1
|
Roles of Keratins in Intestine. Int J Mol Sci 2022; 23:ijms23148051. [PMID: 35887395 PMCID: PMC9317181 DOI: 10.3390/ijms23148051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/19/2022] [Accepted: 07/19/2022] [Indexed: 12/02/2022] Open
Abstract
Keratins make up a major portion of epithelial intermediate filament proteins. The widely diverse keratins are found in both the small and large intestines. The human intestine mainly expresses keratins 8, 18, 19, and 20. Many of the common roles of keratins are for the integrity and stability of the epithelial cells. The keratins also protect the cells and tissue from stress and are biomarkers for some diseases in the organs. Although an increasing number of studies have been performed regarding keratins, the roles of keratin in the intestine have not yet been fully understood. This review focuses on discussing the roles of keratins in the intestine. Diverse studies utilizing mouse models and samples from patients with intestinal diseases in the search for the association of keratin in intestinal diseases have been summarized.
Collapse
|
2
|
Novel Diagnostic Biomarkers in Colorectal Cancer. Int J Mol Sci 2022; 23:ijms23020852. [PMID: 35055034 PMCID: PMC8776048 DOI: 10.3390/ijms23020852] [Citation(s) in RCA: 124] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/27/2021] [Accepted: 01/03/2022] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is still a leading cause of cancer death worldwide. Less than half of cases are diagnosed when the cancer is locally advanced. CRC is a heterogenous disease associated with a number of genetic or somatic mutations. Diagnostic markers are used for risk stratification and early detection, which might prolong overall survival. Nowadays, the widespread use of semi-invasive endoscopic methods and feacal blood tests characterised by suboptimal accuracy of diagnostic results has led to the detection of cases at later stages. New molecular noninvasive tests based on the detection of CRC alterations seem to be more sensitive and specific then the current methods. Therefore, research aiming at identifying molecular markers, such as DNA, RNA and proteins, would improve survival rates and contribute to the development of personalized medicine. The identification of “ideal” diagnostic biomarkers, having high sensitivity and specificity, being safe, cheap and easy to measure, remains a challenge. The purpose of this review is to discuss recent advances in novel diagnostic biomarkers for tumor tissue, blood and stool samples in CRC patients.
Collapse
|
3
|
Wu J, Niu J, Li M, Miao Y. Keratin 1 maintains the intestinal barrier in ulcerative colitis. Genes Genomics 2021; 43:1389-1402. [PMID: 34562265 DOI: 10.1007/s13258-021-01166-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 09/14/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND The intestinal mechanical barrier plays a key role in the pathogenesis of ulcerative colitis (UC). Our previous study showed keratin 1 (KRT1) was downregulated in UC, but the mechanism by which KRT1 affects the intestinal barrier remains unknown. OBJECTIVES To explore the mechanism of KRT1 in the intestinal barrier in UC. METHODS Colonic tissues were collected from 20 UC patients before and after mucosal healing (MH) and 15 healthy controls. The expression of KRT1 was measured by PCR, western blotting and immunohistochemistry (IHC). A dextran sulfate sodium (DSS)-induced colitis model was established in krt1 transgenic (TG) mice, and the mice were treated with methylprednisolone (MP) to explore the role of KRT1 in the intestinal barrier. Inflammation was evaluated through the DAI score, colon, spleen and H&E. The expression of KRT1 and tight junction (TJ) proteins in mouse was analysed by the same methods. RESULTS The transcription and expression of KRT1 in UC was decreased and recovered after MH but did not reach the level of the healthy controls. Similar to the clinical results, the expression of krt1 was decreased in DSS-induced colitis and upregulated after MP. Moreover, the krt1 TG group exhibited less inflammation than wild-type (WT) group. The expression of Occludin and ZO-1 decreased after DSS induction, the decreases in Occludin and ZO-1 in the krt1 TG group were lower than WT group, which was significantly increased after MP, while the expression of Claudin-2 exhibited the opposite effect. CONCLUSIONS Keratin 1 maintains the intestinal barrier by upregulating TJ proteins in UC.
Collapse
Affiliation(s)
- Jing Wu
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Road, Kunming, 650032, Yunnan, China
| | - Junkun Niu
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Road, Kunming, 650032, Yunnan, China
| | - Maojuan Li
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Road, Kunming, 650032, Yunnan, China
| | - Yinglei Miao
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Road, Kunming, 650032, Yunnan, China.
- Yunnan Province Clinical Research Center for Digestive Diseases, Kunming, Yunnan, China.
| |
Collapse
|
4
|
Hovhannisyan AH, Son H, Mecklenburg J, Barba-Escobedo PA, Tram M, Gomez R, Shannonhouse J, Zou Y, Weldon K, Ruparel S, Lai Z, Tumanov AV, Kim YS, Akopian AN. Pituitary hormones are specifically expressed in trigeminal sensory neurons and contribute to pain responses in the trigeminal system. Sci Rep 2021; 11:17813. [PMID: 34497285 PMCID: PMC8426369 DOI: 10.1038/s41598-021-97084-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 08/20/2021] [Indexed: 11/29/2022] Open
Abstract
Trigeminal (TG), dorsal root (DRG), and nodose/jugular (NG/JG) ganglia each possess specialized and distinct functions. We used RNA sequencing of two-cycle sorted Pirt-positive neurons to identify genes exclusively expressing in L3-L5 DRG, T10-L1 DRG, NG/JG, and TG mouse ganglion neurons. Transcription factor Phox2b and Efcab6 are specifically expressed in NG/JG while Hoxa7 is exclusively present in both T10-L1 and L3-L5 DRG neurons. Cyp2f2, Krt18, and Ptgds, along with pituitary hormone prolactin (Prl), growth hormone (Gh), and proopiomelanocortin (Pomc) encoding genes are almost exclusively in TG neurons. Immunohistochemistry confirmed selective expression of these hormones in TG neurons and dural nerves; and showed GH expression in subsets of TRPV1+ and CGRP+ TG neurons. We next examined GH roles in hypersensitivity in the spinal versus trigeminal systems. Exogenous GH produced mechanical hypersensitivity when injected intrathecally, but not intraplantarly. GH-induced thermal hypersensitivity was not detected in the spinal system. GH dose-dependently generated orofacial and headache-like periorbital mechanical hypersensitivity after administration into masseter muscle and dura, respectively. Periorbital mechanical hypersensitivity was reversed by a GH receptor antagonist, pegvisomant. Overall, pituitary hormone genes are selective for TG versus other ganglia somatotypes; and GH has distinctive functional significance in the trigeminal versus spinal systems.
Collapse
Affiliation(s)
- Anahit H Hovhannisyan
- Departments of Endodontics, The School of Dentistry, The University of Texas Health Science Center at San Antonio (UTHSCSA), 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
| | - Hyeonwi Son
- Departments of Oral and Maxillofacial Surgery, The School of Dentistry, The University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, TX, 78229, USA
| | - Jennifer Mecklenburg
- Departments of Endodontics, The School of Dentistry, The University of Texas Health Science Center at San Antonio (UTHSCSA), 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
| | - Priscilla Ann Barba-Escobedo
- Departments of Endodontics, The School of Dentistry, The University of Texas Health Science Center at San Antonio (UTHSCSA), 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
| | - Meilinn Tram
- Departments of Endodontics, The School of Dentistry, The University of Texas Health Science Center at San Antonio (UTHSCSA), 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
- Programs in Integrated Biomedical Sciences and Translational Sciences, The School of Medicine, UTHSCSA, San Antonio, TX, 78229, USA
| | - Ruben Gomez
- Departments of Oral and Maxillofacial Surgery, The School of Dentistry, The University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, TX, 78229, USA
| | - John Shannonhouse
- Departments of Oral and Maxillofacial Surgery, The School of Dentistry, The University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, TX, 78229, USA
| | - Yi Zou
- Greehey Children's Cancer Research Institute, UTHSCSA, San Antonio, TX, 78229, USA
| | - Korri Weldon
- Greehey Children's Cancer Research Institute, UTHSCSA, San Antonio, TX, 78229, USA
| | - Shivani Ruparel
- Departments of Endodontics, The School of Dentistry, The University of Texas Health Science Center at San Antonio (UTHSCSA), 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
- Programs in Integrated Biomedical Sciences and Translational Sciences, The School of Medicine, UTHSCSA, San Antonio, TX, 78229, USA
| | - Zhao Lai
- Departments of Molecular Medicine, Programs in Integrated Biomedical Sciences and Translational Sciences, The School of Medicine, UTHSCSA, San Antonio, TX, 78229, USA
- Greehey Children's Cancer Research Institute, UTHSCSA, San Antonio, TX, 78229, USA
| | - Alexei V Tumanov
- Departments of Microbiology, Immunology and Molecular Genetics, Programs in Integrated Biomedical Sciences and Translational Sciences, The School of Medicine, UTHSCSA, San Antonio, TX, 78229, USA
- Programs in Integrated Biomedical Sciences and Translational Sciences, The School of Medicine, UTHSCSA, San Antonio, TX, 78229, USA
| | - Yu Shin Kim
- Departments of Oral and Maxillofacial Surgery, The School of Dentistry, The University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, TX, 78229, USA
- Programs in Integrated Biomedical Sciences and Translational Sciences, The School of Medicine, UTHSCSA, San Antonio, TX, 78229, USA
| | - Armen N Akopian
- Departments of Endodontics, The School of Dentistry, The University of Texas Health Science Center at San Antonio (UTHSCSA), 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA.
