1
|
Ratinho L, Meyer N, Greive S, Cressiot B, Pelta J. Nanopore sensing of protein and peptide conformation for point-of-care applications. Nat Commun 2025; 16:3211. [PMID: 40180898 PMCID: PMC11968944 DOI: 10.1038/s41467-025-58509-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 03/25/2025] [Indexed: 04/05/2025] Open
Abstract
The global population's aging and growth will likely result in an increase in chronic aging-related diseases. Early diagnosis could improve the medical care and quality of life. Many diseases are linked to misfolding or conformational changes in biomarker peptides and proteins, which affect their function and binding properties. Current clinical methods struggle to detect and quantify these changes. Therefore, there is a need for sensitive conformational sensors that can detect low-concentration analytes in biofluids. Nanopore electrical detection has shown potential in sensing subtle protein and peptide conformation changes. This technique can detect single molecules label-free while distinguishing shape or physicochemical property changes. Its proven sensitivity makes nanopore sensing technology promising for ultra-sensitive, personalized point-of-care devices. We focus on the capability of nanopore sensing for detecting and quantifying conformational modifications and enantiomers in biomarker proteins and peptides and discuss this technology as a solution to future societal health challenges.
Collapse
Affiliation(s)
- Laura Ratinho
- Université Paris-Saclay, Univ Evry, CY Cergy Paris Université, CNRS, LAMBE, Cergy, France
| | - Nathan Meyer
- Université Paris-Saclay, Univ Evry, CY Cergy Paris Université, CNRS, LAMBE, Cergy, France
| | | | - Benjamin Cressiot
- Université Paris-Saclay, Univ Evry, CY Cergy Paris Université, CNRS, LAMBE, Cergy, France.
| | - Juan Pelta
- Université Paris-Saclay, Univ Evry, CY Cergy Paris Université, CNRS, LAMBE, Evry-Courcouronnes, France.
| |
Collapse
|
2
|
Musa M, Zhu Z, Takahashi H, Shinoda W, Baba Y, Yasui T. Selective adsorption of unmethylated DNA on ZnO nanowires for separation of methylated DNA. LAB ON A CHIP 2025; 25:1637-1646. [PMID: 39792009 DOI: 10.1039/d4lc00893f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
DNA methylation is a crucial epigenetic modification used as a biomarker for early cancer progression. However, existing methods for DNA methylation analysis are complex, time-consuming, and prone to DNA degradation. This work demonstrates selective capture of unmethylated DNAs using ZnO nanowires without chemical or biological modifications, thereby concentrating methylated DNA, particularly those with high methylation levels that can predict cancer risk. We observe varying affinities between methylated and unmethylated DNA on ZnO nanowires, which may be influenced by differences in hydrogen bonding strength, potentially related to the effects of methylation on DNA strand behavior, including self-aggregation and stretching inhibition. As a result, the nanowire-based microfluidic device effectively collects unmethylated DNA, leading to a significantly increased ratio of methylated to unmethylated DNA, particularly for collecting low-concentration methylated DNA. This simplified microfluidic device, composed of ZnO nanowires, enables direct separation of specific methylated DNA, offering a potential approach for DNA methylation mapping in clinical disease diagnostics.
Collapse
Affiliation(s)
- Marina Musa
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Zetao Zhu
- Department of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta 4259, Midori-ku, Yokohama 226-8501, Japan.
| | - Hiromi Takahashi
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Wataru Shinoda
- Research Institute for Interdisciplinary Science, Okayama University, Okayama, 700-8530, Japan
| | - Yoshinobu Baba
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.
- Institute of Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan
| | - Takao Yasui
- Department of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta 4259, Midori-ku, Yokohama 226-8501, Japan.
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.
| |
Collapse
|
3
|
Yang J, Feng J, Duan Z, Liu X, Zhang H, Zhang M, Ma Z, Hu Z, Xiang L, Qi X. Brain metastases lung adenocarcinoma patients with BRG1 loss have a grim prognosis, featuring unique morphological and methylation characteristics. Clin Exp Metastasis 2025; 42:20. [PMID: 40116987 PMCID: PMC11928351 DOI: 10.1007/s10585-025-10337-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 03/12/2025] [Indexed: 03/23/2025]
Abstract
BRG1 deficiency in patients with lung adenocarcinoma that has metastasized to the brain, termed BRG1-deficient brain metastasis lung adenocarcinoma, is an uncommon event. Prior to this study, these patients had not undergone extensive molecular and (epi)genetic analysis. We report a comprehensive clinical, histopathologic, and molecular assessment of 9 BRG1-deficient brain metastasis lung adenocarcinoma cohort (BRG1-deficient BM cohort) in comparison with a 16 BRG1-retained brain metastasis lung adenocarcinoma cohort (BRG1-retained BM cohort). Patients with BRG1-deficient BM exhibited a significantly increased risk of mortality. Molecular analysis revealed a high prevalence of mutations in SMARCA4 and TP53 genes within this group. DNA methylation molecular diagnostics showed a high rate of genomic instability and a markedly lower DNA methylation age in these patients. Functional enrichment analysis of differentially methylated genes suggested that hypomethylation genes were primarily associated with the negative regulation of neuron differentiation, G protein-coupled receptor signaling pathways, and cell differentiation. Conversely, hypermethylation was linked to the regulation of small GTPase mediated signal transduction, Rho protein signal transduction, DNA damage response, and apoptotic processes. This study investigated a rare subgroup of lung adenocarcinoma patients with brain metastasis characterized by BRG1 deficiency and a poor prognosis. Our study not only provides a comprehensive multi-omic data resource but also provides valuable biological insights into patients. The findings may serve as a valuable reference for the future pathological diagnosis of BRG1-deficient brain metastasis in lung adenocarcinoma patients.
Collapse
Affiliation(s)
- Junjie Yang
- Department of Pathology, Sanbo Brain Hospital, Capital Medical University, Xiangshan Yikesong 50, Haidian District, Beijing, 100093, China
| | - Jing Feng
- Department of Pathology, Sanbo Brain Hospital, Capital Medical University, Xiangshan Yikesong 50, Haidian District, Beijing, 100093, China
| | - Zejun Duan
- Department of Pathology, Sanbo Brain Hospital, Capital Medical University, Xiangshan Yikesong 50, Haidian District, Beijing, 100093, China
| | - Xing Liu
- Department of Neurosurgery, Capital Medical University, Beijing, 100070, China
| | - Hongwei Zhang
- Department of Pathology, Sanbo Brain Hospital, Capital Medical University, Xiangshan Yikesong 50, Haidian District, Beijing, 100093, China
| | - Mingshan Zhang
- Department of Pathology, Sanbo Brain Hospital, Capital Medical University, Xiangshan Yikesong 50, Haidian District, Beijing, 100093, China
| | - Zhong Ma
- Department of Pathology, Sanbo Brain Hospital, Capital Medical University, Xiangshan Yikesong 50, Haidian District, Beijing, 100093, China
| | - Zejuan Hu
- Department of Pathology, Sanbo Brain Hospital, Capital Medical University, Xiangshan Yikesong 50, Haidian District, Beijing, 100093, China
| | - Lei Xiang
- Department of Pathology, Sanbo Brain Hospital, Capital Medical University, Xiangshan Yikesong 50, Haidian District, Beijing, 100093, China
| | - Xueling Qi
- Department of Pathology, Sanbo Brain Hospital, Capital Medical University, Xiangshan Yikesong 50, Haidian District, Beijing, 100093, China.
| |
Collapse
|
4
|
Dragland JS, Liu G, Nilsen HL, Böttcher Y, Wang J. EpiMapper: A new tool for analyzing high-throughput sequencing from CUT&Tag. Comput Biol Med 2025; 186:109692. [PMID: 39832438 DOI: 10.1016/j.compbiomed.2025.109692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 01/09/2025] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
Since the invention of next-generation sequencing, new methods have been developed to understand the regulation of gene expression through epigenetic markers. Among these, CUT&Tag (Cleavage Under Targets and Tagmentation) analysis has emerged as an efficient epigenomic profiling technique with low input requirements, high sensitivity, and low background signals. Although wet-lab techniques are available, data analysis remains challenging for scientists without expert-level computational skills. Therefore, we developed EpiMapper, a new Python package that simplifies the data analysis of CUT&Tag sequencing and similar techniques, such as ATAC-seq (Assay for Transposase-Accessible Chromatin using sequencing) or ChIP-seq (chromatin immunoprecipitation [ChIP] assays with sequencing), and allows biomedical scientists to easily interpret the results. This new package includes every necessary step, from quality control to annotation and differential peak analysis. In particular, EpiMapper has improved functionality (e.g., reproducibility assessment) compared to previous analysis protocols and visualization plots and provides new features, such as genome annotation and differential peak analysis. Using three case studies, two on CUT&Tag and one on ATAC-seq data, the EpiMapper Python package successfully reproduced previous results.
Collapse
Affiliation(s)
- Jenny Sofie Dragland
- Department of Pathology, Oslo University Hospital - Norwegian Radium Hospital, Oslo, Norway
| | - Gege Liu
- Department of Pathology, Oslo University Hospital - Norwegian Radium Hospital, Oslo, Norway
| | - Hilde Loge Nilsen
- Department of Microbiology, Oslo University Hospital, Oslo, Norway; Centre for Embryology and Healthy Development, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Yvonne Böttcher
- Department of Clinical Molecular Biology, Institute of Clinical Medicine, University of Oslo, Lørenskog, Norway; Medical Division (EpiGen), Akershus University Hospital, Lørenskog, Norway
| | - Junbai Wang
- Department of Clinical Molecular Biology, Institute of Clinical Medicine, University of Oslo, Lørenskog, Norway; Medical Division (EpiGen), Akershus University Hospital, Lørenskog, Norway.
| |
Collapse
|
5
|
Chen Q, Gu S, Lan Y, Xu J, Lin W, Qin Y, Ren Y. Study on the developmental, behavioral toxicity, and toxicological mechanism of the antidepressant drug venlafaxine and its active metabolites in zebrafish. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2025; 44:552-562. [PMID: 39805073 DOI: 10.1093/etojnl/vgae055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 01/16/2025]
Abstract
As a representative agent of bicyclic antidepressants, venlafaxine (VEN) has become widely used worldwide and is frequently detected in surface waters with concentrations ranging from ng/L to µg/L. To evaluate the toxicological effects of such medications on aquatic species, studies on environmentally relevant concentrations are essential. Zebrafish were used as a model organism to assess growth and development in larvae and examine tissue accumulation, oxidative stress, and DNA methylation in adults. The results showed adverse effects, including an 18.5% decrease in embryo hatching rate and an increase in mortality by 18.5%. There was also a reduction in body length (4.5%) and eye area (12.2%) in the larvae, along with abnormal developmental issues, such as pericardial edema, yolk sac edema, and spinal curvature. Venlafaxine and its metabolites induced oxidative stress, leading to observable toxic effects. In adult zebrafish, VEN and O-desmethylvenlafaxine (ODV) accumulated primarily in the liver, followed by the brain and intestines, and caused a reduction in DNA methyltransferase activity, leading to DNA hypomethylation. VEN had the most significant impact on DNA methyltransferase 1 and altered its conformation more than ODV. Overall, venlafaxine was found to be more toxic than its metabolites, providing a scientific basis for evaluating the toxic effects and ecological risks of antidepressant residues on aquatic organisms.
Collapse
Affiliation(s)
- Qian Chen
- School of Environment and Energy, South China University of Technology, Guangzhou, PR China
| | - Siying Gu
- School of Environment and Energy, South China University of Technology, Guangzhou, PR China
| | - Yufen Lan
- School of Environment and Energy, South China University of Technology, Guangzhou, PR China
| | - Jiaming Xu
- School of Environment and Energy, South China University of Technology, Guangzhou, PR China
| | - Wenting Lin
- School of Environment and Energy, South China University of Technology, Guangzhou, PR China
| | - Yingjun Qin
- School of Environment and Energy, South China University of Technology, Guangzhou, PR China
| | - Yuan Ren
- School of Environment and Energy, South China University of Technology, Guangzhou, PR China
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, PR China
- The Key Laboratory of Environmental Protection and Eco-Remediation of Guangdong Regular Higher Education Institutions, Guangzhou, PR China
| |
Collapse
|
6
|
Guo Y, Wu P, Liao Q, Huang Z. Association of DNA methylation of RASSF1A and SHOX2 with lung cancer risk: A systematic review and meta-analysis. Medicine (Baltimore) 2024; 103:e40042. [PMID: 39686414 PMCID: PMC11651524 DOI: 10.1097/md.0000000000040042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 09/20/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND This study estimates the research upon the potential worth of Ras association domain family member 1 A (RASSF1A) and short stature homeobox 2 (SHOX2) DNA methylation in lung cancer (LC) diagnosis. METHODS Open-published research was searched through PubMed, EMBASE, the Cochrane Library, Web of Science, China National Knowledge Infrastructure, and Chinese Biology Medicine Literature Database. Data on true positives, false positives, false negatives, and true negatives were extracted. RESULTS This meta-analysis included 22 studies encompassing 4109 subjects (2427 LC patients and 1682 controls). The combined sensitivity, specificity, and area under the curve for RASSF1A and SHOX2 DNA methylation were 0.77 (95% CI: 0.71-0.81), 0.90 (95% CI: 0.87-0.92), and 0.92 (95% CI: 0.87-0.92), respectively. The pooled positive likelihood ratio and negative likelihood ratio were 7.5 (5.9-9.7) and 0.26 (0.21-0.32). The combined diagnostic odds ratio was 29 (95% CI: 20-41). CONCLUSION RASSF1A and SHOX2 DNA methylation may emerge as potential diagnostic biomarkers for early-stage LC.
Collapse
Affiliation(s)
- Yixin Guo
- Foshan Clinical Medical School of Guangzhou University of Chinese Medicine, Foshan, Guangdong, China
| | - Peiyi Wu
- Foshan Clinical Medical School of Guangzhou University of Chinese Medicine, Foshan, Guangdong, China
| | - Qiwei Liao
- Foshan Clinical Medical School of Guangzhou University of Chinese Medicine, Foshan, Guangdong, China
| | - Zhuo Huang
- Foshan Clinical Medical School of Guangzhou University of Chinese Medicine, Foshan, Guangdong, China
| |
Collapse
|
7
|
Albadrani HM, Hamed M, Zakariyah A, Binkheder S, Kabrah SM, Flemban AF. Differential expression of ABO in normal and tumor tissues: Implications for cancer biology and prognosis. J Taibah Univ Med Sci 2024; 19:1132-1142. [PMID: 39802216 PMCID: PMC11720615 DOI: 10.1016/j.jtumed.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 11/21/2024] [Accepted: 12/04/2024] [Indexed: 01/16/2025] Open
Abstract
Objectives ABO, which is primarily recognized for determining blood types, shows variable expression patterns in different tissues and cancer types. This study investigated the relationship between gene expression and cancer, and assessed its potential impact on patient survival. Methods Utilizing the GEPIA database, we analyzed ABO expression in normal and tumor tissues across various cancer types using online in silico tools for comprehensive evaluation. Results The analysis revealed significant disparities in ABO expression among different tissue types. Notably, ovarian and thyroid tissues exhibited the highest expression of ABO, whereas the liver, thymus, and brain tissues showed relatively low expression. The expression patterns of ABO varied distinctly among cancer types, with ovarian and thyroid carcinomas demonstrating the most significant differences between tumor and normal tissues. Other cancers, including adrenocortical carcinoma, acute myeloid leukemia, and renal cell carcinoma, also exhibit notable variations in ABO expression. Low ABO expression was correlated with reduced survival rates in colorectal adenocarcinoma, stomach adenocarcinoma, and renal cancers, among others. Conclusions These findings suggest the potential role of ABO in tumor development, as well as cancer progression and prognosis, underscoring the value of ABO as a biomarker for various cancers. This warrants further research for understanding the functional roles of ABO and its therapeutic implications to develop targeted cancer therapies and diagnostic tools.
