1
|
Solé L, Lobo-Jarne T, Cabré-Romans JJ, González A, Fernández L, Marruecos L, Guix M, Cuatrecasas M, López S, Bellosillo B, Torres F, Iglesias M, Bigas A, Espinosa L. Loss of the epithelial marker CDX1 predicts poor prognosis in early-stage CRC patients. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119658. [PMID: 38216091 DOI: 10.1016/j.bbamcr.2024.119658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/18/2023] [Accepted: 01/03/2024] [Indexed: 01/14/2024]
Abstract
BACKGROUND We have previously shown that non-curative chemotherapy imposes fetal conversion and high metastatic capacity to cancer cells. From the set of genes differentially expressed in Chemotherapy Resistant Cells, we obtained a characteristic fetal intestinal cell signature that is present in a group of untreated tumors and is sufficient to predict patient prognosis. A feature of this fetal signature is the loss of CDX1. METHODS We have analyzed transcriptomic data in public datasets and performed immunohistochemistry analysis of paraffin embedded tumor samples from two cohorts of colorectal cancer patients. RESULTS We demonstrated that low levels of CDX1 are sufficient to identify patients with poorest outcome at the early tumor stages II and III. Presence tumor areas that are negative for CDX1 staining in stage I cancers is associated with tumor relapse. CONCLUSIONS Our results reveal the actual possibility of incorporating CDX1 immunostaining as a valuable biomarker for CRC patients.
Collapse
Affiliation(s)
- Laura Solé
- Program in Cancer Research, Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain
| | - Teresa Lobo-Jarne
- Program in Cancer Research, Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain
| | - Júlia-Jié Cabré-Romans
- Program in Cancer Research, Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain
| | - Antón González
- Pathology Department, Hospital del Mar, Barcelona, Spain
| | | | - Laura Marruecos
- Program in Cancer Research, Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain; The Walter and Eliza Hall Institute, Melbourne, Australia
| | - Marta Guix
- Oncology Department, Hospital del Mar, Barcelona, Spain
| | - Miriam Cuatrecasas
- Pathology Department, Centre of Biomedical Diagnosis (CDB), Hospital Clinic, 08036 Barcelona, Spain; Centro de Investigacion Biomedica en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD), 28029 Madrid, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Sandra López
- Pathology Department, Centre of Biomedical Diagnosis (CDB), Hospital Clinic, 08036 Barcelona, Spain; Centro de Investigacion Biomedica en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD), 28029 Madrid, Spain
| | | | - Ferran Torres
- Biostatistics Unit, Medical School, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Mar Iglesias
- Pathology Department, Hospital del Mar, Barcelona, Spain; Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain
| | - Anna Bigas
- Program in Cancer Research, Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain; Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain; Josep Carreras Leukemia Research Institute, Barcelona, Spain
| | - Lluís Espinosa
- Program in Cancer Research, Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain; Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain.
| |
Collapse
|
2
|
Two circPPFIA1s negatively regulate liver metastasis of colon cancer via miR-155-5p/CDX1 and HuR/RAB36. Mol Cancer 2022; 21:197. [PMID: 36224588 PMCID: PMC9555114 DOI: 10.1186/s12943-022-01667-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/26/2022] [Indexed: 12/24/2022] Open
Abstract
Background Circular RNAs (circRNAs) play a critical role in colorectal cancer (CRC) progression, including metastasis. However, the detailed molecular mechanism is not fully understood. Methods Differentially expressed circRNAs between primary KM12C and liver metastatic KM12L4 colon cancer cells were identified by microarray. The expression of circRNAs was measured by semi-quantitative (semi-qPCR) and real time-quantitative PCR (RT-qPCR). Metastatic potential including invasive and migratory abilities, and liver metastasis were examined by transwell assays and intrasplenic injection, respectively. CircPPFIA1-associated microRNA (miRNA) and RNA-binding protein (RBP) were screened by an antisense oligonucleotide (ASO) pulldown experiment. The effects of circPPFIA1 on target gene expression were evaluated by RT-qPCR and western blot analyses. Results By analyzing circRNA microarray data, we identified two anti-metastatic circRNAs generated from PPFIA1 with different length, which named circPPFIA1-L (long) and -S (short). They were significantly downregulated in liver metastatic KM12L4 cells compared to primary KM12C cells. The knockdown of circPPFIA1s in KM12C enhanced metastatic potential and increased liver metastasis. Conversely, overexpression of circPPFIA1s weakened metastatic potential and inhibited liver metastasis. circPPFIA1s were found to function as sponges of oncogenic miR-155-5p and Hu antigen R (HuR) by an ASO pulldown experiment. circPPFIA1s upregulated tumor-suppressing CDX1 expression and conversely downregulated oncogenic RAB36 by decoying miR-155-5p and by sequestering HuR, respectively. Conclusion Our findings demonstrate that circPPFIA1s inhibit the liver metastasis of CRC via the miR-155-5p/CDX1 and HuR/RAB36 pathways. Supplementary Information The online version contains supplementary material available at 10.1186/s12943-022-01667-w.
Collapse
|
3
|
Barfield R, Qu C, Steinfelder RS, Zeng C, Harrison TA, Brezina S, Buchanan DD, Campbell PT, Casey G, Gallinger S, Giannakis M, Gruber SB, Gsur A, Hsu L, Huyghe JR, Moreno V, Newcomb PA, Ogino S, Phipps AI, Slattery ML, Thibodeau SN, Trinh QM, Toland AE, Hudson TJ, Sun W, Zaidi SH, Peters U. Association between germline variants and somatic mutations in colorectal cancer. Sci Rep 2022; 12:10207. [PMID: 35715570 PMCID: PMC9205954 DOI: 10.1038/s41598-022-14408-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 06/07/2022] [Indexed: 01/11/2023] Open
Abstract
Colorectal cancer (CRC) is a heterogeneous disease with evidence of distinct tumor types that develop through different somatically altered pathways. To better understand the impact of the host genome on somatically mutated genes and pathways, we assessed associations of germline variations with somatic events via two complementary approaches. We first analyzed the association between individual germline genetic variants and the presence of non-silent somatic mutations in genes in 1375 CRC cases with genome-wide SNPs data and a tumor sequencing panel targeting 205 genes. In the second analysis, we tested if germline variants located within previously identified regions of somatic allelic imbalance were associated with overall CRC risk using summary statistics from a recent large scale GWAS (n≃125 k CRC cases and controls). The first analysis revealed that a variant (rs78963230) located within a CNA region associated with TLR3 was also associated with a non-silent mutation within gene FBXW7. In the secondary analysis, the variant rs2302274 located in CDX1/PDGFRB frequently gained/lost in colorectal tumors was associated with overall CRC risk (OR = 0.96, p = 7.50e-7). In summary, we demonstrate that an integrative analysis of somatic and germline variation can lead to new insights about CRC.
