1
|
Jung H, Kang J, Han KM, Kim H. Prognostic Value of Pentraxin3 Protein Expression in Human Malignancies: A Systematic Review and Meta-Analysis. Cancers (Basel) 2024; 16:3754. [PMID: 39594709 PMCID: PMC11593206 DOI: 10.3390/cancers16223754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Pentraxin 3 (PTX3), a member of the pentraxin superfamily, plays diverse roles in immunity and inflammation. Its dual role in tumorigenesis, exhibiting both protumoral and antitumoral effects, has been the subject of conflicting reports. High PTX3 expression levels in serum and tumor tissues have been associated with poor prognosis in various malignancies, suggesting its potential as a prognostic biomarker. Through this meta-analysis, we aim to comprehensively assess the prognostic significance of PTX3 protein expression in human malignancies and evaluate its potential as a pan-cancer prognostic marker. METHODS A systematic literature search was conducted across the PubMed, Embase, Web of Science, MEDLINE, and Cochrane Library databases. Studies were included if they assessed the association between PTX3 protein expression and overall survival (OS) in cancer patients. Hazard ratios (HRs) were pooled using a random-effects model. Subgroup analyses were performed based on the method of PTX3 assessment, and publication bias was evaluated using Egger's and Begg's tests. RESULTS Nine studies encompassing 1215 patients were included in the analysis. High PTX3 expression was significantly associated with poorer OS (HR = 1.89, 95% CI = 1.55-2.32, p < 0.01) with no significant heterogeneity (I2 = 0%). Subgroup analysis revealed consistent results across different assessment methods (immunohistochemistry: HR = 1.93, p < 0.01; immunoassay: HR = 1.86, p < 0.01). However, publication bias was detected (Egger's test, p = 0.03). CONCLUSIONS High PTX3 protein expression is associated with a poor prognosis in various malignancies, supporting its potential as a prognostic biomarker.
Collapse
Affiliation(s)
| | | | | | - Hyunchul Kim
- Department of Pathology, CHA Ilsan Medical Center, Goyang-si 10414, Gyeonggi-do, Republic of Korea (J.K.); (K.-M.H.)
| |
Collapse
|
2
|
Li D, Hao Z, Nan Y, Chen Y. Role of long pentraxin PTX3 in cancer. Clin Exp Med 2023; 23:4401-4411. [PMID: 37438568 DOI: 10.1007/s10238-023-01137-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/05/2023] [Indexed: 07/14/2023]
Abstract
Cancer has become a leading cause of death and disease burden worldwide, closely related to rapid socioeconomic development. However, the fundamental reason is the lack of comprehensive understanding of the mechanism of cancer, accurate identification of preclinical cancer, and effective treatment of the disease. Therefore, it is particularly urgent to study specific mechanisms of cancer and develop effective prediction and treatment methods. Long Pentraxin PTX3 is a soluble pattern recognition molecule produced by various cells in inflammatory sites, which plays a role as a promoter or suppressor of cancer in multiple tumors through participating in innate immune response, neovascularization, energy metabolism, invasion, and metastasis mechanisms. Based on this, this article mainly reviews the role of PTX3 in various cancers.
Collapse
Affiliation(s)
- Duo Li
- Department of Respiratory Medicine, Tangdu Hospital, Air Force Military Medical University, Xi'an 710038, China
| | - Zhaozhao Hao
- Department of Respiratory Medicine, Tangdu Hospital, Air Force Military Medical University, Xi'an 710038, China
| | - Yandong Nan
- Department of Respiratory Medicine, Tangdu Hospital, Air Force Military Medical University, Xi'an 710038, China.
| | - Yanwei Chen
- Department of Respiratory Medicine, Tangdu Hospital, Air Force Military Medical University, Xi'an 710038, China
| |
Collapse
|
3
|
Massimino AM, Colella FE, Bottazzi B, Inforzato A. Structural insights into the biological functions of the long pentraxin PTX3. Front Immunol 2023; 14:1274634. [PMID: 37885881 PMCID: PMC10598717 DOI: 10.3389/fimmu.2023.1274634] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/27/2023] [Indexed: 10/28/2023] Open
Abstract
Soluble pattern recognition molecules (PRMs) are a heterogenous group of proteins that recognize pathogen- and danger-associated molecular patterns (PAMPs and DAMPs, respectively), and cooperate with cell-borne receptors in the orchestration of innate and adaptive immune responses to pathogenic insults and tissue damage. Amongst soluble PRMs, pentraxins are a family of highly conserved proteins with distinctive structural features. Originally identified in the early 1990s as an early inflammatory gene, PTX3 is the prototype of long pentraxins. Unlike the short pentraxin C reactive protein (CRP), whose expression is mostly confined to the liver, PTX3 is made by several immune and non-immune cells at sites of infection and inflammation, where it intercepts fundamental aspects of infection immunity, inflammation, and tissue remodeling. Of note, PTX3 cross talks to components of the complement system to control cancer-related inflammation and disposal of pathogens. Also, it is an essential component of inflammatory extracellular matrices (ECMs) through crosslinking of hyaluronic acid and turn-over of provisional fibrin networks that assemble at sites of tissue injury. This functional diversity is mediated by unique structural characteristics whose fine details have been unveiled only recently. Here, we revisit the structure/function relationships of this long pentraxin in light of the most recent advances in its structural biology, with a focus on the interplay with complement and the emerging roles as a component of the ECM. Differences to and similarities with the short pentraxins are highlighted and discussed.
Collapse
Affiliation(s)
| | | | - Barbara Bottazzi
- Laboratory of Cellular and Humoral Innate Immunity, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Antonio Inforzato
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
- Laboratory of Cellular and Humoral Innate Immunity, IRCCS Humanitas Research Hospital, Rozzano, Italy
| |
Collapse
|
4
|
Giacomini A, Turati M, Grillo E, Rezzola S, Ghedini GC, Schuind AC, Foglio E, Maccarinelli F, Faletti J, Filiberti S, Chambery A, Valletta M, Melocchi L, Gofflot S, Chiavarina B, Turtoi A, Presta M, Ronca R. The PTX3/TLR4 autocrine loop as a novel therapeutic target in triple negative breast cancer. Exp Hematol Oncol 2023; 12:82. [PMID: 37749607 PMCID: PMC10519006 DOI: 10.1186/s40164-023-00441-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 09/04/2023] [Indexed: 09/27/2023] Open
Abstract
BACKGROUND The pattern recognition receptor long pentraxin-3 (PTX3) plays conflicting roles in cancer by acting as an oncosuppressor or as a pro-tumor mediator depending on tumor context. Triple negative breast cancer (TNBC) represents the most aggressive histotype of breast cancer, characterized by the lack of efficacious therapeutic targets/approaches and poor prognosis. Thus, the characterization of new molecular pathways and/or alternative druggable targets is of great interest in TNBC. METHODS The expression of PTX3 in BC tumor samples and in BC cell lines has been analyzed using the Gene Expression-Based Outcome for Breast Cancer Online (GOBO), qPCR, Western blot and ELISA assay. The contribution of tumor and stromal cells to PTX3 production in TNBC was assessed by analyzing single cell RNA sequencing data and RNAscope performed on TNBC tumor samples. In order to investigate the effects of PTX3 in TNBC, different cell lines were engineered to knock-down (MDA-MB-231 and BT549 cells) or overexpress (MDA-MB-468 and E0771 cells) PTX3. Finally, using these engineered cells, in vitro (including gene expression profiling and gene set enrichment analyses) and in vivo (orthotopic tumor models in immune-compromised and immune competent mice) analyses were performed to assess the role and the molecular mechanism(s) exerted by PTX3 in TNBC. RESULTS In silico and experimental data indicate that PTX3 is mainly produced by tumor cells in TNBC and that its expression levels correlate with tumor stage. Accordingly, gene expression and in vitro results demonstrate that PTX3 overexpression confers a high aggressive/proliferative phenotype and fosters stem-like features in TNBC cells. Also, PTX3 expression induces a more tumorigenic potential when TNBC cells are grafted orthotopically in vivo. Conversely, PTX3 downregulation results in a less aggressive behavior of TNBC cells. Mechanistically, our data reveal that PTX3 drives the activation of the pro-tumorigenic Toll-like receptor 4 (TLR4) signaling pathway in TNBC, demonstrating for the first time that the PTX3/TLR4 autocrine stimulation loop contributes to TNBC aggressiveness and that TLR4 inhibition significantly impacts the growth of PTX3-producing TNBC cells. CONCLUSION Altogether, these data shed light on the role of tumor-produced PTX3 in TNBC and uncover the importance of the PTX3/TLR4 axis for therapeutic and prognostic exploitation in TNBC.
Collapse
Affiliation(s)
- Arianna Giacomini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.
| | - Marta Turati
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Elisabetta Grillo
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Sara Rezzola
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Gaia Cristina Ghedini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Ander Churruca Schuind
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Eleonora Foglio
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Federica Maccarinelli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Jessica Faletti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Serena Filiberti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Angela Chambery
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania 'Luigi Vanvitelli', Caserta, Italy
| | - Mariangela Valletta
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania 'Luigi Vanvitelli', Caserta, Italy
| | - Laura Melocchi
- Pathology Unit, Fondazione Poliambulanza Hospital Institute, Brescia, 25121, Italy
| | | | - Barbara Chiavarina
- Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, University of Montpellier, Montpellier, France
| | - Andrei Turtoi
- Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, University of Montpellier, Montpellier, France
| | - Marco Presta
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Roberto Ronca
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.
| |
Collapse
|
5
|
Chiari D, Pirali B, Perano V, Leone R, Mantovani A, Bottazzi B. The crossroad between autoimmune disorder, tissue remodeling and cancer of the thyroid: The long pentraxin 3 (PTX3). Front Endocrinol (Lausanne) 2023; 14:1146017. [PMID: 37025408 PMCID: PMC10070760 DOI: 10.3389/fendo.2023.1146017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/07/2023] [Indexed: 04/08/2023] Open
Abstract
Thyroid is at the crossroads of immune dysregulation, tissue remodeling and oncogenesis. Autoimmune disorders, nodular disease and cancer of the thyroid affect a large amount of general population, mainly women. We wondered if there could be a common factor behind three processes (immune dysregulation, tissue remodeling and oncogenesis) that frequently affect, sometimes coexisting, the thyroid gland. The long pentraxin 3 (PTX3) is an essential component of the humoral arm of the innate immune system acting as soluble pattern recognition molecule. The protein is found expressed in a variety of cell types during tissue injury and stress. In addition, PTX3 is produced by neutrophils during maturation in the bone-marrow and is stored in lactoferrin-granules. PTX3 is a regulator of the complement cascade and orchestrates tissue remodeling and repair. Preclinical data and studies in human tumors indicate that PTX3 can act both as an extrinsic oncosuppressor by modulating complement-dependent tumor-promoting inflammation, or as a tumor-promoter molecule, regulating cell invasion and proliferation and epithelial to mesenchymal transition, thus suggesting that this molecule may have different functions on carcinogenesis. The involvement of PTX3 in the regulation of immune responses, tissue remodeling and oncosuppressive processes led us to explore its potential role in the development of thyroid disorders. In this review, we aimed to highlight what is known, at the state of the art, regarding the connection between the long pentraxin 3 and the main thyroid diseases i.e., nodular thyroid disease, thyroid cancer and autoimmune thyroid disorders.