Collapse
Affiliation(s)
- Hind M. Albadrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Eastern Province, KSA
| | - Munerah Hamed
- Department of Pathology, Faculty of Medicine, Umm Al-Qura University, Makkah, KSA
| | - Abeer Zakariyah
- Department of Medical Genetics, Faculty of Medicine, University of Jeddah, Jeddah, KSA
| | - Samar Binkheder
- Medical Informatics Unit, Department of Medical Education, College of Medicine, King Saud University, Riyadh, KSA
| | - Saeed M. Kabrah
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, KSA
| | - Arwa F. Flemban
- Department of Pathology, Faculty of Medicine, Umm Al-Qura University, Makkah, KSA
| |
Collapse
|
8
|
Jiang J, Xu J, Ji S, Yu X, Chen J. Unraveling the mysteries of MGMT: Implications for neuroendocrine tumors. Biochim Biophys Acta Rev Cancer 2024; 1879:189184. [PMID: 39303858 DOI: 10.1016/j.bbcan.2024.189184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 07/15/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Neuroendocrine tumors (NETs) are a diverse group of tumors that arise from neuroendocrine cells and are commonly found in various organs. A considerable proportion of NET patients were diagnosed at an advanced or metastatic stage. Alkylating agents are the primary treatment for NET, and O6-methylguanine methyltransferase (MGMT) remains the first-line of defense against DNA damage caused by these agents. Clinical trials have indicated that MGMT promoter methylation or its low/lacked expression can predict a favorable outcome with Temozolomide in NETs. Its status could help select NET patients who can benefit from alkylating agents. Therefore, MGMT status serves as a biomarker to guide decisions on the efficacy of Temozolomide as a personalized treatment option. Additionally, delving into the regulatory mechanisms of MGMT status can lead to the development of MGMT-targeted therapies, benefiting individuals with high levels of MGMT expression. This review aims to explore the polymorphism of MGMT regulation and summarize its clinical implications in NETs, which would help establish the role of MGMT as a biomarker and its potential as a therapeutic target in NETs. Additionally, we explore the benefits of combining Temozolomide and immunotherapy in MGMT hypermethylated subgroups. Future studies can focus on optimizing Temozolomide administration to induce specific immunomodulatory changes.
Collapse
Affiliation(s)
- Jianyun Jiang
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Junfeng Xu
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China.
| | - Shunrong Ji
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China.
| | - Xianjun Yu
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China.
| | - Jie Chen
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
9
|
Barresi V, Poliani PL. When do I ask for a DNA methylation array for primary brain tumor diagnosis? Curr Opin Oncol 2024; 36:530-535. [PMID: 39246157 DOI: 10.1097/cco.0000000000001089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
PURPOSE OF REVIEW Despite remarkable advances in molecular characterization, the diagnosis of brain tumors remains challenging, particularly in cases with ambiguous histology or contradictory molecular features. In this context, DNA methylation profiling plays an important role in improving diagnostic and prognostic accuracy. This review aims to provide diagnostic guidance regarding when DNA methylation arrays represent a useful tool for the diagnosis of primary brain tumors. RECENT FINDINGS Large-scale profiling has revealed that DNA methylation profiles of brain tumors are highly reproducible and stable. Therefore, DNA methylation profiling has been successfully used to classify brain tumors and identify new entities. This approach seems to be particularly promising for heterogeneous groups of tumors, such as IDH -wildtype gliomas, and glioneuronal and embryonal tumors, which include a variety of entities that are still under characterization. SUMMARY As underlined in the fifth edition of the WHO classification of central nervous system tumors, the diagnosis of brain tumors requires the integration of histological, molecular, clinical, and radiological features. Although advanced imaging and histological examination remain the standard diagnostic tools, DNA methylation analysis can significantly improve diagnostic accuracy, with a substantial impact on patient management.
Collapse
Affiliation(s)
- Valeria Barresi
- Department of Diagnostics and Public Health, University of Verona, Verona
| | - Pietro Luigi Poliani
- Pathology Unit, San Raffaele Hospital Scientific Institute
- Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
10
|
Swierkowska-Janc J, Kabza M, Rydzanicz M, Giefing M, Ploski R, Shaffer LG, Gajecka M. DNA methylation dysregulation patterns in the 1p36 region instability. J Appl Genet 2024:10.1007/s13353-024-00913-9. [PMID: 39460848 DOI: 10.1007/s13353-024-00913-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 09/17/2024] [Accepted: 10/13/2024] [Indexed: 10/28/2024]
Abstract
In the monosomy 1p36 deletion syndrome, the role of DNA methylation in the genomic stability of the 1p36 region remains elusive. We hypothesize that changes in the methylation pattern at the 1p36 breakpoint hotspot region influenced the chromosomal breakage leading to terminal deletions. From the monosomy 1p36 material collection, four cases with 4.0 to 5.5 Mb terminal deletions and their parents were investigated. DNA samples were assessed by targeted bisulfite sequencing (NimbleGen SeqCap Epi) to examine DNA methylation status in the 1p36 hotspot region at single-base resolution as compared to the chromosomal hotspot regions, 9p22, 18q21.1, and 22q11.2. Additionally, in in silico assessment, the mean GC content of various classes of repeats in the genome and especially in the breakpoint regions was evaluated. A complex landscape of DNA methylation in the 1p36 breakpoint hotspot region was found. Changes in DNA methylation level in the vicinity of the breakpoint in the child's DNA when compared to parents' and control DNA were observed, with a shift from 15.1 to 70.8% spanning the breakpoint region. In the main classes of evaluated repeats, higher mean GC contents in the 1p36 breakpoint region (47.06%), 22q11.2 (48.47%), and 18q21.1 (44.21%) were found, compared to the rest of the genome (40.78%). The 9p22 region showed a lower GC content (39.42%) compared to the rest of the genome. Both dysregulation of DNA methylation and high GC content were found to be specific for the 1p36 breakpoint hotspot region suggesting that methylation abnormalities could contribute to aberrations at 1p36.
Collapse
Affiliation(s)
- Joanna Swierkowska-Janc
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479, Poznan, Poland
| | - Michal Kabza
- Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Maciej Giefing
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479, Poznan, Poland
| | - Rafal Ploski
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| | - Lisa G Shaffer
- Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Marzena Gajecka
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479, Poznan, Poland.
- Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Poznan, Poland.
| |
Collapse
|
11
|
Reynoso-Noverón N, Santibáñez-Andrade M, Torres J, Bautista-Ocampo Y, Sánchez-Pérez Y, García-Cuellar CM. Benzene exposure and pediatric leukemia: From molecular clues to epidemiological insights. Toxicol Lett 2024; 400:113-120. [PMID: 39181343 DOI: 10.1016/j.toxlet.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 08/09/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
According to the International Agency for Research on Cancer, leukemia ranks 14th in incidence and 11th in mortality and has a 5-year prevalence of approximately 1300,000 cases. Acute lymphoblastic leukemia is the most common hematopoietic syndrome in children during the first 5 years of life and represents approximately 75 % of all neoplasms among the pediatric population. The development of leukemia is strongly governed by DNA alterations that accelerate the growth of bone marrow cells. Currently, the most examined factor in pediatric leukemia is exposure to multiple compounds, such as hydrocarbons. Benzene, an aromatic hydrocarbon, can cause health challenges and is categorized as a carcinogen. Benzene toxicity has been widely associated with occupational exposure. Importantly, studies are underway to generate evidence that can provide clues regarding the risk of environmental benzene exposure and hematological problems in children. In this review, we summarize the existing evidence regarding the effects of benzene on pediatric leukemia, the associations between the effect of benzene on carcinogenesis, and the presence of certain molecular signatures in benzene-associated pediatric leukemia. Although there is sufficient evidence regarding the effects of benzene on carcinogenesis and leukemia, epidemiological research has primarily focused on occupational risk. Moreover, most benzene-induced molecular and cytogenetic alterations have been widely described in adults but not in the pediatric population. Thus, epidemiological efforts are crucial in the pediatric population in terms of epidemiological, clinical, and biomedical research.
Collapse
Affiliation(s)
- Nancy Reynoso-Noverón
- Dirección de Investigación, Instituto Nacional de Cancerología, Ciudad de México, Mexico.
| | - Miguel Santibáñez-Andrade
- Instituto Nacional de Cancerología (INCan), Subdirección de Investigación Básica, San Fernando No. 22, Ciudad de México 14080, Mexico
| | - Juan Torres
- Dirección de Investigación, Instituto Nacional de Cancerología, Ciudad de México, Mexico
| | - Yanueh Bautista-Ocampo
- Instituto Nacional de Cancerología (INCan), Subdirección de Investigación Básica, San Fernando No. 22, Ciudad de México 14080, Mexico
| | - Yesennia Sánchez-Pérez
- Instituto Nacional de Cancerología (INCan), Subdirección de Investigación Básica, San Fernando No. 22, Ciudad de México 14080, Mexico
| | - Claudia M García-Cuellar
- Instituto Nacional de Cancerología (INCan), Subdirección de Investigación Básica, San Fernando No. 22, Ciudad de México 14080, Mexico.
| |
Collapse
|
12
|
Zhang C, Zheng J, Liu J, Li Y, Xing G, Zhang S, Chen H, Wang J, Shao Z, Li Y, Jiang Z, Pan Y, Liu X, Xu P, Wu W. Pan-cancer analyses reveal the molecular and clinical characteristics of TET family members and suggests that TET3 maybe a potential therapeutic target. Front Pharmacol 2024; 15:1418456. [PMID: 39104395 PMCID: PMC11298443 DOI: 10.3389/fphar.2024.1418456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/28/2024] [Indexed: 08/07/2024] Open
Abstract
The Ten-Eleven Translocation (TET) family genes are implicated in a wide array of biological functions across various human cancers. Nonetheless, there is a scarcity of studies that comprehensively analyze the correlation between TET family members and the molecular phenotypes and clinical characteristics of different cancers. Leveraging updated public databases and employing several bioinformatics analysis methods, we assessed the expression levels, somatic variations, methylation levels, and prognostic values of TET family genes. Additionally, we explored the association between the expression of TET family genes and pathway activity, tumor microenvironment (TME), stemness score, immune subtype, clinical staging, and drug sensitivity in pan-cancer. Molecular biology and cytology experiments were conducted to validate the potential role of TET3 in tumor progression. Each TET family gene displayed distinct expression patterns across at least ten detected tumors. The frequency of Single Nucleotide Variant (SNV) in TET genes was found to be 91.24%, primarily comprising missense mutation types, with the main types of copy number variant (CNV) being heterozygous amplifications and deletions. TET1 gene exhibited high methylation levels, whereas TET2 and TET3 genes displayed hypomethylation in most cancers, which correlated closely with patient prognosis. Pathway activity analysis revealed the involvement of TET family genes in multiple signaling pathways, including cell cycle, apoptosis, DNA damage response, hormone AR, PI3K/AKT, and RTK. Furthermore, the expression levels of TET family genes were shown to impact the clinical staging of tumor patients, modulate the sensitivity of chemotherapy drugs, and thereby influence patient prognosis by participating in the regulation of the tumor microenvironment, cellular stemness potential, and immune subtype. Notably, TET3 was identified to promote cancer progression across various tumors, and its silencing was found to inhibit tumor malignancy and enhance chemotherapy sensitivity. These findings shed light on the role of TET family genes in cancer progression and offer insights for further research on TET3 as a potential therapeutic target for pan-cancer.
Collapse
Affiliation(s)
- Chunyan Zhang
- Department of General Surgery, Tianjin Fifth Central Hospital, Tianjin, China
- Tianjin Key Laboratory of Epigenetics for Organ Development of Premature Infants, Tianjin Fifth Central Hospital, Tianjin, China
- High Altitude Characteristic Medical Research Institute, Huangnan Tibetan Autonomous Prefecture People’s Hospital, Huangnan Prefecture, Qinghai, China
| | - Jie Zheng
- Department of Pathology, Tianjin Fifth Central Hospital, Tianjin, China
| | - Jin Liu
- North China University of Science and Technology, Tangshan, Hebei, China
| | - Yanxia Li
- Tianjin Key Laboratory of Epigenetics for Organ Development of Premature Infants, Tianjin Fifth Central Hospital, Tianjin, China
- High Altitude Characteristic Medical Research Institute, Huangnan Tibetan Autonomous Prefecture People’s Hospital, Huangnan Prefecture, Qinghai, China
| | - Guoqiang Xing
- Department of General Surgery, Tianjin Fifth Central Hospital, Tianjin, China
| | - Shupeng Zhang
- Department of General Surgery, Tianjin Fifth Central Hospital, Tianjin, China
| | - Hekai Chen
- Department of General Surgery, Tianjin Fifth Central Hospital, Tianjin, China
| | - Jian Wang
- Department of General Surgery, Tianjin Fifth Central Hospital, Tianjin, China
| | - Zhijiang Shao
- Department of General Surgery, Tianjin Fifth Central Hospital, Tianjin, China
- High Altitude Characteristic Medical Research Institute, Huangnan Tibetan Autonomous Prefecture People’s Hospital, Huangnan Prefecture, Qinghai, China
| | - Yongyuan Li
- Department of General Surgery, Tianjin Fifth Central Hospital, Tianjin, China
- High Altitude Characteristic Medical Research Institute, Huangnan Tibetan Autonomous Prefecture People’s Hospital, Huangnan Prefecture, Qinghai, China
| | - Zhongmin Jiang
- Department of Pathology, Tianjin Fifth Central Hospital, Tianjin, China
| | - Yingzi Pan
- Department of Ophthalmology, Peking University First Hospital, Beijing, China
| | - Xiaozhi Liu
- Tianjin Key Laboratory of Epigenetics for Organ Development of Premature Infants, Tianjin Fifth Central Hospital, Tianjin, China
- High Altitude Characteristic Medical Research Institute, Huangnan Tibetan Autonomous Prefecture People’s Hospital, Huangnan Prefecture, Qinghai, China
| | - Ping Xu
- High Altitude Characteristic Medical Research Institute, Huangnan Tibetan Autonomous Prefecture People’s Hospital, Huangnan Prefecture, Qinghai, China
- Department of Pharmacy, Tianjin Fifth Central Hospital, Tianjin, China
| | - Wenhan Wu
- Department of General Surgery, Tianjin Fifth Central Hospital, Tianjin, China
- Tianjin Key Laboratory of Epigenetics for Organ Development of Premature Infants, Tianjin Fifth Central Hospital, Tianjin, China
- High Altitude Characteristic Medical Research Institute, Huangnan Tibetan Autonomous Prefecture People’s Hospital, Huangnan Prefecture, Qinghai, China
- Department of General Surgery, Peking University First Hospital, Beijing, China
| |
Collapse
|
13
|
Baranová I, Samec M, Dvorská D, Šťastný I, Janíková K, Kašubová I, Hornáková A, Lukáčová E, Kapinová A, Biringer K, Halašová E, Danková Z. Droplet digital PCR analysis of CDH13 methylation status in Slovak women with invasive ductal breast cancer. Sci Rep 2024; 14:14700. [PMID: 38926485 PMCID: PMC11208553 DOI: 10.1038/s41598-024-65580-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024] Open
Abstract
Identifying novel epigenetic biomarkers is a promising way to improve the clinical management of patients with breast cancer. Our study aimed to determine the methylation pattern of 25 tumor suppressor genes (TSG) and select the best methylation biomarker associated with clinicopathological features in the cohort of Slovak patients diagnosed with invasive ductal carcinoma (IDC). Overall, 166 formalin-fixed, paraffin-embedded (FFPE) tissues obtained from patients with IDC were included in the study. The methylation status of the promoter regions of 25 TSG was analyzed using semiquantitative methylation-specific MLPA (MS-MLPA). We identified CDH13 as the most frequently methylated gene in our cohort of patients. Further analysis by ddPCR confirmed an increased level of methylation in the promoter region of CDH13. A significant difference in CDH13 methylation levels was observed between IDC molecular subtypes LUM A versus HER2 (P = 0.0116) and HER2 versus TNBC (P = 0.0234). In addition, significantly higher methylation was detected in HER2+ versus HER2- tumors (P = 0.0004) and PR- versus PR+ tumors (P = 0.0421). Our results provide evidence that alteration in CDH13 methylation is associated with clinicopathological features in the cohort of Slovak patients with IDC. In addition, using ddPCR as a methylation-sensitive method represents a promising approach characterized by higher precision and technical simplicity to measure the methylation of target CpGs in CDH13 compared to other conventional methods such as MS-MLPA.