Collapse
Affiliation(s)
- Richard Barfield
- grid.26009.3d0000 0004 1936 7961Department of Biostatistics and Bioinformatics, Duke University, 11028A Hock Plaza, 2424 Erwin Road Suite 1106, Durham, NC 27705 USA
| | - Conghui Qu
- grid.270240.30000 0001 2180 1622Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA USA
| | - Robert S. Steinfelder
- grid.270240.30000 0001 2180 1622Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA USA
| | - Chenjie Zeng
- grid.280128.10000 0001 2233 9230National Human Genome Research Institute, National Institutes of Health, Bethesda, MD USA
| | - Tabitha A. Harrison
- grid.270240.30000 0001 2180 1622Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA USA
| | - Stefanie Brezina
- grid.22937.3d0000 0000 9259 8492Institute of Cancer Research, Department of Medicine I, Medical University Vienna, Vienna, Austria
| | - Daniel D. Buchanan
- grid.1008.90000 0001 2179 088XColorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, VIC 3010 Australia ,grid.1008.90000 0001 2179 088XUniversity of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC 3010 Australia ,grid.416153.40000 0004 0624 1200Genomic Medicine and Family Cancer Clinic, The Royal Melbourne Hospital, Parkville, VIC Australia
| | - Peter T. Campbell
- grid.251993.50000000121791997Department of Epidemiology and Population Science, Albert Einstein College of Medicine, Bronx, NY USA
| | - Graham Casey
- grid.27755.320000 0000 9136 933XCenter for Public Health Genomics, University of Virginia, Charlottesville, VA USA
| | - Steven Gallinger
- grid.250674.20000 0004 0626 6184Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, ON Canada
| | - Marios Giannakis
- grid.65499.370000 0001 2106 9910Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA USA ,grid.66859.340000 0004 0546 1623The Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - Stephen B. Gruber
- grid.42505.360000 0001 2156 6853Department of Medical Oncology and Therapeuytic, University of Southern California, Los Angeles, CA USA
| | - Andrea Gsur
- grid.22937.3d0000 0000 9259 8492Institute of Cancer Research, Department of Medicine I, Medical University Vienna, Vienna, Austria
| | - Li Hsu
- grid.270240.30000 0001 2180 1622Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA USA ,grid.34477.330000000122986657Department of Biostatistics, University of Washington, Seattle, WA USA
| | - Jeroen R. Huyghe
- grid.270240.30000 0001 2180 1622Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA USA
| | - Victor Moreno
- grid.418701.b0000 0001 2097 8389Oncology Data Analytics Program, Catalan Institute of Oncology-IDIBELL, L’Hospitalet de Llobregat, Barcelona, Spain ,grid.466571.70000 0004 1756 6246CIBER Epidemiología Y Salud Pública (CIBERESP), Madrid, Spain ,grid.5841.80000 0004 1937 0247Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain ,grid.418284.30000 0004 0427 2257ONCOBEL Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
| | - Polly A. Newcomb
- grid.270240.30000 0001 2180 1622Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA USA ,grid.34477.330000000122986657School of Public Health, University of Washington, Seattle, WA USA
| | - Shuji Ogino
- grid.66859.340000 0004 0546 1623The Broad Institute of MIT and Harvard, Cambridge, MA USA ,grid.38142.3c000000041936754XProgram in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA ,Cancer Immunology Program, Dana-Farber Harvard Cancer Center, Boston, MA USA ,grid.38142.3c000000041936754XDepartment of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA USA
| | - Amanda I. Phipps
- grid.270240.30000 0001 2180 1622Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA USA ,Department of Epidemiology, Fred Hutchinson Cancer Research Center, University of Washington, 1100 Fairview Ave N, Mail Stop M4-B402, Seattle, WA 98109 USA
| | - Martha L. Slattery
- grid.223827.e0000 0001 2193 0096Department of Internal Medicine, University of Utah, Salt Lake City, UT USA
| | - Stephen N. Thibodeau
- grid.66875.3a0000 0004 0459 167XDivision of Laboratory Genetics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN USA
| | - Quang M. Trinh
- grid.419890.d0000 0004 0626 690XOntario Institute for Cancer Research, Toronto, ON Canada
| | - Amanda E. Toland
- grid.261331.40000 0001 2285 7943Departments of Cancer Biology and Genetics and Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, OH USA
| | - Thomas J. Hudson
- grid.419890.d0000 0004 0626 690XOntario Institute for Cancer Research, Toronto, ON Canada
| | - Wei Sun
- grid.270240.30000 0001 2180 1622Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA USA ,grid.34477.330000000122986657Department of Biostatistics, University of Washington, Seattle, WA USA ,grid.410711.20000 0001 1034 1720Department of Biostatistics, University of North Carolina, Chapel Hill, NC USA
| | - Syed H. Zaidi
- grid.419890.d0000 0004 0626 690XOntario Institute for Cancer Research, Toronto, ON Canada
| | - Ulrike Peters
- grid.270240.30000 0001 2180 1622Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA USA ,Department of Epidemiology, Fred Hutchinson Cancer Research Center, University of Washington, 1100 Fairview Ave N, Mail Stop M4-B402, Seattle, WA 98109 USA
| |
Collapse
|
4
|
Yang Y, Yu J, Hu J, Zhou C, Niu J, Ma H, Han J, Fan S, Liu Y, Zhao Y, Zhao L, Wang G. A systematic and comprehensive analysis of colorectal squamous cell carcinoma: Implication for diagnosis and treatment. Cancer Med 2022; 11:2492-2502. [PMID: 35194959 PMCID: PMC9189455 DOI: 10.1002/cam4.4616] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/26/2021] [Accepted: 12/27/2021] [Indexed: 11/18/2022] Open
Abstract
Background This study was aimed at establishing a nomogram for survival prediction of Colorectal squamous cell carcinoma (CSCC), understanding the molecular pathogenesis, exploring a better treatment, and predicting the potential therapeutic agents. Methods Surveillance, Epidemiology, and End Results (SEER) database was used to obtained CSCC patients and the nomogram was performed. Propensity score matching (PSM), Kaplan–Meier analysis, subgroup analysis, and interaction test were used to explore the better treatment strategy for CSCC. Bioinformatics were used to explore the molecular mechanism and potential therapeutic drugs of CSCC. Results A total of 3949 CSCC patients were studied. The nomogram was constructed and evaluated to have a good performance. We found that the radiotherapy had a better effect than surgery, and the difference between radiotherapy and combined therapy was not significant. 821 differentially expressed genes in CSCC were obtained from GSE6988 dataset. DNA damage repair, mismatch repair, and cell cycle pathways might contribute to CSCC occurrence as indicated by KEGGpathway and GSEA analysis. Transcription factors analysis revealed that TP63 and STAT1 may have an important role in occurrence and development of CSCC. 1607 potential drugs against CSCC were found using the CMAP database, and molecular docking was carried out to show the binding energy between TP63 and drugs. Conclusions A good prognosis nomogram was constructed for CSCC. We also have a better understanding of the underlying molecular mechanisms of occurrence and development of CSCC and predicted potential therapeutic drugs, providing a theoretical basis for the treatment of CSCC.
