1
|
Battista F, Duregon F, Vecchiato M, Ermolao A, Neunhaeuserer D. Sedentary lifestyle and physical inactivity: A mutual interplay with early and overt frailty. Nutr Metab Cardiovasc Dis 2025; 35:103971. [PMID: 40180827 DOI: 10.1016/j.numecd.2025.103971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/20/2025] [Accepted: 02/20/2025] [Indexed: 04/05/2025]
Abstract
AIMS In recent years medical science and research are increasingly directed towards a holistic approach that considers health as global well-being rather than solely as the absence of disease. In this framework, lifestyle interventions and, in particular, physical exercise, are of crucial importance in prevention and treatment. Therefore, the purpose of this study is to describe this mutual interplay between physical behaviours, sarcopenia, and frailty, as well as to illustrate the role of structured exercise training in aging and disease. DATA SYNTHESIS Physical activity and exercise training are determinants of lifelong global wellness and healthy aging. On the contrary, sedentary behaviour and physical inactivity are strictly linked to frailty and pre-frailty, both in adults and the elderly, with or without chronic diseases. On the other hand, the presence of pathological conditions is associated with a more inactive and sedentary behaviour. The co-presence of these factors is characterized by a mutual causal exchange in which they are imbricated in a continuous mechanistic interplay that involves inflammation, sarcopenia, osteopenia, functional impairment and many other pathophysiological aspects that rapidly can lead to a status of frailty. CONCLUSION A sedentary lifestyle and physical inactivity critically affect alterations in body composition and loss in functional capacity, typically linked to aging and accelerated by chronic diseases. However, physical activity and exercise can counteract the onset of pre-frailty and frailty by conferring beneficial effects on the individual's overall well-being.
Collapse
Affiliation(s)
- Francesca Battista
- Sports and Exercise Medicine Division, Department of Medicine, University of Padova, Padova, Italy; Clinical Network of Sports and Exercise Medicine of the Veneto Region, Veneto, Italy
| | - Federica Duregon
- Sports and Exercise Medicine Division, Department of Medicine, University of Padova, Padova, Italy; Clinical Network of Sports and Exercise Medicine of the Veneto Region, Veneto, Italy
| | - Marco Vecchiato
- Sports and Exercise Medicine Division, Department of Medicine, University of Padova, Padova, Italy; Clinical Network of Sports and Exercise Medicine of the Veneto Region, Veneto, Italy.
| | - Andrea Ermolao
- Sports and Exercise Medicine Division, Department of Medicine, University of Padova, Padova, Italy; Clinical Network of Sports and Exercise Medicine of the Veneto Region, Veneto, Italy
| | - Daniel Neunhaeuserer
- Sports and Exercise Medicine Division, Department of Medicine, University of Padova, Padova, Italy; Clinical Network of Sports and Exercise Medicine of the Veneto Region, Veneto, Italy
| |
Collapse
|
2
|
Lu Z, Meng C, Yang J, Wang X, Li X, Zhang J, Tian X, Wang Q. Effect of different intensity aerobic exercise on remodeling immune microenvironment of adipose tissue in obesity mouse. Am J Physiol Regul Integr Comp Physiol 2025; 328:R220-R234. [PMID: 39745717 DOI: 10.1152/ajpregu.00227.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/06/2024] [Accepted: 12/10/2024] [Indexed: 01/26/2025]
Abstract
Obesity can change the immune microenvironment of adipose tissue and induce inflammation. This study is dedicated to exploring the internal mechanism by which different intensities of exercise reprogram the immune microenvironment of epididymal adipose tissue in nutritionally obese mice. C57BL/6J male obese mouse models were constructed by high-fat diet, which were respectively obese control group (OC), moderate-intensity continuous exercise group (HF-M), high-intensity continuous exercise group (HF-H), and high-intensity intermittent exercise group (HF-T). The exercise group was subjected to aerobic exercise intervention for 8 wk, and samples of mice were collected at the fourth and eighth week, respectively. Mice blood, liver, and adipose tissue of the epididymis were collected for index detection and adipose tissue ordinary transcriptome sequencing. After exercise intervention, when compared with the OC group, the morphology and blood indexes of the exercise groups were significantly improved. The liver lipid content was decreased, adipose tissue inflammation was reduced, and the mRNA and protein expression levels of IL-1β, F4/80, and CD64 in adipose tissue were significantly decreased (P < 0.01). Among the three exercise groups, the effect of the HF-T group was more significant. When compared with the OC group, fibroblast-specific marker genes, neutrophil marker genes, macrophage marker genes, and immune-related signaling pathways were significantly downregulated in the HF-T group. Exercise can reshape the immune microenvironment of adipose tissue, and high-intensity intermittent aerobic exercise is the most effective.NEW & NOTEWORTHY The present study has revealed that obesity is capable of altering the immune microenvironment within adipose tissue, thereby giving rise to inflammation. It has been demonstrated that exercise holds the potential to reverse the onset of inflammatory responses, with high-intensity intermittent aerobic exercise emerging as the most efficacious approach.
Collapse
Affiliation(s)
- Zhimin Lu
- College of Management, Qilu Medical University, Zibo, People's Republic of China
- College of Sport and Health, Shandong Sport University, Jinan, People's Republic of China
| | - Chang Meng
- College of Management, Qilu Medical University, Zibo, People's Republic of China
| | - JinRu Yang
- College of Management, Qilu Medical University, Zibo, People's Republic of China
| | - Xuecong Wang
- College of Management, Qilu Medical University, Zibo, People's Republic of China
| | - Xueying Li
- College of Management, Qilu Medical University, Zibo, People's Republic of China
| | - Jie Zhang
- College of Medical Laboratory, Qilu Medical University, Zibo, People's Republic of China
| | - Xuewen Tian
- College of Sport and Health, Shandong Sport University, Jinan, People's Republic of China
| | - Qinglu Wang
- College of Sport and Health, Shandong Sport University, Jinan, People's Republic of China
| |
Collapse
|
3
|
Li L, Ren L, Li B, Liu C. Therapeutic effects of exercise on depression: The role of microglia. Brain Res 2025; 1846:149279. [PMID: 39406315 DOI: 10.1016/j.brainres.2024.149279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 10/06/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
Major depressive disorderadversely affects mental health. Traditional therapeutic approaches, including medication, psychological intervention, and physical therapy, exert beneficial effects on depression. However, these approaches are associated with some limitations, such as high cost, adverse reactions, recurrent episodes, and low patient adherence. Previous studies have demonstrated that exercise therapy can effectively mitigate depressive symptoms, although the underlying mechanism has not been elucidated. Recent studies have suggested that depression is a microglial disease. Microglia regulate the inflammatory response, synaptic plasticity, neurogenesis, kynurenine pathway and the activation of hypothalamic-pituitary-adrenal axis, all of which affect depression. Exercise therapy is reported to shift the balance of microglial M1/M2 polarization in the hippocampus, frontal lobe, and striatum, suppressing the release of pro-inflammatory factors and consequently alleviating behavioral deficits in animal models of depression. Further studies are needed to examine the specific effects of different exercise regimens on microglia to identify the exercise regimen with the best therapeutic effect.
Collapse
Affiliation(s)
- Li Li
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Li Ren
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Bing Li
- Hebei Provincial Mental Health Center, Baoding, China; Hebei Key Laboratory of Major Mental and Behavioral Disorders, Baoding, China; The Sixth Clinical Medical College of Hebei University, Baoding, China.
| | - Chaomeng Liu
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.
| |
Collapse
|
4
|
Aboudeya HM, Abdou AS, Attia MM, Shaker SA, Younis SA. Possible role of moderate exercise training in modulating gene expression of adipose tissue remodeling markers in obese male rats. SPORT SCIENCES FOR HEALTH 2024; 20:1291-1304. [DOI: 10.1007/s11332-024-01206-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 04/03/2024] [Indexed: 01/05/2025]
|
5
|
Zhou H, Han X, Huang C, Wu H, Hu Y, Chen C, Tao J. Exercise-induced adaptive response of different immune organs during ageing. Ageing Res Rev 2024; 102:102573. [PMID: 39486525 DOI: 10.1016/j.arr.2024.102573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/20/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
The immune system plays a crucial role in the ageing process. As individuals age, significant alterations in the immune system experiences occur, marked by a decline in immune cell count, compromised immune function, and decreased immune regulation across various immune organs. These changes collectively weaken the capacity to combat diseases and infections, highlighting the vulnerability that accompanies ageing. Exercise is a potent intervention that profoundly influences holistic well-being and disease mitigation, with a notable emphasis on immune modulation. In general, regular moderate exercise holds significant potential to enhance immune defense mechanisms and metabolic well-being by augmenting the circulation and activation of immune cells. However, some exercise modalities would trigger detrimental effects on the immune system. It can be seen that the regulatory responses of various immune organs to diverse exercise patterns are different. This review aims to examine the immunological responses elicited by exercise across various immune organs, including the lymph nodes, spleen, bone marrow, and thymus, to underscore the nuanced interplay between exercise patterns and the immune organ. This underscores the importance of customizing exercise interventions to optimize immune function across the lifespan.
Collapse
Affiliation(s)
- Huanghao Zhou
- College of Rehsabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; Rehabilitation Industry Institute, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Xiao Han
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, China
| | - Chunxiu Huang
- College of Rehsabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; Rehabilitation Industry Institute, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Huijuan Wu
- College of Rehsabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; Rehabilitation Industry Institute, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Yue Hu
- College of Rehsabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; Rehabilitation Industry Institute, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Cong Chen
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; Rehabilitation Industry Institute, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| | - Jing Tao
- College of Rehsabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; Rehabilitation Industry Institute, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| |
Collapse
|
6
|
Zhang Y, Wang R, Liu T, Wang R. Exercise as a Therapeutic Strategy for Obesity: Central and Peripheral Mechanisms. Metabolites 2024; 14:589. [PMID: 39590824 PMCID: PMC11596326 DOI: 10.3390/metabo14110589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024] Open
Abstract
Obesity is a complex, multifactorial condition involving excessive fat accumulation due to an imbalance between energy intake and expenditure, with its global prevalence steadily rising. This condition significantly increases the risk of chronic diseases, including sarcopenia, type 2 diabetes, and cardiovascular diseases, highlighting the need for effective interventions. Exercise has emerged as a potent non-pharmacological approach to combat obesity, targeting both central and peripheral mechanisms that regulate metabolism, energy expenditure, and neurological functions. In the central nervous system, exercise influences appetite, mood, and cognitive functions by modulating the reward system and regulating appetite-controlling hormones to manage energy intake. Concurrently, exercise promotes thermogenesis in adipose tissue and regulates endocrine path-ways and key metabolic organs, such as skeletal muscle and the liver, to enhance fat oxidation and support energy balance. Despite advances in understanding exercise's role in obesity, the precise interaction between the neurobiological and peripheral metabolic pathways remains underexplored, particularly in public health strategies. A better understanding of these interactions could inform more comprehensive obesity management approaches by addressing both central nervous system influences on behavior and peripheral metabolic regulation. This review synthesizes recent insights into these roles, highlighting potential therapeutic strategies targeting both systems for more effective obesity interventions.
Collapse
Affiliation(s)
- Yiyin Zhang
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (Y.Z.); (R.W.)
| | - Ruwen Wang
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (Y.Z.); (R.W.)
| | - Tiemin Liu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Ru Wang
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (Y.Z.); (R.W.)
| |
Collapse
|
7
|
Jang S, Hong W, Moon Y. Obesity-compromised immunity in post-COVID-19 condition: a critical control point of chronicity. Front Immunol 2024; 15:1433531. [PMID: 39188722 PMCID: PMC11345197 DOI: 10.3389/fimmu.2024.1433531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/25/2024] [Indexed: 08/28/2024] Open
Abstract
Post-COVID-19 condition is recognized as a multifactorial disorder, with persistent presence of viral antigens, discordant immunity, delayed viral clearance, and chronic inflammation. Obesity has emerged as an independent risk factor for both SARS-CoV-2 infection and its subsequent sequelae. In this study, we aimed to predict the molecular mechanisms linking obesity and post-COVID-19 distress. Viral antigen-exposed adipose tissues display remarkable levels of viral receptors, facilitating viral entry, deposition, and chronic release of inflammatory mediators and cells in patients. Subsequently, obesity-associated inflammatory insults are predicted to disturb cellular and humoral immunity by triggering abnormal cell differentiation and lymphocyte exhaustion. In particular, the decline in SARS-CoV-2 antibody titers and T-cell exhaustion due to chronic inflammation may account for delayed virus clearance and persistent activation of inflammatory responses. Taken together, obesity-associated defective immunity is a critical control point of intervention against post-COVID-19 progression, particularly in subjects with chronic metabolic distress.
Collapse
Affiliation(s)
- Soonwoo Jang
- Laboratory of Mucosal Exposome and Biomodulation, Department of Integrative Biomedical Sciences, Pusan National University, Yangsan, Republic of Korea
- Department of Medicine, Pusan National University, Yangsan, Republic of Korea
- Biomedical Research Institute, Pusan National University Hospital, Yangsan, Republic of Korea
| | - Wooyoung Hong
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, United States
| | - Yuseok Moon
- Laboratory of Mucosal Exposome and Biomodulation, Department of Integrative Biomedical Sciences, Pusan National University, Yangsan, Republic of Korea
- Department of Medicine, Pusan National University, Yangsan, Republic of Korea
- Biomedical Research Institute, Pusan National University Hospital, Yangsan, Republic of Korea
- Graduate Program of Genomic Data Sciences, Pusan National University, Yangsan, Republic of Korea
| |
Collapse
|
8
|
Nobari H, Saedmocheshi S, Johnson K, Prieto-González P, Valdés-Badilla P. Interaction effect of curcumin and various exercise training strategies on adipokines and adipocytokines in the human body: An overview. CLINICAL NUTRITION OPEN SCIENCE 2024; 55:234-248. [DOI: 10.1016/j.nutos.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
|
9
|
Zhou N, Gong L, Zhang E, Wang X. Exploring exercise-driven exerkines: unraveling the regulation of metabolism and inflammation. PeerJ 2024; 12:e17267. [PMID: 38699186 PMCID: PMC11064867 DOI: 10.7717/peerj.17267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/28/2024] [Indexed: 05/05/2024] Open
Abstract
Exercise has many beneficial effects that provide health and metabolic benefits. Signaling molecules are released from organs and tissues in response to exercise stimuli and are widely termed exerkines, which exert influence on a multitude of intricate multi-tissue processes, such as muscle, adipose tissue, pancreas, liver, cardiovascular tissue, kidney, and bone. For the metabolic effect, exerkines regulate the metabolic homeostasis of organisms by increasing glucose uptake and improving fat synthesis. For the anti-inflammatory effect, exerkines positively influence various chronic inflammation-related diseases, such as type 2 diabetes and atherosclerosis. This review highlights the prospective contribution of exerkines in regulating metabolism, augmenting the anti-inflammatory effects, and providing additional advantages associated with exercise. Moreover, a comprehensive overview and analysis of recent advancements are provided in this review, in addition to predicting future applications used as a potential biomarker or therapeutic target to benefit patients with chronic diseases.