Collapse
Affiliation(s)
- Damiano Chiari
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
- General Surgery Department, Humanitas Mater Domini Clinical Institute, Castellanza, Italy
- *Correspondence: Barbara Pirali, ; Damiano Chiari,
| | - Barbara Pirali
- Endocrinology Clinic, Internal Medicine Department, Humanitas Mater Domini Clinical Institute, Castellanza, Italy
- *Correspondence: Barbara Pirali, ; Damiano Chiari,
| | - Vittoria Perano
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | | | - Alberto Mantovani
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Italy
- Harvey Research Institute, Queen Mary University of London Charterhouse Square, London, United Kingdom
| | | |
Collapse
|
6
|
Bogdan M, Meca AD, Turcu-Stiolica A, Oancea CN, Kostici R, Surlin MV, Florescu C. Insights into the Relationship between Pentraxin-3 and Cancer. Int J Mol Sci 2022; 23:15302. [PMID: 36499628 PMCID: PMC9739619 DOI: 10.3390/ijms232315302] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/21/2022] [Accepted: 11/29/2022] [Indexed: 12/11/2022] Open
Abstract
Although cancer can be cured if detected early and treated effectively, it is still a leading cause of death worldwide. Tumor development can be limited by an appropiate immune response, but it can be promoted by chronic extensive inflammation through metabolic dysregulation and angiogenesis. In the past decade, numerous efforts have been made in order to identify novel candidates with predictive values in cancer diagnostics. In line with this, researchers have investigated the involvement of pentraxin-3 (PTX-3) in cellular proliferation and immune escape in various types of cancers, although it has not been clearly elucidated. PTX-3 is a member of the long pentraxin subfamily which plays an important role in regulating inflammation, innate immunity response, angiogenesis, and tissue remodeling. Increased synthesis of inflammatory biomarkers and activation of different cellular mechanisms can induce PTX-3 expression in various types of cells (neutrophils, monocytes, lymphocytes, myeloid dendritic cells, fibroblasts, and epithelial cells). PTX-3 has both pro- and anti-tumor functions, thus dual functions in oncogenesis. This review elucidates the potential usefulness of PTX-3 as a serum biomarker in cancer. While future investigations are needed, PTX-3 is emerging as a promising tool for cancer's diagnosis and prognosis, and also treatment monitoring.
Collapse
Affiliation(s)
- Maria Bogdan
- Department of Pharmacology, Faculty of Pharmacy, University of Medicine and Pharmacy, 200349 Craiova, Romania
| | - Andreea-Daniela Meca
- Department of Pharmacology, Faculty of Pharmacy, University of Medicine and Pharmacy, 200349 Craiova, Romania
| | - Adina Turcu-Stiolica
- Department of Pharmacoeconomics, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Carmen Nicoleta Oancea
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Roxana Kostici
- Department of Toxicology, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Marin Valeriu Surlin
- Department of General Surgery, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Cristina Florescu
- Department of Cardiology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| |
Collapse
|
7
|
Zhang H, Wang R, Wang Z, Wu W, Zhang N, Zhang L, Hu J, Luo P, Zhang J, Liu Z, Feng S, Peng Y, Liu Z, Cheng Q. Molecular insight into pentraxin-3: Update advances in innate immunity, inflammation, tissue remodeling, diseases, and drug role. Biomed Pharmacother 2022; 156:113783. [PMID: 36240615 DOI: 10.1016/j.biopha.2022.113783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/28/2022] [Accepted: 09/28/2022] [Indexed: 11/20/2022] Open
Abstract
Pentraxin-3 (PTX3) is the prototype of the long pentraxin subfamily, an acute-phase protein consisting of a C-terminal pentraxin domain and a unique N-terminal domain. PTX3 was initially isolated from human umbilical vein endothelial cells and human FS-4 fibroblasts. It was subsequently found to be also produced by synoviocytes, chondrocytes, osteoblasts, smooth muscle cells, myeloid dendritic cells, epithelial cells, and tumor cells. Various modulatory factors, such as miRNAs, cytokines, drugs, and hypoxic conditions, could regulate the expression level of PTX3. PTX3 is essential in regulating innate immunity, inflammation, angiogenesis, and tissue remodeling. Besides, PTX3 may play dual (pro-tumor and anti-tumor) roles in oncogenesis. PTX3 is involved in the occurrence and development of many non-cancerous diseases, including COVID-19, and might be a potential biomarker indicating the prognosis, activity,and severity of diseases. In this review, we summarize and discuss the potential roles of PTX3 in the oncogenesis and pathogenesis of non-cancerous diseases and potential targeted therapies based on PTX3.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, China; Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, China
| | - Ruixuan Wang
- Department of Oncology, Xiangya Hospital, Central South University, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, China
| | - Zeyu Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, China
| | - Wantao Wu
- Department of Oncology, Xiangya Hospital, Central South University, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, China
| | - Nan Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, China; One-third Lab, College of Bioinformatics Science and Technology, Harbin Medical University, China
| | - Longbo Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, China; Department of Neurosurgery, and Department of Cellular & Molecular Physiology,Yale University School of Medicine, USA; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, China
| | - Jason Hu
- Department of Neonatology, Yale University School of Medicine, USA
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, China
| | - Songshan Feng
- Department of Neurosurgery, Xiangya Hospital, Central South University, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, China
| | - Yun Peng
- Department of Geriatrics, Xiangya Hospital, Central South University, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, China
| | - Zhengzheng Liu
- Department of Oncology, Xiangya Hospital, Central South University, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, China.
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, China.
| |
Collapse
|
8
|
Zhang H, Wang Y, Zhao Y, Liu T, Wang Z, Zhang N, Dai Z, Wu W, Cao H, Feng S, Zhang L, Cheng Q, Liu Z. PTX3 mediates the infiltration, migration, and inflammation-resolving-polarization of macrophages in glioblastoma. CNS Neurosci Ther 2022; 28:1748-1766. [PMID: 35855654 PMCID: PMC9532932 DOI: 10.1111/cns.13913] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 06/19/2022] [Accepted: 06/20/2022] [Indexed: 11/30/2022] Open
Abstract
INTRODUCTION Pentraxin 3 (PTX3) is an essential regulator of the immune system. However, the immune-modulatory role of PTX3 in the tumor microenvironment of glioma has not been elucidated. METHODS The RNA seq samples were obtained from The Cancer Genome Atlas (TCGA) and the China Glioma Genome Atlas (CGGA) datasets. The single-cell sequencing data of glioblastoma (GBM) samples were obtained from the Single Cell Portal platform (http://singlecell.broadinstitute.org). Immunohistochemistry was used to assess PTX3 expression, HAVCR2, PD-1, PD-L1, and CD276 in glioma sections from the Xiangya cohort (n = 60). Multiplex immunofluorescence staining of PTX3, CD68, and CD163 was performed in several solid cancer types, including GBM. HMC3 was cocultured with U251 and U87, and transwell assay and flow cytometry assay were performed to explore the migration and polarization activity of HMC3. RESULTS PTX3 expression is significantly increased in GBM. PTX3 expression predicts worse survival in the Xiangya cohort. PTX3 is closely related to the expression of PD-1, PD-L1, CD276, and HAVCR2 in the tumor microenvironment. Additionally, PTX3 is involved in tumorigenic and immunogenic processes, especially the activity of macrophages based on various signaling pathways in cellular communications and critical transcription factors. Specifically, PTX3 actively mediates macrophages' infiltration, migration, and inflammation-resolving-polarization. PTX3 could also predict immunotherapy response. CONCLUSION PTX3 is critically involved in macrophage infiltration, migration, and inflammation-resolving-polarization and modulates an immunosuppressive microenvironment.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaChina
| | - Yifan Wang
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaChina
- Xiangya School of MedicineCentral South UniversityChangshaChina
| | - Yihan Zhao
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaChina
- Xiangya School of MedicineCentral South UniversityChangshaChina
| | - Tao Liu
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaChina
- Xiangya School of MedicineCentral South UniversityChangshaChina
| | - Zeyu Wang
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaChina
| | - Nan Zhang
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbinChina
| | - Ziyu Dai
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaChina
| | - Wantao Wu
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaChina
- Department of Oncology, Xiangya HospitalCentral South UniversityChangshaChina
| | - Hui Cao
- Department of Psychiatry, The Second People's Hospital of Hunan ProvinceThe Hospital of Hunan University of Chinese MedicineChangshaChina
| | - Songshan Feng
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaChina
| | - Liyang Zhang
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaChina
| | - Quan Cheng
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaChina
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaChina
| |
Collapse
|
9
|
Novel potential oncogenic and druggable mutations of FGFRs recur in the kinase domain across cancer types. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166313. [PMID: 34826586 DOI: 10.1016/j.bbadis.2021.166313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 12/19/2022]
Abstract
Fibroblast growth factor receptors (FGFRs) are recurrently altered by single nucleotide variants (SNVs) in many human cancers. The prevalence of SNVs in FGFRs depends on the cancer type. In some tumors, such as the urothelial carcinoma, mutations of FGFRs occur at very high frequency (up to 60%). Many characterized mutations occur in the extracellular or transmembrane domains, while fewer known mutations are found in the kinase domain. In this study, we performed a bioinformatics analysis to identify novel putative cancer driver or therapeutically actionable mutations of the kinase domain of FGFRs. To pinpoint those mutations that may be clinically relevant, we exploited the recurrence of alterations on analogous amino acid residues within the kinase domain (PK_Tyr_Ser-Thr) of different kinases as a predictor of functional impact. By exploiting MutationAligner and LowMACA bioinformatics resources, we highlighted novel uncharacterized mutations of FGFRs which recur in other protein kinases. By revealing unanticipated correspondence with known variants, we were able to infer their functional effects, as alterations clustering on similar residues in analogous proteins have a high probability to elicit similar effects. As FGFRs represent an important class of oncogenes and drug targets, our study opens the way for further studies to validate their driver and/or actionable nature and, in the long term, for a more efficacious application of precision oncology.