Collapse
Affiliation(s)
- Yang Yang
- Department of Gastrointestinal Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jiarui Yu
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People's Hospital, Tangshan, Hebei, China
| | - Jitao Hu
- Department of General Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Chaoxi Zhou
- Department of General Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jian Niu
- Department of General Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hongqing Ma
- Department of General Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jiaxu Han
- Department of General Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Shaoqing Fan
- Department of General Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Youqiang Liu
- Department of General Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yalei Zhao
- Department of General Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lianmei Zhao
- Research Centers, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Guiying Wang
- Department of Gastrointestinal Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China.,Department of General Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
5
|
Zhu Y, Hryniuk A, Foley T, Hess B, Lohnes D. Cdx2 Regulates Intestinal EphrinB1 through the Notch Pathway. Genes (Basel) 2021; 12:genes12020188. [PMID: 33525395 PMCID: PMC7911442 DOI: 10.3390/genes12020188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 01/23/2021] [Indexed: 01/07/2023] Open
Abstract
The majority of colorectal cancers harbor loss-of-function mutations in APC, a negative regulator of canonical Wnt signaling, leading to intestinal polyps that are predisposed to malignant progression. Comparable murine APC alleles also evoke intestinal polyps, which are typically confined to the small intestine and proximal colon, but do not progress to carcinoma in the absence of additional mutations. The Cdx transcription factors Cdx1 and Cdx2 are essential for homeostasis of the intestinal epithelium, and loss of Cdx2 has been associated with more aggressive subtypes of colorectal cancer in the human population. Consistent with this, concomitant loss of Cdx1 and Cdx2 in a murine APC mutant background leads to an increase in polyps throughout the intestinal tract. These polyps also exhibit a villous phenotype associated with the loss of EphrinB1. However, the basis for these outcomes is poorly understood. To further explore this, we modeled Cdx2 loss in SW480 colorectal cancer cells. We found that Cdx2 impacted Notch signaling in SW480 cells, and that EphrinB1 is a Notch target gene. As EphrinB1 loss also leads to a villus tumor phenotype, these findings evoke a mechanism by which Cdx2 impacts colorectal cancer via Notch-dependent EphrinB1 signaling.
Collapse
Affiliation(s)
- Yalun Zhu
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; (Y.Z.); (A.H.); (T.F.); (B.H.)
| | - Alexa Hryniuk
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; (Y.Z.); (A.H.); (T.F.); (B.H.)
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, MB R3E 0J9, Canada
| | - Tanya Foley
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; (Y.Z.); (A.H.); (T.F.); (B.H.)
| | - Bradley Hess
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; (Y.Z.); (A.H.); (T.F.); (B.H.)
| | - David Lohnes
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; (Y.Z.); (A.H.); (T.F.); (B.H.)
- Correspondence: ; Tel.: +1-613-562-5800 (ext. 8684)
| |
Collapse
|
6
|
Burke CG, Myers JR, Post CM, Boulé LA, Lawrence BP. DNA Methylation Patterns in CD4+ T Cells of Naïve and Influenza A Virus-Infected Mice Developmentally Exposed to an Aryl Hydrocarbon Receptor Ligand. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:17007. [PMID: 33449811 PMCID: PMC7810290 DOI: 10.1289/ehp7699] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 12/08/2020] [Accepted: 12/22/2020] [Indexed: 05/20/2023]
Abstract
BACKGROUND Early life environmental exposures can have lasting effects on the function of the immune system and contribute to disease later in life. Epidemiological studies have linked early life exposure to xenobiotics that bind the aryl hydrocarbon receptor (AhR) with dysregulated immune responses later in life. Among the immune cells influenced by developmental activation of the AhR are CD 4 + T cells. Yet, the underlying affected cellular pathways via which activating the AhR early in life causes the responses of CD 4 + T cells to remain affected into adulthood remain unclear. OBJECTIVE Our goal was to identify cellular mechanisms that drive impaired CD 4 + T-cell responses later in life following maternal exposure to an exogenous AhR ligand. METHODS C57BL/6 mice were vertically exposed to the prototype AhR ligand, 2,3,7,8-tetrachlorodibenzo-p -dioxin (TCDD), throughout gestation and early postnatal life. The transcriptome and DNA methylation patterns were evaluated in CD 4 + T cells isolated from naïve and influenza A virus (IAV)-infected adult mice that were developmentally exposed to TCDD or vehicle control. We then assessed the influence of DNA methylation-altering drug therapies on the response of CD 4 + T cells from developmentally exposed mice to infection. RESULTS Gene and protein expression showed that developmental AhR activation reduced CD 4 + T-cell expansion and effector functions during IAV infection later in life. Furthermore, whole-genome bisulfite sequencing analyses revealed that developmental AhR activation durably programed DNA methylation patterns across the CD 4 + T-cell genome. Treatment of developmentally exposed offspring with DNA methylation-altering drugs alleviated some, but not all, of the impaired CD 4 + T-cell responses. DISCUSSION Taken together, these results indicate that skewed DNA methylation is one of the mechanisms by which early life exposures can durably change the function of T cells in mice. Furthermore, treatment with DNA methylation-altering drugs after the exposure restored some aspects of CD 4 + T-cell functional responsiveness. https://doi.org/10.1289/EHP7699.
Collapse
Affiliation(s)
- Catherine G. Burke
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Jason R. Myers
- Genomics Research Center, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Christina M. Post
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Lisbeth A. Boulé
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - B. Paige Lawrence
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
- Genomics Research Center, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| |
Collapse
|
7
|
Samadani AA, Nikbakhsh N, Taheri H, Shafaee S, Fattahi S, Pilehchian Langroudi M, Hajian K, Akhavan-Niaki H. CDX1/2 and KLF5 Expression and Epigenetic Modulation of Sonic Hedgehog Signaling in Gastric Adenocarcinoma. Pathol Oncol Res 2019; 25:1215-1222. [DOI: 10.1007/s12253-019-00594-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 01/15/2019] [Indexed: 01/06/2023]
|
8
|
Rodrigues MFSD, Esteves CM, Xavier FCA, Nunes FD. Methylation status of homeobox genes in common human cancers. Genomics 2016; 108:185-193. [PMID: 27826049 DOI: 10.1016/j.ygeno.2016.11.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 09/27/2016] [Accepted: 11/01/2016] [Indexed: 02/06/2023]
Abstract
Approximately 300 homeobox loci were identified in the euchromatic regions of the human genome, of which 235 are probable functional genes and 65 are likely pseudogenes. Many of these genes play important roles in embryonic development and cell differentiation. Dysregulation of homeobox gene expression is a frequent occurrence in cancer. Accumulating evidence suggests that as genetics disorders, epigenetic modifications alter the expression of oncogenes and tumor suppressor genes driving tumorigenesis and perhaps play a more central role in the evolution and progression of this disease. Here, we described the current knowledge regarding homeobox gene DNA methylation in human cancer and describe its relevance in the diagnosis, therapeutic response and prognosis of different types of human cancers.