Collapse
Affiliation(s)
- Nihong Zhou
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing, China
- School of Sport Science, Beijing Sport University, Beijing, China
| | - Lijing Gong
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing, China
- Key Laboratory for Performance Training & Recovery of General Administration of Sport, Beijing Sport University, Beijing, China
| | - Enming Zhang
- Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, Malmö, Sweden
- NanoLund Center for NanoScience, Lund University, Lund, Sweden
| | - Xintang Wang
- Key Laboratory for Performance Training & Recovery of General Administration of Sport, Beijing Sport University, Beijing, China
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, China
| |
Collapse
|
10
|
Guo Y, Zhang Q, Yang D, Chen P, Xiao W. HIIT Promotes M2 Macrophage Polarization and Sympathetic Nerve Density to Induce Adipose Tissue Browning in T2DM Mice. Biomolecules 2024; 14:246. [PMID: 38540669 PMCID: PMC10968334 DOI: 10.3390/biom14030246] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/12/2024] [Accepted: 02/18/2024] [Indexed: 01/05/2025] Open
Abstract
Browning of white adipose tissue (WAT) is a focus of research in type 2 diabetes mellitus (T2DM) and metabolism, which may be a potential molecular mechanism for high-intensity interval training (HIIT) to improve T2DM. In this study, male C57BL/6J wild-type mice were subjected to an 8-week HIIT regimen following T2DM induction through a high-fat diet (HFD) combined with streptozotocin (STZ) injection. We found that HIIT improved glucose metabolism, body weight, and fat mass in T2DM mice. HIIT also decreased adipocyte size and induced browning of WAT. Our data revealed a decrease in TNFα and an increase in IL-10 with HIIT, although the expression of chemokines MCP-1 and CXCL14 was increased. We observed increased pan-macrophage infiltration induced by HIIT, along with a simultaneous decrease in the expression of M1 macrophage markers (iNOS and CD11c) and an increase in M2 macrophage markers (Arg1 and CD206), suggesting that HIIT promotes M2 macrophage polarization. Additionally, HIIT upregulated the expression of Slit3 and neurotrophic factors (BDNF and NGF). The expression of the sympathetic marker tyrosine hydroxylase (TH) and the nerve growth marker GAP43 was also increased, demonstrating the promotion of sympathetic nerve growth and density by HIIT. Notably, we observed macrophages co-localizing with TH, and HIIT induced the accumulation of M2 macrophages around sympathetic nerves, suggesting a potential association between M2 macrophages and increased density of sympathetic nerves. In conclusion, HIIT induces adipose tissue browning and improves glucose metabolism in T2DM mice by enhancing M2 macrophage polarization and promoting sympathetic nerve growth and density.
Collapse
Affiliation(s)
- Yifan Guo
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai 200438, China; (Y.G.); (Q.Z.); (D.Y.)
- The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China
| | - Qilong Zhang
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai 200438, China; (Y.G.); (Q.Z.); (D.Y.)
- The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China
| | - Dan Yang
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai 200438, China; (Y.G.); (Q.Z.); (D.Y.)
- The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China
| | - Peijie Chen
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai 200438, China; (Y.G.); (Q.Z.); (D.Y.)
- The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China
| | - Weihua Xiao
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai 200438, China; (Y.G.); (Q.Z.); (D.Y.)
- The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China
| |
Collapse
|
11
|
Baek KW, Kim JH, Yu HS, Kim JS. Adipose Tissue Macrophage Polarization Is Altered during Recovery after Exercise: A Large-Scale Flow Cytometric Study. Curr Issues Mol Biol 2024; 46:1308-1317. [PMID: 38392201 PMCID: PMC10887725 DOI: 10.3390/cimb46020083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 02/24/2024] Open
Abstract
We performed a large-scale flow cytometric analysis to determine whether M1 macrophage (M1Ø) and M2 macrophage (M2Ø) polarization in white adipose tissue (WAT) was altered immediately after exercise. Additionally, we comprehensively investigated the effects of obesity, exercise intensity, and recovery time on macrophage polarization in WAT. A single exercise bout of various intensities (ND, non-exercise control; -LIE, low-intensity exercise; -MIE, mid-intensity exercise; -HIE, high-intensity exercise) was performed by normal mice (ND) and obese mice (HFD). To confirm differences in M1Ø/M2Ø polarization in WAT based on the recovery time after a single exercise bout, WAT was acquired at 2 h, 24 h, and 48 h after exercise (total n = 168, 7 mice × 4 groups × 2 diets × 3 recovery time). The harvested WAT was immediately analyzed by flow cytometry, and macrophages were fluorescently labeled using F4/80, as well as M1Ø with CD11c and M2Øs with CD206. After a single bout of exercise, the M2Ø/M1Ø polarization ratio of WAT increases in both normal and obese mice, but differences vary depending on recovery time and intensity. Regardless of obesity, our findings showed that there could be a transient increase in M1Ø in WAT over a short recovery time (24 h) post-exercise (in ND-MIE, ND-HIE, and HFD-HIE). Furthermore, it was observed that the greater the exercise intensity in obese mice, the more effective the induction of M2Ø polarization immediately after exercise, as well as the maintenance of high M2Ø polarization, even after a prolonged recovery time.
Collapse
Affiliation(s)
- Kyung-Wan Baek
- Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
- Department of Physical Education, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Ji Hyun Kim
- Department of Food Science and Nutrition, Gyeongsang National University, Jinju 52725, Republic of Korea
| | - Hak Sun Yu
- Department of Parasitology and Tropical Medicine, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea
| | - Ji-Seok Kim
- Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
- Department of Physical Education, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
12
|
Pan D, Li G, Jiang C, Hu J, Hu X. Regulatory mechanisms of macrophage polarization in adipose tissue. Front Immunol 2023; 14:1149366. [PMID: 37283763 PMCID: PMC10240406 DOI: 10.3389/fimmu.2023.1149366] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 05/04/2023] [Indexed: 06/08/2023] Open
Abstract
In adipose tissue, macrophages are the most abundant immune cells with high heterogeneity and plasticity. Depending on environmental cues and molecular mediators, adipose tissue macrophages (ATMs) can be polarized into pro- or anti-inflammatory cells. In the state of obesity, ATMs switch from the M2 polarized state to the M1 state, which contributes to chronic inflammation, thereby promoting the pathogenic progression of obesity and other metabolic diseases. Recent studies show that multiple ATM subpopulations cluster separately from the M1 or M2 polarized state. Various factors are related to ATM polarization, including cytokines, hormones, metabolites and transcription factors. Here, we discuss our current understanding of the potential regulatory mechanisms underlying ATM polarization induced by autocrine and paracrine factors. A better understanding of how ATMs polarize may provide new therapeutic strategies for obesity-related diseases.
Collapse
Affiliation(s)
- Dun Pan
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Guo Li
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Chunlin Jiang
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Jinfeng Hu
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Xiangming Hu
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| |
Collapse
|
13
|
Callegari IOM, Rocha GZ, Oliveira AG. Physical exercise, health, and disease treatment: The role of macrophages. Front Physiol 2023; 14:1061353. [PMID: 37179836 PMCID: PMC10166825 DOI: 10.3389/fphys.2023.1061353] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 04/11/2023] [Indexed: 05/15/2023] Open
Abstract
Subclinical inflammation is linked to comorbidities and risk factors, consolidating the diagnosis of chronic non-communicable diseases, such as insulin resistance, atherosclerosis, hepatic steatosis, and some types of cancer. In this context, the role of macrophages is highlighted as a marker of inflammation as well as for the high power of plasticity of these cells. Macrophages can be activated in a wide range between classical or proinflammatory, named M1, and alternative or anti-inflammatory, also known as M2 polarization. All nuances between M1 and M2 macrophages orchestrate the immune response by secreting different sets of chemokines, while M1 cells promote Th1 response, the M2 macrophages recruit Th2 and Tregs lymphocytes. In turn, physical exercise has been a faithful tool in combating the proinflammatory phenotype of macrophages. This review proposes to investigate the cellular and molecular mechanisms in which physical exercise can help control inflammation and infiltration of macrophages within the non-communicable diseases scope. During obesity progress, proinflammatory macrophages predominate in adipose tissue inflammation, which reduces insulin sensitivity until the development of type 2 diabetes, progression of atherosclerosis, and diagnosis of non-alcoholic fatty liver disease. In this case, physical activity restores the balance between the proinflammatory/anti-inflammatory macrophage ratio, reducing the level of meta-inflammation. In the case of cancer, the tumor microenvironment is compatible with a high level of hypoxia, which contributes to the advancement of the disease. However, exercise increases the level of oxygen supply, favoring macrophage polarization in favor of disease regression.
Collapse
Affiliation(s)
- Irineu O. M. Callegari
- Department of Physical Education, Bioscience Institute, São Paulo State University (UNESP), São Paulo, Brazil
| | - Guilherme Z. Rocha
- Department of Internal Medicine, State University of Campinas, Campinas, Brazil
| | - Alexandre G. Oliveira
- Department of Physical Education, Bioscience Institute, São Paulo State University (UNESP), São Paulo, Brazil
| |
Collapse
|
14
|
Moroni-González D, Sarmiento-Ortega VE, Diaz A, Brambila E, Treviño S. Pancreas-Liver-Adipose Axis: Target of Environmental Cadmium Exposure Linked to Metabolic Diseases. TOXICS 2023; 11:223. [PMID: 36976988 PMCID: PMC10059892 DOI: 10.3390/toxics11030223] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/17/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
Cadmium has been well recognized as a critical toxic agent in acute and chronic poisoning cases in occupational and nonoccupational settings and environmental exposure situations. Cadmium is released into the environment after natural and anthropogenic activities, particularly in contaminated and industrial areas, causing food pollution. In the body, cadmium has no biological activity, but it accumulates primarily in the liver and kidney, which are considered the main targets of its toxicity, through oxidative stress and inflammation. However, in the last few years, this metal has been linked to metabolic diseases. The pancreas-liver-adipose axis is largely affected by cadmium accumulation. Therefore, this review aims to collect bibliographic information that establishes the basis for understanding the molecular and cellular mechanisms linked to cadmium with carbohydrate, lipids, and endocrine impairments that contribute to developing insulin resistance, metabolic syndrome, prediabetes, and diabetes.
Collapse
Affiliation(s)
- Diana Moroni-González
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Faculty of Chemistry Science, Meritorious Autonomous University of Puebla, Ciudad Universitaria, Puebla 72560, Mexico
| | - Victor Enrique Sarmiento-Ortega
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Faculty of Chemistry Science, Meritorious Autonomous University of Puebla, Ciudad Universitaria, Puebla 72560, Mexico
| | - Alfonso Diaz
- Department of Pharmacy, Faculty of Chemistry Science, Meritorious Autonomous University of Puebla, 22 South. FCQ9, Ciudad Universitaria, Puebla 72560, Mexico
| | - Eduardo Brambila
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Faculty of Chemistry Science, Meritorious Autonomous University of Puebla, Ciudad Universitaria, Puebla 72560, Mexico
| | - Samuel Treviño
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Faculty of Chemistry Science, Meritorious Autonomous University of Puebla, Ciudad Universitaria, Puebla 72560, Mexico
| |
Collapse
|
15
|
Kirwan JP, Heintz EC, Rebello CJ, Axelrod CL. Exercise in the Prevention and Treatment of Type 2 Diabetes. Compr Physiol 2023; 13:4559-4585. [PMID: 36815623 DOI: 10.1002/cphy.c220009] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Type 2 diabetes is a systemic, multifactorial disease that is a leading cause of morbidity and mortality globally. Despite a rise in the number of available medications and treatments available for management, exercise remains a first-line prevention and intervention strategy due to established safety, efficacy, and tolerability in the general population. Herein we review the predisposing risk factors for, prevention, pathophysiology, and treatment of type 2 diabetes. We emphasize key cellular and molecular adaptive processes that provide insight into our evolving understanding of how, when, and what types of exercise may improve glycemic control. © 2023 American Physiological Society. Compr Physiol 13:1-27, 2023.
Collapse
Affiliation(s)
- John P Kirwan
- Integrative Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Elizabeth C Heintz
- Integrative Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Candida J Rebello
- Integrative Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Christopher L Axelrod
- Integrative Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| |
Collapse
|
16
|
Vieira-Potter VJ. Effects of Sex Hormones and Exercise on Adipose Tissue. SEX HORMONES, EXERCISE AND WOMEN 2023:55-85. [DOI: 10.1007/978-3-031-21881-1_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
17
|
Gupta GS. The Lactate and the Lactate Dehydrogenase in Inflammatory Diseases and Major Risk Factors in COVID-19 Patients. Inflammation 2022; 45:2091-2123. [PMID: 35588340 PMCID: PMC9117991 DOI: 10.1007/s10753-022-01680-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/04/2022] [Accepted: 05/03/2022] [Indexed: 12/15/2022]
Abstract
Lactate dehydrogenase (LDH) is a terminating enzyme in the metabolic pathway of anaerobic glycolysis with end product of lactate from glucose. The lactate formation is crucial in the metabolism of glucose when oxygen is in inadequate supply. Lactate can also be formed and utilised by different cell types under fully aerobic conditions. Blood LDH is the marker enzyme, which predicts mortality in many conditions such as ARDS, serious COVID-19 and cancer patients. Lactate plays a critical role in normal physiology of humans including an energy source, a signaling molecule and a pH regulator. Depending on the pH, lactate exists as the protonated acidic form (lactic acid) at low pH or as sodium salt (sodium lactate) at basic pH. Lactate can affect the immune system and act as a signaling molecule, which can provide a "danger" signal for life. Several reports provide evidence that the serum lactate represents a chemical marker of severity of disease similar to LDH under inflammatory conditions. Since the mortality rate is much higher among COVID-19 patients, associated with high serum LDH, this article is aimed to review the LDH as a therapeutic target and lactate as potential marker for monitoring treatment response of inflammatory diseases. Finally, the review summarises various LDH inhibitors, which offer potential applications as therapeutic agents for inflammatory diseases, associated with high blood LDH. Both blood LDH and blood lactate are suggested as risk factors for the mortality of patients in serious inflammatory diseases.
