1
|
Zhao F, Zhou M, Liu J, Chang C, Jiang P, Wei K, Zhao J, Shan Y, Zheng Y, Shi Y, Li Y, Zheng Y, Li Q, Wang L, Qu H, Lv L, Guo S, Lv X, Zhu Q, He D. Correlation analysis of circulating PCDH17 DNA methylation changes with rheumatoid arthritis patients. Sci Rep 2025; 15:17939. [PMID: 40410297 PMCID: PMC12102364 DOI: 10.1038/s41598-025-02236-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Accepted: 05/12/2025] [Indexed: 05/25/2025] Open
Abstract
Analyze the correlation between the DNA methylation levels of Protocadherin 17 (PCDH17) cg03865667 and rheumatoid arthritis (RA), and evaluate its potential as a biomarker for diagnosing RA. Peripheral blood samples were collected from a cohort of 370 individuals, comprising patients diagnosed with RA, ankylosing spondylitis (AS), psoriatic arthritis (PsA), gout, systemic lupus erythematosus (SLE), dermatomyositis (DM), primary Sjögren's syndrome (SS), and healthy controls (HC), for subsequent analysis.DNA methylation sequencing techniques were employed to evaluate the methylation levels of the PCDH17 cg03865667 locus. Relative to the HC, AS, and SS groups, PCDH17 cg03865667 was significantly downregulated in RA patients (P = 0.0403; p = 0.0290; p = 0.044). Compared to the HC group, the methylation levels at CpG sites 57,631,544, 57,631,571, and 57,631,581 were significantly downregulated in RA patients (p = 0.0078; p = 0.0123; p = 0.0309). For the TTCCTT and TTTCTT haplotypes, methylation levels were significantly lower in RA patients than in HC (p = 0.0188; p = 0.0053), particularly for the TTTCTT haplotype. Significant differences were observed between the CCP(-) RF(-) group, the CCP(+) / RF(+) group, and the HC group among the RA subgroups. No significant differences were found within the double-positive subgroup.The average methylation level of PCDH17 was negatively correlated with C-reactive protein (CRP) (r=-0.28, p = 6.9e-4). This study indicates that PCDH17 cg03865667 methylation may function as a potential biomarker for RA diagnosis. The subgroup analysis suggests that it may serve as a potential biomarker for diagnosing RA, indicating a capacity to enhance the diagnostic accuracy for seronegative RA and reduce the likelihood of missed and incorrect diagnoses.
Collapse
Affiliation(s)
- Fuyu Zhao
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Guanghua, China
- Shanghai Guanghua Hospital of Integrative Medicine, Shanghai, China
- The Research Institute for Joint Diseases, Shanghai Academy of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Mi Zhou
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Guanghua, China
- Shanghai Guanghua Hospital of Integrative Medicine, Shanghai, China
- The Research Institute for Joint Diseases, Shanghai Academy of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Jia Liu
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Guanghua, China
- Shanghai Guanghua Hospital of Integrative Medicine, Shanghai, China
- The Research Institute for Joint Diseases, Shanghai Academy of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Cen Chang
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Guanghua, China
- Shanghai Guanghua Hospital of Integrative Medicine, Shanghai, China
- The Research Institute for Joint Diseases, Shanghai Academy of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Ping Jiang
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Guanghua, China
- Shanghai Guanghua Hospital of Integrative Medicine, Shanghai, China
- The Research Institute for Joint Diseases, Shanghai Academy of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Kai Wei
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Guanghua, China
- Shanghai Guanghua Hospital of Integrative Medicine, Shanghai, China
- The Research Institute for Joint Diseases, Shanghai Academy of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Jianan Zhao
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Guanghua, China
- Shanghai Guanghua Hospital of Integrative Medicine, Shanghai, China
- The Research Institute for Joint Diseases, Shanghai Academy of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Yu Shan
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Guanghua, China
- Shanghai Guanghua Hospital of Integrative Medicine, Shanghai, China
- The Research Institute for Joint Diseases, Shanghai Academy of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Yixin Zheng
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Guanghua, China
- Shanghai Guanghua Hospital of Integrative Medicine, Shanghai, China
- The Research Institute for Joint Diseases, Shanghai Academy of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Yiming Shi
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Guanghua, China
- Shanghai Guanghua Hospital of Integrative Medicine, Shanghai, China
- The Research Institute for Joint Diseases, Shanghai Academy of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Yunshen Li
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Guanghua, China
- Shanghai Guanghua Hospital of Integrative Medicine, Shanghai, China
- The Research Institute for Joint Diseases, Shanghai Academy of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Yuejuan Zheng
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Qianqian Li
- Department of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Rd, Shanghai, 200001, P. R. China
| | - Lei Wang
- Department of Rheumatology, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional, Chinese Medicine, Shanghai, 200082, P. R. China
| | - Huanru Qu
- Department of Rheumatology, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Longhua, 200032, P. R. China
| | - Liangjing Lv
- Department of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Rd, Shanghai, 200001, P. R. China
| | - Shicheng Guo
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Guanghua, China
| | - Xinliang Lv
- Traditional Chinese Medicine Hospital of Inner Mongolia Autonomous Region, Hohhot, 010020, Inner Mongolia Autonomous Region, P.R. China.
| | - Qi Zhu
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Guanghua, China.
- Shanghai Guanghua Hospital of Integrative Medicine, Shanghai, China.
- The Research Institute for Joint Diseases, Shanghai Academy of Traditional Chinese Medicine, Shanghai, P. R. China.
| | - Dongyi He
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Guanghua, China.
- Shanghai Guanghua Hospital of Integrative Medicine, Shanghai, China.
- The Research Institute for Joint Diseases, Shanghai Academy of Traditional Chinese Medicine, Shanghai, P. R. China.
| |
Collapse
|
2
|
Stokes AE, Clark HM, Edwards JL, Payton RR, Beever JE, Freeman TF, Hessock EA, Schrick FN, Moorey SE. Transcriptome profiles of blastocysts originating from oocytes matured in follicular fluid from preovulatory follicles of greater or lesser maturity. BMC Genomics 2025; 26:339. [PMID: 40186098 PMCID: PMC11969919 DOI: 10.1186/s12864-025-11521-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 03/24/2025] [Indexed: 04/07/2025] Open
Abstract
BACKGROUND Oocyte competence for early embryo development relies on intercellular communication between the maturing oocyte and preovulatory follicle. Preovulatory follicle maturity, as indicated by serum estradiol concentration or follicle diameter, has previously been linked to pregnancy, follicular fluid metabolites, cumulus-oocyte metabolism, and oocyte competency for embryo development. Such relationships indicate metabolic and developmental programming of the oocyte based on the preovulatory follicle's physiological status, but downstream impacts on the molecular signature of blastocysts have not been examined. We hypothesized that supplementing maturing oocytes with follicular fluid originating from preovulatory follicles of greater or lesser maturity would impact the transcriptome of resulting blastocysts and indicate metabolic programming of the embryo that originated from the oocyte's maturation environment. The objective was to investigate the effect of follicle maturity on the oocyte by examining the transcriptome of blastocysts originating from oocytes matured in the presence of follicular fluid from preovulatory follicles of greater or lesser maturity. RESULTS In vitro maturing oocytes were supplemented with follicular fluid collected from preovulatory follicles of greater or lesser maturity. Following identical embryo culture procedures, RNA-sequencing was performed on pools of 2 blastocysts (Greater, n = 12; Lesser, n = 15; all with stage code = 7 and quality code = 1). A total of 12,310 genes were identified in blastocysts after filtering to remove lowly abundant genes. There were 113 genes that differed in expression between blastocysts originating from oocytes matured in greater versus lesser maturity follicular fluid (eFDR < 0.01). Although no pathways were significantly enriched with differentially expressed genes, transcriptome profiles suggested improved Wnt/β-catenin signaling, metabolism, and protection from oxidative stress in blastocysts derived from oocytes matured in greater maturity follicular fluid, while potential unregulated cell growth presented in blastocysts resulting from the lesser follicle maturity treatment. CONCLUSIONS Follicular fluid from preovulatory follicles of greater physiological maturity may better prepare maturing oocytes for early embryo development. Furthermore, oocytes matured in follicular fluid from preovulatory follicles of lesser maturity may attempt to overcompensate for nutrient deficit during oocyte maturation, leading to uncontrolled cellular growth and increased oxidative stress.
Collapse
Affiliation(s)
- Allyson E Stokes
- Department of Animal Science, University of Tennessee Institute of Agriculture and AgResearch, 2506 River Drive, Knoxville, TN, 37996, USA
| | - Hannah M Clark
- Department of Animal Science, University of Tennessee Institute of Agriculture and AgResearch, 2506 River Drive, Knoxville, TN, 37996, USA
| | - J Lannett Edwards
- Department of Animal Science, University of Tennessee Institute of Agriculture and AgResearch, 2506 River Drive, Knoxville, TN, 37996, USA
| | - Rebecca R Payton
- Department of Animal Science, University of Tennessee Institute of Agriculture and AgResearch, 2506 River Drive, Knoxville, TN, 37996, USA
| | - Jon E Beever
- Department of Animal Science, University of Tennessee Institute of Agriculture and AgResearch, 2506 River Drive, Knoxville, TN, 37996, USA
| | - Trevor F Freeman
- Department of Animal Science, University of Tennessee Institute of Agriculture and AgResearch, 2506 River Drive, Knoxville, TN, 37996, USA
| | - Emma A Hessock
- Department of Animal Science, University of Tennessee Institute of Agriculture and AgResearch, 2506 River Drive, Knoxville, TN, 37996, USA
| | - F Neal Schrick
- Department of Animal Science, University of Tennessee Institute of Agriculture and AgResearch, 2506 River Drive, Knoxville, TN, 37996, USA
| | - Sarah E Moorey
- Department of Animal Science, University of Tennessee Institute of Agriculture and AgResearch, 2506 River Drive, Knoxville, TN, 37996, USA.
| |
Collapse
|
3
|
Yang J, Hu B, Zhang G, Wu K, Zhang X, Ji M, Zhang B, Shi H, Li D. Protocadherin 17 weakens the lenvatinib resistance of liver cancer through inducing ferroptosis. Exp Cell Res 2025; 447:114495. [PMID: 40049312 DOI: 10.1016/j.yexcr.2025.114495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/23/2025] [Accepted: 03/04/2025] [Indexed: 03/09/2025]
Abstract
Lenvatinib has been employed in the treatment of advanced liver cancer; however, its clinical application is significantly impeded by frequent drug resistance. Recent studies have revealed that lenvatinib treatment triggers ferroptosis in liver cancer cells, providing a novel approach to addressing lenvatinib resistance. In this study, we initially validated the induction of ferroptosis by lenvatinib in liver cancer cells. Remarkably, protocadherin 17 (PCDH17), an adhesion-related protein, was found to be down-regulated in liver cancer, and overexpression of PCDH17 could induce ferroptosis in liver cancer cells. Importantly, silencing PCDH17 inhibited the impact of lenvatinib on liver cancer cell ferroptosis, while overexpression of PCDH17 had the opposite effect. These findings were further confirmed using a xenograft tumor model in BALB/c nude mice. Additionally, lenvatinib-resistant (LR) liver cancer cells were generated for additional validation purposes. It was observed that LR-liver cancer cells lost their susceptibility to ferroptosis induction by lenvatinib; however, overexpression of PCDH17 reactivated their sensitivity to ferroptosis. Corresponding results were also verified in BALB/c nude mice models. In conclusion, these results suggest that as a novel regulator of ferroptosis, PCDH17 can alleviate lenvatinib resistance and potentially enhance the therapeutic efficacy of lenvatinib in treating liver cancer.
Collapse
Affiliation(s)
- Jun Yang
- Department of General Surgery, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China; Research Center of Digestive Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Bin Hu
- Research Center of Digestive Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of General Surgery, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Guowei Zhang
- Research Center of Digestive Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Kai Wu
- Research Center of Digestive Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xue Zhang
- Research Center of Digestive Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Mengxuan Ji
- Research Center of Digestive Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Bin Zhang
- Research Center of Digestive Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Hengliang Shi
- Research Center of Digestive Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China; Central Laboratory, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Dechun Li
- Department of General Surgery, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China.
| |
Collapse
|
4
|
Dong F, Zhou P, Kong F, Cao S, Pan X, Cai S, Chen X, Wang S, Li N, He B, Zhao R, Zhang B, Bie Q. PCDH17 induces colorectal cancer metastasis by destroying the vascular endothelial barrier. Cell Death Dis 2025; 16:36. [PMID: 39837826 PMCID: PMC11750977 DOI: 10.1038/s41419-025-07355-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 12/03/2024] [Accepted: 01/14/2025] [Indexed: 01/23/2025]
Abstract
Compromised vascular integrity facilitates the cancer cells extravasation and metastasis. However, the mechanisms leading to a disruption in vascular integrity in colorectal cancer (CRC) remain unclear. In this study, PCDH17 expression was higher in the vascular endothelial cells of colon cancer with distant metastasis, and the rates of PCDH17+ endothelial cells (ECs) was associated with the M stage in clinical pathological characteristics analysis and correlated with a poor survival prognosis. The liver and lung metastatic dissemination of MC-38 was significantly decreased in PCDH17-/-mice. The ubiquitination and degradation of VEGFR2 was prevented by the interaction between PCDH17 and the E3 ubiquitin ligase MARCH5, which causing the separation of internalized VE-cadherin, and increased the vascular permeability and metastasis of CRC. These results highlight the importance of PCDH17 in maintaining vascular integrity, which has emphasis for endothelial barrier function in metastatic cancer. PCDH17 has the potential to be a marker for predicting tumor metastasis as well as a viable treatment target for CRC.
Collapse
Affiliation(s)
- Fengyun Dong
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
- Postdoctoral Mobile Station of Shandong University, Jinan, Shandong, China
| | - Pinghui Zhou
- Department of Clinical Medicine, Jining Medical University, Jining, Shandong, China
| | - Feifei Kong
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Sijie Cao
- Department of Clinical Medicine, Jining Medical University, Jining, Shandong, China
| | - Xiaozao Pan
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Shujing Cai
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Xinke Chen
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Sen Wang
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Na Li
- Department of Pediatrics, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Baoyu He
- Department of Medical Research Center, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Rou Zhao
- Department of Medical Research Center, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Bin Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China.
- Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining, Shandong, China.
| | - Qingli Bie
- Department of Medical Research Center, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China.
| |
Collapse
|
5
|
Wang Y, Liu H, Zhang M, Xu J, Zheng L, Liu P, Chen J, Liu H, Chen C. Epigenetic reprogramming in gastrointestinal cancer: biology and translational perspectives. MedComm (Beijing) 2024; 5:e670. [PMID: 39184862 PMCID: PMC11344282 DOI: 10.1002/mco2.670] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 08/27/2024] Open
Abstract
Gastrointestinal tumors, the second leading cause of human mortality, are characterized by their association with inflammation. Currently, progress in the early diagnosis and effective treatment of gastrointestinal tumors is limited. Recent whole-genome analyses have underscored their profound heterogeneity and extensive genetic and epigenetic reprogramming. Epigenetic reprogramming pertains to dynamic and hereditable alterations in epigenetic patterns, devoid of concurrent modifications in the underlying DNA sequence. Common epigenetic modifications encompass DNA methylation, histone modifications, noncoding RNA, RNA modifications, and chromatin remodeling. These modifications possess the potential to invoke or suppress a multitude of genes associated with cancer, thereby governing the establishment of chromatin configurations characterized by diverse levels of accessibility. This intricate interplay assumes a pivotal and indispensable role in governing the commencement and advancement of gastrointestinal cancer. This article focuses on the impact of epigenetic reprogramming in the initiation and progression of gastric cancer, esophageal cancer, and colorectal cancer, as well as other uncommon gastrointestinal tumors. We elucidate the epigenetic landscape of gastrointestinal tumors, encompassing DNA methylation, histone modifications, chromatin remodeling, and their interrelationships. Besides, this review summarizes the potential diagnostic, therapeutic, and prognostic targets in epigenetic reprogramming, with the aim of assisting clinical treatment strategies.
Collapse
Affiliation(s)
- Yingjie Wang
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Hongyu Liu
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Mengsha Zhang
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Jing Xu
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Liuxian Zheng
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Pengpeng Liu
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Jingyao Chen
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Hongyu Liu
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Chong Chen
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| |
Collapse
|
6
|
Zhao N, Lai C, Wang Y, Dai S, Gu H. Understanding the role of DNA methylation in colorectal cancer: Mechanisms, detection, and clinical significance. Biochim Biophys Acta Rev Cancer 2024; 1879:189096. [PMID: 38499079 DOI: 10.1016/j.bbcan.2024.189096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/18/2024] [Accepted: 03/13/2024] [Indexed: 03/20/2024]
Abstract
Colorectal cancer (CRC) is one of the deadliest malignancies worldwide, ranking third in incidence and second in mortality. Remarkably, early stage localized CRC has a 5-year survival rate of over 90%; in stark contrast, the corresponding 5-year survival rate for metastatic CRC (mCRC) is only 14%. Compounding this problem is the staggering lack of effective therapeutic strategies. Beyond genetic mutations, which have been identified as critical instigators of CRC initiation and progression, the importance of epigenetic modifications, particularly DNA methylation (DNAm), cannot be underestimated, given that DNAm can be used for diagnosis, treatment monitoring and prognostic evaluation. This review addresses the intricate mechanisms governing aberrant DNAm in CRC and its profound impact on critical oncogenic pathways. In addition, a comprehensive review of the various techniques used to detect DNAm alterations in CRC is provided, along with an exploration of the clinical utility of cancer-specific DNAm alterations.
Collapse
Affiliation(s)
- Ningning Zhao
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, China
| | - Chuanxi Lai
- Division of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China
| | - Yunfei Wang
- Zhejiang ShengTing Biotech. Ltd, Hangzhou 310000, China
| | - Sheng Dai
- Division of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China.
| | - Hongcang Gu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, China.
| |
Collapse
|
7
|
Chakraborty S, Nandi P, Mishra J, Niharika, Roy A, Manna S, Baral T, Mishra P, Mishra PK, Patra SK. Molecular mechanisms in regulation of autophagy and apoptosis in view of epigenetic regulation of genes and involvement of liquid-liquid phase separation. Cancer Lett 2024; 587:216779. [PMID: 38458592 DOI: 10.1016/j.canlet.2024.216779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/19/2024] [Accepted: 02/29/2024] [Indexed: 03/10/2024]
Abstract
Cellular physiology is critically regulated by multiple signaling nexuses, among which cell death mechanisms play crucial roles in controlling the homeostatic landscape at the tissue level within an organism. Apoptosis, also known as programmed cell death, can be induced by external and internal stimuli directing the cells to commit suicide in unfavourable conditions. In contrast, stress conditions like nutrient deprivation, infection and hypoxia trigger autophagy, which is lysosome-mediated processing of damaged cellular organelle for recycling of the degraded products, including amino acids. Apparently, apoptosis and autophagy both are catabolic and tumor-suppressive pathways; apoptosis is essential during development and cancer cell death, while autophagy promotes cell survival under stress. Moreover, autophagy plays dual role during cancer development and progression by facilitating the survival of cancer cells under stressed conditions and inducing death in extreme adversity. Despite having two different molecular mechanisms, both apoptosis and autophagy are interconnected by several crosslinking intermediates. Epigenetic modifications, such as DNA methylation, post-translational modification of histone tails, and miRNA play a pivotal role in regulating genes involved in both autophagy and apoptosis. Both autophagic and apoptotic genes can undergo various epigenetic modifications and promote or inhibit these processes under normal and cancerous conditions. Epigenetic modifiers are uniquely important in controlling the signaling pathways regulating autophagy and apoptosis. Therefore, these epigenetic modifiers of both autophagic and apoptotic genes can act as novel therapeutic targets against cancers. Additionally, liquid-liquid phase separation (LLPS) also modulates the aggregation of misfolded proteins and provokes autophagy in the cytosolic environment. This review deals with the molecular mechanisms of both autophagy and apoptosis including crosstalk between them; emphasizing epigenetic regulation, involvement of LLPS therein, and possible therapeutic approaches against cancers.
Collapse
Affiliation(s)
- Subhajit Chakraborty
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Piyasa Nandi
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Jagdish Mishra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Niharika
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Ankan Roy
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Soumen Manna
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Tirthankar Baral
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Prahallad Mishra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Pradyumna Kumar Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bypass Road, Bhauri, Bhopal, 462 030, MP, India
| | - Samir Kumar Patra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India.
| |
Collapse
|
8
|
Geng M, Liu W, Li J, Yang G, Tian Y, Jiang X, Xin Y. LncRNA as a regulator in the development of diabetic complications. Front Endocrinol (Lausanne) 2024; 15:1324393. [PMID: 38390204 PMCID: PMC10881719 DOI: 10.3389/fendo.2024.1324393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/16/2024] [Indexed: 02/24/2024] Open
Abstract
Diabetes is a metabolic disease characterized by hyperglycemia, which induces the production of AGEs, ROS, inflammatory cytokines, and growth factors, leading to the formation of vascular dysfunction and target organ damage, promoting the development of diabetic complications. Diabetic nephropathy, retinopathy, and cardiomyopathy are common complications of diabetes, which are major contributors to disability and death in people with diabetes. Long non-coding RNAs affect gene transcription, mRNA stability, and translation efficiency to influence gene expression for a variety of biological functions. Over the past decade, it has been demonstrated that dysregulated long non-coding RNAs are extensively engaged in the pathogenesis of many diseases, including diabetic complications. Thus, this review discusses the regulations of long non-coding RNAs on the primary pathogenesis of diabetic complications (oxidative stress, inflammation, fibrosis, and microvascular dysfunction), and some of these long non-coding RNAs may function as potential biomarkers or therapeutic targets for diabetic complications.
Collapse
Affiliation(s)
- Mengrou Geng
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University and College of Basic Medical Science, Jilin University, Changchun, China
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Science, Jilin University, Changchun, China
| | - Wei Liu
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Science, Jilin University, Changchun, China
| | - Jinjie Li
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Science, Jilin University, Changchun, China
| | - Ge Yang
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Science, Jilin University, Changchun, China
| | - Yuan Tian
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Science, Jilin University, Changchun, China
| | - Xin Jiang
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University and College of Basic Medical Science, Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- National Health Commission (NHC) Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Ying Xin
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Science, Jilin University, Changchun, China
| |
Collapse
|
9
|
Liu Z, Hu Q, Hu B, Cao K, Xu T, Hou T, Cao T, Wang R, Shi H, Zhang B. Ubiquitin ligase NEDD4 promotes the proliferation of hepatocellular carcinoma cells through targeting PCDH17 protein for ubiquitination and degradation. J Biol Chem 2024; 300:105593. [PMID: 38145746 PMCID: PMC10826327 DOI: 10.1016/j.jbc.2023.105593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 12/07/2023] [Accepted: 12/13/2023] [Indexed: 12/27/2023] Open
Abstract
Neural precursor cell expressed developmentally downregulated 4 (NEDD4), an E3 ubiquitin ligase, is commonly upregulated in human hepatocellular carcinoma (HCC) and functions as an oncogenic factor in the progression of HCC, but the molecular mechanism needs be further explored. In this study, we found that NEDD4 could facilitate the proliferation of HCC cells, which was associated with regulating the ERK signaling. Further investigation showed that protocadherin 17 (PCDH17) was a potential substrate of NEDD4, and restoration of PCDH17 could block the facilitation of ERK signaling and HCC cells proliferation induced by NEDD4 overexpression. Whereafter, we confirmed that NEDD4 interacted with PCDH17 and promoted the Lys33-linked polyubiquitination and degradation of it via the proteasome pathway. Finally, NEDD4 protein level was found to be inversely correlated with that of PCDH17 in human HCC tissues. In conclusion, these results suggest that NEDD4 acts as an E3 ubiquitin ligase for PCDH17 ubiquitination and degradation thereby promoting the proliferation of HCC cells through regulating the ERK signaling, which may provide novel evidence for NEDD4 to be a promising therapeutic target for HCC.
Collapse
Affiliation(s)
- Zhiyi Liu
- Research Center of Digestive Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qinghe Hu
- Research Center of Digestive Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Bin Hu
- Research Center of Digestive Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Kuan Cao
- Research Center of Digestive Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Tao Xu
- Research Center of Digestive Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Tianqi Hou
- Research Center of Digestive Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Tong Cao
- Research Center of Digestive Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Renhao Wang
- Research Center of Digestive Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Hengliang Shi
- Research Center of Digestive Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Central Laboratory, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Bin Zhang
- Research Center of Digestive Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
10
|
Du X, Yi X, Zou X, Chen Y, Tai Y, Ren X, He X. PCDH1, a poor prognostic biomarker and potential target for pancreatic adenocarcinoma metastatic therapy. BMC Cancer 2023; 23:1102. [PMID: 37957639 PMCID: PMC10642060 DOI: 10.1186/s12885-023-11474-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 10/03/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Pancreatic adenocarcinoma (PAAD) is an aggressive solid tumour characterised by few early symptoms, high mortality, and lack of effective treatment. Therefore, it is important to identify new potential therapeutic targets and prognostic biomarkers of PAAD. METHODS The Cancer Genome Atlas and Genotype-Tissue Expression databases were used to identify the expression and prognostic model of protocadherin 1 (PCDH1). The prognostic performance of risk factors and diagnosis of patients with PAAD were evaluated by regression analysis, nomogram, and receiver operating characteristic curve. Paraffin sections were collected from patients for immunohistochemistry (IHC) analysis. The expression of PCDH1 in cells obtained from primary tumours or metastatic biopsies was identified using single-cell RNA sequencing (scRNA-seq). Real-time quantitative polymerase chain reaction (qPCR) and western blotting were used to verify PCDH1 expression levels and the inhibitory effects of the compounds. RESULTS The RNA and protein levels of PCDH1 were significantly higher in PAAD cells than in normal pancreatic ductal cells, similar to those observed in tissue sections from patients with PAAD. Aberrant methylation of the CpG site cg19767205 and micro-RNA (miRNA) hsa-miR-124-1 may be important reasons for the high PCDH1 expression in PAAD. Up-regulated PCDH1 promotes pancreatic cancer cell metastasis. The RNA levels of PCDH1 were significantly down-regulated following flutamide treatment. Flutamide reduced the percentage of PCDH1 RNA level in PAAD cells Panc-0813 to < 50%. In addition, the PCDH1 protein was significantly down-regulated after Panc-0813 cells were incubated with 20 µM flutamide and proves to be a potential therapeutic intervention for PAAD. CONCLUSION PCDH1 is a key prognostic biomarker and promoter of PAAD metastasis. Additionally, flutamide may serve as a novel compound that down-regulates PCDH1 expression as a potential treatment for combating PAAD progression and metastasis.
Collapse
Affiliation(s)
- Xingyi Du
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, 100850, China
- Nanhu Laboratory, Jiaxing, 314002, China
| | - Xiaoyu Yi
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, 100850, China
- Nanhu Laboratory, Jiaxing, 314002, China
| | - Xiaocui Zou
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Yuan Chen
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, 100850, China
- Nanhu Laboratory, Jiaxing, 314002, China
| | - Yanhong Tai
- Department of Pathology, No.307 Hospital of PLA, Beijing, 100071, China
| | - Xuhong Ren
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China.
| | - Xinhua He
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, 100850, China.
- Nanhu Laboratory, Jiaxing, 314002, China.
| |
Collapse
|
11
|
Lim NR, Chung WC. Helicobacter pylori-associated Chronic Atrophic Gastritis and Progression of Gastric Carcinogenesis. THE KOREAN JOURNAL OF GASTROENTEROLOGY = TAEHAN SOHWAGI HAKHOE CHI 2023; 82:171-179. [PMID: 37876256 DOI: 10.4166/kjg.2023.097] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 10/26/2023]
Abstract
Chronic inflammation due to a Helicobacter pylori (H. pylori) infection is a representative cause of gastric cancer that can promote gastric carcinogenesis by abnormally activating immune cells and increasing the inflammatory cytokines levels. H. pylori infections directly cause DNA double-strand breaks in gastric epithelial cells and genetic damage by increasing the enzymatic activity of cytidine deaminase. Eventually, gastric cancer is induced through dysplasia. Hypermethylation of tumor suppressor genes is an important cause of gastric cancer because of a H. pylori infection. In addition, the changes in gastric microbiota and the mucosal inflammatory changes associated with a co-infection with the Epstein-Barr virus are associated with gastric cancer development. DNA damage induced by H. pylori and the subsequent responses of gastric stem cells have implications for gastric carcinogenesis. Although the pathogenesis of H. pylori has been established, many uncertainties remain, requiring more study.
Collapse
Affiliation(s)
- Na Rae Lim
- Department of Internal Medicine, St. Vincent Hospital, The Catholic University of Korea, Suwon, Korea
| | - Woo Chul Chung
- Department of Internal Medicine, St. Vincent Hospital, The Catholic University of Korea, Suwon, Korea
| |
Collapse
|
12
|
Siamoglou S, Boers R, Koromina M, Boers J, Tsironi A, Chatzilygeroudi T, Lazaris V, Verigou E, Kourakli A, van IJcken WFJ, Gribnau J, Symeonidis A, Patrinos GP. Genome-wide analysis toward the epigenetic aetiology of myelodysplastic syndrome disease progression and pharmacoepigenomic basis of hypomethylating agents drug treatment response. Hum Genomics 2023; 17:37. [PMID: 37098643 PMCID: PMC10127336 DOI: 10.1186/s40246-023-00483-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/05/2023] [Indexed: 04/27/2023] Open
Abstract
Myelodysplastic syndromes (MDS) consist of a group of hematological malignancies characterized by ineffective hematopoiesis, cytogenetic abnormalities, and often a high risk of transformation to acute myeloid leukemia (AML). So far, there have been only a very limited number of studies assessing the epigenetics component contributing to the pathophysiology of these disorders, but not a single study assessing this at a genome-wide level. Here, we implemented a generic high throughput epigenomics approach, using methylated DNA sequencing (MeD-seq) of LpnPI digested fragments to identify potential epigenomic targets associated with MDS subtypes. Our results highlighted that PCDHG and ZNF gene families harbor potential epigenomic targets, which have been shown to be differentially methylated in a variety of comparisons between different MDS subtypes. Specifically, CpG islands, transcription start sites and post-transcriptional start sites within ZNF124, ZNF497 and PCDHG family are differentially methylated with fold change above 3,5. Overall, these findings highlight important aspects of the epigenomic component of MDS syndromes pathogenesis and the pharmacoepigenomic basis to the hypomethylating agents drug treatment response, while this generic high throughput whole epigenome sequencing approach could be readily implemented to other genetic diseases with a strong epigenetic component.