Collapse
Affiliation(s)
- Ivana Baranová
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
- Department of Pathological Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
- Biobank for Cancer and Rare Diseases, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Marek Samec
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia.
- Department of Medical Biology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia.
| | - Dana Dvorská
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Igor Šťastný
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine in Martin and Martin University Hospital, Comenius University in Bratislava, Martin, Slovakia
| | - Katarína Janíková
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Ivana Kašubová
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Andrea Hornáková
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Eva Lukáčová
- Department of Molecular Biology and Genomics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Andrea Kapinová
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Kamil Biringer
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine in Martin and Martin University Hospital, Comenius University in Bratislava, Martin, Slovakia
| | - Erika Halašová
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Zuzana Danková
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
- Biobank for Cancer and Rare Diseases, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| |
Collapse
|
14
|
Lv Z, Fan H, Gao M, Zhang X, Li G, Fan Y, Ning Z, Guo Y. The accessible chromatin landscape of lipopolysaccharide-induced systemic inflammatory response identifying epigenome signatures and transcription regulatory networks in chickens. Int J Biol Macromol 2024; 266:131136. [PMID: 38547952 DOI: 10.1016/j.ijbiomac.2024.131136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/11/2024] [Accepted: 03/23/2024] [Indexed: 04/01/2024]
Abstract
Lipopolysaccharide (LPS) can induce systemic inflammatory response (SIR) in animals. Understanding the regulatory mechanism of SIR and therapies to ensure healthy growth is urgently needed. Chromatin remodeling plays a crucial role in the expression of genes involved in immune diseases. In the present study, the ATAC-seq analysis revealed 3491 differential open chromatin sites in the spleen of chicks with SIR induced by LPS challenge, and we presented the motifs on these sites and the associated transcription factors. The regulatory network was presented by combining the differential open chromatin data with the mRNAs and exploded cytokines. Interestingly, the LPS challenge could regulate the mRNA expression of 202 genes through chromatin reprogramming, including critical genes such as TLE1 and JUN, which regulate signaling pathways such as I-κB kinase/NF-κB, Toll-like receptor, and downstream cytokine genes. Furthermore, dietary daidzein could inhibit DNA topoisomerase II, which reprograms the spatial conformation of chromatin in the inflammatory response and attenuates SIR. In conclusion, we successfully identified key genes directly regulated by chromatin reprogramming in SIR and demonstrated the chromatin epigenome signatures and transcriptional regulatory network, which provides an important reference for further research on avian epigenetics. There is great potential for alleviating SIR using dietary daidzein.
Collapse
Affiliation(s)
- Zengpeng Lv
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China.
| | - Hao Fan
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China; Section of Hematology and Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Mingkun Gao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Xiaodan Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Guang Li
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Yuyang Fan
- Xi'an Jiaotong-Liverpool University, Suzhou 215123, PR China
| | - Zhonghua Ning
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
15
|
Draškovič T, Hauptman N. Discovery of novel DNA methylation biomarker panels for the diagnosis and differentiation between common adenocarcinomas and their liver metastases. Sci Rep 2024; 14:3095. [PMID: 38326602 PMCID: PMC10850119 DOI: 10.1038/s41598-024-53754-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/05/2024] [Indexed: 02/09/2024] Open
Abstract
Differentiation between adenocarcinomas is sometimes challenging. The promising avenue for discovering new biomarkers lies in bioinformatics using DNA methylation analysis. Utilizing a 2853-sample identification dataset and a 782-sample independent verification dataset, we have identified diagnostic DNA methylation biomarkers that are hypermethylated in cancer and differentiate between breast invasive carcinoma, cholangiocarcinoma, colorectal cancer, hepatocellular carcinoma, lung adenocarcinoma, pancreatic adenocarcinoma and stomach adenocarcinoma. The best panels for cancer type exhibit sensitivity of 77.8-95.9%, a specificity of 92.7-97.5% for tumors, a specificity of 91.5-97.7% for tumors and normal tissues and a diagnostic accuracy of 85.3-96.4%. We have shown that the results can be extended from the primary cancers to their liver metastases, as the best panels diagnose and differentiate between pancreatic adenocarcinoma liver metastases and breast invasive carcinoma liver metastases with a sensitivity and specificity of 83.3-100% and a diagnostic accuracy of 86.8-91.9%. Moreover, the panels could detect hypermethylation of selected regions in the cell-free DNA of patients with liver metastases. At the same time, these were unmethylated in the cell-free DNA of healthy donors, confirming their applicability for liquid biopsies.
Collapse
Affiliation(s)
- Tina Draškovič
- Faculty of Medicine, Institute of Pathology, University of Ljubljana, Ljubljana, Slovenia
| | - Nina Hauptman
- Faculty of Medicine, Institute of Pathology, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
16
|
Lim NR, Chung WC. Helicobacter pylori-associated Chronic Atrophic Gastritis and Progression of Gastric Carcinogenesis. THE KOREAN JOURNAL OF GASTROENTEROLOGY = TAEHAN SOHWAGI HAKHOE CHI 2023; 82:171-179. [PMID: 37876256 DOI: 10.4166/kjg.2023.097] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 10/26/2023]
Abstract
Chronic inflammation due to a Helicobacter pylori (H. pylori) infection is a representative cause of gastric cancer that can promote gastric carcinogenesis by abnormally activating immune cells and increasing the inflammatory cytokines levels. H. pylori infections directly cause DNA double-strand breaks in gastric epithelial cells and genetic damage by increasing the enzymatic activity of cytidine deaminase. Eventually, gastric cancer is induced through dysplasia. Hypermethylation of tumor suppressor genes is an important cause of gastric cancer because of a H. pylori infection. In addition, the changes in gastric microbiota and the mucosal inflammatory changes associated with a co-infection with the Epstein-Barr virus are associated with gastric cancer development. DNA damage induced by H. pylori and the subsequent responses of gastric stem cells have implications for gastric carcinogenesis. Although the pathogenesis of H. pylori has been established, many uncertainties remain, requiring more study.
Collapse
Affiliation(s)
- Na Rae Lim
- Department of Internal Medicine, St. Vincent Hospital, The Catholic University of Korea, Suwon, Korea
| | - Woo Chul Chung
- Department of Internal Medicine, St. Vincent Hospital, The Catholic University of Korea, Suwon, Korea
| |
Collapse
|
17
|
Yuan Y, Ye F, Wu JH, Fu XY, Huang ZX, Zhang T. Early screening of nasopharyngeal carcinoma. Head Neck 2023; 45:2700-2709. [PMID: 37552128 DOI: 10.1002/hed.27466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/23/2023] [Accepted: 07/06/2023] [Indexed: 08/09/2023] Open
Abstract
The low positive predictive value (PPV) of early screening of nasopharyngeal carcinoma (NPC) is the problems that need to be solved urgently. The combination of cell-free DNA (cfDNA) methylation testing and Epstein-Barr virus (EBV) serological testing is the key to solve this problem. This paper reviews recent advances in early screening for NPC and cfDNA methylation, with future perspectives. Pubmed was searched for the literature related to early screening of NPC and cfDNA methylation in the past 5 years. The results of these studies were summarized. Despite these efforts, the PPV is still low (10%). Previous studies have shown that cfDNA methylation analysis has good specificity and accuracy across a variety of tumors. The combination of cfDNA methylation and EBV detection helps to improve the PPV for early screening of NPC. The combination of cfDNA methylation and EBV serological testing is key to addressing the low PPV of NPC early screening.
Collapse
Affiliation(s)
- Yue Yuan
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, China
- Department of Otolaryngology Head and Neck Surgery, Zhongshan City People's Hospital, Zhongshan City, Guangdong Province, China
| | - Fei Ye
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, China
- Department of Otolaryngology Head and Neck Surgery, Zhongshan City People's Hospital, Zhongshan City, Guangdong Province, China
- Department of Otolaryngology Head and Neck Surgery, Huangpu Hospital, Zhongshan City, Guangdong Province, China
| | - Jian-Hui Wu
- Department of Otolaryngology Head and Neck Surgery, Zhongshan City People's Hospital, Zhongshan City, Guangdong Province, China
| | - Xiao-Yan Fu
- Department of Pediatric Otolaryngology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Zhong-Xi Huang
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Tao Zhang
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, China
| |
Collapse
|
18
|
Ji XY, Li H, Chen HH, Lin J. Diagnostic performance of RASSF1A and SHOX2 methylation combined with EGFR mutations for differentiation between small pulmonary nodules. J Cancer Res Clin Oncol 2023; 149:8557-8571. [PMID: 37097393 DOI: 10.1007/s00432-023-04745-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 04/03/2023] [Indexed: 04/26/2023]
Abstract
BACKGROUND AND AIM Aberrant methylation of Ras association domain family 1, isoform A (RASSF1A), and short-stature homeobox gene 2 (SHOX2) promoters has been validated as a pair of valuable biomarkers for diagnosing early lung adenocarcinomas (LUADs). Epidermal growth factor receptor (EGFR) is the key driver mutation in lung carcinogenesis. This study aimed to investigate the aberrant promoter methylation of RASSF1A and SHOX2, and the genetic mutation of EGFR in 258 specimens of early LUADs. METHODS We retrospectively selected 258 paraffin-embedded samples of pulmonary nodules measuring 2 cm or less in diameter and evaluated the diagnostic performance of individual biomarker assays and multiple panels between noninvasive (group 1) and invasive lesions (groups 2A and 2B). Then, we investigated the interaction between genetic and epigenetic alterations. RESULTS The degree of RASSF1A and SHOX2 promoter methylation and EGFR mutation was significantly higher in invasive lesions than in noninvasive lesions. The three biomarkers distinguished between noninvasive and invasive lesions with reliable sensitivity and specificity: 60.9% sensitivity [95% confidence interval (CI) 52.41-68.78] and 80.0% specificity (95% CI 72.14-86.07). The novel panel biomarkers could further discriminate among three invasive pathological subtypes (area under the curve value > 0.6). The distribution of RASSF1A methylation and EGFR mutation was considerably exclusive in early LUAD (P = 0.002). CONCLUSION DNA methylation of RASSF1A and SHOX2 is a pair of promising biomarkers, which may be used in combination with other driver alterations, such as EGFR mutation, to support the differential diagnosis of LUADs, especially for stage I.
Collapse
Affiliation(s)
- Xiang-Yu Ji
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, People's Republic of China
| | - Hong Li
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Hui-Hui Chen
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Jie Lin
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China.
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, People's Republic of China.
- National Virtual and Reality Experimental Education Center for Medical Morphology, Southern Medical University, Guangzhou, People's Republic of China.
| |
Collapse
|
19
|
Sundrani DP, Joshi SR. Assisted reproductive technology (ART) and epigenetic modifications in the placenta. HUM FERTIL 2023; 26:665-677. [PMID: 34706609 DOI: 10.1080/14647273.2021.1995901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 04/19/2021] [Indexed: 10/20/2022]
Abstract
Assisted reproductive technology (ART) has become common amongst couples with infertility issues. ART is known to be successful, but epidemiological data indicates that ART is associated with placental disorders. Additionally, reports show increased risks of short- and long-term complications in children born to mothers undergoing ART. However, the mechanisms responsible for these events are obscure. The placenta is considered as a key organ for programming of diseases and ART procedures are suggested to alter the placental function and intrauterine growth trajectories. Epigenetic changes in maternal and foetal tissues are suggested to be the underlying mechanisms for these outcomes. Epigenetic regulation is known to evolve following fertilisation and before implantation and subsequently across gestation. During these critical periods of epigenetic 'programming', DNA methylation and chromatin remodelling influence the placental structure and function by regulating the expression of various genes. ART treatment coinciding with epigenetic 'programming' events during gametogenesis and early embryo development may alter the programming phases leading to long-term consequences. Thus, disruptions in placental development observed in ART pregnancies could be associated with altered epigenetic regulation of vital genes in the placenta. The review summarises available literature on the influence of ART procedures on epigenetic changes in the placenta.