Collapse
Affiliation(s)
- G S Gupta
- Department of Biophysics, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
18
|
Li S, Yu B, Gao X, Zheng Y, Ma T, Hao Y, Wu H, Wei B, Wei Y, Luo Z, Xia B, Huang J. Discovery of novel immunotherapeutic drug candidates for sciatic nerve injury using bioinformatic analysis and experimental verification. Front Pharmacol 2022; 13:1035143. [PMID: 36419629 PMCID: PMC9676506 DOI: 10.3389/fphar.2022.1035143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/27/2022] [Indexed: 01/05/2025] Open
Abstract
Inflammation following nerve injury and surgery often causes peripheral nerve adhesion (PNA) to the surrounding tissue. Numerous investigations independently examined the prevention or inhibition of PNA, however, an intervention targeting macrophages has not been fully elucidated. Basement membrane (BM) genes are known to modulate central nervous system (CNS) inflammation, however, their activities in the peripheral nervous system (PNS) remains undiscovered. In this report, we carried out weighted correlation network analysis (WCNA) to screen for principal sciatic nerve injury (SNI) module genes. Once an association between the module and BM genes was established, the protein-protein interaction (PPI) and immune infiltration analyses were employed to screen for relevant BM-related immune genes (Itgam, SDC1, Egflam, and CD44) in SNI. Subsequently, using the Drug SIGnatures (DSigDB) database and molecular docking, we demonstrated that Trichostatin A (TSA) interacted with key immune genes. TSA is known to enhance M2 macrophage expression and attenuate fibrosis. Nevertheless, the significance of the epigenetic modulation of macrophage phenotypes in dorsal root ganglion (DRG) is undetermined after SNI. In this article, we examined the TSA role in fibrogenesis and macrophage plasticity associated with DRG. We revealed that TSA enhanced M2 macrophage aggregation, inhibited fibroblast activation, and improved sciatic nerve regeneration (SNR) and sensory functional recovery (FR) after SNI. In addition, TSA suppressed M1 macrophages and enhanced M2 macrophage invasion within the DRG tissue. Furthermore, TSA dramatically reduced IL-1β and TNFα levels, while upregulating IL-10 level. In summary, this research revealed for the first time that TSA alleviates fibrosis in DRG by promoting an M1 to M2 macrophage transition, which, in turn, accelerates SNR.
Collapse
Affiliation(s)
- Shengyou Li
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Beibei Yu
- Department of Neurosurgery, The Second Affiliated Hospital of Xi’an Jiao Tong University, Xi’an, China
| | - Xue Gao
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yi Zheng
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Teng Ma
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yiming Hao
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Haining Wu
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Bin Wei
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yitao Wei
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Zhuojing Luo
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Bing Xia
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Jinghui Huang
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
19
|
Sarmiento-Ortega VE, Moroni-González D, Díaz A, Eduardo B, Samuel T. Oral Subacute Exposure to Cadmium LOAEL Dose Induces Insulin Resistance and Impairment of the Hormonal and Metabolic Liver-Adipose Axis in Wistar Rats. Biol Trace Elem Res 2022; 200:4370-4384. [PMID: 34846673 DOI: 10.1007/s12011-021-03027-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/10/2021] [Indexed: 02/07/2023]
Abstract
Cadmium is a nonessential transition metal considered one of the more hazardous environmental contaminants. The population is chronically exposed to this metal at low concentrations, designated as the LOAEL (lowest observable adverse effect level) dose. We aimed to investigate whether oral subacute exposure to cadmium LOAEL disrupts hormonal and metabolic effects of the liver-adipose axis in Wistar rats. Fifty male Wistar rats were separated into two groups: control (standard normocalorie diet + water free of cadmium) and cadmium (standard normocalorie diet + drinking water with 32.5 ppm CdCl2). After 1 month, zoometry, a serum lipid panel, adipokines, and proinflammatory cytokines were evaluated. Tests of glucose and insulin tolerance (ITT) and insulin resistance were performed. Histological studies on structure, triglyceride distribution, and protein expression of the insulin pathway were performed in the liver and retroperitoneal adipose tissue. In both tissues, the cadmium, triglyceride, glycogen, and proinflammatory cytokine contents were also quantified. The cadmium group developed dyslipidemia, glucose intolerance, hyperinsulinemia, hyperleptinemia, inflammation, and selective insulin resistance in the liver and adipose tissue. In the liver, glycogen synthesis was diminished, while de novo lipogenesis increased, which was associated with low GSK3β-pS9 and strong expression of SREBP-1c. Dysfunctional adipose tissue was observed with hypertrophy and lipolysis, without changes in SREBP-1c expression and low glycogen synthesis. Both tissues accumulated cadmium and developed inflammation. In conclusion, oral subacute cadmium LOAEL dose exposure induces inflammation, insulin signaling modifications, an early insulin resistance stage (insensibility), and impairment of the hormonal and metabolic liver-adipose axis in Wistar rats.
Collapse
Affiliation(s)
- Victor Enrique Sarmiento-Ortega
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Faculty of Chemistry Science, Autonomous University of Puebla, 14 South, FCQ1, University City, C.P.72560, Puebla, Mexico
| | - Diana Moroni-González
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Faculty of Chemistry Science, Autonomous University of Puebla, 14 South, FCQ1, University City, C.P.72560, Puebla, Mexico
| | - Alfonso Díaz
- Department of Pharmacy, Faculty of Chemistry Science, Autonomous University of Puebla, 22 South, FC91, University City, C.P. 72560, Puebla, Mexico
| | - Brambila Eduardo
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Faculty of Chemistry Science, Autonomous University of Puebla, 14 South, FCQ1, University City, C.P.72560, Puebla, Mexico
| | - Treviño Samuel
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Faculty of Chemistry Science, Autonomous University of Puebla, 14 South, FCQ1, University City, C.P.72560, Puebla, Mexico.
| |
Collapse
|
20
|
Krüger K, Tirekoglou P, Weyh C. Immunological mechanisms of exercise therapy in dyslipidemia. Front Physiol 2022; 13:903713. [PMID: 36003652 PMCID: PMC9393246 DOI: 10.3389/fphys.2022.903713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/07/2022] [Indexed: 12/05/2022] Open
Abstract
Numerous studies demonstrated the strong link between dyslipidemia and the cardiovascular risk. Physical activity and exercise represent effective prevention and therapy strategies for dyslipidemia and at the same time counteract numerous comorbidities that often accompany the disease. The physiological mechanisms are manifold, and primary mechanisms might be an increased energy consumption and associated adaptations of the substrate metabolism. Recent studies showed that there are bidirectional interactions between dyslipidemia and the immune system. Thus, abnormal blood lipids may favor pro-inflammatory processes, and at the same time inflammatory processes may also promote dyslipidemia. Physical activity has been shown to affect numerous immunological processes and has primarily anti-inflammatory effects. These are manifested by altered leukocyte subtypes, cytokine patterns, stress protein expression, and by reducing hallmarks of immunosenescence. The aim of this review is to describe the effects of exercise on the treatment dyslipidemia and to discuss possible immunological mechanisms against the background of the current literature.
Collapse
Affiliation(s)
- Karsten Krüger
- Department of Exercise Physiology and Sports Therapy, Institute of Sport Science, Justus-Liebig-University Giessen, Giessen, Germany
| | | | | |
Collapse
|
21
|
Treviño S, Cortezano-Esteban S, Hernández-Fragoso H, Díaz A, Vázquez-Roque R, Enrique Sarmiento-Ortega V, Moroni-González D, Pelayo R, Brambila E. Clinical monitored in subjects metabolically healthy and unhealthy before and during a SARS-CoV-2 infection- A cross-sectional study in Mexican population. Cytokine 2022; 153:155868. [PMID: 35358903 PMCID: PMC8958098 DOI: 10.1016/j.cyto.2022.155868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/02/2022] [Accepted: 03/21/2022] [Indexed: 12/14/2022]
Abstract
The COVID-19 disease has forced us to consider the physiologic role of obesity and metabolically healthy and unhealthy status in response to SARS-CoV-2 infection. Hematological, coagulation, biochemical, and immunoinflammatory changes have been informed with a disparity in morbidity and mortality. Therefore, we aimed to investigate the influence of metabolic health on clinical features in a cross-sectional study in Mexican subjects with and without SARS-CoV-2 infection in non-severe stages after a rigorous classification of obese and non-obese subjects who were metabolically healthy and unhealthy. Four groups were formed: 1) metabolically healthy with normal BMI (MHN); 2) metabolically unhealthy with normal BMI (MUN); 3) metabolically healthy obese (MHO); 4) metabolically unhealthy obese (MUO). Serum proinflammatory (TNF-α, MCP-1, IL-1β, and IL-6) and anti-inflammatory (TGF-β, IL-1Ra, IL-4, and IL-10) cytokines, hematological parameters, coagulation, and acute phase components were evaluated. Our results showed that MHO people live with inflammaging. Meanwhile, MUN and MUO subjects develop metaflammation. Both inflammaging and metaflammation cause imperceptible modifications on hematological parameters, mainly in leukocyte populations and platelets, as well as acute phase and coagulation components. The statistical analysis revealed that many clinical features are dependent on metabolic health. In conclusion, MHO subjects seem to be transitioning from metabolically healthy to unhealthy, which is accelerated in acute processes, such as SARS-CoV-2 infection. Meanwhile, metabolically unhealthy subjects independently of BMI have a deteriorating immunometabolic status associated with a hyperinflammatory state leading to multi-organ dysfunction, treatment complications, and severe COVID-19 disease.
Collapse
Affiliation(s)
- Samuel Treviño
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Faculty of Chemistry Science, University Autonomous of Puebla. 14 South. FCQ1, University City, Puebla, C.P. 72560, Mexico; Clinical Laboratory "Los Ángeles, Endocrinology area, rio Nexapa 6153, col. San Manuel, Puebla, C.P. 72560, Mexico.
| | - Steffany Cortezano-Esteban
- Clinical Laboratory "Los Ángeles, Endocrinology area, rio Nexapa 6153, col. San Manuel, Puebla, C.P. 72560, Mexico
| | - Hugo Hernández-Fragoso
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Faculty of Chemistry Science, University Autonomous of Puebla. 14 South. FCQ1, University City, Puebla, C.P. 72560, Mexico; Clinical Laboratory "Los Ángeles, Endocrinology area, rio Nexapa 6153, col. San Manuel, Puebla, C.P. 72560, Mexico
| | - Alfonso Díaz
- Department of Pharmacy, Faculty of Chemistry Science, University Autonomous of Puebla. 22 South. FCQ9, University City, Puebla, C.P. 72560, Mexico
| | - Rubén Vázquez-Roque
- Neuropsychiatry laboratory, Physiology Institute, University Autonomous of Puebla. 14 South. University City, Puebla, C.P. 72560, Mexico
| | - Victor Enrique Sarmiento-Ortega
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Faculty of Chemistry Science, University Autonomous of Puebla. 14 South. FCQ1, University City, Puebla, C.P. 72560, Mexico
| | - Diana Moroni-González
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Faculty of Chemistry Science, University Autonomous of Puebla. 14 South. FCQ1, University City, Puebla, C.P. 72560, Mexico
| | - Rosana Pelayo
- Eastern Biomedical Research Center CIBIOR, Mexican Institute for Social Security, Puebla, Mexico
| | - Eduardo Brambila
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Faculty of Chemistry Science, University Autonomous of Puebla. 14 South. FCQ1, University City, Puebla, C.P. 72560, Mexico
| |
Collapse
|
22
|
Xu M, Wang YM, Li WQ, Huang CL, Li J, Xie WH, Zeng HX, Tao LF, Li X. Ccrl2 deficiency deteriorates obesity and insulin resistance through increasing adipose tissue macrophages infiltration. Genes Dis 2022; 9:429-442. [PMID: 35224158 PMCID: PMC8843887 DOI: 10.1016/j.gendis.2020.08.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/22/2020] [Accepted: 08/25/2020] [Indexed: 12/13/2022] Open
Abstract
Obesity-induced inflammation, characterized by augmented infiltration and altered balance of macrophages, is a critical component of systemic insulin resistance. Chemokine-chemokine receptor system plays a vital role in the macrophages accumulation. CC-Chemokine Receptor-like 2 (Ccrl2) is one of the receptors of Chemerin, which is a member of atypical chemokine receptors (ACKR) family, reported taking part in host immune responses and inflammation-related conditions. In our study, we found ccrl2 expression significantly elevated in visceral adipose tissue (VAT) of high fat diet (HFD) induced obese mice and ob/ob mice. Systemic deletion of Ccrl2 gene aggravated HFD induced obesity and insulin resistance and ccrl2−/− mice showed aggravated VAT inflammation and increased M1/M2 macrophages ratio, which is due to the increase of macrophages chemotaxis in Ccrl2 deficiency mice. Cumulatively, these results indicate that Ccrl2 has a critical function in obesity and obesity-induced insulin resistance via mediating macrophages chemotaxis.
Collapse
|
23
|
Andarianto A, Rejeki P, Sakina, Pranoto A, Seputra TA, Sugiharto, Miftahussurur M. Inflammatory markers in response to interval and continuous exercise in obese women. COMPARATIVE EXERCISE PHYSIOLOGY 2022; 18:135-142. [DOI: 10.3920/cep210038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Obesity is strongly associated with the degree of inflammation characterised by proinflammatory cytokines, such as tumour necrosis factor-α (TNF-α). Lifestyle modification with exercise is the right strategy because it can stimulate interleukin 6 (IL-6) secretion which acts as an anti-inflammatory. This study aimed to analyse the response of interval and continuous exercise to inflammatory markers in obese women. Twenty-four women participated in this study and were randomly divided into 3 groups: CONG (n=8, control group without any intervention): MCEG (n=8, continuous exercise group) and MIEG (n=8, interval exercise group). ELISA was used to measure the levels of IL-6 and TNF-α, pre-exercise and post-exercise. The data were analysed using the paired sample t-test. The mean levels of TNF-α, pre-exercise and post-exercise, were 19.35±2.73 vs 19.36±2.23 pg/ml (P=0.989) in CONG, 19.42±2.79 vs 16.63±0.82 pg/ml (P=0.017) in MCEG, and 19.46±3.08 vs 16.96±2.11 pg/ml (P=0.079) in MIEG. Mean levels of IL-6, pre-exercise and post-exercise, were 7.56±2.88 vs 7.66±4.12 pg/ml (P=0.957) for CONG, 7.68±3.41 vs 13.97±2.38 pg/ml (P=0.001) for MCEG, and 7.78±1.99 vs 13.66±3.55 pg/ml (P=0.001) for MIEG. We concluded that interval and continuous exercise decreased pro-inflammatory and increased anti-inflammatory cytokines.
