1
|
Lu N, Guo Y, Ren L, Zhao H, Yan L, Han H, Zhang S. CORO1C Regulates the Malignant Biological Behavior of Ovarian Cancer Cells and Modulates the mRNA Expression Profile through the PI3K/AKT Signaling Pathway. Cell Biochem Biophys 2025; 83:1819-1833. [PMID: 39433598 DOI: 10.1007/s12013-024-01591-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2024] [Indexed: 10/23/2024]
Abstract
Ovarian cancer (OC) is a frequently occurring gynecological tumor, and its global incidence has recently increased. Coronin-like actin-binding protein 1C (CORO1C) is known to activate the phosphoinositide 3-kinase (PI3K)-protein kinase B (AKT) pathway and promote tumor progression. However, its role in OC remains unclear. This study investigated the role of CORO1C in OC malignancy. In this study, quantitative real-time polymerase chain reaction (qRT-PCR) was used to examine AKT and CORO1C mRNA expression in clinical OC tissues and cells. Immunohistochemical analysis and western blotting were used to examine protein expression in OC tissues and cells, respectively. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), scratch wound-healing, and Transwell assays were performed to examine cell proliferation and migration. RNA-Seq was used to validate the relationship between AKT and CORO1C expression. The results showed that CORO1C was highly expressed in clinical OC tissues and SKOV3 cells, correlating with the International Federation of Gynecology and Obstetrics (FIGO) stage. Furthermore, CORO1C knockout inhibited the proliferation, migration, and invasion of SKOV3 cells; altered the gene expression patterns in these cells; and was closely associated with the PI3K/AKT pathway. Western blotting confirmed that CORO1C knockout reduced the levels of phosphorylated PI3K and AKT. Additionally, CORO1C knockout increased phosphatase and tensin homologs deleted on chromosome 10 (PTEN) protein expression, whereas CORO1C overexpression decreased it. In conclusion, this study demonstrated that high CORO1C levels in OC are associated with greater metastasis and worse prognosis. CORO1C negatively regulates PTEN expression, activates the PI3K/AKT pathway, and promotes OC cell malignancy In patients with OC, CORO1C may function as an effective therapeutic and predictive biomarker.
Collapse
Affiliation(s)
- Na Lu
- Gynecology and oncology department, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030013, China
| | - Yongfeng Guo
- Gynecology and oncology department, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030013, China
| | - Lixin Ren
- General surgery department, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030013, China
| | - Hongwei Zhao
- Gynecology and oncology department, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030013, China
| | - Lijun Yan
- Gynecology and oncology department, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030013, China
| | - Haiqiong Han
- Gynecology and oncology department, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030013, China
| | - Sanyuan Zhang
- Department of gynecology and obstetrics, The First Clinical Medical College of Shanxi Medical University, Taiyuan, 030000, China.
| |
Collapse
|
2
|
Tang Z, Zhang Z, Zhao J, Zhang F, Zhang Y, Wen Y, Li M, Sun J, Shi L, Chen W, Li Z, Guo Z, Liu Y. Integrated analysis of multiple programmed cell death-related prognostic genes and functional validation of apoptosis-related genes in osteosarcoma. Int J Biol Macromol 2025; 307:142113. [PMID: 40089239 DOI: 10.1016/j.ijbiomac.2025.142113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 03/12/2025] [Accepted: 03/12/2025] [Indexed: 03/17/2025]
Abstract
Osteosarcoma (OS) is one of the most prevalent bone malignancies with a poor prognosis. Various types of programmed cell death patterns can influence cancer progression and response to treatment. We aimed to integrate different molecular characteristics of cell death for risk stratification and personalized therapy. First, we obtained transcriptomic, single-cell transcriptomic, and clinical information from the TARGET-OS and GEO databases as well as analyzed genes in fourteen cell death patterns to establish the cell death index (CDI) signature. A nomogram constructed from the CDI calculated from seven genes in combination with metastasis could effectively predict the prognosis of OS patients. Subsequently, the prognostic value and immune characteristics in CDI-defined subgroups were analyzed. A construct nomogram model was also constructed with clinical information. Notably, immunohistochemistry confirmed that the expression of GALNT14, a core gene in CDI model, correlated with poor survival. Deficiency of the highly expressed prognostic gene GALNT14 significantly repressed OS progression and OS cell proliferation by promoting apoptosis. We subsequently demonstrated that Bortezomib, a targeted inhibitor of GALNT14, can be used to enhance chemosensitivity. Finally, it was further elucidated that Bortezomib reduces MT2A glycosylation and improves its stability to promote apoptosis in OS cells by inhibiting GALNT14 expression. In summary, integration of multiple cell death genes may improve the ability to stratify risk in patients with OS, and targeting GALNT14 with Bortezomib improves chemotherapy sensitivity and induces apoptosis.
Collapse
Affiliation(s)
- Zhen Tang
- Department of Orthopedic Surgery, Orthopedic Oncology Institute, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China; Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Zhi Zhang
- Department of Orthopedic Surgery, Guyuan People's Hospital, Ningxia, China
| | - Jungang Zhao
- Department of Orthopedic Surgery, Orthopedic Oncology Institute, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Fan Zhang
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Yiran Zhang
- Department of Orthopedic Surgery, Orthopedic Oncology Institute, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Yanhua Wen
- Department of Orthopedic Surgery, Orthopedic Oncology Institute, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Miaozhen Li
- Department of Orthopedic Surgery, Orthopedic Oncology Institute, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Jin Sun
- Department of Orthopedic Surgery, Orthopedic Oncology Institute, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Lei Shi
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China
| | - Wentian Chen
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Zheng Li
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China.
| | - Zheng Guo
- Department of Orthopedic Surgery, Orthopedic Oncology Institute, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China.
| | - Yingxiang Liu
- Department of Orthopedic Surgery, Orthopedic Oncology Institute, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China.
| |
Collapse
|
3
|
Shifflett KW, Dittmer DP. Mouse models of Kaposi sarcoma-associated herpesvirus (KSHV). Virology 2025; 603:110384. [PMID: 39837218 PMCID: PMC11788063 DOI: 10.1016/j.virol.2024.110384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/18/2024] [Accepted: 12/29/2024] [Indexed: 01/23/2025]
Abstract
Infection with Kaposi sarcoma-associated herpesvirus (KSHV) is a prerequisite for the development of several human cancers, including Kaposi sarcoma and primary effusion lymphoma. Efficient long-term infection with KSHV and subsequent virally induced cell transformation is limited to humans, resulting in a lack of small animal models for KSHV-driven malignancies. Various attempts to create a mouse model for KSHV include infection of humanized mice, generating transgenic mice that ectopically express viral proteins, and grafting KSHV-infected tumor, primary, or immortalized cells onto immunodeficient mice. While no single mouse model can recapitulate the full range of KSHV-associated pathologies described in humans, each model adds an essential piece to the complete picture of KSHV infection and oncogenesis.
Collapse
Affiliation(s)
- Kyle W Shifflett
- Lineberger Comprehensive Cancer Center and Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, USA
| | - Dirk P Dittmer
- Lineberger Comprehensive Cancer Center and Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, USA.
| |
Collapse
|
4
|
Liu X, Yu W, Song W, Zhang Z, Chen B, Lin H. METTL3/YTHDF1 stabilizes CORO6 expression promoting osteosarcoma progression through glycolysis. Exp Cell Res 2024; 443:114328. [PMID: 39536930 DOI: 10.1016/j.yexcr.2024.114328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/09/2024] [Accepted: 11/10/2024] [Indexed: 11/16/2024]
Abstract
This study investigates the role of CORO6 (Coronin 6) in the development of osteosarcoma. Osteosarcoma is a common malignant bone tumor in children and adolescents, characterized by rapid and irregular bone growth and a high risk of distant lung metastasis. CORO6 is a member of the Coronin family, known for its conserved WD40 repeat domain. This structure allows CORO6 to inhibit actin dynamics through interactions with F-actin and Arp2/3, thereby affecting the organization of the cytoskeleton. Our research found that in osteosarcoma patients, the levels of CORO6 are significantly elevated. Experimental observations showed that reducing the expression of CORO6 significantly inhibits the growth, migration, and invasion abilities of osteosarcoma cells. Moreover, in vivo experiments demonstrated that the absence of CORO6 effectively inhibits the growth of osteosarcoma in animal models. We also discovered that CORO6 promotes the proliferation, migration and invasion capabilities of osteosarcoma cells by activating the Wnt/β-catenin signaling pathway. Moreover, CORO6 plays a critical important role in glycolysis of osteosarcoma cells. Mechanically, we found that METTL3/YTHDF1 induced m6A modification of CORO6 mRNA promoted the expression of CORO6 by enhancing its stability. These findings offer new directions for the treatment of osteosarcoma, suggesting that CORO6 could be a novel prognostic biomarker and an effective therapeutic target for patients. In summary, CORO6, as an oncogene, plays a key role in the development of osteosarcoma, providing a crucial theoretical basis for the development of new osteosarcoma treatment strategies.
Collapse
Affiliation(s)
- Xuzhou Liu
- The Department of Orthopaedics, The First Affiliated Hospital of Jinan University, Guangzhou, China; The Department of Orthopaedics, The First people's Hospital of Zhaoqing, Zhaoqing, China
| | - Wenchong Yu
- The Foshan Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei Song
- The Department of Orthopaedics, The First people's Hospital of Zhaoqing, Zhaoqing, China
| | - Zhengqian Zhang
- The Department of Orthopaedics, The First people's Hospital of Zhaoqing, Zhaoqing, China
| | - Benqiang Chen
- The Department of Orthopaedics, The First people's Hospital of Zhaoqing, Zhaoqing, China
| | - Hongsheng Lin
- The Department of Orthopaedics, The First Affiliated Hospital of Jinan University, Guangzhou, China.
| |
Collapse
|
5
|
Lurain KA, Ramaswami R, Krug LT, Whitby D, Ziegelbauer JM, Wang HW, Yarchoan R. HIV-associated cancers and lymphoproliferative disorders caused by Kaposi sarcoma herpesvirus and Epstein-Barr virus. Clin Microbiol Rev 2024; 37:e0002223. [PMID: 38899877 PMCID: PMC11391709 DOI: 10.1128/cmr.00022-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Abstract
SUMMARYWithin weeks of the first report of acquired immunodeficiency syndrome (AIDS) in 1981, it was observed that these patients often had Kaposi sarcoma (KS), a hitherto rarely seen skin tumor in the USA. It soon became apparent that AIDS was also associated with an increased incidence of high-grade lymphomas caused by Epstein-Barr virus (EBV). The association of AIDS with KS remained a mystery for more than a decade until Kaposi sarcoma-associated herpesvirus (KSHV) was discovered and found to be the cause of KS. KSHV was subsequently found to cause several other diseases associated with AIDS and human immunodeficiency virus (HIV) infection. People living with HIV/AIDS continue to have an increased incidence of certain cancers, and many of these cancers are caused by EBV and/or KSHV. In this review, we discuss the epidemiology, virology, pathogenesis, clinical manifestations, and treatment of cancers caused by EBV and KSHV in persons living with HIV.
Collapse
Affiliation(s)
- Kathryn A Lurain
- The HIV and AIDS Malignancy Branch, Center for Cancer Research, Bethesda, Maryland, USA
| | - Ramya Ramaswami
- The HIV and AIDS Malignancy Branch, Center for Cancer Research, Bethesda, Maryland, USA
| | - Laurie T Krug
- The HIV and AIDS Malignancy Branch, Center for Cancer Research, Bethesda, Maryland, USA
| | - Denise Whitby
- Viral Oncology Section, AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Joseph M Ziegelbauer
- The HIV and AIDS Malignancy Branch, Center for Cancer Research, Bethesda, Maryland, USA
| | - Hao-Wei Wang
- Laboratory of Pathology, National Cancer Institute, Bethesda, Maryland, USA
| | - Robert Yarchoan
- The HIV and AIDS Malignancy Branch, Center for Cancer Research, Bethesda, Maryland, USA
| |
Collapse
|
6
|
Jiang H, Fu CY. Identification of shared potential diagnostic markers in asthma and depression through bioinformatics analysis and machine learning. Int Immunopharmacol 2024; 133:112064. [PMID: 38608447 DOI: 10.1016/j.intimp.2024.112064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/25/2024] [Accepted: 04/08/2024] [Indexed: 04/14/2024]
Abstract
BACKGROUND There is mounting evidence that asthma might exacerbate depression. We sought to examine candidates for diagnostic genes in patients suffering from asthma and depression. METHODS Microarray data were downloaded from the Gene Expression Omnibus(GEO) database and used to screen for differential expressed genes(DEGs) in the SA and MDD datasets. A weighted gene co-expression network analysis(WGCNA) was used to identify the co-expression modules of SA and MDD. The least absolute shrinkage and selection operatoes(LASSO) and support vector machine(SVM) were used to determine critical biomarkers. Immune cell infiltration analysis was used to investigate the correlation between immune cell infiltration and common biomarkers of SA and MDD. Finally, validation of these analytical results was accomplished via the use of both in vivo and in vitro studies. RESULTS The number of DEGs that were included in the MDD dataset was 5177, whereas the asthma dataset had 1634 DEGs. The intersection of DEGs for SA and MDD included 351 genes, the strongest positive modules of SA and MDD was 119 genes, which played a function in immunity. The intersection of DEGs and modular hub genes was 54, following the analysis using machine learning algorithms,three hub genes were identified and employed to formulate a nomogram and for the evaluation of diagnostic effectiveness, which demonstrated a significant diagnostic value (area under the curve from 0.646 to 0.979). Additionally, immunocyte disorder was identified by immune infiltration. In vitro studies have revealed that STK11IP deficiency aggravated the LPS/IFN-γinduced up-regulation in M1 macrophage activation. CONCLUSION Asthma and MDD pathophysiology may be associated with alterations in inflammatory processes and immune pathways. Additionally, STK11IP may serve as a diagnostic marker for individuals with the two conditions.
