurudome
- Department of Physiology, McGill University, Montréal, QC H3G 1Y6, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Drosophila Importin-α2 is involved in synapse, axon and muscle development. PLoS One 2010; 5:e15223. [PMID: 21151903 PMCID: PMC2997784 DOI: 10.1371/journal.pone.0015223] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Accepted: 10/30/2010] [Indexed: 01/22/2023] Open
Abstract
Nuclear import is required for communication between the cytoplasm and the nucleus and to enact lasting changes in gene transcription following stimuli. Binding to an Importin-α molecule in the cytoplasm is often required to mediate nuclear entry of a signaling protein. As multiple isoforms of Importin-α exist, some may be responsible for the entry of distinct cargoes rather than general nuclear import. Indeed, in neuronal systems, Importin-α isoforms can mediate very specific processes such as axonal tiling and communication of an injury signal. To study nuclear import during development, we examined the expression and function of Importin-α2 in Drosophila melanogaster. We found that Importin-α2 was expressed in the nervous system where it was required for normal active zone density at the NMJ and axonal commissure formation in the central nervous system. Other aspects of synaptic morphology at the NMJ and the localization of other synaptic markers appeared normal in importin-α2 mutants. Importin-α2 also functioned in development of the body wall musculature. Mutants in importin-α2 exhibited errors in muscle patterning and organization that could be alleviated by restoring muscle expression of Importin-α2. Thus, Importin-α2 is needed for some processes in the development of both the nervous system and the larval musculature.
Collapse
|
23
|
Carrillo RA, Olsen DP, Yoon KS, Keshishian H. Presynaptic activity and CaMKII modulate retrograde semaphorin signaling and synaptic refinement. Neuron 2010; 68:32-44. [PMID: 20920789 DOI: 10.1016/j.neuron.2010.09.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2010] [Indexed: 10/19/2022]
Abstract
Establishing synaptic connections often involves the activity-dependent withdrawal of off-target contacts. We describe an in vivo role for temporally patterned electrical activity, voltage-gated calcium channels, and CaMKII in modulating the response of Drosophila motoneurons to the chemorepellent Sema-2a during synaptic refinement. Mutations affecting the Sema-2a ligand, the plexin B receptor (plexB), the voltage-gated Ca(v)2.1 calcium channel (cac), or the voltage-gated Na(v)1 sodium channel (mle(nap-ts);tipE) each result in ectopic neuromuscular contacts. Sema-2a interacts genetically with both of the channel mutations. The cac phenotype is enhanced by the Sema-2a mutation and is suppressed by either plexB overexpression or patterned, low-frequency (0.01 Hz) bouts of electrical activity in the embryo. The calcium-dependent suppression of ectopic contacts also depends on the downstream activation of CaMKII. These results indicate a role for patterned electrical activity and presynaptic calcium signaling, acting through CaMKII, in modulating a retrograde signal during the refinement of synaptic connections.
Collapse
Affiliation(s)
- Robert A Carrillo
- Pharmacology Department, Yale School of Medicine, New Haven, CT 06520, USA
| | | | | | | |
Collapse
|
24
|
Ellis JE, Parker L, Cho J, Arora K. Activin signaling functions upstream of Gbb to regulate synaptic growth at the Drosophila neuromuscular junction. Dev Biol 2010; 342:121-33. [PMID: 20346940 DOI: 10.1016/j.ydbio.2010.03.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 03/16/2010] [Accepted: 03/16/2010] [Indexed: 11/20/2022]
Abstract
Activins are members of the TGF-ss superfamily of secreted growth factors that control a diverse array of processes in vertebrates including endocrine function, cell proliferation, differentiation, immune response and wound repair. In Drosophila, the Activin ligand Dawdle (Daw) has been shown to regulate several aspects of neuronal development such as embryonic axonal pathfinding, neuroblast proliferation in the larval brain and growth cone motility in the visual system. Here we identify a novel role for Activin signaling in regulating synaptic growth at the larval neuromuscular junction (NMJ). Mutants for Daw, the Activin type I receptor Baboon (Babo), and the signal transducer dSmad2, display reduced NMJ size suggesting that Daw utilizes a canonical Activin signal-transduction pathway in this context. Additionally, loss of Daw/Babo activity affects microtubule stability, axonal transport and distribution of Futsch, the Drosophila microtubule associated protein 1B (MAP1B) homolog. We find that Babo signaling is required postsynaptically in the muscle, in contrast to the well-characterized retrograde BMP/Gbb signal that is required for synaptic growth and function in presynaptic cells. Finally, we show that the Daw/Babo pathway acts upstream of gbb, and is involved in maintenance of muscle gbb expression, suggesting that Activins regulate NMJ growth by modulating BMP activity through transcriptional regulation of ligand expression.
Collapse
Affiliation(s)
- J E Ellis
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA 92697, USA
| | | | | | | |
Collapse
|
25
|
Founder cells regulate fiber number but not fiber formation during adult myogenesis in Drosophila. Dev Biol 2008; 321:123-40. [PMID: 18616937 DOI: 10.1016/j.ydbio.2008.06.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2007] [Revised: 05/22/2008] [Accepted: 06/04/2008] [Indexed: 11/22/2022]
Abstract
During insect myogenesis, myoblasts are organized into a pre-pattern by specialized organizer cells. In the Drosophila embryo, these cells have been termed founder cells and play important roles in specifying muscle identity and in serving as targets for myoblast fusion. A group of adult muscles, the dorsal longitudinal (flight) muscles, DLMs, is patterned by persistent larval scaffolds; the second set, the dorso-ventral muscles, DVMs is patterned by mono-nucleate founder cells (FCs) that are much larger than the surrounding myoblasts. Both types of organizer cells express Dumbfounded, which is known to regulate fusion during embryonic myogenesis. The role of DVM founder cells as well as the DLM scaffolds was tested in genetic ablation studies using the UAS/Gal4 system of targeted transgene expression. In both cases, removal of organizer cells prior to fusion, causes formation of supernumerary fibers, suggesting that cells in the myoblast pool have the capacity to initiate fiber formation, which is normally inhibited by the organizers. In addition to the large DVM FCs, some (smaller) cells in the myoblast pool also express Dumbfounded. We propose that these cells are responsible for seeding supernumerary fibers, when DVM FCs are eliminated prior to fusion. When these cells are also eliminated, myogenesis fails to occur. In the second set of studies, targeted expression of constitutively active Ras(V12) also resulted in the appearance of supernumerary fibers. In this case, the original DVM FCs are present, suggesting alterations in cell fate. Taken together, these data suggest that DVM myoblasts are able to respond to cues other than the original founder cell, to initiate fusion and fiber formation. Thus, the role of the large DVM founder cells is to generate the correct number of fibers, but they are not required for fiber formation itself. We also present evidence that the DVM FCs may arise from the leg imaginal disc.
