1
|
Severo NC, Inês de Assumpção T, Silva Peixer MA, da Cunha Xavier M, Malard PF, Brunel HDSS, Lançoni R. Effectiveness of intraglandular allogeneic mesenchymal stem cell administration for treating chronic vesicular adenitis in bulls. Theriogenology 2025; 241:117419. [PMID: 40188642 DOI: 10.1016/j.theriogenology.2025.117419] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 03/27/2025] [Accepted: 03/31/2025] [Indexed: 04/08/2025]
Abstract
This study aimed to evaluate the effects of the application of allogeneic mesenchymal stem cells (MSCs) bilaterally and intraglandularly in the vesicular glands of bulls affected by seminal vesiculitis. Twelve bulls that presented chronic vesiculitis with two or more recurrences were selected at Semen Collection and Processing Centres, based on the presence of pus in the semen, leukocytes on the motility and vigour evaluation slide, reactive to the California Mastitis Test - CMT (one cross or more) and the presence of leukocytes on a slide stained by Diff Quik staining with more than 5 polymorphonuclear cells (PMN) per field. Ultrasound examination of the vesicular glands was performed, and the clinical signs were definitive for the diagnosis. The proposed method of the intraglandular injection of MSCs involved application through the ischiorectal fossa with a long needle measuring 30-35 cm and a guide measuring 25-30 cm in length directly into the affected vesicular glands. The MSCs were cultured and frozen in the Bio Cell Cellular Therapy® laboratory (Brasilia, Brazil) and prepared by washing and centrifugation for intraglandular injection on the day of application. In total, 3x106 MSCs were injected into each vesicular gland. Data were evaluated for normality of residuals using the Shapiro-Wilk test. When the normality of the test was significant (P < 0.05), the data were transformed or outliers were removed and reevaluated. The "T-Test" was applied to identify statistical differences between variables before and after treatment. The probability of P ≤ 0.05 was considered a significant difference. Data were presented as the mean ± standard error of the mean (S.E.M.). Improvements were observed in the initial percent motility from 60.09 ± 4.8 to 69.89 ± 4.6 (P < 0.05), as well as in the post-thawing percent motility from 26.26 ± 6.77 to 42.5 ± 5 0.99 (P < 0.05). The number of doses produced increased significantly after treatment with MSCs, from 95.61 ± 23.31 units to 337.84 ± 67.75 units (P < 0.05) per ejaculate. The number of leukocytes observed per field decreased from 5.83 ± 0.48 to zero, demonstrating the recovery of the inflamed vesicular glands. Based on the results presented, it was concluded that the application of 3x106 MSCs in the vesicular glands of bulls with vesiculitis is safe and efficient, as it improved several parameters evaluated in this research, mainly the production of semen doses per ejaculate.
Collapse
Affiliation(s)
- Neimar Correa Severo
- School of Veterinary Medicine and Animal Science, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | | | | | | | | | | | - Renata Lançoni
- School of Veterinary Medicine and Animal Science, Federal University of Uberlândia, Uberlândia, MG, Brazil.
| |
Collapse
|
2
|
Poudineh M, Mohammadyari F, Parsamanesh N, Jamialahmadi T, Kesharwani P, Sahebkar A. Cell and gene therapeutic approaches in non-alcoholic fatty liver disease. Gene 2025; 956:149466. [PMID: 40189164 DOI: 10.1016/j.gene.2025.149466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/14/2025] [Accepted: 03/31/2025] [Indexed: 04/11/2025]
Abstract
Non-Alcoholic Fatty Liver Disease (NAFLD) refers to a range of conditions marked by the buildup of triglycerides in liver cells, accompanied by inflammation, which contributes to liver damage, clinical symptoms, and histopathological alterations. Multiple molecular pathways contribute to NAFLD pathogenesis, including immune dysregulation, endoplasmic reticulum stress, and tissue injury. Both the innate and adaptive immune systems play crucial roles in disease progression, with intricate crosstalk between liver and immune cells driving NAFLD development. Among emerging therapeutic strategies, cell and gene-based therapies have shown promise. This study reviews the pathophysiological mechanisms of NAFLD and explores the therapeutic potential of cell-based interventions, highlighting their immunomodulatory effects, inhibition of hepatic stellate cells, promotion of hepatocyte regeneration, and potential for hepatocyte differentiation. Additionally, we examine gene delivery vectors designed to target NAFLD, focusing on their role in engineering hepatocytes through gene addition or editing to enhance therapeutic efficacy.
Collapse
Affiliation(s)
| | | | - Negin Parsamanesh
- Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran; Department of Genetics and Molecular Medicine, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Tananz Jamialahmadi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, Madhya Pradesh 470003, India.
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Centre for Research Impact and Outcome, Chitkara University, Rajpura 140417, Punjab, India; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Ou J, Li Z, Yao D, Lu C, Zeng X. Multimodal Function of Mesenchymal Stem Cells in Psoriasis Treatment. Biomolecules 2025; 15:737. [PMID: 40427630 PMCID: PMC12109568 DOI: 10.3390/biom15050737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 05/05/2025] [Accepted: 05/12/2025] [Indexed: 05/29/2025] Open
Abstract
Psoriasis is a chronic inflammatory disease mediated by the innate and adaptive immune systems, and its pathogenesis involves multiple aspects, including abnormal interleukin (IL)-23-Th17 axis, dysfunction of Tregs and other immune cells, and a complex relationship between keratinocytes and the vascular endothelium. Dysfunction of mesenchymal stem cells in psoriatic skin may also be the main reason for the dysregulated inflammatory response. Mesenchymal stem cells, a type of adult stem cells with multidifferentiation potential, are involved in the regulation of multiple links and targets in the pathogenesis of psoriasis. Thus, a detailed exploration of these mechanisms may lead to the development of new therapeutic strategies for the treatment of psoriasis. In this paper, the role of mesenchymal stem cells in skin homeostasis, the pathogenesis of psoriasis, and the multimodal function of using mesenchymal stem cells in the treatment of psoriasis are reviewed.
Collapse
Affiliation(s)
- Jiaxin Ou
- The Second Clinical School of Guangzhou University of Chinese Medicine/The Second Affiliated Hospital of Guangzhou University of Chinese Medicine/Guangdong Provincial Hospital of Chinese Medicine/Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou 510120, China; (J.O.); (Z.L.); (D.Y.)
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou 510120, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research and Guangdong Provincial Key Laboratory of Clinical Research on Chinese Medicine Syndrome, Guangzhou 510120, China
- National Institute of Stem Cell Clinical Research, Guangdong Hospital of Chinese Medicine, Guangzhou 510120, China
- Lab of Stem Cell Biology and Innovative Research of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine/Guangdong Academy of Chinese Medicine, Guangzhou 510120, China
| | - Ziqing Li
- The Second Clinical School of Guangzhou University of Chinese Medicine/The Second Affiliated Hospital of Guangzhou University of Chinese Medicine/Guangdong Provincial Hospital of Chinese Medicine/Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou 510120, China; (J.O.); (Z.L.); (D.Y.)
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou 510120, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research and Guangdong Provincial Key Laboratory of Clinical Research on Chinese Medicine Syndrome, Guangzhou 510120, China
| | - Danni Yao
- The Second Clinical School of Guangzhou University of Chinese Medicine/The Second Affiliated Hospital of Guangzhou University of Chinese Medicine/Guangdong Provincial Hospital of Chinese Medicine/Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou 510120, China; (J.O.); (Z.L.); (D.Y.)
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou 510120, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research and Guangdong Provincial Key Laboratory of Clinical Research on Chinese Medicine Syndrome, Guangzhou 510120, China
| | - Chuanjian Lu
- The Second Clinical School of Guangzhou University of Chinese Medicine/The Second Affiliated Hospital of Guangzhou University of Chinese Medicine/Guangdong Provincial Hospital of Chinese Medicine/Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou 510120, China; (J.O.); (Z.L.); (D.Y.)
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou 510120, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research and Guangdong Provincial Key Laboratory of Clinical Research on Chinese Medicine Syndrome, Guangzhou 510120, China
- National Institute of Stem Cell Clinical Research, Guangdong Hospital of Chinese Medicine, Guangzhou 510120, China
| | - Xiang Zeng
- The Second Clinical School of Guangzhou University of Chinese Medicine/The Second Affiliated Hospital of Guangzhou University of Chinese Medicine/Guangdong Provincial Hospital of Chinese Medicine/Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou 510120, China; (J.O.); (Z.L.); (D.Y.)
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou 510120, China
- National Institute of Stem Cell Clinical Research, Guangdong Hospital of Chinese Medicine, Guangzhou 510120, China
- Lab of Stem Cell Biology and Innovative Research of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine/Guangdong Academy of Chinese Medicine, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, Guangzhou 510120, China
| |
Collapse
|
4
|
Choi M, Al Fahad MA, Shanto PC, Park SS, Lee BT. Surface modification of decellularized kidney scaffold with chemokine and AKI-CKD cytokine juice to increase the recellularization efficiency of bio-engineered kidney. Biomaterials 2025; 316:123007. [PMID: 39674100 DOI: 10.1016/j.biomaterials.2024.123007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/10/2024] [Accepted: 12/10/2024] [Indexed: 12/16/2024]
Abstract
Chronic kidney disease (CKD) is a prevalent global health issue, primarily caused by glomerular dysfunction, diabetes, endovascular disorders, hypertensive nephrosclerosis, and other vascular diseases. Despite the increase in available organ sources, significant challenges remain in securing organ compatibility, prompting extensive research into creating a bio-artificial kidney free from immune rejection. In this study, a bio-engineered kidney was established using a stem cell chemoattractant within a bioreactor system; rBMSCs were used to recellularize the decellularized kidney scaffold coated with SDF-1α/AKI-CKD cytokine juice under mimic-hypoxic conditions as these chemokines and cytokines are crucial for the cell migration. LC-MS/MS proteomic analysis of the scaffold suggested that it contains various important proteins related to angiogenesis, cell migration, differentiation, etc. The in-silico binding simulation and Immunohistochemical (IHC) staining were utilized to detect the coated chemokines and cytokines. Cells were administered through both ureter and arterial routes of the kidney scaffold to differentiate into epithelial and endothelial cells. After 14 days of the recellularization process utilizing a mimic-hypoxia-induced bioreactor, the SDF-1α/AKI-CKD CJ-coated kidney scaffold exhibited high levels of cell attachment, migration, and proliferation in both the cortex and medulla. Additionally, the coating of the cytokines remarkably enhanced the expression of specific renal cell markers within the complex microfilter-like tubular structures. This study underscores a recellularization strategy that addresses the challenges associated with constructing bio-artificial kidneys and contributes to the growing field of bio-artificial organ research.
Collapse
Affiliation(s)
- Minji Choi
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, South Korea
| | - Md Abdullah Al Fahad
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, South Korea
| | - Prayas Chakma Shanto
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, South Korea
| | - Seong-Su Park
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, South Korea
| | - Byong-Taek Lee
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, South Korea; Institute of Tissue Regeneration, Soonchunhyang University, Cheonan, South Korea.
| |
Collapse
|
5
|
Yao Y, Cao J, Ding C. Mesenchymal stem cells improve osteoarthritis by secreting superoxide dismutase to regulate oxidative stress response. BMC Musculoskelet Disord 2025; 26:409. [PMID: 40275189 PMCID: PMC12020050 DOI: 10.1186/s12891-025-08670-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 04/16/2025] [Indexed: 04/26/2025] Open
Abstract
BACKGROUND To investigate the therapeutic effect of intraarticular injection of mesenchymal stem cells (MSC) in a rabbit osteoarthritis (OA) model. And to suppose whether MSC play a pivotal role in OA therapy by improving oxidative stress through secreting superoxide dismutase (SOD). METHODS MSC and chondrocytes were isolated and cultured in vitro. SOD gene of MSC was silenced by siRNA technology to prepare the SOD-siRNA-MSC for in-vivo study. Twenty healthy adult New Zealand white rabbits underwent papain injection to induce OA and then received intra-articular injection with MSC, siRNA-MSC, or normal saline. The rabbits were divided into 4 groups (n = 5), such as the control group, the model group, the MSC group, the siRNA-MSC group. Cytokines determination was performed 2 and 4 weeks after treatment. Magnetic resonance imaging (MRI) and histopathology and immunohistochemistry determination were performed 4 weeks after treatment. Normal chondrocytes, OA chondrocytes, OA chondrocytes + MSC group, and OA chondrocytes + siRNA-MSC were incubated for 24 h. Then β-galactosidase staining and reactive oxygen species (ROS) level was detected to establish the senescence of the cells. RESULTS COMP, TNF-α, MMP-2 and MMP-13 in the MSC group were significantly decreased compared to those in model group (P < 0.05). However, MMP2 and MMP13 in the siRNA-MSC group were not significantly decreased compared to the model group (P < 0.05). Magnetic resonance results revealed a significant improvement in cartilage and synovial membrane 4 weeks after MSC injection. Histopathology determination showed that cartilage structure was also significantly improved in MSC group. Immunohistochemical analysis revealed amelioration in the expression levels of proteoglycan, COL-2, P21 and P53 in MSC group. On the other hand, MRI, histopathologic and immunohistochemical analysis also indicated a decreased therapeutic effect with SOD-siRNA -MSC. The positive rate of β-galactosidase staining and ROS level of OA chondrocytes were significantly higher than those in normal chondrocytes, which was decreased in OA chondrocytes + MSC (P < 0.05). In addition, it was increased in OA chondrocytes + siRNA-MSC (P < 0.05). CONCLUSION Our study demonstrated for the first time that MSC might be a promising therapy in OA through anti-apoptosis and regeneration in chondrocyte by secreting SOD and improving oxidative stress.
Collapse
Affiliation(s)
- Yao Yao
- Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Juan Cao
- Department of Geriatrics, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| | - Congzhu Ding
- Department of Geriatrics, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
6
|
Smallbone P, Kebriaei P, Mendt M, Shpall EJ, Olson AL, Fingrut WB. Mesenchymal stem cells in hematology: Therapeutic initiatives and future directions. Best Pract Res Clin Haematol 2025; 38:101613. [PMID: 40274341 DOI: 10.1016/j.beha.2025.101613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 03/13/2025] [Accepted: 03/18/2025] [Indexed: 04/26/2025]
Abstract
In recent years, the landscape of hematology has undergone rapid transformation, driven by innovative therapeutic strategies harnessing the properties of novel cellular therapies. Mesenchymal stem cells (MSCs) represent one of these promising therapies, with potential applications across a range of hematologic conditions. These cells are notable for their immunomodulatory properties, key role in supporting the hematopoietic micro-environment and capacity for multi-directional differentiation. This review will focus on the biologic mechanisms underlying MSC therapeutic use, current avenues of clinical investigation, and potential challenges and future directions for MSC derived therapies.
Collapse
Affiliation(s)
- Portia Smallbone
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Partow Kebriaei
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mayela Mendt
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Elizabeth J Shpall
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Amanda L Olson
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Warren B Fingrut
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
7
|
Casado-Santos A, González-Cubero E, García-Rodríguez MB, Carrera-Serna Á, González-Fernández ML, Villar-Suárez V. The therapeutic potential of mesenchymal stromal cell secretome in treating spontaneous chronic corneal epithelial defects in dogs. Res Vet Sci 2025; 185:105559. [PMID: 39923345 DOI: 10.1016/j.rvsc.2025.105559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/25/2024] [Accepted: 01/26/2025] [Indexed: 02/11/2025]
Abstract
Corneal ulcers in dogs pose a significant challenge in veterinary ophthalmology, often leading to prolonged visual impairment and discomfort. This study aimed to assess the efficacy of adipose tissue-derived mesenchymal stromal cell (ASCs) secretome as a treatment for complicated corneal ulcers in dogs. Ten dogs with spontaneous chronic corneal epithelial defects, were treated with topical application of ASC secretome eye drops. Our results showed that secretome therapy facilitated complete healing of all corneal ulcers within 4 weeks, with an average healing time of 1.2 weeks. Notably, secretome treatment was effective even in cases that had previously failed to respond to conventional therapies. Clinical signs such as blepharospasm, conjunctival hyperemia, and photophobia were alleviated promptly following secretome administration. Secretome therapy was well-tolerated, with no adverse reactions reported, further supporting its safety profile. The findings suggest that ASC secretome represents a promising cell-free and minimally invasive therapeutic approach for the treatment of complicated corneal ulcers in dogs.