- Programs in Integrated Biomedical Sciences and Translational Sciences, The School of Medicine, UTHSCSA, San Antonio, TX, 78229, USA.
| |
Collapse
|
5
|
Detecting ulcerative colitis from colon samples using efficient feature selection and machine learning. Sci Rep 2020; 10:13744. [PMID: 32792678 PMCID: PMC7426912 DOI: 10.1038/s41598-020-70583-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 07/30/2020] [Indexed: 02/08/2023] Open
Abstract
Ulcerative colitis (UC) is one of the most common forms of inflammatory bowel disease (IBD) characterized by inflammation of the mucosal layer of the colon. Diagnosis of UC is based on clinical symptoms, and then confirmed based on endoscopic, histologic and laboratory findings. Feature selection and machine learning have been previously used for creating models to facilitate the diagnosis of certain diseases. In this work, we used a recently developed feature selection algorithm (DRPT) combined with a support vector machine (SVM) classifier to generate a model to discriminate between healthy subjects and subjects with UC based on the expression values of 32 genes in colon samples. We validated our model with an independent gene expression dataset of colonic samples from subjects in active and inactive periods of UC. Our model perfectly detected all active cases and had an average precision of 0.62 in the inactive cases. Compared with results reported in previous studies and a model generated by a recently published software for biomarker discovery using machine learning (BioDiscML), our final model for detecting UC shows better performance in terms of average precision.
Collapse
|
6
|
KRT18 is correlated with the malignant status and acts as an oncogene in colorectal cancer. Biosci Rep 2019; 39:BSR20190884. [PMID: 31345960 PMCID: PMC6692566 DOI: 10.1042/bsr20190884] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/09/2019] [Accepted: 07/01/2019] [Indexed: 12/24/2022] Open
Abstract
Keratin 18 (KRT18) has been suggested to be overexpressed in most types of human tumor, but the expression pattern of KRT18 in colorectal cancer (CRC) remained unknown. In our research, KRT18 protein expression was markedly increased in CRC cancer tissues and cell lines compared with adjacent normal colorectal tissues and normal colonic epithelial cell line, respectively. Meanwhile, we observed high KRT18 expression was associated with advanced clinical stage, deep tumor invasion, lymph node metastasis, distant metastasis, poor differentiation and unfavorable prognosis in CRC patients. Multivariate Cox regression analysis showed high expression of KRT18 was an unfavorable independent predictor for overall survival in CRC patients. The in vitro studies indicated down-regulation of KRT18 expression depressed CRC cell viability, migration and invasion. In conclusion, KRT18 serves as an oncogenic role in CRC progression and may be a therapeutic target for promoting CRC patients' prognosis.
Collapse
|
7
|
Sukhotnik I, Shahar YB, Pollak Y, Dorfman T, Shefer HK, Assi ZE, Mor-Vaknin N, Coran AG. The role of intermediate filaments in maintaining integrity and function of intestinal epithelial cells after massive bowel resection in a rat. Pediatr Surg Int 2018; 34:217-225. [PMID: 29043445 DOI: 10.1007/s00383-017-4192-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/21/2017] [Indexed: 01/22/2023]
Abstract
PURPOSE Intermediate filaments (IFs) are a part of the cytoskeleton that extend throughout the cytoplasm of all cells and function in the maintenance of cell-shape by bearing tension and serving as structural components of the nuclear lamina. In normal intestine, IFs provide a tissue-specific three-dimensional scaffolding with unique context-dependent organizational features. The purpose of this study was to evaluate the role of IFs during intestinal adaptation in a rat model of short bowel syndrome (SBS). MATERIALS AND METHODS Male rats were divided into two groups: Sham rats underwent bowel transection and SBS rats underwent a 75% bowel resection. Parameters of intestinal adaptation, enterocyte proliferation and apoptosis were determined 2 weeks after operation. Illumina's Digital Gene Expression (DGE) analysis was used to determine the cytoskeleton-related gene expression profiling. IF-related genes and protein expression were determined using real-time PCR, Western blotting and immunohistochemistry. RESULTS Massive small bowel resection resulted in a significant increase in enterocyte proliferation and concomitant increase in cell apoptosis. From the total number of 20,000 probes, 16 cytoskeleton-related genes were investigated. Between these genes, only myosin and tubulin levels were upregulated in SBS compared to sham animals. Between IF-related genes, desmin, vimentin and lamin levels were down-regulated and keratin and neurofilament remain unchanged. The levels of TGF-β, vimentin and desmin gene and protein were down-regulated in resected rats (vs sham animals). CONCLUSIONS Two weeks following massive bowel resection in rats, the accelerated cell turnover was accompanied by a stimulated microfilaments and microtubules, and by inhibited intermediate filaments. Resistance to cell compression rather that maintenance of cell-shape by bearing tension are responsible for contraction, motility and postmitotic cell separation in a late stage of intestinal adaptation.
Collapse
Affiliation(s)
- I Sukhotnik
- Laboratory of Intestinal Adaptation and Recovery, The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
- Department of Pediatric Surgery, Bnai Zion Medical Center, Golomb St., P.O.B. 4940, 31048, Haifa, Israel.
| | - Y Ben Shahar
- Laboratory of Intestinal Adaptation and Recovery, The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Department of Pediatric Surgery, Bnai Zion Medical Center, Golomb St., P.O.B. 4940, 31048, Haifa, Israel
| | - Y Pollak
- Laboratory of Intestinal Adaptation and Recovery, The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - T Dorfman
- Laboratory of Intestinal Adaptation and Recovery, The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - H Kreizman Shefer
- Laboratory of Intestinal Adaptation and Recovery, The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Z E Assi
- Laboratory of Intestinal Adaptation and Recovery, The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Department of Pediatric Surgery, Bnai Zion Medical Center, Golomb St., P.O.B. 4940, 31048, Haifa, Israel
| | - N Mor-Vaknin
- Department of Internal Medicine, C.S. Mott Children's Hospital, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - A G Coran
- Section of Pediatric Surgery, C.S. Mott Children's Hospital, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
8
|
Geisler F, Gerhardus H, Carberry K, Davis W, Jorgensen E, Richardson C, Bossinger O, Leube RE. A novel function for the MAP kinase SMA-5 in intestinal tube stability. Mol Biol Cell 2016; 27:3855-3868. [PMID: 27733627 PMCID: PMC5170608 DOI: 10.1091/mbc.e16-02-0099] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 09/26/2016] [Accepted: 10/05/2016] [Indexed: 01/19/2023] Open
Abstract
In vivo evidence links SMA-5 to the maintenance of the apical domain in the Caenorhabditis elegans intestine. sma-5 mutations induce morphological and biochemical changes of the intermediate filament system, demonstrating the close relationship between posttranslational modification and structural integrity of the evolutionarily conserved intestinal cytoskeleton. Intermediate filaments are major cytoskeletal components whose assembly into complex networks and isotype-specific functions are still largely unknown. Caenorhabditis elegans provides an excellent model system to study intermediate filament organization and function in vivo. Its intestinal intermediate filaments localize exclusively to the endotube, a circumferential sheet just below the actin-based terminal web. A genetic screen for defects in the organization of intermediate filaments identified a mutation in the catalytic domain of the MAP kinase 7 orthologue sma-5(kc1). In sma-5(kc1) mutants, pockets of lumen penetrate the cytoplasm of the intestinal cells. These membrane hernias increase over time without affecting epithelial integrity and polarity. A more pronounced phenotype was observed in the deletion allele sma-5(n678) and in intestine-specific sma-5(RNAi). Besides reduced body length, an increased time of development, reduced brood size, and reduced life span were observed in the mutants, indicating compromised food uptake. Ultrastructural analyses revealed that the luminal pockets include the subapical cytoskeleton and coincide with local thinning and gaps in the endotube that are often enlarged in other regions. Increased intermediate filament phosphorylation was detected by two-dimensional immunoblotting, suggesting that loss of SMA-5 function leads to reduced intestinal tube stability due to altered intermediate filament network phosphorylation.
Collapse
Affiliation(s)
- Florian Geisler
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, 52074 Aachen, Germany
| | - Harald Gerhardus
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, 52074 Aachen, Germany
| | - Katrin Carberry
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, 52074 Aachen, Germany
| | - Wayne Davis
- Department of Biology and Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT 84112-0840
| | - Erik Jorgensen
- Department of Biology and Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT 84112-0840
| | - Christine Richardson
- School of Biological and Biomedical Sciences, Durham University, Durham DH1 3LE, United Kingdom
| | - Olaf Bossinger
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, 52074 Aachen, Germany
| | - Rudolf E Leube
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
9
|
Keratins Are Altered in Intestinal Disease-Related Stress Responses. Cells 2016; 5:cells5030035. [PMID: 27626448 PMCID: PMC5040977 DOI: 10.3390/cells5030035] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 08/18/2016] [Accepted: 08/25/2016] [Indexed: 12/17/2022] Open
Abstract
Keratin (K) intermediate filaments can be divided into type I/type II proteins, which form obligate heteropolymers. Epithelial cells express type I-type II keratin pairs, and K7, K8 (type II) and K18, K19 and K20 (type I) are the primary keratins found in the single-layered intestinal epithelium. Keratins are upregulated during stress in liver, pancreas, lung, kidney and skin, however, little is known about their dynamics in the intestinal stress response. Here, keratin mRNA, protein and phosphorylation levels were studied in response to murine colonic stresses modeling human conditions, and in colorectal cancer HT29 cells. Dextran sulphate sodium (DSS)-colitis was used as a model for intestinal inflammatory stress, which elicited a strong upregulation and widened crypt distribution of K7 and K20. K8 levels were slightly downregulated in acute DSS, while stress-responsive K8 serine-74 phosphorylation (K8 pS74) was increased. By eliminating colonic microflora using antibiotics, K8 pS74 in proliferating cells was significantly increased, together with an upregulation of K8 and K19. In the aging mouse colon, most colonic keratins were upregulated. In vitro, K8, K19 and K8 pS74 levels were increased in response to lipopolysaccharide (LPS)-induced inflammation in HT29 cells. In conclusion, intestinal keratins are differentially and dynamically upregulated and post-translationally modified during stress and recovery.