Collapse
Affiliation(s)
- A. Andarianto
- Sport Health Science, Faculty of Medicine, Universitas Airlangga, Jl. Prof. Dr. Moestopo No.47, 60131 Surabaya, Indonesia
| | - P.S. Rejeki
- Sport Health Science, Faculty of Medicine, Universitas Airlangga, Jl. Prof. Dr. Moestopo No.47, 60131 Surabaya, Indonesia
- Medical Program, Faculty of Medicine, Universitas Airlangga, Jl. Prof. Dr. Moestopo No.47, 60131 Surabaya, Indonesia
- Physiology Division, Department of Medical Physiology and Biochemistry, Faculty of Medicine, Universitas Airlangga, Jl. Prof. Dr. Moestopo No.47, 60131 Surabaya, Indonesia
| | - Sakina
- Medical Program, Faculty of Medicine, Universitas Airlangga, Jl. Prof. Dr. Moestopo No.47, 60131 Surabaya, Indonesia
- Department of Anatomy, Histology, and Pharmacology, Faculty of Medicine Universitas Airlangga, Jl. Prof. Dr. Moestopo No.47, 60131 Surabaya Indonesia
| | - A. Pranoto
- Medical Science, Faculty of Medicine, Universitas Airlangga, Jl. Prof. Dr. Moestopo No.47, 60131 Surabaya, Indonesia
| | - T.W. Aga Seputra
- Sport Health Science, Faculty of Medicine, Universitas Airlangga, Jl. Prof. Dr. Moestopo No.47, 60131 Surabaya, Indonesia
| | - Sugiharto
- Department of Sport Science, Faculty of Sport Science, Universitas Negeri Malang, Jl. Semarang No.5, 65145 Malang, Indonesia
| | - M. Miftahussurur
- Institute of Tropical Disease, Universitas Airlangga, 60286 Surabaya, Indonesia
- Gastroentero-Hepatology Division, Department of Internal Medicine, Faculty of Medicine, Dr. Soetomo Teaching Hospital, Universitas Airlangga, Jl. Prof. Dr. Moestopo No. 6-8, 60286 Surabaya, Indonesia
| |
Collapse
|
24
|
Semeraro MD, Almer G, Kaiser M, Zelzer S, Meinitzer A, Scharnagl H, Sedej S, Gruber HJ, Herrmann M. The effects of long-term moderate exercise and Western-type diet on oxidative/nitrosative stress, serum lipids and cytokines in female Sprague Dawley rats. Eur J Nutr 2021; 61:255-268. [PMID: 34319428 PMCID: PMC8783884 DOI: 10.1007/s00394-021-02639-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 07/05/2021] [Indexed: 11/25/2022]
Abstract
Purpose Regular exercise reduces obesity and the risk of cardiovascular disease. However, health-promoting benefits of physical activity are commonly associated with increased inflammation and oxidative stress. Here, we tested whether constant moderate exercise is able to prevent or attenuate the oxidative/nitrosative stress, inflammation, and serum lipids in lean and obese rats. Methods Four-month-old female Sprague Dawley rats received standard or a high-fat diet. Animals were subjected to a physical activity protocol, consisting of 30 min forced treadmill exercise for 5 consecutive days per week during 10 months. Baseline and sedentary (non-exercised) rats were used as controls. Lipids, oxidized low-density lipoprotein cholesterol, nitric oxide metabolites, and pro- and anti-inflammatory markers were measured in blood collected upon euthanasia. Results At variance to young baseline control rats, 14-month-old animals fed normal diet had increased plasma lipid levels, including total cholesterol and triglycerides, which were further elevated in rats that consumed a high-fat diet. While treadmill exercise did not lower the amount of serum lipids in standard diet group, forced physical activity reduced non-high-density lipoprotein cholesterol in response to high-fat diet feeding. Exercised rats fed standard diet or high-fat diet had lower abundancy of nitric oxide metabolites, which coincided with increased levels of oxidized low-density lipoprotein cholesterol. Accordingly, the amount of nitric oxide metabolites correlated inversely with oxidized low-density lipoprotein cholesterol and homo-arginine. Exercise significantly reduced inflammatory cytokines in high-fat diet fed rats only. Conclusion Our study suggests that regular exercise alters the equilibrium between oxidative and anti-oxidative compounds and reduces pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Maria Donatella Semeraro
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, 15/1 Auenbruggerplatz, 8036, Graz, Austria
| | - Gunter Almer
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, 15/1 Auenbruggerplatz, 8036, Graz, Austria
| | - Melanie Kaiser
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, 15/1 Auenbruggerplatz, 8036, Graz, Austria
| | - Sieglinde Zelzer
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, 15/1 Auenbruggerplatz, 8036, Graz, Austria
| | - Andreas Meinitzer
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, 15/1 Auenbruggerplatz, 8036, Graz, Austria
| | - Hubert Scharnagl
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, 15/1 Auenbruggerplatz, 8036, Graz, Austria
| | - Simon Sedej
- Department of Cardiology, Medical University of Graz, 8036, Graz, Austria.,BioTechMed Graz, 8010, Graz, Austria.,Faculty of Medicine, University of Maribor, 2000, Maribor, Slovenia
| | - Hans-Jürgen Gruber
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, 15/1 Auenbruggerplatz, 8036, Graz, Austria
| | - Markus Herrmann
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, 15/1 Auenbruggerplatz, 8036, Graz, Austria.
| |
Collapse
|
25
|
Kaur S, Garg A, Kaushal N. Hempseed (Cannabis sativa) offers effective alternative over statins in ameliorating hypercholesterolemia associated nephropathy. Clin Biochem 2021; 93:104-111. [PMID: 33861983 DOI: 10.1016/j.clinbiochem.2021.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/24/2021] [Accepted: 04/09/2021] [Indexed: 01/05/2023]
Abstract
A direct link between hypercholesterolemia (HC) and renal pathologies has been established. Statins, the drugs of choice for HC management, have been associated with various side effects and toxicities, including nephropathy and other renal insults. Thus, natural dietary products based-alternative strategies for HC and associated pathologies are being considered. OBJECTIVES Based on the unique nutritional composition and numerous health benefits of Hempseeds (Cannabis sativa), currently the potential anti-inflammatory and redox modulatory effects of hempseeds lipid extract (HEMP) against HC associated renal damage were evaluated and compared with statins (Simvastatin) in HFD induced experimental model of HC in rats. DESIGN & METHODS The hempseed lipid fractions (HEMP) were prepared and their ameliorating effects on HFD induced lipid profiles, renal function markers (RFT), histopathological/morphological changes, renal oxidative stress, and inflammation markers were studied and compared with statins (HFD + STATINS). Further, HEMP-mediated modulation of lipid metabolism mediators (APO-B/E) was studied. RESULTS Not only, HEMP administration improved the lipid profiles and morphological signs of HC, but it also was safe compared to Simvastatin in terms of hepatic and renal function markers. Further, changes in renal histoarchitecture, biochemical markers of oxidative stress, and expression profiles of lipid metabolism and inflammatory pathways (Cox-1/2, PGDS, PGES) revealed that HEMP positively modulating the redox homeostasis activated the resolution pathways against HC associated renal insults. CONCLUSION The outcomes of the current study indicated HEMP's ameliorative and therapeutic potential against hypercholesterolemia-associated nephropathies and other systemic effects.
Collapse
Affiliation(s)
- Simarpreet Kaur
- Department of Biophysics, Panjab University, Chandigarh 160014, India
| | - Ayushi Garg
- Department of Biophysics, Panjab University, Chandigarh 160014, India
| | - Naveen Kaushal
- Department of Biophysics, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
26
|
Turner L, Santosa S. Putting ATM to BED: How Adipose Tissue Macrophages Are Affected by Bariatric Surgery, Exercise, and Dietary Fatty Acids. Adv Nutr 2021; 12:1893-1910. [PMID: 33979430 PMCID: PMC8483961 DOI: 10.1093/advances/nmab011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/17/2020] [Accepted: 01/19/2021] [Indexed: 12/20/2022] Open
Abstract
With increasing adiposity in obesity, adipose tissue macrophages contribute to adipose tissue malfunction and increased circulating proinflammatory cytokines. The chronic low-grade inflammation that occurs in obesity ultimately gives rise to a state of metainflammation that increases the risk of metabolic disease. To date, only lifestyle and surgical interventions have been shown to be somewhat effective at reversing the negative consequences of obesity and restoring adipose tissue homeostasis. Exercise, dietary interventions, and bariatric surgery result in immunomodulation, and for some individuals their effects are significant with or without weight loss. Robust evidence suggests that these interventions reduce chronic inflammation, in part, by affecting macrophage infiltration and promoting a phenotypic switch from the M1- to M2-like macrophages. The purpose of this review is to discuss the impact of dietary fatty acids, exercise, and bariatric surgery on cellular characteristics affecting adipose tissue macrophage presence and phenotypes in obesity.
Collapse
Affiliation(s)
- Laurent Turner
- Department of Health, Kinesiology, and Applied Physiology, Concordia University, Montreal, Quebec, Canada,Metabolism, Obesity, and Nutrition Lab, PERFORM Centre, Concordia University, Montreal, Quebec, Canada
| | | |
Collapse
|
27
|
Winn NC, Cottam MA, Wasserman DH, Hasty AH. Exercise and Adipose Tissue Immunity: Outrunning Inflammation. Obesity (Silver Spring) 2021; 29:790-801. [PMID: 33899336 DOI: 10.1002/oby.23147] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/02/2021] [Accepted: 01/26/2021] [Indexed: 02/06/2023]
Abstract
Chronic inflammation is considered a precipitating factor and possibly an underlying cause of many noncommunicable diseases, including cardiovascular disease, metabolic diseases, and some cancers. Obesity, which manifests in more than 650 million people worldwide, is the most common chronic inflammatory condition, with visceral adiposity thought to be the major inflammatory hub that links obesity and chronic disease. Adipose tissue (AT) inflammation is triggered or heightened in large part by (1) accelerated immune cell recruitment, (2) reshaping of the AT stromal-immuno landscape (e.g., immune cells, endothelial cells, fibroblasts, adipocyte progenitors), and (3) perturbed AT immune cell function. Exercise, along with diet management, is a cornerstone in promoting weight loss and preventing weight regain. This review focuses on evidence that increased physical activity reduces AT inflammation caused by hypercaloric diets or genetic obesity. The precise cell types and mechanisms responsible for the therapeutic effects of exercise on AT inflammation remain poorly understood. This review summarizes what is known about obesity-induced AT inflammation and immunomodulation and highlights mechanisms by which aerobic exercise combats inflammation by remodeling the AT immune landscape. Furthermore, key areas are highlighted that require future exploration and novel discoveries into the burgeoning field of how the biology of exercise affects AT immunity.
Collapse
Affiliation(s)
- Nathan C Winn
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Matthew A Cottam
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - David H Wasserman
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt Mouse Metabolic Phenotyping Center, Nashville, Tennessee, USA
| | - Alyssa H Hasty
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
- VA Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| |
Collapse
|
28
|
Li Y, Zhang Z, Xu K, Du S, Gu X, Cao R, Cui S. Minocycline alleviates peripheral nerve adhesion by promoting regulatory macrophage polarization via the TAK1 and its downstream pathway. Life Sci 2021; 276:119422. [PMID: 33781833 DOI: 10.1016/j.lfs.2021.119422] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/15/2021] [Accepted: 03/20/2021] [Indexed: 12/20/2022]
Abstract
AIMS Inflammation plays a key role in peripheral nerve adhesion and often leads to severe pain and nerve dysfunction. Minocycline was reported to have potent anti-inflammatory effects and might be a promising drug to prevent or attenuate peripheral nerve adhesion. The present study aimed to clarify whether minocycline contributes to nerve adhesion protection and its underlying mechanism. MATERIALS AND METHODS Rats with sciatic nerve adhesion induced by glutaraldehyde glue (GG) were intraperitoneally injected with minocycline or saline every 12 h for 7 consecutive days. After that, the adhesion score, Ashcroft score, demyelination, macrophage polarization and inflammatory factors in peripheral nerve adhesion tissues or tissues in sham group were determined with histological staining, western blot and real time-PCR. Murine macrophage RAW264.7 cells were stimulated by LPS alone or together with minocycline at different concentrations and time duration to study the mechanism of minocycline in alleviating nerve adhesion. KEY FINDINGS We found that minocycline treatment reduced the adhesion score, Ashcroft score, the growth of scar tissue, demyelination, and macrophage recruitment. Moreover, minocycline significantly and dose-dependently promoted regulatory macrophage polarization but decreased pro-inflammatory macrophage polarization. Furthermore, mechanism studies showed that TAK1 and its downstream pathway p38/JNK/ERK1/2/p65 were inhibited by minocycline, which led to lower IL-1β and TNFα expression, but increased IL-10 expression. SIGNIFICANCE Altogether, these results suggest that minocycline is highly effective against peripheral nerve adhesion through anti-fibrosis, anti-inflammation, and myelination protection, making it a highly promising candidate for treating adhesion-related disorders.