Collapse
Affiliation(s)
- Alejandro Casado-Santos
- Department of Surgery, Medicine and Veterinary Anatomy, Faculty of Veterinary Sciences, Campus de Vegazana, University of Léon-Universidad de León, 24071, Spain
| | - Elsa González-Cubero
- Department of Neurosurgery, Stanford School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Mª Belén García-Rodríguez
- Department of Surgery, Medicine and Veterinary Anatomy, Faculty of Veterinary Sciences, Campus de Vegazana, University of Léon-Universidad de León, 24071, Spain.
| | | | - Mª Luisa González-Fernández
- Department of Surgery, Medicine and Veterinary Anatomy, Faculty of Veterinary Sciences, Campus de Vegazana, University of Léon-Universidad de León, 24071, Spain
| | - Vega Villar-Suárez
- Department of Surgery, Medicine and Veterinary Anatomy, Faculty of Veterinary Sciences, Campus de Vegazana, University of Léon-Universidad de León, 24071, Spain; Institute of Biomedicine (IBIOMED), Faculty of Veterinary Sciences, Campus de Vegazana, University of León, 24071, Spain
| |
Collapse
|
8
|
Liang J, Zhao J, Yang L, Wang Q, Liao J, Li J, Zhuang W, Li F, He J, Tang Y, Chen H, Huang C. MSC-exosomes pretreated by Danshensu extracts pretreating to target the hsa-miR-27a-5p and STAT3-SHANK2 to enhanced antifibrotic therapy. Stem Cell Res Ther 2025; 16:40. [PMID: 39901236 PMCID: PMC11792327 DOI: 10.1186/s13287-025-04181-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 01/23/2025] [Indexed: 02/05/2025] Open
Abstract
BACKGROUND Peritoneal fibrosis (PF) is a serious complication commonly associated with prolonged peritoneal dialysis. Mesenchymal stem cells (MSCs) and their exosomes (Exo) have shown significant therapeutic promise in treating fibrotic conditions. Danshensu (DSS), a bioactive compound from the traditional Chinese herb Danshen reverses fibrosis. This study aims to investigate a novel strategy to enhance the therapeutic efficacy against PF by DSS preconditioning MSCs-derived exosomes (DSS-Exo). METHODS The in vitro studies included the effects of DSS duration on MSCs, and the characterization of DSS-Exo and Exo, followed by the assessment of RNA and protein expression levels of peritoneal fibrosis markers and inflammatory cytokines levels after treating human peritoneal mesothelial (HMrSV5) cells. In vivo experiments were conducted on a PF mouse model to observe cell morphology, collagen deposition, fibrosis localization, and to evaluate peritoneal functions such as filtration rate, urea nitrogen clearance, peritoneal thickness, and protein leakage. Mechanistic insights were gained through the analysis of the STAT3/HIF-1α/VEGF signaling pathway, tissue dual-fluorescence localization,chromatin immunoprecipitation sequencing (ChIP-seq), and dual-luciferase reporter (DLR) assays. Additionally, the differential expression of miRNAs between DSS-Exo and Exo was explored and validation of key miRNA. RESULTS DSS-Exo significantly upregulated E-cadherin, downregulated VEGFA, α-SMA, CTGF and Fibronectin expression in HMrSV5 cells compared to untreated Exo. In vivo studies revealed that DSS-Exo enhanced the ability of Exo to improve peritoneal function,such as the peritoneal filtration rate and urea nitrogen, glucose clearance, while reducing peritoneal thickness and protein leakage, and cell morphology, reduce collagen deposition, and decrease the degree of fibrosis. Mechanistically, these exosomes inhibited the STAT3/HIF-1α/VEGF signaling pathway within peritoneal mesothelial tissues. Furthermore, ChIP-seq and DLR demonstrated that DSS-Exo affected STAT3 directly binds to SHANK2 promoter regions, forming hydrogen bonds between 5 key amino acids such as GLN-344, HIS-332 and 6 key bases such as DG-258, DG-261. miRNA profiling identified DSS-Exo increased hsa-miR-27a-5p_R-1 to regulated STAT3-SHANK2 and modulating the EMT. CONCLUSION This study highlighted the innovative use of Danshensu in enhancing MSC-derived exosome therapy for PF. The identification of the hsa-miR-27a-5p_R-1-STAT3-SHANK2 axis may reveal new molecular mechanisms underlying fibrosis, further research is needed to fully elucidate its impact on PF. The integration of Danshensu from traditional Chinese medicine into modern MSC exosome therapy represents a promising frontier in the development of novel treatments for fibrotic diseases.
Collapse
Affiliation(s)
- Jiabin Liang
- The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jingxiu Zhao
- Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Laboratory Science, ShunDe Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lin Yang
- The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qian Wang
- The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jing Liao
- Panyu Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Jianhao Li
- The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China
| | - Weizhao Zhuang
- The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China
| | - Fanghong Li
- The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jinxian He
- The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yukuan Tang
- The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hanwei Chen
- The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China.
- Panyu Health Management Center, Guangzhou, 511400, China.
| | - Chen Huang
- The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China.
- Medical Imaging Institute of Panyu, Guangzhou, 511400, China.
| |
Collapse
|
9
|
Zhou G, You Y, Wang B, Wang S, Feng T, Lai C, Xiang G, Yang K, Yao Y. A comprehensive evaluation system for ultrasound-guided infusion of human umbilical cord-derived MSCs in liver cirrhosis patients. Stem Cells Transl Med 2025; 14:szae081. [PMID: 39520328 PMCID: PMC11821905 DOI: 10.1093/stcltm/szae081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 09/26/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Infusion of mesenchymal stem cells (MSCs) via portal vein is one of the main ways for MSCs transplantation to treat liver cirrhosis (LC). As the tissue of LC showed diffuse fibrosis and thickened Glission sheath, the soft pig-tail catheter, or central venous catheter can not successfully insert the portal vein. Thus, our study used an improved method and performed a relatively comprehensive system to evaluate the effect for human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) transplantation. METHOD Fifteen patients with hepatitis B-related cirrhosis were enrolled in the study, and we performed hUC-MSCs transplantation via portal vein by using an 16-G needle and 0.035-inch guide wire combined with 7FR "retentional metal stiffner trocar" of pig-tail catheter under the guidance of contrast-enhanced ultrasound. Serum liver function, fibrotic indicators, tissue stiffness, coagulation function, and hemodynamics were measured at weeks 4, 12, and 24 after MSCs transplantation. Liver biopsy was performed before and 24 weeks after hUC-MSCs transplantation. RESULT After hUC-MSCs transplantation, the prothrombin time was lower than before. The levels of hyaluronic acid and IV-C(Type IV collagen) in fibrotic indicators were significantly reduced, and the Young's modulus was also decreased. Moreover, liver biopsy showed that the lytic necrosis of hepatocyte was decreased. In liver hemodynamics, the portal vein diameter was decreased after hUC-MSCs transplantation. CONCLUSION hUC-MSCs transplantation can alleviate liver damage caused by LC. The improved "retentional metal stiffner trocar" of pig-tail catheter was safe and effective in the infusion of hUC-MSCs transplantation, which is worth promoting in clinical practice.
Collapse
Affiliation(s)
- Guo Zhou
- Department of Ultrasound, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, People’s Republic of China
| | - Yijuan You
- Department of Ultrasound, Wenjiang Hospital of Sichuan Provincial People’s Hospital, Chengdu 611100, People’s Republic of China
| | - Binghua Wang
- Department of Ultrasound, Wenjiang Hospital of Sichuan Provincial People’s Hospital, Chengdu 611100, People’s Republic of China
| | - Simin Wang
- Department of Ultrasound, Wenjiang Hospital of Sichuan Provincial People’s Hospital, Chengdu 611100, People’s Republic of China
| | - Tianhang Feng
- Department of Hepatobiliary and Pancreatic Surgery Center, Cell Transplantation Center, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, People’s Republic of China
| | - Chunyou Lai
- Department of Hepatobiliary and Pancreatic Surgery Center, Cell Transplantation Center, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, People’s Republic of China
| | - Guangming Xiang
- Department of Hepatobiliary and Pancreatic Surgery Center, Cell Transplantation Center, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, People’s Republic of China
| | - Ke Yang
- Department of Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, Chengdu 610072, People’s Republic of China
| | - Yutong Yao
- Department of Hepatobiliary and Pancreatic Surgery Center, Cell Transplantation Center, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, People’s Republic of China
| |
Collapse
|
10
|
Park JH, Bae HS, Kim I, Jung J, Roh Y, Lee D, Hwang TS, Lee HC, Byun JH. Efficacy of Bone Regeneration Cell Therapy Using Mesenchymal Stem Cells Originating from Embryonic Stem Cells in Animal Models; Bone Defects and Osteomyelitis. Tissue Eng Regen Med 2025; 22:145-157. [PMID: 39612134 PMCID: PMC11712062 DOI: 10.1007/s13770-024-00683-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/31/2024] [Accepted: 11/08/2024] [Indexed: 11/30/2024] Open
Abstract
BACKGROUND Bone defects are commonly encountered due to accidents, diseases, or aging, and the demand for effective bone regeneration, particularly for dental implants, is increasing in our aging society. Mesenchymal stem cells (MSCs) are promising candidates for regenerative therapies; however, obtaining sufficient quantities of these cells for clinical applications remains challenging. DW-MSCs, derived from embryonic stem cells and developed by Daewoong Pharmaceutical, exhibit a robust proliferative capacity even after extensive culture. METHODS This study explores the therapeutic potential of DW-MSCs in various animal models of bone defects. DW-MSCs were expanded for over 13 passages for in vivo use in rat and canine models of bone defects and osteomyelitis. The research focused on the in vivo osteogenic differentiation of DW-MSCs, the establishment of a fibrin-based system for bone regeneration, the assessment of bone repair following treatment in animal models, and comparisons with commercially available bone grafts. RESULTS Results showed that DW-MSCs exhibited superior osteogenic differentiation compared to other materials, and the fibrinization process not only preserved but enhanced their proliferation and differentiation capabilities through a 3D culture effect. In both bone defect models, DW-MSCs facilitated significant bone regeneration, reduced inflammatory responses in osteomyelitis, and achieved effective bone healing. The therapeutic outcomes of DW-MSCs were comparable to those of commercial bone grafts but demonstrated qualitatively superior bone tissue restructuring. CONCLUSION Our findings suggest that DW-MSCs offer a promising approach for bone regeneration therapies due to their high efficacy and anti-inflammatory properties.
Collapse
Affiliation(s)
- Jin-Ho Park
- Department of Oral and Maxillofacial Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Institute of Medical Sciences, Gyeongsang National University, Jinju, 52727, Republic of Korea
- Department of Nutritional Science, University of Michigan School of Public Health, Ann Arbor, MI, 48109, USA
| | - Han-Sol Bae
- Cell Therapy Center, Daewoong Pharmaceutical, Co., Ltd., Yongin, 17028, Republic of Korea
| | - Ingeun Kim
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Jiwoon Jung
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Yoonho Roh
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Dongbin Lee
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Tae Sung Hwang
- Department of Veterinary Medical Imaging, College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Hee-Chun Lee
- Department of Veterinary Medical Imaging, College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - June-Ho Byun
- Department of Oral and Maxillofacial Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Institute of Medical Sciences, Gyeongsang National University, Jinju, 52727, Republic of Korea.
- Department of Convergence Medical Science, Gyeongsang National University, Jinju, 52727, Republic of Korea.
| |
Collapse
|
11
|
Sajjad U, Ahmed M, Iqbal MZ, Riaz M, Mustafa M, Biedermann T, Klar AS. Exploring mesenchymal stem cells homing mechanisms and improvement strategies. Stem Cells Transl Med 2024; 13:1161-1177. [PMID: 39550211 PMCID: PMC11631218 DOI: 10.1093/stcltm/szae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 05/16/2024] [Indexed: 11/18/2024] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent cells with high self-renewal and multilineage differentiation abilities, playing an important role in tissue healing. Recent advancements in stem cell-based technologies have offered new and promising therapeutic options in regenerative medicine. Upon tissue damage, MSCs are immediately mobilized from the bone marrow and move to the injury site via blood circulation. Notably, allogenically transplanted MSCs can also home to the damaged tissue site. Therefore, MSCs hold great therapeutic potential for curing various diseases. However, one major obstacle to this approach is attracting MSCs specifically to the injury site following systemic administration. In this review, we describe the molecular pathways governing the homing mechanism of MSCs and various strategies for improving this process, including targeted stem cell administration, target tissue modification, in vitro priming, cell surface engineering, genetic modifications, and magnetic guidance. These strategies are crucial for directing MSCs precisely to the injury site and, consequently, enhancing their migration and local tissue repair properties. Specifically, our review provides a guide to improving the therapeutic efficacy of clinical applications of MSCs through optimized in vivo administration and homing capacities.
Collapse
Affiliation(s)
- Umar Sajjad
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Muhammad Ahmed
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - M Zohaib Iqbal
- Tissue Biology Research Unit, Department of Surgery, University Children’s Hospital Zurich, Wagistrasse 12, CH-8952, Zurich, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Mahrukh Riaz
- Tissue Biology Research Unit, Department of Surgery, University Children’s Hospital Zurich, Wagistrasse 12, CH-8952, Zurich, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Muhammad Mustafa
- KAM School of Life Sciences, Forman Christian College University, Lahore, Pakistan
| | - Thomas Biedermann
- Tissue Biology Research Unit, Department of Surgery, University Children’s Hospital Zurich, Wagistrasse 12, CH-8952, Zurich, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Agnes S Klar
- Tissue Biology Research Unit, Department of Surgery, University Children’s Hospital Zurich, Wagistrasse 12, CH-8952, Zurich, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| |
Collapse
|
12
|
Che X, Kim HJ, Jin X, Kim JW, Park KH, Lim JO, Kyung HS, Oh CW, Choi JY. Bone Marrow Stem Cell Population in Single- and Multiple-Level Aspiration. Biomedicines 2024; 12:2731. [PMID: 39767638 PMCID: PMC11727340 DOI: 10.3390/biomedicines12122731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/21/2024] [Accepted: 11/27/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Bone marrow aspiration concentrate (BMAC) has garnered increasing interest due to its potential for healing musculoskeletal injuries. While the iliac crest remains a common harvest site, the aspiration technique's efficacy in offering the highest yield and prevalence of mesenchymal stem cells (MSCs) is controversial. This study aimed to compare two different techniques of bone marrow aspiration over the anterior iliac crest from a single level versus multiple levels. METHODS Anterior iliac crests were selected in seven adult patients (aged between 31 and 59 years old). Aspiration was achieved using an 11-gauge needle (length: 100 mm; diameter: 2.3 mm) specifically manufactured for bone marrow collection (BD, Becton, Franklin Lakes, NJ, USA) connected to a 10 mL syringe. On one side, 4cc of bone marrow was aspirated at a single level to a depth of 7 cm without changing the needle direction. On the other side, over the same portion of the iliac crest, 1 cc of bone marrow was obtained from multiple levels of different depths during needle retrieval, maintaining a distance of 1 cm and changing the tip direction. The samples were blindly sent to the laboratory without indicating whether they came from an single level or multiple levels. Fluorescence-activated cell sorting (FACS) and osteoblast differentiation were analyzed and compared. RESULTS In the FACS analysis, the single level resulted in a higher population of MSCs that were positive for CD105, CD73, and CD90 and negative for CD34, compared to the multiple-level method. In the process of osteoblast differentiation, it was observed that MSCs exhibited more advanced features of enhanced osteoblastic abilities in the single-level method rather than the multiple-level method. CONCLUSIONS A single-level aspiration technique at the anterior iliac crest may produce a high-quality bone marrow aspirate. This technique may help obtain specific populations of MSCs with the desired characteristics for use in regenerative therapies for musculoskeletal injuries.
Collapse
Affiliation(s)
- Xiangguo Che
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; (X.C.); (X.J.)
| | - Hee-June Kim
- Department of Orthopedic Surgery, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; (H.-J.K.); (J.-W.K.); (J.-O.L.); (H.-S.K.)
| | - Xian Jin
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; (X.C.); (X.J.)
| | - Joon-Woo Kim
- Department of Orthopedic Surgery, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; (H.-J.K.); (J.-W.K.); (J.-O.L.); (H.-S.K.)
| | - Kyeong-Hyeon Park
- Severance Children’s Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea;
| | - Jeong-Ok Lim
- Department of Orthopedic Surgery, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; (H.-J.K.); (J.-W.K.); (J.-O.L.); (H.-S.K.)
- Joint Institute for Regenerative Medicine, Kyungpook National University, Daegu 41940, Republic of Korea
- Bio-Medical Research Institute, Kyungpook National University Hospital, Daegu 41940, Republic of Korea
| | - Hee-Soo Kyung
- Department of Orthopedic Surgery, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; (H.-J.K.); (J.-W.K.); (J.-O.L.); (H.-S.K.)
| | - Chang-Wug Oh
- Department of Orthopedic Surgery, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; (H.-J.K.); (J.-W.K.); (J.-O.L.); (H.-S.K.)
| | - Je-Yong Choi
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; (X.C.); (X.J.)
| |
Collapse
|
13
|
Manabe N, Hoshino Y, Himaki T, Sakaguchi K, Matsumoto S, Yamamoto T, Murase T. Lysate of bovine adipose-derived stem cells accelerates in-vitro development and increases cryotolerance through reduced content of lipid in the in vitro fertilized embryos. Biochem Biophys Res Commun 2024; 735:150834. [PMID: 39427378 DOI: 10.1016/j.bbrc.2024.150834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/19/2024] [Accepted: 10/12/2024] [Indexed: 10/22/2024]
Abstract
Mesenchymal stem cells such as adipose-derived stem cells (ADSCs) are known to secrete factors that stimulate cell division and promote regeneration in neighboring cells. While conditioned medium from stem cells has been used in blastocyst production, no studies have examined the use of cell lysates. In this study we investigated the effects of adding ADSC lysate to in vitro culture (IVC) medium. ADSCs and fibroblasts were isolated from bovine adipose tissue and auricular tissue, respectively, and their lysates were prepared by freeze-thaw disruption. ADSC lysate was added to synthetic oviductal fluid medium. The effects on cleavage, blastocyst development rates, cell numbers, cryotolerance, gene expression (POU5F1, BAX, IGF1R, IGF2R, SOD2), lipid content, and membrane integrity were evaluated according to the experimental design. In Expt. 1, the comparison involved adding ADSC or fibroblast lysate alongside the control group. The total blastocyst rate increased when ADSC lysate was introduced (ADSCs: 40.1 %, fibroblasts: 33.1 %, control: 27.3 %). However, there were no significant differences in the number of trophoblast cells or in the inner cell mass. Experiment 2 confirmed that this increase in blastocyst development was not due to the solvent, PBS(-). In Expt. 3, addition of 10 % fetal calf serum (FCS) or ADSC lysate increased the total blastocyst rate compared to the control (control, 26.2 %; 10 % FCS, 43.4 %; 1 % ADSC lysate, 34.2 %; 10 % ADSC lysate, 48.1 %). After freezing and thawing, the survival and hatching rates of embryos with FCS were significantly lower than those of the control as well as those with added ADSC lysate. In Expt. 4, the addition of ADSC lysate or FCS had no significant effect on gene expression in blastocysts compared to control. However, the addition of FCS significantly increased the gray intensity, indicating higher lipid content compared to the control, with a significant increase in the number of dead cells in the blastocyst. These results indicate that the addition of ADSC lysate to the IVC medium accelerates bovine blastocyst development and that its 10 % addition, corresponding to 1 × 105 cells/mL, is as effective as 10 % FCS without a decrease in cryotolerance due to the increased lipid content.