Collapse
Affiliation(s)
- Deepali P Sundrani
- Mother and Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India
| | - Sadhana R Joshi
- Mother and Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India
| |
Collapse
|
20
|
Lin J, Tao L, Deng L, Zhou R, Lou S, Chen S, Chen X, Lu C, Li P, Hu B. Epigenome-wide DNA methylation analysis of myasthenia gravis. FEBS Open Bio 2023; 13:1375-1389. [PMID: 37254650 PMCID: PMC10315801 DOI: 10.1002/2211-5463.13656] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 05/10/2023] [Accepted: 05/30/2023] [Indexed: 06/01/2023] Open
Abstract
Myasthenia gravis (MG) is a common neuromuscular junction disorder and autoimmune disease mediated by several antibodies. Several studies have shown that genetic factors play an important role in MG pathogenesis. To gain insight into the epigenetic factors affecting MG, we report here genome-scale DNA methylation profiles of MG. DNA was extracted from eight MG patients and four healthy controls for genome-wide DNA methylation analysis using the Illumina HumanMethylation 850K BeadChip. Verification of pyrosequencing was conducted based on differential methylation positions. Subsequently, C2C12 and HT22 cell lines (derived from mouse) were treated with demethylation drugs. Transcribed mRNA of the screened differential genes was detected using quantitative real-time PCR. The control and MG group were compared, and two key probe positions were selected. The corresponding genes were CAMK1D and CREB5 (P < 0.05). Similarly, the myasthenic crisis (MC) and non-MC group were compared and four key probe positions were selected. The corresponding genes were SAV1, STK3, YAP1, and WWTR1 (P < 0.05). Subsequently, pyrosequencing was performed for verification, revealing that hypomethylation of CAMK1D was significantly different between the MG and control group (P < 0.001). Moreover, transcription of CREB5, PKD, YAP1, and STK3 genes in the C2C12 cells was downregulated (P < 0.05) after drug treatment, but only YAP1 mRNA was downregulated in HT22 cells (P < 0.05). This is the first study to investigate genome-scale DNA methylation profiles of MG using 850 K BeadChip. The identified molecular markers of methylation may aid in the prevention, diagnosis, treatment, and prognosis of MG.
Collapse
Affiliation(s)
- Jingjing Lin
- Department of NeurologyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityChina
| | - Linshuang Tao
- Department of NephrologyTaizhou First People's Hospital, Affiliated Huangyan Hospital of Wenzhou Medical UniversityChina
| | - Lu Deng
- Department of NeurologyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityChina
| | - Ruyi Zhou
- Department of NeurologyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityChina
| | - Shuyue Lou
- Department of NeurologyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityChina
| | - Songfang Chen
- Department of NeurologyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityChina
| | - Xuanyu Chen
- Department of NeurologyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityChina
| | - Chunxing Lu
- Department of NeurologyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityChina
| | - Peijun Li
- Department of NeurologyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityChina
| | - Beilei Hu
- Department of NeurologyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityChina
| |
Collapse
|
21
|
Karaman EF, Abudayyak M, Ozden S. The role of chromatin-modifying enzymes and histone modifications in the modulation of p16 gene in fumonisin B 1-induced toxicity in human kidney cells. Mycotoxin Res 2023:10.1007/s12550-023-00494-2. [PMID: 37328702 DOI: 10.1007/s12550-023-00494-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/18/2023]
Abstract
Fumonisin B1 (FB1) poses a risk to animal and human health. Although the effects of FB1 on sphingolipid metabolism are well documented, there are limited studies covering the epigenetic modifications and early molecular alterations associated with carcinogenesis pathways caused by FB1 nephrotoxicity. The present study investigates the effects of FB1 on global DNA methylation, chromatin-modifying enzymes, and histone modification levels of the p16 gene in human kidney cells (HK-2) after 24 h exposure. An increase (2.23-fold) in the levels of 5-methylcytosine (5-mC) at 100 µmol/L was observed, a change independent from the decrease in gene expression levels of DNA methyltransferase 1 (DNMT1) at 50 and 100 µmol/L; however, DNMT3a and DNMT3b were significantly upregulated at 100 µmol/L of FB1. Dose-dependent downregulation of chromatin-modifying genes was observed after FB1 exposure. In addition, chromatin immunoprecipitation results showed that 10 µmol/L of FB1 induced a significant decrease in H3K9ac, H3K9me3 and H3K27me3 modifications of p16, while 100 µmol/L of FB1 caused a significant increase in H3K27me3 levels of p16. Taken together, the results suggest that epigenetic mechanisms might play a role in FB1 carcinogenesis through DNA methylation, and histone and chromatin modifications.
Collapse
Affiliation(s)
- Ecem Fatma Karaman
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, 34116, Beyazit, Istanbul, Turkey
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Biruni University, 34010, Topkapi, Istanbul, Turkey
| | - Mahmoud Abudayyak
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, 34116, Beyazit, Istanbul, Turkey
| | - Sibel Ozden
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, 34116, Beyazit, Istanbul, Turkey.
| |
Collapse
|
22
|
Mat Lazim N, Yousaf A, Abusalah MAH, Sulong S, Mohd Ismail ZI, Mohamud R, Abu-Harirah HA, AlRamadneh TN, Hassan R, Abdullah B. The Epigenesis of Salivary Glands Carcinoma: From Field Cancerization to Carcinogenesis. Cancers (Basel) 2023; 15:2111. [PMID: 37046772 PMCID: PMC10093474 DOI: 10.3390/cancers15072111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/17/2023] [Accepted: 03/24/2023] [Indexed: 04/05/2023] Open
Abstract
Salivary gland carcinomas (SGCs) are a diverse collection of malignant tumors with marked differences in biological activity, clinical presentation and microscopic appearance. Although the etiology is varied, secondary radiation, oncogenic viruses as well as chromosomal rearrangements have all been linked to the formation of SGCs. Epigenetic modifications may also contribute to the genesis and progression of SGCs. Epigenetic modifications are any heritable changes in gene expression that are not caused by changes in DNA sequence. It is now widely accepted that epigenetics plays an important role in SGCs development. A basic epigenetic process that has been linked to a variety of pathological as well as physiological conditions including cancer formation, is DNA methylation. Transcriptional repression is caused by CpG islands hypermethylation at gene promoters, whereas hypomethylation causes overexpression of a gene. Epigenetic changes in SGCs have been identified, and they have been linked to the genesis, progression as well as prognosis of these neoplasms. Thus, we conduct a thorough evaluation of the currently known evidence on the involvement of epigenetic processes in SGCs.
Collapse
Affiliation(s)
- Norhafiza Mat Lazim
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia
- Hospital USM, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Anam Yousaf
- Department of Molecular Pathology Laboratory, Pakistan Kidney and Liver Institute and Research Centre, Lahore 54000, Pakistan
| | - Mai Abdel Haleem Abusalah
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Zarqa University, Al-Zarqa 13132, Jordan
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu 16150, Kelantan, Malaysia
| | - Sarina Sulong
- Hospital USM, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
- Department of Immunology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
- Human Genome Centre, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Zul Izhar Mohd Ismail
- Hospital USM, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
- Department of Anatomy, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Rohimah Mohamud
- Hospital USM, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
- Department of Immunology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Hashem A. Abu-Harirah
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Zarqa University, Al-Zarqa 13132, Jordan
| | - Tareq Nayef AlRamadneh
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Zarqa University, Al-Zarqa 13132, Jordan
| | - Rosline Hassan
- Hospital USM, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
- Department of Haematology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Baharudin Abdullah
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia
- Hospital USM, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| |
Collapse
|
23
|
Li H, Ye M, Hu Z, Lu H, Zheng D, Wu M, Ge T, Xu S, Ge Z, Zhang S, Xu G, Chen H. IKZF3 is a novel prognostic biomarker for head and neck squamous cell carcinoma: A study based on bioinformatics analysis. Medicine (Baltimore) 2023; 102:e33124. [PMID: 36930079 PMCID: PMC10019242 DOI: 10.1097/md.0000000000033124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/08/2023] [Indexed: 03/18/2023] Open
Abstract
In the past few years, immunotherapy of tumors has become an extensive research hotspot, and the value of IKZF family genes in the tumor microenvironment has also been increasingly recognized. However, the expression of the IKAROS family zinc finger 3 (IKZF3) gene in human head and neck squamous cell carcinoma (HNSCC) and its prognostic value were not reported for the main subset until now. In the present study, we analyzed the relationship between IKZF3 gene expression and the survival of HNSCC patients. To evaluate the potential of IKZF3 as a prognostic biomarker for HNSCC comprehensively, multiple online analysis tools, including UALCAN, cBioPortal, GEPIA, WebGestalt, String, Genomic Data Commons, and TIMER databases were utilized in our study. We observed that the HNSCC patients with higher IKZF3 expression tended to exhibit longer overall survival. Univariate and multivariate Cox regression analyses indicated that age and grade were independent prognostic indicators in HNSCC. Moreover, Gene Ontology and KEGG function enrichment analyses showed that several pathways in HNSCC might be pivotal pathways regulated by IKZF3, which revealed that IKZF3 was probably participating in the occurrence and development of HNSCC. Furthermore, the hypomethylation of the IKZF3 gene was closely associated with genes that observed mutation in HNSCC. IKZF3 was significantly correlated with several immune cells in HNSCC (e.g., CD8+ T cell, CD4+ cell, and dendritic cell). We explored the potential prognostic values and roles of the IKZF3 in HNSCC, revealing that IKZF3 was probably a novel and reliable prognostic biomarker for patients with HNSCC.
Collapse
Affiliation(s)
- Hongxiang Li
- Department of Cardiothoracic Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China
- School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Mengmeng Ye
- Department of Cardiothoracic Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China
- School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Zeyang Hu
- Department of Cardiothoracic Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China
- School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Haoxuan Lu
- Department of Cardiology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang, China
| | - Dawei Zheng
- Department of Cardiothoracic Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Mi Wu
- Department of Emergency, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Ting Ge
- Department of Respiratory, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Shuguang Xu
- Department of Respiratory, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Zhen Ge
- Department of Cardiology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang, China
| | - Shuoni Zhang
- Department of Emergency, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Guodong Xu
- Department of Cardiothoracic Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Hang Chen
- Department of Cardiothoracic Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China
- School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
24
|
DNA Methylation Analysis of the SHOX2 and RASSF1A Panel Using Cell-Free DNA in the Diagnosis of Malignant Pleural Effusion. JOURNAL OF ONCOLOGY 2023; 2023:5888844. [PMID: 36691467 PMCID: PMC9867579 DOI: 10.1155/2023/5888844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/27/2022] [Accepted: 12/27/2022] [Indexed: 01/16/2023]
Abstract
Objectives The differential diagnosis of pleural effusion (PE) is a common but major challenge in clinical practice. This study aimed to establish a strategy based on a PE-cell-free DNA (cfDNA) methylation detection system for the differential diagnosis of malignant pleural effusion (MPE) and benign pleural effusion (BPE). Methods A total of 104 patients with PE were enrolled in this study, among which 50 patients had MPE, 9 malignant tumor patients had PE of indefinite causes, and the other 45 patients were classified as benign controls. The methylation status of short stature homeobox 2 (SHOX2) and RAS association domain family 1, isoform A (RASSF1A) was detected using PE-cfDNA specimens by real-time fluorescence quantitative PCR. Total methylation (TM) was defined as the combination of the methylation levels of SHOX2 and RASSF1A. The electrochemiluminescence immunoassay was applied to evaluate the levels of multiple serum tumor markers. Results The PE-cfDNA methylation status of either SHOX2 or RASSF1A was much higher in MPE samples than in benign controls. The combination of SHOX2 and RASSF1A methylation in PE yielded a diagnostic sensitivity of 96% and a specificity of 100%, respectively. When compared with the corresponding serum tumor marker detection results, TM showed the highest diagnostic efficiency (AUC = 0.985). Furthermore, the combination of the SHOX2 and RASSF1A methylation panels using PE-cfDNA could apparently improve the differential diagnostic efficacy of BPE and MPE and could help compensate for the deficiency of cytology. Conclusions Our results indicated that SHOX2 and RASSF1A methylation panel detection could accurately classify BPE and MPE diseases and showed better diagnostic performance than traditional serum parameters. The SHOX2 and RASSF1A methylation detection of PE-cfDNA could be a potentially effective complementary tool for cytology in the process of differential diagnosis. In summary, PE-cfDNA could be used as a promising non-invasive analyte for the auxiliary diagnosis of MPE.
Collapse
|
25
|
Bhavnagari H, Raval A, Shah F. Deciphering Potential Role of Hippo Signaling Pathway in Breast Cancer: A Comprehensive Review. Curr Pharm Des 2023; 29:3505-3518. [PMID: 38141194 DOI: 10.2174/0113816128274418231215054210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/16/2023] [Accepted: 11/23/2023] [Indexed: 12/25/2023]
Abstract
Breast cancer is a heterogeneous disease and a leading malignancy around the world. It is a vital cause of untimely mortality among women. Drug resistance is the major challenge for effective cancer therapeutics. In contrast, cancer stem cells (CSCs) are one of the reasons for drug resistance, tumor progression, and metastasis. The small population of CSCs present in each tumor has the ability of self-renewal, differentiation, and tumorigenicity. CSCs are often identified and enriched using a variety of cell surface markers (CD44, CD24, CD133, ABCG2, CD49f, LGR5, SSEA-3, CD70) that exert their functions by different regulatory networks, i.e., Notch, Wnt/β-catenin, hedgehog (Hh), and Hippo signaling pathways. Particularly the Hippo signaling pathway is the emerging and very less explored cancer stem cell pathway. Here, in this review, the Hippo signaling molecules are elaborated with respect to their ability of stemness as epigenetic modulators and how these molecules can be targeted for better cancer treatment and to overcome drug resistance.
Collapse
Affiliation(s)
- Hunayna Bhavnagari
- Molecular Diagnostic and Research Lab-3, Department of Cancer Biology, The Gujarat Cancer and Research Institute, Ahmedabad, Gujarat, India
| | - Apexa Raval
- Molecular Diagnostic and Research Lab-3, Department of Cancer Biology, The Gujarat Cancer and Research Institute, Ahmedabad, Gujarat, India
| | - Franky Shah
- Molecular Diagnostic and Research Lab-3, Department of Cancer Biology, The Gujarat Cancer and Research Institute, Ahmedabad, Gujarat, India
| |
Collapse
|
26
|
Maksimova VP, Usalka OG, Makus YV, Popova VG, Trapeznikova ES, Khayrieva GI, Sagitova GR, Zhidkova EM, Prus AY, Yakubovskaya MG, Kirsanov KI. Aberrations of DNA methylation in cancer. ADVANCES IN MOLECULAR ONCOLOGY 2022. [DOI: 10.17650/2313-805x-2022-9-4-24-40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
DNA methylation is a chromatin modification that plays an important role in the epigenetic regulation of gene expression. Changes in DNA methylation patterns are characteristic of many malignant neoplasms. DNA methylation is occurred by DNA methyltransferases (DNMTs), while demethylation is mediated by TET family proteins. Mutations and changes in the expression profile of these enzymes lead to DNA hypo- and hypermethylation and have a strong impact on carcinogenesis. In this review, we considered the key aspects of the mechanisms of regulation of DNA methylation and demethylation, and also analyzed the role of DNA methyltransferases and TET family proteins in the pathogenesis of various malignant neoplasms.During the preparation of the review, we used the following biomedical literature information bases: Scopus (504), PubMed (553), Web of Science (1568), eLibrary (190). To obtain full-text documents, the electronic resources of PubMed Central (PMC), Science Direct, Research Gate, CyberLeninka were used. To analyze the mutational profile of epigenetic regulatory enzymes, we used the cBioportal portal (https://www.cbioportal.org / ), data from The AACR Project GENIE Consortium (https://www.mycancergenome.org / ), COSMIC, Clinvar, and The Cancer Genome Atlas (TCGA).