Collapse
|
10
|
Chiodelli P, Coltrini D, Turati M, Cerasuolo M, Maccarinelli F, Rezzola S, Grillo E, Giacomini A, Taranto S, Mussi S, Ligresti A, Presta M, Ronca R. FGFR blockade by pemigatinib treats naïve and castration resistant prostate cancer. Cancer Lett 2022; 526:217-224. [PMID: 34861311 DOI: 10.1016/j.canlet.2021.11.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/08/2021] [Accepted: 11/28/2021] [Indexed: 11/02/2022]
Abstract
Prostate cancer (PCa) is a leading cause of cancer mortality in the male population commonly treated with androgen deprivation therapy (ADT) and relapsing as aggressive and androgen-independent castration-resistant prostate cancer (CRPC). In PCa the FGF/FGFR family of growth factors and receptors represents a relevant mediator of cancer growth, tumor-stroma interaction, and a driver of resistance and relapse to ADT. In the present work, we validate the therapeutic efficacy the FDA-approved FGFR inhibitor pemigatinib, in an integrated platform consisting of human and murine PCa cells, and the transgenic multistage TRAMP model of PCa that recapitulates both androgen-dependent and CRPC settings. Our results show for the first time that pemigatinib causes intracellular stress and cell death in PCa cells and prevents tumor growth in vivo and in the multistage model. In addition, the combination of pemigatinib with enzalutamide resulted in long-lasting tumor inhibition and prevention of CRPC relapse in TRAMP mice. These data are confirmed by the implementation of a stochastic mathematical model and in silico simulation. Pemigatinib represents a promising FDA-approved FGFR inhibitor for the treatment of PCa and CRPC alone and in combination with enzalutamide.
Collapse
Affiliation(s)
- Paola Chiodelli
- University of Brescia, Department of Molecular and Translational Medicine, Brescia, Italy
| | - Daniela Coltrini
- University of Brescia, Department of Molecular and Translational Medicine, Brescia, Italy
| | - Marta Turati
- University of Brescia, Department of Molecular and Translational Medicine, Brescia, Italy
| | - Marianna Cerasuolo
- University of Portsmouth, School of Mathematics and Physics, Hampshire, PO1 3HF, UK
| | - Federica Maccarinelli
- University of Brescia, Department of Molecular and Translational Medicine, Brescia, Italy
| | - Sara Rezzola
- University of Brescia, Department of Molecular and Translational Medicine, Brescia, Italy
| | - Elisabetta Grillo
- University of Brescia, Department of Molecular and Translational Medicine, Brescia, Italy
| | - Arianna Giacomini
- University of Brescia, Department of Molecular and Translational Medicine, Brescia, Italy
| | - Sara Taranto
- University of Brescia, Department of Molecular and Translational Medicine, Brescia, Italy
| | - Silvia Mussi
- University of Brescia, Department of Molecular and Translational Medicine, Brescia, Italy
| | - Alessia Ligresti
- National Research Council of Italy, Institute of Biomolecular Chemistry, Pozzuoli, Italy
| | - Marco Presta
- University of Brescia, Department of Molecular and Translational Medicine, Brescia, Italy
| | - Roberto Ronca
- University of Brescia, Department of Molecular and Translational Medicine, Brescia, Italy.
| |
Collapse
|
11
|
The complexity of tumour angiogenesis based on recently described molecules. Contemp Oncol (Pozn) 2021; 25:33-44. [PMID: 33911980 PMCID: PMC8063899 DOI: 10.5114/wo.2021.105075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 11/23/2020] [Indexed: 12/13/2022] Open
Abstract
Tumour angiogenesis is a crucial factor associated with tumour growth, progression, and metastasis. The whole process is the result of an interaction between a wide range of different molecules, influencing each other. Herein we summarize novel discoveries related to the less known angiogenic molecules such as galectins, pentraxin-3, Ral-interacting protein of 76 kDa (RLIP76), long non-coding RNAs (lncRNAs), B7-H3, and delta-like ligand-4 (DLL-4) and their role in the process of tumour angiogenesis. These molecules influence the most important molecular pathways involved in the formation of blood vessels in cancer, including the vascular endothelial growth factor (VEGF)-vascular endothelial growth factor receptor interaction (VEGFR), HIF1-a activation, or PI3K/Akt/mTOR and JAK-STAT signalling pathways. Increased expression of galectins, RLIP76, and B7H3 has been proven in several malignancies. Pentraxin-3, which appears to inhibit tumour angiogenesis, shows reduced expression in tumour tissues. Anti-angiogenic treatment based mainly on VEGF inhibition has proved to be of limited effectiveness, leading to the development of drug resistance. The newly discovered molecules are of great interest as a potential source of new anti-cancer therapies. Their role as targets for new drugs and as prognostic markers in neoplasms is discussed in this review.
Collapse
|
12
|
Modulation of complement activation by pentraxin-3 in prostate cancer. Sci Rep 2020; 10:18400. [PMID: 33110136 PMCID: PMC7591881 DOI: 10.1038/s41598-020-75376-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 10/13/2020] [Indexed: 01/10/2023] Open
Abstract
Pentraxin 3 (PTX3) is an essential component of the innate immune system and a recognized modulator of Complement cascade. The role of Complement system in the pathogenesis of prostate cancer has been largely underestimated. The aim of our study was to investigate the role of PTX3 as possible modulator of Complement activation in the development of this neoplasia. We performed a single center cohort study; from January 2017 through December 2018, serum and prostate tissue samples were obtained from 620 patients undergoing prostate biopsy. A group of patients with benign prostatic hyperplasia (BPH) underwent a second biopsy within 12–36 months demonstrating the presence of a prostate cancer (Group A, n = 40) or confirming the diagnosis of BPH (Group B, N = 40). We measured tissue PTX3 protein expression together with complement activation by confocal microscopy in the first and second biopsy in group A and B patients. We confirmed that that PTX3 tissue expression in the first biopsy was increased in group A compared to group B patients. C1q deposits were extensively present in group A patients co-localizing and significantly correlating with PTX3 deposits; on the contrary, C1q/PTX3 deposits were negative in group B. Moreover, we found a significantly increased expression of C3a and C5a receptors within resident cells in group A patient. Interestingly, C1q/PTX3 deposits were not associated with activation of the terminal Complement complex C5b-9; moreover, we found a significant increase of Complement inhibitor CD59 in cancer tissue. Our data indicate that PTX3 might play a significant pathogenic role in the development of this neoplasia through recruitment of the early components of Complement cascade with hampered activation of terminal Complement pathway associated with the upregulation of CD59. This alteration might lead to the PTX3-mediated promotion of cellular proliferation, angiogenesis and insensitivity to apoptosis possible leading to cancer cell invasion and migration.
Collapse
|
13
|
WU W, XU J. [Research progress on the role of pentraxin 3 in polycystic ovary syndrome]. Zhejiang Da Xue Xue Bao Yi Xue Ban 2020; 49:637-643. [PMID: 33210493 PMCID: PMC8800715 DOI: 10.3785/j.issn.1008-9292.2020.08.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/23/2020] [Indexed: 06/11/2023]
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrine disease of child-bearing period women and one of the main causes of infertility in women. Pentraxin 3 (PTX3) is a multifunctional protein with a series of biological activities. PTX3 participates in the regulation of insulin secretion and glucose metabolism, ovarian cumulus cell function, inflammatory factor activity, androgen metabolism, lipid absorption and transport, and endothelial cell function, thereby improving insulin resistance, promoting follicular development and ovulation, reducing chronic inflammation, inhibiting androgen levels, improving lipid metabolism abnormalities and preventing atherosclerosis and cardiovascular diseases, thus participating in the occurrence of PCOS and its complications. This article reviews the mechanism of PTX3 in PCOS and its complications, trying to provide new ideas and directions for the study of PCOS pathogenesis and its clinical diagnosis and treatment.
Collapse
Affiliation(s)
| | - Jian XU
- 徐键(1961-), 男, 博士, 主任医师, 博士生导师, 主要从事生殖医学与妇科内分泌、辅助生育技术、妇科内窥镜研究; E-mail:
;
https://orcid.org/0000-0002-0307-3198
| |
Collapse
|
14
|
Wang Z, Wang X, Zou H, Dai Z, Feng S, Zhang M, Xiao G, Liu Z, Cheng Q. The Basic Characteristics of the Pentraxin Family and Their Functions in Tumor Progression. Front Immunol 2020; 11:1757. [PMID: 33013829 PMCID: PMC7461825 DOI: 10.3389/fimmu.2020.01757] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/30/2020] [Indexed: 02/05/2023] Open
Abstract
The pentraxin is a superfamily of proteins with the same domain known as the pentraxin domain at C-terminal. This family has two subgroups, namely; short pentraxins (C-reactive protein and serum amyloid P component) and long pentraxins (neuronal pentraxin 1, neuronal pentraxin 2, neuronal pentraxin receptor, pentraxin 3 and pentraxin 4). Each group shares a similar structure with the pentameric complexes arranged in a discoid shape. Previous studies revealed the functions of different pentraxin family members. Most of them are associated with human innate immunity. Inflammation has commonly been associated with tumor progression, implying that the pentraxin family might also participate in tumor progression. Therefore, we reviewed the basic characteristics and functions of the pentraxin family and their role in tumor progression.
Collapse
Affiliation(s)
- Zeyu Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Xing Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Hecun Zou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| | - Ziyu Dai
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Songshan Feng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Mingyu Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Gelei Xiao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China.,Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
15
|
Quan J, Zhang W, Yu C, Bai Y, Cui J, Lv J, Zhang Q. Bioinformatic identification of prognostic indicators in bladder cancer. Biomark Med 2020; 14:1243-1254. [PMID: 32749145 DOI: 10.2217/bmm-2020-0316] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Aim: Bladder cancer (BC) is one of the most common malignancies with poor prognosis. We aimed to identify a genetic signature for predicting the prognosis of BC. Materials & methods: Kaplan-Meier survival and Cox regression analyses were used to construct a prognostic signature using data from The Cancer Genome Atlas. Results: Fifty four upregulated and 47 downregulated immune-related genes (IRGs) were identified in BC. A prognostic signature based on the expression of five IRGs was determined, which was moderately accurate in the prognosis of tumors. The prognostic signature was correlated with tumor stage, tumor burden and lymph node metastasis. The expression of IRGs were associated with immune infiltration. Conclusion: We determined a five gene signature, which correlates with the prognosis of BC patients, providing additional information for effective treatment.
Collapse
Affiliation(s)
- Jing Quan
- Department of Urology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Weiyi Zhang
- The First People's Hospital of Foshan, Foshan 528000, China
| | - Chong Yu
- Department of Urology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Yuchen Bai
- Department of Urology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Jianxin Cui
- Department of Urology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Jia Lv
- Department of Urology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Qi Zhang
- Department of Urology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China
| |
Collapse
|
16
|
Giacomini A, Grillo E, Rezzola S, Ribatti D, Rusnati M, Ronca R, Presta M. The FGF/FGFR system in the physiopathology of the prostate gland. Physiol Rev 2020; 101:569-610. [PMID: 32730114 DOI: 10.1152/physrev.00005.2020] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Fibroblast growth factors (FGFs) are a family of proteins possessing paracrine, autocrine, or endocrine functions in a variety of biological processes, including embryonic development, angiogenesis, tissue homeostasis, wound repair, and cancer. Canonical FGFs bind and activate tyrosine kinase FGF receptors (FGFRs), triggering intracellular signaling cascades that mediate their biological activity. Experimental evidence indicates that FGFs play a complex role in the physiopathology of the prostate gland that ranges from essential functions during embryonic development to modulation of neoplastic transformation. The use of ligand- and receptor-deleted mouse models has highlighted the requirement for FGF signaling in the normal development of the prostate gland. In adult prostate, the maintenance of a functional FGF/FGFR signaling axis is critical for organ homeostasis and function, as its disruption leads to prostate hyperplasia and may contribute to cancer progression and metastatic dissemination. Dissection of the molecular landscape modulated by the FGF family will facilitate ongoing translational efforts directed toward prostate cancer therapy.