Collapse
Affiliation(s)
- Hui Jiang
- Department of Respiratory Medicine, Shanghai East hospital,School of Medicine, Tongji university, Shanghai, China
| | - Chang-Yong Fu
- Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
7
|
Pereira JL, Ferreira F, Dos Santos NR. Antibody targeting of surface P-selectin glycoprotein ligand 1 leads to lymphoma apoptosis and tumorigenesis inhibition. Hematol Oncol 2024; 42:e3257. [PMID: 38415859 DOI: 10.1002/hon.3257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/11/2024] [Accepted: 02/03/2024] [Indexed: 02/29/2024]
Abstract
Lymphomas are a heterogeneous group of diseases that originate from T, B or natural killer cells. Lymphoma treatment is based on chemotherapy, radiotherapy, and monoclonal antibody (mAb) or other immunotherapies. The P-selectin glycoprotein ligand 1 (PSGL-1) is expressed at the surface of hematological malignant cells and has been shown to have a pro-oncogenic role in multiple myeloma and lymphoma. Here, we investigated the expression and therapeutic potential of PSGL-1 in T and B cell lymphomas. By flow cytometry analysis, we found that PSGL-1 was expressed in both T and B cell-derived lymphoma cell lines but generally at higher levels in T cell lymphoma cell lines. For most T and B cell-derived lymphoma cell lines, in vitro targeting with the PL1 mAb, which recognizes the PSGL-1 N-terminal extracellular region and blocks functional interactions with selectins, resulted in reduced cell viability. The PL1 mAb pro-apoptotic activity was shown to be dose-dependent, to be linked to increased ERK kinase phosphorylation, and to be dependent on the MAP kinase signaling pathway. Importantly, anti-PSGL-1 treatment of mice xenografted with the HUT-78 cutaneous T-cell lymphoma cell line resulted in decreased tumor growth, had no effect on in vivo proliferation, but increased the levels of apoptosis in tumors. Anti-PSGL-1 treatment of mice xenografted with a Burkitt lymphoma cell line that was resistant to anti-PSGL-1 treatment in vitro, had no impact on tumorigenesis. These findings show that PSGL-1 antibody targeting triggers lymphoma cell apoptosis and substantiates PSGL-1 as a potential target for lymphoma therapy.
Collapse
Affiliation(s)
- João L Pereira
- i3S-Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- FMUP-Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Francisca Ferreira
- i3S-Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- Master´s degree in Bioengineering, ICBAS-Instituto de Ciências Biomédicas de Abel Salazar and Faculty of Engineering, University of Porto, Porto, Portugal
| | - Nuno R Dos Santos
- i3S-Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| |
Collapse
|
8
|
Damania B, Dittmer DP. Today's Kaposi sarcoma is not the same as it was 40 years ago, or is it? J Med Virol 2023; 95:e28773. [PMID: 37212317 PMCID: PMC10266714 DOI: 10.1002/jmv.28773] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/20/2023] [Accepted: 04/22/2023] [Indexed: 05/23/2023]
Abstract
This review will provide an overview of the notion that Kaposi sarcoma (KS) is a disease that manifests under diverse and divergent circumstances. We begin with a historical introduction of KS and KS-associated herpesvirus (KSHV), highlight the diversity of clinical presentations of KS, summarize what we know about the cell of origin for this tumor, explore KSHV viral load as a potential biomarker for acute KSHV infections and KS-associated complications, and discuss immune modulators that impact KSHV infection, KSHV persistence, and KS disease.
Collapse
Affiliation(s)
- Blossom Damania
- Lineberger Comprehensive Cancer Center, Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, 450 West Drive CB#7295, Rm 12-048, Chapel Hill, NC 27599
| | - Dirk P. Dittmer
- Lineberger Comprehensive Cancer Center, Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, 450 West Drive CB#7295, Rm 12-048, Chapel Hill, NC 27599
| |
Collapse
|
9
|
Alotaibi F, Thakral B, Wang W, Medeiros LJ. From the archives of MD Anderson Cancer Center: Primary effusion lymphoma with simultaneous involvement of the retroperitoneum and pleural cavity. Ann Diagn Pathol 2023; 63:152084. [PMID: 36577188 DOI: 10.1016/j.anndiagpath.2022.152084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Primary effusion lymphoma (PEL) is a rare neoplasm that arises in the context of severe immunosuppression. Acquired immunodeficiency syndrome (AIDS) as a result of human immunodeficiency virus (HIV) infection is the most common cause of immunodeficiency in patients who develop PEL. These neoplasms usually involve one or more body cavities, so-called classic PEL. The pleural cavity is most often involved, followed by the peritoneal and pericardial cavities. Involvement of the cerebrospinal fluid (CSF) and meninges is rare. A subset of patients can present with a tissue-based mass, known as the extracavitary variant. We encountered a patient with HIV infection and severe immunosuppression who presented initially with mediastinal, retroperitoneal mass and bilateral pleural effusions. He subsequently developed CSF involvement. Despite therapy, the patient relapsed with chest wall disease 6 months later and died shortly thereafter. Our literature review yielded about 400 cases of PEL reported previously. About 65 % of PEL patients have had AIDS, but a subset of patients had immunosuppression attributable to organ transplantation or physiological immunosenescence. CSF involvement has been reported in ~2 % of patients, and about 10 % of patients had both body cavity and extracavitary disease. The pathologic findings in this case were typical of extracavitary PEL. The neoplastic cells had features of plasmablasts and were positive for HHV-8, Epstein-Barr virus encoded RNA (EBER) and plasma cell associated markers, and were negative for B-cell antigens. The prognosis of patients with PEL is usually poor with a median survival less than one year in most studies. We use this patient's case as an illustration of PEL and we review the clinicopathologic findings and differential diagnosis of PEL.
Collapse
Affiliation(s)
- Fadhel Alotaibi
- Department of Pathology, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Beenu Thakral
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Wei Wang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America.
| |
Collapse
|
10
|
Kuehnle N, Gottwein E. Druggable host gene dependencies in primary effusion lymphoma. Curr Opin Virol 2022; 56:101270. [PMID: 36182745 PMCID: PMC10043043 DOI: 10.1016/j.coviro.2022.101270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/20/2022]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) causes primary effusion lymphoma (PEL). Here, we review what is known about human gene essentiality in PEL-derived cell lines. We provide an updated list of PEL-specific human gene dependencies, based on the improved definition of core essential genes across human cancer types. The requirements of PEL cell lines for interferon regulatory factor 4 (IRF4), basic leukine zipper ATF-like transcription factor (BATF), G1/S cyclin D2 (CCND2), CASP8 and FADD like apoptosis regulator (CFLAR), MCL1 apoptosis regulator (MCL1), and murine double minute 2 (MDM2) have been confirmed experimentally. KSHV co-opts IRF4 and BATF to drive superenhancer (SE)-mediated expression of IRF4 itself, MYC, and CCND2. IRF4 dependency of SE-mediated gene expression is shared with Epstein-Barr virus-transformed lymphoblastoid cell lines (LCLs) and human T-cell leukemia virus type 1-transformed adult T-cell leukemia/lymphoma (ATLL) cell lines, as well as several B-cell lymphomas of nonviral etiology. LCLs and ATLL cell lines similarly share dependencies on CCND2 and CFLAR with PEL, but also have distinct gene dependencies. Genetic dependencies could be exploited for therapeutic intervention in PEL and other cancers.
Collapse
Affiliation(s)
- Neil Kuehnle
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Eva Gottwein
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
11
|
Rossi R, Mereuta OM, Barbachan e Silva M, Molina Gil S, Douglas A, Pandit A, Gilvarry M, McCarthy R, O'Connell S, Tierney C, Psychogios K, Tsivgoulis G, Szikora I, Tatlisumak T, Rentzos A, Thornton J, Ó Broin P, Doyle KM. Potential Biomarkers of Acute Ischemic Stroke Etiology Revealed by Mass Spectrometry-Based Proteomic Characterization of Formalin-Fixed Paraffin-Embedded Blood Clots. Front Neurol 2022; 13:854846. [PMID: 35518205 PMCID: PMC9062453 DOI: 10.3389/fneur.2022.854846] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/25/2022] [Indexed: 12/31/2022] Open
Abstract
Background and Aims Besides the crucial role in the treatment of acute ischemic stroke (AIS), mechanical thrombectomy represents a unique opportunity for researchers to study the retrieved clots, with the possibility of unveiling biological patterns linked to stroke pathophysiology and etiology. We aimed to develop a shotgun proteomic approach to study and compare the proteome of formalin-fixed paraffin-embedded (FFPE) cardioembolic and large artery atherosclerotic (LAA) clots. Methods We used 16 cardioembolic and 15 LAA FFPE thrombi from 31 AIS patients. The thrombus proteome was analyzed by label-free quantitative liquid chromatography-tandem mass spectrometry (LC-MS/MS). MaxQuant v1.5.2.8 and Perseus v.1.6.15.0 were used for bioinformatics analysis. Protein classes were identified using the PANTHER database and the STRING database was used to predict protein interactions. Results We identified 1,581 protein groups as part of the AIS thrombus proteome. Fourteen significantly differentially abundant proteins across the two etiologies were identified. Four proteins involved in the ubiquitin-proteasome pathway, blood coagulation or plasminogen activating cascade were identified as significantly abundant in LAA clots. Ten proteins involved in the ubiquitin proteasome-pathway, cytoskeletal remodeling of platelets, platelet adhesion or blood coagulation were identified as significantly abundant in cardioembolic clots. Conclusion Our results outlined a set of 14 proteins for a proof-of-principle characterization of cardioembolic and LAA FFPE clots, advancing the proteome profile of AIS human thrombi and understanding the pathophysiology of ischemic stroke.
Collapse
Affiliation(s)
- Rosanna Rossi
- Department of Physiology and Galway Neuroscience Centre, School of Medicine, National University of Ireland, Galway, Ireland
- CÚRAM–SFI Research Centre for Medical Devices, National University of Ireland Galway, Galway, Ireland
| | - Oana Madalina Mereuta
- Department of Physiology and Galway Neuroscience Centre, School of Medicine, National University of Ireland, Galway, Ireland
- CÚRAM–SFI Research Centre for Medical Devices, National University of Ireland Galway, Galway, Ireland
| | - Mariel Barbachan e Silva
- School of Mathematical and Statistical Sciences, National University of Ireland Galway, Galway, Ireland
| | - Sara Molina Gil
- Department of Physiology and Galway Neuroscience Centre, School of Medicine, National University of Ireland, Galway, Ireland
- CÚRAM–SFI Research Centre for Medical Devices, National University of Ireland Galway, Galway, Ireland
| | - Andrew Douglas
- Department of Physiology and Galway Neuroscience Centre, School of Medicine, National University of Ireland, Galway, Ireland
- CÚRAM–SFI Research Centre for Medical Devices, National University of Ireland Galway, Galway, Ireland
| | - Abhay Pandit
- CÚRAM–SFI Research Centre for Medical Devices, National University of Ireland Galway, Galway, Ireland
| | | | | | - Shane O'Connell
- School of Mathematical and Statistical Sciences, National University of Ireland Galway, Galway, Ireland
| | - Ciara Tierney
- Department of Physiology and Galway Neuroscience Centre, School of Medicine, National University of Ireland, Galway, Ireland
- CÚRAM–SFI Research Centre for Medical Devices, National University of Ireland Galway, Galway, Ireland
| | | | - Georgios Tsivgoulis
- Second Department of Neurology, National and Kapodistrian University of Athens, “Attikon” University Hospital, Athens, Greece
| | - István Szikora
- Department of Neurointerventions, National Institute of Clinical Neurosciences, Budapest, Hungary
| | - Turgut Tatlisumak
- Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Alexandros Rentzos
- Department of Interventional and Diagnostic Neuroradiology, Sahlgrenska University Hospital, University of Gothenburg, Gothenburg, Sweden
| | - John Thornton
- Department of Radiology, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Pilib Ó Broin
- School of Mathematical and Statistical Sciences, National University of Ireland Galway, Galway, Ireland
| | - Karen M. Doyle
- Department of Physiology and Galway Neuroscience Centre, School of Medicine, National University of Ireland, Galway, Ireland
- CÚRAM–SFI Research Centre for Medical Devices, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
12
|
Wang B, Sun Y. SELPLG Expression Was Potentially Correlated With Metastasis and Prognosis of Osteosarcoma. Pathol Oncol Res 2022; 28:1610047. [PMID: 35153625 PMCID: PMC8825369 DOI: 10.3389/pore.2022.1610047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 01/04/2022] [Indexed: 11/17/2022]
Abstract
Background: Osteosarcoma (OS) is the most prevalent malignant primary bone tumor in children. Selectin P ligand gene (SELPLG) has been studied in several cancers. Our research aimed to explore the role of SELPLG in OS. Methods: All OS patient data was obtained from TARGET and GEO databases. Differential expression analyses were conducted in limma package of R. Functional analyses included GO and KEGG enrichment analyses. Immune cell infiltration analysis was done in CIBERSORT software. The overall survival was calculated using survival and survminer package of R. Results: Significantly lower SELPLG expression was observed in metastatic OS samples compared with non-metastatic OS samples, both in TARGET and in GSE21257. Low SELPLG expression was an independent undesirable prognostic factor for OS patients, in both TARGET and GEO datasets. Totally 62 differentially expressed gene (DEG) overlaps were found between high SELPLG vs. low SELPLG and non-metastatic vs. metastatic OS samples, affecting metastases and thereby influencing the prognosis, which were significantly enriched in 40 GO and six KEGG terms. Five types of immune cells were significantly differentially infiltrated between high and low SELPLG expression OS patients. Conclusion: SELPLG is closely correlated with metastases and prognosis of OS patients. The OS patients with low SELPLG expression have relatively poorer prognosis and SELPLG is a potential prognostic biomarker for OS.