Collapse
|
26
|
Ueda A, Wu CF. Effects of hyperkinetic, a beta subunit of Shaker voltage-dependent K+ channels, on the oxidation state of presynaptic nerve terminals. J Neurogenet 2008; 22:1-13. [PMID: 18428031 PMCID: PMC2716212 DOI: 10.1080/01677060701807954] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The Drosophila Hyperkinetic (Hk) gene encodes a beta subunit of Shaker (Sh) K+ channels and shows high sequence homology to aldoketoreductase. Hk mutations are known to modify the voltage dependence and kinetics of Sh currents, which are also influenced by the oxidative state of the N-terminus region of the Sh channel, as demonstrated in heterologous expression experiments in frog oocytes. However, an in vivo role of Hk in cellular reduction/oxidation (redox) has not been demonstrated. By using a fluorescent indicator of reactive oxygen species (ROS), dihydrorhodamine-123 (DHR), we show that the presynaptic nerve terminal of larval motor axons is metabolically active, with more rapid accumulation of ROS in comparison with muscle cells. In Hk terminals, DHR fluorescence was greatly enhanced, indicating increased ROS levels. This observation implicates a role of the Hk beta subunit in redox regulation in presynaptic terminals. This phenomenon was paralleled by the expected effects of the mutations affecting glutathione S-transferase S1 as well as applying H2O2 to wild-type synaptic terminals. Thus, our results also establish DHR as a useful tool for detecting ROS levels in the Drosophila neuromuscular junction.
Collapse
Affiliation(s)
- Atsushi Ueda
- Department of Biological Sciences, University of Iowa, Iowa City, Iowa 52242, USA
| | | |
Collapse
|
27
|
Ing B, Shteiman-Kotler A, Castelli M, Henry P, Pak Y, Stewart B, Boulianne GL, Rotin D. Regulation of Commissureless by the ubiquitin ligase DNedd4 is required for neuromuscular synaptogenesis in Drosophila melanogaster. Mol Cell Biol 2007; 27:481-96. [PMID: 17074801 PMCID: PMC1800811 DOI: 10.1128/mcb.00463-06] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2006] [Revised: 05/23/2006] [Accepted: 10/18/2006] [Indexed: 11/20/2022] Open
Abstract
Muscle synaptogenesis in Drosophila melanogaster requires endocytosis of Commissureless (Comm), a binding partner for the ubiquitin ligase dNedd4. We investigated whether dNedd4 and ubiquitination mediate this process. Here we show that Comm is expressed in intracellular vesicles in the muscle, whereas Comm bearing mutations in the two PY motifs (L/PPXY) responsible for dNedd4 binding [Comm(2PY-->AY)], or bearing Lys-->Arg mutations in all Lys residues that serve as ubiquitin acceptor sites [Comm(10K-->R)], localize to the muscle surface, suggesting they cannot endocytose. Accordingly, aberrant muscle innervation is observed in the Comm(2PY-->AY) and Comm(10K-->R) mutants expressed early in muscle development. Similar muscle surface accumulation of Comm and innervation defects are observed when dNedd4 is knocked down by double-stranded RNA interference in the muscle, in dNedd4 heterozygote larvae, or in muscles overexpressing catalytically inactive dNedd4. Expression of the Comm mutants fused to a single ubiquitin that cannot be polyubiquitinated and mimics monoubiquitination [Comm(2PY-->AY)-monoUb or Comm(10K-->R)-monoUb] prevents the defects in both Comm endocytosis and synaptogenesis, suggesting that monoubiquitination is sufficient for Comm endocytosis in muscles. Expression of the Comm mutants later in muscle development, after synaptic innervation, has no effect. These results demonstrate that dNedd4 and ubiquitination are required for Commissureless endocytosis and proper neuromuscular synaptogenesis.
Collapse
Affiliation(s)
- Bryant Ing
- The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, Canada M5G 1X8
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Liebl FLW, Werner KM, Sheng Q, Karr JE, McCabe BD, Featherstone DE. Genome-wide P-element screen for Drosophila synaptogenesis mutants. ACTA ACUST UNITED AC 2006; 66:332-47. [PMID: 16408305 PMCID: PMC1626350 DOI: 10.1002/neu.20229] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A molecular understanding of synaptogenesis is a critical step toward the goal of understanding how brains "wire themselves up," and then "rewire" during development and experience. Recent genomic and molecular advances have made it possible to study synaptogenesis on a genomic scale. Here, we describe the results of a screen for genes involved in formation and development of the glutamatergic Drosophila neuromuscular junction (NMJ). We screened 2185 P-element transposon mutants representing insertions in approximately 16% of the entire Drosophila genome. We first identified recessive lethal mutants, based on the hypothesis that mutations causing severe disruptions in synaptogenesis are likely to be lethal. Two hundred twenty (10%) of all insertions were homozygous lethal. Two hundred five (93%) of these lethal mutants developed at least through late embryogenesis and formed neuromusculature. We examined embryonic/larval NMJs in 202 of these homozygous mutants using immunocytochemistry and confocal microscopy. We identified and classified 88 mutants with altered NMJ morphology. Insertion loci in these mutants encode several different types of proteins, including ATP- and GTPases, cytoskeletal regulators, cell adhesion molecules, kinases, phosphatases, RNA regulators, regulators of protein formation, transcription factors, and transporters. Thirteen percent of insertions are in genes that encode proteins of novel or unknown function. Complementation tests and RT-PCR assays suggest that approximately 51% of the insertion lines carry background mutations. Our results reveal that synaptogenesis requires the coordinated action of many different types of proteins--perhaps as much as 44% of the entire genome--and that transposon mutageneses carry important caveats that must be respected when interpreting results generated using this method.