Collapse
Affiliation(s)
- Noriyoshi Manabe
- Laboratory of Veterinary Theriogenology, Joint Graduate School of Veterinary Sciences, Gifu University, Gifu, 501-1193, Japan; Department of Dairy Research Center, Gifu Prefectural Livestock Research Institute, Ena, Gifu, 509-7601, Japan
| | - Yoichiro Hoshino
- Kyoto University Livestock Farm, Graduate School of Agriculture, Kyoto University, Funai, Kyoto, 622-0203, Japan
| | - Takehiro Himaki
- Laboratory of Animal Developmental Engineering, Faculty of Applied Biological Sciences, Gifu University, Gifu, 501-1193, Japan
| | - Kenichiro Sakaguchi
- Laboratory of Veterinary Theriogenology, Joint Graduate School of Veterinary Sciences, Gifu University, Gifu, 501-1193, Japan; Laboratory of Veterinary Theriogenology, Joint Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu, 501-1193, Japan; Center for One Medicine Innovative Translational Research (COMIT), Gifu University, Gifu, 501-1193, Japan
| | - Seiji Matsumoto
- Headquarters for Research Promotion, Asahikawa Medical University, Asahikawa, Hokkaido, 078-8510, Japan; Clinical Research Support Center, Asahikawa Medical University Hospital, Asahikawa Medical University, Asahikawa, Hokkaido, 078-8510, Japan
| | - Tokunori Yamamoto
- Clinical Research Support Center, Asahikawa Medical University Hospital, Asahikawa Medical University, Asahikawa, Hokkaido, 078-8510, Japan; Department of Urology, Graduate School of Medicine, Nagoya University, Nagoya, Aichi, 466-8550, Japan
| | - Tetsuma Murase
- Laboratory of Veterinary Theriogenology, Joint Graduate School of Veterinary Sciences, Gifu University, Gifu, 501-1193, Japan; Laboratory of Veterinary Theriogenology, Joint Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu, 501-1193, Japan.
| |
Collapse
|
14
|
Jin K, Ma Z, Wang X, Gong C, Sheng J, Chen J, Shen S. The Role of Cardiac Macrophages in Inflammation and Fibrosis after Myocardial Ischemia-Reperfusion. Rev Cardiovasc Med 2024; 25:419. [PMID: 39618853 PMCID: PMC11607502 DOI: 10.31083/j.rcm2511419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/17/2024] [Accepted: 08/01/2024] [Indexed: 01/03/2025] Open
Abstract
According to current statistics, the mortality rate of cardiovascular diseases remains high, with coronary artery disease being the primary cause of death. Despite the widespread adoption of percutaneous coronary intervention (PCI) in recent years, which has led to a notable decrease in the mortality rate of myocardial infarction (MI), the pathological cardiac remodeling and heart failure that follow myocardial infarction still pose significant clinical challenges. Myocardial ischemia-reperfusion (MIR) injury represents a complex pathophysiological process, and the involvement of macrophages in this injury has consistently been a subject of significant focus. Following MIR, macrophages infiltrate, engulfing tissue debris and necrotic cells, and secreting pro-inflammatory factors. This initial response is crucial for clearing damaged tissue. Subsequently, the pro-inflammatory macrophages (M1) transition to an anti-inflammatory phenotype (M2), a shift that is essential for myocardial fibrosis and cardiac remodeling. This process is dynamic, complex, and continuous. To enhance understanding of this process, this review elaborates on the classification and functions of macrophages within the heart, covering recent research on signaling pathways involved in myocardial infarction through subsequent MIR injury and fibrosis. The ultimate aim is to reduce MIR injury, foster a conducive environment for cardiac recovery, and improve clinical outcomes for MI patients.
Collapse
Affiliation(s)
- Kaiqin Jin
- Department of Cardiology, Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), Hubei University of Medicine, 442000 Shiyan, Hubei, China
| | - Zijun Ma
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), Hubei University of Medicine, 442000 Shiyan, Hubei, China
| | - Xiaohe Wang
- Department of Cardiology, The Second Affiliated Hospital of Anhui Medical University, 230001 Hefei, Anhui, China
| | - Chen Gong
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, 230001 Hefei, Anhui, China
| | - Jianlong Sheng
- Department of Cardiology, The Second Affiliated Hospital of Anhui Medical University, 230001 Hefei, Anhui, China
| | - Jun Chen
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), Hubei University of Medicine, 442000 Shiyan, Hubei, China
| | - Shichun Shen
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001 Hefei, Anhui, China
| |
Collapse
|
15
|
Nakamura K, Kitahashi T, Kogawa R, Yoshino Y, Ogura I. Definition of Synovial Mesenchymal Stem Cells for Meniscus Regeneration by the Mechanism of Action and General Amp1200 Gene Expression. Int J Mol Sci 2024; 25:10510. [PMID: 39408838 PMCID: PMC11476826 DOI: 10.3390/ijms251910510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
The quality control (QC) of pharmaceutical-grade cell-therapy products, such as mesenchymal stem cells (MSCs), is challenging. Attempts to develop such products have been hampered by difficulties defining cell-type-specific characteristics and therapeutic mechanisms of action (MoAs). Although we have developed a cell therapy product, FF-31501, consisting of human synovial MSCs (SyMSCs), it was difficult to find specific markers for SyMSCs and to define the cells separately from other MSCs. The purpose of this study was to create a method for identifying and defining SyMSCs from other tissue-derived MSCs and to delve deeper into the mechanism of action of SyMSC-induced meniscus regeneration. Specifically, as a cell-type-dependent approach, we constructed a set of 1143 genes (Amp1200) reported to be associated with MSCs and established a method to evaluate them by correlating gene expression patterns. As a result, it was possible to define SyMSCs separately from other tissue-derived MSCs and non-MSCs. In addition, the gene expression analysis also highlighted TNSF-15. The in vivo rat model of meniscus injury found TNSF-15 to be an essential molecule for meniscus regeneration via SyMSC administration. This molecule and previously reported MoA molecules allowed an MoA-dependent approach to define the mechanism of action for SyMSCs. Therefore, SyMSCs for meniscus regeneration were defined by means of two approaches: the method to separate them from other MSCs and the identification of the MoA molecules. These approaches would be useful for the QC of cell therapy products.
Collapse
Affiliation(s)
- Kentaro Nakamura
- Bioscience & Engineering Laboratory, FUJIFILM Corporation, Ashigarakamigun 258-8577, Kanagawa, Japan; (T.K.); (R.K.); (Y.Y.); (I.O.)
| | | | | | | | | |
Collapse
|
16
|
Tabet CG, Pacheco RL, Martimbianco ALC, Riera R, Hernandez AJ, Bueno DF, Fernandes TL. Advanced therapy with mesenchymal stromal cells for knee osteoarthritis: Systematic review and meta-analysis of randomized controlled trials. J Orthop Translat 2024; 48:176-189. [PMID: 39360004 PMCID: PMC11445595 DOI: 10.1016/j.jot.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/10/2024] [Accepted: 07/29/2024] [Indexed: 10/04/2024] Open
Abstract
Background Advanced cell therapies emerged as promising candidates for treatment of knee articular diseases, but robust evidence regarding their clinical applicability is still lacking. Objective To assess the efficacy and safety of advanced mesenchymal stromal cells (MSC) therapy for knee osteoarthritis (OA) and chondral lesions. Methods Systematic review of randomized controlled trials conducted in accordance with Cochrane Handbook and reported following PRISMA checklist. GRADE approach was used for assessing the evidence certainty. Results 25 randomized controlled trials that enrolled 1048 participants were included. Meta-analyses data showed that, compared to viscosupplementation (VS), advanced MSC therapy resulted in a 1.91 lower pain VAS score (95 % CI -3.23 to -0.59; p < 0.00001) for the treatment of knee OA after 12 months. Compared to placebo, the difference was 0.99 lower pain VAS points (95 % CI -1.94 to -0.03; p = 0.76). According to the GRADE approach, the evidence was very uncertain for both comparisons. By excluding studies with high risk of bias, there was a similar size of effect (VAS MD -1.54, 95 % CI -2.09 to -0.98; p = 0.70) with improved (moderate) certainty of evidence, suggesting that MSC therapy probably reduces pain slightly better than VS. Regarding serious adverse events, there was no difference from advanced MSC therapy to placebo or to VS, with very uncertain evidence. Conclusion Advanced MSC therapy resulted in lower pain compared to placebo or VS for the treatment of knee OA after 12 months, with no difference in adverse events. However, the evidence was considered uncertain. The Translational Potential of this Article Currently, there is a lack of studies with good methodological structure aiming to evaluate the real clinical impact of advanced cell therapy for knee OA. The present study was well structured and conducted, with Risk of Bias, GRADE certainty assessment and sensitivity analysis. It explores the translational aspect of the benefits and safety of MSC compared with placebo and gold-standard therapy to give practitioners and researchers support to expand this therapy in their practice. PROSPERO registration number CRD42020158173. Access at https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=158173.
Collapse
Affiliation(s)
- Caio Gomes Tabet
- Sports Medicine Division, Instituto de Ortopedia e Traumatologia da Faculdade de Medicina do Hospital das Clínicas da Universidade de São Paulo (USP), São Paulo, Brazil
- Hospital Sírio-Libanês, São Paulo, Brazil
- Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Rafael Leite Pacheco
- Centre of Health Technology Assessment, Hospital Sírio-Libanês, São Paulo, Brazil
- Escola Paulista de Medicina, Universidade Federal de São Paulo (Unifesp), São Paulo, Brazil
| | - Ana Luiza Cabrera Martimbianco
- Centre of Health Technology Assessment, Hospital Sírio-Libanês, São Paulo, Brazil
- Escola Paulista de Medicina, Universidade Federal de São Paulo (Unifesp), São Paulo, Brazil
- Postgraduate Program of Health and Environment, Universidade Metropolitana de Santos, Santos, Brazil
| | - Rachel Riera
- Centre of Health Technology Assessment, Hospital Sírio-Libanês, São Paulo, Brazil
- Escola Paulista de Medicina, Universidade Federal de São Paulo (Unifesp), São Paulo, Brazil
| | - Arnaldo José Hernandez
- Sports Medicine Division, Instituto de Ortopedia e Traumatologia da Faculdade de Medicina do Hospital das Clínicas da Universidade de São Paulo (USP), São Paulo, Brazil
- Hospital Sírio-Libanês, São Paulo, Brazil
| | | | - Tiago Lazzaretti Fernandes
- Sports Medicine Division, Instituto de Ortopedia e Traumatologia da Faculdade de Medicina do Hospital das Clínicas da Universidade de São Paulo (USP), São Paulo, Brazil
- Hospital Sírio-Libanês, São Paulo, Brazil
| |
Collapse
|
17
|
Freitag J, Chamberlain M, Wickham J, Shah K, Cicuttini F, Wang Y, Solterbeck A. Safety and efficacy of an allogeneic adipose-derived mesenchymal stem cell preparation in the treatment of knee osteoarthritis: A Phase I/IIa randomised controlled trial. OSTEOARTHRITIS AND CARTILAGE OPEN 2024; 6:100500. [PMID: 39161739 PMCID: PMC11331931 DOI: 10.1016/j.ocarto.2024.100500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/25/2024] [Indexed: 08/21/2024] Open
Abstract
Objectives To assess the safety and efficacy of an allogeneic adipose-derived mesenchymal stem cell preparation (MAG200) in the treatment of knee osteoarthritis over 12 months. Design A single-centre, double-blind, ascending dose, randomised controlled trial. 40 participants with moderate knee osteoarthritis were randomised to receive a single intra-articular injection of MAG200 (dose cohorts:10, 20, 50, 100 × 106 cells) or placebo. Primary objectives were safety and efficacy according to a compound responder analysis of minimal clinically important difference in pain (numerical pain rating scale [NPRS]) and function (Knee Injury and Osteoarthritis Outcome Score - Function in Daily Living subscale [KOOSADL]) at month 12. Secondary efficacy outcomes included changes from baseline in patient reported outcome measures and evaluation of disease-modification using quantitative MRI. Results Treatment was well tolerated with no treatment-related serious adverse events. MAG200 cohorts reported a greater proportion of responders than placebo and demonstrated clinical and statistically significant improvement in pain and clinically relevant improvement in all KOOS subscales. MAG200 demonstrated a reproducible treatment effect over placebo, which was clinically relevant for pain in the 10 × 106 dose cohort (mean difference NPRS:-2.25[95%CI:-4.47,-0.03, p = 0.0468]) and for function in the 20 × 106 and 100 × 106 dose cohorts (mean difference KOOSADL:10.12[95%CI:-1.51,21.76, p = 0.0863] and 10.81[95%CI:-1.42,23.04, p = 0.0810] respectively). A trend in disease-modification was observed with improvement in total knee cartilage volume in MAG200 10, 20, and 100 × 106 dose cohorts, with progression of osteoarthritis in placebo, though this was not statistically significant. No clear dose response was observed. Conclusion This early-phase study provides supportive safety and efficacy evidence to progress MAG200 to later-stage trial development. Trial registration ACTRN12617001095358/ACTRN12621000622808.
Collapse
Affiliation(s)
- Julien Freitag
- School of Rural Medicine, Charles Sturt University, Orange, NSW, 2800, Australia
- Melbourne Stem Cell Centre Research, Box Hill, VIC, 3128, Australia
- Magellan Stem Cells, 9A Sugar Gum Court, Braeside, VIC, 3195, Australia
| | | | - James Wickham
- School of Dentistry & Medical Sciences, Charles Sturt University, Orange, NSW, 2800, Australia
| | - Kiran Shah
- Magellan Stem Cells, 9A Sugar Gum Court, Braeside, VIC, 3195, Australia
| | - Flavia Cicuttini
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia
- Department of Rheumatology, Alfred Hospital, Melbourne, VIC, 3004, Australia
| | - Yuanyuan Wang
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia
| | - Ann Solterbeck
- Statistical Revelations Pty Ltd, Ocean Grove, VIC, 3226, Australia
| |
Collapse
|
18
|
Safwan M, Bourgleh MS, Aldoush M, Haider KH. Tissue-source effect on mesenchymal stem cells as living biodrugs for heart failure: Systematic review and meta-analysis. World J Cardiol 2024; 16:469-483. [PMID: 39221190 PMCID: PMC11362808 DOI: 10.4330/wjc.v16.i8.469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/24/2024] [Accepted: 07/23/2024] [Indexed: 08/26/2024] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs), as living biodrugs, have entered advanced phases of clinical assessment for cardiac function restoration in patients with myocardial infarction and heart failure. While MSCs are available from diverse tissue sources, bone-marrow-derived MSCs (BM-MSCs) remain the most well-studied cell type, besides umbilical-cord-derived MSCs (UC-MSCs). The latter offers advantages, including noninvasive availability without ethical considerations. AIM To compare the safety and efficacy of BM-MSCs and UC-MSCs in terms of left ventricular ejection fraction (LVEF), 6-min walking distance (6MWD), and major adverse cardiac events (MACEs). METHODS Five databases were systematically searched to identify randomized controlled trials (RCTs). Thirteen RCTs (693 patients) were included using predefined eligibility criteria. Weighted mean differences and odds ratio (OR) for the changes in the estimated treatment effects. RESULTS UC-MSCs significantly improved LVEF vs controls by 5.08% [95% confidence interval (CI): 2.20%-7.95%] at 6 mo and 2.78% (95%CI: 0.86%-4.70%) at 12 mo. However, no significant effect was observed for BM-MSCs vs controls. No significant changes were observed in the 6MWD with either of the two cell types. Also, no differences were observed for MACEs, except rehospitalization rates, which were lower only with BM-MSCs (odds ratio 0.48, 95%CI: 0.24-0.97) vs controls. CONCLUSION UC-MSCs significantly improved LVEF compared with BM-MSCs. Their advantageous characteristics position them as a promising alternative to MSC-based therapy.