Collapse
Affiliation(s)
| | | | | | - Fabio Daumas Nunes
- Department of Oral Pathology, School of Dentistry, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
9
|
Zheng H, Yang Y, Wang MC, Yuan SX, Tian T, Han J, Ni JS, Wang J, Xing H, Zhou WP. Low CDX1 expression predicts a poor prognosis for hepatocellular carcinoma patients after hepatectomy. Surg Oncol 2016; 25:171-7. [DOI: 10.1016/j.suronc.2016.05.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 05/20/2016] [Indexed: 01/27/2023]
|
10
|
Huang CZ, Yu T, Chen QK. DNA Methylation Dynamics During Differentiation, Proliferation, and Tumorigenesis in the Intestinal Tract. Stem Cells Dev 2015; 24:2733-9. [PMID: 26413818 DOI: 10.1089/scd.2015.0235] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
DNA methylation, an epigenetic control mechanism in mammals, is widely present in the intestinal tract during the differentiation and proliferation of epithelial cells. Cells in stem cell pools or villi have different patterns of DNA methylation. The process of DNA methylation is dynamic and occurs at many relevant regulatory elements during the rapid transition of stem cells into fully mature, differentiated epithelial cells. Changes in DNA methylation patterns most often take place in enhancer and promoter regions and are associated with transcription factor binding. During differentiation, enhancer regions associated with genes important to enterocyte differentiation are demethylated, activating gene expression. Abnormal patterns of DNA methylation during differentiation and proliferation in the intestinal tract can lead to the formation of aberrant crypt foci and destroy the barrier and absorptive functions of the intestinal epithelium. Accumulation of these epigenetic changes may even result in tumorigenesis. In the current review, we discuss recent findings on the association between DNA methylation and cell differentiation and proliferation in the small intestine and highlight the possible links between dysregulation of this process and tumorigenesis.
Collapse
Affiliation(s)
- Can-Ze Huang
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University , Guangzhou, Guangdong, People's Republic of China
| | - Tao Yu
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University , Guangzhou, Guangdong, People's Republic of China
| | - Qi-Kui Chen
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University , Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
11
|
Abu-Remaileh M, Bender S, Raddatz G, Ansari I, Cohen D, Gutekunst J, Musch T, Linhart H, Breiling A, Pikarsky E, Bergman Y, Lyko F. Chronic inflammation induces a novel epigenetic program that is conserved in intestinal adenomas and in colorectal cancer. Cancer Res 2015; 75:2120-30. [PMID: 25808873 DOI: 10.1158/0008-5472.can-14-3295] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 02/12/2015] [Indexed: 12/13/2022]
Abstract
Chronic inflammation represents a major risk factor for tumor formation, but the underlying mechanisms have remained largely unknown. Epigenetic mechanisms can record the effects of environmental challenges on the genome level and could therefore play an important role in the pathogenesis of inflammation-associated tumors. Using single-base methylation maps and transcriptome analyses of a colitis-induced mouse colon cancer model, we identified a novel epigenetic program that is characterized by hypermethylation of DNA methylation valleys that are characterized by low CpG density and active chromatin marks. This program is conserved and functional in mouse intestinal adenomas and results in silencing of active intestinal genes that are involved in gastrointestinal homeostasis and injury response. Further analyses reveal that the program represents a prominent feature of human colorectal cancer and can be used to correctly classify colorectal cancer samples with high accuracy. Together, our results show that inflammatory signals establish a novel epigenetic program that silences a specific set of genes that contribute to inflammation-induced cellular transformation.
Collapse
Affiliation(s)
- Monther Abu-Remaileh
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University Medical School, Jerusalem, Israel
| | - Sebastian Bender
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany
| | - Günter Raddatz
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany
| | - Ihab Ansari
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University Medical School, Jerusalem, Israel
| | - Daphne Cohen
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University Medical School, Jerusalem, Israel
| | - Julian Gutekunst
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany
| | - Tanja Musch
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany
| | - Heinz Linhart
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany. Salem Medical Center, University of Heidelberg, Heidelberg, Germany. Department of Hematology/Oncology, University of Heidelberg Medical Center, Heidelberg, Germany
| | - Achim Breiling
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany
| | - Eli Pikarsky
- The Lautenberg Center for Immunology, Institute for Medical Research Israel-Canada, Hebrew University Medical School, Jerusalem, Israel
| | - Yehudit Bergman
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University Medical School, Jerusalem, Israel.
| | - Frank Lyko
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany.
| |
Collapse
|
12
|
The CDX1-microRNA-215 axis regulates colorectal cancer stem cell differentiation. Proc Natl Acad Sci U S A 2015; 112:E1550-8. [PMID: 25775580 DOI: 10.1073/pnas.1503370112] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The transcription factor caudal-type homeobox 1 (CDX1) is a key regulator of differentiation in the normal colon and in colorectal cancer (CRC). CDX1 activates the expression of enterocyte genes, but it is not clear how the concomitant silencing of stem cell genes is achieved. MicroRNAs (miRNAs) are important mediators of gene repression and have been implicated in tumor suppression and carcinogenesis, but the roles of miRNAs in differentiation, particularly in CRC, remain poorly understood. Here, we identified microRNA-215 (miR-215) as a direct transcriptional target of CDX1 by using high-throughput small RNA sequencing to profile miRNA expression in two pairs of CRC cell lines: CDX1-low HCT116 and HCT116 with stable CDX1 overexpression, and CDX1-high LS174T and LS174T with stable CDX1 knockdown. Validation of candidate miRNAs identified by RNA-seq in a larger cell-line panel revealed miR-215 to be most significantly correlated with CDX1 expression. Quantitative ChIP-PCR and promoter luciferase assays confirmed that CDX1 directly activates miR-215 transcription. miR-215 expression is depleted in FACS-enriched cancer stem cells compared with unsorted samples. Overexpression of miR-215 in poorly differentiated cell lines causes a decrease in clonogenicity, whereas miR-215 knockdown increases clonogenicity and impairs differentiation in CDX1-high cell lines. We identified the genome-wide targets of miR-215 and found that miR-215 mediates the repression of cell cycle and stemness genes downstream of CDX1. In particular, the miR-215 target gene BMI1 has been shown to promote stemness and self-renewal and to vary inversely with CDX1. Our work situates miR-215 as a link between CDX1 expression and BMI1 repression that governs differentiation in CRC.
Collapse
|
13
|
Hryniuk A, Grainger S, Savory JGA, Lohnes D. Cdx1 and Cdx2 function as tumor suppressors. J Biol Chem 2014; 289:33343-54. [PMID: 25320087 DOI: 10.1074/jbc.m114.583823] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In humans, colorectal cancer is often initiated through APC loss of function, which leads to crypt hyperplasia and polyposis driven by unrestricted canonical Wnt signaling. Such polyps typically arise in the colorectal region and are at risk of transforming to invasive adenocarcinomas. Although colorectal cancer is the third most common cause of cancer-related death worldwide, the processes impacting initiation, transformation, and invasion are incompletely understood. Murine APC(Min/+) mutants are often used to model colorectal cancers; however, they develop nonmetastatic tumors confined largely to the small intestine and are thus not entirely representative of the human disease. APC(Min/+) alleles can collaborate with mutations impacting other pathways to recapitulate some aspects of human colorectal cancer. To this end, we assessed APC(Min/+)-induced polyposis following somatic loss of the homeodomain transcription factor Cdx2, alone or with a Cdx1 null allele, in the adult gastrointestinal tract. APC(Min/+)-Cdx2 mutants recapitulated several aspects of human colorectal cancer, including an invasive phenotype. Notably, the concomitant loss of Cdx1 led to a significant increase in the incidence of tumors in the distal colon, relative to APC(Min/+)-Cdx2 offspring, demonstrating a previously unrecognized role for this transcription factor in colorectal tumorigenesis. These findings underscore previously unrecognized roles for Cdx members in intestinal tumorigenesis.