Collapse
Affiliation(s)
- Faith L W Liebl
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | | | | | | | | | | |
Collapse
|
29
|
Ruiz-Cañada C, Budnik V. Introduction on the use of the Drosophila embryonic/larval neuromuscular junction as a model system to study synapse development and function, and a brief summary of pathfinding and target recognition. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2006; 75:1-31. [PMID: 17137921 DOI: 10.1016/s0074-7742(06)75001-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Catalina Ruiz-Cañada
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts, Medical School, Massachusetts 01605, USA
| | | |
Collapse
|
30
|
Griffith LC, Budnik V. Plasticity and second messengers during synapse development. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2006; 75:237-65. [PMID: 17137931 PMCID: PMC4664443 DOI: 10.1016/s0074-7742(06)75011-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Effective function of the locomotor system in the Drosophila larva requires a continuous adjustment of synaptic architecture and neurotransmission at the neuromuscular junction (NMJ). This feature has made the larval NMJ a favorite model to study the genetic and molecular mechanisms underlying synapse plasticity. This chapter will review experimental strategies used to study plasticity at the NMJ, the cellular parameters affected during plastic changes, and many of the known molecules involved in plastic changes. In addition, signal transduction pathways activated during plasticity will be discussed.
Collapse
Affiliation(s)
- Leslie C. Griffith
- Dept of Biology and National Center for Behavioral Genomics, Brandeis University, 415 South St., Waltham, MA, 02454, USA
- Corresponding Author: phone: 781 736 3125, FAX: 781 736 3107,
| | - Vivian Budnik
- Department of Neurobiology, University of Massachusetts Medical School, Aaron Lazare Medical Research Building, 364 Plantation Street Worcester, MA 01605-2324, USA
| |
Collapse
|
31
|
Liebl FLW, Chen K, Karr J, Sheng Q, Featherstone DE. Increased synaptic microtubules and altered synapse development in Drosophila sec8 mutants. BMC Biol 2005; 3:27. [PMID: 16351720 PMCID: PMC1326216 DOI: 10.1186/1741-7007-3-27] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2005] [Accepted: 12/13/2005] [Indexed: 02/02/2023] Open
Abstract
Background Sec8 is highly expressed in mammalian nervous systems and has been proposed to play a role in several aspects of neural development and function, including neurite outgrowth, calcium-dependent neurotransmitter secretion, trafficking of ionotropic glutamate receptors and regulation of neuronal microtubule assembly. However, these models have never been tested in vivo. Nervous system development and function have not been described after mutation of sec8 in any organism. Results We identified lethal sec8 mutants in an unbiased forward genetic screen for mutations causing defects in development of glutamatergic Drosophila neuromuscular junctions (NMJs). The Drosophila NMJ is genetically malleable and accessible throughout development to electrophysiology and immunocytochemistry, making it ideal for examination of the sec8 mutant synaptic phenotype. We developed antibodies to Drosophila Sec8 and showed that Sec8 is abundant at the NMJ. In our sec8 null mutants, in which the sec8 gene is specifically deleted, Sec8 immunoreactivity at the NMJ is eliminated but immunoblots reveal substantial maternal contribution in the rest of the animal. Contrary to the hypothesis that Sec8 is required for neurite outgrowth or synaptic terminal growth, immunocytochemical examination revealed that sec8 mutant NMJs developed more branches and presynaptic terminals during larval development, compared to controls. Synaptic electrophysiology showed no evidence that Sec8 is required for basal neurotransmission, though glutamate receptor trafficking was mildly disrupted in sec8 mutants. The most dramatic NMJ phenotype in sec8 mutants was an increase in synaptic microtubule density, which was approximately doubled compared to controls. Conclusion Sec8 is abundant in the Drosophila NMJ. Sec8 is required in vivo for regulation of synaptic microtubule formation, and (probably secondarily) regulation of synaptic growth and glutamate receptor trafficking. We did not find any evidence that Sec8 is required for basal neurotransmission.
Collapse
Affiliation(s)
- Faith LW Liebl
- Department of Cell and Structural Biology, University of Illinois at Urbana-Champaign, 601 South Goodwin Avenue, C626, Urbana, IL 61801 USA
| | - Kaiyun Chen
- Department of Biological Sciences, University of Illinois at Chicago, 840 W. Taylor St. (M/C 067), Chicago, IL 60607 USA
| | - Julie Karr
- Department of Biological Sciences, University of Illinois at Chicago, 840 W. Taylor St. (M/C 067), Chicago, IL 60607 USA
| | - Qi Sheng
- Department of Biological Sciences, University of Illinois at Chicago, 840 W. Taylor St. (M/C 067), Chicago, IL 60607 USA
| | - David E Featherstone
- Department of Biological Sciences, University of Illinois at Chicago, 840 W. Taylor St. (M/C 067), Chicago, IL 60607 USA
| |
Collapse
|
32
|
Xing B, Ashleigh Long A, Harrison DA, Cooper RL. Developmental consequences of neuromuscular junctions with reduced presynaptic calcium channel function. Synapse 2005; 57:132-47. [PMID: 15945059 DOI: 10.1002/syn.20165] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Evoked neurotransmitter release at the Drosophila neuromuscular junction (NMJ) is regulated by the amount of calcium influx at the presynaptic nerve terminal, as for most chemical synapses. Calcium entry occurs via voltage-gated calcium channels. The temperature-sensitive Drosophila mutant, cac(TS2), has a reduced amount of calcium entry during evoked stimulation. We have used this mutation to examine homeostatic regulatory mechanisms during development of the NMJ on muscle 6 within the developing larva. The amplitude of the excitatory postsynaptic potentials are reduced for both the Ib and Is motor neurons in 3rd instar larvae which have been raised at 33 degrees C from the 1st instar stage. Larvae raised at 25 degrees C and larvae pulsed at 33 degrees C from the late 2nd instar for various lengths of time show a reduced synaptic efficacy as a 3rd instar. The results indicate that the nerve terminal cannot fully compensate physiologically in the regulation of synaptic transmission during larval life for a reduced amount of evoked calcium entry. Morphological comparisons of Ib and Is terminals in relation to length and numbers of varicosities are significantly reduced in cac(TS2), which also suggests a lack in homeostatic ability. These findings are relevant since many deficits in synaptic transmission in various systems are compensated for either physiologically or structural over development, but not in this case for reduced calcium entry during evoked transmission.