Collapse
|
10
|
Misiorek JO, Lähdeniemi IAK, Nyström JH, Paramonov VM, Gullmets JA, Saarento H, Rivero-Müller A, Husøy T, Taimen P, Toivola DM. Keratin 8-deletion induced colitis predisposes to murine colorectal cancer enforced by the inflammasome and IL-22 pathway. Carcinogenesis 2016; 37:777-786. [PMID: 27234655 DOI: 10.1093/carcin/bgw063] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 05/12/2016] [Indexed: 12/30/2022] Open
Abstract
Keratins (K) are intermediate filament proteins important in protection from cellular stress. K8, K18 and K19 are the main components of keratin filaments in colonic epithelia but their role in intestinal diseases remains ambiguous. A function for keratins in intestinal health is supported by the K8-knock-out (K8(-/-)) mouse which manifests an early chronic ulcerative colitis-like inflammatory bowel disease and epithelial hyperproliferation. We tested whether K8(-/-) mice are more susceptible to colorectal cancer (CRC) compared to K8 wild type (K8(+/+)), and K8 heterozygote (K8(+/-)) mice showing increased proliferation but no inflammation. K8(-/-) mice did not develop CRC spontaneously, but had dramatically increased numbers of tumors in the distal colon in the azoxymethane (AOM) and Apc(Min/+) CRC models while neither K8(+/+) nor K8(+/-) mice were susceptible. Upregulation of IL-22 in combination with a complete loss of its negative regulator IL-22BP, and increased downstream STAT3-signaling in K8(-/-) and K8(-/-)Apc(Min/+) colonic epithelia confirmed that the IL-22 pathway, important in inflammation, proliferation and tissue regeneration, was activated. The nearly total loss of IL-22BP correlated with an activated inflammasome leading to increased cleaved caspase-1, and the putative IL-22BP inhibitor, IL-18, as well as a decrease in ALDH1/2. Ablation of K8 in a colorectal cancer cell line similarly resulted in increased IL-18 and decreased ALDH1/2. K8/K18 co-immunoprecipitated with pro-caspase-1, a component of the inflammasome in the colon, which suggests that keratins modulate inflammasome activity and protect the colon from inflammation and tumorigenesis. The K8-null mouse models also provide novel epithelial-derived robust colon-specific CRC models.
Collapse
Affiliation(s)
- Julia O Misiorek
- Biosciences, Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, Turku 20520, Finland
| | - Iris A K Lähdeniemi
- Biosciences, Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, Turku 20520, Finland
| | - Joel H Nyström
- Biosciences, Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, Turku 20520, Finland
| | - Valeriy M Paramonov
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku 20520, Finland
- Department of Physiology, Institute of Biomedicine, University of Turku, Turku 20520, Finland
| | - Josef A Gullmets
- Biosciences, Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, Turku 20520, Finland
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku 20520, Finland
- Department of Pathology, University of Turku and Turku University Hospital, Turku 20520, Finland
| | - Helena Saarento
- Biosciences, Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, Turku 20520, Finland
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku 20520, Finland
| | - Adolfo Rivero-Müller
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku 20520, Finland
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin 20-093, Poland
| | - Trine Husøy
- Department of Food, Water and Cosmetics, Norwegian Institute of Public Health, Oslo 0403, Norway
| | - Pekka Taimen
- Department of Pathology, University of Turku and Turku University Hospital, Turku 20520, Finland
- MediCity Research Laboratory, University of Turku, Turku, Finland and
| | - Diana M Toivola
- Biosciences, Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, Turku 20520, Finland
- Turku Center for Disease Modeling, University of Turku, Turku 20520, Finland
| |
Collapse
|
11
|
Coch RA, Leube RE. Intermediate Filaments and Polarization in the Intestinal Epithelium. Cells 2016; 5:E32. [PMID: 27429003 PMCID: PMC5040974 DOI: 10.3390/cells5030032] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/05/2016] [Accepted: 07/06/2016] [Indexed: 01/02/2023] Open
Abstract
The cytoplasmic intermediate filament cytoskeleton provides a tissue-specific three-dimensional scaffolding with unique context-dependent organizational features. This is particularly apparent in the intestinal epithelium, in which the intermediate filament network is localized below the apical terminal web region and is anchored to the apical junction complex. This arrangement is conserved from the nematode Caenorhabditis elegans to humans. The review summarizes compositional, morphological and functional features of the polarized intermediate filament cytoskeleton in intestinal cells of nematodes and mammals. We emphasize the cross talk of intermediate filaments with the actin- and tubulin-based cytoskeleton. Possible links of the intermediate filament system to the distribution of apical membrane proteins and the cell polarity complex are highlighted. Finally, we discuss how these properties relate to the establishment and maintenance of polarity in the intestine.
Collapse
Affiliation(s)
- Richard A Coch
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Wendlingweg 2, Aachen 52074, Germany.
| | - Rudolf E Leube
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Wendlingweg 2, Aachen 52074, Germany.
| |
Collapse
|
12
|
Geisler F, Leube RE. Epithelial Intermediate Filaments: Guardians against Microbial Infection? Cells 2016; 5:cells5030029. [PMID: 27355965 PMCID: PMC5040971 DOI: 10.3390/cells5030029] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 06/15/2016] [Accepted: 06/21/2016] [Indexed: 12/21/2022] Open
Abstract
Intermediate filaments are abundant cytoskeletal components of epithelial tissues. They have been implicated in overall stress protection. A hitherto poorly investigated area of research is the function of intermediate filaments as a barrier to microbial infection. This review summarizes the accumulating knowledge about this interaction. It first emphasizes the unique spatial organization of the keratin intermediate filament cytoskeleton in different epithelial tissues to protect the organism against microbial insults. We then present examples of direct interaction between viral, bacterial, and parasitic proteins and the intermediate filament system and describe how this affects the microbe-host interaction by modulating the epithelial cytoskeleton, the progression of infection, and host response. These observations not only provide novel insights into the dynamics and function of intermediate filaments but also indicate future avenues to combat microbial infection.
Collapse
Affiliation(s)
- Florian Geisler
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany.
| | - Rudolf E Leube
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany.
| |
Collapse
|
13
|
Asghar MN, Priyamvada S, Nyström JH, Anbazhagan AN, Dudeja PK, Toivola DM. Keratin 8 knockdown leads to loss of the chloride transporter DRA in the colon. Am J Physiol Gastrointest Liver Physiol 2016; 310:G1147-54. [PMID: 27125276 PMCID: PMC4935477 DOI: 10.1152/ajpgi.00354.2015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 04/23/2016] [Indexed: 02/06/2023]
Abstract
Keratins (K) are intermediate filament proteins important in protection from stress. The roles of keratins in the intestine are not clear, but K8 knockout (K8(-/-)) mice develop a Th2-type colonic inflammation, epithelial hyperproliferation, and mild diarrhea caused by a keratin level-dependent decrease in short-circuit current and net sodium and chloride absorption in the distal colon. The lack of K8 leads to mistargeting or altered levels of membrane proteins in colonocytes; however, the main transporter responsible for the keratin-related ion transport defect is unknown. We here analyzed protein and mRNA levels of candidate ion transporters CFTR, PAT-1, NHE-3, and DRA in ileum, cecum, and proximal and distal colon. Although no differences were observed for CFTR, PAT-1, or NHE-3, DRA mRNA levels were decreased by three- to fourfold and DRA protein was almost entirely lost in K8(-/-) cecum and proximal and distal colon compared with K8(+/+), whereas the levels in ileum were normal. In K8(+/-) mice, DRA mRNA levels were unaltered, while decreased DRA protein levels were detected in the proximal colon. Immunofluorescence staining confirmed the loss of DRA in K8(-/-) distal colon, while K8(+/-) displayed a similar but more patchy apical DRA distribution compared with K8(+/+) DRA was similarly decreased when K8 was knocked down in Caco-2 cells, confirming that K8 levels modulate DRA levels in an inflammation-independent manner. Taken together, the loss of DRA in the K8(-/-) mouse colon and cecum explains the dramatic chloride transport defect and diarrheal phenotype after K8 inactivation and identifies K8 as a novel regulator of DRA.
Collapse
Affiliation(s)
- M. Nadeem Asghar
- 1Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University and Turku Center for Disease Modeling, University of Turku, Turku, Finland; and
| | - Shubha Priyamvada
- 2University of Illinois at Chicago, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| | - Joel H. Nyström
- 1Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University and Turku Center for Disease Modeling, University of Turku, Turku, Finland; and
| | | | - Pradeep K. Dudeja
- 2University of Illinois at Chicago, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| | - Diana M. Toivola
- 1Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University and Turku Center for Disease Modeling, University of Turku, Turku, Finland; and
| |
Collapse
|
14
|
Kumar V, Bouameur JE, Bär J, Rice RH, Hornig-Do HT, Roop DR, Schwarz N, Brodesser S, Thiering S, Leube RE, Wiesner RJ, Vijayaraj P, Brazel CB, Heller S, Binder H, Löffler-Wirth H, Seibel P, Magin TM. A keratin scaffold regulates epidermal barrier formation, mitochondrial lipid composition, and activity. J Cell Biol 2016; 211:1057-75. [PMID: 26644517 PMCID: PMC4674273 DOI: 10.1083/jcb.201404147] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Epidermal keratin filaments are important components and organizers of the cornified envelope and regulate mitochondrial metabolism by modulating their membrane composition. Keratin intermediate filaments (KIFs) protect the epidermis against mechanical force, support strong adhesion, help barrier formation, and regulate growth. The mechanisms by which type I and II keratins contribute to these functions remain incompletely understood. Here, we report that mice lacking all type I or type II keratins display severe barrier defects and fragile skin, leading to perinatal mortality with full penetrance. Comparative proteomics of cornified envelopes (CEs) from prenatal KtyI−/− and KtyII−/−K8 mice demonstrates that absence of KIF causes dysregulation of many CE constituents, including downregulation of desmoglein 1. Despite persistence of loricrin expression and upregulation of many Nrf2 targets, including CE components Sprr2d and Sprr2h, extensive barrier defects persist, identifying keratins as essential CE scaffolds. Furthermore, we show that KIFs control mitochondrial lipid composition and activity in a cell-intrinsic manner. Therefore, our study explains the complexity of keratinopathies accompanied by barrier disorders by linking keratin scaffolds to mitochondria, adhesion, and CE formation.