Collapse
Affiliation(s)
- Bingqi Wang
- Department of Orthopedic Surgery, Tianjin First Central Hospital, Tianjin, China
| | - Yufu Sun
- Department of Orthopedic Surgery, Tianjin First Central Hospital, Tianjin, China
| |
Collapse
|
13
|
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV)-associated primary effusion lymphomas (PEL) are traditionally viewed as homogenous regarding viral transcription and lineage of origin, but so far this contention has not been explored at the single-cell level. Single-cell RNA sequencing of latently infected PEL supports the existence of multiple subpopulations even within a single cell line. At most 1% of the cells showed evidence of near-complete lytic transcription. The majority of cells only expressed the canonical viral latent transcripts: those originating from the latency locus, the viral interferon regulatory factor locus, and the viral lncRNA nut-1/Pan/T1.1; however, a significant fraction of cells showed various degrees of more permissive transcription, and some showed no evidence of KSHV transcripts whatsoever. Levels of viral interleukin-6 (IL-6)/K2 mRNA emerged as the most distinguishing feature to subset KSHV-infected PEL. One newly uncovered phenotype is the existence of BCBL-1 cells that readily adhered to fibronectin and that displayed mesenchymal lineage-like characteristics. IMPORTANCE Latency is the defining characteristic of the Herpesviridae and central to the tumorigenesis phenotype of Kaposi's sarcoma-associated herpesvirus (KSHV). KSHV-driven primary effusion lymphomas (PEL) rapidly develop resistance to therapy, suggesting tumor instability and plasticity. At any given time, a fraction of PEL cells spontaneously reactivate KSHV, suggesting transcriptional heterogeneity even within a clonal cell line under optimal growth conditions. This study employed single-cell mRNA sequencing to explore the within-population variability of KSHV transcription and how it relates to host cell transcription. Individual clonal PEL cells exhibited differing patterns of viral transcription. Most cells showed the canonical pattern of KSHV latency (LANA, vCyc, vFLIP, Kaposin, and vIRFs), but a significant fraction evidenced extended viral gene transcription, including of the viral IL-6 homolog, open reading frame K2. This study suggests new targets of intervention for PEL. It establishes a conceptual framework to design KSHV cure studies analogous to those for HIV.
Collapse
|
14
|
Identification of heterogeneity and prognostic key genes associated with uveal melanoma using single-cell RNA-sequencing technology. Melanoma Res 2022; 32:18-26. [PMID: 34879031 DOI: 10.1097/cmr.0000000000000783] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Uveal melanoma (UM) is the most common intraocular malignancy in adults. The prognosis is poor once metastasis has developed. The treatment of metastatic UM remains challenging nowadays due to lacking a deep understanding of the biological characteristics of this disease. Here, we revealed the cell subpopulations with distinct functional status and the existence of cells with high invasive potential within heterogeneous primary and metastatic UM. The single-cell sequencing data were retrieved from GSE139829 and GSE138433, through which we identified a new cell cluster related to metastatic UM as a unique type of immune cell. The cell-cell communication was conducted by 'Cellchat' to understand the cell crosstalk between these immune cells and their surrounding cells. The crucial signals contributing most to outgoing or incoming signaling of this cell group were identified to reveal the crucial pathway genes. Furthermore, we judged the prognostic value of these candidates on the basis of the data downloaded from The Cancer Genome Atlas. The results demonstrated that the increased IL10, SELPLG, EPHB and ITGB2 signaling pathways could be promising predicting factors for the patient prognosis in UM. Conclusively, we discover the potential key signals of UM for occurrence and metastasis, and also provide a theoretical basis for judging whether there is a high risk of metastasis or recurrence.
Collapse
|
15
|
CircETFA upregulates CCL5 by sponging miR-612 and recruiting EIF4A3 to promote hepatocellular carcinoma. Cell Death Discov 2021; 7:321. [PMID: 34716323 PMCID: PMC8556257 DOI: 10.1038/s41420-021-00710-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/24/2021] [Accepted: 10/06/2021] [Indexed: 12/12/2022] Open
Abstract
As a kind of malignant tumors, hepatocellular carcinoma (HCC) has been studied continuously, but the mechanisms are not well understood. Circular RNAs (circRNAs) are widespread in eukaryotes and play an important role in the growth of organisms and in the occurrence of diseases. The role of circRNAs in HCC remains to be further explored. In this study, CircRNA microarray analysis was used to assess the plasma from HCC patients and healthy controls and to identify circRNAs involved in HCC tumorigenesis. CircETFA was overexpressed in HCC tissues, plasma, and cells. Clinicopathological data revealed that abnormally high circETFA expression was associated with a poor prognosis. In function, circETFA promotes the malignant phenotype of HCC cells in vivo and in vitro, inhibits cycle arrest, and decreases the proportion of apoptotic cells. In mechanism, it can upregulate C-C motif chemokine ligand 5 (CCL5) in HCC cells, thereby regulating the phosphoinositide 3-kinase (PI3K)/Akt pathway and other key downstream effectors (e.g., FoxO6). Furthermore, circETFA prolonged the half-life of CCL5 mRNA by recruiting the eukaryotic initiation factor 4A3 (EIF4A3) and acted as a sponge of hsa-miR-612 to suppress the silencing effect of hsa-miR-612 on CCL5. In conclusion, CircETFA can increase the expression of CCL5 to promote the progression of HCC by sponging hsa-mir-612 and recruiting EIF4A3, and is promising as a novel biomarker and therapeutic target.
Collapse
|
16
|
Zhao X, Huang Q, Koller M, Linssen MD, Hooghiemstra WTR, de Jongh SJ, van Vugt MATM, Fehrmann RSN, Li E, Nagengast WB. Identification and Validation of Esophageal Squamous Cell Carcinoma Targets for Fluorescence Molecular Endoscopy. Int J Mol Sci 2021; 22:9270. [PMID: 34502178 PMCID: PMC8431213 DOI: 10.3390/ijms22179270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 02/05/2023] Open
Abstract
Dysplasia and intramucosal esophageal squamous cell carcinoma (ESCC) frequently go unnoticed with white-light endoscopy and, therefore, progress to invasive tumors. If suitable targets are available, fluorescence molecular endoscopy might be promising to improve early detection. Microarray expression data of patient-derived normal esophagus (n = 120) and ESCC samples (n = 118) were analyzed by functional genomic mRNA (FGmRNA) profiling to predict target upregulation on protein levels. The predicted top 60 upregulated genes were prioritized based on literature and immunohistochemistry (IHC) validation to select the most promising targets for fluorescent imaging. By IHC, GLUT1 showed significantly higher expression in ESCC tissue (30 patients) compared to the normal esophagus adjacent to the tumor (27 patients) (p < 0.001). Ex vivo imaging of GLUT1 with the 2-DG 800CW tracer showed that the mean fluorescence intensity in ESCC (n = 17) and high-grade dysplasia (HGD, n = 13) is higher (p < 0.05) compared to that in low-grade dysplasia (LGD) (n = 7) and to the normal esophagus adjacent to the tumor (n = 5). The sensitivity and specificity of 2-DG 800CW to detect HGD and ESCC is 80% and 83%, respectively (ROC = 0.85). We identified and validated GLUT1 as a promising molecular imaging target and demonstrated that fluorescent imaging after topical application of 2-DG 800CW can differentiate HGD and ESCC from LGD and normal esophagus.
Collapse
Affiliation(s)
- Xiaojuan Zhao
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands; (X.Z.); (M.A.T.M.v.V.); (R.S.N.F.)
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands; (M.D.L.); (W.T.R.H.); (S.J.d.J.)
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, China; (Q.H.); (E.L.)
| | - Qingfeng Huang
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, China; (Q.H.); (E.L.)
| | - Marjory Koller
- Department of Surgery, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands;
| | - Matthijs D. Linssen
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands; (M.D.L.); (W.T.R.H.); (S.J.d.J.)
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands
| | - Wouter T. R. Hooghiemstra
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands; (M.D.L.); (W.T.R.H.); (S.J.d.J.)
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands
| | - Steven J. de Jongh
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands; (M.D.L.); (W.T.R.H.); (S.J.d.J.)
| | - Marcel A. T. M. van Vugt
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands; (X.Z.); (M.A.T.M.v.V.); (R.S.N.F.)
| | - Rudolf S. N. Fehrmann
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands; (X.Z.); (M.A.T.M.v.V.); (R.S.N.F.)
| | - Enmin Li
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, China; (Q.H.); (E.L.)
| | - Wouter B. Nagengast
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands; (M.D.L.); (W.T.R.H.); (S.J.d.J.)
| |
Collapse
|
17
|
Wang Z, Jia L, sun Y, Li C, Zhang L, Wang X, Chen H. CORO1C is Associated With Poor Prognosis and Promotes Metastasis Through PI3K/AKT Pathway in Colorectal Cancer. Front Mol Biosci 2021; 8:682594. [PMID: 34179087 PMCID: PMC8223509 DOI: 10.3389/fmolb.2021.682594] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/28/2021] [Indexed: 11/24/2022] Open
Abstract
Trophoblast cell surface protein 2 (Trop2) is one of the cancer-related proteins that plays a vital role in biological aggressiveness and poor prognosis of colorectal cancer (CRC). The study of the Trop2 related network is helpful for us to understand the mechanism of tumorigenesis. However, the effects of the related proteins interacting with Trop2 in CRC remain unclear. Here, we found that coronin-like actin-binding protein 1C (CORO1C) could interact with Trop2 and the expression of CORO1C in CRC tissues was higher than that in paracarcinoma tissues. The expression of CORO1C was associated with histological type, lymph node metastasis, distant metastasis, AJCC stage, venous invasion, and perineural invasion. The correlation between CORO1C expression and clinical characteristics was analyzed demonstrating that high CORO1C expression in CRC patients were associated with poor prognosis. Furthermore, CORO1C knockdown could decrease the cell proliferation, colony formation, migration and invasion in vitro and tumor growth in vivo. The underlying mechanisms were predicted by bioinformatics analysis and verified by Western blotting. We found that PI3K/AKT signaling pathway was significantly inhibited by CORO1C knockdown and the tuomr-promoting role of CORO1C was leastwise partly mediated by PI3K/AKT signaling pathway. Thus, CORO1C may be a valuable prognostic biomarker and drug target in CRC patients.
Collapse
Affiliation(s)
- Zongxia Wang
- Cancer Center, Bayannur Hospital, Bayannur, China
| | - Lizhou Jia
- Cancer Center, Bayannur Hospital, Bayannur, China
- Department of Pathology, Wannan Medical College, Wuhu, China
| | - Yushu sun
- Department of Oncology, Inner Mongolia Autonomous Region Cancer Hospital, Hohhot, China
| | - Chunli Li
- Cancer Center, Bayannur Hospital, Bayannur, China
| | - Lingli Zhang
- Department of Ophthalmology, Inner Mongolia Autonomous Region People’s Hospital, Hohhot, China
| | - Xiangcheng Wang
- Department of Nuclear Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
- Key Laboratory of Inner Mongolia Autonomous Region Molecular Imaging, Inner Mongolia Medical University, Hohhot, China
| | - Hao Chen
- Department of Pathology, Wannan Medical College, Wuhu, China
- Faculty of Medical Science, Jinan University, Guangzhou, China
| |
Collapse
|
18
|
Pereira JL, Cavaco P, da Silva RC, Pacheco-Leyva I, Mereiter S, Pinto R, Reis CA, Dos Santos NR. P-selectin glycoprotein ligand 1 promotes T cell lymphoma development and dissemination. Transl Oncol 2021; 14:101125. [PMID: 34090013 PMCID: PMC8188565 DOI: 10.1016/j.tranon.2021.101125] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 05/10/2021] [Indexed: 12/13/2022] Open
Abstract
PSGL-1 protein is frequently expressed at the surface of malignant T cells. Enforced expression of PSGL-1 promotes T cell tumorigenesis in mice. PSGL-1 expression accelerates malignant T cell dissemination from tumors to several organs. PSGL-1 expression promotes malignant T cell expansion in kidneys and lungs.
P-selectin glycoprotein ligand-1 (PSGL-1) is a membrane-bound glycoprotein expressed in lymphoid and myeloid cells. It is a ligand of P-, E- and L-selectin and is involved in T cell trafficking and homing to lymphoid tissues, among other functions. PSGL-1 expression has been implicated in different lymphoid malignancies, so here we aimed to evaluate the involvement of PSGL-1 in T cell lymphomagenesis and dissemination. PSGL-1 was highly expressed at the surface of human and mouse T cell leukemia and lymphoma cell lines. To assess its impact on T cell malignancies, we stably expressed human PSGL-1 (hPSGL-1) in a mouse thymic lymphoma cell line, which expresses low levels of endogenous PSGL-1 at the cell surface. hPSGL-1-expressing lymphoma cells developed subcutaneous tumors in athymic nude mice recipients faster than control empty vector or parental cells. Moreover, the kidneys, lungs and liver of tumor-bearing mice were infiltrated by hPSGL-1-expressing malignant T cells. To evaluate the role of PSGL-1 in lymphoma cell dissemination, we injected intravenously control and hPSGL-1-expressing lymphoma cells in athymic mice. Strikingly, PSGL-1 expression facilitated disease infiltration of the kidneys, as determined by histological analysis and anti-CD3 immunohistochemistry. Together, these results indicate that PSGL-1 expression promotes T cell lymphoma development and dissemination to different organs.
Collapse
Affiliation(s)
- João L Pereira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal; Faculty of Medicine, University of Porto, Porto, Portugal
| | - Patrícia Cavaco
- Centre for Biomedical Research (CBMR), University of Algarve, Faro, Portugal
| | - Ricardo C da Silva
- Centre for Biomedical Research (CBMR), University of Algarve, Faro, Portugal
| | - Ivette Pacheco-Leyva
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Stefan Mereiter
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Ricardo Pinto
- Centro Hospitalar Universitário de São João, Porto, Portugal
| | - Celso A Reis
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal; Faculty of Medicine, University of Porto, Porto, Portugal; Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal
| | - Nuno R Dos Santos
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal; Centre for Biomedical Research (CBMR), University of Algarve, Faro, Portugal.
| |
Collapse
|
19
|
Wang X, Xiao Y, Li S, Yan Z, Luo G. CORO6 Promotes Cell Growth and Invasion of Clear Cell Renal Cell Carcinoma via Activation of WNT Signaling. Front Cell Dev Biol 2021; 9:647301. [PMID: 34026752 PMCID: PMC8137982 DOI: 10.3389/fcell.2021.647301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 03/15/2021] [Indexed: 11/15/2022] Open
Abstract
Renal cell carcinoma (RCC) constitutes the most lethal type of genitourinary cancer. Understanding of RCC tumor biology helps to identify novel targets and develop directed treatments for patients with this type of cancer. Analysis from both The Cancer Genome Atlas Kidney Renal Clear Cell Carcinoma dataset and our RCC samples demonstrated that the expression level of CORO6 was significantly higher in RCC patients than in normal kidney tissues, and its level was highly associated with tumor stage and grade. Importantly, CORO6 expression level was an independent predictor of tumor metastasis and overall survival in RCC patients. Our cell line data also confirmed that CORO6 knockdown could suppress RCC cell growth as well as cell migration and invasion. The depletion of CORO6 led to cell cycle arrest at the G0/G1 phase and caused cell apoptosis. Further, mechanistic dissection showed that CORO6 mediated RCC cell growth, and cell invasion relied on WNT signaling. Moreover, the in vivo data suggested that CORO6 knockdown indeed suppressed RCC tumor growth. Overall, our study defines the oncogenic role of CORO6 in RCC progression and provides a rationale for developing CORO6-targeted therapies for improved treatment of RCC patients.