Collapse
Affiliation(s)
- Bin Xing
- Department of Biology, University of Kentucky, Lexington, KY 40506-0225, USA
| | | | | | | |
Collapse
|
33
|
Bao H, Daniels RW, MacLeod GT, Charlton MP, Atwood HL, Zhang B. AP180 maintains the distribution of synaptic and vesicle proteins in the nerve terminal and indirectly regulates the efficacy of Ca2+-triggered exocytosis. J Neurophysiol 2005; 94:1888-903. [PMID: 15888532 DOI: 10.1152/jn.00080.2005] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
AP180 plays an important role in clathrin-mediated endocytosis of synaptic vesicles (SVs) and has also been implicated in retrieving SV proteins. In Drosophila, deletion of its homologue, Like-AP180 (LAP), has been shown to increase the size of SVs but decrease the number of SVs and transmitter release. However, it remains elusive whether a reduction in the total vesicle pool directly affects transmitter release. Further, it is unknown whether the lap mutation also affects vesicle protein retrieval and synaptic protein localization and, if so, how it might affect exocytosis. Using a combination of electrophysiology, optical imaging, electron microscopy, and immunocytochemistry, we have further characterized the lap mutant and hereby show that LAP plays additional roles in maintaining both normal synaptic transmission and protein distribution at synapses. While increasing the rate of spontaneous vesicle fusion, the lap mutation dramatically reduces impulse-evoked transmitter release at steps downstream of calcium entry and vesicle docking. Notably, lap mutations disrupt calcium coupling to exocytosis and reduce calcium cooperativity. These results suggest a primary defect in calcium sensors on the vesicles or on the release machinery. Consistent with this hypothesis, three vesicle proteins critical for calcium-mediated exocytosis, synaptotagmin I, cysteine-string protein, and neuronal synaptobrevin, are all mislocalized to the extrasynaptic axonal regions along with Dap160, an active zone marker (nc82), and glutamate receptors in the mutant. These results suggest that AP180 is required for either recycling vesicle proteins and/or maintaining the distribution of both vesicle and synaptic proteins in the nerve terminal.
Collapse
Affiliation(s)
- Hong Bao
- Section of Neurobiology, Institute for Neuroscience, 1 University Station, The University of Texas at Austin, Austin, Texas 78712, USA
| | | | | | | | | | | |
Collapse
|
34
|
Suster ML, Seugnet L, Bate M, Sokolowski MB. Refining GAL4-driven transgene expression in Drosophila with a GAL80 enhancer-trap. Genesis 2005; 39:240-5. [PMID: 15286996 DOI: 10.1002/gene.20051] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We constructed an enhancer-trap element, P[GAL80], that encodes the yeast GAL80 repressor to refine expression of transgenes driven by the binary GAL4/UAS system. GAL80 blocks GAL4 activity by binding to its transcriptional activation domain. We screened GAL80 enhancer-traps for repression of GAL4-induced green fluorescent protein (GFP) in the intact larval nervous system. We selected one line that repressed GFP in a large set of cholinergic neurons. This line was used to refine GFP expression from a set of over 200 neurons to a subset of 20 neurons in a preselected GAL4 line. Expression of tetanus neurotoxin, a potent blocker of neurotransmitter release, in these 20 neurons reproduced an aberrant larval turning behavior previously assigned to the parental set of 200 neurons. Our results suggest that targeted GAL80 expression could become a useful means of spatially refining transgene expression in Drosophila.
Collapse
|
35
|
Osterwalder T, Kuhnen A, Leiserson WM, Kim YS, Keshishian H. Drosophila serpin 4 functions as a neuroserpin-like inhibitor of subtilisin-like proprotein convertases. J Neurosci 2004; 24:5482-91. [PMID: 15201320 PMCID: PMC6729332 DOI: 10.1523/jneurosci.5577-03.2004] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The proteolytic processing of neuropeptide precursors is believed to be regulated by serine proteinase inhibitors, or serpins. Here we describe the molecular cloning and functional expression of a novel member of the serpin family, Serine protease inhibitor 4 (Spn4), that we propose is involved in the regulation of peptide maturation in Drosophila. The Spn4 gene encodes at least two different serpin proteins, generated by alternate splicing of the last coding exon. The closest vertebrate homolog to Spn4 is neuroserpin. Like neuroserpin, one of the Spn4 proteins (Spn4.1) features a unique C-terminal extension, reminiscent of an endoplasmic reticulum (ER) retention signal; however, Spn4.1 and neuroserpin have divergent reactive site loops, with Spn4.1 showing a generic recognition site for furin/SPC1, the founding member of the intracellularly active family of subtilisin-like proprotein convertases (SPCs). In vitro, Spn4.1 forms SDS-stable complexes with the SPC furin and directly inhibits it. When Spn4.1 is overexpressed in specific peptidergic cells of Drosophila larvae, the animals exhibit a phenotype consistent with disrupted neuropeptide processing. This observation, together with the unique combination of an ER-retention signal, a target sequence for SPCs in the reactive site loop, and the in vitro inhibitory activity against furin, strongly suggests that Spn4.1 is an intracellular regulator of SPCs.