Collapse
Affiliation(s)
- Vinod Kumar
- Translational Centre for Regenerative Medicine Leipzig, University of Leipzig, 04103 Leipzig, Germany Institute of Biology, Division of Cell and Developmental Biology, University of Leipzig, 04103 Leipzig, Germany
| | - Jamal-Eddine Bouameur
- Translational Centre for Regenerative Medicine Leipzig, University of Leipzig, 04103 Leipzig, Germany Institute of Biology, Division of Cell and Developmental Biology, University of Leipzig, 04103 Leipzig, Germany
| | - Janina Bär
- Translational Centre for Regenerative Medicine Leipzig, University of Leipzig, 04103 Leipzig, Germany Institute of Biology, Division of Cell and Developmental Biology, University of Leipzig, 04103 Leipzig, Germany
| | - Robert H Rice
- Department of Environmental Toxicology, University of California, Davis, Davis, CA 95616
| | - Hue-Tran Hornig-Do
- Center for Physiology and Pathophysiology, Institute for Vegetative Physiology, University of Cologne, 50931 Cologne, Germany
| | - Dennis R Roop
- Department of Dermatology, University of Colorado, Denver, CO 80045 Charles C. Gates Center for Regenerative Medicine and Stem Cell Biology, University of Colorado, Denver, CO 80045
| | - Nicole Schwarz
- Institute of Molecular and Cellular Anatomy, Rheinisch-Westfälische Technische Hochschule Aachen University, 52074 Aachen, Germany
| | - Susanne Brodesser
- Center for Physiology and Pathophysiology, Institute for Vegetative Physiology, University of Cologne, 50931 Cologne, Germany Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, Medical Faculty, University of Cologne, 50931 Cologne, Germany Center for Molecular Medicine Cologne, 50931 Cologne, Germany
| | - Sören Thiering
- Translational Centre for Regenerative Medicine Leipzig, University of Leipzig, 04103 Leipzig, Germany Institute of Biology, Division of Cell and Developmental Biology, University of Leipzig, 04103 Leipzig, Germany
| | - Rudolf E Leube
- Institute of Molecular and Cellular Anatomy, Rheinisch-Westfälische Technische Hochschule Aachen University, 52074 Aachen, Germany
| | - Rudolf J Wiesner
- Center for Physiology and Pathophysiology, Institute for Vegetative Physiology, University of Cologne, 50931 Cologne, Germany Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, Medical Faculty, University of Cologne, 50931 Cologne, Germany Center for Molecular Medicine Cologne, 50931 Cologne, Germany
| | | | - Christina B Brazel
- Translational Centre for Regenerative Medicine Leipzig, University of Leipzig, 04103 Leipzig, Germany Institute of Biology, Division of Cell and Developmental Biology, University of Leipzig, 04103 Leipzig, Germany
| | - Sandra Heller
- Center for Biotechnology and Biomedicine, 04103 Leipzig, Germany
| | - Hans Binder
- Interdisciplinary Centre for Bioinformatics, University of Leipzig, 04107 Leipzig, Germany
| | - Henry Löffler-Wirth
- Interdisciplinary Centre for Bioinformatics, University of Leipzig, 04107 Leipzig, Germany
| | - Peter Seibel
- Center for Biotechnology and Biomedicine, 04103 Leipzig, Germany
| | - Thomas M Magin
- Translational Centre for Regenerative Medicine Leipzig, University of Leipzig, 04103 Leipzig, Germany Institute of Biology, Division of Cell and Developmental Biology, University of Leipzig, 04103 Leipzig, Germany
| |
Collapse
|
15
|
Annese V, Beaugerie L, Egan L, Biancone L, Bolling C, Brandts C, Dierickx D, Dummer R, Fiorino G, Gornet JM, Higgins P, Katsanos KH, Nissen L, Pellino G, Rogler G, Scaldaferri F, Szymanska E, Eliakim R. European Evidence-based Consensus: Inflammatory Bowel Disease and Malignancies. J Crohns Colitis 2015; 9:945-965. [PMID: 26294789 DOI: 10.1093/ecco-jcc/jjv141] [Citation(s) in RCA: 315] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 08/10/2015] [Indexed: 02/07/2023]
Affiliation(s)
- Vito Annese
- University Hospital Careggi, Department of Gastroenterology, Florence, Italy
| | - Laurent Beaugerie
- Department of Gastroenterology, AP-HP Hôpital Saint-Antoine, and UPMC Univ Paris 06, Paris, France
| | - Laurence Egan
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland, Galway, Ireland
| | - Livia Biancone
- University Tor Vergata of Rome, GI Unit, Department of Systems Medicine, Rome, Italy
| | - Claus Bolling
- Agaplesion Markus Krankenhaus, Medizinische Klinik I, Frankfurt am Main, Germany
| | - Christian Brandts
- Department of Medicine, Hematology/Oncology, Goethe University, Frankfurt am Main, Germany
| | - Daan Dierickx
- Department of Haematology, University Hospital Leuven, Leuven, Belgium
| | - Reinhard Dummer
- Department of Dermatology, University Zürich, Zürich, Switzerland
| | - Gionata Fiorino
- Gastroenterology Department, Humanitas Research Hospital, Rozzano, Italy
| | - Jean Marc Gornet
- Service d'hépatogastroentérologie, Hopital Saint-Louis, Paris, France
| | - Peter Higgins
- University of Michigan, Department of Internal Medicine, Ann Arbor, USA
| | | | - Loes Nissen
- Department of Gastroenterology and Hepatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Gianluca Pellino
- Second University of Naples, Unit of Colorectal Surgery, Department of Medical, Surgical, Neurological, Metabolic and Ageing Sciences, Naples, Italy
| | - Gerhard Rogler
- Klinik für Gastroenterologie und Hepatologie, UniversitätsSpital Zürich, Zürich, Switzerland
| | - Franco Scaldaferri
- Università Cattolica del Sacro Cuore, Department of Internal Medicine, Gastroenterology Division, Roma, Italy
| | - Edyta Szymanska
- Department of Pediatrics, Nutrition and Metabolic Disorders, Children's Memorial Health Institute, Warsaw, Poland
| | - Rami Eliakim
- Department of Gastroenterology and Hepatology, Sheba Medical Center & Sackler School of Medicine, Israel
| |
Collapse
|
16
|
Drew JE, Farquharson AJ, Vase H, Carey FA, Steele RJC, Ross RA, Bunton DC. Molecular Profiling of Multiplexed Gene Markers to Assess Viability of Ex Vivo Human Colon Explant Cultures. Biores Open Access 2015; 4:425-30. [PMID: 26634188 PMCID: PMC4652222 DOI: 10.1089/biores.2015.0029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Human colon tissue explant culture provides a physiologically relevant model system to study human gut biology. However, the small (20–30 mg) and complex tissue samples used present challenges for monitoring tissue stability, viability, and provision of sufficient tissue for analyses. Combining molecular profiling with explant culture has potential to overcome such limitations, permitting interrogation of complex gene regulation required to maintain gut mucosa in culture, monitor responses to culture environments and interventions. Human ex vivo colon explant gene expression profiles were assayed using an in-house custom-designed hCellMarkerPlex assay at culture time points 0, 1, 2, 4, and 14 h. Characteristic profiles of epithelial cell markers linked to differentiation, cellular polarization, and apoptosis were correlated with visible histochemical changes in explant epithelium during culture and tissue donors. The GenomeLab System provides effective assay of multiple targets not possible from small tissue samples with conventional gene expression technology platforms. This is advantageous to increase the utility of the ex vivo human colon model in applications to interrogate this complex and dynamic tissue environment for use in analytical testing.
Collapse
Affiliation(s)
- Janice E Drew
- Metabolic Health, Rowett Institute of Nutrition and Health, University of Aberdeen , Aberdeen, Scotland
| | - Andrew J Farquharson
- Metabolic Health, Rowett Institute of Nutrition and Health, University of Aberdeen , Aberdeen, Scotland
| | - Hollie Vase
- Metabolic Health, Rowett Institute of Nutrition and Health, University of Aberdeen , Aberdeen, Scotland
| | - Frank A Carey
- Ninewells Hospital and Medical School , Dundee, Scotland
| | | | - Ruth A Ross
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto , Toronto, Ontario, Canada
| | | |
Collapse
|
17
|
Yunusbaeva MM, Yunusbaev BB, Valiev RR, Khammatova AA, Khusnutdinova EK. Широкое многообразие кератинов человека. VESTNIK DERMATOLOGII I VENEROLOGII 2015. [DOI: 10.25208/0042-4609-2015-91-5-42-52] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
А review presents systematic data about the diversity of human keratins. The results of numerous studies concerning the structure and functions of keratins, their distribution in various cells and tissues were summarized. The role of these proteins in the development of human hereditary diseases, as well as modern approaches in use keratins in immunohistochemistry and perspectives of their further studies are discussed.