Collapse
Affiliation(s)
- Xinjun Wang
- Department of Urology, Zhongshan Hospital Xiamen University, Xiamen, China.,The School of Clinical Medicine, Fujian Medical University, Fujian, China
| | - Yiming Xiao
- Department of Urology, Zhongshan Hospital Xiamen University, Xiamen, China
| | - Si Li
- Department of Urology, Zhongshan Hospital Xiamen University, Xiamen, China
| | - Zhijian Yan
- Department of Urology, Zhongshan Hospital Xiamen University, Xiamen, China
| | - Guangcheng Luo
- Department of Urology, Zhongshan Hospital Xiamen University, Xiamen, China.,The School of Clinical Medicine, Fujian Medical University, Fujian, China
| |
Collapse
|
20
|
Liu Y, Tingart M, Lecouturier S, Li J, Eschweiler J. Identification of co-expression network correlated with different periods of adipogenic and osteogenic differentiation of BMSCs by weighted gene co-expression network analysis (WGCNA). BMC Genomics 2021; 22:254. [PMID: 33836657 PMCID: PMC8035768 DOI: 10.1186/s12864-021-07584-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/30/2021] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The differentiation of bone marrow mesenchymal stem cells is a complex and dynamic process. The gene expression pattern and mechanism of different periods of adipogenic and osteogenic differentiation remain unclear. Additionally, the interaction between these two lineage determination requires further exploration. RESULTS Five modules that were most significantly associated with osteogenic or adipogenic differentiation of BMSCs were selected for further investigation. Biological terms (e.g. ribosome biogenesis, TNF-α signalling pathway, glucose import and fatty acid metabolism) along with hub transcription factors (e.g. PPARG and YY1) and hub miRNAs (e.g. hsa-mir-26b-5p) were enriched in different modules. The expression pattern of 6 hub genes, ADIPOQ, FABP4, SLC7A5, SELPLG, BIRC3, and KLHL30 was validated by RT-qPCR. Finally, cell staining experiments extended the findings of bioinformatics analysis. CONCLUSION This study identified the key genes, biological functions, and regulators of each time point of adipogenic and osteogenic differentiation of BMSCs and provided novel evidence and ideas for further research on the differentiation of BMSCs.
Collapse
Affiliation(s)
- Yu Liu
- Department of Orthopaedic Surgery, RWTH Aachen University Clinic, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Markus Tingart
- Department of Orthopaedic Surgery, RWTH Aachen University Clinic, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Sophie Lecouturier
- Department of Orthopaedic Surgery, RWTH Aachen University Clinic, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Jianzhang Li
- Department of Orthopaedic Surgery, RWTH Aachen University Clinic, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Jörg Eschweiler
- Department of Orthopaedic Surgery, RWTH Aachen University Clinic, Pauwelsstraße 30, 52074 Aachen, Germany
| |
Collapse
|
21
|
Sanguedolce F, Zanelli M, Zizzo M, Bisagni A, Soriano A, Cocco G, Palicelli A, Santandrea G, Caprera C, Corsi M, Cerrone G, Sciaccotta R, Martino G, Ricci L, Sollitto F, Loizzi D, Ascani S. Primary Pulmonary B-Cell Lymphoma: A Review and Update. Cancers (Basel) 2021; 13:cancers13030415. [PMID: 33499258 PMCID: PMC7865219 DOI: 10.3390/cancers13030415] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/10/2021] [Accepted: 01/19/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary The group of B-cell lymphomas primarily involving the lung encompasses different histological entities with distinct biological aspects, while sharing some clinical and radiological features related to their common anatomic site of occurrence. Recent molecular advances in the molecular genetics of these lesions have substantially improved of our understanding of the mechanisms of lymphomagenesis, adding novel information to histology in order to better characterize and manage these diseases. This review summarizes the available clinical, radiological, pathological, and molecular data on primary pulmonary B-cell lymphomas, discusses the mechanisms of lymphomagenesis, and highlights the role of a multi-disciplinary management in overcoming the diagnostic and therapeutic challenges in this setting. Abstract Primary pulmonary B-cell lymphomas (PP-BCLs) comprise a group of extranodal non-Hodgkin lymphomas of B-cell origin, which primarily affect the lung without evidence of extrapulmonary disease at the time of diagnosis and up to 3 months afterwards. Primary lymphoid proliferations of the lung are most often of B-cell lineage, and include three major entities with different clinical, morphological, and molecular features: primary pulmonary marginal zone lymphoma of mucosa-associated lymphoid tissue (PP-MZL, or MALT lymphoma), primary pulmonary diffuse large B cell lymphoma (PP-DLBCL), and lymphomatoid granulomatosis (LYG). Less common entities include primary effusion B-cell lymphoma (PEL) and intravascular large B cell lymphoma (IVLBCL). A proper workup requires a multidisciplinary approach, including radiologists, pneumologists, thoracic surgeons, pathologists, hemato-oncologists, and radiation oncologists, in order to achieve a correct diagnosis and risk assessment. Aim of this review is to analyze and outline the clinical and pathological features of the most frequent PP-BCLs, and to critically analyze the major issues in their diagnosis and management.
Collapse
Affiliation(s)
- Francesca Sanguedolce
- Pathology Unit, Azienda Ospedaliero-Universitaria, Ospedali Riuniti di Foggia, 71122 Foggia, Italy
- Correspondence: ; Tel.: +39-0881-736315
| | - Magda Zanelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy; (M.Z.); (A.B.); (A.P.); (G.S.)
| | - Maurizio Zizzo
- Surgical Oncology Unit, Azienda USL-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy;
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Alessandra Bisagni
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy; (M.Z.); (A.B.); (A.P.); (G.S.)
| | - Alessandra Soriano
- Gastroenterology, Division and Inflammatory Bowel Disease Center, Department of Internal Medicine, Azienda USL-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy;
| | - Giorgia Cocco
- Radiotherapy Unit, Azienda Ospedaliero-Universitaria, Ospedali Riuniti di Foggia, 71122 Foggia, Italy;
| | - Andrea Palicelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy; (M.Z.); (A.B.); (A.P.); (G.S.)
| | - Giacomo Santandrea
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy; (M.Z.); (A.B.); (A.P.); (G.S.)
| | - Cecilia Caprera
- Pathology Unit, Azienda Ospedaliera S. Maria di Terni, University of Perugia, 05100 Terni, Italy; (C.C.); (M.C.); (G.C.); (R.S.); (G.M.); (L.R.); (S.A.)
| | - Matteo Corsi
- Pathology Unit, Azienda Ospedaliera S. Maria di Terni, University of Perugia, 05100 Terni, Italy; (C.C.); (M.C.); (G.C.); (R.S.); (G.M.); (L.R.); (S.A.)
| | - Giulia Cerrone
- Pathology Unit, Azienda Ospedaliera S. Maria di Terni, University of Perugia, 05100 Terni, Italy; (C.C.); (M.C.); (G.C.); (R.S.); (G.M.); (L.R.); (S.A.)
| | - Raffaele Sciaccotta
- Pathology Unit, Azienda Ospedaliera S. Maria di Terni, University of Perugia, 05100 Terni, Italy; (C.C.); (M.C.); (G.C.); (R.S.); (G.M.); (L.R.); (S.A.)
| | - Giovanni Martino
- Pathology Unit, Azienda Ospedaliera S. Maria di Terni, University of Perugia, 05100 Terni, Italy; (C.C.); (M.C.); (G.C.); (R.S.); (G.M.); (L.R.); (S.A.)
| | - Linda Ricci
- Pathology Unit, Azienda Ospedaliera S. Maria di Terni, University of Perugia, 05100 Terni, Italy; (C.C.); (M.C.); (G.C.); (R.S.); (G.M.); (L.R.); (S.A.)
| | - Francesco Sollitto
- Institute of Thoracic Surgery, University of Foggia, 71122 Foggia, Italy; (F.S.); (D.L.)
| | - Domenico Loizzi
- Institute of Thoracic Surgery, University of Foggia, 71122 Foggia, Italy; (F.S.); (D.L.)
| | - Stefano Ascani
- Pathology Unit, Azienda Ospedaliera S. Maria di Terni, University of Perugia, 05100 Terni, Italy; (C.C.); (M.C.); (G.C.); (R.S.); (G.M.); (L.R.); (S.A.)
| |
Collapse
|
22
|
Tagliatela AC, Hempstead SC, Hibshman PS, Hockenberry MA, Brighton HE, Pecot CV, Bear JE. Coronin 1C inhibits melanoma metastasis through regulation of MT1-MMP-containing extracellular vesicle secretion. Sci Rep 2020; 10:11958. [PMID: 32686704 PMCID: PMC7371684 DOI: 10.1038/s41598-020-67465-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 06/05/2020] [Indexed: 02/06/2023] Open
Abstract
Coronin 1C is overexpressed in multiple tumors, leading to the widely held view that this gene drives tumor progression, but this hypothesis has not been rigorously tested in melanoma. Here, we combined a conditional knockout of Coronin 1C with a genetically engineered mouse model of PTEN/BRAF-driven melanoma. Loss of Coronin 1C in this model increases both primary tumor growth rates and distant metastases. Coronin 1C-null cells isolated from this model are more invasive in vitro and produce more metastatic lesions in orthotopic transplants than Coronin 1C-reexpressing cells due to the shedding of extracellular vesicles (EVs) containing MT1-MMP. Interestingly, these vesicles contain melanosome markers suggesting a melanoma-specific mechanism of EV release, regulated by Coronin 1C, that contributes to the high rates of metastasis in melanoma.
Collapse
Affiliation(s)
- Alicia C Tagliatela
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Stephanie C Hempstead
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Priya S Hibshman
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Max A Hockenberry
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Hailey E Brighton
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Chad V Pecot
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Division of Hematology and Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - James E Bear
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
23
|
Seltzer J, Moorad R, Schifano JM, Landis JT, Dittmer DP. Interleukin-1 Receptor-Associated Kinase (IRAK) Signaling in Kaposi Sarcoma-Associated Herpesvirus-Induced Primary Effusion Lymphoma. J Virol 2020; 94:e02123-19. [PMID: 32161170 PMCID: PMC7199399 DOI: 10.1128/jvi.02123-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 03/05/2020] [Indexed: 12/20/2022] Open
Abstract
Kaposi sarcoma-associated herpesvirus (KSHV) is necessary but not sufficient for primary effusion lymphoma (PEL) development. Alterations in cellular signaling pathways are also a characteristic of PEL. Other B cell lymphomas have acquired an oncogenic mutation in the myeloid differentiation primary response 88 (MYD88) gene. The MYD88 L265P mutant results in the activation of interleukin-1 receptor associated kinase (IRAK). To probe IRAK/MYD88 signaling in PEL, we employed CRISPR/Cas9 technology to generate stable deletion clones in BCBL-1Cas9 and BC-1Cas9 cells. To look for off-target effects, we determined the complete exome of the BCBL-1Cas9 and BC-1Cas9 cells. Deletion of either MYD88, IRAK4, or IRAK1 abolished interleukin-1 beta (IL-1β) signaling; however, we were able to grow stable subclones from each population. Transcriptome sequencing (RNA-seq) analysis of IRAK4 knockout cell lines (IRAK4 KOs) showed that the IRAK pathway induced cellular signals constitutively, independent of IL-1β stimulation, which was abrogated by deletion of IRAK4. Transient complementation with IRAK1 increased NF-κB activity in MYD88 KO, IRAK1 KO, and IRAK4 KO cells even in the absence of IL-1β. IL-10, a hallmark of PEL, was dependent on the IRAK pathway, as IRAK4 KOs showed reduced IL-10 levels. We surmise that, unlike B cell receptor (BCR) signaling, MYD88/IRAK signaling is constitutively active in PEL, but that under cell culture conditions, PEL rapidly became independent of this pathway.IMPORTANCE One hundred percent of primary effusion lymphoma (PEL) cases are associated with Kaposi sarcoma-associated herpesvirus (KSHV). PEL cell lines, such as BCBL-1, are the workhorse for understanding this human oncovirus and the host pathways that KSHV dysregulates. Understanding their function is important for developing new therapies as well as identifying high-risk patient groups. The myeloid differentiation primary response 88 (MYD88)/interleukin-1 receptor associated kinase (IRAK) pathway, which has progrowth functions in other B cell lymphomas, has not been fully explored in PEL. By performing CRISPR/Cas9 knockout (KO) studies targeting the IRAK pathway in PEL, we were able to determine that established PEL cell lines can circumvent the loss of IRAK1, IRAK4, and MYD88; however, the deletion clones are deficient in interleukin-10 (IL-10) production. Since IL-10 suppresses T cell function, this suggests that the IRAK pathway may serve a function in vivo and during early-stage development of PEL.