Collapse
Affiliation(s)
- V. P. Maksimova
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
| | - O. G. Usalka
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia; Sechenov First Moscow State Medical University, Ministry of Health of Russia
| | - Yu. V. Makus
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia; Peoples’ Friendship University of Russia
| | - V. G. Popova
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia; Mendeleev University of Chemical Technology of Russia
| | - E. S. Trapeznikova
- Sechenov First Moscow State Medical University, Ministry of Health of Russia
| | - G. I. Khayrieva
- Sechenov First Moscow State Medical University, Ministry of Health of Russia
| | - G. R. Sagitova
- Sechenov First Moscow State Medical University, Ministry of Health of Russia
| | - E. M. Zhidkova
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
| | - A. Yu. Prus
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia; MIREA – Russian Technological University
| | - M. G. Yakubovskaya
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
| | - K. I. Kirsanov
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia; Peoples’ Friendship University of Russia
| |
Collapse
|
27
|
Aminzadeh-Gohari S, Kofler B, Herzog C. Dietary restriction in senolysis and prevention and treatment of disease. Crit Rev Food Sci Nutr 2022; 64:5242-5268. [PMID: 36484738 PMCID: PMC7616065 DOI: 10.1080/10408398.2022.2153355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aging represents a key risk factor for a plethora of diseases. Targeting detrimental processes which occur during aging, especially before onset of age-related disease, could provide drastic improvements in healthspan. There is increasing evidence that dietary restriction (DR), including caloric restriction, fasting, or fasting-mimicking diets, extend both lifespan and healthspan. This has sparked interest in the use of dietary regimens as a non-pharmacological means to slow aging and prevent disease. Here, we review the current evidence on the molecular mechanisms underlying DR-induced health improvements, including removal of senescent cells, metabolic reprogramming, and epigenetic rejuvenation.
Collapse
Affiliation(s)
- Sepideh Aminzadeh-Gohari
- Research Program for Receptor Biochemistry and Tumor Metabollism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
- European Translational Oncology Prevention and Screening Institute, Universität Innsbruck, Innsbruck, Austria
- Research Institute for Biomedical Ageing, Universität Innsbruck, Innsbruck, Austria
| | - Barbara Kofler
- Research Program for Receptor Biochemistry and Tumor Metabollism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Chiara Herzog
- European Translational Oncology Prevention and Screening Institute, Universität Innsbruck, Innsbruck, Austria
- Research Institute for Biomedical Ageing, Universität Innsbruck, Innsbruck, Austria
| |
Collapse
|
28
|
Drug Repurposing Applications to Overcome Male Predominance via Targeting G2/M Checkpoint in Human Esophageal Squamous Cell Carcinoma. Cancers (Basel) 2022; 14:cancers14235854. [PMID: 36497337 PMCID: PMC9741366 DOI: 10.3390/cancers14235854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 11/29/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is strongly characterized by a male predominance with higher mortality rates and worse responses to treatment in males versus females. Despite the role of sex hormones, other causes that may contribute to sex bias in ESCC remain largely unknown, especially as age increases and the hormone difference begins to diminish between sexes. In this study, we analyzed genomics, transcriptomics, and epigenomics from 663 ESCC patients and found that G2/M checkpoint pathway-related sex bias and age bias were significantly present in multi-omics data. In accordance with gene expression patterns across sexes, ten compounds were identified by applying drug repurposing from three drug sensitivity databases: The Connective Map (CMap), Genomics of Drug Sensitivity in Cancer (GDSC), and The Cancer Therapeutic Response Portal (CTRP). MK1775 and decitabine showed better efficacy in two male ESCC cell lines in vitro and in vivo. The drugs' relevance to the transition between G2 and M was especially evident in male cell lines. In our study, we first validated the sex bias of the G2/M checkpoint pathway in ESCC and then determined that G2/M targets may be included in combination therapy for male patients to improve the efficacy of ESCC treatment.
Collapse
|
29
|
Bruno MT, Cassaro N, Mazza G, Guaita A, Boemi S. Spontaneous regression of cervical intraepithelial neoplasia 3 in women with a biopsy-cone interval of greater than 11 weeks. BMC Cancer 2022; 22:1072. [PMID: 36253767 PMCID: PMC9578209 DOI: 10.1186/s12885-022-10179-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 10/12/2022] [Indexed: 11/10/2022] Open
Abstract
Background Although there is broad consensus that only a subset of CIN3 will progress to cancer, there is currently no surefire way to predict which CIN3 will regress. Understanding the natural history of CIN3 is important, and finding markers for progression or regression could improve treatment strategies. According to the guidelines of the American Society for Colposcopy and Cervical Pathology of 2006, positive CIN3 p16 in women should be managed with excisional treatment (LEEP). For ethical reasons we cannot fail to treat women with CIN3 in order to study their regression capacity so we conducted a retrospective study to evaluate the regression rate of CIN3 diagnosed with a biopsy by studying the histological result of the cone removed by LEEP. We also investigated age, HPV genotypes and biopsy-cone interval distance as possible regression factors. Methods We selected 171 women with a histological diagnosis of positive CIN3 p16 as an entry criterion. All patients underwent LEEP / biopsy. A histological diagnosis of the cone of CIN3 or higher was considered as persistence or progression, the diagnosis of CIN1 or lower was considered as regression of the lesion. We used out a logistic model to study the probability of spontaneous regression of CIN3 as a function of the patient’s age, the time elapsed between the biopsy and the cone (in weeks) and the HPV genotype. Results We found that the spontaneous regression rate of CIN3 was 15,8%, which was strongly associated with the biopsy-cone interval > 11 weeks. Genotype 16, the most represented, was present both in cases of regression (77.8%) and in persistence (83.3%). Regarding age, the estimated odds ratio of the probability of observing a regression in women over 25 years of age was 0.0045 times that of women under 25 years of age (CI: 0.00020, 0.036). Neither age nor viral genotype are significant as predictors of regression. Conclusion To wait at least 11 weeks from the biopsy before subjecting the woman to LEEP could prevent unnecessary LEEP procedures, considering also that from CIN3 to carcinoma it takes years before the neoplastic transformation takes place. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-10179-1.
Collapse
Affiliation(s)
- Maria Teresa Bruno
- Department of General Surgery and Medical Surgery Specialties, Gynecological Clinic, University of Catania, Catania, Italy. .,Multidisciplinary Research Center in Papillomavirus Pathology, University of Catania, Catania, Italy.
| | - Nazario Cassaro
- Multidisciplinary Research Center in Papillomavirus Pathology, University of Catania, Catania, Italy.,Gynecological Oncology, Humanitas, Catania, Italy
| | - Gabriele Mazza
- Department of General Surgery and Medical Surgery Specialties, Gynecological Clinic, University of Catania, Catania, Italy
| | - Arianna Guaita
- Department of Statistics, Sapienza University of Roma, Rome, Italy
| | - Sara Boemi
- Multidisciplinary Research Center in Papillomavirus Pathology, University of Catania, Catania, Italy
| |
Collapse
|
30
|
Ban X, Mo S, Lu Z, Jia C, Shao H, Chang X, Mao X, Zhang Y, Pang J, Zhang Y, Yu S, Chen J. Expression and methylation status of MMR and MGMT in well-differentiated pancreatic neuroendocrine tumors and potential clinical applications. Endocrine 2022; 77:538-545. [PMID: 35708896 DOI: 10.1007/s12020-022-03102-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 05/27/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE Recent studies claim that immune checkpoint inhibitors are effective in defective mismatch repair (dMMR) cancers. This raises the question of whether similar therapies are effective in PanNETs (pancreatic neuroendocrine tumors); however, in general, assessment of MMR status in PanNETs has been inconsistent in previous studies. MGMT (O6-methylguanine-DNA methyltransferase) is potentially important for guiding temozolomide (TMZ) therapy in glioblastoma. The number of reports on MGMT expression and promoter methylation in PanNETs are limited. METHODS In this study we assessed the expression of MGMT and MMR proteins MSH2, MSH6, MLH1 and PMS2 in a series of PanNETs by IHC. The methylation status of MGMT and MMR genes in a subset of PanNETs was further assessed by MS-MLPA analysis. Survival curves were constructed using the Kaplan-Meier method, and differences were assessed using the log-rank test. Multivariate Cox proportional hazards regression models were used to determine the prognostic value of the variables. RESULTS According to evaluation criteria for mismatch repair defects, none of PanNETs shown nuclear staining loss for MSH2, MSH6, MLH1, and PMS2. MGMT low-intensity PanNETs were more commonly found in higher grade, higher Ki67 index and non-functional tumors (P < 0.05). In multivariate analysis, stage III-IV and low-intensity MGMT were shown to be independent risk factors for progression of PanNETs in the entire cohort, non-functioning subgroup and G2 subgroup (P < 0.05 for all). MGMT promoter methylation tended to be higher in the group with low expression of MGMT, However, methylation of MGMT did not statistically correlate with low expression of MGMT (P = 0.153). CONCLUSIONS In conclusion, our study suggests that decreased expression of MGMT but not MMR is associated with a higher risk of progression of pancreatic neuroendocrine tumors.
Collapse
Affiliation(s)
- Xinchao Ban
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Department of Pathology, Tianjin Medical University, Tianjin, China
- Department of Pathology, Tianjin Medical University General Hospital, Tianjin, China
| | - Shengwei Mo
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zhaohui Lu
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Congwei Jia
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Huilin Shao
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaoyan Chang
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xinxin Mao
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yue Zhang
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Junyi Pang
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yuhan Zhang
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shuangni Yu
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Jie Chen
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
31
|
Tonmoy MIQ, Fariha A, Hami I, Kar K, Reza HA, Bahadur NM, Hossain MS. Computational epigenetic landscape analysis reveals association of CACNA1G-AS1, F11-AS1, NNT-AS1, and MSC-AS1 lncRNAs in prostate cancer progression through aberrant methylation. Sci Rep 2022; 12:10260. [PMID: 35715447 PMCID: PMC9205881 DOI: 10.1038/s41598-022-13381-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 05/24/2022] [Indexed: 12/24/2022] Open
Abstract
Aberrant expression of long non-coding RNAs (lncRNAs), caused by alterations in DNA methylation, is a driving factor in several cancers. Interplay between lncRNAs’ aberrant methylation and expression in prostate cancer (PC) progression still remains largely elusive. Therefore, this study characterized the genome-wide epigenetic landscape and expression profiles of lncRNAs and their clinical impact by integrating multi-omics data implementing bioinformatics approaches. We identified 62 differentially methylated CpG-sites (DMCs) and 199 differentially expressed lncRNAs (DElncRNAs), where 32 DElncRNAs contain 32 corresponding DMCs within promoter regions. Significant negative correlation was observed between 8 DElncRNAs-DMCs pairs. 3 (cg23614229, cg23957912, and cg11052780) DMCs and 4 (CACNA1G-AS1, F11-AS1, NNT-AS1, and MSC-AS1) DElncRNAs were identified as high-risk factors for poor prognosis of PC patients. Overexpression of hypo-methylated CACNA1G-AS1, F11-AS1, and NNT-AS1 and down-regulation of hyper-methylated MSC-AS1 significantly lower the survival of PC patients and could be a potential prognostic and therapeutic biomarker. These DElncRNAs were found to be associated with several molecular functions whose deregulation can lead to cancer. Involvement of these epigenetically deregulated DElncRNAs in cancer-related biological processes was also noticed. These findings provide new insights into the understanding of lncRNA regulation by aberrant DNA methylation which will help to clarify the epigenetic mechanisms underlying PC.
Collapse
Affiliation(s)
- Mahafujul Islam Quadery Tonmoy
- Department of Biotechnology & Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh.,Computational Biology and Chemistry Lab (CBC), Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Atqiya Fariha
- Department of Biotechnology & Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh.,Computational Biology and Chemistry Lab (CBC), Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Ithmam Hami
- Department of Biotechnology & Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Kumkum Kar
- Department of Biotechnology & Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Hasan Al Reza
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka, Bangladesh
| | - Newaz Mohammed Bahadur
- Department of Applied Chemistry and Chemical Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh.,Computational Biology and Chemistry Lab (CBC), Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Md Shahadat Hossain
- Department of Biotechnology & Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh. .,Computational Biology and Chemistry Lab (CBC), Noakhali Science and Technology University, Noakhali, Bangladesh.
| |
Collapse
|
32
|
Bruno MT, Cassaro N, Vitale SG, Guaita A, Boemi S. Possible role of negative human papillomavirus E6/E7 mRNA as a predictor of regression of cervical intraepithelial neoplasia 2 lesions in hr-HPV positive women. Virol J 2022; 19:95. [PMID: 35624470 PMCID: PMC9145497 DOI: 10.1186/s12985-022-01822-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/11/2022] [Indexed: 12/02/2022] Open
Abstract
Background The aim of this study was to evaluate the regression rate of CIN2 p16 positive lesions in women over 25 years of age and identify possible predictors of regression. Methods A total of 128 CIN2 p16 positive patients over 25 years old were considered. The women met the following inclusion criteria: HPV genotype 16, 18, 31, 33, 45 positive, HPV E6 / E7 mRNA test positive, without immune system pathologies, not pregnant and had completed at least two years of follow-up. At each follow-up examination patients were examined by colposcopy, HPV test, E6/E7mRNA, targeted biopsy and p16 protein detection. The final state after the two years of follow-up was classified as progression if the histology showed a CIN3, persistence if the lesion was a CIN2, regression if negative or LSIL. The predicted regression factors evaluated were: HPV E6/E7mRNA, protein p16. Results Overall, we had 35.1% (45 cases) of progression to CIN3, 41.4% (53 cases) of persistence and 23.4% (30 cases) of regression. The regression rate was higher in women with negative mRNA 92.8% (26/28), OR 312 (34.12–1798.76) p = 0.0001, while women with p16 negative had a regression of 22.6% (7/31), OR 0.94 (95% CI 0.36–2.46), p was not significant. We found no significant difference in regression between p16 positive (23.7%) and p16 negative (22.6%) CIN2 p16 lesions. p16 had a VPN of 22.6 (CI 95% 0.159–0.310), indicating that a p16 negative lesion does not exclude a CIN2 + . Conclusions We had a regression rate of 23.4%, which was low if we consider that in the literature the regression rates vary from 55 to 63%. The discrepancy in the results may indeed be explained by the fact that all lesions in our study were hr-HPV positive and belonged to “older women” reflecting a more "high-risk" population. As regression factors we studied p16 and HPV E6/E7 mRNA. The results of our study show that HPV mRNA, if negative, appears to be able to identify CIN2 lesions with a higher probability of regression and underlines how a p16 negative is not an indicator of regression.