Collapse
Affiliation(s)
- Arianna Giacomini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy; and Italian Consortium for Biotechnology, Unit of Brescia, Brescia, Italy
| | - Elisabetta Grillo
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy; and Italian Consortium for Biotechnology, Unit of Brescia, Brescia, Italy
| | - Sara Rezzola
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy; and Italian Consortium for Biotechnology, Unit of Brescia, Brescia, Italy
| | - Domenico Ribatti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy; and Italian Consortium for Biotechnology, Unit of Brescia, Brescia, Italy
| | - Marco Rusnati
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy; and Italian Consortium for Biotechnology, Unit of Brescia, Brescia, Italy
| | - Roberto Ronca
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy; and Italian Consortium for Biotechnology, Unit of Brescia, Brescia, Italy
| | - Marco Presta
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy; and Italian Consortium for Biotechnology, Unit of Brescia, Brescia, Italy
| |
Collapse
|
17
|
Guerra J, Chiodelli P, Tobia C, Gerri C, Presta M. Long-Pentraxin 3 Affects Primary Cilium in Zebrafish Embryo and Cancer Cells via the FGF System. Cancers (Basel) 2020; 12:cancers12071756. [PMID: 32630309 PMCID: PMC7409334 DOI: 10.3390/cancers12071756] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 06/29/2020] [Indexed: 11/16/2022] Open
Abstract
Primary cilium drives the left-right asymmetry process during embryonic development. Moreover, its dysregulation contributes to cancer progression by affecting various signaling pathways. The fibroblast growth factor (FGF)/FGF receptor (FGFR) system modulates primary cilium length and plays a pivotal role in embryogenesis and tumor growth. Here, we investigated the impact of the natural FGF trap long-pentraxin 3 (PTX3) on the determination of primary cilium extension in zebrafish embryo and cancer cells. The results demonstrate that down modulation of the PTX3 orthologue ptx3b causes the shortening of primary cilium in zebrafish embryo in a FGF-dependent manner, leading to defects in the left-right asymmetry determination. Conversely, PTX3 upregulation causes the elongation of primary cilium in FGF-dependent cancer cells. Previous observations have identified the PTX3-derived small molecule NSC12 as an orally available FGF trap with anticancer effects on FGF-dependent tumors. In keeping with the non-redundant role of the FGF/FGR system in primary cilium length determination, NSC12 induces the elongation of primary cilium in FGF-dependent tumor cells, thus acting as a ciliogenic anticancer molecule in vitro and in vivo. Together, these findings demonstrate the ability of the natural FGF trap PTX3 to exert a modulatory effect on primary cilium in embryonic development and cancer. Moreover, they set the basis for the design of novel ciliogenic drugs with potential implications for the therapy of FGF-dependent tumors.
Collapse
Affiliation(s)
- Jessica Guerra
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (J.G.); (P.C.); (C.T.); (C.G.)
| | - Paola Chiodelli
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (J.G.); (P.C.); (C.T.); (C.G.)
| | - Chiara Tobia
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (J.G.); (P.C.); (C.T.); (C.G.)
| | - Claudia Gerri
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (J.G.); (P.C.); (C.T.); (C.G.)
- Francis Crick Institute, London NW1 1AT, UK
| | - Marco Presta
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (J.G.); (P.C.); (C.T.); (C.G.)
- Italian Consortium for Biotechnology (CIB), 25123 Brescia, Italy
- Correspondence:
| |
Collapse
|
18
|
Kang Y, Yu Y, Lu L. The Role of Pentraxin 3 in Aspergillosis: Reality and Prospects. MYCOBIOLOGY 2020; 48:1-8. [PMID: 32158600 PMCID: PMC7048186 DOI: 10.1080/12298093.2020.1722576] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 01/10/2020] [Accepted: 01/23/2020] [Indexed: 02/08/2023]
Abstract
Pentraxin 3 (PTX3) is a soluble pattern recognition receptor (PRR), which is produced by several kinds of cells, such as neutrophils, dendritic cells, macrophages, and epithelial cells. PTX3 is known to play an important protective effect against Aspergillus. Genetic linkage in gene-targeted mice and human PTX3 plays a non-redundant role in the immune protection against specific pathogens, especially Aspergillus. Recent studies have shown that the polymorphism of PTX3 is associated with increased susceptibility to invasive aspergillosis (IA). In this review, we provide an overview of these studies that underline the potential of PTX3 in diagnosis and therapy of IA.
Collapse
Affiliation(s)
- Yuening Kang
- Department of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuetian Yu
- Department of Critical Care Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Liangjing Lu
- Department of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
19
|
Figueroa V, Rodríguez MS, Lanari C, Lamb CA. Nuclear action of FGF members in endocrine-related tissues and cancer: Interplay with steroid receptor pathways. Steroids 2019; 152:108492. [PMID: 31513818 DOI: 10.1016/j.steroids.2019.108492] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/27/2019] [Accepted: 09/05/2019] [Indexed: 01/09/2023]
Abstract
Dysregulation of the fibroblast growth factors/fibroblast growth factor receptor (FGF/FGFR) pathway has been implicated in a wide range of human disorders and several members have been localized in the nuclear compartment. Hormone-activated steroid receptors or ligand independent activated receptors form nuclear complexes that activate gene transcription. This review aims to highlight the interplay between the steroid receptor and the FGF/FGFR pathways and focuses on the current knowledge on nuclear action of FGF members in endocrine-related tissues and cancer. The nuclear trafficking and targets of FGF/FGFR members and the available evidence on the interplay with steroid hormones and receptors is described. Finally, the data on aberrant FGF/FGFR signaling is summarized and the nuclear action of FGF members on endocrine resistant breast cancer is highlighted. Identifying the mechanisms underlying FGF-induced endocrine resistance will be important to understand how to efficiently target endocrine-related diseases and even enhance or restore endocrine sensitivity in hormone receptor positive tumors.
Collapse
Affiliation(s)
- Virginia Figueroa
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Vuelta de Obligado 2490, Buenos Aires 1428, Argentina
| | - María Sol Rodríguez
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Vuelta de Obligado 2490, Buenos Aires 1428, Argentina
| | - Claudia Lanari
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Vuelta de Obligado 2490, Buenos Aires 1428, Argentina
| | - Caroline Ana Lamb
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Vuelta de Obligado 2490, Buenos Aires 1428, Argentina.
| |
Collapse
|
20
|
Annese T, Ronca R, Tamma R, Giacomini A, Ruggieri S, Grillo E, Presta M, Ribatti D. PTX3 Modulates Neovascularization and Immune Inflammatory Infiltrate in a Murine Model of Fibrosarcoma. Int J Mol Sci 2019; 20:ijms20184599. [PMID: 31533326 PMCID: PMC6770794 DOI: 10.3390/ijms20184599] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 09/09/2019] [Accepted: 09/11/2019] [Indexed: 11/22/2022] Open
Abstract
Fibrosarcoma is an aggressive subtype of soft tissue sarcoma categorized in infantile/congenital-type and adult-type. Fibrosarcoma cells and its surrounding immune inflammatory infiltrates overexpress or induce the expression of fibroblast growth factor-2 (FGF-2) that have a crucial role in tumor progression and angiogenesis. The inflammation-associated long pentraxin 3 (PTX3) was found to reduce FGF-2-mediated angiogenesis, but its role on fibrosarcoma immune inflammatory infiltrate is still unknown. In this study, we have evaluated the PTX3 activity on immune infiltrating mast cells, macrophages and T-lymphocytes by immunohistochemistry on murine MC-TGS17-51 fibrosarcoma cells and on transgenic TgN(Tie2-hPTX3) mouse. In these fibrosarcoma models we found a reduced neovascularization and a significant decrease of inflammatory infiltrate. Indeed, we show that PTX3 reduces the level of complement 3 (C3) deposition reducing fibrosarcoma progression. In conclusion, we hypothesize that targeting fibrosarcoma microenvironment by FGF/FGFR inhibitors may improve treatment outcome.
Collapse
Affiliation(s)
- Tiziana Annese
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Section of Human Anatomy and Histology, University of Bari Medical School Bari, P.zza Giulio Cesare 11, 70124 Bari, Italy.
| | - Roberto Ronca
- Department of Molecular and Translational Medicine, University of Brescia, V.le Europa, 11, 25123 Brescia, Italy.
| | - Roberto Tamma
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Section of Human Anatomy and Histology, University of Bari Medical School Bari, P.zza Giulio Cesare 11, 70124 Bari, Italy.
| | - Arianna Giacomini
- Department of Molecular and Translational Medicine, University of Brescia, V.le Europa, 11, 25123 Brescia, Italy.
| | - Simona Ruggieri
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Section of Human Anatomy and Histology, University of Bari Medical School Bari, P.zza Giulio Cesare 11, 70124 Bari, Italy.
| | - Elisabetta Grillo
- Department of Molecular and Translational Medicine, University of Brescia, V.le Europa, 11, 25123 Brescia, Italy.
| | - Marco Presta
- Department of Molecular and Translational Medicine, University of Brescia, V.le Europa, 11, 25123 Brescia, Italy.
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Section of Human Anatomy and Histology, University of Bari Medical School Bari, P.zza Giulio Cesare 11, 70124 Bari, Italy.
| |
Collapse
|
21
|
The Autocrine FGF/FGFR System in both Skin and Uveal Melanoma: FGF Trapping as a Possible Therapeutic Approach. Cancers (Basel) 2019; 11:cancers11091305. [PMID: 31487962 PMCID: PMC6770058 DOI: 10.3390/cancers11091305] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/29/2019] [Accepted: 08/29/2019] [Indexed: 12/12/2022] Open
Abstract
Fibroblast growth factors (FGFs) play non-redundant autocrine/paracrine functions in various human cancers. The Cancer Genome Atlas (TCGA) data mining indicates that high levels of FGF and/or FGF receptor (FGFR) expression are associated with reduced overall survival, chromosome 3 monosomy and BAP1 mutation in human uveal melanoma (UM), pointing to the FGF/FGFR system as a target for UM treatment. Here, we investigated the impact of different FGF trapping approaches on the tumorigenic and liver metastatic activity of liver metastasis-derived murine melanoma B16-LS9 cells that, similar to human UM, are characterized by a distinctive hepatic tropism. In vitro and in vivo experiments demonstrated that the overexpression of the natural FGF trap inhibitor long-pentraxin 3 (PTX3) inhibits the oncogenic activity of B16-LS9 cells. In addition, B16-LS9 cells showed a reduced tumor growth and liver metastatic activity when grafted in PTX3-overexpressing transgenic mice. The efficacy of the FGF trapping approach was confirmed by the capacity of the PTX3-derived pan-FGF trap small molecule NSC12 to inhibit B16-LS9 cell growth in vitro, in a zebrafish embryo orthotopic tumor model and in an experimental model of liver metastasis. Possible translational implications for these observations were provided by the capacity of NSC12 to inhibit FGF signaling and cell proliferation in human UM Mel285, Mel270, 92.1, and OMM2.3 cells. In addition, NSC12 caused caspase-3 activation and PARP cleavage followed by apoptotic cell death as well as β-catenin degradation and inhibition of UM cell migration. Together, our findings indicate that FGF trapping may represent a novel therapeutic strategy in UM.