Collapse
Affiliation(s)
- Jedediah Seltzer
- Department of Microbiology and Immunology, Center for AIDS Research, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Razia Moorad
- Department of Microbiology and Immunology, Center for AIDS Research, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jason M Schifano
- Department of Microbiology and Immunology, Center for AIDS Research, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Justin T Landis
- Department of Microbiology and Immunology, Center for AIDS Research, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Dirk P Dittmer
- Department of Microbiology and Immunology, Center for AIDS Research, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
24
|
Solga R, Behrens J, Ziemann A, Riou A, Berwanger C, Becker L, Garrett L, de Angelis MH, Fischer L, Coras R, Barkovits K, Marcus K, Mahabir E, Eichinger L, Schröder R, Noegel AA, Clemen CS. CRN2 binds to TIMP4 and MMP14 and promotes perivascular invasion of glioblastoma cells. Eur J Cell Biol 2019; 98:151046. [PMID: 31677819 DOI: 10.1016/j.ejcb.2019.151046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/13/2019] [Accepted: 09/30/2019] [Indexed: 12/21/2022] Open
Abstract
CRN2 is an actin filament binding protein involved in the regulation of various cellular processes including cell migration and invasion. CRN2 has been implicated in the malignant progression of different types of human cancer. We used CRN2 knock-out mice for analyses as well as for crossbreeding with a Tp53/Pten knock-out glioblastoma mouse model. CRN2 knock-out mice were subjected to a phenotyping screen at the German Mouse Clinic. Murine glioblastoma tissue specimens as well as cultured murine brain slices and glioblastoma cell lines were investigated by immunohistochemistry, immunofluorescence, and cell biological experiments. Protein interactions were studied by immunoprecipitation, pull-down, and enzyme activity assays. CRN2 knock-out mice displayed neurological and behavioural alterations, e.g. reduced hearing sensitivity, reduced acoustic startle response, hypoactivity, and less frequent urination. While glioblastoma mice with or without the additional CRN2 knock-out allele exhibited no significant difference in their survival rates, the increased levels of CRN2 in transplanted glioblastoma cells caused a higher tumour cell encasement of murine brain slice capillaries. We identified two important factors of the tumour microenvironment, the tissue inhibitor of matrix metalloproteinase 4 (TIMP4) and the matrix metalloproteinase 14 (MMP14, synonym: MT1-MMP), as novel binding partners of CRN2. All three proteins mutually interacted and co-localised at the front of lamellipodia, and CRN2 was newly detected in exosomes. On the functional level, we demonstrate that CRN2 increased the secretion of TIMP4 as well as the catalytic activity of MMP14. Our results imply that CRN2 represents a pro-invasive effector within the tumour cell microenvironment of glioblastoma multiforme.
Collapse
Affiliation(s)
- Roxana Solga
- Centre for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931, Cologne, Germany
| | - Juliane Behrens
- Centre for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931, Cologne, Germany
| | - Anja Ziemann
- Centre for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931, Cologne, Germany
| | - Adrien Riou
- In-vivo NMR, Max Planck Institute for Metabolism Research, 50931, Cologne, Germany
| | - Carolin Berwanger
- Centre for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931, Cologne, Germany; Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147, Cologne, Germany
| | - Lore Becker
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Centre Munich, German Research Centre for Environmental Health, 85764, Neuherberg, Germany
| | - Lillian Garrett
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Centre Munich, German Research Centre for Environmental Health, 85764, Neuherberg, Germany; Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Martin Hrabe de Angelis
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Centre Munich, German Research Centre for Environmental Health, 85764, Neuherberg, Germany; Chair of Experimental Genetics, School of Life Science Weihenstephan, Technische Universität München, 85354, Freising, Germany; German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany
| | - Lisa Fischer
- Comparative Medicine, Center for Molecular Medicine Cologne, University of Cologne, 50931, Cologne, Germany
| | - Roland Coras
- Institute of Neuropathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Katalin Barkovits
- Medizinisches Proteom‑Center, Medical Faculty, Ruhr-University Bochum, 44801, Bochum, Germany
| | - Katrin Marcus
- Medizinisches Proteom‑Center, Medical Faculty, Ruhr-University Bochum, 44801, Bochum, Germany
| | - Esther Mahabir
- Comparative Medicine, Center for Molecular Medicine Cologne, University of Cologne, 50931, Cologne, Germany
| | - Ludwig Eichinger
- Centre for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931, Cologne, Germany
| | - Rolf Schröder
- Institute of Neuropathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Angelika A Noegel
- Centre for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931, Cologne, Germany.
| | - Christoph S Clemen
- Centre for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931, Cologne, Germany; Institute of Neuropathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054, Erlangen, Germany; Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, Medical Faculty, University of Cologne, 50931, Cologne, Germany.
| |
Collapse
|
25
|
Cheng X, Wang X, Wu Z, Tan S, Zhu T, Ding K. CORO1C expression is associated with poor survival rates in gastric cancer and promotes metastasis in vitro. FEBS Open Bio 2019; 9:1097-1108. [PMID: 30974047 PMCID: PMC6551501 DOI: 10.1002/2211-5463.12639] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/13/2019] [Accepted: 04/08/2019] [Indexed: 12/21/2022] Open
Abstract
Coronin-like actin-binding protein 1C (CORO1C) is a member of the WD repeat protein family that regulates actin-dependent processes by assembling F-actin. CORO1C was previously reported to promote metastasis in breast cancer and lung squamous cell carcinoma. Here, we investigated the role of CORO1C in gastric cancer. Higher expression levels of CORO1C were detected in gastric cancer tissues as compared with normal gastric tissues. In addition, CORO1C levels were found to be positively correlated with lymph node metastasis in gastric cancer patients. The expression levels of CORO1C were higher in stage III-IV gastric cancer patients (80.8%) than in stage I-II gastric cancer patients(57.1%). Gastric cancer patients positive for CORO1C expression showed lower relapse-free survival and overall survival rates. Knockdown of CORO1C dramatically suppressed total cell number, cell viability, cell colony formation, cell mitosis and cell metastasis, and promoted apoptosis of gastric cancer cells. Furthermore, cyclin D1 and vimentin were found to be positively regulated by CORO1C. As cyclin D1 and vimentin play an oncogenic role in gastric cancer, CORO1C may exert its tumor-promoting activity through these proteins.
Collapse
Affiliation(s)
- Xiao Cheng
- Department of Pathology, Anhui Medical University, Hefei, China
| | - Xiaonan Wang
- Laboratory of Pathogenic Microbiology and Immunology, Anhui Medical University, Hefei, China
| | - Zhengsheng Wu
- Department of Pathology, Anhui Medical University, Hefei, China
| | - Sheng Tan
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, China
| | - Tao Zhu
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, China
| | - Keshuo Ding
- Department of Pathology, Anhui Medical University, Hefei, China
| |
Collapse
|
26
|
Genomic Profile and Pathologic Features of Diffuse Large B-Cell Lymphoma Subtype of Methotrexate-associated Lymphoproliferative Disorder in Rheumatoid Arthritis Patients. Am J Surg Pathol 2018; 42:936-950. [DOI: 10.1097/pas.0000000000001071] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
27
|
Tumor suppressor miR-1 inhibits tumor growth and metastasis by simultaneously targeting multiple genes. Oncotarget 2018; 8:42043-42060. [PMID: 28159933 PMCID: PMC5522048 DOI: 10.18632/oncotarget.14927] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 12/29/2016] [Indexed: 12/19/2022] Open
Abstract
Cancer progression depends on tumor growth and metastasis, which are activated or suppressed by multiple genes. An individual microRNA may target multiple genes, suggesting that a miRNA may suppress tumor growth and metastasis via simultaneously targeting different genes. However, thus far, this issue has not been explored. In the present study, the findings showed that miR-1 could simultaneously inhibit tumor growth and metastasis of gastric and breast cancers by targeting multiple genes. The results indicated that miR-1 was significantly downregulated in cancer tissues compared with normal tissues. The miR-1 overexpression led to cell cycle arrest in the G1 phase in gastric and breast cancer cells but not in normal cells. Furthermore, the miR-1 overexpression significantly inhibited the metastasis of gastric and breast cancer cells. An analysis of the underlying mechanism revealed that the simultaneous inhibition of tumor growth and metastasis mediated by miR-1 was due to the synchronous targeting of 6 miR-1 target genes encoding cyclin dependent kinase 4, twinfilin actin binding protein 1, calponin 3, coronin 1C, WAS protein family member 2 and thymosin beta 4, X-linked. In vivo assays demonstrated that miR-1 efficiently inhibited tumor growth and metastasis of gastric and breast cancers in nude mice. Therefore, our study contributed novel insights into the miR-1′s roles in tumorigenesis of gastric and breast cancers.
Collapse
|
28
|
Molinie N, Gautreau A. The Arp2/3 Regulatory System and Its Deregulation in Cancer. Physiol Rev 2017; 98:215-238. [PMID: 29212790 DOI: 10.1152/physrev.00006.2017] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 05/10/2017] [Accepted: 05/11/2017] [Indexed: 02/07/2023] Open
Abstract
The Arp2/3 complex is an evolutionary conserved molecular machine that generates branched actin networks. When activated, the Arp2/3 complex contributes the actin branched junction and thus cross-links the polymerizing actin filaments in a network that exerts a pushing force. The different activators initiate branched actin networks at the cytosolic surface of different cellular membranes to promote their protrusion, movement, or scission in cell migration and membrane traffic. Here we review the structure, function, and regulation of all the direct regulators of the Arp2/3 complex that induce or inhibit the initiation of a branched actin network and that controls the stability of its branched junctions. Our goal is to present recent findings concerning novel inhibitory proteins or the regulation of the actin branched junction and place these in the context of what was previously known to provide a global overview of how the Arp2/3 complex is regulated in human cells. We focus on the human set of Arp2/3 regulators to compare normal Arp2/3 regulation in untransformed cells to the deregulation of the Arp2/3 system observed in patients affected by various cancers. In many cases, these deregulations promote cancer progression and have a direct impact on patient survival.
Collapse
Affiliation(s)
- Nicolas Molinie
- Ecole Polytechnique, Université Paris-Saclay, CNRS UMR 7654, Palaiseau, France; and Moscow Institute of Physics and Technology, Life Sciences Center, Dolgoprudny, Russia
| | - Alexis Gautreau
- Ecole Polytechnique, Université Paris-Saclay, CNRS UMR 7654, Palaiseau, France; and Moscow Institute of Physics and Technology, Life Sciences Center, Dolgoprudny, Russia
| |
Collapse
|
29
|
Conconi D, Chiappa V, Perego P, Redaelli S, Bovo G, Lavitrano M, Milani R, Dalprà L, Lissoni AA. Potential role of BCL2 in the recurrence of uterine smooth muscle tumors of uncertain malignant potential. Oncol Rep 2016; 37:41-47. [PMID: 28004108 PMCID: PMC5355714 DOI: 10.3892/or.2016.5274] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 03/30/2016] [Indexed: 12/15/2022] Open
Abstract
Uterine smooth muscle tumors are the most common female genital tract neoplasms. While leiomyosarcoma has been studied at length, smooth muscle tumors of uncertain malignant potential (STUMPs) still have ambiguous and unresolved issues, with a risk of relapse and evolution largely undefined. We performed an array comparative genomic hybridization analysis on a primitive STUMP and its local recurrence, histologically diagnosed as undifferentiated sarcoma. To the best of our knowledge, our report is the first genomic study on primitive STUMPs and the different relapsed tumors. The results showed few copy number alterations shared between both samples and the high heterogeneity in the STUMP was apparently lost in the sarcoma. Surprisingly the STUMP presented an amplification of the BCL2 gene, not observed in the relapsed tumor. Additionally, fluorescence in situ hybridization and immunohistochemical staining were performed to confirm BCL2 amplification and expression in these samples and in two other cases of primitive STUMPs and their corresponding relapsed tumors. The presence of BCL2 in multiple copies and expression in the two primitive STUMPs and two relapsed tumors was confirmed. The marked amplification of the BCL2 gene present in the primitive STUMP and the multiple copies also observed in other cases, suggest its potential role as a marker of STUMP malignant potential and recurrence.
Collapse
Affiliation(s)
- Donatella Conconi
- School of Medicine and Surgery, University of Milano-Bicocca, I-20900 Monza, Italy
| | - Valentina Chiappa
- Department of Obstetrics and Gynecology, San Gerardo Hospital, I-20900 Monza, Italy
| | - Patrizia Perego
- Unit of Pathology, San Gerardo Hospital, I-20900 Monza, Italy
| | - Serena Redaelli
- School of Medicine and Surgery, University of Milano-Bicocca, I-20900 Monza, Italy
| | - Giorgio Bovo
- Unit of Pathology, San Gerardo Hospital, I-20900 Monza, Italy
| | - Marialuisa Lavitrano
- School of Medicine and Surgery, University of Milano-Bicocca, I-20900 Monza, Italy
| | - Rodolfo Milani
- School of Medicine and Surgery, University of Milano-Bicocca, I-20900 Monza, Italy
| | - Leda Dalprà
- School of Medicine and Surgery, University of Milano-Bicocca, I-20900 Monza, Italy
| | | |
Collapse
|
30
|
Santonja C, Medina-Puente C, Serrano Del Castillo C, Cabello Úbeda A, Rodríguez-Pinilla SM. Primary effusion lymphoma involving cerebrospinal fluid, deep cervical lymph nodes and adenoids. Report of a case supporting the lymphatic connection between brain and lymph nodes. Neuropathology 2016; 37:249-258. [PMID: 27862361 DOI: 10.1111/neup.12353] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 10/04/2016] [Accepted: 10/04/2016] [Indexed: 01/05/2023]
Abstract
We describe an unusual presentation of primary effusion lymphoma in CSF of a 45-year-old HIV-positive man, with no evidence of involvement of pleural, peritoneal or pericardial cavities. Cytologic examination and flow cytometric analysis suggested the diagnosis, eventually made in an excised deep cervical lymph node, in which the neoplastic cells involved selectively the sinuses. This case represents the fifth reported example of CSF involvement by this type of lymphoma, and supports the alleged connection between CSF and cervical lymph nodes via lymphatic vessels. Interestingly, review of an adenoidectomy specimen obtained 9 months before presentation for nonspecific complaints showed rare clusters of neoplastic cells involving surface epithelium and chorium, a finding that might represent a homing mechanism and implies an asymptomatic, occult phase of lymphoma development.
Collapse
|
31
|
Lee JD, Jung H, Min SH. Identification of proteins suppressing the functions of oncogenic phosphatase of regenerating liver 1 and 3. Exp Ther Med 2016; 12:2974-2982. [PMID: 27882103 PMCID: PMC5103732 DOI: 10.3892/etm.2016.3722] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 08/11/2016] [Indexed: 12/23/2022] Open
Abstract
The phosphatase of regenerating liver (PRL) family, including PRL-1, PRL-2, and PRL-3, comprises protein tyrosine phosphatases whose deregulation is associated with the tumorigenesis and metastasis of many types of cancer. However, the underlying mechanism is poorly understood. In this study, aiming to increase understanding of the molecular mechanisms underlying the functions of PRL-1 and PRL-3, a yeast two-hybrid system was employed to screen for their interacting proteins. Alignment with the NCBI BLAST database revealed 12 interactive proteins: Synaptic nuclear envelope protein 2, emerin, mannose 6-phosphate receptor-binding protein 1, low-density lipoprotein receptor-related protein 10, Rab acceptor 1, tumor protein D52-like 2, selectin P ligand (SELPLG), guanylate binding protein 1, transmembrane and ubiquitin-like domain-containing 2, NADH:ubiquinone oxidoreductase subunit B8, syndecan 4 and FK506-binding protein 8 (FKBP8). These proteins are associated with cell proliferation, apoptosis, immune response, cell fate specification and metabolic process in biological process categories, and involved in various signaling pathways, including Alzheimer's disease, Parkinson's disease, Huntington's disease, hypertrophic cardiomyopathy and cell adhesion molecules. Interactions of PRL-1 with the prey proteins SELPLG and FKBP8 were confirmed by immunoprecipitation or immunostaining. Furthermore, SELPLG and FKBP8 suppressed PRL-1- or PRL-3-mediated p53 activity. Identification of the proteins interacting with PRL family proteins may provide valuable information to better understand the mechanism of PRL-mediated signal transduction in cancer and other diverse diseases.