Collapse
|
18
|
Hémonnot CYJ, Mauermann M, Herrmann H, Köster S. Assembly of Simple Epithelial Keratin Filaments: Deciphering the Ion Dependence in Filament Organization. Biomacromolecules 2015; 16:3313-21. [PMID: 26327161 DOI: 10.1021/acs.biomac.5b00965] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The intermediate filament proteins keratin K8 and K18 constitute an essential part of the cytoskeleton in simple epithelial cell layers, structurally enforcing their mechanical resistance. K8/K18 heterodimers form extended filaments and higher-order structures including bundles and networks that bind to cell junctions. We study the assembly of these proteins in the presence of monovalent or divalent ions by small-angle X-ray scattering. We find that both ion species cause an increase of the filament diameter when their concentration is increased; albeit, much higher values are needed for the monovalent compared to the divalent ions for the same effect. Bundling occurs also for monovalent ions and at comparatively low concentrations of divalent ions, very different from vimentin intermediate filaments, a fibroblast-specific cytoskeleton component. We explain these differences by variations in charge and hydrophobicity patterns of the proteins. These differences may reflect the respective physiological situation in stationary cell layers versus single migrating fibroblasts.
Collapse
Affiliation(s)
- Clément Y J Hémonnot
- Institute for X-ray Physics, University of Göttingen , Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Monika Mauermann
- Division of Molecular Genetics, German Cancer Research Center , Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Harald Herrmann
- Division of Molecular Genetics, German Cancer Research Center , Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Sarah Köster
- Institute for X-ray Physics, University of Göttingen , Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| |
Collapse
|
19
|
Corfe BM, Majumdar D, Assadsangabi A, Marsh AMR, Cross SS, Connolly JB, Evans CA, Lobo AJ. Inflammation decreases keratin level in ulcerative colitis; inadequate restoration associates with increased risk of colitis-associated cancer. BMJ Open Gastroenterol 2015; 2:e000024. [PMID: 26462276 PMCID: PMC4599170 DOI: 10.1136/bmjgast-2014-000024] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 12/21/2014] [Accepted: 01/04/2015] [Indexed: 01/08/2023] Open
Abstract
Background Keratins are intermediate filament (IF) proteins, which form part of the epithelial cytoskeleton and which have been implicated pathology of inflammatory bowel diseases (IBD). Methods In this study biopsies were obtained from IBD patients grouped by disease duration and subtype into eight categories based on cancer risk and inflammatory status: quiescent recent onset (<5 years) UC (ROUC); UC with primary sclerosing cholangitis; quiescent long-standing pancolitis (20–40 years) (LSPC); active colitis and non-inflamed proximal colonic mucosa; pancolitis with dysplasia-both dysplastic lesions (DT) and distal rectal mucosa (DR); control group without pathology. Alterations in IF protein composition across the groups were determined by quantitative proteomics. Key protein changes were validated by western immunoblotting and immunohistochemical analysis. Result Acute inflammation resulted in reduced K8, K18, K19 and VIM (all p<0.05) compared to controls and non inflamed mucosa; reduced levels of if– associated proteins were also seen in DT and DR. Increased levels of keratins in LSPC was noted relative to controls or ROUC (K8, K18, K19 and VIM, p<0.05). Multiple K8 forms were noted on immunoblotting, with K8 phosphorylation reduced in progressive disease along with an increase in VIM:K8 ratio. K8 levels and phosphorylation are reduced in acute inflammation but appear restored or elevated in subjects with clinical and endoscopic remission (LSPC) but not apparent in subjects with elevated risk of cancer. Conclusions These data suggest that keratin regulation in remission may influence subsequent cancer risk.
Collapse
Affiliation(s)
- Bernard M Corfe
- Molecular Gastroenterology Research Group, Academic Unit of Surgical Oncology, Department of Oncology , University of Sheffield, The Medical School , Sheffield , UK ; Insigneo Institute for in silico Medicine, University of Sheffield , Sheffield , UK
| | - Debabrata Majumdar
- Molecular Gastroenterology Research Group, Academic Unit of Surgical Oncology, Department of Oncology , University of Sheffield, The Medical School , Sheffield , UK ; Gastroenterology Unit , Royal Hallamshire Hospital , Sheffield , UK
| | - Arash Assadsangabi
- Molecular Gastroenterology Research Group, Academic Unit of Surgical Oncology, Department of Oncology , University of Sheffield, The Medical School , Sheffield , UK ; Gastroenterology Unit , Royal Hallamshire Hospital , Sheffield , UK
| | - Alexandra M R Marsh
- Molecular Gastroenterology Research Group, Academic Unit of Surgical Oncology, Department of Oncology , University of Sheffield, The Medical School , Sheffield , UK ; Gastroenterology Unit , Royal Hallamshire Hospital , Sheffield , UK
| | - Simon S Cross
- Academic Unit of Pathology, Department of Neuroscience, Faculty of Medicine, Dentistry & Health , University of Sheffield , Sheffield , UK
| | | | - Caroline A Evans
- Biological and Systems Engineering Group, Department of Chemical and Biological Engineering , ChELSI Institute, University of Sheffield , Sheffield , UK
| | - Alan J Lobo
- Molecular Gastroenterology Research Group, Academic Unit of Surgical Oncology, Department of Oncology , University of Sheffield, The Medical School , Sheffield , UK ; Gastroenterology Unit , Royal Hallamshire Hospital , Sheffield , UK
| |
Collapse
|
20
|
Holm H, Santi N, Kjøglum S, Perisic N, Skugor S, Evensen Ø. Difference in skin immune responses to infection with salmon louse (Lepeophtheirus salmonis) in Atlantic salmon (Salmo salar L.) of families selected for resistance and susceptibility. FISH & SHELLFISH IMMUNOLOGY 2015; 42:384-94. [PMID: 25449368 DOI: 10.1016/j.fsi.2014.10.038] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 10/22/2014] [Accepted: 10/28/2014] [Indexed: 05/04/2023]
Abstract
Atlantic salmon is susceptible to the salmon louse (Lepeophtheirus salmonis) and the variation in susceptibility within the species can be exploited in selective breeding programs for louse resistant fish. In this study, lice counts were completed on 3000 siblings from 150 families of Atlantic salmon identified as high resistant (HR) and low resistant (LR) families in two independent challenge trials. Skin samples behind the dorsal fin (nearby lice attachment) were collected from ten extreme families (HR or LR) and analyzed by qPCR for the expression of 32 selected genes, including a number of genes involved in T helper cell (Th) mediated immune responses, which have been previously implied to play important roles during salmon louse infections. Most genes showed lower expression patterns in the LR than in HR fish, suggesting an immunosuppressed state in LR families. The average number of lice (chalimi) was 9 in HR and 15 in LR fish. Large variation in lice counts was seen both within resistant and susceptible families, which enabled us to subdivide the groups into HR < 10 and HR > 10, and LR < 10 and LR > 10 to better understand the effect of lice burden per se. As expected, expression patterns were influenced both by genetic background and the number of attached parasites. Higher number of lice (>10) negatively affected gene expression in both HR and LR families. In general, strongest down-regulation was seen in LR > 10 and lesser down-regulation in HR < 10. HR in general and especially HR < 10 fish were better at resisting suppression of expression of both Th1 and Th2 genes. However, the best inverse correlation with infection level was seen for the prototypical Th1 genes, including several members from the interferon pathways. In addition, skin histomorphometry suggests that infected LR salmon had thicker epidermis in the area behind the dorsal fin and larger mucous cell size compared to infected HR fish, however marginally significant (p = 0.08). This histomorphometric finding was in line with the immune response being skewed in LR towards the Th2 rather than a Th1 profile. Our findings suggest that the ability to resist lice infection depends on the ability to avoid immunosuppression and not as much on the physical tissue barrier functions.
Collapse
Affiliation(s)
- Helle Holm
- Norwegian University of Life Sciences, Faculty of Biosciences and Veterinary Medicine, Sea Lice Research Center, PO Box 8146, N-0033 Oslo, Norway
| | - Nina Santi
- Aquagen AS, Havnegata 9, N-7010 Trondheim, Norway
| | | | - Nebojsa Perisic
- Weifa AS, Stittlidalen 4, Fikkjebakke, 3766 Sannidal, PO Box 98, NO-37911 Kragerø, Norway
| | - Stanko Skugor
- Norwegian University of Life Sciences, Faculty of Biosciences and Veterinary Medicine, Sea Lice Research Center, PO Box 8146, N-0033 Oslo, Norway
| | - Øystein Evensen
- Norwegian University of Life Sciences, Faculty of Biosciences and Veterinary Medicine, Sea Lice Research Center, PO Box 8146, N-0033 Oslo, Norway.
| |
Collapse
|
21
|
Progressive proximal-to-distal reduction in expression of the tight junction complex in colonic epithelium of virally-suppressed HIV+ individuals. PLoS Pathog 2014; 10:e1004198. [PMID: 24968145 PMCID: PMC4072797 DOI: 10.1371/journal.ppat.1004198] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Accepted: 05/06/2014] [Indexed: 01/11/2023] Open
Abstract
Effective antiretroviral therapy (ART) dramatically reduces AIDS-related complications, yet the life expectancy of long-term ART-treated HIV-infected patients remains shortened compared to that of uninfected controls, due to increased risk of non-AIDS related morbidities. Many propose that these complications result from translocated microbial products from the gut that stimulate systemic inflammation--a consequence of increased intestinal paracellular permeability that persists in this population. Concurrent intestinal immunodeficiency and structural barrier deterioration are postulated to drive microbial translocation, and direct evidence of intestinal epithelial breakdown has been reported in untreated pathogenic SIV infection of rhesus macaques. To assess and characterize the extent of epithelial cell damage in virally-suppressed HIV-infected patients, we analyzed intestinal biopsy tissues for changes in the epithelium at the cellular and molecular level. The intestinal epithelium in the HIV gut is grossly intact, exhibiting no decreases in the relative abundance and packing of intestinal epithelial cells. We found no evidence for structural and subcellular localization changes in intestinal epithelial tight junctions (TJ), but observed significant decreases in the colonic, but not terminal ileal, transcript levels of TJ components in the HIV+ cohort. This result is confirmed by a reduction in TJ proteins in the descending colon of HIV+ patients. In the HIV+ cohort, colonic TJ transcript levels progressively decreased along the proximal-to-distal axis. In contrast, expression levels of the same TJ transcripts stayed unchanged, or progressively increased, from the proximal-to-distal gut in the healthy controls. Non-TJ intestinal epithelial cell-specific mRNAs reveal differing patterns of HIV-associated transcriptional alteration, arguing for an overall change in intestinal epithelial transcriptional regulation in the HIV colon. These findings suggest that persistent intestinal epithelial dysregulation involving a reduction in TJ expression is a mechanism driving increases in colonic permeability and microbial translocation in the ART-treated HIV-infected patient, and a possible immunopathogenic factor for non-AIDS related complications.