Collapse
|
22
|
Matarazzo S, Melocchi L, Rezzola S, Grillo E, Maccarinelli F, Giacomini A, Turati M, Taranto S, Zammataro L, Cerasuolo M, Bugatti M, Vermi W, Presta M, Ronca R. Long Pentraxin-3 Follows and Modulates Bladder Cancer Progression. Cancers (Basel) 2019; 11:cancers11091277. [PMID: 31480336 PMCID: PMC6770810 DOI: 10.3390/cancers11091277] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/23/2019] [Accepted: 08/25/2019] [Indexed: 12/20/2022] Open
Abstract
Bladder tumors are a diffuse type of cancer. Long pentraxin-3 (PTX3) is a component of the innate immunity with pleiotropic functions in the regulation of immune response, tissue remodeling, and cancer progression. PTX3 may act as an oncosuppressor in different contexts, functioning as an antagonist of the fibroblast growth factor/fibroblast growth factor receptor (FGF/FGFR) system, rewiring the immune microenvironment, or acting through mechanisms not yet fully clarified. In this study we used biopsies and data mining to assess that PTX3 is differentially expressed during the different stages of bladder cancer (BC) progression. BC cell lines, representative of different tumor grades, and transgenic/carcinogen-induced models were used to demonstrate in vitro and in vivo that PTX3 production by tumor cells decreases along the progression from low-grade to high-grade advanced muscle invasive forms (MIBC). In vitro and in vivo data revealed for the first time that PTX3 modulation and the consequent impairment of FGF/FGR systems in BC cells have a significant impact on different biological features of BC growth, including cell proliferation, motility, metabolism, stemness, and drug resistance. PTX3 exerts an oncosuppressive effect on BC progression and may represent a potential functional biomarker in BC evolution. Moreover, FGF/FGFR blockade has an impact on drug resistance and stemness features in BC.
Collapse
Affiliation(s)
- Sara Matarazzo
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Laura Melocchi
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
- Department of Pathology, Fondazione Poliambulanza Hospital, 25124 Brescia, Italy
| | - Sara Rezzola
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Elisabetta Grillo
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Federica Maccarinelli
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Arianna Giacomini
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Marta Turati
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Sara Taranto
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Luca Zammataro
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Marianna Cerasuolo
- School of Mathematics and Physics, University of Portsmouth, Hampshire PO1 3HF, UK
| | - Mattia Bugatti
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - William Vermi
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Marco Presta
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Roberto Ronca
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy.
| |
Collapse
|
23
|
Yeh CM, Lin CW, Chuang CY, Liu YF, Chou CH, Yang SF, Chen MK. Functional Genetic Variant of Long Pentraxin 3 Gene Is Associated With Clinical Aspects of Oral Cancer in Male Patients. Front Oncol 2019; 9:581. [PMID: 31334115 PMCID: PMC6616059 DOI: 10.3389/fonc.2019.00581] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/14/2019] [Indexed: 12/18/2022] Open
Abstract
Long pentraxin 3 (PTX3) is produced by various cell types and is correlated with tumor progression in various tumor types. However, the clinical significance of PTX3 polymorphisms in oral cancer and their correlation with the risk of cancer are still unclear. In this study, we assessed the influence of PTX3 gene polymorphisms and environmental factors on susceptibility to oral tumorigenesis. We recruited 865 cases with oral cancer and 1,189 controls. Four single-nucleotide variations of the PTX3 gene (rs1840680, rs2305619, rs3816527, and rs2120243) were verified using a real-time polymerase chain reaction in control participants and cases with oral cancer. We found that rs3816527 in smokers was correlated with the development of late-stage cancer (odds ratio [OR], 2.328; 95% confidence interval [CI], 1.078-5.027) and increased lymph node metastasis (OR, 2.152; 95% CI, 1.047-4.422). Moreover, additional bioinformatics analysis results showed that the rs3816527 C allele variant to the A allele exhibited the strongest exonic splicing enhancer activity. In conclusion, our results suggested that PTX3 rs3816527 plays a role in oral cancer development.
Collapse
Affiliation(s)
- Chia-Ming Yeh
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Cancer Research Center, Changhua Christian Hospital, Changhua, Taiwan.,Department of Otorhinolaryngology-Head and Neck Surgery, Changhua Christian Hospital, Changhua, Taiwan
| | - Chiao-Wen Lin
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan.,Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chun-Yi Chuang
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Otolaryngology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yu-Fan Liu
- Department of Biomedical Sciences, College of Medicine Sciences and Technology, Chung Shan Medical University, Taichung, Taiwan
| | - Chia-Hsuan Chou
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Mu-Kuan Chen
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Cancer Research Center, Changhua Christian Hospital, Changhua, Taiwan.,Department of Otorhinolaryngology-Head and Neck Surgery, Changhua Christian Hospital, Changhua, Taiwan
| |
Collapse
|
24
|
Rathore M, Girard C, Ohanna M, Tichet M, Ben Jouira R, Garcia E, Larbret F, Gesson M, Audebert S, Lacour JP, Montaudié H, Prod'Homme V, Tartare-Deckert S, Deckert M. Cancer cell-derived long pentraxin 3 (PTX3) promotes melanoma migration through a toll-like receptor 4 (TLR4)/NF-κB signaling pathway. Oncogene 2019; 38:5873-5889. [PMID: 31253871 DOI: 10.1038/s41388-019-0848-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 03/30/2019] [Accepted: 04/28/2019] [Indexed: 01/23/2023]
Abstract
Cutaneous melanoma is one of the most aggressive cancers characterized by a high plasticity, a propensity for metastasis, and drug resistance. Melanomas are composed of phenotypically diverse subpopulations of tumor cells with heterogeneous molecular profiles that reflect intrinsic invasive abilities. In an attempt to identify novel factors of the melanoma invasive cell state, we previously investigated the nature of the invasive secretome by using a comparative proteomic approach. Here, we have extended this analysis to show that PTX3, an acute phase inflammatory glycoprotein, is one such factor secreted by invasive melanoma to promote tumor cell invasiveness. Elevated PTX3 production was observed in the population of MITFlow invasive cells but not in the population of MITFhigh differentiated melanoma cells. Consistently, MITF knockdown increased PTX3 expression in MITFhigh proliferative and poorly invasive cells. High levels of PTX3 were found in tissues and blood of metastatic melanoma patients, and in BRAF inhibitor-resistant melanoma cells displaying a mesenchymal invasive MITFlow phenotype. Genetic silencing of PTX3 in invasive melanoma cells dramatically impaired migration and invasion in vitro and in experimental lung extravasation assay in xenografted mice. In contrast, addition of melanoma-derived or recombinant PTX3, or expression of PTX3 enhanced motility of low migratory cells. Mechanistically, autocrine production of PTX3 by melanoma cells triggered an IKK/NFκB signaling pathway that promotes migration, invasion, and expression of the EMT factor TWIST1. Finally, we found that TLR4 and MYD88 knockdown inhibited PTX3-induced melanoma cell migration, suggesting that PTX3 functions through a TLR4-dependent pathway. Our work reveals that tumor-derived PTX3 contributes to melanoma cell invasion via targetable inflammation-related pathways. In addition to providing new insights into the biology of melanoma invasive behavior, this study underscores the notion that secreted PTX3 represents a potential biomarker and therapeutic target in a subpopulation of MITFlow invasive and/or refractory melanoma.
Collapse
Affiliation(s)
- M Rathore
- Université Côte d'Azur, INSERM, C3M, Nice, France
- Equipe labellisée Ligue Contre le Cancer 2016, Nice, France
- The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - C Girard
- Université Côte d'Azur, INSERM, C3M, Nice, France
- Equipe labellisée Ligue Contre le Cancer 2016, Nice, France
| | - M Ohanna
- Université Côte d'Azur, INSERM, C3M, Nice, France
- Equipe labellisée Ligue Contre le Cancer 2016, Nice, France
| | - M Tichet
- Université Côte d'Azur, INSERM, C3M, Nice, France
- Laboratory of Translational Oncology, ISREC, EPFL, Lausanne, Switzerland
| | - R Ben Jouira
- Université Côte d'Azur, INSERM, C3M, Nice, France
| | - E Garcia
- Université Côte d'Azur, INSERM, C3M, Nice, France
| | - F Larbret
- Université Côte d'Azur, INSERM, C3M, Nice, France
- Equipe labellisée Ligue Contre le Cancer 2016, Nice, France
| | - M Gesson
- Université Côte d'Azur, INSERM, C3M, Nice, France
| | - S Audebert
- Aix-Marseille University, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - J-P Lacour
- Université Côte d'Azur, CHU Nice, Nice, France
| | - H Montaudié
- Université Côte d'Azur, CHU Nice, Nice, France
| | - V Prod'Homme
- Université Côte d'Azur, INSERM, C3M, Nice, France
- Equipe labellisée Ligue Contre le Cancer 2016, Nice, France
| | - S Tartare-Deckert
- Université Côte d'Azur, INSERM, C3M, Nice, France.
- Equipe labellisée Ligue Contre le Cancer 2016, Nice, France.
| | - M Deckert
- Université Côte d'Azur, INSERM, C3M, Nice, France.
- Equipe labellisée Ligue Contre le Cancer 2016, Nice, France.
| |
Collapse
|
25
|
Doni A, Stravalaci M, Inforzato A, Magrini E, Mantovani A, Garlanda C, Bottazzi B. The Long Pentraxin PTX3 as a Link Between Innate Immunity, Tissue Remodeling, and Cancer. Front Immunol 2019; 10:712. [PMID: 31019517 PMCID: PMC6459138 DOI: 10.3389/fimmu.2019.00712] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/15/2019] [Indexed: 12/20/2022] Open
Abstract
The innate immune system comprises a cellular and a humoral arm. Humoral pattern recognition molecules include complement components, collectins, ficolins, and pentraxins. These molecules are involved in innate immune responses by recognizing microbial moieties and damaged tissues, activating complement, exerting opsonic activity and facilitating phagocytosis, and regulating inflammation. The long pentraxin PTX3 is a prototypic humoral pattern recognition molecule that, in addition to providing defense against infectious agents, plays several functions in tissue repair and regulation of cancer-related inflammation. Characterization of the PTX3 molecular structure and biochemical properties, and insights into its interactome and multiple roles in tissue damage and remodeling support the view that microbial and matrix recognition are evolutionarily conserved functions of humoral innate immunity molecules.