Collapse
Affiliation(s)
- Stavroula Siamoglou
- Laboratory of Pharmacogenomics and Individualized Therapy, Department of Pharmacy, University of Patras, School of Health Sciences, University Campus, 265 04, Rion, Patras, Greece
| | - Ruben Boers
- Department of Developmental Biology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Maria Koromina
- Laboratory of Pharmacogenomics and Individualized Therapy, Department of Pharmacy, University of Patras, School of Health Sciences, University Campus, 265 04, Rion, Patras, Greece
| | - Joachim Boers
- Department of Developmental Biology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Anna Tsironi
- Laboratory of Pharmacogenomics and Individualized Therapy, Department of Pharmacy, University of Patras, School of Health Sciences, University Campus, 265 04, Rion, Patras, Greece
| | - Theodora Chatzilygeroudi
- Hematology Division, Department of Internal Medicine, University of Patras Medical School, Patras, Greece
| | - Vasileios Lazaris
- Hematology Division, Department of Internal Medicine, University of Patras Medical School, Patras, Greece
| | - Evgenia Verigou
- Hematology Division, Department of Internal Medicine, University of Patras Medical School, Patras, Greece
| | - Alexandra Kourakli
- Hematology Division, Department of Internal Medicine, University of Patras Medical School, Patras, Greece
| | | | - Joost Gribnau
- Department of Developmental Biology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Argiris Symeonidis
- Hematology Division, Department of Internal Medicine, University of Patras Medical School, Patras, Greece
| | - George P Patrinos
- Laboratory of Pharmacogenomics and Individualized Therapy, Department of Pharmacy, University of Patras, School of Health Sciences, University Campus, 265 04, Rion, Patras, Greece.
- Department of Genetics and Genomics, United Arab Emirates University, College of Medicine and Health Sciences, Al-Ain, Abu Dhabi, United Arab Emirates.
- Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
13
|
Yang C, Liu H, Peng X, Li X, Rao G, Xie Z, Yang Q, Du L, Xie C. Key circRNAs, lncRNAs, and mRNAs of ShenQi Compound in Protecting Vascular Endothelial Cells From High Glucose Identified by Whole Transcriptome Sequencing. J Cardiovasc Pharmacol 2023; 81:300-316. [PMID: 36701487 PMCID: PMC10079301 DOI: 10.1097/fjc.0000000000001403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/11/2023] [Indexed: 01/27/2023]
Abstract
ABSTRACT Vascular endothelial cells, which make up the inner wall of blood arteries, are susceptible to damage from oxidative stress and apoptosis caused by hyperglycemia. According to certain reports, noncoding RNAs are involved in controlling oxidative stress and apoptosis. ShenQi Compound (SQC), a traditional herbal remedy, has been successfully treating diabetic vascular disease in China for more than 20 years. Although it is well established that SQC protects the vascular endothelium, the molecular mechanism remains unknown. Goto-Kakizaki rats, spontaneous type II diabetes rats, that consistently consume a high-fat diet were chosen as model animals. Six groups (control group, model group, metformin group, and 7.2 g/kg/d SQC group, 14.4 g/kg/d SQC group, and 28.8 g/kg/d SQC group) were included in this work, 15 rats each group. The approach of administration was gavage, and the same volume (5.0 mL/kg/d) was given in each group, once a day, 12 weeks. The thoracic aortas were removed after the rats were sacrificed. Oxidative reduction profile in thoracic aorta, histopathological observation of thoracic aorta, endothelial cell apoptosis in thoracic aorta, whole transcriptome sequencing, bioinformatic analyses, and qRT-PCR were conducted. As a result, SQC prevented the oxidative stress and apoptosis induced by a high glucose concentration. Under hyperglycemia condition, noncoding RNAs, including 1 downregulated novel circRNA (circRNA.3121), 3 downregulated lncRNAs (Skil.cSep08, Shawso.aSep08-unspliced, and MSTRG.164.2), and 1 upregulated mRNA (Pcdh17), were clearly reverse regulated by SQC. SQC plays a role in protecting vascular endothelial cells from high glucose mainly by mediating ncRNA to inhibit cell apoptosis and oxidative stress.
Collapse
Affiliation(s)
- Chan Yang
- Division of Endocrinology and Metabolism, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China
| | - Hanyu Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Sichuan, Chengdu, China
| | - Xi Peng
- Division of Endocrinology and Metabolism, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China
| | - Xinqiong Li
- Division of Endocrinology and Metabolism, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China
| | - Guocheng Rao
- Division of Endocrinology and Metabolism, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China
| | - Ziyan Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Sichuan, Chengdu, China
| | - Qiangfei Yang
- Jianyang City People's Hospital, Sichuan, China; and
| | - Lian Du
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chunguang Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Sichuan, Chengdu, China
| |
Collapse
|
14
|
Patel KB, Padhya TA, Huang J, Hernandez-Prera JC, Li T, Chung CH, Wang L, Wang X. Plasma cell-free DNA methylome profiling in pre- and post-surgery oral cavity squamous cell carcinoma. Mol Carcinog 2023; 62:493-502. [PMID: 36636912 PMCID: PMC10023468 DOI: 10.1002/mc.23501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/29/2022] [Accepted: 12/30/2022] [Indexed: 01/14/2023]
Abstract
Head and neck squamous cell carcinoma (HNSCC), a highly heterogeneous disease that involves multiple anatomic sites, is a leading cause of cancer-related mortality worldwide. Although the utility of noninvasive biomarkers based on circulating cell-free DNA (cfDNA) methylation profiling has been widely recognized, limited studies have been reported so far regarding the dynamics of cfDNA methylome in oral cavity squamous cell carcinoma (OCSCC). It is hypothesized in this study that comparison of methylation profiles in pre- and postsurgery plasma samples will reveal OCSCC-specific prognostic and diagnostic biomarkers. As a strategy to further prioritize tumor-specific targets, top differential methylated regions (DMRs) were called by reanalyzing methylation data from paired tumor and normal tissue collected in the the cancer genome atlas head-neck squamous cell carcinoma (TCGA) head and neck cancer cohort. Matched plasma samples from eight patients with OCSCC were collected at Moffitt Cancer Center before and after surgical resection. Plasma-derived cfDNA was analyzed by cfMBD-seq, which is a high-sensitive methylation profiling assay. Differential methylation analysis was then performed based on the matched samples profiled. In the top 200 HNSCC-specific DMRs detected based on the TCGA data set, a total of 23 regions reached significance in the plasma-based DMR test. The top five validated DMR regions (ranked by the significance in the plasma study) are located in the promoter regions of genes PENK, NXPH1, ZIK1, TBXT, and CDO1, respectively. The genome-wide cfDNA DMR analysis further highlighted candidate biomarkers located in genes SFRP4, SOX1, IRF4, and PCDH17. The prognostic relevance of candidate genes was confirmed by survival analysis using the TCGA data. This study supports the utility of cfDNA-based methylome profiling as a promising noninvasive biomarker source for OCSCC and HNSCC.
Collapse
Affiliation(s)
- Krupal B Patel
- Department of Head and Neck-Endocrine Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Tapan A Padhya
- Otolaryngology - Head and Neck Surgery, University of South Florida Morsani College of Medicine, Tampa, USA
| | - Jinyong Huang
- Department of Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Juan C Hernandez-Prera
- Department of Pathology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Tingyi Li
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Christine H Chung
- Department of Head and Neck-Endocrine Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Liang Wang
- Department of Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Xuefeng Wang
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
- Moffitt Cancer Center Immuno-Oncology Program, Tampa, FL 33612, USA
| |
Collapse
|
15
|
Appiah CO, Singh M, May L, Bakshi I, Vaidyanathan A, Dent P, Ginder G, Grant S, Bear H, Landry J. The epigenetic regulation of cancer cell recovery from therapy exposure and its implications as a novel therapeutic strategy for preventing disease recurrence. Adv Cancer Res 2023; 158:337-385. [PMID: 36990536 DOI: 10.1016/bs.acr.2022.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The ultimate goal of cancer therapy is the elimination of disease from patients. Most directly, this occurs through therapy-induced cell death. Therapy-induced growth arrest can also be a desirable outcome, if prolonged. Unfortunately, therapy-induced growth arrest is rarely durable and the recovering cell population can contribute to cancer recurrence. Consequently, therapeutic strategies that eliminate residual cancer cells reduce opportunities for recurrence. Recovery can occur through diverse mechanisms including quiescence or diapause, exit from senescence, suppression of apoptosis, cytoprotective autophagy, and reductive divisions resulting from polyploidy. Epigenetic regulation of the genome represents a fundamental regulatory mechanism integral to cancer-specific biology, including the recovery from therapy. Epigenetic pathways are particularly attractive therapeutic targets because they are reversible, without changes in DNA, and are catalyzed by druggable enzymes. Previous use of epigenetic-targeting therapies in combination with cancer therapeutics has not been widely successful because of either unacceptable toxicity or limited efficacy. The use of epigenetic-targeting therapies after a significant interval following initial cancer therapy could potentially reduce the toxicity of combination strategies, and possibly exploit essential epigenetic states following therapy exposure. This review examines the feasibility of targeting epigenetic mechanisms using a sequential approach to eliminate residual therapy-arrested populations, that might possibly prevent recovery and disease recurrence.
Collapse
Affiliation(s)
- Christiana O Appiah
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States; Wright Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, VA, United States
| | - Manjulata Singh
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Lauren May
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Ishita Bakshi
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Ashish Vaidyanathan
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Paul Dent
- Department of Biochemistry and Molecular Biology, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Gordon Ginder
- Department of Internal Medicine, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Steven Grant
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States; Department of Internal Medicine, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States; Department of Biochemistry and Molecular Biology, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States; Department of Microbiology & Immunology, Virginia Commonwealth University School of Medicine, Massey Cancer Center, Richmond, Richmond, VA, United States
| | - Harry Bear
- Department of Surgery, Virginia Commonwealth University School of Medicine, Massey Cancer Center, Richmond, VA, United States; Department of Microbiology & Immunology, Virginia Commonwealth University School of Medicine, Massey Cancer Center, Richmond, Richmond, VA, United States
| | - Joseph Landry
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States.
| |
Collapse
|
16
|
Yu L, Zhang MM, Hou JG. Molecular and cellular pathways in colorectal cancer: apoptosis, autophagy and inflammation as key players. Scand J Gastroenterol 2022; 57:1279-1290. [PMID: 35732586 DOI: 10.1080/00365521.2022.2088247] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Colorectal carcinogenesis (CRC) is one of the most aggressive forms of cancer, particularly in developing countries. It accounts for the second and third-highest reason for cancer-induced lethality in women and men respectively. CRC involves genetic and epigenetic modifications in colonic epithelium, leading to colon adenocarcinoma. The current review highlights the pathogenic mechanisms and multifactorial etiology of CRC, influenced by apoptosis, inflammation, and autophagy pathways. METHODS We have carried out a selective literature review on mechanisms contributing to the pathogenesis of CRC. RESULTS Resistance to senescence and apoptosis of the mesenchymal cells, which play a key role in intestinal organogenesis, morphogenesis and homeostasis, appears important for sporadic CRC. Additionally, inflammation-associated tumorigenesis is a key incident in CRC, supported by immune disruptors, adaptive and innate immune traits, environmental factors, etc. involving oxidative stress, DNA damage and epigenetic modulations. The self-digesting mechanism, autophagy, also plays a twin role in CRC through the participation of LC3/LC3-II, Beclin-1, ATG5, other autophagy proteins, and Inflammatory Bowel Disease (IBD) susceptibility genes. It facilitates the promotion of effective surveillance pathways and stimulates the generation of malignant tumor cells. The autophagy and apoptotic pathways undergo synergistic or antagonistic interactions in CRC and bear a critical association with IBD that results from the pro-neoplastic effects of persistent intestinal inflammation. Conversely, pro-inflammatory factors stimulate tumor growth and angiogenesis and inhibit apoptosis, suppressing anti-tumor activities. CONCLUSION Hence, research attempts for the development of potential therapies for CRC are in progress, primarily based on combinatorial approaches targeting apoptosis, inflammation, and autophagy.
Collapse
Affiliation(s)
- Lei Yu
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, China
| | - Miao-Miao Zhang
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, China
| | - Ji-Guang Hou
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
17
|
Ghavami S, Zamani M, Ahmadi M, Erfani M, Dastghaib S, Darbandi M, Darbandi S, Vakili O, Siri M, Grabarek BO, Boroń D, Zarghooni M, Wiechec E, Mokarram P. Epigenetic regulation of autophagy in gastrointestinal cancers. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166512. [PMID: 35931405 DOI: 10.1016/j.bbadis.2022.166512] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/11/2022] [Accepted: 07/28/2022] [Indexed: 11/09/2022]
Abstract
The development of novel therapeutic approaches is necessary to manage gastrointestinal cancers (GICs). Considering the effective molecular mechanisms involved in tumor growth, the therapeutic response is pivotal in this process. Autophagy is a highly conserved catabolic process that acts as a double-edged sword in tumorigenesis and tumor inhibition in a context-dependent manner. Depending on the stage of malignancy and cellular origin of the tumor, autophagy might result in cancer cell survival or death during the GICs' progression. Moreover, autophagy can prevent the progression of GIC in the early stages but leads to chemoresistance in advanced stages. Therefore, targeting specific arms of autophagy could be a promising strategy in the prevention of chemoresistance and treatment of GIC. It has been revealed that autophagy is a cytoplasmic event that is subject to transcriptional and epigenetic regulation inside the nucleus. The effect of epigenetic regulation (including DNA methylation, histone modification, and expression of non-coding RNAs (ncRNAs) in cellular fate is still not completely understood. Recent findings have indicated that epigenetic alterations can modify several genes and modulators, eventually leading to inhibition or promotion of autophagy in different cancer stages, and mediating chemoresistance or chemosensitivity. The current review focuses on the links between autophagy and epigenetics in GICs and discusses: 1) How autophagy and epigenetics are linked in GICs, by considering different epigenetic mechanisms; 2) how epigenetics may be involved in the alteration of cancer-related phenotypes, including cell proliferation, invasion, and migration; and 3) how epidrugs modulate autophagy in GICs to overcome chemoresistance.