Collapse
Affiliation(s)
- Alexa Hryniuk
- From the Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Stephanie Grainger
- From the Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Joanne G A Savory
- From the Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - David Lohnes
- From the Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| |
Collapse
|
14
|
Yamagishi H, Imai Y, Okamura T, Fukuda K, Ono Y, Ban S, Inoue T, Ueda Y. Aberrant cytokeratin expression as a possible prognostic predictor in poorly differentiated colorectal carcinoma. J Gastroenterol Hepatol 2013; 28:1815-22. [PMID: 23808938 DOI: 10.1111/jgh.12319] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/10/2013] [Indexed: 01/11/2023]
Abstract
BACKGROUND AND AIM The cytokeratin (CK)7(-) /CK20(+) immunoprofile is characteristic of colorectal carcinoma (CRC), although CK7(+) or CK20(-) phenotypes are occasionally encountered, particularly in histologically variant CRCs. We analyzed CK7/CK20 profiles in variant CRCs in association with clinicopathologic parameters and prognosis. METHODS CK expression in well- and moderately differentiated adenocarcinoma (WMDA) (n = 63), poorly differentiated adenocarcinoma (PDA) (n = 91), mucinous adenocarcinoma (MUA) (n = 81), signet-ring cell carcinoma (SRCC) (n = 15), undifferentiated carcinoma (UDC) (n = 12), and adenosquamous carcinoma (n = 2) was analyzed using immunohistochemistry. Cut-off scores were set at 1% for CK7 and 25% for CK20 using the receiver operating characteristic curve analysis of PDA. Association between CK20(-) and better prognosis in PDA was validated in the second cohort (n = 66). RESULTS CK7/CK20 immunoprofiling revealed a predominant CK7(-) /CK20(+) profile in WMDA, MUA, and SRCC, while the majority of UDC was characterized by a CK7(-) /CK20(-) profile. The CK7/CK20 profile in PDA was variable. Contingency table analysis revealed that CK expression was not significantly associated with any clinicopathologic parameters in WMDA, PDA, and MUA. However, survival analysis demonstrated that CK20(-) was significantly associated with better prognosis in PDA. Although CK20(-) was significantly associated with mismatch repair deficiency in PDA, it was an independent prognostic factor in multivariate analysis. Finally, we confirmed that CK20 status, determined using a 25% cut-off score, was a significant prognostic parameter in the second PDA cohort. CONCLUSIONS CK20 status may be used as a prognostic predictor of PDA.
Collapse
Affiliation(s)
- Hidetsugu Yamagishi
- Department of Pathology, Dokkyo Medical University Koshigaya Hospital, Koshigaya, Saitama, Japan
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Zulueta A, Caretti A, Signorelli P, Dall'Olio F, Trinchera M. Transcriptional control of the
B3GALT5
gene by a retroviral promoter and methylation of distant regulatory elements. FASEB J 2013; 28:946-55. [DOI: 10.1096/fj.13-236273] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Aida Zulueta
- Department of Health SciencesSan Paolo HospitalUniversity of MilanMilanItaly
| | - Anna Caretti
- Department of Health SciencesSan Paolo HospitalUniversity of MilanMilanItaly
| | - Paola Signorelli
- Department of Health SciencesSan Paolo HospitalUniversity of MilanMilanItaly
| | - Fabio Dall'Olio
- Department of Experimental, Diagnostic, and Specialty Medicine (DIMES)University of BolognaBolognaItaly
| | - Marco Trinchera
- Department of Medicine Clinical and Experimental (DMCS)University of InsubriaVareseItaly
| |
Collapse
|
16
|
Oxidative stress causes epigenetic alteration of CDX1 expression in colorectal cancer cells. Gene 2013; 524:214-9. [DOI: 10.1016/j.gene.2013.04.024] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 04/08/2013] [Indexed: 02/08/2023]
|
17
|
Methylation-dependent activation of CDX1 through NF-κB: a link from inflammation to intestinal metaplasia in the human stomach. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:487-98. [PMID: 22749770 DOI: 10.1016/j.ajpath.2012.04.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 03/16/2012] [Accepted: 04/12/2012] [Indexed: 02/07/2023]
Abstract
The caudal homeobox factor 1 (CDX1) is an essential transcription factor for intestinal differentiation. Its aberrant expression in intestinal metaplasia of the upper gastrointestinal tract is a hallmark within the gastritis-metaplasia-carcinoma sequence. CDX1 expression is influenced by certain pathways, such as Wnt, Ras, or NF-κB signaling; however, these pathways alone cannot explain the transient expression of CDX1 in intestinal metaplasia or the molecular inactivation mechanism of its loss in cases of advanced gastric cancer. In this study, we investigated the epigenetic inactivation of CDX1 by promoter methylation, as well as the functional link of CDX1 promoter methylation to the inflammatory NF-κB signaling pathway. We identified methylation-dependent NF-κB binding to the CDX1 promoter and quantified it using competitive electrophoretic mobility shift assays and chromatin immunoprecipitation. A methylated CDX1 promoter was associated with closed chromatin structure, reduced NF-κB binding, and transcriptional silencing. Along the gastritis-metaplasia-carcinoma sequence, we observed a biphasic pattern of tumor necrosis factor-α (TNF-α) protein expression and an inverse biphasic pattern of CDX1 promoter methylation; both are highly consistent with CDX1 protein expression. The stages of hyper-, hypo-, and hyper-methylation patterns of the CDX1 promoter were inversely correlated with the NF-κB signaling activity along this sequence. In conclusion, these functionally interacting events drive CDX1 expression and contribute to intestinal metaplasia, epithelial dedifferentiation, and carcinogenesis in the human stomach.