Collapse
Affiliation(s)
- Andrea Doni
- Humanitas Clinical and Research Institute-IRCCS, Milan, Italy
| | - Matteo Stravalaci
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Antonio Inforzato
- Humanitas Clinical and Research Institute-IRCCS, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Elena Magrini
- Humanitas Clinical and Research Institute-IRCCS, Milan, Italy
| | - Alberto Mantovani
- Humanitas Clinical and Research Institute-IRCCS, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Milan, Italy.,The William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Cecilia Garlanda
- Humanitas Clinical and Research Institute-IRCCS, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | | |
Collapse
|
26
|
Garlanda C, Bottazzi B, Magrini E, Inforzato A, Mantovani A. PTX3, a Humoral Pattern Recognition Molecule, in Innate Immunity, Tissue Repair, and Cancer. Physiol Rev 2018; 98:623-639. [PMID: 29412047 DOI: 10.1152/physrev.00016.2017] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Innate immunity includes a cellular and a humoral arm. PTX3 is a fluid-phase pattern recognition molecule conserved in evolution which acts as a key component of humoral innate immunity in infections of fungal, bacterial, and viral origin. PTX3 binds conserved microbial structures and self-components under conditions of inflammation and activates effector functions (complement, phagocytosis). Moreover, it has a complex regulatory role in inflammation, such as ischemia/reperfusion injury and cancer-related inflammation, as well as in extracellular matrix organization and remodeling, with profound implications in physiology and pathology. Finally, PTX3 acts as an extrinsic oncosuppressor gene by taming tumor-promoting inflammation in murine and selected human tumors. Thus evidence suggests that PTX3 is a key homeostatic component at the crossroad of innate immunity, inflammation, tissue repair, and cancer. Dissecting the complexity of PTX3 pathophysiology and human genetics paves the way to diagnostic and therapeutic exploitation.
Collapse
Affiliation(s)
- Cecilia Garlanda
- Humanitas Clinical and Research Center, Rozzano, Milan , Italy ; Humanitas University, Rozzano, Milan , Italy ; Department of Medical Biotechnologies and Translational Medicine, University of Milan , Milan , Italy ; and The William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Barbara Bottazzi
- Humanitas Clinical and Research Center, Rozzano, Milan , Italy ; Humanitas University, Rozzano, Milan , Italy ; Department of Medical Biotechnologies and Translational Medicine, University of Milan , Milan , Italy ; and The William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Elena Magrini
- Humanitas Clinical and Research Center, Rozzano, Milan , Italy ; Humanitas University, Rozzano, Milan , Italy ; Department of Medical Biotechnologies and Translational Medicine, University of Milan , Milan , Italy ; and The William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Antonio Inforzato
- Humanitas Clinical and Research Center, Rozzano, Milan , Italy ; Humanitas University, Rozzano, Milan , Italy ; Department of Medical Biotechnologies and Translational Medicine, University of Milan , Milan , Italy ; and The William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Alberto Mantovani
- Humanitas Clinical and Research Center, Rozzano, Milan , Italy ; Humanitas University, Rozzano, Milan , Italy ; Department of Medical Biotechnologies and Translational Medicine, University of Milan , Milan , Italy ; and The William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
27
|
Rodrigues PF, Matarazzo S, Maccarinelli F, Foglio E, Giacomini A, Silva Nunes JP, Presta M, Dias AAM, Ronca R. Long Pentraxin 3-Mediated Fibroblast Growth Factor Trapping Impairs Fibrosarcoma Growth. Front Oncol 2018; 8:472. [PMID: 30443492 PMCID: PMC6221954 DOI: 10.3389/fonc.2018.00472] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 10/05/2018] [Indexed: 12/13/2022] Open
Abstract
Fibrosarcomas are soft tissue mesenchymal tumors originating from transformed fibroblasts. Fibroblast growth factor-2 (FGF2) and its tyrosine-kinase receptors (FGFRs) play pivotal roles in fibrosarcoma onset and progression, FGF2 being actively produced by fibroblasts in all stages along their malignant transformation to the fibrosarcoma stage. The soluble pattern recognition receptor long pentraxin-3 (PTX3) is an extrinsic oncosuppressor whose expression is reduced in different tumor types, including soft tissue sarcomas, via hypermethylation of its gene promoter. PTX3 interacts with FGF2 and other FGF family members, thus acting as a multi-FGF antagonist able to inhibit FGF-dependent neovascularization and tumor growth. Here, PTX3 overexpression significantly reduced the proliferative and tumorigenic potential of fibrosarcoma cells in vitro and in vivo. In addition, systemic delivery of human PTX3 driven by the Tie2 promoter inhibited the growth of fibrosarcoma grafts in transgenic mice. In a translational perspective, the PTX3-derived small molecule FGF trap NSC12 prevented activation of the FGF/FGFR system in fibrosarcoma cells and reduced their tumorigenic activity in vivo. In conclusion, impairment of the FGF/FGFR system by FGF trap molecules may represent a novel therapeutic approach for the treatment of fibrosarcoma.
Collapse
Affiliation(s)
- Priscila Fabiana Rodrigues
- Laboratory of Inflammation and Cancer, Department of General Biology - ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Sara Matarazzo
- Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, Brescia, Italy
| | - Federica Maccarinelli
- Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, Brescia, Italy
| | - Eleonora Foglio
- Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, Brescia, Italy
| | - Arianna Giacomini
- Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, Brescia, Italy
| | - João Paulo Silva Nunes
- Laboratory of Inflammation and Cancer, Department of General Biology - ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Marco Presta
- Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, Brescia, Italy
| | - Adriana Abalen Martins Dias
- Laboratory of Inflammation and Cancer, Department of General Biology - ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Roberto Ronca
- Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
28
|
Presta M, Foglio E, Churruca Schuind A, Ronca R. Long Pentraxin-3 Modulates the Angiogenic Activity of Fibroblast Growth Factor-2. Front Immunol 2018; 9:2327. [PMID: 30349543 PMCID: PMC6187966 DOI: 10.3389/fimmu.2018.02327] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 09/19/2018] [Indexed: 12/15/2022] Open
Abstract
Angiogenesis, the process of new blood vessel formation from pre-existing ones, plays a key role in various physiological and pathological conditions. Alteration of the angiogenic balance, consequent to the deranged production of angiogenic growth factors and/or natural angiogenic inhibitors, is responsible for angiogenesis-dependent diseases, including cancer. Fibroblast growth factor-2 (FGF2) represents the prototypic member of the FGF family, able to induce a complex “angiogenic phenotype” in endothelial cells in vitro and a potent neovascular response in vivo as the consequence of a tight cross talk between pro-inflammatory and angiogenic signals. The soluble pattern recognition receptor long pentraxin-3 (PTX3) is a member of the pentraxin family produced locally in response to inflammatory stimuli. Besides binding features related to its role in innate immunity, PTX3 interacts with FGF2 and other members of the FGF family via its N-terminal extension, thus inhibiting FGF-mediated angiogenic responses in vitro and in vivo. Accordingly, PTX3 inhibits the growth and vascularization of FGF-dependent tumors and FGF2-mediated smooth muscle cell proliferation and artery restenosis. Recently, the characterization of the molecular bases of FGF2/PTX3 interaction has allowed the identification of NSC12, the first low molecular weight pan-FGF trap able to inhibit FGF-dependent tumor growth and neovascularization. The aim of this review is to provide an overview of the impact of PTX3 and PTX3-derived molecules on the angiogenic, inflammatory, and tumorigenic activity of FGF2 and their potential implications for the development of more efficacious anti-FGF therapeutic agents to be used in those clinical settings in which FGFs play a pathogenic role.
Collapse
Affiliation(s)
- Marco Presta
- Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, Brescia, Italy
| | - Eleonora Foglio
- Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, Brescia, Italy
| | - Ander Churruca Schuind
- Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, Brescia, Italy
| | - Roberto Ronca
- Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
29
|
Ghedini GC, Ronca R, Presta M, Giacomini A. Future applications of FGF/FGFR inhibitors in cancer. Expert Rev Anticancer Ther 2018; 18:861-872. [PMID: 29936878 DOI: 10.1080/14737140.2018.1491795] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Deregulation of the fibroblast growth factor (FGF)/FGF receptor (FGFR) network occurs frequently in tumors due to gene amplification, activating mutations, and oncogenic fusions. Thus, the development of FGF/FGFR-targeting therapies is the focus of several basic, preclinical, and clinical studies. Areas covered: This review will recapitulate the status of current FGF/FGFR-targeted drugs. Expert commentary: Non-selective FGF/FGFR inhibitors have been approved for cancer treatment but evidence highlights various complications affecting their use in the clinical practice. It appears mandatory to identify FGF/FGFR alterations and appropriate biomarkers that may predict and monitor response to treatment, to establish the contribution of the FGF/FGFR system to the onset of mechanisms of drug resistance, and to develop effective combinations of FGF/FGFR inhibitors with other targeted therapies.
Collapse
Affiliation(s)
- Gaia Cristina Ghedini
- a Department of Molecular and Translational Medicine , University of Brescia , Brescia , Italy
| | - Roberto Ronca
- a Department of Molecular and Translational Medicine , University of Brescia , Brescia , Italy
| | - Marco Presta
- a Department of Molecular and Translational Medicine , University of Brescia , Brescia , Italy
| | - Arianna Giacomini
- a Department of Molecular and Translational Medicine , University of Brescia , Brescia , Italy
| |
Collapse
|
30
|
Erreni M, Manfredi AA, Garlanda C, Mantovani A, Rovere-Querini P. The long pentraxin PTX3: A prototypical sensor of tissue injury and a regulator of homeostasis. Immunol Rev 2018; 280:112-125. [PMID: 29027216 DOI: 10.1111/imr.12570] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Tissue damage frequently occurs. The immune system senses it and enforces homeostatic responses that lead to regeneration and repair. The synthesis of acute phase molecules is emerging as a crucial event in this program. The prototypic long pentraxin PTX3 orchestrates the recruitment of leukocytes, stabilizes the provisional matrix in order to facilitate leukocyte and stem progenitor cells trafficking, promotes swift and safe clearance of dying cells and of autoantigens, limiting autoimmunity and protecting the vasculature. These non-redundant actions of PTX3 are necessary for the resolution of inflammation. Recent studies have highlighted the mechanisms by which PTX3 adapts the functions of innate immune cells, orchestrates tissue repair and contributes to select the appropriate acquired immune response in various tissues. Conversely, PTX3 continues to be produced in diseases where the inflammatory response does not resolve. It is therefore a valuable biomarker for more precise and personalized stratification of patients, often independently predicting clinical evolution and outcome. There is strong promise for novel therapies based on understanding the mechanisms with which PTX3 plays its homeostatic role, especially in regulating leukocyte migration and the resolution of inflammatory processes.