Collapse
Affiliation(s)
- Saeid Ghavami
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada; Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Research Institute of Hematology and Oncology, Cancer Care Manitoba, Winnipeg, MB R3E 0V9, Canada; Faculty of Medicine in Zabrze, University of Technology in Katowice, Academia of Silesia, 41-800 Zabrze, Poland.
| | - Mozhdeh Zamani
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mazaher Ahmadi
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Mehran Erfani
- Department of Biochemistry, School of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Sanaz Dastghaib
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahsa Darbandi
- Fetal Health Research Center, Hope Generation Foundation, Tehran, Iran; Gene Therapy and Regenerative Medicine Research Center, Hope Generation Foundation, Tehran, Iran
| | - Sara Darbandi
- Fetal Health Research Center, Hope Generation Foundation, Tehran, Iran; Gene Therapy and Regenerative Medicine Research Center, Hope Generation Foundation, Tehran, Iran
| | - Omid Vakili
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Morvarid Siri
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Beniamin Oskar Grabarek
- Department of Histology, Cytophysiology, and Embryology in Zabrze, Faculty of Medicine in Zabrze, University of Technology in Katowice, Academia of Silesia, 41-800 Zabrze, Poland; Department of Gynecology and Obstetrics in Zabrze, Faculty of Medicine in Zabrze, University of Technology in Katowice, Academia of Silesia, 41-800 Zabrze, Poland
| | - Dariusz Boroń
- Department of Histology, Cytophysiology, and Embryology in Zabrze, Faculty of Medicine in Zabrze, University of Technology in Katowice, Academia of Silesia, 41-800 Zabrze, Poland; Department of Gynecology and Obstetrics in Zabrze, Faculty of Medicine in Zabrze, University of Technology in Katowice, Academia of Silesia, 41-800 Zabrze, Poland
| | - Maryam Zarghooni
- Department of Laboratory Medicine and Pathobiology, University of Toronto Alumni, Toronto, Canada
| | - Emilia Wiechec
- Division of Cell Biology, Department of Biomedical and Clinical Sciences, Linköping University, 58185 Linköping, Sweden
| | - Pooneh Mokarram
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
18
|
Behrouj H, Vakili O, Sadeghdoust A, Aligolighasemabadi N, Khalili P, Zamani M, Mokarram P. Epigenetic regulation of autophagy in coronavirus disease 2019 (COVID-19). Biochem Biophys Rep 2022; 30:101264. [PMID: 35469237 PMCID: PMC9021360 DOI: 10.1016/j.bbrep.2022.101264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 11/22/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has become the most serious global public health issue in the past two years, requiring effective therapeutic strategies. This viral infection is a contagious disease caused by new coronaviruses (nCoVs), also called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Autophagy, as a highly conserved catabolic recycling process, plays a significant role in the growth and replication of coronaviruses (CoVs). Therefore, there is great interest in understanding the mechanisms that underlie autophagy modulation. The modulation of autophagy is a very complex and multifactorial process, which includes different epigenetic alterations, such as histone modifications and DNA methylation. These mechanisms are also known to be involved in SARS-CoV-2 replication. Thus, molecular understanding of the epigenetic pathways linked with autophagy and COVID-19, could provide novel therapeutic targets for COVID-19 eradication. In this context, the current review highlights the role of epigenetic regulation of autophagy in controlling COVID-19, focusing on the potential therapeutic implications.
Collapse
Affiliation(s)
- Hamid Behrouj
- Behbahan Faculty of Medical Sciences, Behbahan, Iran
| | - Omid Vakili
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Adel Sadeghdoust
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Neda Aligolighasemabadi
- Department of Internal Medicine, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Parnian Khalili
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mozhdeh Zamani
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pooneh Mokarram
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Iran
| |
Collapse
|
19
|
Adiga D, Bhat S, Chakrabarty S, Kabekkodu SP. DOC2B is a negative regulator of Wnt/β-catenin signaling pathway in cervical cancer. Pharmacol Res 2022; 180:106239. [PMID: 35500882 DOI: 10.1016/j.phrs.2022.106239] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/13/2022] [Accepted: 04/27/2022] [Indexed: 10/18/2022]
Abstract
DOC2B is a ubiquitously expressed isoform of the double C-2 protein family that requires Ca2+ for most of its physiological functions. Initial findings have indicated that DOC2B participates in exocytosis, vesicular transport, insulin secretion and regulation, glucose homeostasis, and neurotransmitter release. Aberrant expression of DOC2B has been reported in diabetes, leukemia, and cervical cancer (CC). Our earlier studies have demonstrated the inhibitory effects of DOC2B on CC cell proliferation, migration, invasion, and EMT and suggested the possible role of DOC2B in Wnt signaling inhibition. However, the association between DOC2B downregulation and Wnt/β-catenin signaling activation and the underlying molecular mechanism remain elusive. Herein, we found that DOC2B inhibited Wnt/β-catenin pathway by enhancing the expression of the components of the CTNNB1 destruction complex and by fostering proteasomal degradation of CTNNB1. The translocation of CTNNB1 to the nucleus and its interaction with TCF/LEF family transcription factors was perturbed in the presence of DOC2B in a GSK3β independent manner. Further, we have identified DKK1 as one of the upregulated genes in the presence of DOC2B. DKK1 inhibition in DOC2B expressing cells by WAY262611 reactivated Wnt/β-catenin signaling, relieved DOC2B induced senescence, and alleviated the inhibitory effects of DOC2B on the aforementioned malignant behaviors. We have provided evidence for DOC2B-DKK1-senescence-Wnt/β-catenin-EMT signaling crosstalk to have tumor growth regulatory functions in CC. Thus, targeting DOC2B-DKK1-senescence-Wnt/β-catenin-EMT signaling crosstalk via activation of DOC2B may offer a novel approach to restraint malignant behaviors in CC.
Collapse
Affiliation(s)
- Divya Adiga
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, India
| | - Samatha Bhat
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, India
| | - Sanjiban Chakrabarty
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, India.
| |
Collapse
|
20
|
Bhol CS, Mishra SR, Patil S, Sahu SK, Kirtana R, Manna S, Shanmugam MK, Sethi G, Patra SK, Bhutia SK. PAX9 reactivation by inhibiting DNA methyltransferase triggers antitumor effect in oral squamous cell carcinoma. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166428. [PMID: 35533906 DOI: 10.1016/j.bbadis.2022.166428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/11/2022] [Accepted: 04/29/2022] [Indexed: 01/07/2023]
Abstract
Aberrant DNA hypermethylation is associated with oral carcinogenesis. Procaine, a local anesthetic, is a DNA methyltransferase (DNMT) inhibitor that activates anticancer mechanisms. However, its effect on silenced tumor suppressor gene (TSG) activation and its biological role in oral squamous cell carcinoma (OSCC) remain unknown. Here, we report procaine inhibited DNA methylation by suppressing DNMT activity and increased the expression of PAX9, a differentiation gene in OSCC cells. Interestingly, the reactivation of PAX9 by procaine found to inhibit cell growth and trigger apoptosis in OSCC in vitro and in vivo. Likely, the enhanced PAX9 expression after exposure to procaine controls stemness and differentiation through the autophagy-dependent pathway in OSCC cells. PAX9 inhibition abrogated procaine-induced apoptosis, autophagy, and inhibition of stemness. In OSCC cells, procaine improved anticancer drug sensitivity through PAX9, and its deficiency significantly blunted the anticancer drug sensitivity mediated by procaine. Additionally, NRF2 activation by procaine facilitated the antitumor response of PAX9, and pharmacological inhibition of NRF2 by ML385 reduced death and prevented the decrease in the orosphere-forming potential of OSCC cells. Furthermore, procaine promoted antitumor activity in FaDu xenografts in athymic nude mice, and immunohistochemistry data showed that PAX9 expression was significantly enhanced in the procaine group compared to the vehicle control. In conclusion, PAX9 reactivation in response to DNMT inhibition could trigger a potent antitumor mechanism to provide a new therapeutic strategy for OSCC.
Collapse
Affiliation(s)
- Chandra Sekhar Bhol
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Sundergarh 769008, Odisha, India
| | - Soumya Ranjan Mishra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Sundergarh 769008, Odisha, India
| | - Shankargouda Patil
- Department of Maxillofacial Surgery and Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| | - Sunil Kumar Sahu
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Sundergarh 769008, Odisha, India
| | - R Kirtana
- Epigenetics and Cancer Research Laboratory, Department of Life Science, National Institute of Technology Rourkela, Sundergarh 769008, Odisha, India
| | - Soumen Manna
- Epigenetics and Cancer Research Laboratory, Department of Life Science, National Institute of Technology Rourkela, Sundergarh 769008, Odisha, India
| | - Muthu Kumaraswamy Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Samir Kumar Patra
- Epigenetics and Cancer Research Laboratory, Department of Life Science, National Institute of Technology Rourkela, Sundergarh 769008, Odisha, India
| | - Sujit Kumar Bhutia
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Sundergarh 769008, Odisha, India.
| |
Collapse
|
21
|
Hypermethylation-Mediated Silencing of CIDEA, MAL and PCDH17 Tumour Suppressor Genes in Canine DLBCL: From Multi-Omics Analyses to Mechanistic Studies. Int J Mol Sci 2022; 23:ijms23074021. [PMID: 35409379 PMCID: PMC9000013 DOI: 10.3390/ijms23074021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 11/23/2022] Open
Abstract
Gene expression is controlled by epigenetic deregulation, a hallmark of cancer. The DNA methylome of canine diffuse large B-cell lymphoma (cDLBCL), the most frequent malignancy of B-lymphocytes in dog, has recently been investigated, suggesting that aberrant hypermethylation of CpG loci is associated with gene silencing. Here, we used a multi-omics approach (DNA methylome, transcriptome and copy number variations) combined with functional in vitro assays, to identify putative tumour suppressor genes subjected to DNA methylation in cDLBCL. Using four cDLBCL primary cell cultures and CLBL-1 cells, we found that CiDEA, MAL and PCDH17, which were significantly suppressed in DLBCL samples, were hypermethylated and also responsive (at the DNA, mRNA and protein level) to pharmacological unmasking with hypomethylating drugs and histone deacetylase inhibitors. The regulatory mechanism underneath the methylation-dependent inhibition of those target genes expression was then investigated through luciferase and in vitro methylation assays. In the most responsive CpG-rich regions, an in silico analysis allowed the prediction of putative transcription factor binding sites influenced by DNA methylation. Interestingly, regulatory elements for AP2, MZF1, NF-kB, PAX5 and SP1 were commonly identified in all three genes. This study provides a foundation for characterisation and experimental validation of novel epigenetically-dysregulated pathways in cDLBCL.
Collapse
|
22
|
Bhat S, Adiga D, Shukla V, Guruprasad KP, Kabekkodu SP, Satyamoorthy K. Metastatic suppression by DOC2B is mediated by inhibition of epithelial-mesenchymal transition and induction of senescence. Cell Biol Toxicol 2022; 38:237-258. [PMID: 33758996 PMCID: PMC8986756 DOI: 10.1007/s10565-021-09598-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 02/24/2021] [Indexed: 02/04/2023]
Abstract
Senescence induction and epithelial-mesenchymal transition (EMT) events are the opposite sides of the spectrum of cancer phenotypes. The key molecules involved in these processes may get influenced or altered by genetic and epigenetic changes during tumor progression. Double C2-like domain beta (DOC2B), an intracellular vesicle trafficking protein of the double C2 protein family, plays a critical role in exocytosis, neurotransmitter release, and intracellular vesicle trafficking. DOC2B is repressed by DNA promoter hypermethylation and functions as a tumor growth regulator in cervical cancer. To date, the molecular mechanisms of DOC2B in cervical cancer progression and metastasis is elusive. Herein, the biological functions and molecular mechanisms regulated by DOC2B and its impact on senescence and EMT are described. DOC2B inhibition promotes proliferation, growth, and migration by relieving G0/G1-S arrest, actin remodeling, and anoikis resistance in Cal27 cells. It enhanced tumor growth and liver metastasis in nude mice with the concomitant increase in metastasis-associated CD55 and CD61 expression. Inhibition of EMT and promotion of senescence by DOC2B is a calcium-dependent process and accompanied by calcium-mediated interaction between DOC2B and CDH1. In addition, we have identified several EMT and senescence regulators as targets of DOC2B. We show that DOC2B may act as a metastatic suppressor by inhibiting EMT through induction of senescence via DOC2B-calcium-EMT-senescence axis.
Collapse
Affiliation(s)
- Samatha Bhat
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Karnataka, 576104, India
| | - Divya Adiga
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Karnataka, 576104, India
| | - Vaibhav Shukla
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Karnataka, 576104, India
| | - Kanive Parashiva Guruprasad
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Karnataka, 576104, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Karnataka, 576104, India.
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Karnataka, 576104, India.
| |
Collapse
|
23
|
Choi JM, Kim SG. Effect of Helicobacter pylori Eradication on Epigenetic Changes in Gastric Cancer-related Genes. THE KOREAN JOURNAL OF HELICOBACTER AND UPPER GASTROINTESTINAL RESEARCH 2021. [DOI: 10.7704/kjhugr.2021.0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It is known that gastric carcinogenesis results from the progressive changes from chronic gastritis to gastric atrophy, intestinal metaplasia, dysplasia, and invasive carcinoma. Several genetic and epigenetic alterations are involved in this process, and Helicobacter pylori (H. pylori) infection is believed to induce the initiation and progression of these steps. From an epigenetic point of view, H. pylori induces hypermethylation of genes involved in the development of gastric cancer and regulates the expression of various microRNAs (miRNAs). These H. pylori-related epigenetic changes are accumulated not only at the site of neoplasm but also in the adjacent non-cancerous gastric mucosa. Thereby, a state vulnerable to gastric cancer known as an epigenetic field defect is formed. H. pylori eradication can have an effective chemopreventive effect in gastric carcinogenesis. However, the molecular biological changes that occur in the stomach environment during H. pylori eradication have not yet been established. Several studies have reported that H. pylori eradication can restore infection-related changes, especially epigenetic alterations in gastric cancer-related genes, but some studies have shown otherwise. Simply put, it appears that the recovery of methylated gastric cancer-related genes and miRNAs during H. pylori eradication may vary among genes and may also differ depending on the histological subtype of the gastric mucosa. In this review, we will discuss the potential mechanism of gastric cancer prevention by H. pylori eradication, mainly from an epigenetic perspective.