Collapse
|
18
|
Balasubramanian D, Akhtar-Zaidi B, Song L, Bartels CF, Veigl M, Beard L, Myeroff L, Guda K, Lutterbaugh J, Willis J, Crawford GE, Markowitz SD, Scacheri PC. H3K4me3 inversely correlates with DNA methylation at a large class of non-CpG-island-containing start sites. Genome Med 2012; 4:47. [PMID: 22640407 PMCID: PMC3506913 DOI: 10.1186/gm346] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 04/13/2012] [Accepted: 05/28/2012] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND In addition to mutations, epigenetic silencing of genes has been recognized as a fundamental mechanism that promotes human carcinogenesis. To date, characterization of epigenetic gene silencing has largely focused on genes in which silencing is mediated by hypermethylation of promoter-associated CpG islands, associated with loss of the H3K4me3 chromatin mark. Far less is known about promoters lacking CpG-islands or genes that are repressed by alternative mechanisms. METHODS We performed integrative ChIP-chip, DNase-seq, and global gene expression analyses in colon cancer cells and normal colon mucosa to characterize chromatin features of both CpG-rich and CpG-poor promoters of genes that undergo silencing in colon cancer. RESULTS Epigenetically repressed genes in colon cancer separate into two classes based on retention or loss of H3K4me3 at transcription start sites. Quantitatively, of transcriptionally repressed genes that lose H3K4me3 in colon cancer (K4-dependent genes), a large fraction actually lacks CpG islands. Nonetheless, similar to CpG-island containing genes, cytosines located near the start sites of K4-dependent genes become DNA hypermethylated, and repressed K4-dependent genes can be reactivated with 5-azacytidine. Moreover, we also show that when the H3K4me3 mark is retained, silencing of CpG island-associated genes can proceed through an alternative mechanism in which repressive chromatin marks are recruited. CONCLUSIONS H3K4me3 equally protects from DNA methylation at both CpG-island and non-CpG island start sites in colon cancer. Moreover, the results suggest that CpG-rich genes repressed by loss of H3K4me3 and DNA methylation represent special instances of a more general epigenetic mechanism of gene silencing, one in which gene silencing is mediated by loss of H3K4me3 and methylation of non-CpG island promoter-associated cytosines.
Collapse
Affiliation(s)
- Dheepa Balasubramanian
- Department of Genetics and Genome Sciences, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA
| | - Batool Akhtar-Zaidi
- Department of Genetics and Genome Sciences, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, 9500 Euclid Ave, Cleveland, OH 44195, USA
| | - Lingyun Song
- Institute for Science and Policy, and Department of Pediatrics, Duke University, 101 Science Drive, Durham, NC 27708, USA
| | - Cynthia F Bartels
- Department of Genetics and Genome Sciences, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA
| | - Martina Veigl
- Case Comprehensive Cancer Center, Case Western Reserve University, 11100 Euclid Ave, Cleveland, OH 44106, USA
| | - Lydia Beard
- Case Comprehensive Cancer Center, Case Western Reserve University, 11100 Euclid Ave, Cleveland, OH 44106, USA
| | - Lois Myeroff
- Case Comprehensive Cancer Center, Case Western Reserve University, 11100 Euclid Ave, Cleveland, OH 44106, USA
| | - Kishore Guda
- Case Comprehensive Cancer Center, Case Western Reserve University, 11100 Euclid Ave, Cleveland, OH 44106, USA
| | - James Lutterbaugh
- Case Comprehensive Cancer Center, Case Western Reserve University, 11100 Euclid Ave, Cleveland, OH 44106, USA
| | - Joseph Willis
- Case Comprehensive Cancer Center, Case Western Reserve University, 11100 Euclid Ave, Cleveland, OH 44106, USA
- Department of Pathology, Case Western Reserve University, 2103 Cornell Road, Cleveland, OH 44106, USA
| | - Gregory E Crawford
- Institute for Science and Policy, and Department of Pediatrics, Duke University, 101 Science Drive, Durham, NC 27708, USA
| | - Sanford D Markowitz
- Department of Genetics and Genome Sciences, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, 11100 Euclid Ave, Cleveland, OH 44106, USA
- Department of Medicine, Case Western Reserve University, 10900 Euclid Ave Cleveland, OH 44106, USA
| | - Peter C Scacheri
- Department of Genetics and Genome Sciences, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, 9500 Euclid Ave, Cleveland, OH 44195, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, 11100 Euclid Ave, Cleveland, OH 44106, USA
| |
Collapse
|
19
|
Arango D, Al-Obaidi S, Williams DS, Dopeso H, Mazzolini R, Corner G, Byun DS, Carr AA, Murone C, Tögel L, Zeps N, Aaltonen LA, Iacopetta B, Mariadason JM. Villin expression is frequently lost in poorly differentiated colon cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 180:1509-21. [PMID: 22349300 DOI: 10.1016/j.ajpath.2012.01.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 12/13/2011] [Accepted: 01/03/2012] [Indexed: 12/14/2022]
Abstract
Colorectal cancers (CRCs) are classified as having microsatellite instability (MSI) or chromosomal instability (CIN); herein termed microsatellite stable (MSS). MSI colon cancers frequently display a poorly differentiated histology for which the molecular basis is not well understood. Gene expression and immunohistochemical profiling of MSS and MSI CRC cell lines and tumors revealed significant down-regulation of the intestinal-specific cytoskeletal protein villin in MSI colon cancer, with complete absence in 62% and 17% of MSI cell lines and tumors, respectively. Investigation of 577 CRCs linked loss of villin expression to poorly differentiated histology in MSI and MSS tumors. Furthermore, mislocalization of villin from the membrane was prognostic for poorer outcome in MSS patients. Loss of villin expression was not due to coding sequence mutations, epigenetic inactivation, or promoter mutation. Conversely, in transient transfection assays villin promoter activity reflected endogenous villin expression, suggesting transcriptional control. A screen of gut-specific transcription factors revealed a significant correlation between expression of villin and the homeobox transcription factor Cdx-1. Cdx-1 overexpression induced villin promoter activity, Cdx-1 knockdown down-regulated endogenous villin expression, and deletion of a key Cdx-binding site within the villin promoter attenuated promoter activity. Loss of Cdx-1 expression in CRC lines was associated with Cdx-1 promoter methylation. These findings demonstrate that loss of villin expression due to Cdx-1 loss is a feature of poorly differentiated CRCs.
Collapse
Affiliation(s)
- Diego Arango
- Molecular Biology and Biochemistry Research Center-Nanomedicine, Vall d'Hebron University Hospital Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Chen X, Cao X, Dong W, Luo S, Suo Z, Jin Y. Expression of TIP30 tumor suppressor gene is down-regulated in human colorectal carcinoma. Dig Dis Sci 2010; 55:2219-26. [PMID: 19798571 DOI: 10.1007/s10620-009-0992-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Accepted: 09/14/2009] [Indexed: 12/09/2022]
Abstract
PURPOSE Human TIP30 was initially identified as a candidate metastasis suppressor gene whose expression was down-regulated in human liver, lung, breast, and prostate cancers, and recently the role of this gene was examined in colorectal cancer. The aim of this study was to determine the level of TIP30 expression in colorectal carcinoma (CRC). RESULTS TIP30 protein levels were lower in colorectal carcinomas compared to normal tissue from the control group (P < 0.001). The frequencies of hypermethylation of TIP30 in tumor were 36%, while there was no aberrant methylation in paired adjacent non-tumor tissue. A statistically significant inverse association was found between TIP30 methylation status and expression of the TIP30 protein in tumor tissues (P = 0.006). Somatic missense mutations in the TIP30 gene were identified in human CRC tissue specimens. CONCLUSIONS Our results demonstrate that promoter methylation is involved in the decreased expression of TIP30 tumor suppressor gene in human colorectal carcinoma.