Collapse
Affiliation(s)
- Maria Teresa Bruno
- Department of General Surgery and Medical Surgery Specialties, Gynecological Clinic, University of Catania, Catania, Italy. .,Multidisciplinary Research Center in Papillomavirus Pathology, University of Catania, Catania, Italy.
| | - Nazario Cassaro
- Gynecological Oncology, Humanitas, Catania, Italy.,Multidisciplinary Research Center in Papillomavirus Pathology, University of Catania, Catania, Italy
| | - Salvatore Giovanni Vitale
- Department of General Surgery and Medical Surgery Specialties, Gynecological Clinic, University of Catania, Catania, Italy
| | - Arianna Guaita
- Department of Statistics, Sapienza University of Roma, Rome, Italy
| | - Sara Boemi
- Department of General Surgery and Medical Surgery Specialties, Gynecological Clinic, University of Catania, Catania, Italy
| |
Collapse
|
33
|
Yang S, Huang Y, Zhao Q. Epigenetic Alterations and Inflammation as Emerging Use for the Advancement of Treatment in Non-Small Cell Lung Cancer. Front Immunol 2022; 13:878740. [PMID: 35514980 PMCID: PMC9066637 DOI: 10.3389/fimmu.2022.878740] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/21/2022] [Indexed: 12/26/2022] Open
Abstract
Lung cancer remains one of the most common malignancies in the world. Nowadays, the most common lung cancer is non-small cell lung cancer (NSCLC), namely, adenocarcinoma, squamous cell carcinoma, and large cell lung carcinoma. Epigenetic alterations that refer to DNA methylation, histone modifications, and noncoding RNA expression, are now suggested to drive the genesis and development of NSCLC. Additionally, inflammation-related tumorigenesis also plays a vital role in cancer research and efforts have been attempted to reverse such condition. During the occurrence and development of inflammatory diseases, the immune component of inflammation may cause epigenetic changes, but it is not always certain whether the immune component itself or the stimulated host cells cause epigenetic changes. Moreover, the links between epigenetic alterations and cancer-related inflammation and their influences on the human cancer are not clear so far. Therefore, the connection between epigenetic drivers, inflammation, and NSCLC will be summarized. Investigation on such topic is most likely to shed light on the molecular and immunological mechanisms of epigenetic and inflammatory factors and promote the application of epigenetics in the innovative diagnostic and therapeutic strategies for NSCLC.
Collapse
Affiliation(s)
- Shuo Yang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Shuo Yang, ; Yang Huang, ; Qi Zhao,
| | - Yang Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Shuo Yang, ; Yang Huang, ; Qi Zhao,
| | - Qi Zhao
- Cancer Centre, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, Macau SAR, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau, Macau SAR, China
- *Correspondence: Shuo Yang, ; Yang Huang, ; Qi Zhao,
| |
Collapse
|
34
|
Muthamilselvan S, Raghavendran A, Palaniappan A. Stage-differentiated ensemble modeling of DNA methylation landscapes uncovers salient biomarkers and prognostic signatures in colorectal cancer progression. PLoS One 2022; 17:e0249151. [PMID: 35202405 PMCID: PMC8870460 DOI: 10.1371/journal.pone.0249151] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 02/01/2022] [Indexed: 12/15/2022] Open
Abstract
Background Aberrant DNA methylation acts epigenetically to skew the gene transcription rate up or down, contributing to cancer etiology. A gap in our understanding concerns the epigenomics of stagewise cancer progression. In this study, we have developed a comprehensive computational framework for the stage-differentiated modelling of DNA methylation landscapes in colorectal cancer (CRC). Methods The methylation β-matrix was derived from the public-domain TCGA data, converted into M-value matrix, annotated with AJCC stages, and analysed for stage-salient genes using an ensemble of approaches involving stage-differentiated modelling of methylation patterns and/or expression patterns. Differentially methylated genes (DMGs) were identified using a contrast against controls (adjusted p-value <0.001 and |log fold-change of M-value| >2), and then filtered using a series of all possible pairwise stage contrasts (p-value <0.05) to obtain stage-salient DMGs. These were then subjected to a consensus analysis, followed by matching with clinical data and performing Kaplan–Meier survival analysis to evaluate the impact of methylation patterns of consensus stage-salient biomarkers on disease prognosis. Results We found significant genome-wide changes in methylation patterns in cancer cases relative to controls agnostic of stage. The stage-differentiated models yielded the following consensus salient genes: one stage-I gene (FBN1), one stage-II gene (FOXG1), one stage-III gene (HCN1) and four stage-IV genes (NELL1, ZNF135, FAM123A, LAMA1). All the biomarkers were significantly hypermethylated in the promoter regions, indicating down-regulation of expression and implying a putative CpG island Methylator Phenotype (CIMP) manifestation. A prognostic signature consisting of FBN1 and FOXG1 survived all the analytical filters, and represents a novel early-stage epigenetic biomarker / target. Conclusions We have designed and executed a workflow for stage-differentiated epigenomic analysis of colorectal cancer progression, and identified several stage-salient diagnostic biomarkers, and an early-stage prognostic biomarker panel. The study has led to the discovery of an alternative CIMP-like signature in colorectal cancer, reinforcing the role of CIMP drivers in tumor pathophysiology.
Collapse
Affiliation(s)
- Sangeetha Muthamilselvan
- Department of Bioinformatics, School of Chemical and BioTechnology, SASTRA Deemed University, Thanjavur, India
| | - Abirami Raghavendran
- Department of Bioinformatics, School of Chemical and BioTechnology, SASTRA Deemed University, Thanjavur, India
| | - Ashok Palaniappan
- Department of Bioinformatics, School of Chemical and BioTechnology, SASTRA Deemed University, Thanjavur, India
- * E-mail:
| |
Collapse
|
35
|
Li Q, Li Y, Sun X, Zhang X, Zhang M. Genomic Analysis of Abnormal DNAM Methylation in Parathyroid Tumors. Int J Endocrinol 2022; 2022:4995196. [PMID: 35879975 PMCID: PMC9308548 DOI: 10.1155/2022/4995196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 05/20/2022] [Accepted: 06/17/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Parathyroid tumors are common endocrine neoplasias associated with primary hyperparathyroidism. Although numerous studies have studied the subject, the predictive value of gene biomarkers nevertheless remains low. METHODS In this study, we performed genomic analysis of abnormal DNA methylation in parathyroid tumors. After data preprocessing, differentially methylated genes were extracted from patients with parathyroid tumors by using t-tests. RESULTS After refinement of the basic differential methylation, 28241 unique CpGs (634 genes) were identified to be methylated. The methylated genes were primarily involved in 7 GO terms, and the top 3 terms were associated with cyst morphogenesis, ion transport, and GTPase signal. Following pathway enrichment analyses, a total of 10 significant pathways were enriched; notably, the top 3 pathways were cholinergic synapses, glutamatergic synapses, and oxytocin signaling pathways. Based on PPIN and ego-net analysis, 67 ego genes were found which could completely separate the diseased group from the normal group. The 10 most prominent genes included POLA1, FAM155 B, AMMECR1, THOC2, CCND1, CLDN11, IDS, TST, RBPJ, and GNA11. SVM analysis confirmed that this grouping approach was precise. CONCLUSIONS This research provides useful data to further explore novel genes and pathways as therapeutic targets for parathyroid tumors.
Collapse
Affiliation(s)
- Qing Li
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University &Shandong Provincial Qianfoshan Hospital, No 16766 Jingshi Road, Jinan, Shandong, China
| | - Yonghao Li
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University &Shandong Provincial Qianfoshan Hospital, No 16766 Jingshi Road, Jinan, Shandong, China
| | - Ximei Sun
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University &Shandong Provincial Qianfoshan Hospital, No 16766 Jingshi Road, Jinan, Shandong, China
| | - Xinlei Zhang
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University &Shandong Provincial Qianfoshan Hospital, No 16766 Jingshi Road, Jinan, Shandong, China
| | - Mei Zhang
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University &Shandong Provincial Qianfoshan Hospital, No 16766 Jingshi Road, Jinan, Shandong, China
| |
Collapse
|
36
|
Liu Z, Tang H, Zhang W, Wang J, Wan L, Li X, Ji Y, Kong N, Zhang Y, Wang J, Fan Z, Guo Q. Coupling of serum CK20 and hyper-methylated CLIP4 as promising biomarker for colorectal cancer diagnosis: from bioinformatics screening to clinical validation. Aging (Albany NY) 2021; 13:26161-26179. [PMID: 34965217 PMCID: PMC8751608 DOI: 10.18632/aging.203804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/13/2021] [Indexed: 11/25/2022]
Abstract
Colorectal cancer (CRC) is one of the most common and lethal malignancies. The identification of minimally invasive and precise biomarkers is an urgent need for the early diagnosis of CRC. Through bioinformatics analysis of 395 CRC tissues and 63 CRC cell lines, CK18, CK20, de-methylated HPDL and hyper-methylated CLIP4 were identified as candidate serum biomarkers. Then, a training cohort consisting of 60 CRC, 30 colorectal adenomas (CA) and 33 healthy controls and a validation cohort consisting of 60 CRC, 30 CA and 30 healthy controls were enrolled. In the training cohort, enzyme-linked immunosorbent assay (ELISA) showed that CK18 and CK20 were all significantly higher in CRC and CA. CK18 diagnosed CRC with 46.67% sensitivity and 87.3% specificity; CK20 diagnosed CRC with 28.33% sensitivity and 90.47% specificity. Methylation-specific PCR (MSP) indicated that de-methylated HPDL and hyper-methylated CLIP4 were significantly detected in CRC and CA. De-methylated HPDL diagnosed CRC with 36.67% sensitivity and 93.65% specificity and hyper-methylated CLIP4 with 73.33% sensitivity and 84.13% specificity. Random combined analysis suggested that CK20/hyper-methylated CLIP4 diagnosed CRC with 91.67% sensitivity and 82.54% specificity. In the validation cohort, CK20 diagnosed CRC with 36.7% sensitivity and 88.3% specificity and hyper-methylated CLIP4 with 80% sensitivity and 85% specificity. CK20/hyper-methylated CLIP4 diagnosed CRC with 95% sensitivity and 81.7% specificity. Compared with serum biomarkers reported before, CK20/hyper-methylated CLIP4 possessed the potential to be a new effective and precise diagnostic biomarker for CRC.
Collapse
Affiliation(s)
- Zhongjian Liu
- Department of Gastroenterology, The First People's Hospital of Yunnan Province, Kunming, China.,The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Hui Tang
- Department of Gastroenterology, The First People's Hospital of Yunnan Province, Kunming, China.,The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Wen Zhang
- Department of Gastroenterology, The First People's Hospital of Yunnan Province, Kunming, China.,The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Jinli Wang
- Department of Gastroenterology, The First People's Hospital of Yunnan Province, Kunming, China.,The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Lilan Wan
- Department of Gastroenterology, The First People's Hospital of Yunnan Province, Kunming, China.,The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Xisha Li
- Department of Gastroenterology, The First People's Hospital of Yunnan Province, Kunming, China.,The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Yuping Ji
- Department of Gastroenterology, The Third People's Hospital of Yunnan Province, Kunming, China
| | - Na Kong
- Department of Gastroenterology, The Third People's Hospital of Yunnan Province, Kunming, China
| | - Yanfang Zhang
- Department of Gastroenterology, The Third People's Hospital of Yunnan Province, Kunming, China
| | - Jiangang Wang
- Department of Gastroenterology, The Third People's Hospital of Yunnan Province, Kunming, China
| | - Zhang Fan
- Department of Gastroenterology, The Third People's Hospital of Yunnan Province, Kunming, China
| | - Qiang Guo
- Department of Gastroenterology, The First People's Hospital of Yunnan Province, Kunming, China.,The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
37
|
Choi JM, Kim SG. Effect of Helicobacter pylori Eradication on Epigenetic Changes in Gastric Cancer-related Genes. THE KOREAN JOURNAL OF HELICOBACTER AND UPPER GASTROINTESTINAL RESEARCH 2021. [DOI: 10.7704/kjhugr.2021.0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It is known that gastric carcinogenesis results from the progressive changes from chronic gastritis to gastric atrophy, intestinal metaplasia, dysplasia, and invasive carcinoma. Several genetic and epigenetic alterations are involved in this process, and Helicobacter pylori (H. pylori) infection is believed to induce the initiation and progression of these steps. From an epigenetic point of view, H. pylori induces hypermethylation of genes involved in the development of gastric cancer and regulates the expression of various microRNAs (miRNAs). These H. pylori-related epigenetic changes are accumulated not only at the site of neoplasm but also in the adjacent non-cancerous gastric mucosa. Thereby, a state vulnerable to gastric cancer known as an epigenetic field defect is formed. H. pylori eradication can have an effective chemopreventive effect in gastric carcinogenesis. However, the molecular biological changes that occur in the stomach environment during H. pylori eradication have not yet been established. Several studies have reported that H. pylori eradication can restore infection-related changes, especially epigenetic alterations in gastric cancer-related genes, but some studies have shown otherwise. Simply put, it appears that the recovery of methylated gastric cancer-related genes and miRNAs during H. pylori eradication may vary among genes and may also differ depending on the histological subtype of the gastric mucosa. In this review, we will discuss the potential mechanism of gastric cancer prevention by H. pylori eradication, mainly from an epigenetic perspective.
Collapse
|
38
|
Gaebe K, Li AY, Das S. Clinical Biomarkers for Early Identification of Patients with Intracranial Metastatic Disease. Cancers (Basel) 2021; 13:cancers13235973. [PMID: 34885083 PMCID: PMC8656478 DOI: 10.3390/cancers13235973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/25/2021] [Accepted: 11/25/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary The development of brain metastases, or intracranial metastatic disease (IMD), is a serious and life-altering complication for many patients with cancer. While there have been substantial advancements in the treatments available for IMD and in our understanding of its pathogenesis, conventional methods remain insufficient to detect IMD at an early stage. In this review, we discuss current research on biomarkers specific to IMD. In particular, we highlight biomarkers that can be easily accessed via the bloodstream or cerebrospinal fluid, including circulating tumor cells and DNA, as well as advanced imaging techniques. The continued development of these assays could enable clinicians to detect IMD prior to the development of IMD-associated symptoms and ultimately improve patient prognosis and survival. Abstract Nearly 30% of patients with cancer will develop intracranial metastatic disease (IMD), and more than half of these patients will die within a few months following their diagnosis. In light of the profound effect of IMD on survival and quality of life, there is significant interest in identifying biomarkers that could facilitate the early detection of IMD or identify patients with cancer who are at high IMD risk. In this review, we will highlight early efforts to identify biomarkers of IMD and consider avenues for future investigation.
Collapse
Affiliation(s)
- Karolina Gaebe
- Institute of Medical Science, Faculty of Medicine, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 3K1, Canada; (K.G.); (A.Y.L.)
| | - Alyssa Y. Li
- Institute of Medical Science, Faculty of Medicine, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 3K1, Canada; (K.G.); (A.Y.L.)
| | - Sunit Das
- Institute of Medical Science, Faculty of Medicine, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 3K1, Canada; (K.G.); (A.Y.L.)