Collapse
|
24
|
Jin ZQ. MicroRNA targets and biomarker validation for diabetes-associated cardiac fibrosis. Pharmacol Res 2021; 174:105941. [PMID: 34656765 DOI: 10.1016/j.phrs.2021.105941] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/06/2021] [Accepted: 10/12/2021] [Indexed: 12/11/2022]
Abstract
Cardiac fibrosis is one of the main characteristics of diabetic cardiomyopathy and manifests excessive accumulation of extracellular matrix proteins in the heart. Several signaling pathways have been proposed for pathogenesis of cardiac fibrosis in the diabetic heart. TGF-β/Smad2/3-dependent or independent pathway is the major signaling molecule core in the pathogenesis of cardiac fibrosis. MicroRNAs (miRNAs, miR) are ~22-nuceotide regulatory RNAs that are involved in gene silencing through the degradation of post-transcriptional mRNA or suppression of the expressed proteins. Hyperglycemia in the diabetic heart regulates expression of some miRNAs. Target molecules of miRNAs can be identified through biocomputational database initial screening and dual luciferase assay validation. miR-21, miR-150-5p, miR-155, miR-216a-3p, miR-221-3p, miR-223, and miR-451 were up-regulated in the diabetic heart and promoted cardiac fibrosis through targeting signaling pathways in cardiac fibroblasts, endothelial cells, and cardiac myocytes. miR-15a/-15b, miR-18a-5p, miR-20a-5p, miR-26b-5p, miR-29, miR-133a, miR-141, miR-146, miR-200b, miR-203, miR-222, and miR-551b-5p were down-regulated in the diabetic heart and exhibited anti-fibrosis when they were overexpressed. miRNAs are stable molecules and may reflect the pathological changes of organs. Some miRNAs have been detected in the plasma or serum in patients with diabetes mellitus or heart failure. Exploration of targets and biomarkers of miRNA may provide additional information on pathogenesis and diagnosis of cardiac fibrosis and novel targets to tackle diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Zhu-Qiu Jin
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, California Northstate University, 9700 West Taron Drive, Elk Grove, CA 95757, USA.
| |
Collapse
|
25
|
Bhat S, Kabekkodu SP, Adiga D, Fernandes R, Shukla V, Bhandari P, Pandey D, Sharan K, Satyamoorthy K. ZNF471 modulates EMT and functions as methylation regulated tumor suppressor with diagnostic and prognostic significance in cervical cancer. Cell Biol Toxicol 2021; 37:731-749. [PMID: 33566221 PMCID: PMC8490246 DOI: 10.1007/s10565-021-09582-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 01/07/2021] [Indexed: 10/28/2022]
Abstract
Cervical cancer (CC) is a leading cause of cancer-related death among women in developing countries. However, the underlying mechanisms and molecular targets for therapy remain to be fully understood. We investigated the epigenetic regulation, biological functions, and clinical utility of zinc-finger protein 471 (ZNF471) in CC. Analysis of cervical tissues and five independent public datasets of CC showed significant hypermethylation of the ZNF471 gene promoter. In CC cell lines, promoter DNA methylation was inversely correlated with ZNF471 expression. The sensitivity and specificity of the ZNF471 hypermethylation for squamous intraepithelial lesion (SIL) vs tumor and normal vs tumor was above 85% with AUC of 0.937. High methylation and low ZNF471 expression predicted poor overall and recurrence-free survival. We identified -686 to +114 bp as ZNF471 promoter, regulated by methylation using transient transfection and luciferase assays. The promoter CpG site methylation of ZNF471 was significantly different among cancer types and tumor grades. Gal4-based heterologous luciferase reporter gene assays revealed that ZNF471 acts as a transcriptional repressor. The retroviral mediated overexpression of ZNF471 in SiHa and CaSki cells inhibited growth, proliferation, cell migration, invasion; delayed cell cycle progression in vitro by increasing cell doubling time; and reduced tumor growth in vivo in nude mice. ZNF471 overexpression inhibited key members of epithelial-mesenchymal transition (EMT), Wnt, and PI3K-AKT signaling pathways. ZNF471 inhibited EMT by directly targeting vimentin as analyzed by bioinformatic analysis, ChIP-PCR, and western blotting. Thus, ZNF471 CpG specific promoter methylation may determine the prognosis of CC and could function as a potential tumor suppressor by targeting EMT signaling.
Collapse
Affiliation(s)
- Samatha Bhat
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Divya Adiga
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Rayzel Fernandes
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Vaibhav Shukla
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Poonam Bhandari
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Deeksha Pandey
- Department of Obstetrics & Gynaecology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Krishna Sharan
- Department of Radiotherapy and Oncology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
26
|
Shiau F, Ruzycki PA, Clark BS. A single-cell guide to retinal development: Cell fate decisions of multipotent retinal progenitors in scRNA-seq. Dev Biol 2021; 478:41-58. [PMID: 34146533 PMCID: PMC8386138 DOI: 10.1016/j.ydbio.2021.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 12/20/2022]
Abstract
Recent advances in high throughput single-cell RNA sequencing (scRNA-seq) technology have enabled the simultaneous transcriptomic profiling of thousands of individual cells in a single experiment. To investigate the intrinsic process of retinal development, researchers have leveraged this technology to quantify gene expression in retinal cells across development, in multiple species, and from numerous important models of human disease. In this review, we summarize recent applications of scRNA-seq and discuss how these datasets have complemented and advanced our understanding of retinal progenitor cell competence, cell fate specification, and differentiation. Finally, we also highlight the outstanding questions in the field that advances in single-cell data generation and analysis will soon be able to answer.
Collapse
Affiliation(s)
- Fion Shiau
- John F Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Philip A Ruzycki
- John F Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Brian S Clark
- John F Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA; Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
27
|
Li Y, Yang G, Yang C, Tang P, Chen J, Zhang J, Liu J, Ouyang L. Targeting Autophagy-Related Epigenetic Regulators for Cancer Drug Discovery. J Med Chem 2021; 64:11798-11815. [PMID: 34378389 DOI: 10.1021/acs.jmedchem.1c00579] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Existing evidence has demonstrated that epigenetic modifications (including DNA methylation, histone modifications, and microRNAs), which are associated with the occurrence and development of tumors, can directly or indirectly regulate autophagy. In particular, nuclear events induced by several epigenetic regulators can regulate the autophagic process and expression levels of tumor-associated genes, thereby promoting tumor progression. Tumor-associated microRNAs, including oncogenic and tumor-suppressive microRNAs, are of great significance to autophagy during tumor progression. Targeting autophagy with emerging epigenetic drugs is expected to be a promising therapeutic strategy for human tumors. From this perspective, we aim to summarize the role of epigenetic modification in the autophagic process and the underlying molecular mechanisms of tumorigenesis. Furthermore, the regulatory efficacy of epigenetic drugs on the autophagic process in tumors is also summarized. This perspective may provide a theoretical basis for the combined treatment of epigenetic drugs/autophagy mediators in tumors.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Gaoxia Yang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Chengcan Yang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Pan Tang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Juncheng Chen
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Jifa Zhang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Jie Liu
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Liang Ouyang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
28
|
Mandhair HK, Novak U, Radpour R. Epigenetic regulation of autophagy: A key modification in cancer cells and cancer stem cells. World J Stem Cells 2021; 13:542-567. [PMID: 34249227 PMCID: PMC8246247 DOI: 10.4252/wjsc.v13.i6.542] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/02/2021] [Accepted: 06/04/2021] [Indexed: 02/06/2023] Open
Abstract
Aberrant epigenetic alterations play a decisive role in cancer initiation and propagation via the regulation of key tumor suppressor genes and oncogenes or by modulation of essential signaling pathways. Autophagy is a highly regulated mechanism required for the recycling and degradation of surplus and damaged cytoplasmic constituents in a lysosome dependent manner. In cancer, autophagy has a divergent role. For instance, autophagy elicits tumor promoting functions by facilitating metabolic adaption and plasticity in cancer stem cells (CSCs) and cancer cells. Moreover, autophagy exerts pro-survival mechanisms to these cancerous cells by influencing survival, dormancy, immunosurveillance, invasion, metastasis, and resistance to anti-cancer therapies. In addition, recent studies have demonstrated that various tumor suppressor genes and oncogenes involved in autophagy, are tightly regulated via different epigenetic modifications, such as DNA methylation, histone modifications and non-coding RNAs. The impact of epigenetic regulation of autophagy in cancer cells and CSCs is not well-understood. Therefore, uncovering the complex mechanism of epigenetic regulation of autophagy provides an opportunity to improve and discover novel cancer therapeutics. Subsequently, this would aid in improving clinical outcome for cancer patients. In this review, we provide a comprehensive overview of the existing knowledge available on epigenetic regulation of autophagy and its importance in the maintenance and homeostasis of CSCs and cancer cells.
Collapse
Affiliation(s)
- Harpreet K Mandhair
- Department for BioMedical Research, University of Bern, Bern 3008, Switzerland
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern 3008, Switzerland
| | - Urban Novak
- Department for BioMedical Research, University of Bern, Bern 3008, Switzerland
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern 3008, Switzerland
| | - Ramin Radpour
- Department for BioMedical Research, University of Bern, Bern 3008, Switzerland
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern 3008, Switzerland
| |
Collapse
|
29
|
El-Benhawy SA, Ebeid SA, Abd El Moneim NA, Arab ARR, Ramadan R. Repression of protocadherin 17 is correlated with elevated angiogenesis and hypoxia markers in female patients with breast cancer. Cancer Biomark 2021; 31:139-148. [PMID: 33896826 DOI: 10.3233/cbm-201593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Altered cadherin expression plays a vital role in tumorigenesis, angiogenesis and tumor progression. However, the function of protocadherin 17 (PCDH17) in breast cancer remains unclear. OBJECTIVE Our target is to explore PCDH17 gene expression in breast carcinoma tissues and its relation to serum angiopoietin-2 (Ang-2), carbonic anhydrase IX (CAIX) and % of circulating CD34+ cells in breast cancer patients (BCPs). METHODS This study included Fifty female BCPs and 50 healthy females as control group. Cancerous and neighboring normal breast tissues were collected from BCPs as well as blood samples at diagnosis. PCDH17 gene expression was evaluated by RT-PCR. Serum Ang-2, CAIX levels were measured by ELISA and % CD34+ cells were assessed by flow cytometry. RESULTS PCDH17 was downregulated in cancerous breast tissues and its repression was significantly correlated with advanced stage and larger tumor size. Low PCDH17 was significantly correlated with serum Ang-2, % CD34+ cells and serum CAIX levels. Serum CAIX, Ang-2 and % CD34+ cells levels were highly elevated in BCPs and significantly correlated with clinical stage. CONCLUSIONS PCDH17 downregulation correlated significantly with increased angiogenic and hypoxia biomarkers. These results explore the role of PCDH17 as a tumor suppressor gene inhibiting tumor growth and proliferation.
Collapse
Affiliation(s)
- Sanaa A El-Benhawy
- Radiation Sciences Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Samia A Ebeid
- Applied Medical Chemistry Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Nadia A Abd El Moneim
- Cancer Management and Research Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Amal R R Arab
- Applied Medical Chemistry Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Rabie Ramadan
- Experimental and Clinical Surgery Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| |
Collapse
|
30
|
Buccarelli M, Lulli V, Giuliani A, Signore M, Martini M, D'Alessandris QG, Giannetti S, Novelli A, Ilari R, Giurato G, Boe A, Castellani G, Spartano S, Marangi G, Biffoni M, Genuardi M, Pallini R, Marziali G, Ricci-Vitiani L. Deregulated expression of the imprinted DLK1-DIO3 region in glioblastoma stemlike cells: tumor suppressor role of lncRNA MEG3. Neuro Oncol 2021; 22:1771-1784. [PMID: 32459347 PMCID: PMC7746944 DOI: 10.1093/neuonc/noaa127] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background Glioblastoma (GBM) stemlike cells (GSCs) are thought to be responsible for the maintenance and aggressiveness of GBM, the most common primary brain tumor in adults. This study aims at elucidating the involvement of deregulations within the imprinted delta-like homolog 1 gene‒type III iodothyronine deiodinase gene (DLK-DIO3) region on chromosome 14q32 in GBM pathogenesis. Methods Real-time PCR analyses were performed on GSCs and GBM tissues. Methylation analyses, gene expression, and reverse-phase protein array profiles were used to investigate the tumor suppressor function of the maternally expressed 3 gene (MEG3). Results Loss of expression of genes and noncoding RNAs within the DLK1-DIO3 region was observed in GSCs and GBM tissues compared with normal brain. This downregulation is mainly mediated by epigenetic silencing. Kaplan–Meier analysis indicated that low expression of MEG3 and MEG8 long noncoding (lnc)RNAs significantly correlated with short survival in GBM patients. MEG3 restoration impairs tumorigenic abilities of GSCs in vitro by inhibiting cell growth, migration, and colony formation and decreases in vivo tumor growth, reducing infiltrative growth. These effects were associated with modulation of genes involved in cell adhesion and epithelial-to-mesenchymal transition (EMT). Conclusion In GBM, MEG3 acts as a tumor suppressor mainly regulating cell adhesion, EMT, and cell proliferation, thus providing a potential candidate for novel GBM therapies.
Collapse
Affiliation(s)
| | | | | | - Michele Signore
- Core Facilities, Higher Institute of Health (Istituto Superiore di Sanità), Rome, Italy
| | - Maurizio Martini
- A. Gemelli University Polyclinic Foundation, Scientific Hospitalization and Care Institute (IRCCS), Rome, Italy.,Institutes of Pathology, Catholic University School of Medicine, Rome, Italy
| | - Quintino G D'Alessandris
- A. Gemelli University Polyclinic Foundation, Scientific Hospitalization and Care Institute (IRCCS), Rome, Italy.,Neurosurgery, Catholic University School of Medicine, Rome, Italy
| | - Stefano Giannetti
- A. Gemelli University Polyclinic Foundation, Scientific Hospitalization and Care Institute (IRCCS), Rome, Italy.,Human Anatomy, Catholic University School of Medicine, Rome, Italy
| | - Agnese Novelli
- Genomic Medicine, Catholic University School of Medicine, Rome, Italy
| | - Ramona Ilari
- Department of Oncology and Molecular Medicine Rome, Italy
| | - Giorgio Giurato
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery, and Dentistry, "Scuola Medica Salernitana," University of Salerno, Baronissi, Salerno, Italy.,Genomix4Life Srl, University of Salerno, Baronissi, Salerno, Italy
| | - Alessandra Boe
- Core Facilities, Higher Institute of Health (Istituto Superiore di Sanità), Rome, Italy
| | | | - Serena Spartano
- Genomic Medicine, Catholic University School of Medicine, Rome, Italy
| | - Giuseppe Marangi
- Department of Oncology and Molecular Medicine Rome, Italy.,Genomic Medicine, Catholic University School of Medicine, Rome, Italy
| | - Mauro Biffoni
- Department of Oncology and Molecular Medicine Rome, Italy
| | - Maurizio Genuardi
- A. Gemelli University Polyclinic Foundation, Scientific Hospitalization and Care Institute (IRCCS), Rome, Italy.,Genomic Medicine, Catholic University School of Medicine, Rome, Italy
| | - Roberto Pallini
- A. Gemelli University Polyclinic Foundation, Scientific Hospitalization and Care Institute (IRCCS), Rome, Italy.,Neurosurgery, Catholic University School of Medicine, Rome, Italy
| | - Giovanna Marziali
- Department of Oncology and Molecular Medicine Rome, Italy.,Genomic Medicine, Catholic University School of Medicine, Rome, Italy
| | | |
Collapse
|
31
|
Qiu H, Zhang Y, Li Z, Jiang P, Guo S, He Y, Guo Y. Donepezil Ameliorates Pulmonary Arterial Hypertension by Inhibiting M2-Macrophage Activation. Front Cardiovasc Med 2021; 8:639541. [PMID: 33791350 PMCID: PMC8005547 DOI: 10.3389/fcvm.2021.639541] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/17/2021] [Indexed: 12/21/2022] Open
Abstract
Background: The beneficial effects of parasympathetic stimulation in pulmonary arterial hypertension (PAH) have been reported. However, the specific mechanism has not been completely clarified. Donepezil, an oral cholinesterase inhibitor, enhances parasympathetic activity by inhibiting acetylcholinesterase, whose therapeutic effects in PAH and its mechanism deserve to be investigated. Methods: The PAH model was established by a single intraperitoneal injection of monocrotaline (MCT, 50 mg/kg) in adult male Sprague-Dawley rats. Donepezil was administered via intraperitoneal injection daily after 1 week of MCT administration. At the end of the study, PAH status was confirmed by echocardiography and hemodynamic measurement. Testing for acetylcholinesterase activity and cholinergic receptor expression was used to evaluate parasympathetic activity. Indicators of pulmonary arterial remodeling and right ventricular (RV) dysfunction were assayed. The proliferative and apoptotic ability of pulmonary arterial smooth muscle cells (PASMCs), inflammatory reaction, macrophage infiltration in the lung, and activation of bone marrow-derived macrophages (BMDMs) were also tested. PASMCs from the MCT-treated rats were co-cultured with the supernatant of BMDMs treated with donepezil, and then, the proliferation and apoptosis of PASMCs were evaluated. Results: Donepezil treatment effectively enhanced parasympathetic activity. Furthermore, it markedly reduced mean pulmonary arterial pressure and RV systolic pressure in the MCT-treated rats, as well as reversed pulmonary arterial remodeling and RV dysfunction. Donepezil also reduced the proliferation and promoted the apoptosis of PASMCs in the MCT-treated rats. In addition, it suppressed the inflammatory response and macrophage activation in both lung tissue and BMDMs in the model rats. More importantly, donepezil reduced the proliferation and promoted the apoptosis of PASMCs by suppressing M2-macrophage activation. Conclusion: Donepezil could prevent pulmonary vascular and RV remodeling, thereby reversing PAH progression. Moreover, enhancement of the parasympathetic activity could reduce the proliferation and promote the apoptosis of PASMCs in PAH by suppressing M2-macrophage activation.