Collapse
Affiliation(s)
- Marco Erreni
- IRCCS Humanitas Clinical and Research Center, Milan, Italy.,Humanitas University, Milan, Italy
| | - Angelo A Manfredi
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Cecilia Garlanda
- IRCCS Humanitas Clinical and Research Center, Milan, Italy.,Humanitas University, Milan, Italy
| | - Alberto Mantovani
- IRCCS Humanitas Clinical and Research Center, Milan, Italy.,Humanitas University, Milan, Italy
| | - Patrizia Rovere-Querini
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
31
|
Chan SH, Tsai JP, Shen CJ, Liao YH, Chen BK. Oleate-induced PTX3 promotes head and neck squamous cell carcinoma metastasis through the up-regulation of vimentin. Oncotarget 2018; 8:41364-41378. [PMID: 28489600 PMCID: PMC5522334 DOI: 10.18632/oncotarget.17326] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 03/30/2017] [Indexed: 01/08/2023] Open
Abstract
The association between metabolic diseases and the risk of developing cancer is emerging. However, the impact of long pentraxin-3 (PTX3) on dyslipidemia-associated tumor metastasis remains unknown. In this study, we found that oleate induced PTX3 expression and secretion through the activation of Akt/NF-κB pathway in head and neck squamous cell carcinomas (HNSCCs). The activation of NF-κB was essential for the oleate-induced stabilization of PTX3 mRNA. In addition, both the depletion of PTX3 and the inhibition of NF-κB significantly inhibited oleate-induced tumor cell migration and invasion. The enhancement of binding between tumor and endothelial cells was observed in oleate-treated cells but not in the depletion and neutralization of PTX3 with siPTX3 and anti-PTX3 antibodies, respectively. The levels of oleate-induced epithelial-mesenchymal transition (EMT) markers, such as vimentin and MMP-3, were significantly reduced in PTX3-depleted cells. Knocking down vimentin also repressed oleate-induced HNSCC invasion. Furthermore, the depletion of PTX3 blocked the oleate-primed metastatic seeding of tumor cells in the lungs. These results demonstrate that oleate enhances HNSCC metastasis through the PTX3/vimentin signaling axes. The inhibition of PTX3 could be a potential strategy for the treatment of dyslipidemia-mediated HNSCC metastasis.
Collapse
Affiliation(s)
- Shih-Hung Chan
- Division of Cardiology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan, People's Republic of China
| | - Jhih-Peng Tsai
- Division of Cardiology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan, People's Republic of China.,Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan, People's Republic of China
| | - Chih-Jie Shen
- Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan, People's Republic of China.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan, People's Republic of China
| | - Yu-Han Liao
- Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan, People's Republic of China
| | - Ben-Kuen Chen
- Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan, People's Republic of China.,Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan, People's Republic of China.,Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan, People's Republic of China.,Institute for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan, People's Republic of China
| |
Collapse
|
32
|
Grčević D, Sironi M, Valentino S, Deban L, Cvija H, Inforzato A, Kovačić N, Katavić V, Kelava T, Kalajzić I, Mantovani A, Bottazzi B. The Long Pentraxin 3 Plays a Role in Bone Turnover and Repair. Front Immunol 2018; 9:417. [PMID: 29556234 PMCID: PMC5845433 DOI: 10.3389/fimmu.2018.00417] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 02/15/2018] [Indexed: 01/04/2023] Open
Abstract
Pentraxin 3 (PTX3) is an inflammatory mediator acting as a fluid-phase pattern recognition molecule and playing an essential role in innate immunity and matrix remodeling. Inflammatory mediators also contribute to skeletal homeostasis, operating at multiple levels in physiological and pathological conditions. This study was designed to investigate the role of PTX3 in physiological skeletal remodeling and bone healing. Micro-computed tomography (μCT) and bone histomorphometry of distal femur showed that PTX3 gene-targeted female and male mice (ptx3−/−) had lower trabecular bone volume than their wild-type (ptx3+/+) littermates (BV/TV by μCT: 3.50 ± 1.31 vs 6.09 ± 1.17 for females, p < 0.0001; BV/TV 9.06 ± 1.89 vs 10.47 ± 1.97 for males, p = 0.0435). In addition, μCT revealed lower trabecular bone volume in second lumbar vertebra of ptx3−/− mice. PTX3 was increasingly expressed during osteoblast maturation in vitro and was able to reverse the negative effect of fibroblast growth factor 2 (FGF2) on osteoblast differentiation. This effect was specific for the N-terminal domain of PTX3 that contains the FGF2-binding site. By using the closed transversal tibial fracture model, we found that ptx3−/− female mice formed significantly less mineralized callus during the anabolic phase following fracture injury compared to ptx3+/+ mice (BV/TV 17.05 ± 4.59 vs 20.47 ± 3.32, p = 0.0195). Non-hematopoietic periosteal cells highly upregulated PTX3 expression during the initial phase of fracture healing, particularly CD51+ and αSma+ osteoprogenitor subsets, and callus tissue exhibited concomitant expression of PTX3 and FGF2 around the fracture site. Thus, PTX3 supports maintenance of the bone mass possibly by inhibiting FGF2 and its negative impact on bone formation. Moreover, PTX3 enables timely occurring sequence of callus mineralization after bone fracture injury. These results indicate that PTX3 plays an important role in bone homeostasis and in proper matrix mineralization during fracture repair, a reflection of the function of this molecule in tissue homeostasis and repair.
Collapse
Affiliation(s)
- Danka Grčević
- Department of Physiology and Immunology, University of Zagreb School of Medicine, Zagreb, Croatia.,Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Marina Sironi
- Humanitas Clinical and Research Center, Milan, Italy
| | | | - Livija Deban
- Humanitas Clinical and Research Center, Milan, Italy.,Oxford BioTherapeutics Ltd., Abingdon, United Kingdom
| | - Hrvoje Cvija
- Department of Physiology and Immunology, University of Zagreb School of Medicine, Zagreb, Croatia.,Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Antonio Inforzato
- Humanitas Clinical and Research Center, Milan, Italy.,Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Nataša Kovačić
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia.,Department of Anatomy, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Vedran Katavić
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia.,Department of Anatomy, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Tomislav Kelava
- Department of Physiology and Immunology, University of Zagreb School of Medicine, Zagreb, Croatia.,Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Ivo Kalajzić
- Department of Reconstructive Sciences, School of Dental Medicine, UConn Health, Farmingam, CT, United States
| | - Alberto Mantovani
- Humanitas Clinical and Research Center, Milan, Italy.,Humanitas University, Milan, Italy.,The William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | | |
Collapse
|
33
|
Carr BI, Akkiz H, Guerra V, Üsküdar O, Kuran S, Karaoğullarından Ü, Tokmak S, Ballı T, Ülkü A, Akçam T, Delik A, Arslan B, Doran F, Yalçın K, Altntaş E, Özakyol A, Yücesoy M, Bahçeci Hİ, Polat KY, Ekinci N, Şimşek H, Örmeci N, Sonsuz A, Demir M, Kılıç M, Uygun A, Demir A, Yilmaz S, Tokat Y. C-reactive protein and hepatocellular carcinoma: analysis of its relationships to tumor factors. ACTA ACUST UNITED AC 2018; 15:625-634. [PMID: 29951199 DOI: 10.4172/clinical-practice.1000409] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
C-reactive protein (CRP) is a blood marker for inflammation and is an independent prognostic factor for many human cancers. Combined with albumin levels, it forms the basis of the Glasgow Index for cancer prognosis. We reviewed the literature on CRP and HCC and also evaluated blood CRP levels and combination CRP plus albumin levels in a large HCC cohort. In order to understand the prognostic significance of CRP, we retrospectively examined a large HCC cohort and examined the relationship of CRP levels to tumor parameters. We report, that CRP alone and CRP plus albumin combined as well, significantly correlated with parameters of HCC aggressiveness, such as maximum tumor dimension (MTD), portal vein thrombosis (PVT) and blood alpha-fetoprotein (AFP) levels, both as individual parameters and all parameters together (Aggressiveness Index). This extends current thinking, to suggest a possible explanation for the usefulness of blood CRP levels in HCC prognostication.
Collapse
Affiliation(s)
- Brian I Carr
- Izmir Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey, and Liver
Transplant Institute, Inonu University, Malatya, Turkey
| | - Hikmet Akkiz
- Çukurova University Gastroenterology Department, Adana, Turkey
| | - Vito Guerra
- Trials Centre, National Institute for Digestive Diseases, IRCCS "Saverio de Bellis", Castellana, Bari, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Ahmet Uygun
- Haydarpaşa sultan Abdülhamid Eğitm Araştrma Hastanesi, Turkey
| | - Ali Demir
- Konya Necmetn Erbakan Üniversitesi, Turkey
| | | | | |
Collapse
|
34
|
Long pentraxin 3: A novel multifaceted player in cancer. Biochim Biophys Acta Rev Cancer 2017; 1869:53-63. [PMID: 29175552 DOI: 10.1016/j.bbcan.2017.11.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 11/22/2017] [Accepted: 11/22/2017] [Indexed: 01/12/2023]
Abstract
Since its discovery in 1992, long pentraxin 3 (PTX3) has been characterized as soluble patter recognition receptor, a key player of the innate immunity arm with non-redundant functions in pathogen recognition and inflammatory responses. As a component of the extra-cellular matrix milieu, PTX3 has been implicated also in wound healing/tissue remodeling, cardiovascular diseases, fertility, and infectious diseases. Consequently, PTX3 levels in biological fluids have been proposed as a fluid-phase biomarker in different pathological conditions. In the last decade, experimental evidences have shown that PTX3 may exert a significant impact also on different aspects of cancer biology, including tumor onset, angiogenesis, metastatic dissemination and immune-modulation. However, it remains unclear whether PTX3 acts as a good cop or bad cop in cancer. In this review, we will summarize and discuss the scientific literature data focusing on the role of PTX3 in experimental and human tumors, including its putative translational implications.
Collapse
|
35
|
|
36
|
Ronca R, Tamma R, Coltrini D, Ruggieri S, Presta M, Ribatti D. Fibroblast growth factor modulates mast cell recruitment in a murine model of prostate cancer. Oncotarget 2017; 8:82583-82592. [PMID: 29137286 PMCID: PMC5669912 DOI: 10.18632/oncotarget.19773] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 06/28/2017] [Indexed: 12/13/2022] Open
Abstract
Mast cells are important modifiers of prostate tumor microenvironment. The fibroblast growth factor/fibroblast growth factor receptor (FGF/FGFR) system plays a non-redundant autocrine/paracrine role in the growth, vascularization and progression of prostate tumors. Accordingly, the FGF antagonist long pentraxin-3 (PTX3) and the PTX3-derived small molecule FGF-trap NSC12 have been shown to inhibit the growth and vascularization of different FGF-dependent tumor types, including prostate cancer. In this study, we show that recombinant FGF2 is able to cause mast cell recruitment in vivo in the Matrigel plug assay. Conversely, PTX3 overexpression in transgenic mice or treatment with the FGF inhibitor NSC12 result in a significant inhibition of the growth and vascularization of TRAMP-C2 tumor grafts, a murine model of prostate cancer, that were paralleled by a decrease of mast cell infiltrate into the lesion. These data confirm and extend previous observations about the capacity of mast cells to respond chemotactically to FGF2 stimulation and provide evidence about a relationship among mast cell recruitment, angiogenesis, and tumor growth in human prostate adenocarcinoma.