Collapse
Affiliation(s)
- Thomas Osterwalder
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520-8103, USA
| | | | | | | | | |
Collapse
|
36
|
Godenschwege TA, Reisch D, Diegelmann S, Eberle K, Funk N, Heisenberg M, Hoppe V, Hoppe J, Klagges BRE, Martin JR, Nikitina EA, Putz G, Reifegerste R, Reisch N, Rister J, Schaupp M, Scholz H, Schwärzel M, Werner U, Zars TD, Buchner S, Buchner E. Flies lacking all synapsins are unexpectedly healthy but are impaired in complex behaviour. Eur J Neurosci 2004; 20:611-22. [PMID: 15255973 DOI: 10.1111/j.1460-9568.2004.03527.x] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Vertebrate synapsins are abundant synaptic vesicle phosphoproteins that have been proposed to fine-regulate neurotransmitter release by phosphorylation-dependent control of synaptic vesicle motility. However, the consequences of a total lack of all synapsin isoforms due to a knock-out of all three mouse synapsin genes have not yet been investigated. In Drosophila a single synapsin gene encodes several isoforms and is expressed in most synaptic terminals. Thus the targeted deletion of the synapsin gene of Drosophila eliminates the possibility of functional knock-out complementation by other isoforms. Unexpectedly, synapsin null mutant flies show no obvious defects in brain morphology, and no striking qualitative changes in behaviour are observed. Ultrastructural analysis of an identified 'model' synapse of the larval nerve muscle preparation revealed no difference between wild-type and mutant, and spontaneous or evoked excitatory junction potentials at this synapse were normal up to a stimulus frequency of 5 Hz. However, when several behavioural responses were analysed quantitatively, specific differences between mutant and wild-type flies are noted. Adult locomotor activity, optomotor responses at high pattern velocities, wing beat frequency, and visual pattern preference are modified. Synapsin mutant flies show faster habituation of an olfactory jump response, enhanced ethanol tolerance, and significant defects in learning and memory as measured using three different paradigms. Larval behavioural defects are described in a separate paper. We conclude that Drosophila synapsins play a significant role in nervous system function, which is subtle at the cellular level but manifests itself in complex behaviour.
Collapse
Affiliation(s)
- Tanja A Godenschwege
- Theodor Boveri-Institut für Biowissenschaften, Lehrstuhl für Genetik und Neurobiologie, Am Hubland D-97074 Wuerzburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Duch C, Mentel T. Stage-specific activity patterns affect motoneuron axonal retraction and outgrowth during the metamorphosis of Manduca sexta. Eur J Neurosci 2003; 17:945-62. [PMID: 12653971 DOI: 10.1046/j.1460-9568.2003.02523.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During the metamorphosis of holometabolous insects, most larval muscles and sensory neurons are replaced by new adult elements, whereas most motoneurons persist and are remodelled to serve new adult functions. In Manduca sexta, the formation of the anlagen of the adult dorsal longitudinal flight muscle (DLM) is characterized by retraction of axonal terminals and dendrites of persisting larval motoneurons, partial target muscle degeneration and myoblast accumulation during late larval life. Most of these structural changes have been attributed to hormonal control, not only because ecdysteroids govern metamorphosis, but also because motoneurons express ecdysteroid receptors and experimental manipulations of ecdysteroid titres perturb normal development. To test whether activity-dependent mechanisms also came into play, chronic extracellular recordings were conducted in vivo from the five future DLM motoneurons throughout the last 3 days of larval life. Motoneuron activity is regulated developmentally. The types of motoneurons recruited, the number of motor spikes and the duration of bursts change in a stereotypical fashion during different stages, indicating an internal control of motor activity. A characteristic cessation in the activity of the five future DLM motoneurons coincides in time with the retraction of their dendrites and their terminal arborizations, whereas their activation during ecdysis coincides with the onset of new outgrowth. Inducing advanced activity by stimulating the motoneurons selectively with ecdysis-like patterns results in significant outgrowth of their terminal arborizations. Therefore, steroids might act in concert with activity-dependent mechanisms during the postembryonic modifications of neuromuscular systems.
Collapse
Affiliation(s)
- C Duch
- Institute of Biology, Neurobiology, Free University Berlin, Koenigin-Luise Str 28-30, 14195 Berlin, Germany.
| | | |
Collapse
|
38
|
Ball R, Xing B, Bonner P, Shearer J, Cooper RL. Long-term in vitro maintenance of neuromuscular junction activity of Drosophila larvae. Comp Biochem Physiol A Mol Integr Physiol 2003; 134:247-55. [PMID: 12547254 DOI: 10.1016/s1095-6433(02)00243-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The larval Drosophila neuromuscular junction (NMJ) has proven to be an excellent system to test fundamental aspects of synaptic transmission, such as relationships among ion channel function, subtypes of glutamate receptors, and the functions of synaptic proteins in the presynaptic compartment. Recent advances in understanding bi-directional communication between nerves and muscles of Drosophila are helping uncover developmental as well as maintenance cues that could be applicable to all chemical synapses. The development of HL3 medium makes it possible to record synaptic responses at NMJs for prolonged periods of time. We demonstrate that media commonly used to culture CNS neurons and imaginal disks of Drosophila such as Schneider's and M3 completely block glutamatergic synaptic transmission at the NMJ. The depressed postsynaptic excitatory junction potentials (EJPs) partially recover from exposure to such media shortly after switching to the HL3 medium. Preliminary results from NMJs of filleted 3rd instar larvae for 4 days in vitro bathed in a modified HL3 medium show great promise. The resting membrane potential and the EJP amplitudes after 4 days in vitro are normal. These results demonstrate the possibility for chronic studies of developmental regulation in culture, which in some cases are impractical in the whole animal.