Collapse
Affiliation(s)
- Ju-Dong Lee
- Graduate School of Medical Science and Engineering, Biomedical Research Center, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea
| | - Haiyoung Jung
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea
| | - Sang-Hyun Min
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 701-310, Republic of Korea
| |
Collapse
|
32
|
Behrens J, Solga R, Ziemann A, Rastetter RH, Berwanger C, Herrmann H, Noegel AA, Clemen CS. Coronin 1C-free primary mouse fibroblasts exhibit robust rearrangements in the orientation of actin filaments, microtubules and intermediate filaments. Eur J Cell Biol 2016; 95:239-51. [PMID: 27178841 DOI: 10.1016/j.ejcb.2016.04.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 04/25/2016] [Accepted: 04/25/2016] [Indexed: 01/01/2023] Open
Abstract
Coronin 1C is an established modulator of actin cytoskeleton dynamics. It has been shown to be involved in protrusion formation, cell migration and invasion. Here, we report the generation of primary fibroblasts from coronin 1C knock-out mice in order to investigate the impact of the loss of coronin 1C on cellular structural organisation. We demonstrate that the lack of coronin 1C not only affects the actin system, but also the microtubule and the vimentin intermediate filament networks. In particular, we show that the knock-out cells exhibit a reduced proliferation rate, impaired cell migration and protrusion formation as well as an aberrant subcellular localisation and function of mitochondria. Moreover, we demonstrate that coronin 1C specifically interacts with the non-α-helical amino-terminal domain ("head") of vimentin. Our data suggest that coronin 1C acts as a cytoskeletal integrator of actin filaments, microtubules and intermediate filaments.
Collapse
Affiliation(s)
- Juliane Behrens
- Center for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Roxana Solga
- Center for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Anja Ziemann
- Center for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Raphael H Rastetter
- Center for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931Cologne, Germany
| | - Carolin Berwanger
- Center for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Harald Herrmann
- Institute of Neuropathology, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Angelika A Noegel
- Center for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931Cologne, Germany
| | - Christoph S Clemen
- Center for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931 Cologne, Germany.
| |
Collapse
|
33
|
Rastetter RH, Blömacher M, Drebber U, Marko M, Behrens J, Solga R, Hojeili S, Bhattacharya K, Wunderlich CM, Wunderlich FT, Odenthal M, Ziemann A, Eichinger L, Clemen CS. Coronin 2A (CRN5) expression is associated with colorectal adenoma-adenocarcinoma sequence and oncogenic signalling. BMC Cancer 2015; 15:638. [PMID: 26373535 PMCID: PMC4612562 DOI: 10.1186/s12885-015-1645-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 09/04/2015] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Coronin proteins are known as regulators of actin-based cellular processes, and some of them are associated with the malignant progression of human cancer. Here, we show that expression of coronin 2A is up-regulated in human colon carcinoma. METHODS This study included 26 human colon tumour specimens and 9 normal controls. Expression and localisation of coronin 2A was studied by immunohistochemistry, immunofluorescence imaging, cell fractionation, and immunoblotting. Functional roles of coronin 2A were analysed by over-expression and knock-down of the protein. Protein interactions were studied by co-immunoprecipitation and pull-down experiments, mass spectrometry analyses, and in vitro kinase and methylation assays. RESULTS Histopathological investigation revealed that the expression of coronin 2A in colon tumour cells is up-regulated during the adenoma-adenocarcinoma progression. At the subcellular level, coronin 2A localised to multiple compartments, i.e. F-actin stress fibres, the front of lamellipodia, focal adhesions, and the nuclei. Over-expression of coronin 2A led to a reduction of F-actin stress fibres and elevated cell migration velocity. We identified two novel direct coronin 2A interaction partners. The interaction of coronin 2A with MAPK14 (mitogen activated protein kinase 14 or MAP kinase p38α) led to phosphorylation of coronin 2A and also to activation of the MAPK14 pathway. Moreover, coronin 2A interacted with PRMT5 (protein arginine N-methyltransferase 5), which modulates the sensitivity of tumour cells to TRAIL-induced cell death. CONCLUSIONS We show that increased expression of coronin 2A is associated with the malignant phenotype of human colon carcinoma. Moreover, we linked coronin 2A to MAPK14 and PRMT5 signalling pathways involved in tumour progression.
Collapse
Affiliation(s)
- Raphael H Rastetter
- Center for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, Joseph-Stelzmann-Street 52, 50931, Cologne, Germany
- Present address: Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Margit Blömacher
- Center for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, Joseph-Stelzmann-Street 52, 50931, Cologne, Germany
| | - Uta Drebber
- Institute of Pathology, University Hospital of Cologne, 50931, Cologne, Germany
| | - Marija Marko
- Center for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, Joseph-Stelzmann-Street 52, 50931, Cologne, Germany
| | - Juliane Behrens
- Center for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, Joseph-Stelzmann-Street 52, 50931, Cologne, Germany
| | - Roxana Solga
- Center for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, Joseph-Stelzmann-Street 52, 50931, Cologne, Germany
| | - Sarah Hojeili
- Center for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, Joseph-Stelzmann-Street 52, 50931, Cologne, Germany
| | - Kurchi Bhattacharya
- Center for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, Joseph-Stelzmann-Street 52, 50931, Cologne, Germany
| | | | | | - Margarete Odenthal
- Institute of Pathology, University Hospital of Cologne, 50931, Cologne, Germany
| | - Anja Ziemann
- Center for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, Joseph-Stelzmann-Street 52, 50931, Cologne, Germany
| | - Ludwig Eichinger
- Center for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, Joseph-Stelzmann-Street 52, 50931, Cologne, Germany
| | - Christoph S Clemen
- Center for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, Joseph-Stelzmann-Street 52, 50931, Cologne, Germany.
| |
Collapse
|
34
|
Sin SH, Kim Y, Eason A, Dittmer DP. KSHV Latency Locus Cooperates with Myc to Drive Lymphoma in Mice. PLoS Pathog 2015; 11:e1005135. [PMID: 26327622 PMCID: PMC4556645 DOI: 10.1371/journal.ppat.1005135] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 08/07/2015] [Indexed: 11/18/2022] Open
Abstract
Kaposi sarcoma-associated herpesvirus (KSHV) has been linked to Kaposi sarcoma and B-cell malignancies. Mechanisms of KSHV-induced oncogenesis remain elusive, however, in part due to lack of reliable in vivo models. Recently, we showed that transgenic mice expressing the KSHV latent genes, including all viral microRNAs, developed splenic B cell hyperplasia with 100% penetrance, but only a fraction converted to B cell lymphomas, suggesting that cooperative oncogenic events were missing. Myc was chosen as a possible candidate, because Myc is deregulated in many B cell lymphomas. We crossed KSHV latency locus transgenic (latency) mice to Cα Myc transgenic (Myc) mice. By itself these Myc transgenic mice develop lymphomas only rarely. In the double transgenic mice (Myc/latency) we observed plasmacytosis, severe extramedullary hematopoiesis in spleen and liver, and increased proliferation of splenocytes. Myc/latency mice developed frank lymphoma at a higher rate than single transgenic latency or Myc mice. These data indicate that the KSHV latency locus cooperates with the deregulated Myc pathways to further lymphoma progression. Kaposi’s sarcoma-associated herpesvirus (KSHV) is associated with Kaposi sarcoma as well as the B-cell malignancies primary effusion lymphoma (PEL) and multicentric Castleman’s disease (MCD). Only a few KSHV genes, including all micro RNAs, are expressed in latent infection of B cells. We already showed that KSHV latency locus transgenic mice consistently develop B cell hyperplasia. To find out possible host contributions to lymphomagenesis we evaluated the Myc oncogene. Compound KSHV latency locus and Myc mice developed plasmacytosis exemplified by increased frequency of plasma cells in the spleen, a high accelerated lymphoma development, and severe extramedullary hematopoiesis. These data show that the KSHV latency locus can cooperate with Myc activation in viral lymphomagenesis.
Collapse
Affiliation(s)
- Sang-Hoon Sin
- Department of Microbiology and Immunology, Program in Global Oncology, Lineberger Comprehensive Cancer Center, and Center for AIDS Research, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Yongbaek Kim
- Department of Veterinary Medicine, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Anthony Eason
- Department of Microbiology and Immunology, Program in Global Oncology, Lineberger Comprehensive Cancer Center, and Center for AIDS Research, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Dirk P. Dittmer
- Department of Microbiology and Immunology, Program in Global Oncology, Lineberger Comprehensive Cancer Center, and Center for AIDS Research, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
35
|
Viollet C, Davis DA, Reczko M, Ziegelbauer JM, Pezzella F, Ragoussis J, Yarchoan R. Next-Generation Sequencing Analysis Reveals Differential Expression Profiles of MiRNA-mRNA Target Pairs in KSHV-Infected Cells. PLoS One 2015; 10:e0126439. [PMID: 25942495 PMCID: PMC4420468 DOI: 10.1371/journal.pone.0126439] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 04/02/2015] [Indexed: 01/21/2023] Open
Abstract
Kaposi's sarcoma associated herpesvirus (KSHV) causes several tumors, including primary effusion lymphoma (PEL) and Kaposi's sarcoma (KS). Cellular and viral microRNAs (miRNAs) have been shown to play important roles in regulating gene expression. A better knowledge of the miRNA-mediated pathways affected by KSHV infection is therefore important for understanding viral infection and tumor pathogenesis. In this study, we used deep sequencing to analyze miRNA and cellular mRNA expression in a cell line with latent KSHV infection (SLKK) as compared to the uninfected SLK line. This approach revealed 153 differentially expressed human miRNAs, eight of which were independently confirmed by qRT-PCR. KSHV infection led to the dysregulation of ~15% of the human miRNA pool and most of these cellular miRNAs were down-regulated, including nearly all members of the 14q32 miRNA cluster, a genomic locus linked to cancer and that is deleted in a number of PEL cell lines. Furthermore, we identified 48 miRNAs that were associated with a total of 1,117 predicted or experimentally validated target mRNAs; of these mRNAs, a majority (73%) were inversely correlated to expression changes of their respective miRNAs, suggesting miRNA-mediated silencing mechanisms were involved in a number of these alterations. Several dysregulated miRNA-mRNA pairs may facilitate KSHV infection or tumor formation, such as up-regulated miR-708-5p, associated with a decrease in pro-apoptotic caspase-2 and leukemia inhibitory factor LIF, or down-regulated miR-409-5p, associated with an increase in the p53-inhibitor MDM2. Transfection of miRNA mimics provided further evidence that changes in miRNAs are driving some observed mRNA changes. Using filtered datasets, we also identified several canonical pathways that were significantly enriched in differentially expressed miRNA-mRNA pairs, such as the epithelial-to-mesenchymal transition and the interleukin-8 signaling pathways. Overall, our data provide a more detailed understanding of KSHV latency and guide further studies of the biological significance of these changes.
Collapse
Affiliation(s)
- Coralie Viollet
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - David A. Davis
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Martin Reczko
- Institute of Molecular Oncology, Alexander Fleming Biomedical Sciences Research Center, Vari, Greece
| | - Joseph M. Ziegelbauer
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Francesco Pezzella
- Nuffield Division of Clinical Laboratory Sciences, University of Oxford, Oxford, United Kingdom
| | - Jiannis Ragoussis
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Institute of Molecular Oncology, Alexander Fleming Biomedical Sciences Research Center, Vari, Greece
- McGill University and Génome Québec Innovation Centre, Montréal, Canada
- * E-mail: (JR); (RY)
| | - Robert Yarchoan
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail: (JR); (RY)
| |
Collapse
|
36
|
Castillo JJ, Chavez JC, Hernandez-Ilizaliturri FJ, Montes-Moreno S. CD20-negative diffuse large B-cell lymphomas: biology and emerging therapeutic options. Expert Rev Hematol 2015; 8:343-54. [DOI: 10.1586/17474086.2015.1007862] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
37
|
Bhutani M, Polizzotto MN, Uldrick TS, Yarchoan R. Kaposi sarcoma-associated herpesvirus-associated malignancies: epidemiology, pathogenesis, and advances in treatment. Semin Oncol 2014; 42:223-46. [PMID: 25843728 DOI: 10.1053/j.seminoncol.2014.12.027] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Kaposi sarcoma associated herpesvirus (KSHV), a γ2-herpesvirus, also known as human herpesvirus-8, is the etiologic agent of three virally associated tumors: Kaposi sarcoma, a plasmablastic form of multicentric Castleman disease (KSHV-MCD), and primary effusion lymphoma. These malignancies are predominantly seen in people with acquired immunodeficiencies, including acquired immunodeficiency syndrome and iatrogenic immunosuppression in the setting of organ transplantation, but can also develop in the elderly. Kaposi sarcoma (KS) is most frequent in regions with high KSHV seroprevalence, such as sub-Saharan Africa and some Mediterranean countries. In the era of combination antiviral therapy, inflammatory manifestations associated with KSHV-infection, including KSHV-MCD, a recently described KSHV-associated inflammatory cytokine syndrome and KS immune reconstitution syndrome also are increasingly appreciated. Our understanding of viral and immune mechanisms of oncogenesis continues to expand and lead to improved molecular diagnostics, as well as novel therapeutic strategies that employ immune modulatory agents, manipulations of the tumor microenvironment, virus-activated cytotoxic therapy, or agents that target interactions between specific virus-host cell signaling pathways. This review focuses on the epidemiology and advances in molecular and clinical research that reflects the current understanding of viral oncogenesis, clinical manifestations, and therapeutics for KSHV-associated tumors.