Collapse
Affiliation(s)
- Moaz Safwan
- Department of Basic Sciences, Sulaiman Al Rajhi University, Al Bukairiyah 51941, Saudi Arabia
| | - Mariam Safwan Bourgleh
- Department of Basic Sciences, Sulaiman Al Rajhi University, Al Bukairiyah 51941, Saudi Arabia
| | - Mohamed Aldoush
- Department of Basic Sciences, Sulaiman Al Rajhi University, Al Bukairiyah 51941, Saudi Arabia
| | - Khawaja Husnain Haider
- Department of Basic Sciences, Sulaiman Al Rajhi University, Al Bukairiyah 51941, Saudi Arabia.
| |
Collapse
|
19
|
Aisaiti A, Aierxiding S, Shoukeer K, Muheremu A. Mesenchymal stem cells for peripheral nerve injury and regeneration: a bibliometric and visualization study. Front Neurol 2024; 15:1420402. [PMID: 39161869 PMCID: PMC11330774 DOI: 10.3389/fneur.2024.1420402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 06/10/2024] [Indexed: 08/21/2024] Open
Abstract
Objective To use bibliometric methods to analyze the research hotspots and future development trends regarding the application of mesenchymal stem cells in peripheral nerve injury and regeneration. Methods Articles published from January 1, 2013, to December 31, 2023, were meticulously screened using the MeSH terms: TS = ("Mesenchymal stem cells" AND "Peripheral nerve injury") OR TS = ("Mesenchymal stem cells" AND "Peripheral nerve regeneration") within the Web of Science database. The compiled data was then subjected to in-depth analysis with the aid of VOSviewer and Cite Space software, which facilitated the identification of the most productive countries, organizations, authors, and the predominant keywords prevalent within this research domain. Results An extensive search of the Web of Science database yielded 350 relevant publications. These scholarly works were authored by 2,049 collaborative researchers representing 41 countries and affiliated with 585 diverse academic and research institutions. The findings from this research were disseminated across 167 various journals, and the publications collectively cited 21,064 references from 3,339 distinct journals. Conclusion Over the past decade, there has been a consistent upward trajectory in the number of publications and citations pertaining to the use of mesenchymal stem cells in the realm of peripheral nerve injury and regeneration. The domain of stem cell therapy for nerve injury has emerged as a prime focus of research, with mesenchymal stem cell therapy taking center stage due to its considerable promise in the treatment of nerve injuries. This therapeutic approach holds the potential to significantly enhance treatment options and rehabilitation prospects for patients suffering from such injuries.
Collapse
Affiliation(s)
- Aikebaierjiang Aisaiti
- Key Laboratory of Orthopedic Regenerative Medicine, Sixth Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang, China
| | - Shalayiding Aierxiding
- Key Laboratory of Orthopedic Regenerative Medicine, Sixth Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang, China
| | - Kutiluke Shoukeer
- Key Laboratory of Orthopedic Regenerative Medicine, Sixth Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang, China
| | - Aikeremujiang Muheremu
- Key Laboratory of Orthopedic Regenerative Medicine, Sixth Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang, China
- Beijing Darwin Cell Biotechnology Co., Ltd., Beijing, China
| |
Collapse
|
20
|
Zheng L, Chen W, Yao K, Xie Y, Liao C, Zhou T. Clinical and preclinical studies of mesenchymal stem cells to alleviate peritoneal fibrosis. Stem Cell Res Ther 2024; 15:237. [PMID: 39080683 PMCID: PMC11290310 DOI: 10.1186/s13287-024-03849-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 07/15/2024] [Indexed: 08/02/2024] Open
Abstract
Peritoneal dialysis is an important part of end-stage kidney disease replacement therapy. However, prolonged peritoneal dialysis can result in peritoneal fibrosis and ultrafiltration failure, forcing patients to withdraw from peritoneal dialysis treatment. Therefore, there is an urgent need for some effective measures to alleviate the occurrence and progression of peritoneal fibrosis. Mesenchymal stem cells play a crucial role in immunomodulation and antifibrosis. Numerous studies have investigated the fact that mesenchymal stem cells can ameliorate peritoneal fibrosis mainly through the paracrine pathway. It has been discovered that mesenchymal stem cells participate in the improvement of peritoneal fibrosis involving the following signaling pathways: TGF-β/Smad signaling pathway, AKT/FOXO signaling pathway, Wnt/β-catenin signaling pathway, TLR/NF-κB signaling pathway. Additionally, in vitro experiments, mesenchymal stem cells have been shown to decrease mesothelial cell death and promote proliferation. In animal models, mesenchymal stem cells can enhance peritoneal function by reducing inflammation, neovascularization, and peritoneal thickness. Mesenchymal stem cell therapy has been demonstrated in clinical trials to improve peritoneal function and reduce peritoneal fibrosis, thus improving the life quality of peritoneal dialysis patients.
Collapse
Affiliation(s)
- Lingqian Zheng
- Department of Nephrology, the Second Affiliated Hospital of Shantou University Medical College, No. 69 Dongsha Road, Shantou, 515041, China
| | - Wenmin Chen
- Department of Nephrology, the Second Affiliated Hospital of Shantou University Medical College, No. 69 Dongsha Road, Shantou, 515041, China
| | - Kaijin Yao
- Department of Nephrology, the Second Affiliated Hospital of Shantou University Medical College, No. 69 Dongsha Road, Shantou, 515041, China
| | - Yina Xie
- Department of Nephrology, the Second Affiliated Hospital of Shantou University Medical College, No. 69 Dongsha Road, Shantou, 515041, China
| | - Chunling Liao
- Department of Nephrology, the Second Affiliated Hospital of Shantou University Medical College, No. 69 Dongsha Road, Shantou, 515041, China
| | - Tianbiao Zhou
- Department of Nephrology, the Second Affiliated Hospital of Shantou University Medical College, No. 69 Dongsha Road, Shantou, 515041, China.
| |
Collapse
|
21
|
Safari F, Bararpour S, Omidi Chomachaei F. The suppression of cell motility through the reduction of FAK activity and expression of cell adhesion proteins by hAMSCs secretome in MDA-MB-231 breast cancer cells. Invest New Drugs 2024; 42:272-280. [PMID: 38536544 DOI: 10.1007/s10637-024-01434-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 03/20/2024] [Indexed: 06/11/2024]
Abstract
Breast cancer is a leading cause of death in women worldwide. Cancer therapy based on stem cells is considered as a novel and promising platform. In the present study, we explore the therapeutic effects of human amniotic mesenchymal stromal cells (hAMSCs) through the reduction of focal adhesion kinase (FAK) activity, SHP-2, and cell adhesion proteins such as Paxillin, Vinculin, Fibronectin, Talin, and integrin αvβ3 expression in MDA-MB-231 breast cancer cells. For this purpose, we employed a co-culture system using 6-well plate transwell. After 72 h, hAMSCs-treated MDA-MB-231 breast cancer cells, the activity of focal adhesion kinase (FAK) and the expression of SHP-2 and cell adhesion proteins such as Paxillin, Vinculin, Fibronectin, Talin, and integrin αvβ3 expression were analyzed using western blot. The shape and migration of cells were also analyzed. Based on our results, a significant reduction in tumor cell motility through downregulation of the tyrosine phosphorylation level of FAK (at Y397 and Y576/577 sites) and cell adhesion expression in MDA-MB-231 breast cancer cells was demonstrated. Our findings indicate that hAMSCS secretome has therapeutic effects on cancer cell migration through downregulation of FAK activity and expression of cell adhesion proteins.
Collapse
Affiliation(s)
- Fatemeh Safari
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran.
| | - Setareh Bararpour
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran
| | | |
Collapse
|
22
|
Klingenberg M, Dineva A, Hoyer A, Kaltschmidt B, Leimkühler P, Vordemvenne T, Elsner A, Wähnert D. Injection of Autologous Adipose Stromal Vascular Fraction in Combination with Autologous Conditioned Plasma for the Treatment of Advanced Knee Osteoarthritis Significantly Improves Clinical Symptoms. J Clin Med 2024; 13:3031. [PMID: 38892743 PMCID: PMC11172752 DOI: 10.3390/jcm13113031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/10/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024] Open
Abstract
(1) Background: Osteoarthritis (OA) is the most common joint disease in the world. It is chronic, systemic, progressive and disabling. Orthobiologics have the potential to positively alter the course of this disease. Therefore, the aim of this study is to evaluate the efficacy of SVF/ACP in the treatment of advanced osteoarthritis of the knee in an unfiltered patient population. We hypothesize that this therapy can improve the symptoms associated with osteoarthritis of the knee. We also hypothesize that there are patient-related factors that influence the efficacy of therapy. (2) Methods: Two hundred and thirteen patients with moderate to severe OA of the knee and SVF/ACP injection were recruited for this study. Patients were excluded if they did not provide informed consent or were not receiving SVF/ACP therapy. Pain, function, symptoms and quality of life were assessed using standardized scores (KOOS, WOMAC) before and after treatment. (3) Results: The VAS pain score was significantly reduced by at least 30% (p < 0.001). Knee function, as measured by the KOOS daily activity and sport scores, showed significant increases of 21% and 45%, respectively, at 6 months (p < 0.04). (4) Conclusions: Treatment of knee OA with SVF/ACP injection positively modifies the disease by significantly reducing pain and improving function.
Collapse
Affiliation(s)
| | - Antoniya Dineva
- Biostatistics and Medical Biometry, Medical School OWL, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany; (A.D.); (A.H.)
| | - Annika Hoyer
- Biostatistics and Medical Biometry, Medical School OWL, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany; (A.D.); (A.H.)
| | - Barbara Kaltschmidt
- Department of Cell Biology, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany;
- Molecular Neurobiology, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
| | - Philipp Leimkühler
- Department of Trauma and Orthopaedic Surgery, Medical School and University Medical Center OWL, Protestant Hospital of the Bethel Foundation, Bielefeld University, Burgsteig 13, 33617 Bielefeld, Germany; (P.L.); (T.V.); (D.W.)
- DIOSS (German Institute for Orthopaedics, Osteopathy and Sports Medicine), Lipper Hellweg 10, 33604 Bielefeld, Germany;
| | - Thomas Vordemvenne
- Department of Trauma and Orthopaedic Surgery, Medical School and University Medical Center OWL, Protestant Hospital of the Bethel Foundation, Bielefeld University, Burgsteig 13, 33617 Bielefeld, Germany; (P.L.); (T.V.); (D.W.)
- DIOSS (German Institute for Orthopaedics, Osteopathy and Sports Medicine), Lipper Hellweg 10, 33604 Bielefeld, Germany;
| | - Andreas Elsner
- DIOSS (German Institute for Orthopaedics, Osteopathy and Sports Medicine), Lipper Hellweg 10, 33604 Bielefeld, Germany;
- Orthopedic Joint Practice at Bültmannshof, Kurt-Schumacher-Straße 17, 33615 Bielefeld, Germany
| | - Dirk Wähnert
- Department of Trauma and Orthopaedic Surgery, Medical School and University Medical Center OWL, Protestant Hospital of the Bethel Foundation, Bielefeld University, Burgsteig 13, 33617 Bielefeld, Germany; (P.L.); (T.V.); (D.W.)
- DIOSS (German Institute for Orthopaedics, Osteopathy and Sports Medicine), Lipper Hellweg 10, 33604 Bielefeld, Germany;
| |
Collapse
|
23
|
Tahmasebi F, Asl ER, Vahidinia Z, Barati S. Stem Cell-Derived Exosomal MicroRNAs as Novel Potential Approach for Multiple Sclerosis Treatment. Cell Mol Neurobiol 2024; 44:44. [PMID: 38713302 PMCID: PMC11076329 DOI: 10.1007/s10571-024-01478-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/09/2024] [Indexed: 05/08/2024]
Abstract
Multiple Sclerosis (MS) is an autoimmune disease of the central nervous system (CNS) characterized by inflammation and demyelination of CNS neurons. Up to now, there are many therapeutic strategies for MS but they are only being able to reduce progression of diseases and have not got any effect on repair and remyelination. Stem cell therapy is an appropriate method for regeneration but has limitations and problems. So recently, researches were used of exosomes that facilitate intercellular communication and transfer cell-to-cell biological information. MicroRNAs (miRNAs) are a class of short non-coding RNAs that we can used to their dysregulation in order to diseases diagnosis. The miRNAs of microvesicles obtained stem cells may change the fate of transplanted cells based on received signals of injured regions. The miRNAs existing in MSCs may be displayed the cell type and their biological activities. Current studies show also that the miRNAs create communication between stem cells and tissue-injured cells. In the present review, firstly we discuss the role of miRNAs dysregulation in MS patients and miRNAs expression by stem cells. Finally, in this study was confirmed the relationship of microRNAs involved in MS and miRNAs expressed by stem cells and interaction between them in order to find appropriate treatment methods in future for limit to disability progression.
Collapse
Affiliation(s)
- Fatemeh Tahmasebi
- Department of Anatomy, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elmira Roshani Asl
- Department of Biochemistry, Saveh University of Medical Sciences, Saveh, Iran
| | - Zeinab Vahidinia
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Shirin Barati
- Department of Anatomy, Saveh University of Medical Sciences, Saveh, Iran.
| |
Collapse
|
24
|
Moellerberndt J, Niebert S, Fey K, Hagen A, Burk J. Impact of platelet lysate on immunoregulatory characteristics of equine mesenchymal stromal cells. Front Vet Sci 2024; 11:1385395. [PMID: 38725585 PMCID: PMC11079816 DOI: 10.3389/fvets.2024.1385395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/29/2024] [Indexed: 05/12/2024] Open
Abstract
Multipotent mesenchymal stromal cells (MSC) play an increasing role in the treatment of immune-mediated diseases and inflammatory processes. They regulate immune cells via cell-cell contacts and by secreting various anti-inflammatory molecules but are in turn influenced by many factors such as cytokines. For MSC culture, platelet lysate (PL), which contains a variety of cytokines, is a promising alternative to fetal bovine serum (FBS). We aimed to analyze if PL with its cytokines improves MSC immunoregulatory characteristics, with the perspective that PL could be useful for priming the MSC prior to therapeutic application. MSC, activated peripheral blood mononuclear cells (PBMC) and indirect co-cultures of both were cultivated in media supplemented with either PL, FBS, FBS+INF-γ or FBS+IL-10. After incubation, cytokine concentrations were measured in supernatants and control media. MSC were analyzed regarding their expression of immunoregulatory genes and PBMC regarding their proliferation and percentage of FoxP3+ cells. Cytokines, particularly IFN-γ and IL-10, remained at high levels in PL control medium without cells but decreased in cytokine-supplemented control FBS media without cells during incubation. PBMC released IFN-γ and IL-10 in various culture conditions. MSC alone only released IFN-γ and overall, cytokine levels in media were lowest when MSC were cultured alone. Stimulation of MSC either by PBMC or by PL resulted in an altered expression of immunoregulatory genes. In co-culture with PBMC, the MSC gene expression of COX2, TNFAIP6, IDO1, CXCR4 and MHC2 was upregulated and VCAM1 was downregulated. In the presence of PL, COX2, TNFAIP6, VCAM1, CXCR4 and HIF1A were upregulated. Functionally, while no consistent changes were found regarding the percentage of FoxP3+ cells, MSC decreased PBMC proliferation in all media, with the strongest effect in FBS media supplemented with IL-10 or IFN-γ. This study provides further evidence that PL supports MSC functionality, including their immunoregulatory mechanisms. The results justify to investigate functional effects of MSC cultured in PL-supplemented medium on different types of immune cells in more detail.
Collapse
Affiliation(s)
- Julia Moellerberndt
- Equine Clinic (Surgery, Orthopedics), Justus-Liebig-University Giessen, Giessen, Germany
| | - Sabine Niebert
- Institute of Physiology, Pathophysiology, and Biophysics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Kerstin Fey
- Equine Clinic (Internal Medicine), Justus-Liebig-University Giessen, Giessen, Germany
| | - Alina Hagen
- Equine Clinic (Surgery, Orthopedics), Justus-Liebig-University Giessen, Giessen, Germany
| | - Janina Burk
- Institute of Physiology, Pathophysiology, and Biophysics, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
25
|
Papa PM, Segabinazzi LGTM, Fonseca-Alves CE, Papa FO, Alvarenga MA. Intratesticular transplantation of allogenic mesenchymal stem cells mitigates testicular destruction after induced heat stress in Miniature-horse stallions. J Equine Vet Sci 2024; 132:104961. [PMID: 37925113 DOI: 10.1016/j.jevs.2023.104961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/09/2023] [Accepted: 11/02/2023] [Indexed: 11/06/2023]
Abstract
Testicular degeneration (TD) is the most frequent cause of sub or infertility in stallions. Currently, mesenchymal stem cells (MSC) have been studied as a therapeutic option for several diseases including induced-TD in laboratory animals. Therefore, this study aimed to evaluate the effect of intratesticular MSC therapy on the testicular histology of stallions submitted to scrotal heat stress. Ten healthy Miniature-horse stallions were submitted to testicular heat stress induced by a heating wrap device (42-45°C). Afterward, the stallions were divided into two groups and treated seven days later. MSCs-treated stallions were treated with an intratesticular injection of 10 × 106 of MSCs diluted in 5 mL of PBS, whereas placebo-treated stallions had 5 mL of PBS intratesticular injected. All stallions had testicular biopsies collected seven days before and one- and 14-days post-heat stress and were castrated 30 days after testicular insult. Tissue sections were stained with H&E and evaluated for the tubular and luminal diameter, epithelial thickness, seminiferous tubules (STs) integrity, the number of spermatozoa in the STs, and the percent of abnormal STs. Significance was set at P≤0.05. In both groups, testicular heat stress damaged the STs (P<0.05). However, STs' parameters were improved in MSCs-treated stallions compared to placebo-treated stallions 30 days after the testicular insult (P<0.05). In conclusion, the results of the present study suggest that intratesticular MSC therapy provided a therapeutic advantage in rescuing acute TD in stallions. However, further studies are essential to evaluate the benefits of this therapy on semen parameters and stallions with idiopathic TD.