Collapse
Affiliation(s)
- Ryan Ball
- Department of Biology, University of Kentucky, 101 Rose Street, 40506-0225, Lexington, KY, USA
| | | | | | | | | |
Collapse
|
39
|
Li H, Peng X, Cooper RL. Development of Drosophila larval neuromuscular junctions: maintaining synaptic strength. Neuroscience 2003; 115:505-13. [PMID: 12421617 DOI: 10.1016/s0306-4522(02)00380-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In spite of the available information about the development of Drosophila neuromuscular junctions, the correlation between nerve terminal morphology and maintenance of synaptic strength has still not been systematically addressed throughout larval development. We characterized the growth of the abdominal longitudinal muscle 6 (m6) and the motor terminals Ib and Is that innervate it within segment 4. In addition, we measured the evoked excitatory junction potential (EJP) amplitudes while the Ib and Is axons were selectively recruited. Regression analysis with natural log transformation of response variables indicated that the developmental curves for m6 and the motor axons Ib and Is were best fitted as second order polynomial regressions during larval development. Initially Is terminals are longer and possess more synaptic varicosities at the first instar stage. The Is terminals also grow faster in subsequent developmental stages. The growth of nerve terminals and their target m6 are not proportional although tightly correlated. This results in a larger average muscle area innervated by a single varicosity as the animal develops. The amplitudes of the EJPs of Ib and Is neurons show no developmental difference in their amplitudes from the first to the late third larval instar. The Is axon consistently produced larger EJPs than the Ib axon at each developmental stage. The time constants for both rising and decay phases of EJPs increase exponentially throughout larval development. The results presented not only help in quantifying the normal development of Drosophila neuromuscular junctions, but also provide a framework for future investigations to properly interpret developmental abnormalities that may occur in various mutants.
Collapse
Affiliation(s)
- H Li
- Thomas Hunt Morgan School of Biological Sciences, University of Kentucky, Lexington 40506-0225, USA
| | | | | |
Collapse
|
40
|
Quantal size and variation determined by vesicle size in normal and mutant Drosophila glutamatergic synapses. J Neurosci 2002. [PMID: 12451127 DOI: 10.1523/jneurosci.22-23-10267.2002] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Quantal size and variation at chemical synapses could be determined presynaptically by the amount of neurotransmitter released from synaptic vesicles or postsynaptically by the number of receptors available for activation. We investigated these possibilities at Drosophila glutamatergic neuromuscular synapses formed by two separate motor neurons innervating the same muscle cell. At wild-type synapses of the two neurons we found a difference in quantal size corresponding to a difference in mean synaptic vesicle volume. The same finding applied to two mutants (dlg and lap) in which synaptic vesicle size was altered. Quantal variances at wild-type and mutant synapses were similar and could be accounted for by variation in vesicular volume. The linear relationship between quantal size and vesicular volume for several different genotypes indicates that glutamate is regulated homeostatically to the same intravesicular concentration in all cases. Thus functional differences in synaptic strength among glutamatergic neurons of Drosophila result in part from intrinsic differences in vesicle size.
Collapse
|
41
|
Regional calcium regulation within cultured Drosophila neurons: effects of altered cAMP metabolism by the learning mutations dunce and rutabaga. J Neurosci 2002. [PMID: 12040051 DOI: 10.1523/jneurosci.22-11-04437.2002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The dunce (dnc) and rutabaga (rut) mutations of Drosophila affect a cAMP-dependent phosphodiesterase and a Ca(2+)/CaM-regulated adenylyl cyclase, respectively. These mutations cause deficiencies in several learning paradigms and alter synaptic transmission, growth cone motility, and action potential generation. The cellular phenotypes either are Ca(2+) dependent (neurotransmission and motility) or mediate a Ca(2+) rise (action potential generation). However, interrelations among these defects have not been addressed. We have established conditions for fura-2 imaging of Ca(2+) dynamics in the "giant" neuron culture system of Drosophila. Using high K(+) depolarization of isolated neurons, we observed a larger, faster, and more dynamic response from the growth cone than the cell body. This Ca(2+) increase depended on an influx through Ca(2+) channels and was suppressed by the Na(+) channel blocker TTX. Altered cAMP metabolism by the dnc and rut mutations reduced response amplitude in the growth cone while prolonging the response within the soma. The enhanced spatial resolution of these larger cells allowed us to analyze Ca(2+) regulation within distinct domains of mutant growth cones. Modulation by a previous conditioning stimulus was altered in terms of response amplitude and waveform complexity. Furthermore, rut disrupted the distinction in Ca(2+) responses observed between the periphery and central domain of growth cones with motile filopodia.
Collapse
|
42
|
Osterwalder T, Yoon KS, White BH, Keshishian H. A conditional tissue-specific transgene expression system using inducible GAL4. Proc Natl Acad Sci U S A 2001; 98:12596-601. [PMID: 11675495 PMCID: PMC60099 DOI: 10.1073/pnas.221303298] [Citation(s) in RCA: 598] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2001] [Indexed: 11/18/2022] Open
Abstract
In Drosophila, the most widely used system for generating spatially restricted transgene expression is based on the yeast GAL4 protein and its target upstream activating sequence (UAS). To permit temporal as well as spatial control over UAS-transgene expression, we have explored the use of a conditional RU486-dependent GAL4 protein (GeneSwitch) in Drosophila. By using cloned promoter fragments of the embryonic lethal abnormal vision gene or the myosin heavy chain gene, we have expressed GeneSwitch specifically in neurons or muscles and show that its transcriptional activity within the target tissues depends on the presence of the activator RU486 (mifepristone). We used available UAS-reporter lines to demonstrate RU486-dependent tissue-specific transgene expression in larvae. Reporter protein expression could be detected 5 h after systemic application of RU486 by either feeding or "larval bathing." Transgene expression levels were dose-dependent on RU486 concentration in larval food, with low background expression in the absence of RU486. By using genetically altered ion channels as reporters, we were able to change the physiological properties of larval bodywall muscles in an RU486-dependent fashion. We demonstrate here the applicability of GeneSwitch for conditional tissue-specific expression in Drosophila, and we provide tools to control pre- and postsynaptic expression of transgenes at the larval neuromuscular junction during postembryonic life.