Collapse
Affiliation(s)
- Haihua Qiu
- Department of Cardiovascular Medicine, The Affiliated Zhuzhou Hospital Xiangya Medical College, Central South University, Zhuzhou, China
| | - Yibo Zhang
- Department of Ultrasound, The Affiliated Zhuzhou Hospital Xiangya Medical College, Central South University, Zhuzhou, China
| | - Zhongyu Li
- Laboratory Medicine Center, The Affiliated Zhuzhou Hospital Xiangya Medical College, Central South University, Zhuzhou, China
| | - Ping Jiang
- Department of Cardiovascular Medicine, The Affiliated Zhuzhou Hospital Xiangya Medical College, Central South University, Zhuzhou, China
| | - Shuhong Guo
- Department of Cardiovascular Medicine, The Affiliated Zhuzhou Hospital Xiangya Medical College, Central South University, Zhuzhou, China
| | - Yi He
- Department of Cardiovascular Medicine, The Affiliated Zhuzhou Hospital Xiangya Medical College, Central South University, Zhuzhou, China
| | - Yuan Guo
- Department of Cardiovascular Medicine, The Affiliated Zhuzhou Hospital Xiangya Medical College, Central South University, Zhuzhou, China.,Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
32
|
Sun X, Yi J, Yang J, Han Y, Qian X, Liu Y, Li J, Lu B, Zhang J, Pan X, Liu Y, Liang M, Chen E, Liu P, Lu Y. An integrated epigenomic-transcriptomic landscape of lung cancer reveals novel methylation driver genes of diagnostic and therapeutic relevance. Am J Cancer Res 2021; 11:5346-5364. [PMID: 33859751 PMCID: PMC8039961 DOI: 10.7150/thno.58385] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 02/21/2021] [Indexed: 12/31/2022] Open
Abstract
Background: Aberrant DNA methylation occurs commonly during carcinogenesis and is of clinical value in human cancers. However, knowledge of the impact of DNA methylation changes on lung carcinogenesis and progression remains limited. Methods: Genome-wide DNA methylation profiles were surveyed in 18 pairs of tumors and adjacent normal tissues from non-small cell lung cancer (NSCLC) patients using Reduced Representation Bisulfite Sequencing (RRBS). An integrated epigenomic-transcriptomic landscape of lung cancer was depicted using the multi-omics data integration method. Results: We discovered a large number of hypermethylation events pre-marked by poised promoter in embryonic stem cells, being a hallmark of lung cancer. These hypermethylation events showed a high conservation across cancer types. Eight novel driver genes with aberrant methylation (e.g., PCDH17 and IRX1) were identified by integrated analysis of DNA methylome and transcriptome data. Methylation level of the eight genes measured by pyrosequencing can distinguish NSCLC patients from lung tissues with high sensitivity and specificity in an independent cohort. Their tumor-suppressive roles were further experimentally validated in lung cancer cells, which depend on promoter hypermethylation. Similarly, 13 methylation-driven ncRNAs (including 8 lncRNAs and 5 miRNAs) were identified, some of which were co-regulated with their host genes by the same promoter hypermethylation. Finally, by analyzing the transcription factor (TF) binding motifs, we uncovered sets of TFs driving the expression of epigenetically regulated genes and highlighted the epigenetic regulation of gene expression of TCF21 through DNA methylation of EGR1 binding motifs. Conclusions: We discovered several novel methylation driver genes of diagnostic and therapeutic relevance in lung cancer. Our findings revealed that DNA methylation in TF binding motifs regulates target gene expression by affecting the binding ability of TFs. Our study also provides a valuable epigenetic resource for identifying DNA methylation-based diagnostic biomarkers, developing cancer drugs for epigenetic therapy and studying cancer pathogenesis.
Collapse
|
33
|
Lin Y, Yin P, Zhu Z, Peng Y, Li M, Li J, Liang L, Yu X. Epigenome-wide association study and network analysis for IgA Nephropathy from CD19 + B-cell in Chinese Population. Epigenetics 2021; 16:1283-1294. [PMID: 33319642 DOI: 10.1080/15592294.2020.1861171] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
IgA nephropathy (IgAN) is the most common primary glomerular disease in China and worldwide. The proliferation of B cells is known to be associated with both risk and prognosis of IgAN, but the epigenetic mechanism underlying this association is unknown. In this study we carried out the first Epigenome-wide Association Study (EWAS) by using the latest Infinium Methylation EPIC BeadChip on 184 B cell-specific samples (92 case/control pairs) for Chinese IgAN population. After rigorous data normalization and residual batch effect correction, linear mixed effect model was used to detect methylation CpG sites associated with IgAN adjusting for age, gender and smoking. False discovery rate (FDR) less than 10% was used to account for multiple testing. Weighted gene co-methylation networks were generated to identify gene modules highly correlated with IgAN. A permutation test was performed to account for the potential effect of overfitting. After adjusting clinical covariates and potential technical batch effects, three CpGs corresponding to PCDH17, TERT, WDR82 genes and three in the intergenic regions passed the genome-wide significant threshold. Methylation network analysis identified an additional IgAN associated gene module, containing 72 significant CpGs including GALNT6, IQSEC1, CDC16 and SYS1, involved in the pathway related to tubular atrophy/interstitial fibrosis of IgAN. These results suggested important DNA methylation and gene targets in CD19+ B cells for the pathogenesis of IgAN.
Collapse
Affiliation(s)
- Yifei Lin
- Precision Medicine Center, Department of Urology, Medical Device Regulatory Research and Evaluation Center, West China Hospital, Sichuan University, Chengdu, China.,Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Peiran Yin
- Department of Nephrology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhaozhong Zhu
- Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Yuan Peng
- Department of Nephrology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ming Li
- Department of Nephrology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jun Li
- Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA.,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Liming Liang
- Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA.,Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Xueqing Yu
- Department of Nephrology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Department of Nephrology, Guangdong Provincial People's Hospital, Guangzhou, China
| |
Collapse
|
34
|
Dutra TTB, Bezerra TMM, Luna ECM, Carvalho FSR, Chaves FN, Barros Silva PGD, Costa FWG, Pereira KMA. Do Protocadherins Show Prognostic Value in the Carcinogenesis of Human Malignant Neoplasms? Systematic Review and Meta-Analysis. Asian Pac J Cancer Prev 2020; 21:3677-3688. [PMID: 33369468 PMCID: PMC8046292 DOI: 10.31557/apjcp.2020.21.12.3677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Indexed: 12/24/2022] Open
Abstract
Background: Protocadherins (PCDHs) have been reported as tumor suppressor genes, implying that these genes may be involved in tumor suppression in a variety of cancers. However, a thorough understanding of the functions and mechanisms of PCDHs remains limited. Our aim was to investigate the methylation profile of PCDHs in human malignant neoplasms. Methods: This systematic review has been recorded in PROSPERO (#42019117844) and conducted according to PRISMA’s checklist; search was conducted in LILACS, PubMed, Science Direct, Scopus, and Web of Science databases, manually, with search queries and without date or language restrictions. Results: We found 91 articles, of which 26 were used for this meta-analysis and categorized according to the origin of the neoplasia. In total, 3,377 cases were compiled, with PCDH10, PCDH17, and PCDH8 being the most studied; males were 2.22 times more affected than females. Studies have shown significant heterogeneity (p <0.001), with the odds ratio varying between cases and controls [2.20 (95% CI = 1.11– 4.35) to 209.05 (95% CI = 12.64– 2,457.18)], and the value of association between methylation and cancers studied was 26.08 (95% CI = 15.42–44.13). Conclusion: In this systematic review, we have demonstrated using meta-analysis that PCDHs could emerge as potential tumor suppressor genes and that a significant increase in methylation may be useful for early detection of different cancers. This work may help in the identification of new prognostic biomarkers in malignant neoplasms.
Collapse
Affiliation(s)
- Thaís Torres Barros Dutra
- Department of Clinical Dentistry, Faculty of Pharmacy and Dentistry and Nursing, Federal University of Ceara, Fortaleza, Brazil
| | - Thâmara Manoela Marinho Bezerra
- Department of Clinical Dentistry, Faculty of Pharmacy and Dentistry and Nursing, Federal University of Ceara, Fortaleza, Brazil
| | - Ealber Carvalho Macêdo Luna
- Department of Clinical Dentistry, Faculty of Pharmacy and Dentistry and Nursing, Federal University of Ceara, Fortaleza, Brazil
| | | | - Filipe Nobre Chaves
- School of Dentistry, Federal University of Ceara, Campus Sobral, Sobral, Brazil
| | | | - Fábio Wildson Gurgel Costa
- Department of Clinical Dentistry, Faculty of Pharmacy and Dentistry and Nursing, Federal University of Ceara, Fortaleza, Brazil
| | | |
Collapse
|
35
|
Bhol CS, Panigrahi DP, Praharaj PP, Mahapatra KK, Patra S, Mishra SR, Behera BP, Bhutia SK. Epigenetic modifications of autophagy in cancer and cancer therapeutics. Semin Cancer Biol 2020; 66:22-33. [DOI: 10.1016/j.semcancer.2019.05.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 05/09/2019] [Accepted: 05/30/2019] [Indexed: 12/30/2022]
|
36
|
Xu M, Zhu J, Liu S, Wang C, Shi Q, Kuang Y, Fang X, Hu X. FOXD3, frequently methylated in colorectal cancer, acts as a tumor suppressor and induces tumor cell apoptosis under ER stress via p53. Carcinogenesis 2020; 41:1253-1262. [PMID: 31784734 DOI: 10.1093/carcin/bgz198] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 10/25/2019] [Accepted: 11/28/2019] [Indexed: 01/05/2023] Open
Abstract
Forkhead box D3 (FOXD3), an important member of the forkhead box transcription factor family, has many biological functions. However, the role and signaling pathways of FOXD3 in colorectal cancer (CRC) are still unclear. We examined FOXD3 expression and methylation in normal colon mucosa, CRC cell lines and primary tumors by reverse transcription-polymerase chain reaction, methylation-specific PCR and bisulfite genomic sequencing. We also evaluated its tumor-suppressive function by examining its modulation of apoptosis under endoplasmic reticulum (ER) stress in CRC cells. The FOXD3 target signal pathway was identified by western blotting, immunofluorescence and chromatin immunoprecipitation. We found that FOXD3 was frequently methylated and silenced in CRC cell lines and was downregulated in CRC tissues compared with paired adjacent non-tumor tissues. Meanwhile, low FOXD3 protein expression was significantly correlated with poor histopathological grading, lymph node metastasis and poor prognosis of patients, indicating its potential as a tumor marker that may be of potential value as a therapeutic target for CRC. Moreover, restoration of FOXD3 expression inhibited the proliferation and migration of tumor cells. FOXD3 also increased mitochondrial apoptosis through the unfolded protein response under ER stress. Furthermore, we found that FOXD3 could bind directly to the promoter of p53 and enhance its expression. Knockdown of p53 impaired the effect of apoptosis induced by FOXD3. In conclusion, we showed for the first time that FOXD3, which is frequently methylated in CRC, acted as a tumor suppressor inducing tumor cell apoptosis under ER stress via p53.
Collapse
Affiliation(s)
- Ming Xu
- Department of General Surgery and Key Laboratory of Endoscopic Technique Research of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Jing Zhu
- Department of Oncology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shuiping Liu
- Department of Cancer Pharmacology, Holistic Integrative Pharmacy Institutes, College of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Chan Wang
- Department of Pathology and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Qinglan Shi
- Department of Pathology and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Yeye Kuang
- Department of Pathology and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Xiao Fang
- Department of Anesthesiology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Xiaotong Hu
- Department of Pathology and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| |
Collapse
|
37
|
Talebian S, Daghagh H, Yousefi B, Ȍzkul Y, Ilkhani K, Seif F, Alivand MR. The role of epigenetics and non-coding RNAs in autophagy: A new perspective for thorough understanding. Mech Ageing Dev 2020; 190:111309. [PMID: 32634442 DOI: 10.1016/j.mad.2020.111309] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 05/22/2020] [Accepted: 06/28/2020] [Indexed: 12/18/2022]
Abstract
Autophagy is a major self-degradative intracellular process required for the maintenance of homeostasis and promotion of survival in response to starvation. It plays critical roles in a large variety of physiological and pathological processes. On the other hand, aberrant regulation of autophagy can lead to various cancers and neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and Crohn's disease. Emerging evidence strongly supports that epigenetic signatures, related non-coding RNA profiles, and their cross-talking are significantly associated with the control of autophagic responses. Therefore, it may be helpful and promising to manage autophagic processes by finding valuable markers and therapeutic approaches. Although there is a great deal of information on the components of autophagy in the cytoplasm, the molecular basis of the epigenetic regulation of autophagy has not been completely elucidated. In this review, we highlight recent research on epigenetic changes through the expression of autophagy-related genes (ATGs), which regulate autophagy, DNA methylation, histone modifications as well as non-coding RNAs, including long non-coding RNAs (lncRNAs), microRNAs (miRNAs) and their relationship with human diseases, that play key roles in causing autophagy-related diseases.