Collapse
|
22
|
Affiliation(s)
- Rebecca L Haines
- Epithelial Biology Group, Institute of Medical Biology, Immunos, Singapore
| | | |
Collapse
|
23
|
Tam C, Mun JJ, Evans DJ, Fleiszig SMJ. Cytokeratins mediate epithelial innate defense through their antimicrobial properties. J Clin Invest 2012; 122:3665-77. [PMID: 23006328 DOI: 10.1172/jci64416] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 07/26/2012] [Indexed: 02/06/2023] Open
Abstract
Epithelial cells express antimicrobial proteins in response to invading pathogens, although little is known regarding epithelial defense mechanisms during healthy conditions. Here we report that epithelial cytokeratins have innate defense properties because they constitutively produce cytoprotective antimicrobial peptides. Glycine-rich C-terminal fragments derived from human cytokeratin 6A were identified in bactericidal lysate fractions of human corneal epithelial cells. Structural analysis revealed that these keratin-derived antimicrobial peptides (KDAMPs) exhibited coil structures with low α-helical content. Synthetic analogs of these KDAMPS showed rapid bactericidal activity against multiple pathogens and protected epithelial cells against bacterial virulence mechanisms, while a scrambled peptide showed no bactericidal activity. However, the bactericidal activity of a specific KDAMP was somewhat reduced by glycine-alanine substitutions. KDAMP activity involved bacterial binding and permeabilization, but the activity was unaffected by peptide charge or physiological salt concentration. Knockdown of cytokeratin 6A markedly reduced the bactericidal activity of epithelial cell lysates in vitro and increased the susceptibility of murine corneas to bacterial adherence in vivo. These data suggest that epithelial cytokeratins function as endogenous antimicrobial peptides in the host defense against infection and that keratin-derived antimicrobials may serve as effective therapeutic agents.
Collapse
Affiliation(s)
- Connie Tam
- School of Optometry, University of California, Berkeley, Berkeley, CA 94720-2020, USA
| | | | | | | |
Collapse
|
24
|
Strnad P, Usachov V, Debes C, Gräter F, Parry DAD, Omary MB. Unique amino acid signatures that are evolutionarily conserved distinguish simple-type, epidermal and hair keratins. J Cell Sci 2012; 124:4221-32. [PMID: 22215855 DOI: 10.1242/jcs.089516] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Keratins (Ks) consist of central α-helical rod domains that are flanked by non-α-helical head and tail domains. The cellular abundance of keratins, coupled with their selective cell expression patterns, suggests that they diversified to fulfill tissue-specific functions although the primary structure differences between them have not been comprehensively compared. We analyzed keratin sequences from many species: K1, K2, K5, K9, K10, K14 were studied as representatives of epidermal keratins, and compared with K7, K8, K18, K19, K20 and K31, K35, K81, K85, K86, which represent simple-type (single-layered or glandular) epithelial and hair keratins, respectively. We show that keratin domains have striking differences in their amino acids. There are many cysteines in hair keratins but only a small number in epidermal keratins and rare or none in simple-type keratins. The heads and/or tails of epidermal keratins are glycine and phenylalanine rich but alanine poor, whereas parallel domains of hair keratins are abundant in prolines, and those of simple-type epithelial keratins are enriched in acidic and/or basic residues. The observed differences between simple-type, epidermal and hair keratins are highly conserved throughout evolution. Cysteines and histidines, which are infrequent keratin amino acids, are involved in de novo mutations that are markedly overrepresented in keratins. Hence, keratins have evolutionarily conserved and domain-selectively enriched amino acids including glycine and phenylalanine (epidermal), cysteine and proline (hair), and basic and acidic (simple-type epithelial), which reflect unique functions related to structural flexibility, rigidity and solubility, respectively. Our findings also support the importance of human keratin 'mutation hotspot' residues and their wild-type counterparts.
Collapse
Affiliation(s)
- Pavel Strnad
- Department of Internal Medicine I, Center for Internal Medicine, University Medical Center Ulm, Albert-Einstein-Allee 23, D-89081 Ulm, Germany.
| | | | | | | | | | | |
Collapse
|
25
|
Cooney JM, Barnett MPG, Brewster D, Knoch B, McNabb WC, Laing WA, Roy NC. Proteomic Analysis of Colon Tissue from Interleukin-10 Gene-Deficient Mice Fed Polyunsaturated Fatty Acids with Comparison to Transcriptomic Analysis. J Proteome Res 2011; 11:1065-77. [DOI: 10.1021/pr200807p] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Janine M. Cooney
- Biological Chemistry & Bioactives, Food Innovation, The New Zealand Institute for Plant & Food Research Ltd, Ruakura Private Bag 3123, Waikato Mail Centre, Hamilton 3240, New Zealand
| | | | - Diane Brewster
- Biological Chemistry & Bioactives, Food Innovation, The New Zealand Institute for Plant & Food Research Ltd, Ruakura Private Bag 3123, Waikato Mail Centre, Hamilton 3240, New Zealand
| | | | | | - William A. Laing
- Biological Chemistry & Bioactives, Food Innovation, The New Zealand Institute for Plant & Food Research Ltd, Ruakura Private Bag 3123, Waikato Mail Centre, Hamilton 3240, New Zealand
| | | |
Collapse
|
26
|
Padidar S, Farquharson AJ, Williams LM, Hoggard N, Reid MD, Duncan GJ, Drew JE. Impact of obesity and leptin on protein expression profiles in mouse colon. Dig Dis Sci 2011; 56:1028-36. [PMID: 20824498 DOI: 10.1007/s10620-010-1394-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Accepted: 08/11/2010] [Indexed: 01/04/2023]
Abstract
BACKGROUND Elevated leptin levels in obesity are associated with increased risk of colon pathology, implicating leptin signaling in colon disease. However, leptin-regulated processes in the colon are currently uncharacterized. Previously, we demonstrated that leptin receptors are expressed on colon epithelium and that increased adiposity and elevated plasma leptin in rats are associated with perturbed metabolism in colon tissue. Thus, we hypothesize that obesity disrupts expression of proteins regulated by leptin in the colon. METHODS A proteomic analysis was conducted to investigate firstly, differences in the colon of mice lacking leptin and leptin signaling (ob/ob and db/db, respectively) by comparing protein expression profiles with wild-type mice. Secondly, responses to leptin challenge in wild-type mice and ob/ob mice were compared to identify leptin-regulated proteins and associated cellular processes. RESULTS Forty proteins were identified with significantly altered expression patterns associated with differences in leptin status in comparisons between all groups of mice. These proteins are associated with calcium binding, cell cycle, cell proliferation, electron transport chain, energy metabolism, protein folding and transport, redox regulation, structural proteins, and proteins involved in transport and regulation of mucus production. CONCLUSIONS This study provides evidence that obesity and leptin significantly alter protein profiles of a number of proteins linked to cellular processes in colon tissues that may be linked to the increased risk of colon pathology associated with obesity.
Collapse
Affiliation(s)
- Sara Padidar
- Molecular Nutrition Group, Rowett Institute of Nutrition and Health, University of Aberdeen, Greenburn Road, Bucksburn, Aberdeen, AB21 9SB, Scotland, UK
| | | | | | | | | | | | | |
Collapse
|
27
|
Demarque MD, Nacerddine K, Neyret-Kahn H, Andrieux A, Danenberg E, Jouvion G, Bomme P, Hamard G, Romagnolo B, Terris B, Cumano A, Barker N, Clevers H, Dejean A. Sumoylation by Ubc9 regulates the stem cell compartment and structure and function of the intestinal epithelium in mice. Gastroenterology 2011; 140:286-96. [PMID: 20951138 DOI: 10.1053/j.gastro.2010.10.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 09/02/2010] [Accepted: 10/01/2010] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Small ubiquitin-like modifiers (SUMOs) are attached to other proteins to regulate their function (sumoylation). We investigated the role of Ubc9, which covalently attaches SUMOs to proteins, in the gastrointestinal tract of adult mice. METHODS We investigated the effects of decreased sumoylation in adult mammals by generating mice with an inducible knockout (by injection of 4-hydroxytamoxifen) of the E2 enzyme Ubc9 (Ubc9fl/-/ROSA26-CreERT2 mice). We analyzed the phenotypes using a range of histologic techniques. RESULTS Loss of Ubc9 from adult mice primarily affected the small intestine. Ubc9fl/-/ROSA26-CreERT2 mice died within 6 days of 4-hydroxytamoxifen injection, losing 20% or less of their body weight and developing severe diarrhea on the second day after injection. Surprisingly, other epithelial tissues appeared to be unaffected at that stage. Decreased sumoylation led to the depletion of the intestinal proliferative compartment and to the rapid disappearance of stem cells. Sumoylation was required to separate the proliferative and differentiated compartments from the crypt and control differentiation and function of the secretory lineage. Sumoylation was required for nucleus positioning and polarized organization of actin in the enterocytes. Loss of sumoylation caused detachment of the enterocytes from the basal lamina, as observed in tissue fragility diseases. We identified the intermediate filament keratin 8 as a SUMO substrate in epithelial cells. CONCLUSIONS Sumoylation maintains intestinal stem cells and the architecture, mechanical stability, and function of the intestinal epithelium of mice.