Collapse
Affiliation(s)
- Patricia M Papa
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, FMVZ, Universidade Estadual Paulista "Júlio de Mesquita Filho", UNESP, Botucatu, Brazil
| | - Lorenzo G T M Segabinazzi
- Department of Clinical Sciences, Ross University School of Veterinary Medicine, Basseterre, St. Kitts, West Indies.
| | - Carlos E Fonseca-Alves
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, FMVZ, Universidade Estadual Paulista "Júlio de Mesquita Filho", UNESP, Botucatu, Brazil
| | - Frederico O Papa
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, FMVZ, Universidade Estadual Paulista "Júlio de Mesquita Filho", UNESP, Botucatu, Brazil
| | - Marco A Alvarenga
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, FMVZ, Universidade Estadual Paulista "Júlio de Mesquita Filho", UNESP, Botucatu, Brazil
| |
Collapse
|
26
|
Kadkhoda Z, Motie P, Rad MR, Mohaghegh S, Kouhestani F, Motamedian SR. Comparison of Periodontal Ligament Stem Cells with Mesenchymal Stem Cells from Other Sources: A Scoping Systematic Review of In vitro and In vivo Studies. Curr Stem Cell Res Ther 2024; 19:497-522. [PMID: 36397622 DOI: 10.2174/1574888x17666220429123319] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/31/2021] [Accepted: 03/11/2022] [Indexed: 11/22/2022]
Abstract
OBJECTIVE The application of stem cells in regenerative medicine depends on their biological properties. This scoping review aimed to compare the features of periodontal ligament stem cells (PDLSSCs) with stem cells derived from other sources. DESIGN An electronic search in PubMed/Medline, Embase, Scopus, Google Scholar and Science Direct was conducted to identify in vitro and in vivo studies limited to English language. RESULTS Overall, 65 articles were included. Most comparisons were made between bone marrow stem cells (BMSCs) and PDLSCs. BMSCs were found to have lower proliferation and higher osteogenesis potential in vitro and in vivo than PDLSCs; on the contrary, dental follicle stem cells and umbilical cord mesenchymal stem cells (UCMSCs) had a higher proliferative ability and lower osteogenesis than PDLSCs. Moreover, UCMSCs exhibited a higher apoptotic rate, hTERT expression, and relative telomerase length. The immunomodulatory function of adipose-derived stem cells and BMSCs was comparable to PDLSCs. Gingival mesenchymal stem cells showed less sensitivity to long-term culture. Both pure and mixed gingival cells had lower osteogenic ability compared to PDLSCs. Comparison of dental pulp stem cells (DPSCs) with PDLSCs regarding proliferation rate, osteo/adipogenesis, and immunomodulatory properties was contradictory; however, in vivo bone formation of DPSCs seemed to be lower than PDLSCs. CONCLUSION In light of the performed comparative studies, PDLSCs showed comparable results to stem cells derived from other sources; however, further in vivo studies are needed to determine the actual pros and cons of stem cells in comparison to each other.
Collapse
Affiliation(s)
- Zeinab Kadkhoda
- Department of Periodontology, School of Dentistry, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Parisa Motie
- Student Research Committee, School of Dentistry, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Maryam Rezaei Rad
- Dental Research Center, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sadra Mohaghegh
- Student Research Committee, School of Dentistry, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Farnaz Kouhestani
- Department of Periodontics, School of Dentistry, Bushehr University of Medical Sciences, Tehran, Iran
| | - Saeed Reza Motamedian
- Dentofacial Deformities Research Center, Research Institute of Dental Sciences, Department of Orthodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
27
|
Li DY, Li YM, Lv DY, Deng T, Zeng X, You L, Pang QY, Li Y, Zhu BM. Enhanced interaction between genome-edited mesenchymal stem cells and platelets improves wound healing in mice. J Tissue Eng 2024; 15:20417314241268917. [PMID: 39329066 PMCID: PMC11425747 DOI: 10.1177/20417314241268917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/26/2024] [Indexed: 09/28/2024] Open
Abstract
Impaired wound healing poses a significant burden on the healthcare system and patients. Stem cell therapy has demonstrated promising potential in the treatment of wounds. However, its clinical application is hindered by the low efficiency of cell homing. In this study, we successfully integrated P-selectin glycoprotein ligand-1 (PSGL-1) into the genome of human adipose-derived mesenchymal stem cells (ADSCs) using a Cas9-AAV6-based genome editing tool platform. Our findings revealed that PSGL-1 knock-in enhanced the binding of ADSCs to platelets and their adhesion to the injured site. Moreover, the intravenous infusion of PSGL-1 -engineered ADSCs (KI-ADSCs) significantly improved the homing efficiency and residence rate at the site of skin lesions in mice. Mechanistically, PSGL-1 knock-in promotes the release of some therapeutic cytokines by activating the canonical WNT/β-catenin signaling pathway and accelerates the healing of wounds by promoting angiogenesis, re-epithelialization, and granulation tissue formation at the wound site. This study provides a novel strategy to simultaneously address the problem of poor migration and adhesion of mesenchymal stem cells (MSCs).
Collapse
Affiliation(s)
- De-Yong Li
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yu-Meng Li
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Dan-Yi Lv
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Tian Deng
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xin Zeng
- Key Laboratory of Transplant Engineering and Immunology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Lu You
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qiu-Yu Pang
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yi Li
- Core Facilities of West China Hospital, Sichuan University, Chengdu, China
| | - Bing-Mei Zhu
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
28
|
Mautner K, Gottschalk M, Boden SD, Akard A, Bae WC, Black L, Boggess B, Chatterjee P, Chung CB, Easley KA, Gibson G, Hackel J, Jensen K, Kippner L, Kurtenbach C, Kurtzberg J, Mason RA, Noonan B, Roy K, Valentine V, Yeago C, Drissi H. Cell-based versus corticosteroid injections for knee pain in osteoarthritis: a randomized phase 3 trial. Nat Med 2023; 29:3120-3126. [PMID: 37919438 PMCID: PMC10719084 DOI: 10.1038/s41591-023-02632-w] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 10/05/2023] [Indexed: 11/04/2023]
Abstract
Various types of cellular injection have become a popular and costly treatment option for patients with knee osteoarthritis despite a paucity of literature establishing relative efficacy to each other or corticosteroid injections. Here we aimed to identify the safety and efficacy of cell injections from autologous bone marrow aspirate concentrate, autologous adipose stromal vascular fraction and allogeneic human umbilical cord tissue-derived mesenchymal stromal cells, in comparison to corticosteroid injection (CSI). The study was a phase 2/3, four-arm parallel, multicenter, single-blind, randomized, controlled clinical trial with 480 patients with a diagnosis of knee osteoarthritis (Kellgren-Lawrence II-IV). Participants were randomized to the three different arms with a 3:1 distribution. Arm 1: autologous bone marrow aspirate concentrate (n = 120), CSI (n = 40); arm 2: umbilical cord tissue-derived mesenchymal stromal cells (n = 120), CSI (n = 40); arm 3: stromal vascular fraction (n = 120), CSI (n = 40). The co-primary endpoints were the visual analog scale pain score and Knee injury and Osteoarthritis Outcome Score pain score at 12 months versus baseline. Analyses of our primary endpoints, with 440 patients, revealed that at 1 year post injection, none of the three orthobiologic injections was superior to another, or to the CSI control. In addition, none of the four groups showed a significant change in magnetic resonance imaging osteoarthritis score compared to baseline. No procedure-related serious adverse events were reported during the study period. In summary, this study shows that at 1 year post injection, there was no superior orthobiologic as compared to CSI for knee osteoarthritis. ClinicalTrials.gov Identifier: NCT03818737.
Collapse
Affiliation(s)
- Ken Mautner
- Department of Orthopaedics, Emory University, Atlanta, GA, USA.
| | | | - Scott D Boden
- Department of Orthopaedics, Emory University, Atlanta, GA, USA
| | - Alison Akard
- Department of Orthopaedics, Emory University, Atlanta, GA, USA
| | - Won C Bae
- Department of Radiology, University of California, Davis, La Jolla, CA, USA
| | | | | | - Paramita Chatterjee
- Marcus Center for Therapeutic Cell Characterization and Manufacturing, Georgia Institute of Technology, Atlanta, GA, USA
| | - Christine B Chung
- Department of Radiology, University of California, Davis, La Jolla, CA, USA
| | - Kirk A Easley
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA, USA
| | - Greg Gibson
- Center for Integrative Genomics, Georgia Institute of Technology, Atlanta, GA, USA
| | | | | | - Linda Kippner
- Marcus Center for Therapeutic Cell Characterization and Manufacturing, Georgia Institute of Technology, Atlanta, GA, USA
| | | | - Joanne Kurtzberg
- Marcus Center for Therapeutic Cures, Duke University, Durham, NC, USA
| | - R Amadeus Mason
- Department of Orthopaedics, Emory University, Atlanta, GA, USA
| | | | - Krishnendu Roy
- Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | | | - Carolyn Yeago
- Marcus Center for Therapeutic Cell Characterization and Manufacturing, Georgia Institute of Technology, Atlanta, GA, USA
| | - Hicham Drissi
- Department of Orthopaedics, Emory University, Atlanta, GA, USA.
| |
Collapse
|
29
|
Siemionow M, Kulahci Y, Zor F. Novel cell-based strategies for immunomodulation in vascularized composite allotransplantation. Curr Opin Organ Transplant 2023; 28:431-439. [PMID: 37800652 DOI: 10.1097/mot.0000000000001109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
PURPOSE OF REVIEW Vascularized composite allotransplantation (VCA) has become a clinical reality in the past two decades. However, its routine clinical applications are limited by the risk of acute rejection, and the side effects of the lifelong immunosuppression. Therefore, there is a need for new protocols to induce tolerance and extend VCA survival. Cell- based therapies have emerged as an attractive strategy for tolerance induction in VCA. This manuscript reviews the current strategies and applications of cell-based therapies for tolerance induction in VCA. RECENT FINDINGS Cellular therapies, including the application of bone marrow cells (BMC), mesenchymal stem cells (MSC), adipose stem cells, regulatory T cells (Treg) cells, dendritic cells and donor recipient chimeric cells (DRCC) show promising potential as a strategy to induce tolerance in VCA. Ongoing basic science research aims to provide insights into the mechanisms of action, homing, functional specialization and standardization of these cellular therapies. Additionally, translational preclinical and clinical studies are underway, showing encouraging outcomes. SUMMARY Cellular therapies hold great potential and are supported by preclinical studies and clinical trials demonstrating safety and efficacy. However, further research is needed to develop novel cell-based immunosuppressive protocol for VCA.
Collapse
Affiliation(s)
- Maria Siemionow
- Department of Orthopeadics, University of Illinois at Chicago, Chicago, Illinois
| | - Yalcin Kulahci
- Department of Surgery, Wake Forest School of Medicine, Winston Salem, North Carolina
| | - Fatih Zor
- Department of Plastic Surgery, Indiana University, Indianapolis, Indiana, USA
| |
Collapse
|
30
|
Chamberlain C, Prabahar A, Kink J, Mueller E, Li Y, Yopp S, Capitini C, William M, Hematti P, Vanderby R, Jiang P. Modulating Mesenchymal Stromal Cell Microenvironment Alters Exosome RNA Content and Ligament Healing Capacity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.22.563485. [PMID: 37961625 PMCID: PMC10634732 DOI: 10.1101/2023.10.22.563485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Although mesenchymal stromal cell (MSC) based therapies hold promise in regenerative medicine, their applications in clinical settings remain challenging due to issues such as immunocompatibility and cell stability. MSC-derived exosomes, small vesicles carrying various bioactive molecules, are a promising cell-free therapy to promote tissue regeneration. However, it remains unknown mainly regarding the ability to customize the content of MSC-derived exosomes, how alterations in the MSC microenvironment influence exosome content, and the effects of such modifications on healing efficiency and mechanical properties in tissue regeneration. In this study, we used an in vitro system of human MSC-derived exosomes and an in vivo rat ligament injury model to address these questions. We found a context-dependent correlation between exosomal and parent cell RNA content. Under native conditions, the correlation was moderate but heightened with microenvironmental changes. In vivo rat ligament injury model showed that MSC-derived exosomes increased ligament max load and stiffness. We also found that changes in the MSCs' microenvironment significantly influence the mechanical properties driven by exosome treatment. Additionally, a link was identified between altered exosomal microRNA levels and expression changes in microRNA targets in ligaments. These findings elucidate the nuanced interplay between MSCs, their exosomes, and tissue regeneration.
Collapse
|
31
|
Öztürk TM, Özyazgan İ, Sezer G, Yalçın B, Göç R, Ülger M, Özocak H, Yakan B. Investigation of the effects of umbilical cord-derived mesenchymal stem cells and curcumin on Achilles tendon healing - can they act synergistically? ULUS TRAVMA ACIL CER 2023; 29:1218-1227. [PMID: 37889023 PMCID: PMC10771245 DOI: 10.14744/tjtes.2023.04203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/26/2023] [Accepted: 09/29/2023] [Indexed: 10/28/2023]
Abstract
BACKGROUND It is known that curcumin and umbilical cord-derived mesenchymal stem cells (UC-MSCs) positively affect experi-mental tendon injury healing. This study investigated individual effects and potential synergistic effects of using curcumin and UC-MSCs alone and together. METHODS Eighty female Wistar albino rats were randomly divided into five groups: Control, curcumin, sesame oil, MSCs, and Curcumin+MSCs groups. In all rats, punch tendon defect was created in both right and left Achilles tendons. While no additional treatment was applied to the control group, curcumin, sesame oil used as a solvent for curcumin, MSCs, and MSCs and curcumin com-bination were applied locally to the injury site, respectively, in the other groups. Curcumin was solved in sesame oil before application. In each group, half of the animals were euthanized in the post-operative 2nd week while the other half were euthanized in the post-operative 4th week. The right Achilles was used for biomechanical testing, while the left Achilles was used for histological evaluation and immunohistochemical analysis of type I, Type III collagen, and tenomodulin. RESULTS Histologically, significant improvement was observed in the curcumin, MSCs, and Curcumin+ MSCs groups compared to the control Group in the 2nd week. In the 2nd and 4th weeks, Type III collagen was significantly increased in the curcumin group com-pared to the control group. In week 4, tenomodulin increased significantly in the curcumin and MSCs groups compared to the control group. Tendon tensile strength increased significantly in MSCs and Curcumin+MSCs groups compared to the control group in the 4th week. No superiority was observed between the treatment groups regarding their positive effects on recovery. CONCLUSION Locally used curcumin and UC-MSCs showed positive effects that were not superior to each other in the healing of injury caused by a punch in the Achilles tendons of rats. However, synergistic effects on healing were not observed when they were applied together.
Collapse
Affiliation(s)
| | - İrfan Özyazgan
- Department of Plastic Reconstructive and Aesthetic Surgery, Erciyes University, Faculty of Medicine, Kayseri-Türkiye
| | - Gülay Sezer
- Department of Pharmacology, Erciyes University, Faculty of Medicine, Kayseri-Türkiye
| | - Betül Yalçın
- Department of Histology and Embryology, Adıyaman University, Faculty of Medicine, Adıyaman-Türkiye
| | - Rümeysa Göç
- Department of Histology and Embryology, Cumhuriyet University, Faculty of Medicine, Sivas-Türkiye
| | - Menekşe Ülger
- Department of Histology and Embryology, Erciyes University, Faculty of Medicine, Kayseri-Türkiye
| | | | - Birkan Yakan
- Department of Histology and Embryology, Erciyes University, Faculty of Medicine, Kayseri-Türkiye
| |
Collapse
|
32
|
Liu X, Zhou Z, Zeng WN, Zeng Q, Zhang X. The role of toll-like receptors in orchestrating osteogenic differentiation of mesenchymal stromal cells and osteoimmunology. Front Cell Dev Biol 2023; 11:1277686. [PMID: 37941898 PMCID: PMC10629627 DOI: 10.3389/fcell.2023.1277686] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/11/2023] [Indexed: 11/10/2023] Open
Abstract
Osteoimmunology is a concept involving molecular and cellular crosstalk between the skeletal and immune systems. Toll-like receptors (TLRs) are widely expressed both on mesenchymal stromal cells (MSCs), the hematopoietic cells, and immune cells in the osteogenic microenvironment for bone development or repair. TLRs can sense both exogenous pathogen-associated molecular patterns (PAMPs) derived from microorganisms, and damage-associated molecular patterns (DAMPs) derived from normal cells subjected to injury, inflammation, or cell apoptosis under physiological or pathological conditions. Emerging studies reported that TLR signaling plays an important role in bone remodeling by directly impacting MSC osteogenic differentiation or osteoimmunology. However, how to regulate TLR signaling is critical and remains to be elucidated to promote the osteogenic differentiation of MSCs and new bone formation for bone tissue repair. This review outlines distinct TLR variants on MSCs from various tissues, detailing the impact of TLR pathway activation or inhibition on MSC osteogenic differentiation. It also elucidates TLR pathways' interplay with osteoclasts, immune cells, and extracellular vesicles (EVs) derived from MSCs. Furthermore, we explore biomaterial-based activation to guide MSCs' osteogenic differentiation. Therefore, understanding TLRs' role in this context has significant implications for advancing bone regeneration and repair strategies.