Collapse
Affiliation(s)
- Manisha Bhutani
- HIV and AIDS Malignancy Branch, Center for Cancer Research, NCI, Bethesda, MD
| | - Mark N Polizzotto
- HIV and AIDS Malignancy Branch, Center for Cancer Research, NCI, Bethesda, MD
| | - Thomas S Uldrick
- HIV and AIDS Malignancy Branch, Center for Cancer Research, NCI, Bethesda, MD
| | - Robert Yarchoan
- HIV and AIDS Malignancy Branch, Center for Cancer Research, NCI, Bethesda, MD.
| |
Collapse
|
38
|
Kim H, Jang W, Shin S, Park J, Kim M, Kim Y, Han K, Lee GD, Won H, Yang YJ. Two cases of concurrent development of essential thrombocythemia with chronic lymphocytic leukemia, one related to clonal B-cell lymphocytosis, tested by array comparative genomic hybridization. Int J Hematol 2014; 101:612-9. [PMID: 25491494 DOI: 10.1007/s12185-014-1713-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 11/19/2014] [Accepted: 11/19/2014] [Indexed: 12/19/2022]
Abstract
We present two cases of concurrent development of essential thrombocythemia (ET) with chronic lymphocytic leukemia (CLL) and one related to clonal B-cell lymphocytosis (CBL). Both patients were referred for lymphocytosis and thrombocytosis. A bone marrow biopsy revealed infiltration of small, mature lymphocytes and megakaryocytic hyperplasia. Flow cytometric immunophenotyping and immunoglobulin (IG) gene clonality tests revealed clonal B lymphocytes. Both patients were positive for the JAK2 V617F mutation in whole bone marrow aspirate. The JAK2 V617F mutation was present in isolated B lymphocytes of patient 1, but not patient 2. Cytogenetics were normal in both patients. An array comparative genomic hybridization (CGH) analyses of B cells revealed a gain of 4q28.3, which is reported in non-Hodgkin's lymphoma, in patient 1, and deletion 22q11.22, which is associated with CLL, and a gain of Xp22.31 in patient 2. In both patients, B cells showed no myeloproliferative neoplasm (MPN)-specific genetic abnormalities. These results suggest that different oncogenic mechanisms in each cell lineage may underlie the concurrent development of ET and CLL (or CBL). Array CGH may be helpful in identifying the pathogenic mechanism in cases of concurrent development of lymphoid neoplasm and MPN.
Collapse
Affiliation(s)
- Hyunjung Kim
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Daejeon St. Mary's Hospital, Daejeon, 301-723, Korea (South)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Interleukin 1 receptor-associated kinase 1 (IRAK1) mutation is a common, essential driver for Kaposi sarcoma herpesvirus lymphoma. Proc Natl Acad Sci U S A 2014; 111:E4762-8. [PMID: 25341731 DOI: 10.1073/pnas.1405423111] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Primary effusion lymphoma (PEL) is an AIDS-defining cancer. All PELs carry Kaposi sarcoma-associated herpesvirus (KSHV). X chromosome-targeted sequencing of PEL identified 34 common missense mutations in 100% of cases. This included a Phe196Ser change in the interleukin 1 receptor-associated kinase 1 (IRAK1). The mutation was verified in primary PEL exudates. IRAK1 is the binding partner of MyD88, which is mutated in a fraction of Waldenström macroglobulinemia. Together, these two mediate toll-like receptor (TLR) signaling. IRAK1 was constitutively phosphorylated in PEL and required for survival, implicating IRAK1 and TLR signaling as a driver pathway in PEL and as a new drug development target.
Collapse
|
40
|
Juskevicius D, Dietsche T, Lorber T, Rufle A, Ruiz C, Mickys U, Krasniqi F, Dirnhofer S, Tzankov A. Extracavitary primary effusion lymphoma: clinical, morphological, phenotypic and cytogenetic characterization using nuclei enrichment technique. Histopathology 2014; 65:693-706. [PMID: 25139766 DOI: 10.1111/his.12478] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 06/11/2014] [Indexed: 11/29/2022]
Abstract
AIMS Primary effusion lymphoma (PEL) is a rare form of aggressive B-cell lymphoma, which typically manifests as malignant effusion in the body cavities. However, extracavitary solid variants are also described. The aim of this study was to investigate copy number aberrations in two cases of solid PEL at their first occurrences and relapse by applying a newly developed methodology of tumour nuclei enrichment. METHODS AND RESULTS Using histological and genetic techniques, a novel protocol for tumour nuclei enrichment by flow sorting and array-comparative genomic hybridization, we characterized two cases of extracavitary PEL, one of which later relapsed as effusion. Both primary tumours were positive for HHV8 and EBV, confined to lymph nodes, and aberrantly expressed CD3, yet displaying clonal immunoglobulin gene rearrangements indicating B-cell origin. Cytogenetic characterization of primary tumours revealed modest number of aberrations, partially overlapping with previously reported affected loci. The effusional relapse in case 1 was cytogenetically related to the primary tumour but showed dramatic increase of chromosomal instability. CONCLUSIONS We for the first time demonstrate a cytogenetic relationship between solid and effusional presentations of PEL. Moreover, we provide an indirect evidence of multiple malignant clones, which gave rise to clonally-related, yet karyotypically different relapsing lymphoma manifestations.
Collapse
|
41
|
Sun Y, Shang Y, Ren G, Zhou L, Feng B, Li K, Deng L, Liang J, Lu Y, Wang X. Coronin3 regulates gastric cancer invasion and metastasis by interacting with Arp2. Cancer Biol Ther 2014; 15:1163-73. [PMID: 24918434 DOI: 10.4161/cbt.29501] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Coronin3 expression is increased in gastric cancer (GC) tissues and can promote GC invasion and metastasis. However, the mechanisms underlying Coronin3 function in GC remain unclear. In this study, we aimed to explore the interacting molecules essential for the tumor-promoting effects of Coronin3 in GC. Using mass spectrometric analysis, functional studies, and immunohistochemistry, we found that Arp2 interacted with Coronin3, and ectopic expression of Arp2 promoted GC cell migration and invasion, while Arp2 knockdown suppressed whole-cell motility and attenuated the Coronin3-mediated upregulation of cell migration and invasion. In addition, both proteins correlated with the metastatic status of GC patients. Furthermore, survival analyses demonstrated that both Coronin3 and Arp2 correlated with overall GC patient survival, and the combination of Coronin3 and Arp2 most accurately predicted GC patient prognosis. Combined, these data demonstrate that Coronin3 can regulate GC invasion and metastasis through Arp2, and the combination of Coronin3 and Arp2 provides a potential marker for predicting GC prognosis.
Collapse
Affiliation(s)
- Yi Sun
- State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases; Xijing Hospital; Fourth Military Medical University; Xi'an, PR China; Department of Ultrasound Diagnostics; Tangdu Hospital; Fourth Military Medical University; Xi'an, PR China
| | - Yulong Shang
- State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases; Xijing Hospital; Fourth Military Medical University; Xi'an, PR China
| | - Gui Ren
- State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases; Xijing Hospital; Fourth Military Medical University; Xi'an, PR China
| | - Lin Zhou
- The 88th Hospital of PLA; Tai'an, PR China
| | - Bin Feng
- State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases; Xijing Hospital; Fourth Military Medical University; Xi'an, PR China
| | - Kai Li
- State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases; Xijing Hospital; Fourth Military Medical University; Xi'an, PR China
| | - Lin Deng
- State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases; Xijing Hospital; Fourth Military Medical University; Xi'an, PR China
| | - Jie Liang
- State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases; Xijing Hospital; Fourth Military Medical University; Xi'an, PR China
| | - Yuanyuan Lu
- State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases; Xijing Hospital; Fourth Military Medical University; Xi'an, PR China
| | - Xin Wang
- State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases; Xijing Hospital; Fourth Military Medical University; Xi'an, PR China
| |
Collapse
|
42
|
Gloghini A, Volpi CC, Caccia D, Gualeni AV, Cilia AM, Carbone A, Bongarzone I. Primary effusion lymphoma: secretome analysis reveals novel candidate biomarkers with potential pathogenetic significance. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:618-30. [PMID: 24521760 DOI: 10.1016/j.ajpath.2013.11.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Revised: 10/25/2013] [Accepted: 11/26/2013] [Indexed: 12/14/2022]
Abstract
Primary effusion lymphoma (PEL) is a rare B-cell neoplasm in which tumor cells are consistently infected by Kaposi's sarcoma-associated herpesvirus and usually grow in body cavities without tumor mass formation. To detect new proteins related to pathogenesis, four established cell lines from PEL (CRO-AP2, CRO-AP3, CRO-AP5, and CRO-AP6) were characterized by proteomics analysis of the secretome. The secretomes were analyzed using two complementary mass spectrometry platforms: liquid chromatography-mass spectrometry and matrix-assisted laser desorption/ionization time-of-flight-based approaches. Among 266 proteins identified from the proteomics analysis, 139 were considered as predicted secreted. Twenty proteins were specifically secreted by PEL cell lines after comparison with secretomes of human cell lines representative of diverse solid tumors and leukemias. More important, 27 additional proteins were shared by all CRO-AP PEL cell lines. The presence of these proteins was confirmed by IHC in CRO-AP cell lines and in six other PEL cell lines, four PEL clinical samples, and three extracavitary Kaposi's sarcoma-associated herpesvirus-positive solid lymphomas included for comparative analysis. Functional classification showed that PEL cell secretomes were enriched in proteins specifically involved in inflammation/immune response, growth/cell cycle, and mRNA processing, in addition to structural/matrix proteins and proteins with enzymatic activity.
Collapse
Affiliation(s)
- Annunziata Gloghini
- Department of Diagnostic Pathology and Laboratory Medicine, Fondazione IRCCS, Istituto Nazionale dei Tumori, Milano
| | - Chiara C Volpi
- Department of Diagnostic Pathology and Laboratory Medicine, Fondazione IRCCS, Istituto Nazionale dei Tumori, Milano
| | - Dario Caccia
- Proteomics Laboratory, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS, Istituto Nazionale dei Tumori, Milano
| | - Ambra V Gualeni
- Department of Diagnostic Pathology and Laboratory Medicine, Fondazione IRCCS, Istituto Nazionale dei Tumori, Milano
| | - Anna M Cilia
- Department of Pathology, Centro di Riferimento Oncologico Aviano (CRO Aviano National Cancer Institute), Istituto Nazionale Tumori (National Cancer Institute), IRCCS, Aviano, Italy
| | - Antonino Carbone
- Department of Pathology, Centro di Riferimento Oncologico Aviano (CRO Aviano National Cancer Institute), Istituto Nazionale Tumori (National Cancer Institute), IRCCS, Aviano, Italy.
| | - Italia Bongarzone
- Proteomics Laboratory, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS, Istituto Nazionale dei Tumori, Milano
| |
Collapse
|
43
|
Dittmer DP, Damania B. Kaposi sarcoma associated herpesvirus pathogenesis (KSHV)--an update. Curr Opin Virol 2013; 3:238-44. [PMID: 23769237 PMCID: PMC3716290 DOI: 10.1016/j.coviro.2013.05.012] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 05/03/2013] [Accepted: 05/14/2013] [Indexed: 10/26/2022]
Abstract
Kaposi sarcoma-associated herpesvirus (KSHV) is the etiological agent of several human malignancies. The virus is able to modulate pro-proliferative pathways to its advantage, while simultaneously inhibiting pro-apoptotic signaling pathways. These functions are carried out by multiple viral proteins acting in concert. The overall outcome is the survival and proliferation of the infected cell. Additionally, the virus also modulates innate immune pathways to allow for prolonged survival of the infected cell following primary infection, and during viral latency. Here we review the latest advances in our knowledge of KSHV pathogenesis.
Collapse
Affiliation(s)
- Dirk P. Dittmer
- Lineberger Comprehensive Cancer Center and Department of Microbiology & Immunology, Program in Global Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Blossom Damania
- Lineberger Comprehensive Cancer Center and Department of Microbiology & Immunology, Program in Global Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
44
|
Ziemann A, Hess S, Bhuwania R, Linder S, Kloppenburg P, Noegel AA, Clemen CS. CRN2 enhances the invasiveness of glioblastoma cells. Neuro Oncol 2013; 15:548-61. [PMID: 23410663 PMCID: PMC3635520 DOI: 10.1093/neuonc/nos388] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 12/17/2012] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Movement of tumor cells involves dynamic remodeling of the actin cytoskeleton, which is regulated by actin binding proteins, such as CRN2 (synonyms: coronin 1C, coronin 3). In vitro, CRN2 participates in secretion, matrix degradation, protrusion formation, and cell migration. Furthermore, expression of CRN2 correlates with the malignant phenotype of human diffuse gliomas. CRN2's effects on actin polymerization and F-actin bundling are abolished by protein kinase 2 (CK2) dependent phosphorylation at serine 463. METHODS We generated human U373 glioblastoma cell lines with knock-down of CRN2 or over-expression of CRN2 variants and studied their behavior in vitro and ex vivo in organotypic brain slice cultures. RESULTS CRN2 over-expression and expression of the S463A phospho-resistant CRN2 variant increase proliferation, matrix degradation, and invasion but decrease adhesion and formation of invadopodia-like extensions in vitro. Knock-down of CRN2 and expression of S463D phospho-mimetic CRN2 generally have opposite effects. Analysis of invadopodia-like cell extensions shows a diffuse relocalization of F-actin in CRN2 knockdown cells, whereas expression of S463A and S463D mutant CRN2 causes enrichments of F-actin structures at the center and rime zone, respectively. Fluorescence recovery after photobleaching studies of CRN2 and F-actin in lamellipodia show that both CRN2 variants decrease the turnover of actin filaments. Glioblastoma cells over-expressing wild-type or S463A CRN2, which were transplanted onto brain slices, characteristically developed into tumors with an invasive phenotype. CONCLUSIONS Overall, our data indicate that CRN2 participates in cancer progression via modulation of the actin cytoskeleton.