Collapse
Affiliation(s)
- Maud D Demarque
- Nuclear Organisation and Oncogenesis Unit, INSERM U993, Institut Pasteur, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Russell D, Ross H, Lane EB. ERK Involvement in Resistance to Apoptosis in Keratinocytes with Mutant Keratin. J Invest Dermatol 2010; 130:671-81. [DOI: 10.1038/jid.2009.327] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
29
|
Hirota CL, McKay DM. Loss of Ca-mediated ion transport during colitis correlates with reduced ion transport responses to a Ca-activated K channel opener. Br J Pharmacol 2009; 156:1085-97. [PMID: 19298254 DOI: 10.1111/j.1476-5381.2009.00122.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND AND PURPOSE Epithelial surface hydration is critical for proper gut function. However, colonic tissues from individuals with inflammatory bowel disease or animals with colitis are hyporesponsive to Cl(-) secretagogues. The Cl(-) secretory responses to the muscarinic receptor agonist bethanechol are virtually absent in colons of mice with dextran sodium sulphate (DSS)-induced colitis. Our aim was to define the mechanism underlying this cholinergic hyporesponsiveness. EXPERIMENTAL APPROACH Colitis was induced by 4% DSS water, given orally. Epithelial ion transport was measured in Ussing chambers. Colonic crypts were isolated and processed for mRNA expression via RT-PCR and protein expression via immunoblotting and immunolocalization. KEY RESULTS Expression of muscarinic M(3) receptors in colonic epithelium was not decreased during colitis. Short-circuit current (I(SC)) responses to other Ca(2+)-dependent secretagogues (histamine, thapsigargin, cyclopiazonic acid and calcium ionophore) were either absent or severely attenuated in colonic tissue from DSS-treated mice. mRNA levels of several ion transport molecules (a Ca(2+)-regulated Cl(-) channel, the intermediate-conductance Ca(2+)-activated K(+) channel, the cystic fibrosis transmembrane conductance regulator, the Na(+)/K(+)-ATPase pump or the Na(+)/K(+)/2Cl(-) co-transporter) were not reduced in colonic crypts from DSS-treated mice. However, protein expression of Na(+)/K(+)-ATPase alpha1 subunits was decreased twofold during colitis. Activation of Ca(2+)-activated K(+) channels increased I(SC) significantly less in DSS colons compared with control, as did the protein kinase C activator, phorbol 12-myristate 13-acetate. CONCLUSIONS AND IMPLICATIONS Decreased Na(+)/K(+)-ATPase expression probably contributes to overall epithelial hyporesponsiveness during colitis, while dysfunctional K(+) channels may account, at least partially, for lack of epithelial secretory responses to Ca(2+)-mediated secretagogues.
Collapse
Affiliation(s)
- Christina L Hirota
- Intestinal Disease Research Programme, Department of Pathology and Molecular Medicine, McMaster University, 3330 Hospital Drive Northwest, Calgary, Alberta, Canada.
| | | |
Collapse
|
30
|
Bataille F, Rohrmeier C, Bates R, Weber A, Rieder F, Brenmoehl J, Strauch U, Farkas S, Fürst A, Hofstädter F, Schölmerich J, Herfarth H, Rogler G. Evidence for a role of epithelial mesenchymal transition during pathogenesis of fistulae in Crohn's disease. Inflamm Bowel Dis 2008; 14:1514-27. [PMID: 18626977 DOI: 10.1002/ibd.20590] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND The pathogenesis of fistulae in Crohn's disease (CD) patients is barely understood. We recently showed that more than two-thirds of CD fistulae are covered with flat, mesenchymal-like cells (transitional cells [TC]) forming a patchy basement membrane. Epithelial-to-mesenchymal transition (EMT) is a process of reprogramming epithelial cells, allowing them to migrate more effectively and giving epithelial cells an "invasive" potential. EMT has been suggested to be crucial in fibrosis found in different tissues and diseases. We therefore investigated whether EMT could be involved in the pathogenesis of fistulae formation in CD. METHODS In all, 18 perianal fistulae, 2 enteroenteric, and 1 enterovesical fistulae from 17 CD patients were analyzed. In addition 2 perianal fistulae of non-CD patients were studied. Hematoxylin and eosin staining, immunohistochemistry for the expression of cytokeratins 8 and 20, beta6-integrin, E-cadherin, beta-catenin, vimentin, and TGF-beta1 and 2 were performed according to standard techniques. RESULTS The TC covering perianal or enteroenteric fistulae were strongly positive for cytokeratins 8 and 20 but negative for vimentin, indicating their epithelial origin. beta6-Integrin and TGF-beta had the highest staining intensities in the transitional zone between the epithelium and the TC. Expression of junctional proteins such as E-cadherin was reduced in TC as compared to regular fistulae epithelium. In addition, a translocation of beta-catenin from the membrane to the cytoplasm was observed. CONCLUSIONS Our data for the first time indicate an expression pattern of epithelial and mesenchymal markers in TC associated with fistulae formation that is characteristic for EMT. Studying the pathways of EMT during intestinal fistulae formation may help to develop new therapeutic strategies.
Collapse
Affiliation(s)
- Frauke Bataille
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Marti O, Holzwarth M, Beil M. Measuring the nanomechanical properties of cancer cells by digital pulsed force mode imaging. NANOTECHNOLOGY 2008; 19:384015. [PMID: 21832574 DOI: 10.1088/0957-4484/19/38/384015] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
In this paper, we demonstrate that the digital pulsed force mode data can distinguish two cancer cell lines (HeLa, Panc) by their mechanical properties. The live cells were imaged in buffer solution. The digital pulsed force mode measured 175 force-distance curves per second which, due to the speed of the measurement, were distorted by the viscous drag in the buffer. We show that this drag force causes a sinusoidal addition to the force-distance curves. By subtracting the viscous drag effect one obtains standard force-distance curves. The force-distance curves are then evaluated to extract key data on the curves, such as adhesion energies, local stiffness or the width of the hysteresis loop. These data are then correlated to classify the force-distance curves. We show examples based on the width of the hysteresis loop and the adhesion energies. Outliers in this classification scheme are points where, potentially, interesting new physics or different physics might happen. Based on classification schemes adapted to experimental settings, we propose that the digital pulsed force mode is a tool to evaluate the time evolution of the mechanical response of cells.
Collapse
Affiliation(s)
- Othmar Marti
- Institute of Experimental Physics, Ulm University, D-89069 Ulm, Germany
| | | | | |
Collapse
|
32
|
Abstract
The keratins are the typical intermediate filament proteins of epithelia, showing an outstanding degree of molecular diversity. Heteropolymeric filaments are formed by pairing of type I and type II molecules. In humans 54 functional keratin genes exist. They are expressed in highly specific patterns related to the epithelial type and stage of cellular differentiation. About half of all keratins—including numerous keratins characterized only recently—are restricted to the various compartments of hair follicles. As part of the epithelial cytoskeleton, keratins are important for the mechanical stability and integrity of epithelial cells and tissues. Moreover, some keratins also have regulatory functions and are involved in intracellular signaling pathways, e.g. protection from stress, wound healing, and apoptosis. Applying the new consensus nomenclature, this article summarizes, for all human keratins, their cell type and tissue distribution and their functional significance in relation to transgenic mouse models and human hereditary keratin diseases. Furthermore, since keratins also exhibit characteristic expression patterns in human tumors, several of them (notably K5, K7, K8/K18, K19, and K20) have great importance in immunohistochemical tumor diagnosis of carcinomas, in particular of unclear metastases and in precise classification and subtyping. Future research might open further fields of clinical application for this remarkable protein family.
Collapse
|
33
|
Strnad P, Stumptner C, Zatloukal K, Denk H. Intermediate filament cytoskeleton of the liver in health and disease. Histochem Cell Biol 2008; 129:735-49. [PMID: 18443813 PMCID: PMC2386529 DOI: 10.1007/s00418-008-0431-x] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2008] [Indexed: 02/06/2023]
Abstract
Intermediate filaments (IFs) represent the largest cytoskeletal gene family comprising approximately 70 genes expressed in tissue specific manner. In addition to scaffolding function, they form complex signaling platforms and interact with various kinases, adaptor, and apoptotic proteins. IFs are established cytoprotectants and IF variants are associated with >30 human diseases. Furthermore, IF-containing inclusion bodies are characteristic features of several neurodegenerative, muscular, and other disorders. Acidic (type I) and basic keratins (type II) build obligatory type I and type II heteropolymers and are expressed in epithelial cells. Adult hepatocytes contain K8 and K18 as their only cytoplasmic IF pair, whereas cholangiocytes express K7 and K19 in addition. K8/K18-deficient animals exhibit a marked susceptibility to various toxic agents and Fas-induced apoptosis. In humans, K8/K18 variants predispose to development of end-stage liver disease and acute liver failure (ALF). K8/K18 variants also associate with development of liver fibrosis in patients with chronic hepatitis C. Mallory-Denk bodies (MDBs) are protein aggregates consisting of ubiquitinated K8/K18, chaperones and sequestosome1/p62 (p62) as their major constituents. MDBs are found in various liver diseases including alcoholic and non-alcoholic steatohepatitis and can be formed in mice by feeding hepatotoxic substances griseofulvin and 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC). MDBs also arise in cell culture after transfection with K8/K18, ubiquitin, and p62. Major factors that determine MDB formation in vivo are the type of stress (with oxidative stress as a major player), the extent of stress-induced protein misfolding and resulting chaperone, proteasome and autophagy overload, keratin 8 excess, transglutaminase activation with transamidation of keratin 8 and p62 upregulation.