Collapse
Affiliation(s)
- Xiaoyang Liu
- Orthopedic Research Institution, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Zongke Zhou
- Orthopedic Research Institution, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Wei-Nan Zeng
- Orthopedic Research Institution, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Qin Zeng
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterials & Institute of Regulatory Science for Medical Devices & NMPA Research Base of Regulatory Science for Medical Devices, Sichuan University, Chengdu, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterials & Institute of Regulatory Science for Medical Devices & NMPA Research Base of Regulatory Science for Medical Devices, Sichuan University, Chengdu, China
| |
Collapse
|
33
|
Møller-Hansen M. Mesenchymal stem cell therapy in aqueous deficient dry eye disease. Acta Ophthalmol 2023; 101 Suppl 277:3-27. [PMID: 37840443 DOI: 10.1111/aos.15739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
ENGLISH SUMMARY Dry eye disease (DED) is characterized by ocular dryness, irritation and blurred vision and has a significant impact on the patient's quality of life. This condition can be particularly severe in patients with aqueous deficient dry eye disease (ADDE) due to Sjögren's syndrome (SS), an autoimmune disease that affects the lacrimal and salivary glands. Current treatments for ADDE are often limited to symptomatic relief. A literature review was conducted to explore the current surgical interventions used or tested in humans with ADDE (I). These interventions include procedures involving the eyelids and tear ducts, transplantation of amniotic membrane or salivary glands, injections around the tear ducts and cell-based injections into the lacrimal gland (LG). Each treatment has its advantages and disadvantages; however, treating dry eyes in patients with SS presents a particular challenge due to the systemic nature of the disease. Moreover, there is a need for new therapeutic options. Mesenchymal stem cells (MSCs) are a type of stem cell that have shown promise in regenerating damaged tissue and reducing inflammation in various diseases. Previous studies in animal models have suggested that MSCs could be effective in treating ADDE. Thus, this thesis aims to investigate the safety and efficacy of injecting MSCs into the LG as a treatment option for patients with ADDE secondary to SS. The study also aims to see this treatment in light of existing and novel investigational treatment options. The clinical studies conducted for this thesis are the first of their kind in humans. MSCs derived from healthy donors' adipose tissue (ASCs) were cultured in a laboratory, frozen and thawed ready for use. In the safety study, we performed the first human trial involving the administration of a single injection of ASCs into the LG of one eye in seven patients suffering from severe ADDE (II). The primary objective was to test the safety of this treatment, while the secondary objective was to assess improvements in subjective and objective signs of dry eye. The results of the trial showed no serious side effects within 4 months of follow-up after treatment. On average, there was a 40% reduction in dry eye symptoms assessed with the Ocular Surface Disease Index (OSDI) questionnaire. Additionally, in the treated eye, there was a significant decrease in tear osmolarity, an increase in tear film stability and an increase in tear production. To further investigate the efficacy of this treatment, our research group performed a clinical, randomized study aiming to compare the ASC injection into the LG with the injection of a vehicle (the excipient in which the ASCs are dissolved) and observation (no intervention) (III). The study involved 20 subjects receiving ASC injection, 20 subjects receiving vehicle injection and 14 patients being observed without intervention. The subjects were examined to assess the outcomes with a 12-month follow-up after treatment. Both intervention groups showed a significant reduction in subjective dry eye symptoms of approximately 40%. This improvement was evident at the 1-week follow-up and persisted until the 12-month follow-up. The observation group did not experience any change in OSDI score. The ASCs group exhibited a significant mean increase in non-invasive tear break-up time (NIKBUT) of 6.48 s (149%) at the four-week follow-up, which was significantly higher than that in the vehicle group (p = 0.04). Moreover, the ASCs group showed a significant increase in NIKBUT compared to that in the observation group at the 12-month follow-up (p = 0.004). In both the ASCs and vehicle group, a significant increase in Schirmer test scores at the 4-month follow-up and the 12-month follow-up was observed. In conclusion, this thesis contributes valuable findings with a new treatment option for patients with dry eye disease. Injection of ASCs into the LG was shown to be safe and to improve subjective dry eye symptoms and specifically the tear film stability in patients with ADDE due to SS. Compared to other treatment modalities of ADDE, this treatment has greater potential, as ASCs could potentially be used as an anti-inflammatory therapeutic option for managing DED of other causes as well. RESUMÉ (DANISH SUMMARY): Tørre øjne, karakteriseret ved tørhedsfornemmelse og irritation af øjnene samt sløret syn, har en betydelig indvirkning på patientens livskvalitet. Denne tilstand kan vaere saerligt alvorlig hos patienter med nedsat tåreproduktion (ADDE) som følge af Sjögrens syndrom (SS), en autoimmun sygdom, der påvirker tårekirtlerne og spytkirtlerne. Nuvaerende behandlinger for ADDE er ofte begraenset til symptomlindring. Vi gennemførte en litteraturgennemgang for at undersøge, hvilke nuvaerende kirurgiske behandlingsmetoder, der anvendes eller testes hos patienter med ADDE (I). Disse interventioner inkluderer procedurer, der involverer øjenlåg og tårekanaler, transplantation af amnionhinde eller spytkirtler, injektioner omkring tårekanalerne samt cellebaserede injektioner i tårekirtlen. Hver behandling har sine fordele og ulemper, men behandling af tørre øjne hos patienter med SS udgør en saerlig udfordring på grund af sygdommens systemiske udbredning, og der er behov for nye behandlingsmuligheder. Mesenkymale stamceller (MSCs) er en type stamcelle, der har vist lovende resultater med hensyn til at regenerere beskadiget vaev og reducere inflammation i forskellige sygdomme. Tidligere undersøgelser i dyremodeller har indikeret, at MSCs kan vaere en effektiv behandling af ADDE. Denne afhandling har til formål at undersøge sikkerheden og effekten af injektion af MSCs i tårekirtlen som en mulig behandling til patienter med ADDE som følge af SS. Afhandlingen sigter også mod at sammenligne denne behandling med andre eksisterende, kirurgiske behandlingsmuligheder af ADDE. Som led i dette projekt udførte vi de første kliniske forsøg af sin art i mennesker. MSCs fra raske donorers fedtvaev (ASCs) blev dyrket i et laboratorium, frosset ned og er optøet klar til brug. Det første mål var at teste sikkerheden ved denne behandling og sekundaert at undersøge behandlingens effekt. For at undersøge dette modtog syv forsøgspersoner med svaer ADDE én injektion med ASCs i tårekirtlen på det ene øje (II). Resultaterne af forsøget viste ingen alvorlige bivirkninger inden for fire måneders opfølgning efter behandlingen. I gennemsnit fandt vi yderligere en 40% reduktion i symptomer på tørre øjne vurderet med et spørgeskema, og en markant stigning i tåreproduktionen og af tårefilmens stabilitet i det behandlede øje. For yderligere at undersøge effekten af denne behandling udførte vi et klinisk, randomiseret forsøg med det formål at sammenligne injektion af ASCs i tårekirtlen med injektion af en kontrolopløsning (vaesken, hvor stamcellerne var opløst) og observation (ingen intervention) (III). Studiet omfattede 20 forsøgspersoner, der modtog ASC-injektion, 20 forsøgspersoner, der modtog injektion af kontrolopløsningen, og 14 forsøgspersoner i observationsgruppen. Forsøgspersonerne blev undersøgt med en opfølgningstid på 12 måneder efter behandling. Begge interventionsgrupper viste en betydelig reduktion på ca. 40% i subjektive symptomer på tørre øjne. Denne forbedring var betydelig allerede ved opfølgning efter en uge og varede ved 12 måneder efter behandling. Observationsgruppen oplevede ingen betydelig aendring i symptomer. ASCs gruppen viste desuden en signifikant stigning i tårefilmsstabiliteten (NIKBUT) på 6,48 sekunder (149%) ved opfølgning efter fire uger, hvilket var markant højere end efter injektion af kontrolopløsning (p = 0,04). Desuden viste ASCs gruppen en betydelig stigning i NIKBUT sammenlignet med observationsgruppen ved opfølgning efter 12 måneder (p = 0,004). Både injektion af ASCs og kontrolopløsning medførte en betydelig stigning i tåreproduktionen ved opfølgning fire måneder og 12 måneder efter behandling. Denne afhandling bidrager med vigtige resultater inden for en ny behandlingsmulighed af tørre øjne. Injektion af ASCs i tårekirtlen viste sig at vaere sikker, forbedrede subjektive symptomer på tørre øjne og øgede saerligt tårfilmens stabilitet hos patienter med ADDE på grund af SS. Sammenlignet med andre behandlingsmuligheder for ADDE har denne behandling vist et stort potentiale. ASCs kan muligvis også bruges som en anti-inflammatorisk behandling af tørre øjne af andre årsager i fremtiden.
Collapse
Affiliation(s)
- Michael Møller-Hansen
- Department of Ophthalmology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
34
|
Suliman M, Al-Hawary SIS, Al-Dolaimy F, Hjazi A, Almalki SG, Alkhafaji AT, Alawadi AH, Alsaalamy A, Bijlwan S, Mustafa YF. Inflammatory diseases: Function of LncRNAs in their emergence and the role of mesenchymal stem cell secretome in their treatment. Pathol Res Pract 2023; 249:154758. [PMID: 37660657 DOI: 10.1016/j.prp.2023.154758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 09/05/2023]
Abstract
One of the best treatments for inflammatory diseases such as COVID-19, respiratory diseases and brain diseases is treatment with stem cells. Here we investigate the effect of stem cell therapy in the treatment of brain diseases.Preclinical studies have shown promising results, including improved functional recovery and tissue repair in animal models of neurodegenerative diseases, strokes,and traumatic brain injuries. However,ethical implications, safety concerns, and regulatory frameworks necessitate thorough evaluation before transitioning to clinical applications. Additionally, the complex nature of the brain and its intricate cellular environment present unique obstacles that must be overcome to ensure the successful integration and functionality of genetically engineered MSCs. The careful navigation of this path will determine whether the application of genetically engineered MSCs in brain tissue regeneration ultimately lives up to the hype surrounding it.
Collapse
Affiliation(s)
- Muath Suliman
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | | | | | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia.
| | - Sami G Almalki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia
| | | | - Ahmed Hussien Alawadi
- College of technical engineering, the Islamic University, Najaf, Iraq; College of technical engineering, the Islamic University of Al Diwaniyah, Iraq; College of technical engineering, the Islamic University of Babylon, Iraq
| | - Ali Alsaalamy
- College of technical engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna, Iraq
| | - Sheela Bijlwan
- Uttaranchal School of Computing Sciences, Uttaranchal University, Dehradun, India
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| |
Collapse
|
35
|
Bernardini C, Mantia DL, Salaroli R, Ventrella D, Elmi A, Zannoni A, Forni M. Isolation of Vascular Wall Mesenchymal Stem Cells from the Thoracic Aorta of Adult Göttingen Minipigs: A New Protocol for the Simultaneous Endothelial Cell Collection. Animals (Basel) 2023; 13:2601. [PMID: 37627392 PMCID: PMC10451532 DOI: 10.3390/ani13162601] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Two main classes of perivascular multipotent populations have been described: the microvascular pericytes and the vascular wall mesenchymal stem cells (VW-MSCs). VW-MSCs are isolated from large vessels in many species and they participate in vascular remodeling together with other cellular components such as endothelial cells. Considering that the Göttingen Minipigs are widely used in Europe as a translational model in the field of cardiovascular diseases, the aim of the present research was to isolate VW-MSCs from the adult aorta of Göttingen Minipigs while preserving and also collecting endothelial cells. The results obtained in the present research demonstrated that this new protocol allows us to obtain a pure population of VW-MSCs and endothelial cells. VW-MSCs from Göttingen Minipigs responded fully to the MSC minima international criteria, being positive to CD105, CD90, and CD44 and negative to CD45 and CD34. Moreover, VW-MSCs presented a differentiative potential towards osteogenic, chondrogenic, and adipogenic lineages. Overall, the present protocol, preserving the viability and phenotypic features of the two isolated populations, opens future possibilities of using minipig VW-MSCs and endothelial cells in in vitro vascular remodeling studies.
Collapse
Affiliation(s)
- Chiara Bernardini
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy; (C.B.); (R.S.); (D.V.); (A.E.); (A.Z.)
- Health Sciences and Technologies-Interdepartmental Center for Industrial Research (CIRI-SDV), Alma Mater Studiorum—University of Bologna, 40126 Bologna, Italy;
| | - Debora La Mantia
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy; (C.B.); (R.S.); (D.V.); (A.E.); (A.Z.)
| | - Roberta Salaroli
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy; (C.B.); (R.S.); (D.V.); (A.E.); (A.Z.)
| | - Domenico Ventrella
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy; (C.B.); (R.S.); (D.V.); (A.E.); (A.Z.)
| | - Alberto Elmi
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy; (C.B.); (R.S.); (D.V.); (A.E.); (A.Z.)
| | - Augusta Zannoni
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy; (C.B.); (R.S.); (D.V.); (A.E.); (A.Z.)
- Health Sciences and Technologies-Interdepartmental Center for Industrial Research (CIRI-SDV), Alma Mater Studiorum—University of Bologna, 40126 Bologna, Italy;
| | - Monica Forni
- Health Sciences and Technologies-Interdepartmental Center for Industrial Research (CIRI-SDV), Alma Mater Studiorum—University of Bologna, 40126 Bologna, Italy;
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| |
Collapse
|
36
|
Riekert M, Almanzar G, Schmalzing M, Schütze N, Jakob F, Prelog M. Mesenchymal stem cells modulate IL-17 and IL-9 production induced by Th17-inducing cytokine conditions in autoimmune arthritis: an explorative analysis. Adv Rheumatol 2023; 63:37. [PMID: 37525265 DOI: 10.1186/s42358-023-00317-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 07/19/2023] [Indexed: 08/02/2023] Open
Abstract
BACKGROUND The importance of proinflammatory T-cells and their cytokine production in patients with autoimmune arthritis has been widely described. Due to their immunomodulatory properties, mesenchymal stem cells (MSCs) have come into focus as a potential therapeutic concept. The aim of this study was to investigate the influence of MSCs on the phenotype, cytokine profile, and functionality of naive and non-naive CD4+ T-cells from healthy donors (HD) and patients with autoimmune arthritis under Th17-cytokine polarizing conditions in an explorative way using a transwell system prohibiting any cell-cell-contact. METHODS Magnetically isolated naive and non-naive CD4+ T-cells were stimulated under Th17-polarizing proinflammatory cytokine conditions in presence and absence of bone marrow derived mesenchymal stromal cells (MSCs). After an incubation period of 6 days, the proportions of the T-cell subpopulations TEMRA (CD45RA+CD27-), memory (CD45RA-CD27+), effector (CD45RA-CD27-) and naive cells (CD45RA+CD27+) were determined. Quantitative immunofluorescence intensity was used as a measure for IL-9, IL-17 and IFN-γ production in each subpopulation. RESULTS In isolated naive CD4+ T-cells from HD and patients, MSCs suppressed the differentiation of naive towards an effector phenotype while memory and naive cells showed higher percentages in culture with MSCs. In patients, MSCs significantly decreased the proportion of IL-9 and IL-17 producing effector T-cells. MSCs also reduced IFN-γ production in the naive and memory phenotype from HD. CONCLUSION The results of the study indicate significant immunomodulatory properties of MSCs, as under Th17-polarizing conditions MSCs are still able to control T-cell differentiation and proinflammatory cytokine production in both HD and patients with autoimmune arthritis.
Collapse
Affiliation(s)
- Maximilian Riekert
- Department of Pediatrics, University Hospital Wuerzburg, Wuerzburg, Germany.