Collapse
Affiliation(s)
- Anja Ziemann
- Center for Biochemistry, Institute of Biochemistry I, Medical Faculty (A.Z., A.A.N., C.S.C.), Institute of Zoology (S.H., P.K.), Center for Molecular Medicine Cologne (S.H., P.K., A.A.N.), and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne (S.H., P.K., A.A.N.); and Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (R.B., S.L.)
| | - Simon Hess
- Center for Biochemistry, Institute of Biochemistry I, Medical Faculty (A.Z., A.A.N., C.S.C.), Institute of Zoology (S.H., P.K.), Center for Molecular Medicine Cologne (S.H., P.K., A.A.N.), and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne (S.H., P.K., A.A.N.); and Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (R.B., S.L.)
| | - Ridhirama Bhuwania
- Center for Biochemistry, Institute of Biochemistry I, Medical Faculty (A.Z., A.A.N., C.S.C.), Institute of Zoology (S.H., P.K.), Center for Molecular Medicine Cologne (S.H., P.K., A.A.N.), and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne (S.H., P.K., A.A.N.); and Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (R.B., S.L.)
| | - Stefan Linder
- Center for Biochemistry, Institute of Biochemistry I, Medical Faculty (A.Z., A.A.N., C.S.C.), Institute of Zoology (S.H., P.K.), Center for Molecular Medicine Cologne (S.H., P.K., A.A.N.), and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne (S.H., P.K., A.A.N.); and Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (R.B., S.L.)
| | - Peter Kloppenburg
- Center for Biochemistry, Institute of Biochemistry I, Medical Faculty (A.Z., A.A.N., C.S.C.), Institute of Zoology (S.H., P.K.), Center for Molecular Medicine Cologne (S.H., P.K., A.A.N.), and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne (S.H., P.K., A.A.N.); and Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (R.B., S.L.)
| | - Angelika A. Noegel
- Center for Biochemistry, Institute of Biochemistry I, Medical Faculty (A.Z., A.A.N., C.S.C.), Institute of Zoology (S.H., P.K.), Center for Molecular Medicine Cologne (S.H., P.K., A.A.N.), and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne (S.H., P.K., A.A.N.); and Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (R.B., S.L.)
| | - Christoph S. Clemen
- Center for Biochemistry, Institute of Biochemistry I, Medical Faculty (A.Z., A.A.N., C.S.C.), Institute of Zoology (S.H., P.K.), Center for Molecular Medicine Cologne (S.H., P.K., A.A.N.), and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne (S.H., P.K., A.A.N.); and Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (R.B., S.L.)
| |
Collapse
|
45
|
Bhatt AP, Damania B. AKTivation of PI3K/AKT/mTOR signaling pathway by KSHV. Front Immunol 2013; 3:401. [PMID: 23316192 PMCID: PMC3539662 DOI: 10.3389/fimmu.2012.00401] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 12/12/2012] [Indexed: 12/21/2022] Open
Abstract
As an obligate intracellular parasite, Kaposi sarcoma-associated herpesvirus (KSHV) relies on the host cell machinery to meet its needs for survival, viral replication, production, and dissemination of progeny virions. KSHV is a gammaherpesvirus that is associated with three different malignancies: Kaposi sarcoma (KS), and two B cell lymphoproliferative disorders, primary effusion lymphoma (PEL) and multicentric Castleman’s disease. KSHV viral proteins modulate the cellular phosphatidylinositol-3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) signaling pathway, which is a ubiquitous pathway that also controls B lymphocyte proliferation and development. We review the mechanisms by which KSHV manipulates the PI3K/AKT/mTOR pathway, with a specific focus on B cells.
Collapse
Affiliation(s)
- Aadra P Bhatt
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill Chapel Hill, NC, USA ; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill Chapel Hill, NC, USA
| | | |
Collapse
|
46
|
Ren G, Tian Q, An Y, Feng B, Lu Y, Liang J, Li K, Shang Y, Nie Y, Wang X, Fan D. Coronin 3 promotes gastric cancer metastasis via the up-regulation of MMP-9 and cathepsin K. Mol Cancer 2012; 11:67. [PMID: 22974233 PMCID: PMC3522055 DOI: 10.1186/1476-4598-11-67] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 09/10/2012] [Indexed: 12/18/2022] Open
Abstract
Background Coronins are a family of highly evolutionary conserved proteins reportedly involved in the regulation of actin cytoskeletal dynamics, although only coronin 3 has been shown to be related to cancer cell migration. In glioblastoma cells, the knockdown of coronin 3 inhibits cell proliferation and invasion. Coronin 3 is also associated with the aggression and metastasis of hepatocellular carcinoma. In this paper, we analyze the migration, invasion and metastasis abilities of gastric cancer cells after up- or down-regulation of coronin 3, and explore the mechanism of coronin 3 in the process of gastric cancer metastasis. Results The expression of coronin 3 was higher in the highly metastatic sub-cell line MKN28-M, which we established in our laboratory. We also demonstrated that the expression of coronin 3 was remarkably higher in lymph lode metastases than in primary gastric cancer tissues, and over-expression of coronin 3 was correlated with the increased clinical stage and lymph lode metastasis. Recombinant lentiviral vectors encoding shRNAs were designed to down-regulate coronin 3 expression in gastric cancer cell lines. Stable knockdown of coronin 3 by this lentiviral vector could efficiently inhibit the migration and invasion of MKN45 gastric cancer cells. In contrast, up-regulation of coronin 3 significantly enhanced migration and invasion of MKN28-NM cells. In addition, knockdown of coronin 3 significantly reduced liver metastasis in mice after tail vein injection of gastric cancer cells. The Human Tumor Metastasis PCR Array was used to screen the metastasis-associated genes identified by the down-regulation of coronin 3, and the results suggested that, following the knockdown of coronin 3, the tumor cell migration and invasion were inhibited by the reduced expression of MMP-9 and cathepsin K. Conclusion Coronin 3 is highly expressed in gastric cancer metastases and can promote the metastatic behaviors of gastric cancer cells, including their migration and invasion.
Collapse
Affiliation(s)
- Gui Ren
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Tirado CA, Chen W, García R, Kohlman KA, Rao N. Genomic profiling using array comparative genomic hybridization define distinct subtypes of diffuse large B-cell lymphoma: a review of the literature. J Hematol Oncol 2012; 5:54. [PMID: 22967872 PMCID: PMC3479011 DOI: 10.1186/1756-8722-5-54] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 05/31/2012] [Indexed: 11/13/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common type of non-Hodgkin Lymphoma comprising of greater than 30% of adult non-Hodgkin Lymphomas. DLBCL represents a diverse set of lymphomas, defined as diffuse proliferation of large B lymphoid cells. Numerous cytogenetic studies including karyotypes and fluorescent in situ hybridization (FISH), as well as morphological, biological, clinical, microarray and sequencing technologies have attempted to categorize DLBCL into morphological variants, molecular and immunophenotypic subgroups, as well as distinct disease entities. Despite such efforts, most lymphoma remains undistinguishable and falls into DLBCL, not otherwise specified (DLBCL-NOS). The advent of microarray-based studies (chromosome, RNA, gene expression, etc) has provided a plethora of high-resolution data that could potentially facilitate the finer classification of DLBCL. This review covers the microarray data currently published for DLBCL. We will focus on these types of data; 1) array based CGH; 2) classical CGH; and 3) gene expression profiling studies. The aims of this review were three-fold: (1) to catalog chromosome loci that are present in at least 20% or more of distinct DLBCL subtypes; a detailed list of gains and losses for different subtypes was generated in a table form to illustrate specific chromosome loci affected in selected subtypes; (2) to determine common and distinct copy number alterations among the different subtypes and based on this information, characteristic and similar chromosome loci for the different subtypes were depicted in two separate chromosome ideograms; and, (3) to list re-classified subtypes and those that remained indistinguishable after review of the microarray data. To the best of our knowledge, this is the first effort to compile and review available literatures on microarray analysis data and their practical utility in classifying DLBCL subtypes. Although conventional cytogenetic methods such as Karyotypes and FISH have played a major role in classification schemes of lymphomas, better classification models are clearly needed to further understanding the biology, disease outcome and therapeutic management of DLBCL. In summary, microarray data reviewed here can provide better subtype specific classifications models for DLBCL.
Collapse
Affiliation(s)
- Carlos A Tirado
- Department of Pathology & Laboratory Medicine UCLA - David Geffen UCLA, School of Medicine, Los Angeles, USA.
| | | | | | | | | |
Collapse
|
48
|
Borie R, Cadranel J, Galicier L, Couderc LJ. [Pulmonary involvement due to HHV-8 virus during the course of HIV infection]. Rev Mal Respir 2012; 29:1209-23. [PMID: 23228679 DOI: 10.1016/j.rmr.2012.02.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 02/08/2012] [Indexed: 12/01/2022]
Abstract
HHV-8 is a herpes virus discovered in 1994 in Kaposi sarcoma cells. Its involvement was later demonstrated in multicentric Castleman disease and in primary lymphoma effusion lymphoma. These diseases arise almost exclusively in immunocompromised patients, mostly in association with HIV infection. Apart from Kaposi's sarcoma, combined antiretroviral therapy does not seem to have reduced the incidence of these diseases, which remain rare. In these three diseases, pulmonary involvement is common and may be the presenting feature. Kaposi's sarcoma of the lung is usually asymptomatic but may require specific therapy. Pulmonary involvement is mostly associated with cutaneous disease. Patients with Castleman disease typically present with fever and lymphadenopathy, associated with interstitial lung disease without opportunistic infection. Patients with primary lymphoma effusion presents with fever and an exudative lymphocytic pleural effusion, without a pleural mass on the CT-scan. Rapid diagnosis of these conditions avoids unnecessary invasive examinations and leads to prompt specific treatment.
Collapse
Affiliation(s)
- R Borie
- Service de Pneumologie A, Centre de Compétence Maladies Rares Pulmonaires, Hôpital Bichat, Assistance publique-Hôpitaux de Paris, 46, rue Henri-Huchard, 75877 Paris Cedex 18, France.
| | | | | | | |
Collapse
|
49
|
Xavier CP, Rastetter RH, Blömacher M, Stumpf M, Himmel M, Morgan RO, Fernandez MP, Wang C, Osman A, Miyata Y, Gjerset RA, Eichinger L, Hofmann A, Linder S, Noegel AA, Clemen CS. Phosphorylation of CRN2 by CK2 regulates F-actin and Arp2/3 interaction and inhibits cell migration. Sci Rep 2012; 2:241. [PMID: 22355754 PMCID: PMC3268813 DOI: 10.1038/srep00241] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 12/20/2011] [Indexed: 01/27/2023] Open
Abstract
CRN2 (synonyms: coronin 1C, coronin 3) functions in the re-organization of the actin network and is implicated in cellular processes like protrusion formation, secretion, migration and invasion. We demonstrate that CRN2 is a binding partner and substrate of protein kinase CK2, which phosphorylates CRN2 at S463 in its C-terminal coiled coil domain. Phosphomimetic S463D CRN2 loses the wild-type CRN2 ability to inhibit actin polymerization, to bundle F-actin, and to bind to the Arp2/3 complex. As a consequence, S463D mutant CRN2 changes the morphology of the F-actin network in the front of lamellipodia. Our data imply that CK2-dependent phosphorylation of CRN2 is involved in the modulation of the local morphology of complex actin structures and thereby inhibits cell migration.
Collapse
Affiliation(s)
- Charles-Peter Xavier
- Center for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931, Cologne, Germany
- Both authors contributed equally to this work
- Present address: Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4256, USA
| | - Raphael H. Rastetter
- Center for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931, Cologne, Germany
- Both authors contributed equally to this work
| | - Margit Blömacher
- Center for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931, Cologne, Germany
| | - Maria Stumpf
- Center for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931, Cologne, Germany
| | - Mirko Himmel
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Reginald O. Morgan
- Department of Biochemistry and Molecular Biology, University of Oviedo and University Institute of Biotechnology of Asturias, Oviedo, 33006, Spain
| | - Maria-Pilar Fernandez
- Department of Biochemistry and Molecular Biology, University of Oviedo and University Institute of Biotechnology of Asturias, Oviedo, 33006, Spain
| | - Conan Wang
- Structural Chemistry, Eskitis Institute for Cell and Molecular Therapies, Griffith University, Brisbane, Qld 4111, Australia
| | - Asiah Osman
- Structural Chemistry, Eskitis Institute for Cell and Molecular Therapies, Griffith University, Brisbane, Qld 4111, Australia
| | - Yoshihiko Miyata
- Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Ruth A. Gjerset
- Torrey Pines Institute for Molecular Studies, San Diego, California, 92121, USA
| | - Ludwig Eichinger
- Center for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931, Cologne, Germany
| | - Andreas Hofmann
- Structural Chemistry, Eskitis Institute for Cell and Molecular Therapies, Griffith University, Brisbane, Qld 4111, Australia
| | - Stefan Linder
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Angelika A. Noegel
- Center for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931, Cologne, Germany
| | - Christoph S. Clemen
- Center for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931, Cologne, Germany
| |
Collapse
|
50
|
Chang TY, Wu YH, Cheng CC, Wang HW. Differentially regulated splice variants and systems biology analysis of Kaposi's sarcoma-associated herpesvirus-infected lymphatic endothelial cells. Nucleic Acids Res 2011; 39:6970-85. [PMID: 21646333 PMCID: PMC3167639 DOI: 10.1093/nar/gkr405] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Alternative RNA splicing greatly increases proteome diversity, and the possibility of studying genome-wide alternative splicing (AS) events becomes available with the advent of high-throughput genomics tools devoted to this issue. Kaposi's sarcoma associated herpesvirus (KSHV) is the etiological agent of KS, a tumor of lymphatic endothelial cell (LEC) lineage, but little is known about the AS variations induced by KSHV. We analyzed KSHV-controlled AS using high-density microarrays capable of detecting all exons in the human genome. Splicing variants and altered exon–intron usage in infected LEC were found, and these correlated with protein domain modification. The different 3′-UTR used in new transcripts also help isoforms to escape microRNA-mediated surveillance. Exome-level analysis further revealed information that cannot be disclosed using classical gene-level profiling: a significant exon usage difference existed between LEC and CD34+ precursor cells, and KSHV infection resulted in LEC-to-precursor, dedifferentiation-like exon level reprogramming. Our results demonstrate the application of exon arrays in systems biology research, and suggest the regulatory effects of AS in endothelial cells are far more complex than previously observed. This extra layer of molecular diversity helps to account for various aspects of endothelial biology, KSHV life cycle and disease pathogenesis that until now have been unexplored.
Collapse
Affiliation(s)
- Ting-Yu Chang
- Institute of Microbiology and Immunology, National Yang-Ming University, 11221, Taipei, Taiwan
| | | | | | | |
Collapse
|