Collapse
Affiliation(s)
- T Osterwalder
- Department of Molecular, Cellular, and Developmental Biology, and Pharmacology Department, Yale University, P. O. Box 208103, New Haven, CT 06511, USA.
| | | | | | | |
Collapse
|
43
|
Cattaert D, Birman S. Blockade of the central generator of locomotor rhythm by noncompetitive NMDA receptor antagonists in Drosophila larvae. JOURNAL OF NEUROBIOLOGY 2001; 48:58-73. [PMID: 11391649 DOI: 10.1002/neu.1042] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The noncompetitive antagonists of the vertebrate N-methyl-D-aspartate (NMDA) receptor dizocilpine (MK 801) and phencyclidine (PCP), delivered in food, were found to induce a marked and reversible inhibition of locomotor activity in Drosophila melanogaster larvae. To determine the site of action of these antagonists, we used an in vitro preparation of the Drosophila third-instar larva, preserving the central nervous system and segmental nerves with their connections to muscle fibers of the body wall. Intracellular recordings were made from ventral muscle fibers 6 and 7 in the abdominal segments. In most larvae, long-lasting (>1 h) spontaneous rhythmic motor activities were recorded in the absence of pharmacological activation. After sectioning of the connections between the brain and abdominal ganglia, the rhythm disappeared, but it could be partially restored by perfusing the muscarinic agonist oxotremorine, indicating that the activity was generated in the ventral nerve cord. MK 801 and PCP rapidly and efficiently inhibited the locomotor rhythm in a dose-dependent manner, the rhythm being totally blocked in 2 min with doses over 0.1 mg/mL. In contrast, more hydrophilic competitive NMDA antagonists had no effect on the motor rhythm in this preparation. MK 801 did not affect neuromuscular glutamatergic transmission at similar doses, as demonstrated by monitoring the responses elicited by electrical stimulation of the motor nerve or pressure applied glutamate. The presence of oxotremorine did not prevent the blocking effect of MK 801. These results show that MK 801 and PCP specifically inhibit centrally generated rhythmic activity in Drosophila, and suggest a possible role for NMDA-like receptors in locomotor rhythm control in the insect CNS.
Collapse
Affiliation(s)
- D Cattaert
- Laboratoire Neurobiologie et Mouvements, CNRS, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France.
| | | |
Collapse
|
44
|
Leiserson WM, Harkins EW, Keshishian H. Fray, a Drosophila serine/threonine kinase homologous to mammalian PASK, is required for axonal ensheathment. Neuron 2000; 28:793-806. [PMID: 11163267 DOI: 10.1016/s0896-6273(00)00154-9] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Fray is a serine/threonine kinase expressed by the peripheral glia of Drosophila, whose function is required for normal axonal ensheathment. Null fray mutants die early in larval development and have nerves with severe swelling and axonal defasciculation. The phenotype is associated with a failure of the ensheathing glia to correctly wrap peripheral axons. When the fray cDNA is expressed in the ensheathing glia of fray mutants, normal nerve morphology is restored. Fray belongs to a novel family of Ser/Thr kinases, the PF kinases, whose closest relatives are the PAK kinases. Rescue of the Drosophila mutant phenotype with PASK, the rat homolog of Fray, demonstrates a functional homology among these proteins and suggests that the Fray signaling pathway is widely conserved.
Collapse
Affiliation(s)
- W M Leiserson
- Molecular, Cellular, and Developmental Biology Department, Yale University, New Haven, CT 06520, USA.
| | | | | |
Collapse
|
45
|
Consoulas C, Duch C, Bayline RJ, Levine RB. Behavioral transformations during metamorphosis: remodeling of neural and motor systems. Brain Res Bull 2000; 53:571-83. [PMID: 11165793 DOI: 10.1016/s0361-9230(00)00391-9] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
During insect metamorphosis, neural and motor systems are remodeled to accommodate behavioral transformations. Nerve and muscle cells that are required for larval behavior, such as crawling, feeding and ecdysis, must either be replaced or respecified to allow adult emergence, walking, flight, mating and egg-laying. This review describes the types of cellular changes that occur during metamorphosis, as well as recent attempts to understand how they are related to behavioral changes and how they are regulated. Within the periphery, many larval muscles degenerate at the onset of metamorphosis and are replaced by adult muscles, which are derived from myoblasts and, in some cases, remnants of the larval muscle fibers. The terminal processes of many larval motoneurons persist within the periphery and are essential for the formation of adult muscle fibers. Although most adult sensory neurons are born postembryonically, a subset of larval proprioceptive neurons persist to participate in adult behavior. Within the central nervous system, larval neurons that will no longer be necessary die and some adult interneurons are born postembryonically. By contrast, all of the adult motoneurons, as well as some interneurons and modulatory neurons, are persistent larval cells. In accordance with their new behavioral roles, these neurons undergo striking changes in dendritic morphology, intrinsic biophysical properties, and synaptic interactions.
Collapse
Affiliation(s)
- C Consoulas
- Division of Neurobiology, University of Arizona, Tucson, AZ 85721, USA
| | | | | | | |
Collapse
|
46
|
Role of cAMP cascade in synaptic stability and plasticity: ultrastructural and physiological analyses of individual synaptic boutons in Drosophila memory mutants. J Neurosci 2000. [PMID: 10818133 DOI: 10.1523/jneurosci.20-11-03980.2000] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Mutations of the genes rutabaga (rut) and dunce (dnc) affect the synthesis and degradation of cAMP, respectively, and disrupt learning in Drosophila. Combined ultrastructural analysis and focal electrophysiological recording in the larval neuromuscular junction revealed a loss of stability and fine tuning of synaptic structure and function in both mutants. Increased ratios of docked/undocked vesicles and poorly defined synaptic specializations characterized dnc synapses. In contrast, rut boutons possessed fewer, although larger, synapses with lower proportions of docked vesicles. At reduced Ca(2+) levels, decreased quantal content coupled with an increase in failure rate was seen in rut boutons and reduced pair-pulse facilitation were found in both rut and dnc mutants. At physiological Ca(2+) levels, strong enhancement, instead of depression, in evoked release was observed in some dnc and rut boutons during 10 Hz tetanus. Furthermore, increased variability of synaptic transmission, including fluctuation and asynchronicity of evoked release, paralleled an increase in synapse size variation in both dnc and rut boutons, which might impose problems for effective signal processing in the nervous system. Pharmacological and genetic studies indicated broader ranges of physiological alteration by dnc and rut mutations than either the acute effects of cAMP analogs or the available mutations that affect cAMP-dependent protein kinase (PKA) activity. This is consistent with previous reports of more severe learning defects in dnc and rut mutations than these PKA mutants and allows identification of the phenotypes involving long-term developmental regulation and those conferred by PKA.