Collapse
Affiliation(s)
- Xiaobing Chen
- Department of Internal Medicine-Oncology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | | | | | | | | | | |
Collapse
|
21
|
Ma J, Wang JD, Zhang WJ, Zou B, Chen WJ, Lam CSC, Chen MH, Pang R, Tan VPY, Hung IF, Lan HY, Wang QY, Wong BCY. Promoter hypermethylation and histone hypoacetylation contribute to pancreatic-duodenal homeobox 1 silencing in gastric cancer. Carcinogenesis 2010; 31:1552-60. [PMID: 20622005 DOI: 10.1093/carcin/bgq140] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND AND AIMS The expression of pancreatic-duodenal homeobox 1 (PDX1) in gastric cancer is aberrantly reduced. The aim of this study was to elucidate the regulation of DNA methylation and histone acetylation at the promoter for PDX1 silencing in gastric cancer. METHODS PDX1 expression in response to demethylation and acetylation was detected in human gastric cancer cell lines by reverse transcription-polymerase chain reaction (PCR) and western blot. Four CpG islands within the 5'-flanking region of PDX1 gene were analyzed with their transcription activities being detected by dual luciferase assay. Promoter hypermethylation was identified in gastric cancer cell lines and cancer tissues by methylation-specific PCR or bisulfite DNA sequencing PCR analysis. Histone acetylation was determined by chromatin immunoprecipitation (ChIP) assay. RESULTS Demethylation by 5'-aza-2'-deoxycytidine (5'-aza-dC) and/or acetylation by trichostatin A (TSA) restored PDX1 expression in gastric cancer cells. Hypermethylation was found in four CpG islands in six of seven cancer cell lines. However, only the distal CpG island located in the promoter fragment of PDX1, F383 (c.-2063 to -1681 nt upstream of the ATG start codon) displayed significant transcriptional activity that could be suppressed by SssI methylase and increased by 5'-aza-dC and TSA. More than 70% of the single CpG sites in F383 were methylated with hypermethylation of F383 fragment more common in gastric cancerous tissues compared with the paired normal tissues (P < 0.05). ChIP assay showed F383 was also associated with low hypoacetylation level of the histones. CONCLUSION Promoter hypermethylation and histone hypoacetylation contribute to PDX1 silencing in gastric cancer.
Collapse
Affiliation(s)
- Juan Ma
- Department of Gastroenterology and Hepatology, Guangdong General Hospital, Guangzhou 510080, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Gastrointestinal differentiation marker Cytokeratin 20 is regulated by homeobox gene CDX1. Proc Natl Acad Sci U S A 2009; 106:1936-41. [PMID: 19188603 DOI: 10.1073/pnas.0812904106] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
CDX1 is a transcription factor that plays a key role in intestinal development and differentiation. However, the downstream targets of CDX1 are less well defined than those of its close homologue, CDX2. We report here the identification of downstream targets of CDX1 using microarray gene-expression analysis and other approaches. Keratin 20 (KRT20), a member of the intermediate filament and a well-known marker of intestinal differentiation, was initially identified as one of the genes likely to be directly regulated by CDX1. CDX1 and KRT20 mRNA expression were significantly correlated in a panel of 38 colorectal cancer cell lines. Deletion and mutation analysis of the KRT20 promoter showed that the minimum regulatory region for the control of KRT20 expression by CDX1 is within 246 bp upstream of the KRT20 transcription start site. ChIP analysis confirmed that CDX1 binds to the predicted CDX elements in this region of the KRT20 promoter in vivo. In addition, immunohistochemistry showed expression of CDX1 parallels that of KRT20 in the normal crypt, which further supports their close relationship. In summary, our observations strongly imply that KRT20 is directly regulated by CDX1, and therefore suggest a role for CDX1 in maintaining differentiation in intestinal epithelial cells. Because a key feature of the development of a cancer is an unbalanced program of proliferation and differentiation, dysregulation of CDX1 may be an advantage for the development of a colorectal carcinoma. This could, therefore, explain the relatively frequent down regulation of CDX1 in colorectal carcinomas by hypermethylation.
Collapse
|
23
|
Cdx1, a dispensable homeobox gene for gut development with limited effect in intestinal cancer. Oncogene 2008; 27:4497-502. [PMID: 18372917 DOI: 10.1038/onc.2008.78] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The homeobox gene Cdx1 is involved in anteroposterior patterning in embryos and its expression selectively persists in the intestinal epithelium throughout life. In human colon cancers, Cdx1 is overexpressed in few cases and lost in the majority of adenocarcinomas. We used mouse models of gain and loss-of-function to investigate the role of Cdx1 in intestinal development and cancers. Transgenic mice overexpressing Cdx1 and knockout mice exhibited a morphologically normal intestine. Cell proliferation, specification into the four differentiated lineages and migration along the crypt-villus axis were unchanged compared to wild-type mice. Changing Cdx1 caused an inverse and dose-dependent modification of the expression of the paralogous gene Cdx2, indicating that Cdx1 fine-tunes Cdx2 activity. Transgenenic and knockout mice failed to spontaneously develop tumours. Overexpressing Cdx1 was without incidence on the frequency of intestinal tumours induced chemically by azoxymethane treatment or genetically in Apc(Delta14/+) mice. However, it augmented the severity of the tumours in Apc(Delta14/+) mice. Inversely, the loss-of-function of Cdx1 in knockout mice was without incidence on the growth of tumours induced by azoxymethane. We conclude that Cdx1 is dispensable for intestinal development and that its overexpression could increase malignancy in early stages of tumourigenesis.
Collapse
|
24
|
The homeodomain transcription factor Cdx1 does not behave as an oncogene in normal mouse intestine. Neoplasia 2008; 10:8-19. [PMID: 18231635 DOI: 10.1593/neo.07703] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Revised: 10/17/2007] [Accepted: 10/17/2007] [Indexed: 02/07/2023] Open
Abstract
The Caudal-related homeobox genes Cdx1 and Cdx2 are intestine-specific transcription factors that regulate differentiation of intestinal cell types. Previously, we have shown Cdx1 to be antiproliferative and to promote cell differentiation. However, other studies have suggested that Cdx1 may be an oncogene. To test for oncogenic behavior, we used the murine villin promoter to ectopically express Cdx1 in the small intestinal villi and colonic surface epithelium. No changes in intestinal architecture, cell differentiation, or lineage selection were observed with expression of the transgene. Classic oncogenes enhance proliferation and induce tumors when ectopically expressed. However, the Cdx1 transgene neither altered intestinal proliferation nor induced spontaneous intestinal tumors. In a murine model for colitis-associated cancer, the Cdx1 transgene decreased, rather than increased, the number of adenomas that developed. In the polyps, the expression of the endogenous and the transgenic Cdx1 proteins was largely absent, whereas endogenous Villin expression was retained. This suggests that transgene silencing was specific and not due to a general Villin inactivation. In conclusion, neither the ectopic expression of Cdx1 was associated with changes in intestinal cell proliferation or differentiation nor was there increased intestinal cancer susceptibility. Our results therefore suggest that Cdx1 is not an oncogene in normal intestinal epithelium.
Collapse
|
25
|
Chen YN, Chen H, Xu Y, Zhang X, Luo Y. Expression of pituitary homeobox 1 gene in human gastric carcinogenesis and its clinicopathological significance. World J Gastroenterol 2008; 14:292-7. [PMID: 18186570 PMCID: PMC2675129 DOI: 10.3748/wjg.14.292] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of pituitary homeobox 1 (PITX1) expression in cases of human gastric cancer on cancer differentiation and progression, and carcinogenesis.