- Division of Neurosurgery, St. Michael’s Hospital, University of Toronto, 30 Bond Street, Toronto, ON M5B 1W8, Canada
- Correspondence:
| |
Collapse
|
39
|
Li L, Ye Z, Yang S, Yang H, Jin J, Zhu Y, Tao J, Chen S, Xu J, Liu Y, Liang W, Wang B, Yang M, Huang Q, Chen Z, Li W, Fan JB, Liu D. Diagnosis of pulmonary nodules by DNA methylation analysis in bronchoalveolar lavage fluids. Clin Epigenetics 2021; 13:185. [PMID: 34620221 PMCID: PMC8499516 DOI: 10.1186/s13148-021-01163-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/30/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Lung cancer is the leading cause of cancer-related mortality. The alteration of DNA methylation plays a major role in the development of lung cancer. Methylation biomarkers become a possible method for lung cancer diagnosis. RESULTS We identified eleven lung cancer-specific methylation markers (CDO1, GSHR, HOXA11, HOXB4-1, HOXB4-2, HOXB4-3, HOXB4-4, LHX9, MIR196A1, PTGER4-1, and PTGER4-2), which could differentiate benign and malignant pulmonary nodules. The methylation levels of these markers are significantly higher in malignant tissues. In bronchoalveolar lavage fluid (BALF) samples, the methylation signals maintain the same differential trend as in tissues. An optimal 5-marker model for pulmonary nodule diagnosis (malignant vs. benign) was developed from all possible combinations of the eleven markers. In the test set (57 tissue and 71 BALF samples), the area under curve (AUC) value achieves 0.93, and the overall sensitivity is 82% at the specificity of 91%. In an independent validation set (111 BALF samples), the AUC is 0.82 with a specificity of 82% and a sensitivity of 70%. CONCLUSIONS This model can differentiate pulmonary adenocarcinoma and squamous carcinoma from benign diseases, especially for infection, inflammation, and tuberculosis. The model's performance is not affected by gender, age, smoking history, or the solid components of nodules.
Collapse
Affiliation(s)
- Lei Li
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, No.37 Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan, China
| | - Zhujia Ye
- AnchorDx. Medical Co., Ltd. Unit 502, 3rd Luoxuan Road, International Bio-Island, Guangzhou, 510300, Guangdong, China
| | - Sai Yang
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, No.37 Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan, China
| | - Hao Yang
- AnchorDx. Medical Co., Ltd. Unit 502, 3rd Luoxuan Road, International Bio-Island, Guangzhou, 510300, Guangdong, China
| | - Jing Jin
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, No.37 Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan, China
| | - Yingying Zhu
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, No.37 Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan, China
| | - Jinsheng Tao
- AnchorDx. Medical Co., Ltd. Unit 502, 3rd Luoxuan Road, International Bio-Island, Guangzhou, 510300, Guangdong, China
| | - Siyu Chen
- AnchorDx. Medical Co., Ltd. Unit 502, 3rd Luoxuan Road, International Bio-Island, Guangzhou, 510300, Guangdong, China
| | - Jiehan Xu
- AnchorDx. Medical Co., Ltd. Unit 502, 3rd Luoxuan Road, International Bio-Island, Guangzhou, 510300, Guangdong, China
| | - Yanying Liu
- AnchorDx. Medical Co., Ltd. Unit 502, 3rd Luoxuan Road, International Bio-Island, Guangzhou, 510300, Guangdong, China
| | - Weihe Liang
- AnchorDx. Medical Co., Ltd. Unit 502, 3rd Luoxuan Road, International Bio-Island, Guangzhou, 510300, Guangdong, China
| | - Bo Wang
- AnchorDx. Medical Co., Ltd. Unit 502, 3rd Luoxuan Road, International Bio-Island, Guangzhou, 510300, Guangdong, China
| | - Mengzhu Yang
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, No.37 Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan, China
| | - Qiaoyun Huang
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, No.37 Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan, China
| | - Zhiwei Chen
- AnchorDx. Medical Co., Ltd. Unit 502, 3rd Luoxuan Road, International Bio-Island, Guangzhou, 510300, Guangdong, China.
- AnchorDx, Inc., 46305 Landing Pkwy, Fremont, CA, 94538, USA.
| | - Weimin Li
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, No.37 Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan, China.
| | - Jian-Bing Fan
- AnchorDx. Medical Co., Ltd. Unit 502, 3rd Luoxuan Road, International Bio-Island, Guangzhou, 510300, Guangdong, China.
- Department of Pathology, School of Basic Medical Science, Southern Medical University, 1838 ShaTai Road, Guangzhou, 510515, China.
| | - Dan Liu
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, No.37 Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
40
|
Chuang K, Wang S, Hsu S, Wang L. Impact of bromodomain-containing protein 4 (BRD4) and intestine-specific homeobox (ISX) expression on the prognosis of patients with hepatocellular carcinoma' for better clarity. Cancer Med 2021; 10:5545-5556. [PMID: 34173348 PMCID: PMC8366091 DOI: 10.1002/cam4.4094] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/26/2021] [Accepted: 06/05/2021] [Indexed: 12/18/2022] Open
Abstract
Epigenetic regulation is important for cancer tumor metastasis and progression, including lung and liver cancer. However, the mechanism of epigenetic regulation in liver cancer leaves much to be discussed. According to a previous study, p300/CBP-associated factor (PCAF) mediated epithelial-mesenchymal transition (EMT) and promotes cancer metastasis by recruiting intestine-specific homeobox (ISX) and bromodomain-containing protein 4 (BRD4) in lung cancer. To figure out whether the three genes are also expressed in patients with hepatocellular carcinoma (HCC) or not, and their correlation with patients' outcome, BRD4, PCAF, and ISX messenger RNA (mRNA) expression levels in 377 patients with HCC were investigated using quantitative polymerase chain reaction and confocal fluorescence imaging. The correlation of the gene expression (PCAF, ISX, and BRD4) in liver cancer is also being investigated. Here, we show that the mRNA expression of PCAF, BRD4, and ISX in 377 paired specimens from patients with HCC, and the adjacent normal tissues exhibited a tumor-specific expression pattern, highly correlated with disease pathogenesis, patient survival time, progression stage, and poor prognosis. The results show that ISX and BRD4 can potentially be a target for improving the survival rate.
Collapse
Affiliation(s)
- Kai‐Ting Chuang
- Graduate Institute of MedicineCollege of MedicineKaohsiung Medical UniversityKaohsiungTaiwan
- School of Medicine, College of MedicineKaohsiung Medical UniversityKaohsiungTaiwan
| | - Shen‐Nien Wang
- Graduate Institute of MedicineCollege of MedicineKaohsiung Medical UniversityKaohsiungTaiwan
- Division of General and Digestive SurgeryDepartment of SurgeryKaohsiung Medical University HospitalKaohsiungTaiwan
- Department of SurgeryCollege of MedicineKaohsiung Medical University HospitalKaohsiungTaiwan
- School of Medicine, College of MedicineKaohsiung Medical UniversityKaohsiungTaiwan
| | - Shih‐Hsien Hsu
- Graduate Institute of MedicineCollege of MedicineKaohsiung Medical UniversityKaohsiungTaiwan
- Department of Medical ResearchKaohsiung Medical University HospitalKaohsiung Medical UniversityKaohsiungTaiwan
| | - Li‐Ting Wang
- Department of Life ScienceNational Taiwan Normal UniversityTaipeiTaiwan
- Center of Applied GenomicsKaohsiung Medical UniversityKaohsiungTaiwan
| |
Collapse
|
41
|
Zhang C, Zhou Y, Mi L, Ma J, Wu X, Fei Y. High Performance of a Metal Layer-Assisted Guided-Mode Resonance Biosensor Modulated by Double-Grating. BIOSENSORS-BASEL 2021; 11:bios11070221. [PMID: 34356692 PMCID: PMC8301824 DOI: 10.3390/bios11070221] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 11/16/2022]
Abstract
Guided-mode resonance (GMR) sensors are widely used as biosensors with the advantages of simple structure, easy detection schemes, high efficiency, and narrow linewidth. However, their applications are limited by their relatively low sensitivity (<200 nm/RIU) and in turn low figure of merit (FOM, <100 1/RIU). Many efforts have been made to enhance the sensitivity or FOM, separately. To enhance the sensitivity and FOM simultaneously for more sensitive sensing, we proposed a metal layer-assisted double-grating (MADG) structure with the evanescent field extending to the sensing region enabled by the metal reflector layer underneath the double-grating. The influence of structural parameters was systematically investigated. Bulk sensitivity of 550.0 nm/RIU and FOM of 1571.4 1/RIU were obtained after numerical optimization. Compared with a single-grating structure, the surface sensitivity of the double-grating structure for protein adsorption increases by a factor of 2.4 times. The as-proposed MADG has a great potential to be a biosensor with high sensitivity and high accuracy.
Collapse
|
42
|
Common DNA methylation dynamics in endometriod adenocarcinoma and glioblastoma suggest universal epigenomic alterations in tumorigenesis. Commun Biol 2021; 4:607. [PMID: 34021236 PMCID: PMC8140130 DOI: 10.1038/s42003-021-02094-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 04/10/2021] [Indexed: 02/04/2023] Open
Abstract
Trends in altered DNA methylation have been defined across human cancers, revealing global loss of methylation (hypomethylation) and focal gain of methylation (hypermethylation) as frequent cancer hallmarks. Although many cancers share these trends, little is known about the specific differences in DNA methylation changes across cancer types, particularly outside of promoters. Here, we present a comprehensive comparison of DNA methylation changes between two distinct cancers, endometrioid adenocarcinoma (EAC) and glioblastoma multiforme (GBM), to elucidate common rules of methylation dysregulation and changes unique to cancers derived from specific cells. Both cancers exhibit significant changes in methylation over regulatory elements. Notably, hypermethylated enhancers within EAC samples contain several transcription factor binding site clusters with enriched disease ontology terms highlighting uterine function, while hypermethylated enhancers in GBM are found to overlap active enhancer marks in adult brain. These findings suggest that loss of original cellular identity may be a shared step in tumorigenesis.
Collapse
|
43
|
Epigenome Chaos: Stochastic and Deterministic DNA Methylation Events Drive Cancer Evolution. Cancers (Basel) 2021; 13:cancers13081800. [PMID: 33918773 PMCID: PMC8069666 DOI: 10.3390/cancers13081800] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/04/2021] [Accepted: 04/07/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Cancer is a group of diseases characterized by abnormal cell growth with a high potential to invade other tissues. Genetic abnormalities and epigenetic alterations found in tumors can be due to high levels of DNA damage and repair. These can be transmitted to daughter cells, which assuming other alterations as well, will generate heterogeneous and complex populations. Deciphering this complexity represents a central point for understanding the molecular mechanisms of cancer and its therapy. Here, we summarize the genomic and epigenomic events that occur in cancer and discuss novel approaches to analyze the epigenetic complexity of cancer cell populations. Abstract Cancer evolution is associated with genomic instability and epigenetic alterations, which contribute to the inter and intra tumor heterogeneity, making genetic markers not accurate to monitor tumor evolution. Epigenetic changes, aberrant DNA methylation and modifications of chromatin proteins, determine the “epigenome chaos”, which means that the changes of epigenetic traits are randomly generated, but strongly selected by deterministic events. Disordered changes of DNA methylation profiles are the hallmarks of all cancer types, but it is not clear if aberrant methylation is the cause or the consequence of cancer evolution. Critical points to address are the profound epigenetic intra- and inter-tumor heterogeneity and the nature of the heterogeneity of the methylation patterns in each single cell in the tumor population. To analyze the methylation heterogeneity of tumors, new technological and informatic tools have been developed. This review discusses the state of the art of DNA methylation analysis and new approaches to reduce or solve the complexity of methylated alleles in DNA or cell populations.
Collapse
|
44
|
Motwani J, Rodger EJ, Stockwell PA, Baguley BC, Macaulay EC, Eccles MR. Genome-wide DNA methylation and RNA expression differences correlate with invasiveness in melanoma cell lines. Epigenomics 2021; 13:577-598. [PMID: 33781093 DOI: 10.2217/epi-2020-0440] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Aims & objectives: The aim of this study was to investigate the role of DNA methylation in invasiveness in melanoma cells. Materials & methods: The authors carried out genome-wide transcriptome (RNA sequencing) and reduced representation bisulfite sequencing methylome profiling between noninvasive (n = 4) and invasive melanoma cell lines (n = 5). Results: The integration of differentially expressed genes and differentially methylated fragments (DMFs) identified 12 DMFs (two in AVPI1, one in HMG20B, two in BCL3, one in NTSR1, one in SYNJ2, one in ROBO2 and four in HORMAD2) that overlapped with either differentially expressed genes (eight DMFs and six genes) or cis-targets of lncRNAs (five DMFs associated with cis-targets and four differentially expressed lncRNAs). Conclusions: DNA methylation changes are associated with a number of transcriptional differences observed in noninvasive and invasive phenotypes in melanoma.
Collapse
Affiliation(s)
- Jyoti Motwani
- Department of Pathology, Otago Medical School - Dunedin Campus, University of Otago, Dunedin 9054, New Zealand
| | - Euan J Rodger
- Department of Pathology, Otago Medical School - Dunedin Campus, University of Otago, Dunedin 9054, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland 1010, New Zealand
| | - Peter A Stockwell
- Department of Pathology, Otago Medical School - Dunedin Campus, University of Otago, Dunedin 9054, New Zealand
| | - Bruce C Baguley
- Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland 1010, New Zealand.,Auckland Cancer Society Research Centre, The University of Auckland, Auckland 1023, New Zealand
| | - Erin C Macaulay
- Department of Pathology, Otago Medical School - Dunedin Campus, University of Otago, Dunedin 9054, New Zealand
| | - Michael R Eccles
- Department of Pathology, Otago Medical School - Dunedin Campus, University of Otago, Dunedin 9054, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland 1010, New Zealand
| |
Collapse
|
45
|
Liu W, Jiang K, Wang J, Mei T, Zhao M, Huang D. Upregulation of GNPNAT1 Predicts Poor Prognosis and Correlates With Immune Infiltration in Lung Adenocarcinoma. Front Mol Biosci 2021; 8:605754. [PMID: 33842535 PMCID: PMC8027087 DOI: 10.3389/fmolb.2021.605754] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 02/23/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Glucosamine 6-phosphate N-acetyltransferase (GNPNAT1) is a key enzyme in the hexosamine biosynthetic pathway (HBP), which functions as promoting proliferation in some tumors, yet its potential biological function and mechanism in lung adenocarcinoma (LUAD) have not been explored. METHODS The mRNA differential expression of GNPNAT1 in LUAD and normal tissues was analyzed using the Cancer Genome Atlas (TCGA) database and validated by real-time PCR. The clinical value of GNPNAT1 in LUAD was investigated based on the data from the TCGA database. Then, immunohistochemistry (IHC) of GNPNAT1 was applied to verify the expression and clinical significance in LUAD from the protein level. The relationship between GNPNAT1 and epigenetics was explored using the cBioPortal database, and the miRNAs regulating GNPNAT1 were found using the miRNA database. The association between GNPNAT1 expression and tumor-infiltrating immune cells in LUAD was observed through the Tumor IMmune Estimation Resource (TIMER). Finally, Gene set enrichment analysis (GSEA) was used to explore the biological signaling pathways involved in GNPNAT1 in LUAD. RESULTS GNPNAT1 was upregulated in LUAD compared with normal tissues, which was verified through qRT-PCR in different cell lines (P < 0.05), and associated with patients' clinical stage, tumor size, and lymphatic metastasis status (all P < 0.01). Kaplan-Meier (KM) analysis suggested that patients with upregulated GNPNAT1 had a relatively poor prognosis (P < 0.0001). Furthermore, multivariate Cox regression analysis indicated that GNPNAT1 was an independent prognostic factor for LUAD (OS, TCGA dataset: HR = 1.028, 95% CI: 1.013-1.044, P < 0.001; OS, validation set: HR = 1.313, 95% CI: 1.130-1.526, P < 0.001). GNPNAT1 overexpression was correlated with DNA copy amplification (P < 0.0001), low DNA methylation (R = -0.52, P < 0.0001), and downregulation of hsa-miR-30d-3p (R = -0.17, P < 0.001). GNPNAT1 expression was linked to B cells (R = -0.304, P < 0.0001), CD4+T cells (R = -0.218, P < 0.0001), and dendritic cells (R = -0.137, P = 0.002). Eventually, GSEA showed that the signaling pathways of the cell cycle, ubiquitin-mediated proteolysis, mismatch repair and p53 were enriched in the GNPNAT1 overexpression group. CONCLUSION GNPNAT1 may be a potential prognostic biomarker and novel target for intervention in LUAD.