Collapse
Affiliation(s)
- Yueying Li
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun 130033, PR China
| | - Zhan Zhang
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun 130033, PR China
| | - Ke Xu
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun 130033, PR China
| | - Shuang Du
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun 130033, PR China
| | - Xiaosong Gu
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun 130033, PR China; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, PR China.
| | - Rangjuan Cao
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun 130033, PR China.
| | - Shusen Cui
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun 130033, PR China.
| |
Collapse
|
29
|
Brand C, Gaya ACA, Dias AF, Agostinis-Sobrinho C, Farinha JB, Macedo RCO, Mota J, de Oliveira AR, Gaya AR. The role of adiposity in the relationship between physical fitness with cardiometabolic risk factors, adipocytokines and inflammation in children. SPORT SCIENCES FOR HEALTH 2021. [DOI: 10.1007/s11332-020-00662-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
30
|
AbdelMassih AF, Menshawey R, Hozaien R, Kamel A, Mishriky F, Husseiny RJ, Hanoura AM, Yacoub E, AlShehry N, Menshawey E, El-Husseiny N, Yasser R, Arsanyous M, Nathan L, Seyam M, Massoud D, Ali N, Kassim A, AmanAllah M, Elsayed R, Sheashaa H, Husseiny Y, Hassan NH, Badr K, Elkhateb A, Fouad V, Elfishawy M, Medhat O, Mustafa M, Khalil N, Elsayed R, Nada Y, Elshawarbi P, Abdelmoneim N, Gamal N, Messiha M, Ghazy M, Abdelfatah E, Nasry F, Gayed R, Eesa M, Luis M, Eskandar E, Yacoub S, Saud A, Rajab M, Abdelaziz M, Elgamal N, Jaber H, Tayssir S, Michael M, Sabry A, Shehata J, Abdelaziz R, Rateb S, El-Maghraby A, Mahjoub Y, Amr A, Mabrouk A, Kelada P, Ragab S, Eltaher B, Hassan Galal R, Aly OM, Aly T, AbdelHaleem R, ElShaarawy A, Mohamed O. The potential use of lactate blockers for the prevention of COVID-19 worst outcome, insights from exercise immunology. Med Hypotheses 2021; 148:110520. [PMID: 33561624 PMCID: PMC7840393 DOI: 10.1016/j.mehy.2021.110520] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/18/2021] [Accepted: 01/25/2021] [Indexed: 12/16/2022]
Abstract
Following the decline in Physical Activity (PA) due to COVID-19 restrictions in the form of government mandated lockdowns and closures of public spaces, the modulatory effect of physical exercise on immunity is being heavily revisited. In an attempt to comprehend the wide discrepancy in patient response to COVID-19 and the factors that potentially modulate it, we summarize the findings relating PA to inflammation and immunity. A distinction is drawn between moderate intensity and high intensity physical exercise based on the high lactate production observed in the latter. We hypothesize that, the lactate production associated with high intensity anaerobic exercise is implicated in the modulation of several components of the innate and adaptive immunity. In this review, we also summarize these immunomodulatory effects of lactate. These include increasing serum IL-6 levels, the main mediator of cytokine storms, as well as affecting NK cells, Macrophages, Dendritic cells and cytotoxic T-lymphocytes. The implications of high lactate levels in athletic performance are highlighted where athletes should undergo endurance training to increase VO2 max and minimize lactate production. Tumor models of hypoxia were also reported where lactate levels are elevated leading to increased invasiveness and angiogenesis. Accordingly, the novel lactate blocking strategy employed in cancer treatment is evaluated for its potential benefit in COVID-19 in addition to the readily available beta-blockers as an antagonist to lactate. Finally, we suggest the diagnostic/prognostic purpose of the elevated lactate levels that can be determined through sweat lactate testing. It is the detrimental effect of lactate on immunity and its presence in sweat that qualify it to be used as a potential non-invasive marker of poor COVID-19 outcome.
Collapse
Affiliation(s)
- Antoine Fakhry AbdelMassih
- Pediatric Cardiology Unit, Pediatrics' Department, Faculty of Medicine, Cairo University, Egypt; Pediatric Cardio-Oncology Department, Children Cancer Hospital of Egypt (57357), Egypt.
| | - Rahma Menshawey
- Research Accessibility Team, Student and Internship Research Program, Faculty of Medicine, Cairo University, Egypt
| | - Rafeef Hozaien
- Research Accessibility Team, Student and Internship Research Program, Faculty of Medicine, Cairo University, Egypt
| | - Aya Kamel
- Research Accessibility Team, Student and Internship Research Program, Faculty of Medicine, Cairo University, Egypt
| | - Fady Mishriky
- Research Accessibility Team, Student and Internship Research Program, Faculty of Medicine, Cairo University, Egypt
| | - Reem J Husseiny
- Research Accessibility Team, Student and Internship Research Program, Faculty of Medicine, Cairo University, Egypt
| | | | - Elaria Yacoub
- Research Accessibility Team, Student and Internship Research Program, Faculty of Medicine, Cairo University, Egypt
| | - Nada AlShehry
- Research Accessibility Team, Student and Internship Research Program, Faculty of Medicine, Cairo University, Egypt
| | - Esraa Menshawey
- Research Accessibility Team, Student and Internship Research Program, Faculty of Medicine, Cairo University, Egypt
| | - Nadine El-Husseiny
- Faculty of Dentistry, Cairo University, Egypt; Pixagon Graphic Design Agency, Cairo, Egypt
| | - Reem Yasser
- Department of Pharmaceutical and Pharmacological Sciences, Faculty of Medicine, Padova University, Padova, Italy
| | - Mariem Arsanyous
- Research Accessibility Team, Student and Internship Research Program, Faculty of Medicine, Cairo University, Egypt
| | - Lauren Nathan
- Research Accessibility Team, Student and Internship Research Program, Faculty of Medicine, Cairo University, Egypt
| | - Mahmoud Seyam
- Research Accessibility Team, Student and Internship Research Program, Faculty of Medicine, Cairo University, Egypt
| | - Doaa Massoud
- Research Accessibility Team, Student and Internship Research Program, Faculty of Medicine, Cairo University, Egypt
| | - Nada Ali
- Research Accessibility Team, Student and Internship Research Program, Faculty of Medicine, Cairo University, Egypt
| | - Assem Kassim
- Research Accessibility Team, Student and Internship Research Program, Faculty of Medicine, Cairo University, Egypt
| | - Mostafa AmanAllah
- Research Accessibility Team, Student and Internship Research Program, Faculty of Medicine, Cairo University, Egypt
| | - Rokaya Elsayed
- Research Accessibility Team, Student and Internship Research Program, Faculty of Medicine, Cairo University, Egypt
| | - Hesham Sheashaa
- Research Accessibility Team, Student and Internship Research Program, Faculty of Medicine, Cairo University, Egypt
| | - Yousef Husseiny
- Research Accessibility Team, Student and Internship Research Program, Faculty of Medicine, New Giza University, Egypt
| | - Nourhan Hatem Hassan
- Research Accessibility Team, Student and Internship Research Program, Faculty of Medicine, Cairo University, Egypt
| | - Kirollos Badr
- Faculty of Pharmacy, Future University, Cairo, Egypt
| | - Amr Elkhateb
- Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Verina Fouad
- Research Accessibility Team, Student and Internship Research Program, Faculty of Medicine, Cairo University, Egypt
| | - Mayada Elfishawy
- Research Accessibility Team, Student and Internship Research Program, Faculty of Medicine, Cairo University, Egypt
| | - Omar Medhat
- Research Accessibility Team, Student and Internship Research Program, Faculty of Medicine, Cairo University, Egypt
| | - Mai Mustafa
- Research Accessibility Team, Student and Internship Research Program, Faculty of Medicine, Cairo University, Egypt
| | - Noha Khalil
- Research Accessibility Team, Student and Internship Research Program, Faculty of Medicine, Cairo University, Egypt
| | - Rawan Elsayed
- Research Accessibility Team, Student and Internship Research Program, Faculty of Medicine, Cairo University, Egypt
| | - Youssef Nada
- Research Accessibility Team, Student and Internship Research Program, Faculty of Medicine, Cairo University, Egypt
| | - Passant Elshawarbi
- Research Accessibility Team, Student and Internship Research Program, Faculty of Medicine, Cairo University, Egypt
| | - Noha Abdelmoneim
- Research Accessibility Team, Student and Internship Research Program, Faculty of Medicine, Cairo University, Egypt
| | - Nada Gamal
- Research Accessibility Team, Student and Internship Research Program, Faculty of Medicine, Cairo University, Egypt
| | - Mariam Messiha
- Research Accessibility Team, Student and Internship Research Program, Faculty of Medicine, Cairo University, Egypt
| | - Marihan Ghazy
- Research Accessibility Team, Student and Internship Research Program, Faculty of Medicine, Cairo University, Egypt
| | - Emmy Abdelfatah
- Research Accessibility Team, Student and Internship Research Program, Faculty of Medicine, Cairo University, Egypt
| | - Febronia Nasry
- Research Accessibility Team, Student and Internship Research Program, Faculty of Medicine, Cairo University, Egypt
| | - Ramy Gayed
- Research Accessibility Team, Student and Internship Research Program, Faculty of Medicine, Cairo University, Egypt
| | - Marian Eesa
- Research Accessibility Team, Student and Internship Research Program, Faculty of Medicine, Cairo University, Egypt
| | - Merna Luis
- Research Accessibility Team, Student and Internship Research Program, Faculty of Medicine, Alexandria University, Egypt
| | - Estfana Eskandar
- Research Accessibility Team, Student and Internship Research Program, Faculty of Medicine, Cairo University, Egypt
| | - Shenoda Yacoub
- Research Accessibility Team, Student and Internship Research Program, Faculty of Medicine, Cairo University, Egypt
| | - Alaa Saud
- Research Accessibility Team, Student and Internship Research Program, Faculty of Medicine, Cairo University, Egypt
| | - Maram Rajab
- Research Accessibility Team, Student and Internship Research Program, Faculty of Medicine, Cairo University, Egypt
| | - Mariam Abdelaziz
- Research Accessibility Team, Student and Internship Research Program, Faculty of Medicine, Cairo University, Egypt
| | - Nadine Elgamal
- Research Accessibility Team, Student and Internship Research Program, Faculty of Medicine, Cairo University, Egypt
| | - Hutaf Jaber
- Research Accessibility Team, Student and Internship Research Program, Faculty of Medicine, Cairo University, Egypt
| | - Sara Tayssir
- Pediatric Residency Program, Faculty of Medicine, Cairo University, Egypt
| | - Mark Michael
- Research Accessibility Team, Student and Internship Research Program, Faculty of Medicine, Cairo University, Egypt
| | - Ahmed Sabry
- Research Accessibility Team, Student and Internship Research Program, Faculty of Medicine, Cairo University, Egypt
| | - Joseph Shehata
- Research Accessibility Team, Student and Internship Research Program, Faculty of Medicine, Cairo University, Egypt
| | - Rania Abdelaziz
- Research Accessibility Team, Student and Internship Research Program, Faculty of Medicine, Cairo University, Egypt
| | - Sherry Rateb
- Research Accessibility Team, Student and Internship Research Program, Faculty of Medicine, Cairo University, Egypt
| | - Ahmed El-Maghraby
- Research Accessibility Team, Student and Internship Research Program, Faculty of Medicine, Cairo University, Egypt
| | - Yara Mahjoub
- Research Accessibility Team, Student and Internship Research Program, Faculty of Medicine, Cairo University, Egypt
| | - Alaa Amr
- Research Accessibility Team, Student and Internship Research Program, Faculty of Medicine, Cairo University, Egypt
| | - Amin Mabrouk
- Research Accessibility Team, Student and Internship Research Program, Faculty of Medicine, Cairo University, Egypt
| | - Peter Kelada
- Research Accessibility Team, Student and Internship Research Program, Faculty of Medicine, Cairo University, Egypt
| | - Shahd Ragab
- Research Accessibility Team, Student and Internship Research Program, Faculty of Medicine, Cairo University, Egypt
| | - Basant Eltaher
- Research Accessibility Team, Student and Internship Research Program, Faculty of Medicine, Ain Shams University, Egypt
| | - Rahma Hassan Galal
- Research Accessibility Team, Student and Internship Research Program, Faculty of Medicine, Cairo University, Egypt
| | - Omnya Mahmoud Aly
- Research Accessibility Team, Student and Internship Research Program, Faculty of Medicine, Cairo University, Egypt
| | - Taquwa Aly
- Research Accessibility Team, Student and Internship Research Program, Faculty of Medicine, Cairo University, Egypt
| | - Rana AbdelHaleem
- Research Accessibility Team, Student and Internship Research Program, Faculty of Medicine, Cairo University, Egypt
| | - Areeg ElShaarawy
- Research Accessibility Team, Student and Internship Research Program, Faculty of Medicine, Cairo University, Egypt
| | - Omnia Mohamed
- Sports Medicine, Faculty of Physiotherapy, Cairo University, Egypt
| |
Collapse
|
31
|
Yoon KJ, Ahn A, Park SH, Kwak SH, Kwak SE, Lee W, Yang YR, Kim M, Shin HM, Kim HR, Moon HY. Exercise reduces metabolic burden while altering the immune system in aged mice. Aging (Albany NY) 2021; 13:1294-1313. [PMID: 33406502 PMCID: PMC7834985 DOI: 10.18632/aging.202312] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/13/2020] [Indexed: 02/06/2023]
Abstract
Although several evidence has suggested the impact of exercise on the prevention of aging phenotypes, few studies have been conducted on the mechanism by which exercise alters the immune-cell profile, thereby improving metabolism in senile obesity. In this study, we confirmed that 4-week treadmill exercise sufficiently improved metabolic function, including increased lean mass and decreased fat mass, in 88-week-old mice. The expression level of the senescence marker p16 in the white adipose tissue (WAT) was decreased after 4-weeks of exercise. Exercise induced changes in the profiles of immune-cell subsets, including natural killer (NK) cells, central memory CD8+ T cells, eosinophils, and neutrophils, in the stromal vascular fraction of WAT. In addition, it has been shown through transcriptome analysis of WAT that exercise can activate pathways involved in the interaction between WAT and immune cells, in particular NK cells, in aged mice. These results suggest that exercise has a profound effect on changes in immune-cell distribution and senescent-cell scavenging in WAT of aged mice, eventually affecting overall energy metabolism toward a more youthful state.
Collapse
Affiliation(s)
- Kyeong Jin Yoon
- Department of Physical Education, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea.,Institute of Sport Science, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
| | - Aram Ahn
- Department of Kinesiology, University of Connecticut, Storrs, CT 06269,USA
| | - Soo Hong Park
- Department of Physical Education, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea.,Institute of Sport Science, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
| | - Seung Hee Kwak
- Department of Physical Education, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea.,Institute of Sport Science, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
| | - Seong Eun Kwak
- Department of Physical Education, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea.,School of Kinesiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Wonsang Lee
- Department of Physical Education, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea.,Institute of Sport Science, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
| | - Yong Ryoul Yang
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Minji Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.,Wide River Institute of Immunology, Seoul National University, Hongcheon, Republic of Korea
| | - Hyun Mu Shin
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.,Wide River Institute of Immunology, Seoul National University, Hongcheon, Republic of Korea
| | - Hang-Rae Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.,BK21Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul, Republic of Korea.,Medical Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.,Wide River Institute of Immunology, Seoul National University, Hongcheon, Republic of Korea
| | - Hyo Youl Moon
- Department of Physical Education, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea.,Institute of Sport Science, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea.,Institute on Aging, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
| |
Collapse
|
32
|
Saeidi A, Haghighi MM, Kolahdouzi S, Daraei A, Abderrahmane AB, Essop MF, Laher I, Hackney AC, Zouhal H. The effects of physical activity on adipokines in individuals with overweight/obesity across the lifespan: A narrative review. Obes Rev 2021; 22:e13090. [PMID: 32662238 DOI: 10.1111/obr.13090] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/05/2020] [Accepted: 06/12/2020] [Indexed: 12/14/2022]
Abstract
This narrative review summarizes current knowledge on the effects of physical activity (PA) on adipokine levels in individuals with overweight and obesity. Approximately 90 investigations including randomized control, cross-sectional and longitudinal studies that reported on the effects of a single session of PA (acute) or long-term PA (chronic) on adipokine levels in individuals with overweight/obesity were reviewed. The findings support the notion that there is consensus on the benefits of chronic exercise training-regardless of the mode (resistance vs. aerobic), intensity and cohort (healthy vs. diabetes)-on adipokine levels (such as tumour necrosis factor-alpha, interleukin-6, adiponectin, visfatin, omentin-1 and leptin). However, several confounding factors (frequency, intensity, time and type of exercise) can alter the magnitude of the effects of an acute exercise session. Available evidence suggests that PA, as a part of routine lifestyle behaviour, improves obesity complications by modulating adipokine levels. However, additional research is needed to help identify the most effective interventions to elicit the most beneficial changes in adipokine levels in individuals with overweight/obesity.