- Department of Oral and Craniomaxillofacial and Plastic Surgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Straße 62, 50924, Cologne, Germany.
| | - Giovanni Almanzar
- Department of Pediatrics, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Marc Schmalzing
- Department of Internal Medicine II, University Hospital of Wuerzburg, Wuerzburg, Germany
| | - Norbert Schütze
- Orthopedic Clinic, Orthopedic Center for Musculoskeletal Research, University of Wuerzburg, Wuerzburg, Germany
| | - Franz Jakob
- Orthopedic Clinic, Orthopedic Center for Musculoskeletal Research, University of Wuerzburg, Wuerzburg, Germany
| | - Martina Prelog
- Department of Pediatrics, University Hospital Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
37
|
Park HS, Cetin E, Siblini H, Seok J, Alkelani H, Alkhrait S, Liakath Ali F, Mousaei Ghasroldasht M, Beckman A, Al-Hendy A. Therapeutic Potential of Mesenchymal Stem Cell-Derived Extracellular Vesicles to Treat PCOS. Int J Mol Sci 2023; 24:11151. [PMID: 37446328 DOI: 10.3390/ijms241311151] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is known as the most common endocrine disorder in women. Previously, we suggested that human mesenchymal stem cells (MSCs) can reverse the PCOS condition by secreting factors. Here, we evaluated the therapeutic capability of MSC-derived extracellular vesicles (EVs), also known as exosomes, in both in vitro and in vivo PCOS models. Exosomes were used to treat androgen-producing H293R cells and injected in a mouse model through intraovarian and intravenous injection into a letrozole (LTZ)-induced PCOS mouse model. We assessed the effects of the exosomes on androgen-producing cells or the PCOS mouse model by analyzing steroidogenic gene expression (quantitative real-time polymerase chain reaction (qRT-PCR)), body weight change, serum hormone levels, and fertility by pup delivery. Our data show the therapeutic effect of MSC-derived EVs for reversing PCOS conditions, including fertility issues. Interestingly, intravenous injection was more effective for serum glucose regulation, and an intraovarian injection was more effective for ovary restoration. Our study suggests that MSC-derived exosomes can be promising biopharmaceutics for treating PCOS conditions as a novel therapeutic option. Despite the fact that we need more validation in human patients, we may evaluate this novel treatment option for PCOS with the following clinical trials.
Collapse
Affiliation(s)
- Hang-Soo Park
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA
| | - Esra Cetin
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA
| | - Hiba Siblini
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA
| | - Jin Seok
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA
| | - Hiba Alkelani
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA
| | - Samar Alkhrait
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA
| | - Farzana Liakath Ali
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA
| | | | - Analea Beckman
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
38
|
Subayyil AA, Basmaeil YS, Kulayb HB, Alrodayyan M, Alhaber LAA, Almanaa TN, Khatlani T. Preconditioned Chorionic Villus Mesenchymal Stem/Stromal Cells (CVMSCs) Minimize the Invasive Phenotypes of Breast Cancer Cell Line MDA231 In Vitro. Int J Mol Sci 2023; 24:ijms24119569. [PMID: 37298519 DOI: 10.3390/ijms24119569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 06/12/2023] Open
Abstract
Among the newer choices of targeted therapies against cancer, stem cell therapy is gaining importance because of their antitumor properties. Stem cells suppress growth, metastasis, and angiogenesis, and induce apoptosis in cancer cells. In this study, we have examined the impact of the cellular component and the secretome of preconditioned and naïve placenta-derived Chorionic Villus Mesenchymal Stem Cells (CVMSCs) on the functional characteristics of the Human Breast Cancer cell line MDA231. MDA231 cells were treated with preconditioned CVMSCs and their conditioned media (CM), followed by an evaluation of their functional activities and modulation in gene and protein expression. Human Mammary Epithelial Cells (HMECs) were used as a control. CM obtained from the preconditioned CVMSCs significantly altered the proliferation of MDA231 cells, yet no change in other phenotypes, such as adhesion, migration, and invasion, were observed at various concentrations and time points tested. However, the cellular component of preconditioned CVMSCs significantly inhibited several phenotypes of MDA231 cells, including proliferation, migration, and invasion. CVMSCs-treated MDA231 cells exhibited modulation in the expression of various genes involved in apoptosis, oncogenesis, and Epithelial to Mesenchymal Transition (EMT), explaining the changes in the invasive behavior of MDA231 cells. These studies reveal that preconditioned CVMSCs may make useful candidate in a stem cell-based therapy against cancer.
Collapse
Affiliation(s)
- Abdullah Al Subayyil
- Blood and Cancer Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences (KSAU), Ministry of National Guard Health Affairs (MNGHA), Riyadh 11426, Saudi Arabia
| | - Yasser S Basmaeil
- Blood and Cancer Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences (KSAU), Ministry of National Guard Health Affairs (MNGHA), Riyadh 11426, Saudi Arabia
| | - Hayaa Bin Kulayb
- Blood and Cancer Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences (KSAU), Ministry of National Guard Health Affairs (MNGHA), Riyadh 11426, Saudi Arabia
| | - Maha Alrodayyan
- Blood and Cancer Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences (KSAU), Ministry of National Guard Health Affairs (MNGHA), Riyadh 11426, Saudi Arabia
| | - Lama Abdulaziz A Alhaber
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Taghreed N Almanaa
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Tanvir Khatlani
- Blood and Cancer Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences (KSAU), Ministry of National Guard Health Affairs (MNGHA), Riyadh 11426, Saudi Arabia
| |
Collapse
|
39
|
Vialle EN, Fracaro L, Barchiki F, Dominguez AC, Arruda ADO, Olandoski M, Brofman PRS, Kuniyoshi Rebelatto CL. Human Adipose-Derived Stem Cells Reduce Cellular Damage after Experimental Spinal Cord Injury in Rats. Biomedicines 2023; 11:biomedicines11051394. [PMID: 37239065 DOI: 10.3390/biomedicines11051394] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/28/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Traumatic spinal cord injury (SCI) is a devastating condition without an effective therapy. Cellular therapies are among the promising treatment strategies. Adult stem cells, such as mesenchymal stem cells, are often used clinical research for their immunomodulatory and regenerative potential. This study aimed to evaluate the effect of human adipose tissue-derived stem cells (ADSC) infusion through the cauda equina in rats with SCI. The human ADSC from bariatric surgery was isolated, expanded, and characterized. Wistar rats were subjected to blunt SCI and were divided into four groups. Two experimental groups (EG): EG1 received one ADSC infusion after SCI, and EG2 received two infusions, the first one after SCI and the second infusion seven days after the injury. Control groups (CG1 and CG2) received infusion with a culture medium. In vivo, cell tracking was performed 48 h and seven days after ADSC infusion. The animals were followed up for 40 days after SCI, and immunohistochemical quantification of myelin, neurons, and astrocytes was performed. Cellular tracking showed cell migration towards the injury site. ADSC infusion significantly reduced neuronal loss, although it did not prevent the myelin loss or enhance the area occupied by astrocytes compared to the control group. The results were similar when comparing one or two cell infusions. The injection of ADSC distal to the injured area was shown to be a safe and effective method for cellular administration in spinal cord injury.
Collapse
Affiliation(s)
- Emiliano Neves Vialle
- Spine Surgery Group, Cajuru University Hospital, Pontifícia Universidade Católica do Paraná, Curitiba 80215-030, Brazil
| | - Letícia Fracaro
- Core for Cell Technology, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, Curitiba 80215-030, Brazil
- National Institute of Science and Technology for Regenerative Medicine, INCT-REGENERA, Rio de Janeiro 21941-599, Brazil
| | - Fabiane Barchiki
- Core for Cell Technology, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, Curitiba 80215-030, Brazil
- National Institute of Science and Technology for Regenerative Medicine, INCT-REGENERA, Rio de Janeiro 21941-599, Brazil
| | - Alejandro Correa Dominguez
- Laboratory of Basic Biology of Stem Cells, Carlos Chagas Institute-Fiocruz, Rio de Janeiro 21941-599, Brazil
| | - André de Oliveira Arruda
- Spine Surgery Group, Cajuru University Hospital, Pontifícia Universidade Católica do Paraná, Curitiba 80215-030, Brazil
| | - Marcia Olandoski
- Department of Biostatistics, School of Medicine, Catholic University of Paraná, Curitiba 80215-030, Brazil
| | - Paulo Roberto Slud Brofman
- Core for Cell Technology, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, Curitiba 80215-030, Brazil
- National Institute of Science and Technology for Regenerative Medicine, INCT-REGENERA, Rio de Janeiro 21941-599, Brazil
| | - Carmen Lúcia Kuniyoshi Rebelatto
- Core for Cell Technology, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, Curitiba 80215-030, Brazil
- National Institute of Science and Technology for Regenerative Medicine, INCT-REGENERA, Rio de Janeiro 21941-599, Brazil
| |
Collapse
|
40
|
Arikan G, Turan V, Kurekeken M, Goksoy HS, Dogusan Z. Autologous bone marrow-derived nucleated cell (aBMNC) transplantation improves endometrial function in patients with refractory Asherman's syndrome or with thin and dysfunctional endometrium. J Assist Reprod Genet 2023; 40:1163-1171. [PMID: 36662355 PMCID: PMC10239402 DOI: 10.1007/s10815-023-02727-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/11/2023] [Indexed: 01/21/2023] Open
Abstract
PURPOSE The purpose was to evaluate the effect of intrauterine injection of aBMNC on the endometrial function in patients with refractory Asherman's syndrome (AS) and/or thin and dysfunctional endometrium (TE). STUDY DESIGN This is a prospective, experimental, non-controlled study MATERIAL AND METHODS: The study was carried out between December 2018 and December 2020 on 20 patients, who were of age < 45 years and had oligo/amenorrhea and primary infertility due to refractory AS and/or TE. One hundred ml BM was extracted. aBMNC cells were separated according to generic volume reduction protocol by using the Cell Separation System SEPAX S-100 table top centrifuge system. We have evaluated CD34+, mononuclear cell (MNC), and total nucleated cell (TNC) counts. The transplantation aBMNC was performed by two intrauterine injections at an interval of one week, transvaginally into the endometrial-myometrial junction by an ovum aspiration needle. Midcyclic endometrial thickness (ET) and gestations after transplantation were evaluated. RESULTS The mean TNC, MNC, and CD34+ cells were 11.55 ± 4.7 × 108, 3.85 ± 2.01 × 108, and 7.00 ± 2.88 × 106 at first injection, respectively, and 6.85 ± 2.67 × 108, 2.04 ± 1.11 × 108, and 3.44 ± 1.31 × 106 at second injection, respectively. The maximum posttransplantation ET was significantly higher than the maximum pretransplantation ET: 2.97 ± 0.48 vs. 5.76 ± 1.19 (mean ± standard deviation, p < 0.01). Twelve patients had frozen-thaw embryo transfers after the study. In 42% (n = 5 of 12) of the patients, pregnancy was achieved. One of the five patients delivered a healthy baby at term. CONCLUSIONS Autologous BMNC transplantation may contribute to endometrial function in patients with AS and/or TE.
Collapse
Affiliation(s)
- Gurkan Arikan
- Department of Obstetrics and Gynecology, Altinbaş University, Medical Park Bahçelievler Hospital, Kültür Sok. No. 1 E5 Yolu, 34160 Bahçelievler, Istanbul, Turkey.
| | - Volkan Turan
- Department of Obstetrics and Gynecology, Altinbaş University, Medical Park Bahçelievler Hospital, Kültür Sok. No. 1 E5 Yolu, 34160 Bahçelievler, Istanbul, Turkey
- Istanbul Health and Technology University, Faculty of Medicine, Istanbul, Turkey
| | - Meryem Kurekeken
- Department of Obstetrics and Gynecology, Altinbaş University, Medical Park Bahçelievler Hospital, Kültür Sok. No. 1 E5 Yolu, 34160 Bahçelievler, Istanbul, Turkey
- Reproductive Medicine and Infertility Center, Hisar Intercontinental Hospital, Istanbul, Turkey
| | - Hasan Sami Goksoy
- Department of Hematology, Yeni Yuzyil University Gaziosmanpaşa Hospital, Istanbul, Turkey
| | - Zeynep Dogusan
- Bone Marrow Transplantation Center, Yeni Yuzyil University Gaziosmanpaşa Hospital, Istanbul, Turkey
| |
Collapse
|
41
|
Tian CM, Yang MF, Xu HM, Zhu MZ, Zhang Y, Yao J, Wang LS, Liang YJ, Li DF. Mesenchymal Stem Cell-derived Exosomes: Novel Therapeutic Approach for Inflammatory Bowel Diseases. Stem Cells Int 2023; 2023:4245704. [PMID: 37056457 PMCID: PMC10089786 DOI: 10.1155/2023/4245704] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 02/19/2023] [Accepted: 03/22/2023] [Indexed: 04/07/2023] Open
Abstract
As double membrane-encapsulated nanovesicles (30-150 nm), exosomes (Exos) shuttle between different cells to mediate intercellular communication and transport active cargoes of paracrine factors. The anti-inflammatory and immunomodulatory activities of mesenchymal stem cell (MSC)-derived Exos (MSC-Exos) provide a rationale for novel cell-free therapies for inflammatory bowel disease (IBD). Growing evidence has shown that MSC-Exos can be a potential candidate for treating IBD. In the present review, we summarized the most critical advances in the properties of MSC-Exos, provided the research progress of MSC-Exos in treating IBD, and discussed the molecular mechanisms underlying these effects. Collectively, MSC-Exos had great potential for cell-free therapy in IBD. However, further studies are required to understand the full dimensions of the complex Exo system and how to optimize its effects.
Collapse
Affiliation(s)
- Cheng-mei Tian
- Department of Gastroenterology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
- Department of Emergency, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020 Guangdong, China
| | - Mei-feng Yang
- Department of Hematology, Yantian District People's Hospital, Shenzhen, Guangdong, China
| | - Hao-ming Xu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Min-zheng Zhu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yuan Zhang
- Department of Medical Administration, Huizhou Institute of Occupational Diseases Control and Prevention, Huizhou, Guangdong, China
| | - Jun Yao
- Department of Gastroenterology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Li-sheng Wang
- Department of Gastroenterology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Yu-jie Liang
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen, Guangdong, China
| | - De-feng Li
- Department of Gastroenterology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| |
Collapse
|
42
|
Jeyaraman M, Verma T, Jeyaraman N, Patro BP, Nallakumarasamy A, Khanna M. Is mandible derived mesenchymal stromal cells superior in proliferation and regeneration to long bone-derived mesenchymal stromal cells? World J Methodol 2023; 13:10-17. [PMID: 37035028 PMCID: PMC10080497 DOI: 10.5662/wjm.v13.i2.10] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/01/2023] [Accepted: 02/10/2023] [Indexed: 03/15/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) are cells with the characteristic ability of self-renewal along with the ability to exhibit multilineage differentiation. Bone marrow (BM) is the first tissue in which MSCs were identified and BM-MSCs are most commonly used among various MSCs in clinical settings. MSCs can stimulate and promote osseous regeneration. Due to the difference in the development of long bones and craniofacial bones, the mandibular-derived MSCs (M-MSCs) have distinct differentiation characteristics as compared to that of long bones. Both mandibular and long bone-derived MSCs are positive for MSC-associated markers such as CD-73, -105, and -106, stage-specific embryonic antigen 4 and Octamer-4, and negative for hematopoietic markers such as CD-14, -34, and -45. As the M-MSCs are derived from neural crest cells, they have embryogenic cells which promote bone repair and high osteogenic potential. In vitro and in vivo animal-based studies demonstrate a higher rate of proliferation and high osteogenic potential for M-MSCs as compared to long-bones MSCs, but in vivo studies in human subjects are lacking. The BM-MSCs have their advantages and limitations. M-MSCs may be utilized as an alternative source of MSCs which can be utilized for tissue engineering and promoting the regeneration of bone. M-MSCs may have potential advantages in the repair of craniofacial or orofacial defects. Considering the utility of M-MSCs in the field of orthopaedics, we have discussed various unresolved questions, which need to be explored for their better utility in clinical practice.
Collapse
Affiliation(s)
- Madhan Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai 600056, Tamil Nadu, India
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201310, Uttar Pradesh, India
- Department of Regenerative Medicine, Indian Stem Cell Study Group Association, Lucknow 226010, Uttar Pradesh, India
| | - Tushar Verma
- Department of Orthopaedic Rheumatology, Fellow in Indian Orthopaedic Rheumatology Association, Lucknow 226010, Uttar Pradesh, India
| | - Naveen Jeyaraman
- Department of Regenerative Medicine, Indian Stem Cell Study Group Association, Lucknow 226010, Uttar Pradesh, India
- Department of Orthopaedic Rheumatology, Fellow in Indian Orthopaedic Rheumatology Association, Lucknow 226010, Uttar Pradesh, India
- Department of Orthopaedics, Rathimed Speciality Hospital, Chennai 600040, Tamil Nadu, India
| | - Bishnu Prasad Patro
- Department of Regenerative Medicine, Indian Stem Cell Study Group Association, Lucknow 226010, Uttar Pradesh, India
- Department of Orthopaedics, All India Institute of Medical Sciences, Bhubaneswar 751019, Odisha, India
| | - Arulkumar Nallakumarasamy
- Department of Regenerative Medicine, Indian Stem Cell Study Group Association, Lucknow 226010, Uttar Pradesh, India
- Department of Orthopaedic Rheumatology, Fellow in Indian Orthopaedic Rheumatology Association, Lucknow 226010, Uttar Pradesh, India
- Department of Orthopaedics, All India Institute of Medical Sciences, Bhubaneswar 751019, Odisha, India
| | - Manish Khanna
- Department of Regenerative Medicine, Indian Stem Cell Study Group Association, Lucknow 226010, Uttar Pradesh, India
| |
Collapse
|
43
|
Kawamata J, Suenaga N, Oizumi N. Relationship between hematoma-like tissue on the footprint and structural outcome of arthroscopic rotator cuff repair with a transosseous technique. JSES Int 2023; 7:324-330. [PMID: 36911767 PMCID: PMC9998884 DOI: 10.1016/j.jseint.2022.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Background We have tried to create hematoma over the footprint site at the end of arthroscopic rotator cuff repair (ARCR) surgery, expecting to apply biochemical effects of the platelet-related factors. The purpose of this study was to investigate the presence of hematoma-like tissue (HLT) on postoperative magnetic resonance imaging, and to evaluate the relationship between the HLT and the structural outcomes of ARCR. Materials and methods Twenty-five patients were reviewed with a mean age at surgery of 69.8 years (range, 52-85 years). Postoperative magnetic resonance imaging was performed at 1 week, 6-8 weeks, and >6 months postoperatively. Structural outcomes for the repaired cuff and thickness of HLT were evaluated on coronal T2-weighted images. Signal intensity of HLT was evaluated on coronal T2-weighted fat-suppressed images as the ratio compared to supraspinatus tendon intensity (HLT/SSP ratio). Results Structural outcomes showed Sugaya type 1 in 12 shoulders, type 2 in 4, and type 3 in 9. HLT thickness was significantly thicker at 1 week and 6-8 weeks postoperatively in Sugaya type 1 patients than in type 3 patients (1 week; P = .014, 6-8 weeks; P < .001). HLT/SSP ratio gradually decreased (at 1 week; 1.9 ± 0.7, 6-8 weeks; 1.6 ± 0.6, >6 months; 1.2 ± 0.5), and differed significantly between >6 months and both 1 week and 6-8 weeks (P < .001 each).