Collapse
Affiliation(s)
| | | | | | | | | | - Dingzhi Huang
- Department of Thoracic Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
46
|
Sadeghan AA, Soltaninejad H, Dadmehr M, Hamidieh AA, Asadollahi MA, Hosseini M, Ganjali MR, Hosseinkhani S. Fluorimetric detection of methylated DNA of Sept9 promoter by silver nanoclusters at intrastrand 6C-loop. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 247:119081. [PMID: 33128948 DOI: 10.1016/j.saa.2020.119081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/07/2020] [Accepted: 10/12/2020] [Indexed: 06/11/2023]
Abstract
Methylation of DNA at carbon 5 of cytosines is the most common epigenetic modification of human genome. Due to its critical role in many normal cell processes such as growth and development, any aberrant methylation pattern in a particular locus may lead to abnormal functions and diseases such as cancer. Development of methods to detect methylation state of DNA which may eliminate labor-intensive chemical or enzymatic treatments has received considerable attention in recent years. Herein, we report a DNA methylation detection procedure based on fluorescence turn-on strategy. Target sequence was selected from Sept9 promoter region that has been reported as one of the most frequently methylated sites in colorectal cancer. Probe DNA was designed to be complementary to this sequence with an additional six cytosines in the middle to form an internal loop to host silver nanoclusters. The fluorescence intensity of the synthesized silver nanoclusters with the duplexes of probe-non-methylated target was significantly different from that of probe-methylated target. The fluorescence enhanced with increasing the methylated DNA concentration with a linear relation in the range of 1.0 × 10-8 M to 5.0 × 10-7 M with the detection limit of 8.2 × 10-9 M, and quenched with non-methylated ones. The method was very specific in the presence of non-complementary sequences with maximum similarity of 40%. Circular dichroism spectra indicated that silver ions significantly affected the structure of methylated and non-methylated DNA into different extents which could further influence the nanocluster fluorescence. Finally, a method was introduced to meet the concerns in the applicability of the proposed method in real situation.
Collapse
Affiliation(s)
- Amir Amiri Sadeghan
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hossein Soltaninejad
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran; Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan, Iran
| | | | - Amir Ali Hamidieh
- Pediatric Cell Therapy Research Center, Tehran University of Medical Scienses, Iran
| | - Mohammad Ali Asadollahi
- Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan, Iran
| | - Morteza Hosseini
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran
| | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry, University of Tehran, Tehran, Iran; Biosensor Research Center, Endocrinology & Metabolism Molecular - Cellular Sciences Institute, Iran
| | - Saman Hosseinkhani
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
47
|
Sequeira D, Baptista PV, Valente R, Piedade MFM, Garcia MH, Morais TS, Fernandes AR. Cu(I) complexes as new antiproliferative agents against sensitive and doxorubicin resistant colorectal cancer cells: synthesis, characterization, and mechanisms of action. Dalton Trans 2021; 50:1845-1865. [PMID: 33470993 DOI: 10.1039/d0dt03566a] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cancer is one of the worst health issues worldwide, representing the second leading cause of death. Current chemotherapeutic drugs face some challenges like the acquired resistance of the tumoral cells and low specificity leading to unwanted side effects. There is an urgent need to develop new compounds that may target resistant cells. The synthesis and characterization of two Cu(i) complexes of general formula [Cu(PP)(LL)][BF4], where PP is a phosphane ligand (triphenylphosphine or 1,2-bis(diphenylphosphano) ethane) and LL = is a heteroaromatic bidentate ligand (4,4'-dimethyl-2,2'-bipyridine and 6,3-(2-pyridyl)-5,6-diphenyl-1,2,4-triazine). The new compounds were fully characterized by spectroscopic techniques (NMR, FTIR and UV-vis.), elemental analysis (C, H, N and S) and two structures were determined by single X-ray diffraction studies. The antiproliferative potential of the new Cu(i) complexes were studied in tumor (breast adenocarcinoma, ovarian carcinoma and in colorectal carcinoma sensitive and resistant to doxorubicin) and normal (fibroblasts) cell lines. Complexes 1-4 did not show any antiproliferative potential. Amongst the complexes 5-8, complex 8 shows high cytotoxic potential against colorectal cancer sensitive and resistant to doxorubicin and low cytotoxicity towards healthy cells. We show that complexes 5-8 can cleave pDNA and, in particular, the in vitro pDNA cleavage is due to an oxidative mechanism. This oxidative mechanism corroborates the induction of reactive oxygen species (ROS), that triggers HCT116 cell death via apoptosis, as proved by the increased expression of BAX protein relative to BCL-2 protein and the depolarization of mitochondrial membrane potential, and via autophagy. Additionally, complex 8 can block the cell cycle in the G1 phase, also exhibiting a cytostatic potential. Proteomic analysis confirmed the apoptotic, autophagic and cytostatic potential of complex 8, as well as its ability to produce ROS and cause DNA damage. The interference of the complex in folding and protein synthesis and its ability to cause post-translational modifications was also verified. Finally, it was observed that the complex causes a reduction in cellular metabolism. The results herein demonstrated the potential of Cu(i) complexes in targeting doxorubicin sensitive and resistant cells which is positive and must be further explored using in vivo animal models.
Collapse
Affiliation(s)
- Diogo Sequeira
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Portugal.
| | - Pedro V Baptista
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Portugal.
| | - Ruben Valente
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Portugal.
| | - M Fátima M Piedade
- DQB-FCUL, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Portugal. and CQE@IST, Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - M Helena Garcia
- DQB-FCUL, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Portugal. and CQE@FCUL, Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Portugal
| | - Tânia S Morais
- DQB-FCUL, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Portugal. and CQE@FCUL, Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Portugal
| | - Alexandra R Fernandes
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Portugal.
| |
Collapse
|
48
|
Zhao Q, Zhang Y, Shao S, Sun Y, Lin Z. Identification of hub genes and biological pathways in hepatocellular carcinoma by integrated bioinformatics analysis. PeerJ 2021; 9:e10594. [PMID: 33552715 PMCID: PMC7821758 DOI: 10.7717/peerj.10594] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 11/26/2020] [Indexed: 12/18/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC), the main type of liver cancer in human, is one of the most prevalent and deadly malignancies in the world. The present study aimed to identify hub genes and key biological pathways by integrated bioinformatics analysis. Methods A bioinformatics pipeline based on gene co-expression network (GCN) analysis was built to analyze the gene expression profile of HCC. Firstly, differentially expressed genes (DEGs) were identified and a GCN was constructed with Pearson correlation analysis. Then, the gene modules were identified with 3 different community detection algorithms, and the correlation analysis between gene modules and clinical indicators was performed. Moreover, we used the Search Tool for the Retrieval of Interacting Genes (STRING) database to construct a protein protein interaction (PPI) network of the key gene module, and we identified the hub genes using nine topology analysis algorithms based on this PPI network. Further, we used the Oncomine analysis, survival analysis, GEO data set and random forest algorithm to verify the important roles of hub genes in HCC. Lastly, we explored the methylation changes of hub genes using another GEO data (GSE73003). Results Firstly, among the expression profiles, 4,130 up-regulated genes and 471 down-regulated genes were identified. Next, the multi-level algorithm which had the highest modularity divided the GCN into nine gene modules. Also, a key gene module (m1) was identified. The biological processes of GO enrichment of m1 mainly included the processes of mitosis and meiosis and the functions of catalytic and exodeoxyribonuclease activity. Besides, these genes were enriched in the cell cycle and mitotic pathway. Furthermore, we identified 11 hub genes, MCM3, TRMT6, AURKA, CDC20, TOP2A, ECT2, TK1, MCM2, FEN1, NCAPD2 and KPNA2 which played key roles in HCC. The results of multiple verification methods indicated that the 11 hub genes had highly diagnostic efficiencies to distinguish tumors from normal tissues. Lastly, the methylation changes of gene CDC20, TOP2A, TK1, FEN1 in HCC samples had statistical significance (P-value < 0.05). Conclusion MCM3, TRMT6, AURKA, CDC20, TOP2A, ECT2, TK1, MCM2, FEN1, NCAPD2 and KPNA2 could be potential biomarkers or therapeutic targets for HCC. Meanwhile, the metabolic pathway, the cell cycle and mitotic pathway might played vital roles in the progression of HCC.
Collapse
Affiliation(s)
- Qian Zhao
- College of Information Science and Technology, Dalian Martime University, Dalian, Liaoning, China
| | - Yan Zhang
- College of Information Science and Technology, Dalian Martime University, Dalian, Liaoning, China
| | - Shichun Shao
- College of Environmental Science and Engineering, Dalian Martime University, Dalian, Liaoning, China
| | - Yeqing Sun
- College of Environmental Science and Engineering, Dalian Martime University, Dalian, Liaoning, China
| | - Zhengkui Lin
- College of Information Science and Technology, Dalian Martime University, Dalian, Liaoning, China
| |
Collapse
|
49
|
Alkaff AH, Saragih M, Imana SN, Nasution MAF, Tambunan USF. Identification of DNA Methyltransferase-1 Inhibitor for Breast Cancer Therapy through Computational Fragment-Based Drug Design. Molecules 2021; 26:E375. [PMID: 33450856 PMCID: PMC7828308 DOI: 10.3390/molecules26020375] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/08/2021] [Accepted: 01/10/2021] [Indexed: 01/09/2023] Open
Abstract
Epimutation by DNA Methyltransferase 1 (DNMT1), an epigenetic regulator enzyme, may lead to the proliferation of breast cancer. In this report, 168,686 natural products from the PubChem database were screened and modified by in silico method to acquire the potential inhibitor of DNMT1. The initial screening of PubChem natural products using Lipinski's and Veber's rules of three and toxic properties have resulted in 2601 fragment candidates. Four fragments from pharmacophore-based molecular docking simulation were modified by utilizing FragFP and the Lipinski's and Veber's rules of five, and resulted in 51,200 ligands. The toxicological screening collected 13,563 ligands for a series of pharmacophore-based molecular docking simulations to sort out the modified ligands, which had the better binding activity and interactions to DNMT1 compared to the standards, SAH, SAM, and SFG. This step resulted in five ligand candidates, namely C-7756, C-5769, C-1723, C-2129, and C-2140. The ADME-Tox properties prediction showed that the selected ligands are generally better than standards in terms of druglikeness, GI absorption, and oral bioavailability. C-7756 exhibited a stronger affinity to DNMT1 as well as better ADME-Tox properties compared to the other ligands.
Collapse
Affiliation(s)
| | | | | | | | - Usman Sumo Friend Tambunan
- Bioinformatics and Biomedicals Research Group, Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok 16424, West Java, Indonesia; (A.H.A.); (M.S.); (S.N.I.); (M.A.F.N.)
| |
Collapse
|
50
|
Xing D, Fadare O. Molecular events in the pathogenesis of vulvar squamous cell carcinoma. Semin Diagn Pathol 2021; 38:50-61. [PMID: 33032902 PMCID: PMC7749059 DOI: 10.1053/j.semdp.2020.09.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 09/10/2020] [Indexed: 12/18/2022]
Abstract
Vulvar squamous cell carcinomas (VSCC), which constitute over 90% of vulvar malignancies in adults, are classifiable into 2 subgroups that are mostly clinicopathologically distinct, a classification that is fundamentally based whether or not the tumors are HPV-mediated. In this review, we aim to summarize the recent advances in the understanding of molecular events in the pathogenesis of VSCC, including common and targetable mutations, copy number alterations, epigenetics, noncoding RNAs, and tumor immune microenvironment, which may provide insight into the future management of the disease. These events show substantial differences between the 2 subgroups, although significant areas of overlap exist. Recurrent, driver mutations appear to be substantially more prevalent in HPV(-) VSCC. TP53 mutations are the most common somatic mutations in VSCC overall, and are notably predominant in the HPV(-) VSCC, where 30-88% show a mutation. TP53 mutations are associated with worse patient outcomes, and co-mutations between TP53 and either HRAS, PIK3CA or CDKN2A appear to define subsets with even worse outcomes. A wide variety of other somatic mutations have been identified, including a subset with different mutational frequencies between HPV(+) and HPV(-) VSCC. CDKN2A mutations are common, and have been identified in 21 to 55% of HPV(-) VSCC, and in 2 to 25% of HPV(+) VSCC. Hypermethylation of CDKN2A is the most frequently reported epigenetic alteration in VSCC and the expression of some microRNAs may be associated with patient outcomes. The PTEN/PI3K/AKT/mTOR pathway is commonly altered in HPV(+) VSCC, and is accordingly potentially targetable. HPV-positivity/p16 block expression by immunohistochemistry has been found to be an independent prognostic marker for improved survival in VSCC, and may have some predictive value in VSCC patients treated with definitive radiotherapy. 22-39.3% and 68% of VSCC show EGFR amplification and protein overexpression respectively, although the prognostic and predictive value of an EGFR alteration requires additional study. Recurrent chromosomal gains in VSCCs have been found at 1q, 2q, 3q, 4p, 5p, 7p, 8p, 8q, and 12q, and there may be differential patterns of alterations depending on HPV-status. At least one-third of VSCC patients may potentially benefit from immune checkpoint inhibition therapy, based on a high frequency of PD-L1 expression or amplification, or a high tumor mutational burden. Additional studies are ultimately required to better understand the global landscape of genetic and epigenetic alterations in VSCC, and to identify and test potential targets for clinical application.
Collapse
Affiliation(s)
- Deyin Xing
- Departments of Pathology, Oncology, Gynecology and Obstetrics, The Johns Hopkins Medical Institutions, Baltimore, MD, United States.
| | - Oluwole Fadare
- Department of Pathology, University of California San Diego Health, La Jolla, CA, United States
| |
Collapse
|