Collapse
Affiliation(s)
- Ayoub Saeidi
- Department of Physical Education, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Marjan Mosalman Haghighi
- Faculty of Medicine and Health, Cardiology Centre, The University of Sydney, The Children's Hospital at Westmead, Sydney, Australia
| | - Sarkawt Kolahdouzi
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Mazandaran, Babolsar, Iran
| | - Ali Daraei
- Department of Biological Sciences in Sport, Faculty of Sports Sciences and Health, Shahid Beheshti University, Tehran, Iran
| | | | - M Faadiel Essop
- Centre for Cardio-metabolic Research in Africa (CARMA), Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Ismail Laher
- Department of Anesthesiology, Pharmacology and Therapeutics, The University of British Columbia, Vancouver, Canada
| | - Anthony C Hackney
- Department of Exercise and Sport Science, University of North Carolina, Chapel Hill, NC, USA
| | - Hassane Zouhal
- Movement, Sport and Health Sciences Laboratory (M2S), UFR-STAPS, University of Rennes 2-ENS Rennes, Rennes, France
| |
Collapse
|
33
|
Baek KW, Lee DI, Jeong MJ, Kang SA, Choe Y, Yoo JI, Yu HS, Kim JS. Effects of lifelong spontaneous exercise on the M1/M2 macrophage polarization ratio and gene expression in adipose tissue of super-aged mice. Exp Gerontol 2020; 141:111091. [PMID: 32931843 DOI: 10.1016/j.exger.2020.111091] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/31/2020] [Accepted: 09/08/2020] [Indexed: 02/04/2023]
Abstract
In the adipose tissue (AT), an increase in the M1 macrophage (M1Ø)/M2 macrophage (M2Ø) polarization ratio can be a risk factor enhancing the inflammatory response during aging, as well as increasing the risk of chronic disease, thereby reducing lifespan, or at least reducing "healthy" lifespan. The purpose of this study was to analyze and compare the AT M1Ø/M2Ø polarization ratio at the final lifespan stage in aged and control animals performing lifelong spontaneous wheel running. Based on flow cytometric analysis, the AT ratio of macrophages revealed M2Ø polarization following lifelong spontaneous exercise (LSE) regardless of age. However, for Icam1 and Tnf, the qPCR analysis showed no difference in gene expressions in young mice; Arg1 expression was higher in Young-EXE (exercising) than in Young-CON (control) mice (p < .0001). In Old-EXE, Icam1 (p < .0001) and Tnf (p < .0001) expression were lower than in Old-CON; for Arg1, gene expression in Old-EXE was higher than in Old-CON (p < .0001). LSE prevents deterioration of physical fitness owing to aging, maintaining high M2Ø polarization levels in the AT. Additionally, LSE does not downregulate Icam1 and Tnf in the AT but appears to suppress the increased M1Ø polarization ratio attributed to aging by upregulating Arg1.
Collapse
Affiliation(s)
- Kyung-Wan Baek
- Department of Physical Education, Gyeongsang National University, Jinju, Republic of Korea; Department of Parasitology and Tropical Medicine, Pusan National University School of Medicine, Yangsan, Republic of Korea; Department of Orthopaedic Surgery, Gyeongsang National University Hospital, Jinju, Republic of Korea
| | - Da-In Lee
- Department of Parasitology and Tropical Medicine, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Mi-Jin Jeong
- Department of Parasitology and Tropical Medicine, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Shin Ae Kang
- Department of Parasitology and Tropical Medicine, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Yongho Choe
- Department of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Jun-Il Yoo
- Department of Orthopaedic Surgery, Gyeongsang National University Hospital, Jinju, Republic of Korea
| | - Hak Sun Yu
- Department of Parasitology and Tropical Medicine, Pusan National University School of Medicine, Yangsan, Republic of Korea; Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea..
| | - Ji-Seok Kim
- Department of Physical Education, Gyeongsang National University, Jinju, Republic of Korea.
| |
Collapse
|
34
|
Hargrave A, Courson JA, Pham V, Landry P, Magadi S, Shankar P, Hanlon S, Das A, Rumbaut RE, Smith CW, Burns AR. Corneal dysfunction precedes the onset of hyperglycemia in a mouse model of diet-induced obesity. PLoS One 2020; 15:e0238750. [PMID: 32886728 PMCID: PMC7473521 DOI: 10.1371/journal.pone.0238750] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 08/21/2020] [Indexed: 01/23/2023] Open
Abstract
PURPOSE The purpose of this study was to use a mouse model of diet-induced obesity to determine if corneal dysfunction begins prior to the onset of sustained hyperglycemia and if the dysfunction is ameliorated by diet reversal. METHODS Six-week-old male C57BL/6 mice were fed a high fat diet (HFD) or a normal diet (ND) for 5-15 weeks. Diet reversal (DiR) mice were fed a HFD for 5 weeks, followed by a ND for 5 or 10 weeks. Corneal sensitivity was determined using aesthesiometry. Corneal cytokine expression was analyzed using a 32-plex Luminex assay. Excised corneas were prepared for immunofluorescence microscopy to evaluate diet-induced changes and wound healing. For wounding studies, mice were fed a HFD or a ND for 10 days prior to receiving a central 2mm corneal abrasion. RESULTS After 10 days of HFD consumption, corneal sensitivity declined. By 10 weeks, expression of corneal inflammatory mediators increased and nerve density declined. While diet reversal restored nerve density and sensitivity, the corneas remained in a heightened inflammatory state. After 10 days on the HFD, corneal circadian rhythms (limbal neutrophil accumulation, epithelial cell division and Rev-erbα expression) were blunted. Similarly, leukocyte recruitment after wounding was dysregulated and accompanied by delays in wound closure and nerve recovery. CONCLUSION In the mouse, obesogenic diet consumption results in corneal dysfunction that precedes the onset of sustained hyperglycemia. Diet reversal only partially ameliorated this dysfunction, suggesting a HFD diet may have a lasting negative impact on corneal health that is resistant to dietary therapeutic intervention.
Collapse
Affiliation(s)
- Aubrey Hargrave
- College of Optometry, University of Houston, Houston, Texas, United States of America
| | - Justin A Courson
- College of Optometry, University of Houston, Houston, Texas, United States of America
| | - Vanna Pham
- College of Optometry, University of Houston, Houston, Texas, United States of America
| | - Paul Landry
- College of Optometry, University of Houston, Houston, Texas, United States of America
| | - Sri Magadi
- College of Optometry, University of Houston, Houston, Texas, United States of America
| | - Pooja Shankar
- College of Optometry, University of Houston, Houston, Texas, United States of America
| | - Sam Hanlon
- College of Optometry, University of Houston, Houston, Texas, United States of America
| | - Apoorva Das
- College of Optometry, University of Houston, Houston, Texas, United States of America
| | - Rolando E Rumbaut
- Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas, United States of America
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas, United States of America
| | - C Wayne Smith
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas, United States of America
| | - Alan R Burns
- College of Optometry, University of Houston, Houston, Texas, United States of America
- Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
35
|
Chen X, Tang J, Shuai W, Meng J, Feng J, Han Z. Macrophage polarization and its role in the pathogenesis of acute lung injury/acute respiratory distress syndrome. Inflamm Res 2020; 69:883-895. [PMID: 32647933 PMCID: PMC7347666 DOI: 10.1007/s00011-020-01378-2] [Citation(s) in RCA: 239] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 05/30/2020] [Accepted: 07/06/2020] [Indexed: 12/23/2022] Open
Abstract
PURPOSE Macrophages are highly plastic cells. Under different stimuli, macrophages can be polarized into several different subsets. Two main macrophage subsets have been suggested: classically activated or inflammatory (M1) macrophages and alternatively activated or anti-inflammatory (M2) macrophages. Macrophage polarization is governed by a highly complex set of regulatory networks. Many recent studies have shown that macrophages are key orchestrators in the pathogenesis of acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) and that regulation of macrophage polarization may improve the prognosis of ALI/ARDS. A further understanding of the mechanisms of macrophage polarization is expected to be helpful in the development of novel therapeutic targets to treat ALI/ARDS. Therefore, we performed a literature review to summarize the regulatory mechanisms of macrophage polarization and its role in the pathogenesis of ALI/ARDS. METHODS A computer-based online search was performed using the PubMed database and Web of Science database for published articles concerning macrophages, macrophage polarization, and ALI/ARDS. RESULTS In this review, we discuss the origin, polarization, and polarization regulation of macrophages as well as the role of macrophage polarization in various stages of ARDS. According to the current literature, regulating the polarized state of macrophages might be a potential therapeutic strategy against ALI/ARDS.
Collapse
Affiliation(s)
- Xuxin Chen
- Department of Pulmonary and Critical Care Medicine, The Sixth Medical Center of Chinese, PLA General Hospital, No. 6 Fucheng Road, Beijing, 100037, China
| | - Jian Tang
- Department of Pulmonary and Critical Care Medicine, The Sixth Medical Center of Chinese, PLA General Hospital, No. 6 Fucheng Road, Beijing, 100037, China
| | - Weizheng Shuai
- Department of ICU, The Sixth Medical Center of Chinese, PLA General Hospital, Beijing, 100037, China
| | - Jiguang Meng
- Department of Pulmonary and Critical Care Medicine, The Sixth Medical Center of Chinese, PLA General Hospital, No. 6 Fucheng Road, Beijing, 100037, China
| | - Jian Feng
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, No. 25 Taiping Street, Luzhou, 646000, China.
| | - Zhihai Han
- Department of Pulmonary and Critical Care Medicine, The Sixth Medical Center of Chinese, PLA General Hospital, No. 6 Fucheng Road, Beijing, 100037, China.
| |
Collapse
|
36
|
Mela V, Mota BC, Milner M, McGinley A, Mills KHG, Kelly ÁM, Lynch MA. Exercise-induced re-programming of age-related metabolic changes in microglia is accompanied by a reduction in senescent cells. Brain Behav Immun 2020; 87:413-428. [PMID: 31978523 DOI: 10.1016/j.bbi.2020.01.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 02/06/2023] Open
Abstract
Microglial activation and neuroinflammatory changes are characteristic of the aged brain and contribute to age-related cognitive impairment. Exercise improves cognitive function in aged animals, perhaps because of a modulatory effect on microglial activation. Recent evidence indicates that inflammatory microglia are glycolytic, driven by an increase in 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3), an enzyme that is described as the master regulator of glycolysis. Here we investigated whether microglia from aged animals exhibited a glycolytic signature and whether exercise exerted a modulatory effect on this metabolic profile. Young (4 month-old) and aged (18 month-old) mice were trained for 10 days on a treadmill. One day before sacrifice, animals were assessed in the novel object recognition and the object displacement tests. Animals were sacrificed after the last bout of exercise, microglial cells were isolated, cultured for 5 days and assessed for metabolic profile. Performance in both behavioural tests was impaired in sedentary aged animals and exercise attenuated this age-related effect. A significant increase in glycolysis, glycolytic capacity and PFKFB3 was observed in microglia from aged animals and exercise ameliorated these effects, while it also increased the phagocytic capacity of cells. The senescent markers, β-galactosidase and p16INK4A, were increased in microglia from sedentary aged mice, and expression of these markers was significantly decreased by exercise. The data demonstrate that the exercise-related improved cognition is orchestrated by a normalization of the metabolic profile and functionality of microglia.
Collapse
Affiliation(s)
- Virginia Mela
- Trinity College Institute for Neuroscience, Trinity College, Dublin 2, Ireland
| | - Bibiana C Mota
- Trinity College Institute for Neuroscience, Trinity College, Dublin 2, Ireland
| | - Mark Milner
- Trinity College Institute for Neuroscience, Trinity College, Dublin 2, Ireland
| | - Aoife McGinley
- Trinity Biomedical Sciences Institute, Trinity College, Dublin 2, Ireland
| | - Kingston H G Mills
- Trinity Biomedical Sciences Institute, Trinity College, Dublin 2, Ireland
| | - Áine M Kelly
- Trinity College Institute for Neuroscience, Trinity College, Dublin 2, Ireland
| | - Marina A Lynch
- Trinity College Institute for Neuroscience, Trinity College, Dublin 2, Ireland.
| |
Collapse
|
37
|
Kim TW, Baek KW, Yu HS, Ko IG, Hwang L, Park JJ. High-intensity exercise improves cognitive function and hippocampal brain-derived neurotrophic factor expression in obese mice maintained on high-fat diet. J Exerc Rehabil 2020; 16:124-131. [PMID: 32509696 PMCID: PMC7248433 DOI: 10.12965/jer.2040050.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 02/14/2020] [Indexed: 12/11/2022] Open
Abstract
We wanted to find the intensity of exercise that could increase brain- derived neurotrophic factor (BDNF) expression and improve spatial learning and memory without dietary control. C57BL/6 mice were fed a 60% high-fat diet (HFD) for 6 weeks to induce obesity. Obesity-induced mice were exercised on a treadmill for 8 weeks at various exercise in-tensities: HFD-control (n=7), HFD-low-intensity exercise (HFD-LIE, n= 7, 12 m/min for 75 min), HFD-middle intensity exercise (HFD-MIE, n=7, 15 m/min for 60 min) and HFD-high-intensity exercise (HFD-HIE, n=7, 18 m/min for 50 min). One week before sacrificing mice, the Morris wa-ter maze test was performed, and the hippocampus was immediately removed after sacrifice. The expression levels of BDNF (encoded by the gene Bdnf) and tropomyosin receptor kinase B (TrkB) in the hippo-campus were analyzed by quantitative real-time reverse transcription- polymerase chain reaction and western blot. In the last probe test of the Morris water maze test, occupancy in the target quadrant was sig-nificantly higher in the HFD-HIE group (P<0.05) than in the other groups. In addition, mRNA expression from the Bdnf promoter region was found to be significantly higher in the HFD-HIE group than in the other groups (P<0.001). Although there were some differences in the levels of signifi-cance, the expression levels of both BDNF and TrkB were significantly higher in the HFD-HIE group than in the other groups. Therefore, rela-tively high-intensity aerobic exercise can resist the adverse effects of a high-fat diet on the brain without dietary control.