Collapse
Affiliation(s)
- Shahrzad Talebian
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Daghagh
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Aging Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yusuf Ȍzkul
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Khandan Ilkhani
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhad Seif
- Department of Immunology & Allergy, Academic Center for Education, Culture, and Research, Tehran, Iran
| | - Mohammad Reza Alivand
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
38
|
Pancho A, Aerts T, Mitsogiannis MD, Seuntjens E. Protocadherins at the Crossroad of Signaling Pathways. Front Mol Neurosci 2020; 13:117. [PMID: 32694982 PMCID: PMC7339444 DOI: 10.3389/fnmol.2020.00117] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/08/2020] [Indexed: 12/25/2022] Open
Abstract
Protocadherins (Pcdhs) are cell adhesion molecules that belong to the cadherin superfamily, and are subdivided into clustered (cPcdhs) and non-clustered Pcdhs (ncPcdhs) in vertebrates. In this review, we summarize their discovery, expression mechanisms, and roles in neuronal development and cancer, thereby highlighting the context-dependent nature of their actions. We furthermore provide an extensive overview of current structural knowledge, and its implications concerning extracellular interactions between cPcdhs, ncPcdhs, and classical cadherins. Next, we survey the known molecular action mechanisms of Pcdhs, emphasizing the regulatory functions of proteolytic processing and domain shedding. In addition, we outline the importance of Pcdh intracellular domains in the regulation of downstream signaling cascades, and we describe putative Pcdh interactions with intracellular molecules including components of the WAVE complex, the Wnt pathway, and apoptotic cascades. Our overview combines molecular interaction data from different contexts, such as neural development and cancer. This comprehensive approach reveals potential common Pcdh signaling hubs, and points out future directions for research. Functional studies of such key factors within the context of neural development might yield innovative insights into the molecular etiology of Pcdh-related neurodevelopmental disorders.
Collapse
Affiliation(s)
- Anna Pancho
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Tania Aerts
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Manuela D Mitsogiannis
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Eve Seuntjens
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| |
Collapse
|
39
|
Losi L, Zanocco-Marani T, Grande A. Cadherins down-regulation: towards a better understanding of their relevance in colorectal cancer. Histol Histopathol 2020; 35:1391-1402. [PMID: 32567668 DOI: 10.14670/hh-18-236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The down-regulation of cadherin expression in colorectal cancer (CRC) has been widely studied. However, existing data on cadherin expression are highly variable and its relevance to CRC development has not been completely established. This review examines published studies on cadherins whose down-regulation has been already demonstrated in CRC, trying to establish a relationship with promoter methylation, the capacity to influence the Wnt / CTNNB1 (catenin beta 1, beta-catenin) signalling pathway and the clinical implications for disease outcome. Moreover, it also analyses factors that may explain data variability and highlights the importance of considering the altered subcellular localization of the examined cadherins. The results of this survey reveal that thirty of one hundred existing cadherins appear to be down-regulated in CRC. Among these, ten are cadherins, sixteen are protocadherins, equally divided between clustered and non clustered, and four are cadherin - related. These findings suggest that, to better define the role played by cadherin down-regulation in CRC pathogenesis, the expression of multiple rather than individual cadherins should be taken into account and further functional studies are necessary to clarify the relative ability of individual cadherins to inhibit CTNNB1 therefore acting as tumor suppressors.
Collapse
Affiliation(s)
- Lorena Losi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| | | | - Alexis Grande
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
40
|
Kong DD, Fu RZ, Li L, Wang W, Wang SB. Association between the methylation status of PCDH17 and the efficacy of neoadjuvant chemotherapy in triple-negative breast cancer. Oncol Lett 2020; 20:1649-1656. [PMID: 32724406 PMCID: PMC7377171 DOI: 10.3892/ol.2020.11737] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/27/2020] [Indexed: 12/31/2022] Open
Abstract
The present study aimed to assess whether the methylation status of the protocadherin 17 gene (PCDH17) in triple-negative breast cancer (TNBC) tissues was associated with the efficacy of neoadjuvant chemotherapy (NAC). The present study included 280 patients diagnosed with TNBC using core needle biopsy. Tumor pathological diagnosis was determined via hematoxylin and eosin staining. Immunohistochemical staining was used to determine estrogen receptor, progesterone receptor, human epidermal growth factor receptor-2 and Ki-67 status. PCDH17 methylation status was analyzed using methylation-specific PCR. χ2 tests were performed to analyze differences between PCDH17 methylation status and TNBC clinicopathological features. Univariate and multivariate logistic regressions were used to analyze whether PCDH17 methylation status predicted a curative effect of NAC. The multivariate analysis included factors with P<0.2 from the univariate analysis and those that were clinically associated with NAC. A total of 228 patients were positive for PCDH17 methylation, while the remainder 52 were negative. Additionally, 107 patients achieved pathological complete response (pCR) after NAC. The pCR rate was 67.3% among the 52 patients negative for PCDH17 methylation and 31.6% among the 228 patients positive for PCDH17 methylation. Patients who were negative for PCDH17 methylation and had high Ki67 expression exhibited significantly higher pCR rates than their counterparts. The present results demonstrate that PCDH17 methylation status may predict the response to NAC in patients with TNBC. Therefore, this epigenetic characteristic may serve as an indicator of treatment efficacy.
Collapse
Affiliation(s)
- De-Di Kong
- Department of Thyroid and Breast Surgery, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, P.R. China.,Department of Thyroid and Breast Surgery, Jining No.1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Rong-Zhan Fu
- Department of Thyroid and Breast Surgery, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, P.R. China
| | - Liang Li
- Department of Pathology, Jining No.1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Wei Wang
- Department of Thyroid and Breast Surgery, Jining No.1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Shi-Bing Wang
- Department of Thyroid and Breast Surgery, Jining No.1 People's Hospital, Jining, Shandong 272011, P.R. China
| |
Collapse
|
41
|
Liu L, Liu R, Yang X, Hou X, Fang H. Design, synthesis and biological evaluation of tyrosine derivatives as Mcl-1 inhibitors. Eur J Med Chem 2020; 191:112142. [DOI: 10.1016/j.ejmech.2020.112142] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/06/2020] [Accepted: 02/10/2020] [Indexed: 10/25/2022]
|
42
|
Gong Z, Hu G. PCDH20 acts as a tumour-suppressor gene through the Wnt/β-catenin signalling pathway in hypopharyngeal squamous cell carcinoma. Cancer Biomark 2020; 26:209-217. [PMID: 31450490 DOI: 10.3233/cbm-190442] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Downregulation of PCDH20 is frequently involved in tumorigenesis of many cancers, but the role of PCDH20 protein in hypopharyngeal squamous cell carcinoma (HSCC) is still unknown. OBJECTIVE The aim of this study was to investigate the role of PCDH20 in hypopharyngeal squamous cell carcinoma (HSCC). METHODS Immunohistochemistry (IHC) and qRT-PCR was carried out to estimate the expressions of PCDH20 protein and mRNA in HSCC tissues and adjacent non-tumor tissues. Correlation between the PCDH20 expression and clinicopathological characteristics was evaluated using chi-square test. Meanwhile, Kaplan-Meier method and log-rank test were applied to analyze the overall survival. After transfection of PCDH20, the CCK8 assay, Cell migration assay and invasion assay were used to investigate the changes in the viability, migration and invasion of Fuda cells. The mechanisms by which reduced PCDH20 promote migration and invasion of Fuda cells were examined using western blotting. RESULTS PCDH20 protein showed in tumor tissue low expression rates of 67.5% (54/80). The mRNA of PCDH20 indicated the consistent trend (80%, 8/10). Reduced PCDH20 expression was positively related to T stage and lymph node metastasis (P< 0.05). Patients with low levels of PCDH20 had worse overall survival compared with those with high PCDH20 levels (P< 0.001). The univariate Cox regression analysis described that lymph node metastasis (P= 0.043) and down-regulated PCDH20 expression (P= 0.045) were significantly prognostic factors.Multivariate analysis suggested that low PCDH20 expression (P= 0.015) were significantly independent prognostic factors for overall survival. PCDH20 in Fadu cells significantly inhibited cell viability, migration and invasion. Meanwhile, PCDH20 was involved in the disruption of HSCC progression through antagonizing its downstream Wnt/β-catenin signalling pathway. CONCLUSION Our data highlight that the downregulated PCDH20 may serve as reliable diagnostic biomarker in HSCC.
Collapse
|
43
|
MiR-23a-3p promoted G1/S cell cycle transition by targeting protocadherin17 in hepatocellular carcinoma. J Physiol Biochem 2020; 76:123-134. [PMID: 31994011 DOI: 10.1007/s13105-020-00726-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 01/12/2020] [Indexed: 12/21/2022]
Abstract
MiR-23a-3p has been shown to promote liver cancer cell growth and metastasis and regulate that of chemosensitivity. Protocadherin17 (PCDH17) is a tumor suppressor gene and plays an essential part in cell cycle of hepatocellular carcinoma (HCC). This study aimed at evaluating the effects of miR-23a-3p and PCDH17 on HCC cell cycle and underlining the mechanism. The level of miR-23a-3p was up-regulated, while PCDH17 level was down-regulated in HCC tissues compared to adjacent tissues. For the in vitro studies, high expression of miR-23a-3p down-regulated PCDH17 level; increased cell viability; promoted G1/S cell cycle transition; up-regulated cyclin D1, cyclin E, CDK2, CDK4, p-p27, and p-RB levels; and down-regulated the expression of p27. Dual luciferase reporter assay suggested PCDH17 was a target gene of miR-23a-3p. MiR-23a-3p inhibitor and PCDH17 siRNA led to an increase in cell viability and the number of cells in the S phase and up-regulated cyclin D1 and cyclin E levels, compared with miR-23a-3p inhibitor and NC siRNA group. For the in vivo experiments, high expression of miR-23a-3p promoted tumor growth and reduced PCDH17 level in the cytoplasm. These results indicated that high expression of miR-23a-3p might promote G1/S cell cycle transition by targeting PCDH17 in HCC cells. The miR-23a-3p could be considered as a molecular target for HCC detection.
Collapse
|
44
|
Shahkarami S, Zoghi S, Rezaei N. The Role of DNA Methylation in Cancer. CANCER IMMUNOLOGY 2020:491-511. [DOI: 10.1007/978-3-030-30845-2_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
45
|
Thanh Nha Uyen L, Amano Y, Al-Kzayer LFY, Kubota N, Kobayashi J, Nakazawa Y, Koike K, Sakashita K. PCDH17 functions as a common tumor suppressor gene in acute leukemia and its transcriptional downregulation is mediated primarily by aberrant histone acetylation, not DNA methylation. Int J Hematol 2019; 111:451-462. [PMID: 31865541 DOI: 10.1007/s12185-019-02799-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 12/16/2022]
Abstract
We recently reported that methylation of PCDH17 gene is found in 30% of children with B-cell precursor acute lymphoblastic leukemia (ALL), and is significantly correlated to event-free or overall survival. We here evaluated PCDH17 mRNA expression in pediatric acute myeloid leukemia (AML) and ALL. PCDH17 mRNA expression levels in children with ALL/AML were lower than those in healthy counterparts. We next elucidated the mechanism underlying down-regulation of PCDH17 mRNA, using myeloid and lymphoid leukemic cell lines. Treatment with the histone deacetylase inhibitor trichostatin A (TSA) resulted in restoration of PCDH17 mRNA expression and growth inhibition in K562, HL60, REH, and RCH-ACV cell lines. Upregulation of PCDH17 mRNA expression resulted from histone H3 acetylation. Knockdown of the PCDH17 gene, caused by transduction of PCDH17-targeted shRNA, significantly enhanced the proliferation of KU812 cells. Meanwhile, overexpression of PCDH17 via retroviral-particle transfection substantially inhibited the growth of Kasumi1 cells. The fold-increase in PCDH17 mRNA expression mediated by 5-azacytidine, an inhibitor of DNA methyltransferase, was fundamentally lower than that produced by TSA. In conclusion, our results suggest that PCDH17 gene functions as a common tumor suppressor gene in leukemic cells, and that histone deacetylase inhibitors re-express PCDH17 mRNA to a greater extent than demethylation reagents.
Collapse
Affiliation(s)
- Le Thanh Nha Uyen
- Department of Medical Genetics, Hue University of Medicine and Pharmacy, Hue, Vietnam.,Department of Pediatrics, Shinshu University School of Medicine, Matsumoto,, Nagano, Japan
| | - Yuji Amano
- Department of Microbiology and Immunology, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | | | - Noriko Kubota
- Department of Laboratory Medicine, Nagano Children's Hospital, Azumino, Japan
| | - Jun Kobayashi
- Department of Laboratory Medicine, Nagano Children's Hospital, Azumino, Japan
| | - Yozo Nakazawa
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto,, Nagano, Japan
| | - Kenichi Koike
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto,, Nagano, Japan.,Shinonoi General Hospital, Minami Nagano Center, Nagano, Japan
| | - Kazuo Sakashita
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto,, Nagano, Japan. .,Department of Hematology and Oncology, Nagano Children's Hospital, 3100 Toyoshina, Azumino, Nagano, Japan.
| |
Collapse
|
46
|
Epigenetic Control of Autophagy in Cancer Cells: A Key Process for Cancer-Related Phenotypes. Cells 2019; 8:cells8121656. [PMID: 31861179 PMCID: PMC6952790 DOI: 10.3390/cells8121656] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/19/2019] [Accepted: 12/13/2019] [Indexed: 02/06/2023] Open
Abstract
Although autophagy is a well-known and extensively described cell pathway, numerous studies have been recently interested in studying the importance of its regulation at different molecular levels, including the translational and post-translational levels. Therefore, this review focuses on the links between autophagy and epigenetics in cancer and summarizes the. following: (i) how ATG genes are regulated by epigenetics, including DNA methylation and post-translational histone modifications; (ii) how epidrugs are able to modulate autophagy in cancer and to alter cancer-related phenotypes (proliferation, migration, invasion, tumorigenesis, etc.) and; (iii) how epigenetic enzymes can also regulate autophagy at the protein level. One noteable observation was that researchers most often reported conclusions about the regulation of the autophagy flux, following the use of epidrugs, based only on the analysis of LC3B-II form in treated cells. However, it is now widely accepted that an increase in LC3B-II form could be the consequence of an induction of the autophagy flux, as well as a block in the autophagosome-lysosome fusion. Therefore, in our review, all the published results describing a link between epidrugs and autophagy were systematically reanalyzed to determine whether autophagy flux was indeed increased, or inhibited, following the use of these potentially new interesting treatments targeting the autophagy process. Altogether, these recent data strongly support the idea that the determination of autophagy status could be crucial for future anticancer therapies. Indeed, the use of a combination of epidrugs and autophagy inhibitors could be beneficial for some cancer patients, whereas, in other cases, an increase of autophagy, which is frequently observed following the use of epidrugs, could lead to increased autophagy cell death.