METHODS: Using polyclonal PITX1 antibodies, we studied the expression of PITX1 in normal gastric mucosa, atypical hyperplasia, intestinal metaplasia, and cancer tissue samples from 83 gastric cancer patients by immunohistochemistry. Moreover, semi-reverse transcription polymerase chain reaction (semi-RT-PCR) was performed to detect the mRNA level of PITX1 in three gastric cancer cell lines and a normal gastric epithelial cell line. Subsequently, somatic mutations of the PITX1 gene in 71 gastric cancer patients were analyzed by a combination of denaturing high performance liquid chromatography (DHPLC) and DNA sequencing.
RESULTS: Immunohistochemistry showed that PITX1 was strongly or moderately expressed in the parietal cells of normal gastric mucosa (100%), while 55 (66.3%) out of 83 samples of gastric cancers showed decreased PITX1 expression. Moreover, PITX1 expression was reduced in 20 out of 28 cases (71.5%) of intestinal metaplasia, but in only 1 out of 9 cases (11%) of atypical hyperplasia. More importantly, PITX1 expression was significantly associated with the differentiation, position and invasion depth of gastric cancers (r = -0.316, P < 0.01; r = 0.213, P < 0.05; r = -0.259, P < 0.05, respectively). Similarly, levels of PITX1 mRNA were significantly decreased in 2 gastric cancer cell lines, BGC-823 and SGC-7901, compared with the normal gastric epithelial cell line GES-1 (0.306 ± 0.060 vs 0.722 ± 0.102, P < 0.05; 0.356 ± 0.081 vs 0.722 ± 0.102, P < 0.05, respectively). Nevertheless, no somatic mutation of PITX1 gene was found in 71 samples of gastric cancer by DHPLC analysis followed by sequencing.
CONCLUSION: Down-regulation of PITX1 may be a frequent molecular event in gastric carcinogenesis. Aberrant levels of PITX1 expression may be closely correlated with the progression and differentiation of gastric cancer.
Collapse
|
26
|
Chen Y, Knösel T, Ye F, Pacyna-Gengelbach M, Deutschmann N, Petersen I. Decreased PITX1 homeobox gene expression in human lung cancer. Lung Cancer 2006; 55:287-94. [PMID: 17157953 DOI: 10.1016/j.lungcan.2006.11.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2006] [Revised: 09/29/2006] [Accepted: 10/26/2006] [Indexed: 11/27/2022]
Abstract
The PITX1 (pituitary homeobox 1) gene has essential roles in human development and has been considered a tumor suppressor in various cancers. However, in lung cancer the role of PITX1 remains to be elucidated. In this study, we analyzed the expression of PITX1 at both mRNA and protein levels in human lung cancer. The reduced PITX1 expression was found in cancer cell lines test compared to normal human bronchial epithelia cells (HEBC) and small airway epithelia cells (SAEC) by Northern blot analysis and RT-PCR as well as Western blot analysis. In primary lung tissues, PITX1 mRNA was found to be downregulated in the majority of tumors compared with normal lung tissues. An association between the lack of PITX1 mRNA expression and higher tumor grade was observed. A tissue microarray containing 135 primary lung carcinomas was analyzed by immunohistochemistry. Eighty-four cases (62%) exhibited no expression of PITX1 and the lower expression of PITX1 was significantly linked to higher tumor stages. Additionally, PITX1 was found to be upregulated in lung cancer cell lines H2228 and H526 after they were exposed to a differentiation modifying agent 5-bromodeoxyuridine (BrdU). Since homeobox genes are known to transcriptionally regulate key cellular processes and associated with differentiation and carcinogenesis, we suggest that PITX1 might be linked to lung cancer development and progression.
Collapse
Affiliation(s)
- Yuan Chen
- Institute of Pathology, University Hospital Charité, Schumannstr 20-21, D-10098 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
27
|
Yu YY, Pan YS, Zhu ZG. Homeobox genes and their functions on development and neoplasm in gastrointestinal tract. Eur J Surg Oncol 2006; 33:129-32. [PMID: 17045774 DOI: 10.1016/j.ejso.2006.09.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2006] [Accepted: 09/06/2006] [Indexed: 01/22/2023] Open
Abstract
AIM To describe the role of homeobox genes on development and tumorigenesis in gastrointestinal tract. METHODS AND RESULTS We searched the MEDLINE database (until March, 2006) with the keywords of homeobox genes, gastrointestinal tract, development, tumorigenesis, carcinogenesis and therapeutic targets. We reviewed the literature on classification of homeobox genes, development of gastrointestinal tract, carcinogenesis of gastrointestinal tract as well as therapeutic targets. CONCLUSIONS The functional effects of homeobox family in development and tumorigenesis of gastrointestinal tract are identified. The importance of homeobox genes and a possibility of therapeutic intervention in clinical medicine are discussed.
Collapse
Affiliation(s)
- Y Y Yu
- Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200025, China.
| | | | | |
Collapse
|
28
|
Ando T, Sugai T, Habano W, Jiao YF, Suzuki K. Analysis of SMAD4/DPC4 gene alterations in multiploid colorectal carcinomas. J Gastroenterol 2005; 40:708-15. [PMID: 16082587 DOI: 10.1007/s00535-005-1614-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2005] [Accepted: 03/11/2005] [Indexed: 02/06/2023]
Abstract
BACKGROUND Although recent animal studies have shown that SMAD4/DPC4 gene alterations are essential for late-stage intestinal tumorigenesis, the role of SMAD4/DPC4 gene alterations in primary human colorectal carcinomas is not fully understood. Therefore, we attempted to clarify the role of the SMAD4/DPC4 gene during tumor progression of colorectal carcinoma. METHODS Differences in allelic imbalance (AI) and mutations of the SMAD4/DPC4 gene between diploid and aneuploid populations were analyzed for 30 sporadic DNA multiploid colorectal carcinomas (used as a tumor progression model and defined as the coexistence of diploid and aneuploid cells within the same tumor). The crypt isolation technique was coupled with DNA cytometric sorting and a polymerase chain reaction assay. In addition, hypermethylation of the promoter region was examined to clarify whether inactivation of gene expression occurred. RESULTS Although a SMAD4/DPC4 gene AI was detected in only 5 of 27 informative diploid populations, 25 of 27 aneuploid populations had a SMAD4/DPC4 gene AI. Mutation of the SMAD4/DPC4 gene was detected in only one aneuploid population of multiploid colorectal carcinomas, but not in the corresponding diploid population. In total, 20 available multiploid carcinomas were selected for methylation analysis, and no evidence of hypermethylation of the promoter region was found. CONCLUSIONS We suggest that, although mutation of the SMAD4/DPC4 gene and hypermethylation of the promoter region are infrequent events in colorectal tumorigenesis, AI at the SMAD4/DPC4 gene locus may play a key role in the progression of colorectal carcinomas.
Collapse
Affiliation(s)
- Tatsuya Ando
- First Department of Internal Medicine, Iwate Medical University, Morioka, Japan
| | | | | | | | | |
Collapse
|