Collapse
Affiliation(s)
- Tae-Won Kim
- Division of Sport Science, Pusan National University, Busan, Korea
| | - Kyung-Wan Baek
- Division of Sport Science, Pusan National University, Busan, Korea
- Department of Parasitology and Tropical Medicine, School of Medicine, Pusan National University, Yangsan, Korea
| | - Hak Sun Yu
- Department of Parasitology and Tropical Medicine, School of Medicine, Pusan National University, Yangsan, Korea
| | - Il-Gyu Ko
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Lakkyong Hwang
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Jung-Jun Park
- Division of Sport Science, Pusan National University, Busan, Korea
| |
Collapse
|
38
|
Win 55,212-2, atenolol and subdiaphragmatic vagotomy prevent acceleration of gastric emptying induced by cachexia via Yoshida-AH-130 cells in rats. Eur J Pharmacol 2020; 877:173087. [PMID: 32234430 DOI: 10.1016/j.ejphar.2020.173087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/19/2020] [Accepted: 03/25/2020] [Indexed: 12/17/2022]
Abstract
The aim of this study was to investigate the effect of cachexia induced by AH-130 cells on gastrointestinal motility in rats. We evaluated food intake, body weight variation, cachexia index, gastric emptying and in vitro gastric responsiveness of control or cachexia rats. In addition, we evaluated the effect of pretreatment with atenolol (20 mg/kg, p.o.), win 55,212-2 (2 mg/kg, s.c.) or subdiaphragmatic vagotomy on the effects found. Atenolol prevented (P < 0.05) the acceleration of gastric emptying (area under the curve, AUC, 20360.17 ± 1970.9 vs. 12579.2 ± 785.4 μg/min/ml), and increased gastric responsiveness to carbachol (CCh) stimulation in cachectic rats compared to control groups (CCh-6M: 63.2 ± 5.5% vs. 46.5 ± 5.7%). Vagotomy prevented (P < 0.05) increase in gastric emptying acceleration (AUC 20360.17 ± 1970.9 vs. 13414.0 ± 1112.9 μg/min/ml) and caused greater in vitro gastric responsiveness of cachectic compared to control rats (CCh-6M: 63.2 ± 5.5% vs. 31.2 ± 4.7%). Win 55,212-2 attenuated the cachexia index (38.5 ± 2.1% vs. 25.8 ± 2.7%), as well as significantly (P < 0.05) preventing increase in gastric emptying (AUC 20360.17 ± 1970.9 vs. 10965.4 ± 1392.3 μg/min/ml) and gastric responsiveness compared to control groups (CCh-6M: 63.2 ± 5.5% vs. 38.2 ± 3.9%). Cachexia accelerated gastric emptying and increased gastric responsiveness in vitro. These phenomena were prevented by subdiaphragmatic vagotomy and by atenolol and win 55,212-2 treatments, showing vagal involvement of β1-adrenergic and cannabinoid CB1/CB2 receptors.
Collapse
|
39
|
Shanaki M, Khosravi M, Khoshdooni-Farahani A, Dadashi A, Heydari MF, Delfan M, Jafary H, Gorgani-Firuzjaee S. High-Intensity Interval Training Reversed High-Fat Diet-Induced M1-Macrophage Polarization in Rat Adipose Tissue via Inhibition of NOTCH Signaling. J Inflamm Res 2020; 13:165-174. [PMID: 32231438 PMCID: PMC7085339 DOI: 10.2147/jir.s237049] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 01/22/2020] [Indexed: 12/29/2022] Open
Abstract
Introduction There is accumulating evidence on the beneficial effect of exercise intervention in the management of metabolic disorders; however, the molecular mechanism is still unclear. Here, the current study aimed to compare the effect of high-intensity interval training (HIIT) and continuous endurance training (CET) on serum and adipose-tissue markers of M1/M2 macrophage polarization. Methods A total of 45 healthy male Wistar rats were divided into groups of normal chow (n=10) and high-fat diet (HFD) (n=35). Then, rats receiving the HFD were randomly divided into four groups. Training programs were performed for 5 days/week over 10 weeks. The CET protocol included 30 minutes running at 50%–60% of VO2max. The HIIT protocol consisted of five repeated intervals of 2-minute sprints on the treadmill at 80%–90% VO2max workload with 1 minute's 30%–35% VO2max interval for each rat. Then, biochemical parameters were assessed. Macrophage-polarization markers were assessed at mRNA and protein levels by real-time PCR and Western blotting, respectively. Results Both exercise-training programs, especially HIIT, reversed increased serum biochemical parameters (glucose, triglycerides, cholesterol, Homeostatic Model Assessment of Insulin Resistance, and hsCRP), M1-polarization markers (circulating IL6, TNFα, and adipose-tissue mRNA expression of IL6, TNFα and iNOS), M2 markers (CD206, CD163, and IL10 expression), as well as pIκKB, pNFκB, and NICD expression in HFD-induced diabetes. Conclusion Our findings suggest that despite devoting less time, the HIIT workout is a more effective intervention for diabetes management. Moreover, HIIT reverses HFD-induced macrophage polarization by targeting the NFκB and NOTCH signaling pathways.
Collapse
Affiliation(s)
- Mehrnoosh Shanaki
- Department of Medical Laboratory Sciences, School of Allied Health Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Khosravi
- Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Alireza Dadashi
- Department of Infectious Disease, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Mohammad Foad Heydari
- Department of Medical Laboratory Sciences, School of Allied Health Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Maryam Delfan
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Alzahra University, Tehran, Iran
| | - Hanieh Jafary
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Sattar Gorgani-Firuzjaee
- Department of Medical Laboratory Sciences, School of Allied Health Medicine, AJA University of Medical Sciences, Tehran, Iran
| |
Collapse
|
40
|
Drollette ES, Hillman CH. Walking effects on memory in children: Implications for individual differences in BMI. Ment Health Phys Act 2020. [DOI: 10.1016/j.mhpa.2020.100317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
41
|
Weyh C, Krüger K, Strasser B. Physical Activity and Diet Shape the Immune System during Aging. Nutrients 2020; 12:nu12030622. [PMID: 32121049 PMCID: PMC7146449 DOI: 10.3390/nu12030622] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 12/14/2022] Open
Abstract
With increasing age, the immune system undergoes a remodeling process, termed immunosenescence, which is accompanied by considerable shifts in leukocyte subpopulations and a decline in various immune cell functions. Clinically, immunosenescence is characterized by increased susceptibility to infections, a more frequent reactivation of latent viruses, decreased vaccine efficacy, and an increased prevalence of autoimmunity and cancer. Physiologically, the immune system has some adaptive strategies to cope with aging, while in some settings, maladaptive responses aggravate the speed of aging and morbidity. While a lack of physical activity, decreased muscle mass, and poor nutritional status facilitate immunosenescence and inflammaging, lifestyle factors such as exercise and dietary habits affect immune aging positively. This review will discuss the relevance and mechanisms of immunoprotection through physical activity and specific exercise interventions. In the second part, we will focus on the effect of dietary interventions through the supplementation of the essential amino acid tryptophan, n-3 polyunsaturated fatty acids, and probiotics (with a special focus on the kynurenine pathway).
Collapse
Affiliation(s)
- Christopher Weyh
- Department of Exercise Physiology and Sports Therapy, Institute of Sports Science, University of Giessen, 35394 Giessen, Germany;
| | - Karsten Krüger
- Department of Exercise Physiology and Sports Therapy, Institute of Sports Science, University of Giessen, 35394 Giessen, Germany;
- Correspondence:
| | - Barbara Strasser
- Medical Faculty, Sigmund Freud Private University, A-1020 Vienna, Austria;
| |
Collapse
|
42
|
Baek KW, Lee DI, Kang SA, Yu HS. Differences in macrophage polarization in the adipose tissue of obese mice under various levels of exercise intensity. J Physiol Biochem 2020; 76:159-168. [PMID: 32062818 DOI: 10.1007/s13105-020-00731-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 02/07/2020] [Indexed: 12/20/2022]
Abstract
Animal studies have demonstrated that the ratio of M1 (M1Φ) to M2 (M2Φ) macrophage-specific gene expression in adipose tissue (AT) may be altered by chronic exercise; however, whether macrophage polarization is induced under these conditions has not yet been reported. Therefore, this study aimed to investigate the effect of chronic exercise on M1Φ/M2Φ polarization in the AT of high-fat diet (HFD)-induced obese mice. Exercise-induced differences in M1Φ/M2Φ polarization were verified via an exercise intensity study (EIS) in which different levels of exercise intensity were evaluated. Obesity was induced in male C57BL/6 J mice by feeding them with an HFD for 6 weeks. The study consisted of four groups: control group (CON), HFD-fed group (HFD), HFD-fed with exercise group (HFD + EXE), dietary conversion from HFD to normal diet (ND) group (DC), and dietary conversion from HFD to ND group (DC + EXE). For EIS, the HFD + EXE group was divided into three subgroups: low- (LI), mid- (MI), and high- (HI) intensity exercise. The total intervention period was 8 weeks. M1Φ/M2Φ polarization was confirmed by flow cytometry. M2Φ polarization in the AT of obese mice was significantly higher in HFD + EXE mice than in HFD mice, despite the HFD intake. In the EIS, M2Φ polarization was most pronounced in HFD + EXE-HI mice than in HFD mice. It can be proposed that the enhanced insulin resistance and inflammation by obesity can be improved by the increase of M2Φ polarization which is achieved by relatively high-intensity exercise.
Collapse
Affiliation(s)
- Kyung-Wan Baek
- Division of Sport Science, Pusan National University, Busan, South Korea
- Department of Parasitology and Tropical Medicine, Pusan National University School of Medicine, Yangsan, South Korea
| | - Da-In Lee
- Department of Parasitology and Tropical Medicine, Pusan National University School of Medicine, Yangsan, South Korea
| | - Shin Ae Kang
- Department of Parasitology and Tropical Medicine, Pusan National University School of Medicine, Yangsan, South Korea
| | - Hak Sun Yu
- Department of Parasitology and Tropical Medicine, Pusan National University School of Medicine, Yangsan, South Korea.
| |
Collapse
|
43
|
Gur DO. Exercise and Peripheral Arteriosclerosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1228:181-193. [PMID: 32342458 DOI: 10.1007/978-981-15-1792-1_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Adaptation of a healthy lifestyle including adequate daily physical activity is shown to reduce 80% of cardiovascular mortality and 40% of cancer-related deaths. A large body of evidence exists proving that this relationship is dose dependent, and even half of the recommended normal physical activity yields significant risk reduction. There has been no medical therapy that would provide such high percentages of reduction in mortality to date. The World Health Organization, therefore, has started an initiative to implement exercise into daily life as a primary prevention measure. Herein, we will focus on the effects of exercise on the vasculature, mainly the peripheral vasculature, in the context of atherosclerotic disease. Exercise has a fundamental role in the pathogenesis, diagnosis, and treatment of atherosclerotic vascular disease. It exerts a protective effect against the development of atherosclerosis irrespective of other cardiovascular risk factors. Additionally, exercise induces changes in vascular hemodynamics helping us to elucidate the presence of obscure vascular involvement. Once again, exercise is the main treatment modality in peripheral arterial disease with accumulating evidence to reduce symptoms and improve both exercise capacity and cardiovascular symptoms.
Collapse
Affiliation(s)
- Demet Ozkaramanli Gur
- Faculty of Medicine, Department of Cardiology, Namik Kemal University, Tekirdag, Turkey
| |
Collapse
|
44
|
Soltani N, Marandi SM, Kazemi M, Esmaeil N. The Exercise Training Modulatory Effects on the Obesity-Induced Immunometabolic Dysfunctions. Diabetes Metab Syndr Obes 2020; 13:785-810. [PMID: 32256095 PMCID: PMC7090203 DOI: 10.2147/dmso.s234992] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 02/18/2020] [Indexed: 12/13/2022] Open
Abstract
Reduced physical activity rate in people's lifestyle is a global concern associated with the prevalence of health disorders such as obesity and metabolic disturbance. Ample evidence has indicated a critical role of the immune system in the aggravation of obesity. The type, duration, and production of adipose tissue-released mediators may change subsequent inactive lifestyle-induced obesity, leading to the chronic systematic inflammation and monocyte/macrophage (MON/MФ) phenotype polarization. Preliminary adipose tissue expansion can be inhibited by changing the lifestyle. In this context, exercise training is widely recommended due to a definite improvement of energy balance and the potential impacts on the inflammatory signaling cascades. How exercise training affects the immune system has not yet been fully elucidated, because its anti-inflammatory, pro-inflammatory, or even immunosuppressive impacts have been indicated in the literature. A thorough understanding of the mechanisms triggered by exercise can suggest a new approach to combat meta-inflammation-induced metabolic diseases. In this review, we summarized the obesity-induced inflammatory pathways, the roles of MON/MФ polarization in adipose tissue and systemic inflammation, and the underlying inflammatory mechanisms triggered by exercise during obesity.