Collapse
|
47
|
Shayan AJ, Atwood HL. Synaptic ultrastructure in nerve terminals of Drosophila larvae overexpressing the learning gene dunce. JOURNAL OF NEUROBIOLOGY 2000; 43:89-97. [PMID: 10756069 DOI: 10.1002/(sici)1097-4695(200004)43:1<89::aid-neu8>3.0.co;2-l] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We investigated synaptic ultrastructure of individual nerve ending varicosities at the Drosophila larval neuromuscular junction in transgenic larvae overexpressing the learning gene dunce (dnc) in the nervous system. It was previously shown that cAMP is reduced to one-third normal in these larvae and that they have fewer nerve terminal varicosities and smaller junction potentials, although transmitter release from individual nerve ending varicosities is not significantly altered. We tested the hypothesis that synaptic ultrastructure is modified to compensate for possible reduced efficacy of synaptic transmission resulting from lower than normal cAMP. Synaptic size and number of presynaptic dense bodies (active zone structures) per synapse are modestly enhanced in transgenic larvae overexpressing the dnc gene product and in rutabaga (rut(1)) mutant larvae, which have reduced adenylyl cyclase activity and reduced neural cAMP. The incidence of complex synapses (possessing 2 or more presynaptic dense bodies) was not consistently different in experimental larvae compared to controls. The observations suggest that chronic reduction of cAMP levels in the nervous system of Drosophila larvae, although leading to a modest compensatory change in synaptic structure, does not markedly alter several synaptic ultrastructural parameters which are thought to influence the strength of transmitter release; thus, homeostatic mechanisms do not act to maintain normal-sized junction potentials by altering synaptic structure.
Collapse
Affiliation(s)
- A J Shayan
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | | |
Collapse
|
48
|
Koh YH, Gramates LS, Budnik V. Drosophila larval neuromuscular junction: molecular components and mechanisms underlying synaptic plasticity. Microsc Res Tech 2000; 49:14-25. [PMID: 10757875 DOI: 10.1002/(sici)1097-0029(20000401)49:1<14::aid-jemt3>3.0.co;2-g] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Understanding the mechanisms that mediate synaptic plasticity is a primary goal of molecular neuroscience. The Drosophila larval neuromuscular junction provides a particularly useful model for investigating the roles of synaptic components in both structural and functional plasticity. The powerful molecular genetics of this system makes it possible to uncover new synaptic components and signaling molecules, as well as their function in the intact organism. Together with the mouse hippocampus and Aplysia dissociated cell culture, the Drosophila larval neuromuscular junction has been among the most valuable model systems for examining the molecular and cellular basis of neuronal plasticity.
Collapse
Affiliation(s)
- Y H Koh
- Biology Department, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | | | |
Collapse
|
49
|
Zhao H, Nonet ML. A retrograde signal is involved in activity-dependent remodeling at a C. elegans neuromuscular junction. Development 2000; 127:1253-66. [PMID: 10683178 DOI: 10.1242/dev.127.6.1253] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have characterized how perturbations of normal synaptic activity influence the morphology of cholinergic SAB motor neurons that innervate head muscle in C. elegans. Mutations disrupting components of the presynaptic release apparatus, acetylcholine (ACh) synthesis or ACh loading into synaptic vesicles each induced sprouting of SAB axonal processes. These sprouts usually arose in the middle of the normal innervation zone and terminated with a single presynaptic varicosity. Sprouting SAB neurons with a similar morphology were also observed upon reducing activity in muscle, either by using mutants lacking a functional nicotinic ACh receptor subunit or through muscle-specific expression of a gain-of-function potassium channel. Analysis of temperature-sensitive mutants in the choline acetyltransferase gene revealed that the sprouting response to inactivity was developmentally regulated; reduction of synaptic activity in early larval stages, but not in late larval stages, induced both sprouting and addition of varicosities. Our results indicate that activity levels regulate the structure of certain synaptic connections between nerve and muscle in C. elegans. One component of this regulatory machinery is a retrograde signal from the postsynaptic cell that mediates the formation of synaptic connections.
Collapse
Affiliation(s)
- H Zhao
- Department of Anatomy, Washington University School of Medicine, St Louis, MO 63110, USA
| | | |
Collapse
|
50
|
Suzuki E, Rose D, Chiba A. The ultrastructural interactions of identified pre- and postsynaptic cells during synaptic target recognition in Drosophila embryos. JOURNAL OF NEUROBIOLOGY 2000; 42:448-59. [PMID: 10699982 DOI: 10.1002/(sici)1097-4695(200003)42:4<448::aid-neu6>3.0.co;2-h] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
During the development of neural networks, what sets synaptogenic interactions apart from nonsynaptogenic interactions is not well understood at the subcellular level. Using a combination of intracellular dye injection and electron microscopy, we show that a specific motoneuron (RP3) and its synaptic partners (muscles 6 and 7), both often bearing microprocesses, develop intimate membrane contact sites characterized by junctional structures, prior to their initiating synaptogenesis in Drosophila embryos. Other motoneuron growth cones that extend alongside the RP3 growth cone to innervate surrounding muscles do not form such contacts with muscles 6 and 7. We also examined how specific target recognition molecules affect the development of these ultrastructural associations between synaptic partner cells. When Fasciclin III (Fas3), a "positive" target recognition molecule for RP3, is ectopically expressed in neighboring muscles, the RP3 growth cone ectopically develops membrane contact sites with Fas3-misexpressing muscles with which it would not normally associate. In contrast, when Toll, a "negative" target recognition molecule normally expressed by a subset of muscles that surrounds muscles 6 and 7, is misexpressed on muscles 6 and 7, the RP3 growth cone fails to exhibit its normal close contact with these muscles. We propose that the formation of close membrane associations and junctional structures can be regulated under the influence of synaptic target recognition molecules and signifies the beginning of subcellular events during synaptic target recognition.
Collapse
Affiliation(s)
- E Suzuki
- Department of Fine Morphology, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, and CREST, JST, Japan
| | | | | |
Collapse
|