Collapse
|
47
|
Liu S, Lin H, Wang D, Li Q, Luo H, Li G, Chen X, Li Y, Chen P, Zhai B, Wang W, Zhang R, Chen B, Zhang M, Han X, Li Q, Chen L, Liu Y, Chen X, Li G, Xiang Y, Duan T, Feng J, Lou J, Huang X, Zhang Q, Pan T, Yan L, Jin T, Zhang W, Zhuo L, Sun Y, Xie T, Sui X. PCDH17 increases the sensitivity of colorectal cancer to 5-fluorouracil treatment by inducing apoptosis and autophagic cell death. Signal Transduct Target Ther 2019; 4:53. [PMID: 31815010 PMCID: PMC6882894 DOI: 10.1038/s41392-019-0087-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/27/2019] [Accepted: 10/24/2019] [Indexed: 02/06/2023] Open
Abstract
5-Fluorouracil (5-FU) is known as a first-line chemotherapeutic agent against colorectal cancer (CRC), but drug resistance occurs frequently and significantly limits its clinical success. Our previous study showed that the protocadherin 17 (PCDH17) gene was frequently methylated and functioned as a tumor suppressor in CRC. However, the relationship between PCDH17 and 5-FU resistance in CRC remains unclear. Here, we revealed that PCDH17 was more highly expressed in 5-FU-sensitive CRC tissues than in 5-FU-resistant CRC tissues, and high expression of PCDH17 was correlated with high BECN1 expression. Moreover, this expression profile contributed to superior prognosis and increased survival in CRC patients. Restoring PCDH17 expression augmented the 5-FU sensitivity of CRC in vitro and in vivo by promoting apoptosis and autophagic cell death. Furthermore, autophagy played a dominant role in PCDH17-induced cell death, as an autophagy inhibitor blocked cell death to a greater extent than the pancaspase inhibitor Z-VAD-FMK. PCDH17 inhibition by siRNA decreased the autophagy response and 5-FU sensitivity. Mechanistically, we showed that c-Jun NH2-terminal kinase (JNK) activation was a key determinant in PCDH17-induced autophagy. The compound SP600125, an inhibitor of JNK, suppressed autophagy and 5-FU-induced cell death in PCDH17-reexpressing CRC cells. Taken together, our findings suggest for the first time that PCDH17 increases the sensitivity of CRC to 5-FU treatment by inducing apoptosis and JNK-dependent autophagic cell death. PCDH17 may be a potential prognostic marker for predicting 5-FU sensitivity in CRC patients.
Collapse
Affiliation(s)
- Shuiping Liu
- Holistic Integrative Pharmacy Institutes and Comprehensive Cancer Diagnosis and Treatment Center, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang China
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang China
| | - Haoming Lin
- Department of Hepatobiliary Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Da Wang
- Department of Colorectal Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Qiang Li
- Department of Ultrasound Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hong Luo
- Holistic Integrative Pharmacy Institutes and Comprehensive Cancer Diagnosis and Treatment Center, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang China
| | - Guoxiong Li
- Holistic Integrative Pharmacy Institutes and Comprehensive Cancer Diagnosis and Treatment Center, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang China
| | - Xiaohui Chen
- Holistic Integrative Pharmacy Institutes and Comprehensive Cancer Diagnosis and Treatment Center, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang China
| | - Yongqiang Li
- Holistic Integrative Pharmacy Institutes and Comprehensive Cancer Diagnosis and Treatment Center, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang China
| | - Peng Chen
- Holistic Integrative Pharmacy Institutes and Comprehensive Cancer Diagnosis and Treatment Center, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang China
| | - Bingtao Zhai
- Holistic Integrative Pharmacy Institutes and Comprehensive Cancer Diagnosis and Treatment Center, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang China
| | - Wengang Wang
- Holistic Integrative Pharmacy Institutes and Comprehensive Cancer Diagnosis and Treatment Center, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang China
| | - Ruonan Zhang
- Holistic Integrative Pharmacy Institutes and Comprehensive Cancer Diagnosis and Treatment Center, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang China
| | - Bi Chen
- Holistic Integrative Pharmacy Institutes and Comprehensive Cancer Diagnosis and Treatment Center, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang China
| | - Mingming Zhang
- Holistic Integrative Pharmacy Institutes and Comprehensive Cancer Diagnosis and Treatment Center, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang China
| | - Xuemeng Han
- Holistic Integrative Pharmacy Institutes and Comprehensive Cancer Diagnosis and Treatment Center, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang China
| | - Qiujie Li
- Holistic Integrative Pharmacy Institutes and Comprehensive Cancer Diagnosis and Treatment Center, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang China
| | - Liuxi Chen
- Holistic Integrative Pharmacy Institutes and Comprehensive Cancer Diagnosis and Treatment Center, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang China
| | - Ying Liu
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Xiaying Chen
- Holistic Integrative Pharmacy Institutes and Comprehensive Cancer Diagnosis and Treatment Center, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang China
| | - Guohua Li
- Holistic Integrative Pharmacy Institutes and Comprehensive Cancer Diagnosis and Treatment Center, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang China
| | - Yu Xiang
- Holistic Integrative Pharmacy Institutes and Comprehensive Cancer Diagnosis and Treatment Center, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang China
| | - Ting Duan
- Holistic Integrative Pharmacy Institutes and Comprehensive Cancer Diagnosis and Treatment Center, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang China
| | - Jiao Feng
- Holistic Integrative Pharmacy Institutes and Comprehensive Cancer Diagnosis and Treatment Center, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang China
| | - Jianshu Lou
- Holistic Integrative Pharmacy Institutes and Comprehensive Cancer Diagnosis and Treatment Center, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang China
| | - Xingxing Huang
- Holistic Integrative Pharmacy Institutes and Comprehensive Cancer Diagnosis and Treatment Center, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang China
| | - Qin Zhang
- Holistic Integrative Pharmacy Institutes and Comprehensive Cancer Diagnosis and Treatment Center, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang China
| | - Ting Pan
- Holistic Integrative Pharmacy Institutes and Comprehensive Cancer Diagnosis and Treatment Center, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang China
| | - Lili Yan
- Holistic Integrative Pharmacy Institutes and Comprehensive Cancer Diagnosis and Treatment Center, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang China
| | - Ting Jin
- Holistic Integrative Pharmacy Institutes and Comprehensive Cancer Diagnosis and Treatment Center, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang China
| | - Wenzheng Zhang
- Holistic Integrative Pharmacy Institutes and Comprehensive Cancer Diagnosis and Treatment Center, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang China
| | - Lvjia Zhuo
- Holistic Integrative Pharmacy Institutes and Comprehensive Cancer Diagnosis and Treatment Center, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang China
| | - Yitian Sun
- Holistic Integrative Pharmacy Institutes and Comprehensive Cancer Diagnosis and Treatment Center, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang China
| | - Tian Xie
- Holistic Integrative Pharmacy Institutes and Comprehensive Cancer Diagnosis and Treatment Center, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang China
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang China
| | - Xinbing Sui
- Holistic Integrative Pharmacy Institutes and Comprehensive Cancer Diagnosis and Treatment Center, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang China
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
48
|
Wang J, Lin Y, Jiang T, Gao C, Wang D, Wang X, Wei Y, Liu T, Zhu L, Wang P, Qi F. Up-regulation of TIMP-3 and RECK decrease the invasion and metastasis ability of colon cancer. Arab J Gastroenterol 2019; 20:127-134. [PMID: 31558368 DOI: 10.1016/j.ajg.2019.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 07/04/2019] [Accepted: 07/29/2019] [Indexed: 12/26/2022]
Abstract
BACKGROUND AND STUDY AIMS Although the function of microRNA21 (miR-21) in the invasion and metastasis of colon cancer has been extensively studied, the mechanisms of invasion and migration related pathways between and its targets are still not elucidated. This study explored the mechanisms of the pathway between miR-21 and the target genes in vitro and in vivo. MATERIALS AND METHODS We transfected pmiRZip21 or Leti3 into colon cancer cells. The levels of miR-21 expression, mRNA transcription and protein of target genes were analysed by TaqMan microRNA assays, RT-PCR and western blot, respectively. Scratch migration and trans-well assays were used to evaluate metastasis and invasion. To build a subcutaneous tumour animal model, detect the level of miR-21 and the target genes and then identify the mechanisms in vivo. RESULTS MiR-21 expression levels in colon cancer cells transfected with pmiRZip21 in vivo or in vitro were decreased (P < 0.05). The mRNA and protein levels of TIMP-3 and RECK were up-regulated after inhibiting miR-21 in vitro and in vivo (P < 0.05), but those of BMPR-II and PCDH17 were not. In pmiRZip21-transfected colon cancer cells, invasion and migration were significantly decreased both in vitro and vivo (P < 0.05). CONCLUSIONS Up-regulation of TIMP-3 and RECK, by inhibiting miR-21 expression can decrease tumour invasion and metastasis ability in vitro and in vivo, and has potential as a possible target site in anti-tumour therapy. More effects in vivo have to be investigated in further research.
Collapse
Affiliation(s)
- Jinmiao Wang
- Department of Paediatric Surgery, Tianjin Medical University General Hospital, 154 An-Shan Road, Heping District, Tianjin 300052, PR China
| | - Yunshou Lin
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Tao Jiang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Chao Gao
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Duowei Wang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Xiaodong Wang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Ying Wei
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Tong Liu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Liwei Zhu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Pengzhi Wang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Feng Qi
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, PR China.
| |
Collapse
|
49
|
Wang J, Xie S, Yang J, Xiong H, Jia Y, Zhou Y, Chen Y, Ying X, Chen C, Ye C, Wang L, Zhou J. The long noncoding RNA H19 promotes tamoxifen resistance in breast cancer via autophagy. J Hematol Oncol 2019; 12:81. [PMID: 31340867 PMCID: PMC6657081 DOI: 10.1186/s13045-019-0747-0] [Citation(s) in RCA: 194] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 05/31/2019] [Indexed: 12/16/2022] Open
Abstract
Background Tamoxifen resistance remains a clinical challenge for hormone receptor-positive breast cancer. Recently, dysregulations in autophagy have been suggested as a potential mechanism for tamoxifen resistance. Although the long noncoding RNA H19 is involved in various stages of tumorigenesis, its role in tamoxifen resistance remains unknown. Here, we assessed the role of H19 in the development of tamoxifen-resistant breast cancer. Methods Quantitative real-time PCR analyzed expression of H19 in tamoxifen-resistant breast cancer tissues. Knockdown of H19 was used to assess the sensitivity to tamoxifen in vitro and in vivo. Both knockdown and overexpression of H19 were used to analyze the status of autophagy. Real-time quantitative methylation-specific polymerase chain reaction, chromatin immunoprecipitation, immunofluorescence, and Western blot were used to explore the tamoxifen resistance mechanism of H19. Results In this study, we observed that the expression of H19 was substantially upregulated in tamoxifen-resistant breast cancer cell line and tumor tissues, and knockdown of H19 enhanced the sensitivity to tamoxifen both in vitro and in vivo. Furthermore, knockdown of H19 significantly inhibited autophagy in MCF7 tamoxifen-resistant (MCF7/TAMR) cells. Conversely, overexpression of H19 promoted autophagy. Interestingly, overexpression of H19 in MCF7 tamoxifen-sensitive cells could recapitulate tamoxifen resistance. Moreover, an increase in methylation in the promoter region of Beclin1 was observed in MCF7/TAMR-shH19 cells. In the double knockdown groups, both shH19+shSAHH and shH19+shDNMT3B rescued the Beclin1 promoter region methylation levels and reactivated autophagy functions. A chromatin immunoprecipitation assay further validated that DNMT3B binds to the Beclin1 promoter region and the knockdown of H19 increases this binding. Conclusions Our findings demonstrate that H19 induces autophagy activation via the H19/SAHH/DNMT3B axis, which could contribute to tamoxifen resistance in breast cancer. Electronic supplementary material The online version of this article (10.1186/s13045-019-0747-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ji Wang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No.3 Eastern Qingchun Road, Hangzhou, 310016, Zhejiang, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, 310016, Zhejiang, China
| | - Shuduo Xie
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No.3 Eastern Qingchun Road, Hangzhou, 310016, Zhejiang, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, 310016, Zhejiang, China
| | - Jingjing Yang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No.3 Eastern Qingchun Road, Hangzhou, 310016, Zhejiang, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, 310016, Zhejiang, China
| | - Hanchu Xiong
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No.3 Eastern Qingchun Road, Hangzhou, 310016, Zhejiang, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, 310016, Zhejiang, China
| | - Yunlu Jia
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No.3 Eastern Qingchun Road, Hangzhou, 310016, Zhejiang, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, 310016, Zhejiang, China
| | - Yulu Zhou
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No.3 Eastern Qingchun Road, Hangzhou, 310016, Zhejiang, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, 310016, Zhejiang, China
| | - Yongxia Chen
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No.3 Eastern Qingchun Road, Hangzhou, 310016, Zhejiang, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, 310016, Zhejiang, China
| | - Xiaogang Ying
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No.3 Eastern Qingchun Road, Hangzhou, 310016, Zhejiang, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, 310016, Zhejiang, China
| | - Cong Chen
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No.3 Eastern Qingchun Road, Hangzhou, 310016, Zhejiang, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, 310016, Zhejiang, China
| | - Chenyang Ye
- Cancer Institute (Key Laboratory of Cancer Prevention & Intervention, National Ministry of Education), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Linbo Wang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No.3 Eastern Qingchun Road, Hangzhou, 310016, Zhejiang, China. .,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, 310016, Zhejiang, China.
| | - Jichun Zhou
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No.3 Eastern Qingchun Road, Hangzhou, 310016, Zhejiang, China. .,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, 310016, Zhejiang, China.
| |
Collapse
|
50
|
Feng Y, Xu W, Zhang W, Wang W, Liu T, Zhou X. LncRNA DCRF regulates cardiomyocyte autophagy by targeting miR-551b-5p in diabetic cardiomyopathy. Am J Cancer Res 2019; 9:4558-4566. [PMID: 31285779 PMCID: PMC6599651 DOI: 10.7150/thno.31052] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 05/06/2019] [Indexed: 11/05/2022] Open
Abstract
Background: We generated a rat model of diabetic cardiomyopathy (DCM) and reported significant upregulation of the long non-coding RNA DCRF. This study was designed to determine the molecular mechanisms of DCRF in the development of DCM. Methods: Real-time PCR and RNA fluorescent in situ hybridization were conducted to detect the expression pattern of DCRF in cardiomyocytes. Histological and echocardiographic analyses were used to assess the effect of DCRF knockdown on cardiac structure and function in diabetic rats. mRFP-GFP-LC3 fluorescence microscopy, transmission electron microscopy, and Western blotting were carried out to determine cardiomyocyte autophagy. RNA immunoprecipitation and luciferase reporter assays were performed to elucidate the regulatory role of DCRF/miR-551b-5p/PCDH17 pathway in cardiomyocyte autophagy. Results: Our findings showed that DCRF knockdown reduced cardiomyocyte autophagy, attenuated myocardial fibrosis, and improved cardiac function in diabetic rats. High glucose increased DCRF expression and induced autophagy in cardiomyocytes. RNA immunoprecipitation and luciferase reporter assays indicated that DCRF was targeted by miR-551b-5p in an AGO2-dependent manner and PCDH17 was the direct target of miR-551b-5p. Forced expression of DCRF was found to attenuate the inhibitory effect of miR-551b-5p on PCDH17. Furthermore, DCRF knockdown decreased PCDH17 expression and suppressed autophagy in cardiomyocytes treated with high glucose. Conclusion: Our study suggests that DCRF can act as a competing endogenous RNA to increase PCDH17 expression by sponging miR-551b-5p, thus contributing to increased cardiomyocyte autophagy in DCM.
Collapse
|