Collapse
Affiliation(s)
- Nakisa Soltani
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Isfahan, Isfahan, Iran
| | - Sayed Mohammad Marandi
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Isfahan, Isfahan, Iran
- Sayed Mohammad Marandi Department of Exercise Physiology, Faculty of Sport Sciences, University of Isfahan, Isfahan, IranTel +983137932358Fax +983136687572 Email
| | - Mohammad Kazemi
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nafiseh Esmaeil
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Correspondence: Nafiseh Esmaeil Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan81744-176, IranTel +98 31 37929097Fax +98 3113 7929031 Email
| |
Collapse
|
45
|
Soltani N, Marandi SM, Kazemi M, Esmaeil N. Combined All-Extremity High-Intensity Interval Training Regulates Immunometabolic Responses through Toll-Like Receptor 4 Adaptors and A20 Downregulation in Obese Young Females. Obes Facts 2020; 13:415-431. [PMID: 32615574 PMCID: PMC7445579 DOI: 10.1159/000509132] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 06/02/2020] [Indexed: 12/17/2022] Open
Abstract
Metainflammation and malfunctions of toll-like receptor 4 (TLR4) are related to obesity-induced immunometabolic morbidities. There are almost no studies relating exercise training to the TLR4 pathway and its adaptors and negative regulators. Thirty young women with obesity (exercise group and control group) were included in a 10-week all-extremity combined high-intensity interval training program. The immunomodulatory impacts of exercise on TLR4, its related adaptors (TIR domain-containing adaptor-inducing IFN-β[TRIF], myeloid differentiation factor 88 [MyD88],and tumor receptor-associated factor 6 [TRAF6]), transcriptional factors (nuclear factor [NF]-κB and interferon regulatory factor 3 [IRF3]), and negative regulator (A20) mRNA levels were assessed by real-time PCR. Also, the serum concentration of TLR4 final products (tumor necrosis factor α [TNFα] and interferon γ [IFNγ]) was measured by ELISA. Cardiorespiratory and body composition parameters were tested, as well. There was a significant improvement in body composition and cardiorespiratory fitness. This intervention downregulated TLR4 (from 2.25 ± 1.07 to 0.84 ± 1.01), MyD88 (from 4.53 ± 5.15 to 1.27 ± 0.88), NF-κB (from 1.61 ± 2.03 to 0.23 ± 0.39), IRF3 (from 1.22 ± 0.77 to 0.25 ± 0.36), and A20 (from 0.88 ± 0.59 to 0.22 ± 0.33) levels and reduced the TNFα concentrations (from 22.39 ± 11.43 to 6.26 ± 5.31) significantly in the exercise group, while no statistically significant change was found in TRIF and TRAF6 expression and IFNγ circulating levels. It is concluded that long-term exercise modifies the inflammatory pathways and modulates the immune function at the early stages of inflammation initiation in circulating immune cells. Accordingly, we suggest time-efficient exercise protocols as a possible therapy approach for the prevention of M1 polarization.
Collapse
Affiliation(s)
- Nakisa Soltani
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Isfahan, Isfahan, Iran
| | - Sayed Mohammad Marandi
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Isfahan, Isfahan, Iran
- **Sayed Mohammad Marandi, Department of Exercise Physiology, Faculty of Sport Sciences, University of Isfahan, Azadi Sq., Isfahan 81746-73441 (Iran),
| | - Mohammad Kazemi
- Department of Genetics and Molecular Biology, University of Medical Sciences, Isfahan, Iran
| | - Nafiseh Esmaeil
- Department of Immunology, School of Medicine, University of Medical Sciences, Isfahan, Iran
- *Nafiseh Esmaeil, Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Hezar Jerib St., Isfahan 81746-73461 (Iran),
| |
Collapse
|
46
|
Saxton SN, Clark BJ, Withers SB, Eringa EC, Heagerty AM. Mechanistic Links Between Obesity, Diabetes, and Blood Pressure: Role of Perivascular Adipose Tissue. Physiol Rev 2019; 99:1701-1763. [PMID: 31339053 DOI: 10.1152/physrev.00034.2018] [Citation(s) in RCA: 163] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Obesity is increasingly prevalent and is associated with substantial cardiovascular risk. Adipose tissue distribution and morphology play a key role in determining the degree of adverse effects, and a key factor in the disease process appears to be the inflammatory cell population in adipose tissue. Healthy adipose tissue secretes a number of vasoactive adipokines and anti-inflammatory cytokines, and changes to this secretory profile will contribute to pathogenesis in obesity. In this review, we discuss the links between adipokine dysregulation and the development of hypertension and diabetes and explore the potential for manipulating adipose tissue morphology and its immune cell population to improve cardiovascular health in obesity.
Collapse
Affiliation(s)
- Sophie N Saxton
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom; School of Environment and Life Sciences, University of Salford, Salford, United Kingdom; and Department of Physiology, VU University Medical Centre, Amsterdam, Netherlands
| | - Ben J Clark
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom; School of Environment and Life Sciences, University of Salford, Salford, United Kingdom; and Department of Physiology, VU University Medical Centre, Amsterdam, Netherlands
| | - Sarah B Withers
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom; School of Environment and Life Sciences, University of Salford, Salford, United Kingdom; and Department of Physiology, VU University Medical Centre, Amsterdam, Netherlands
| | - Etto C Eringa
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom; School of Environment and Life Sciences, University of Salford, Salford, United Kingdom; and Department of Physiology, VU University Medical Centre, Amsterdam, Netherlands
| | - Anthony M Heagerty
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom; School of Environment and Life Sciences, University of Salford, Salford, United Kingdom; and Department of Physiology, VU University Medical Centre, Amsterdam, Netherlands
| |
Collapse
|
47
|
Gevaert AB, Adams V, Bahls M, Bowen TS, Cornelissen V, Dörr M, Hansen D, Kemps HM, Leeson P, Van Craenenbroeck EM, Kränkel N. Towards a personalised approach in exercise-based cardiovascular rehabilitation: How can translational research help? A 'call to action' from the Section on Secondary Prevention and Cardiac Rehabilitation of the European Association of Preventive Cardiology. Eur J Prev Cardiol 2019; 27:1369-1385. [PMID: 31581819 DOI: 10.1177/2047487319877716] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The benefit of regular physical activity and exercise training for the prevention of cardiovascular and metabolic diseases is undisputed. Many molecular mechanisms mediating exercise effects have been deciphered. Personalised exercise prescription can help patients in achieving their individual greatest benefit from an exercise-based cardiovascular rehabilitation programme. Yet, we still struggle to provide truly personalised exercise prescriptions to our patients. In this position paper, we address novel basic and translational research concepts that can help us understand the principles underlying the inter-individual differences in the response to exercise, and identify early on who would most likely benefit from which exercise intervention. This includes hereditary, non-hereditary and sex-specific concepts. Recent insights have helped us to take on a more holistic view, integrating exercise-mediated molecular mechanisms with those influenced by metabolism and immunity. Unfortunately, while the outline is recognisable, many details are still lacking to turn the understanding of a concept into a roadmap ready to be used in clinical routine. This position paper therefore also investigates perspectives on how the advent of 'big data' and the use of animal models could help unravel inter-individual responses to exercise parameters and thus influence hypothesis-building for translational research in exercise-based cardiovascular rehabilitation.
Collapse
Affiliation(s)
- Andreas B Gevaert
- GENCOR Department, University of Antwerp, Belgium.,Department of Cardiology, Antwerp University Hospital (UZA), Belgium.,Heart Centre Hasselt, Jessa Hospital, Belgium
| | - Volker Adams
- Department of Molecular and Experimental Cardiology, TU Dresden, Germany
| | - Martin Bahls
- Department of Internal Medicine B, University of Greifswald, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Greifswald, Germany
| | - T Scott Bowen
- School of Biomedical Sciences, University of Leeds, UK
| | | | - Marcus Dörr
- Department of Internal Medicine B, University of Greifswald, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Greifswald, Germany
| | - Dominique Hansen
- Heart Centre Hasselt, Jessa Hospital, Belgium.,Faculty of Rehabilitation Sciences, Hasselt University, Belgium
| | - Hareld Mc Kemps
- Fitheid, Leefstijl, Ontwikkeling en Wetenschap (FLOW), Máxima Medical Centre, The Netherlands
| | - Paul Leeson
- Oxford Cardiovascular Clinical Research Facility, University of Oxford, UK
| | - Emeline M Van Craenenbroeck
- GENCOR Department, University of Antwerp, Belgium.,Department of Cardiology, Antwerp University Hospital (UZA), Belgium
| | - Nicolle Kränkel
- Department of Cardiology, Charité Universitätsmedizin, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Berlin, Germany
| |
Collapse
|
48
|
Crocin inhibits titanium particle-induced inflammation and promotes osteogenesis by regulating macrophage polarization. Int Immunopharmacol 2019; 76:105865. [PMID: 31476694 DOI: 10.1016/j.intimp.2019.105865] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/16/2019] [Accepted: 08/23/2019] [Indexed: 12/24/2022]
Abstract
Wear particle-induced periprosthetic inflammatory osteolysis and resultant aseptic loosening are major causes of orthopedic implant failure, for which there are no effective treatments other than revision surgery. Crocin, a carotenoid compound derived from crocus flowers, has anti-inflammatory properties, but its immunomodulatory function and role in particle-induced osteolysis are not well characterized. Here we report the effect of crocin on titanium (Ti) particle-induced macrophage polarization and osteogenic differentiation. We found that crocin induced anti-inflammatory (M2) macrophage polarization and attenuated Ti particle-induced inflammation by promoting the expression of anti-inflammatory cytokines in vitro as well as in vivo in a mouse air-pouch model. Additionally, crocin pre-treated macrophages promoted osteogenic differentiation of co-cultured mouse bone mesenchymal stem cells (BMSCs). These effects were mediated via inhibition of p38 and c-Jun N-terminal kinase signaling. Our results indicate that crocin suppresses Ti particle-induced inflammation and enhances osteogenic differentiation of BMSCs by inducing M2 macrophage polarization, highlighting its therapeutic potential for preventing wear particle-induced osteolysis.
Collapse
|
49
|
Ziegler AK, Damgaard A, Mackey AL, Schjerling P, Magnusson P, Olesen AT, Kjaer M, Scheele C. An anti-inflammatory phenotype in visceral adipose tissue of old lean mice, augmented by exercise. Sci Rep 2019; 9:12069. [PMID: 31427677 PMCID: PMC6700172 DOI: 10.1038/s41598-019-48587-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 08/07/2019] [Indexed: 02/07/2023] Open
Abstract
Visceral adipose tissue is an immunogenic tissue, which turns detrimental during obesity by activation of proinflammatory macrophages. During aging, chronic inflammation increases proportional to visceral adipose tissue (VAT) mass and associates with escalating morbidity and mortality. Here, we utilize a mouse model to investigate the inflammatory status of visceral adipose tissue in lean aging mice and assess the effects of exercise training interventions. We randomized adult (11 months; n = 21) and old (23 months; n = 27) mice to resistance training (RT) or endurance training (ET), or to a sedentary control group (S). Strikingly, we observed an anti-inflammatory phenotype in the old mice, consisting of higher accumulation of M2 macrophages and IL-10 expression, compared to the adult mice. In concordance, old mice also had less VAT mass and smaller adipocytes compared to adult mice. In both age groups, exercise training enhanced the anti-inflammatory phenotype and increased PGC1-α mRNA expression. Intriguingly, the brown adipose tissue marker UCP1 was modestly higher in old mice, while remained unchanged by the intervention. In conclusion, in the absence of obesity, visceral adipose tissue possesses a pronounced anti-inflammatory phenotype during aging which is further enhanced by exercise.
Collapse
Affiliation(s)
- A K Ziegler
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark. .,Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Healthy and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - A Damgaard
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - A L Mackey
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Healthy and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - P Schjerling
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - P Magnusson
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Physical Therapy, Musculoskeletal Rehabilitation Research Unit, Bispebjerg Hospital, Copenhagen, Denmark
| | - A T Olesen
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - M Kjaer
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Healthy and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - C Scheele
- The Centre of Inflammation and Metabolism and Centre for Physical Activity Research Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
50
|
DeVallance E, Branyan KW, Lemaster KC, Anderson R, Marshall KL, Olfert IM, Smith DM, Kelley EE, Bryner RW, Frisbee JC, Chantler PD. Exercise training prevents the perivascular adipose tissue-induced aortic dysfunction with metabolic syndrome. Redox Biol 2019; 26:101285. [PMID: 31374361 PMCID: PMC6669320 DOI: 10.1016/j.redox.2019.101285] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/22/2019] [Accepted: 07/25/2019] [Indexed: 12/20/2022] Open
Abstract
The aim of the study was to determine the effects of exercise training on improving the thoracic perivascular adipose tissue (tPVAT) phenotype (inflammation, oxidative stress, and proteasome function) in metabolic syndrome and its subsequent actions on aortic function. Methods Lean and obese (model of metabolic syndrome) Zucker rats (n=8/group) underwent 8-weeks of control conditions or treadmill exercise (70% of max speed, 1 h/day, 5 days/week). At the end of the intervention, the tPVAT was removed and conditioned media was made. The cleaned aorta was attached to a force transducer to assess endothelium-dependent and independent dilation in the presence or absence of tPVAT-conditioned media. tPVAT gene expression, inflammatory /oxidative phenotype, and proteasome function were assessed. Results The main findings were that Ex induced: (1) a beige-like, anti-inflammatory tPVAT phenotype; (2) a greater abundance of •NO in tPVAT; (3) a reduction in tPVAT oxidant production; and (4) an improved tPVAT proteasome function. Regarding aortic function, endothelium-dependent dilation was greater in exercised lean and obese groups vs. controls (p < 0.05). Lean control tPVAT improved aortic relaxation, whereas obese control tPVAT decreased aortic relaxation. In contrast, the obese Ex-tPVAT increased aortic dilation, whereas the lean Ex-tPVAT did not affect aortic dilation. Conclusion Overall, exercise had the most dramatic impact on the obese tPVAT reflecting a change towards an environment with less oxidant load, less inflammation and improved proteasome function. Such beneficial changes to the tPVAT micro-environment with exercise likely played a significant role in mediating the improvement in aortic function in metabolic syndrome following 8 weeks of exercise.
Collapse
Affiliation(s)
- Evan DeVallance
- Division of Exercise Physiology, WVU School of Medicine, Morgantown, WV, USA
| | - Kayla W Branyan
- Division of Exercise Physiology, WVU School of Medicine, Morgantown, WV, USA
| | - Kent C Lemaster
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Ray Anderson
- Department of Biochemistry, WVU School of Medicine, Morgantown, WV, USA
| | - Kent L Marshall
- Division of Exercise Physiology, WVU School of Medicine, Morgantown, WV, USA
| | - I Mark Olfert
- Division of Exercise Physiology, WVU School of Medicine, Morgantown, WV, USA
| | - David M Smith
- Department of Biochemistry, WVU School of Medicine, Morgantown, WV, USA
| | - Eric E Kelley
- Department of Physiology & Pharmacology, WVU School of Medicine, Morgantown, WV, USA
| | - Randy W Bryner
- Division of Exercise Physiology, WVU School of Medicine, Morgantown, WV, USA
| | - Jefferson C Frisbee
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada; Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Paul D Chantler
- Division of Exercise Physiology, WVU School of Medicine, Morgantown, WV, USA; Department of Neuroscience, WVU School of Medicine, Morgantown, WV, USA.
| |
Collapse
|