Collapse
Affiliation(s)
- P Strnad
- Department of Internal Medicine I, University of Ulm, Robert-Koch-Strabe 8, 89081, Ulm, Germany.
| | | | | | | |
Collapse
|
34
|
Lugassy J, McGrath JA, Itin P, Shemer R, Verbov J, Murphy HR, Ishida-Yamamoto A, Digiovanna JJ, Bercovich D, Karin N, Vitenshtein A, Uitto J, Bergman R, Richard G, Sprecher E. KRT14 haploinsufficiency results in increased susceptibility of keratinocytes to TNF-alpha-induced apoptosis and causes Naegeli-Franceschetti-Jadassohn syndrome. J Invest Dermatol 2007; 128:1517-24. [PMID: 18049449 DOI: 10.1038/sj.jid.5701187] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Naegeli-Franceschetti-Jadassohn syndrome (NFJS) is a rare autosomal dominant disorder characterized by loss of dermatoglyphics, reticulate hyperpigmentation of the skin, palmoplantar keratoderma, abnormal sweating, and other developmental anomalies of the teeth, hair, and skin. We recently demonstrated that NFJS is caused by heterozygous nonsense or frameshift mutations in the E1/V1-encoding region of KRT14, but the mechanisms for their deleterious effects in NFJS remain elusive. In this study, we further expand the spectrum of NFJS-causing mutations and demonstrate that these mutations result in haploinsufficiency for keratin 14 (K14). As increased apoptotic activity was observed in the epidermal basal cell layer in NFJS patients and as previous data suggested that type I keratins may confer resistance to tumor necrosis factor-alpha (TNF-alpha)-induced apoptosis in epithelial tissues, we assessed the effect of down-regulation of KRT14 expression on apoptotic activity in keratinocytes. Using a HaCaT cell-based assay, we found that decreased KRT14 expression is associated with increased susceptibility to TNF-alpha-induced apoptosis. This phenomenon was not observed when cells were cultured in the presence of doxycycline, a known negative regulator of TNF-alpha-dependant pro-apoptotic signaling. Collectively, our results indicate that NFJS results from haploinsufficiency for K14 and suggest that increased susceptibility of keratinocytes to pro-apoptotic signals may be involved in the pathogenesis of this ectodermal dysplasia syndrome.
Collapse
Affiliation(s)
- Jennie Lugassy
- Laboratory of Molecular Dermatology and Department of Dermatology, Rambam Health Care Campus, Haifa, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Wang L, Srinivasan S, Theiss AL, Merlin D, Sitaraman SV. Interleukin-6 induces keratin expression in intestinal epithelial cells: potential role of keratin-8 in interleukin-6-induced barrier function alterations. J Biol Chem 2007; 282:8219-27. [PMID: 17213200 DOI: 10.1074/jbc.m604068200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Keratin 8 (K8) and keratin-18 (K18) are the major intermediate filament proteins in the intestinal epithelia. The regulation and function of keratin in the intestinal epithelia is largely unknown. In this study we addressed the role and regulation of K8 and K18 expression by interleukin 6 (IL-6). Caco2-BBE cell line and IL-6 null mice were used to study the effect of IL-6 on keratin expression. Keratin expression was studied by Northern blot, Western blot, and confocal microscopy. Paracellular permeability was assessed by apical-to-basal transport of a fluorescein isothiocyanate dextran probe (FD-4). K8 was silenced using the small interfering RNA approach. IL-6 significantly up-regulated mRNA and protein levels of K8 and K18. Confocal microscopy showed a reticular pattern of intracellular keratin localized to the subapical region after IL-6 treatment. IL-6 also induced serine phosphorylation of K8. IL-6 decreased paracellular flux of FD-4 compared with vehicle-treated monolayers. K8 silencing abolished the decrease in paracellular permeability induced by IL-6. Administration of dextran sodium sulfate (DSS) significantly increased intestinal permeability in IL-6-/- mice compared with wild type mice given DSS. Collectively, our data demonstrate that IL-6 regulates the colonic expression of K8 and K18, and K8/K18 mediates barrier protection by IL-6 under conditions where intestinal barrier is compromised. Thus, our data uncover a novel function of these abundant cytoskeletal proteins, which may have implications in intestinal disorders such as inflammatory bowel disease wherein barrier dysfunction underlies the inflammatory response.
Collapse
Affiliation(s)
- Lixin Wang
- Division of Digestive Diseases, Department of Medicine, Emory University, Atlanta, Georgia 30322, USA
| | | | | | | | | |
Collapse
|
36
|
Abstract
BACKGROUND Epithelial tissues of the gastrointestinal tract and the liver express predominantly cytokeratin 8 and cytokeratin 18. In vitro experiments and animal studies have demonstrated a protective influence of keratin 8 and keratin 18 against toxic damage of hepatocytes. A specific mutation of keratin 8 (G61C) was found to be a genetic risk factor for the development of cryptogenic liver cirrhosis. The purpose of the present paper was therefore to determine the prevalence of cytokeratin 8 (G61C) and cytokeratin 18 mutations (Y53H) in patients with liver disease. METHODS Overall 152 patients (male, n = 93, 61%; female, n = 59, 39%) were included in the present study. The 152 patients consisted of 107 patients with liver disease (70.4%; male, n = 71, 66.4%; female, n = 36, 33.6%) and 45 control patients (29.6%; male, n = 22, 48,9%; female, n = 23, 51,1%) without liver disease. Of the patients with liver disease 46 had alcoholic liver disease; 25, chronic hepatitis C; 15, cryptogenic liver disease; and 21, other liver diseases of various etiologies. Cytokeratin 8 and 18 genotypes were specified by polymerase chain reaction (PCR) amplification and direct sequence analysis was used to detect the previously described mutations in cytokeratin 8 (G61C) and in cytokeratin 18 (Y53H). RESULTS Four out of 152 patients (male n = 2, female n = 2) with a mutation (G61C) in cytokeratin 8 were found. The etiology was alcoholic liver disease (n = 1), cryptogenic liver disease (n = 1) and idiopathic liver disease with minimal changes in liver biopsy (n = 1). Also, one out 45 disease control patients with an adenoma of the colon but without liver disease was found to carry the mutation G61C of cytokeratin 8. Therefore, the mutation G61C in cytokeratin 8 was found in 2.8% of patients with liver disease and in 2.2% of control patients without liver disease. Two of 15 patients (13.3%) with cryptogenic liver disease had the mutation G61C in cytokeratin 8 (P = 0.069 vs patients with non-cryptogenic liver disease). In the 152 patients studied, no mutation in cytokeratin 18 was found. DISCUSSION The mutation G61C in the cytokeratin 8 gene was found in one patient with alcoholic liver disease and in two patients with liver disease of unknown etiology. Also, one patient without liver disease had the cytokeratin 8 G61C mutation. In summary, the cytokeratin 8 mutation G61C, which has been found to be associated with cryptogenic liver cirrhosis, was also found in the present patient population. However, the clinical relevance is yet to be determined in further investigations.
Collapse
Affiliation(s)
- Maximilian Schöniger-Hekele
- Department of Internal Medicine 4, Division of Gastroenterology and Hepatology, Medical University of Vienna, Austria
| | | | | |
Collapse
|
37
|
Abstract
Cytoskeletal research in recent years has revolutionized cell biology and biomedicine. The cytoskeleton spans the cytoplasm and interconnects the cell nucleus with the extracellular matrix, thereby forming a structural link between molecules involved in cell communication on the one hand, and gene expression on the other. Since the cytoskeleton is involved in virtually all cellular processes, abnormalities in this essential cellular component frequently result in disease. In this introduction, the basic structure of the cytoskeleton is briefly outlined. Furthermore, the disease processes in which the cytoskeleton plays a decisive role, and which are reviewed in detail in the papers in this issue, are briefly introduced. The advances in our understanding of the cytoskeleton and its function in disease will lead to new diagnostic and therapeutic applications in the foreseeable future.
Collapse
Affiliation(s)
- Frans C S Ramaekers
- Department of Molecular Cell Biology, Research Institutes CARIM, GROW and EURON, University of Maastricht, PO Box 616, 6200 MD Maastricht, The Netherlands.
| | | |
Collapse
|
38
|
The Journal of Pathologymoves forward. J Pathol 2004. [DOI: 10.1002/path.1678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
39
|
Abstract
The association of keratin mutations with genetic skin fragility disorders is now one of the best-established examples of cytoskeleton disorders. It has served as a paradigm for many other diseases and has been highly informative for the study of intermediate filaments and their associated components, in helping to understand the functions of this large family of structural proteins. The keratin diseases have shown unequivocally that, at least in the case of the epidermal keratins, a major function of intermediate filaments is to provide physical resilience for epithelial cells. This review article reflects on the variety of phenotypes arising from mutations in keratins and the reasons for this variation.
Collapse
Affiliation(s)
- E B Lane
- Cancer Research UK Cell Structure Research Group, Division of Cell and Developmental Biology, University of Dundee School of Life Sciences, MSI/WTB Complex, Dow Street, Dundee DD1 5EH, UK.
| | | |
Collapse
|