Collapse
Affiliation(s)
- Jun Kawamata
- Department of Orthopaedic Surgery, Kaisei Hospital, Hokkaido, Japan
| | - Naoki Suenaga
- Upper Extremity Center of Joint Replacement and Endoscopic Surgery, Hokushin Orthopaedic Hospital, Sapporo, Hokkaido, Japan
| | - Naomi Oizumi
- Upper Extremity Center of Joint Replacement and Endoscopic Surgery, Hokushin Orthopaedic Hospital, Sapporo, Hokkaido, Japan
| |
Collapse
|
44
|
Radwan RR, Mohamed HA. Mechanistic approach of the therapeutic potential of mesenchymal stem cells on brain damage in irradiated mice: emphasis on anti-inflammatory and anti-apoptotic effects. Int J Radiat Biol 2023; 99:1463-1472. [PMID: 35647928 DOI: 10.1080/09553002.2022.2084170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 04/04/2022] [Accepted: 05/18/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND AND OBJECTIVES Brain damage which has been induced by radiation generally occurs in radiotherapeutics patients. Stem cell transplantation represents a vital applicant for alleviating neurodegenerative disorders. This work aims at exploring the potential of bone marrow-derived mesenchymal stem cells (BM-MSCs) on brain injury induced by γ radiation in mice and the possible underlying mechanisms were elucidated. MATERIALS AND METHODS Mice were allocated into three groups; Group I (Control), Group II (Irradiated control) where mice submitted to 5 Gy of whole-body γ radiation, Group III (Irradiated + BM-MSCs) where mice were intravenously injected of BM-MSCs at a dose of 106 cells/mice 24 h following irradiation. Animals were sacrificed 28 d following exposure to γ radiation. RESULTS It was observed that BM-MSCs therapy provided a valuable tissue repair as evidenced by a reduction in inflammatory mediators including tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β), nuclear factor kappa (NF-κβ), phosphorylated NF-κβ-p65 (P-NF-κβ-p65), interferon-gamma (IFNγ) and monocyte chemoattractant protein-1 (MCP-1) associated with decreased levels of transforming growth factor-β (TGF-β) and vascular endothelial growth factor (VEGF) in brain tissues of irradiated mice. Furthermore, neuronal apoptosis was declined in brain tissues of the BM-MSCs group as remarkable inhibition of caspase-3 and Bax accompanied by elevation of Bcl-2 proteins expression. These results were supported by histopathological investigation. CONCLUSIONS In conclusion, BM-MSCs could display a vital rule in alleviating brain injury in radio-therapeutic patients.
Collapse
Affiliation(s)
- Rasha R Radwan
- Department of Drug Radiation Research, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Nasr City, Egypt
| | - Heba A Mohamed
- Department of Drug Radiation Research, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Nasr City, Egypt
| |
Collapse
|
45
|
Khaing ZZ, Chen JY, Safarians G, Ezubeik S, Pedroncelli N, Duquette RD, Prasse T, Seidlits SK. Clinical Trials Targeting Secondary Damage after Traumatic Spinal Cord Injury. Int J Mol Sci 2023; 24:3824. [PMID: 36835233 PMCID: PMC9960771 DOI: 10.3390/ijms24043824] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
Spinal cord injury (SCI) often causes loss of sensory and motor function resulting in a significant reduction in quality of life for patients. Currently, no therapies are available that can repair spinal cord tissue. After the primary SCI, an acute inflammatory response induces further tissue damage in a process known as secondary injury. Targeting secondary injury to prevent additional tissue damage during the acute and subacute phases of SCI represents a promising strategy to improve patient outcomes. Here, we review clinical trials of neuroprotective therapeutics expected to mitigate secondary injury, focusing primarily on those in the last decade. The strategies discussed are broadly categorized as acute-phase procedural/surgical interventions, systemically delivered pharmacological agents, and cell-based therapies. In addition, we summarize the potential for combinatorial therapies and considerations.
Collapse
Affiliation(s)
- Zin Z. Khaing
- Department of Neurological Surgery, University of Washington, Seattle, WA 98195, USA
| | - Jessica Y. Chen
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Gevick Safarians
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Sohib Ezubeik
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Nicolas Pedroncelli
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Rebecca D. Duquette
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Tobias Prasse
- Department of Neurological Surgery, University of Washington, Seattle, WA 98195, USA
- Department of Orthopedics and Trauma Surgery, University of Cologne, 50931 Cologne, Germany
| | - Stephanie K. Seidlits
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
46
|
Leyden GM, Greenwood MP, Gaborieau V, Han Y, Amos CI, Brennan P, Murphy D, Davey Smith G, Richardson TG. Disentangling the aetiological pathways between body mass index and site-specific cancer risk using tissue-partitioned Mendelian randomisation. Br J Cancer 2023; 128:618-625. [PMID: 36434155 PMCID: PMC9938133 DOI: 10.1038/s41416-022-02060-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 10/30/2022] [Accepted: 11/02/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Body mass index (BMI) is known to influence the risk of various site-specific cancers, however, dissecting which subcomponents of this heterogenous risk factor are predominantly responsible for driving disease effects has proven difficult to establish. We have leveraged tissue-specific gene expression to separate the effects of distinct phenotypes underlying BMI on the risk of seven site-specific cancers. METHODS SNP-exposure estimates were weighted in a multivariable Mendelian randomisation analysis by their evidence for colocalization with subcutaneous adipose- and brain-tissue-derived gene expression using a recently developed methodology. RESULTS Our results provide evidence that brain-tissue-derived BMI variants are predominantly responsible for driving the genetically predicted effect of BMI on lung cancer (OR: 1.17; 95% CI: 1.01-1.36; P = 0.03). Similar findings were identified when analysing cigarettes per day as an outcome (Beta = 0.44; 95% CI: 0.26-0.61; P = 1.62 × 10-6), highlighting a possible shared aetiology or mediator effect between brain-tissue BMI, smoking and lung cancer. Our results additionally suggest that adipose-tissue-derived BMI variants may predominantly drive the effect of BMI and increased risk for endometrial cancer (OR: 1.71; 95% CI: 1.07-2.74; P = 0.02), highlighting a putatively important role in the aetiology of endometrial cancer. CONCLUSIONS The study provides valuable insight into the divergent underlying pathways between BMI and the risk of site-specific cancers.
Collapse
Affiliation(s)
- Genevieve M Leyden
- MRC Integrative Epidemiology Unit, Bristol Population Health Science Institute, University of Bristol, Bristol, BS8 2BN, UK.
- Bristol Medical School: Translational Health Sciences, Dorothy Hodgkin Building, University of Bristol, Bristol, BS1 3NY, UK.
| | - Michael P Greenwood
- Bristol Medical School: Translational Health Sciences, Dorothy Hodgkin Building, University of Bristol, Bristol, BS1 3NY, UK
| | - Valérie Gaborieau
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Younghun Han
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Christopher I Amos
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Paul Brennan
- Bristol Medical School: Translational Health Sciences, Dorothy Hodgkin Building, University of Bristol, Bristol, BS1 3NY, UK
| | - David Murphy
- Bristol Medical School: Translational Health Sciences, Dorothy Hodgkin Building, University of Bristol, Bristol, BS1 3NY, UK
| | - George Davey Smith
- MRC Integrative Epidemiology Unit, Bristol Population Health Science Institute, University of Bristol, Bristol, BS8 2BN, UK
| | - Tom G Richardson
- MRC Integrative Epidemiology Unit, Bristol Population Health Science Institute, University of Bristol, Bristol, BS8 2BN, UK.
| |
Collapse
|
47
|
Fracaro L, Hochuli AHD, Selenko AH, Capriglione LGA, Brofman PRS, Senegaglia AC. Mesenchymal stromal cells derived from exfoliated deciduous teeth express neuronal markers before differentiation induction. J Appl Oral Sci 2023; 31:e20220489. [PMID: 37075387 PMCID: PMC10118381 DOI: 10.1590/1678-7757-2022-0489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/09/2023] [Indexed: 04/21/2023] Open
Abstract
OBJECTIVE This study aimed to evaluate neuronal markers in stromal cells from human exfoliated deciduous teeth (SHED) and standardize the isolation and characterization of those cells. METHODOLOGY Healthy primary teeth were collected from children. The cells were isolated by enzymatic digestion with collagenase. By following the International Society for Cell and Gene Therapy (ISCT) guidelines, SHED were characterized by flow cytometry and differentiated into osteogenic, adipogenic, and chondrogenic lineages. Colony-forming unit-fibroblasts (CFU-F) were performed to assess these cells' potential and efficiency. To clarify the neuronal potential of SHED, the expression of nestin and βIII-tubulin were examined by immunofluorescence and SOX1, SOX2, GFAP, and doublecortin (DCX), nestin, CD56, and CD146 by flow cytometry. RESULTS SHED showed mesenchymal stromal cells characteristics, such as adhesion to plastic, positive immunophenotypic profile for CD29, CD44, CD73, CD90, CD105, and CD166 markers, reduced expression for CD14, CD19, CD34, CD45, HLA-DR, and differentiation in three lineages confirmed by staining and gene expression for adipogenic differentiation. The average efficiency of colony formation was 16.69%. SHED expressed the neuronal markers nestin and βIII-tubulin; the fluorescent signal intensity was significantly higher in βIII-tubulin (p<0.0001) compared to nestin. Moreover, SHED expressed DCX, GFAP, nestin, SOX1, SOX2, CD56, CD146, and CD271. Therefore, SHED had a potential for neuronal lineage even without induction with culture medium and specific factors. CONCLUSION SHEDs may be a new therapeutic strategy for regenerating and repairing neuronal cells and tissues.
Collapse
Affiliation(s)
- Letícia Fracaro
- Pontificia Universidade Católica do Paraná, School of Medicine and Life Sciences - Core for Cell Technology, Curitiba, PR, Brasil
| | - Agner Henrique Dorigo Hochuli
- Pontificia Universidade Católica do Paraná, School of Medicine and Life Sciences - Core for Cell Technology, Curitiba, PR, Brasil
| | - Ana Helena Selenko
- Pontificia Universidade Católica do Paraná, School of Medicine and Life Sciences - Core for Cell Technology, Curitiba, PR, Brasil
| | | | - Paulo Roberto Slud Brofman
- Pontificia Universidade Católica do Paraná, School of Medicine and Life Sciences - Core for Cell Technology, Curitiba, PR, Brasil
| | - Alexandra Cristina Senegaglia
- Pontificia Universidade Católica do Paraná, School of Medicine and Life Sciences - Core for Cell Technology, Curitiba, PR, Brasil
| |
Collapse
|
48
|
Ye D, Sun Y, Yang L, Su J. An investigation of a self-assembled cell-extracellular complex and its potentials in improving wound healing. J Appl Biomater Funct Mater 2023; 21:22808000221130168. [PMID: 36633288 DOI: 10.1177/22808000221130168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND To maintain and enhance the wound healing effects of mesenchymal stem cells (MSCs), a scaffold for hosting MSCs is needed, which ought to be completely biocompatible, durable, producible, and of human source. OBJECTIVE To build a cell-extracellular matrix (ECM) complex assembled by human umbilical cord mesenchymal stem cells (HuMSCs) and to investigate its clinical potentials in promoting wound healing. METHOD HuMSCs were isolated and expanded. When the cells of third passage reached confluency, ascorbic acid was added to stimulate the cells to deposit ECM where the cells grew in. Four weeks later, a cells-loaded ECM sheet was formed. The cell-ECM complex was observed under the scanning electron microscopy (SEM) and subjected to histological studies. The supernatants were collected and the cell-ECM complex was harvested at different time points and processed for enzyme-linked immune sorbent assay (ELISA) and mRNA analysis. The in vivo experiments were performed by means of implanting the cell-ECM complex on the mice back for up to 6 months and the specimens were collected for histological studies. RESULTS After 4 weeks of cultivation with ascorbic stimulation, a sheet was formed which is mainly composed with HuMSCs, collagen and hyaluronic acid. The cell-ECM complex can sustain to certain tensile force. The mRNA and protein levels of vascular endothelial growth factor-α (VEGF-α), hepatocyte growth factor (HGF), keratinocyte growth factor (KGF), and transforming growth factor-β1 (TGF-β1) were remarkably increased compared to monolayer-cultured cells. The implanted cell-ECM complex on mice was still noticeable with host cells infiltration and vascularization on 6 months. CONCLUSION Our studies suggested that HuMSCs can be multi-cultivated through adding ascorbic stimulation and ECM containing collagen and hyaluronic acid were enriched around the cells which self-assembly formed a cell-ECM complex. Cell-ECM complex can improve growth factors secretion remarkably which means it may promote wound healing by paracrine.
Collapse
Affiliation(s)
- Danyan Ye
- Research Center for Translational Medicine, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, PR China
| | - Yaowen Sun
- Department of Burns and Plastic Surgery, Shaanxi Provincial People's Hospital, Xi'an, PR China
| | - Lujun Yang
- Research Center for Translational Medicine, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, PR China
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, PR China
| | - Jing Su
- Nursing Department, Shantou University Medical College, Shantou, Guangdong, PR China
| |
Collapse
|
49
|
Li M, Chen H, Zhu M. Mesenchymal stem cells for regenerative medicine in central nervous system. Front Neurosci 2022; 16:1068114. [PMID: 36583105 PMCID: PMC9793714 DOI: 10.3389/fnins.2022.1068114] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent stem cells, whose paracrine and immunomodulatory potential has made them a promising candidate for central nervous system (CNS) regeneration. Numerous studies have demonstrated that MSCs can promote immunomodulation, anti-apoptosis, and axon re-extension, which restore functional neural circuits. The therapeutic effects of MSCs have consequently been evaluated for application in various CNS diseases including spinal cord injury, cerebral ischemia, and neurodegenerative disease. In this review, we will focus on the research works published in the field of mechanisms and therapeutic effects of MSCs in CNS regeneration.
Collapse
Affiliation(s)
- Man Li
- Department of Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Chen
- Department of Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mingxin Zhu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,*Correspondence: Mingxin Zhu,
| |
Collapse
|
50
|
ÖZGENÇ Ö, ÖZEN A. Osteogenic Differentiation of Canine Adipose Derived Mesenchymal Stem Cells on B-TCP and B-TCP/Collagen Biomaterials. ANKARA ÜNIVERSITESI VETERINER FAKÜLTESI DERGISI 2022. [DOI: 10.33988/auvfd.1130705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Mesenchymal stem cells are adult stem cells that have the ability to differentiate into osteogenic, chondrogenic, adipogenic and myogenic lineages. In the field of orthopedics and traumatology, mesenchymal stem cells in combination with biomaterials are used especially for the treatment of bone fractures and diseases in both humans and animals. The purpose of this study is to promote growth, proliferation and osteogenic differentiation of mesenchymal stem cells that were isolated from the adipose tissue of canines on B-TCP (Beta-tricalcium phosphate) and B-TCP/Collagen biomaterials. MTT analysis was performed to test the cell adhesion and proliferation on B-TCP and B-TCP/Collagen biomaterials that were used to mimic the extracellular matrix of three-dimensional bone tissue. Scanning electron microscope analysis was performed to show general surface characters of B-TCP and B-TCP /Collagen biomaterials. The osteoinductive capacities of the B-TCP and B-TCP/Collagen biomaterials were determined by alkaline phosphatase and Von Kossa stainings, and RT-PCR analysis. The ALP activity of the B-TCP/Col containing material was significantly higher than the B-TCP on the first days. In terms of gene expression, there were no significant differences except 14th-day SPARC gene expression. The results of Von Kossa staining indicate that B-TCP/Col has above the desired level degradation capacity. As a result of this research, although it is advantageous in terms of alkaline phosphatase activity and osteogenic gene expression compared to B-TCP material, it is thought that B-TCP/Collagen biomaterial should be developed for use in bone tissue engineering due to its high degradation property.
Collapse
|