Collapse
Affiliation(s)
- Roberto Ronca
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Roberto Tamma
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy.,National Cancer Institute "Giovanni Paolo II", Bari, Italy
| | - Daniela Coltrini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Simona Ruggieri
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy
| | - Marco Presta
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy.,National Cancer Institute "Giovanni Paolo II", Bari, Italy
| |
Collapse
|
37
|
Ma D, Zong Y, Zhu ST, Wang YJ, Li P, Zhang ST. Inhibitory Role of Pentraxin-3 in Esophageal Squamous Cell Carcinoma. Chin Med J (Engl) 2017; 129:2233-40. [PMID: 27625097 PMCID: PMC5022346 DOI: 10.4103/0366-6999.189921] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Esophageal cancer is the sixth leading cause of cancer-related death worldwide. Pentraxin-3 (PTX3) is a member of the PTX superfamily. Here, we investigated the role of PTX3 in esophageal squamous cell carcinoma (ESCC). METHODS The effect of PTX3 on ESCC cell proliferation, colony formation, apoptosis, migration, and invasion was investigated using cell viability assays, colony formation assays, flow cytometry, and migration and invasion assays. The effect of PTX3 on the tumorigenicity of ESCC in vivo was investigated with xenograft studies in nude mice. RESULTS PTX3 overexpression in ESCC cells reduced cellular proliferation and colony formation (P < 0.05) and increased the rate of apoptosis (P < 0.05). PTX3 expression had no significant effect on the migratory or invasive potential of ESCC cells. In our mouse model of human ESCC, we achieved 100% successful tumor establishment. Compared with the control and empty vector-expressing groups, the PTX3-expressing group formed significantly smaller tumors (P < 0.05). CONCLUSIONS This study indicates that PTX3 might play an inhibitory role in ESCC.
Collapse
Affiliation(s)
- Dan Ma
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University; National Clinical Research Center for Digestive Diseases; Beijing Digestive Disease Center; Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, Beijing 100050, China
| | - Ye Zong
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University; National Clinical Research Center for Digestive Diseases; Beijing Digestive Disease Center; Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, Beijing 100050, China
| | - Sheng-Tao Zhu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University; National Clinical Research Center for Digestive Diseases; Beijing Digestive Disease Center; Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, Beijing 100050, China
| | - Yong-Jun Wang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University; National Clinical Research Center for Digestive Diseases; Beijing Digestive Disease Center; Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, Beijing 100050, China
| | - Peng Li
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University; National Clinical Research Center for Digestive Diseases; Beijing Digestive Disease Center; Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, Beijing 100050, China
| | - Shu-Tian Zhang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University; National Clinical Research Center for Digestive Diseases; Beijing Digestive Disease Center; Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, Beijing 100050, China
| |
Collapse
|
38
|
Magrini E, Mantovani A, Garlanda C. The Dual Complexity of PTX3 in Health and Disease: A Balancing Act? Trends Mol Med 2016; 22:497-510. [PMID: 27179743 PMCID: PMC5414840 DOI: 10.1016/j.molmed.2016.04.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 04/18/2016] [Accepted: 04/18/2016] [Indexed: 12/17/2022]
Abstract
The humoral arm of innate immunity is complex and includes various molecules that serve as markers of inflammation with complementary characteristics, such as the short pentraxins C-reactive protein (CRP) and serum amyloid P (SAP) and the long pentraxin PTX3. There is a growing amount of evidence – including mouse and human genetics – that suggests that PTX3 is essential in conferring host resistance against selected pathogens and, moreover, that it plays a dual antagonistic role in the regulation of inflammation. Dissection of such a yin-and-yang role of pentraxins in immunity and inflammation is timely and significant as it may pave the way for better clinical exploitation against various diseases. The long pentraxin PTX3 is an essential component of humoral innate immunity and plays a role in the regulation of inflammation. PTX3 has complex effects on the vasculature, including an interaction with the angiogenic growth factor FGF2 and the regulation of vessel wall tone. By modulating complement-driven inflammation, PTX3 acts as an oncosuppressor gene in mice and selected human tumors. By interacting with provisional matrix components, PTX3 contributes to the orchestration of wound healing and tissue repair/remodeling. PTX3 and the related pentraxins C-reactive protein (CRP) and serum amyloid P (SAP) can exert dual roles in inflammation and antimicrobial resistance, by either exerting a protective function or amplifying tissue damage. Dissection of the yin–yang role of pentraxins in immunopathology may pave the way towards better exploitation of these molecules as envisaged disease markers and candidate therapeutic agents.
Collapse
Affiliation(s)
- Elena Magrini
- Humanitas Clinical and Research Center, Rozzano, Milan 20089, Italy
| | - Alberto Mantovani
- Humanitas Clinical and Research Center, Rozzano, Milan 20089, Italy; Humanitas University, Rozzano, Milan 20089, Italy.
| | - Cecilia Garlanda
- Humanitas Clinical and Research Center, Rozzano, Milan 20089, Italy
| |
Collapse
|
39
|
Giacomini A, Chiodelli P, Matarazzo S, Rusnati M, Presta M, Ronca R. Blocking the FGF/FGFR system as a two-compartment antiangiogenic/antitumor approach in cancer therapy. Pharmacol Res 2016; 107:172-185. [PMID: 27013279 DOI: 10.1016/j.phrs.2016.03.024] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 03/15/2016] [Accepted: 03/16/2016] [Indexed: 12/22/2022]
|
40
|
Giacomini A, Matarazzo S, Pagano K, Ragona L, Rezzola S, Corsini M, Di Salle E, Presta M, Ronca R. A long pentraxin-3-derived pentapeptide for the therapy of FGF8b-driven steroid hormone-regulated cancers. Oncotarget 2016; 6:13790-802. [PMID: 25912421 PMCID: PMC4537050 DOI: 10.18632/oncotarget.3831] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 03/26/2015] [Indexed: 11/25/2022] Open
Abstract
Fibroblast growth factor-8b (FGF8b) affects the epithelial/stromal compartments of steroid hormone-regulated tumors by exerting an autocrine activity on cancer cells and a paracrine pro-angiogenic function, thus contributing to tumor progression. The FGF8b/FGF receptor (FGFR) system may therefore represent a target for the treatment of steroid hormone-regulated tumors. The soluble pattern recognition receptor long pentraxin-3 (PTX3) binds various FGFs, including FGF2 and FGF8b, thus inhibiting the angiogenic and tumorigenic activity of androgen-regulated tumor cells. Nevertheless, the complex/proteinaceous structure of PTX3 hampers its pharmacological exploitation. In this context, the acetylated pentapeptide Ac-ARPCA-NH2 (ARPCA), corresponding to the N-terminal amino acid sequence PTX3(100-104), was identified as a minimal FGF2-binding peptide able to antagonize the biological activity of FGF2. Here, we demonstrate that ARPCA binds FGF8b and inhibits its capacity to form FGFR1-mediated ternary complexes with heparan sulphate proteoglycans. As a FGF8b antagonist, ARPCA inhibits FGFR1 activation and signalling in endothelial cells, hampering the angiogenic activity exerted in vitro and in vivo by FGF8b. Also, ARPCA suppresses the angiogenic and tumorigenic potential of prototypic androgen/FGF8b-dependent Shionogi 115 mammary carcinoma cells and of androgen/FGF8b/FGF2-dependent TRAMP-C2 prostate cancer cells. In conclusion, ARPCA represents a novel FGF8b antagonist with translational implications for the therapy of steroid hormone-regulated tumors.
Collapse
Affiliation(s)
- Arianna Giacomini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Sara Matarazzo
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Katiuscia Pagano
- NMR Laboratory, Istituto per lo Studio delle Macromolecole, CNR, Milan, Italy
| | - Laura Ragona
- NMR Laboratory, Istituto per lo Studio delle Macromolecole, CNR, Milan, Italy
| | - Sara Rezzola
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Michela Corsini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Emanuela Di Salle
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Marco Presta
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Roberto Ronca
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
41
|
The broad-spectrum anti-DNA virus agent cidofovir inhibits lung metastasis of virus-independent, FGF2-driven tumors. Oncotarget 2016; 6:4633-48. [PMID: 25609197 PMCID: PMC4467104 DOI: 10.18632/oncotarget.3079] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 12/26/2014] [Indexed: 02/07/2023] Open
Abstract
The FDA-approved anti-DNA virus agent cidofovir (CDV) is being evaluated in phase II/III clinical trials for the treatment of human papillomavirus (HPV)-associated tumors. However, previous observations had shown that CDV also inhibits the growth of vascular tumors induced by fibroblast growth factor-2 (FGF2)-transformed FGF2-T-MAE cells. Here, we demonstrate that CDV inhibits metastasis induced by FGF2-driven, virus-independent tumor cells. Pre-treatment of luciferase-expressing FGF2-T-MAE cells with CDV reduced single cell survival and anchorage-independent growth in vitro and lung metastasis formation upon intravenous inoculation into SCID mice. This occurred in the absence of any effect on homing of FGF2-T-MAE cells to the lungs and on the growth of subconfluent cell cultures or subcutaneous tumors in mice. Accordingly, CDV protected against lung metastasis when given systemically after tumor cell injection. Lung metastases in CDV-treated mice showed reduced Ki67 expression and increased nuclear accumulation of p53, indicating that CDV inhibits metastasis by affecting single cell survival properties. The anti-metastatic potential of CDV was confirmed on B16-F10 melanoma cells, both in zebrafish embryos and mice. These findings suggest that CDV may have therapeutic potential as an anti-metastatic agent and warrants further study to select those tumor types that are most likely to benefit from CDV therapy.
Collapse
|
42
|
Fornai F, Carrizzo A, Ferrucci M, Damato A, Biagioni F, Gaglione A, Puca AA, Vecchione C. Brain diseases and tumorigenesis: The good and bad cops of pentraxin3. Int J Biochem Cell Biol 2015; 69:70-4. [DOI: 10.1016/j.biocel.2015.10.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 10/15/2015] [Accepted: 10/15/2015] [Indexed: 12/12/2022]
|
43
|
Garlanda C, Jaillon S, Doni A, Bottazzi B, Mantovani A. PTX3, a humoral pattern recognition molecule at the interface between microbe and matrix recognition. Curr Opin Immunol 2015; 38:39-44. [PMID: 26650391 DOI: 10.1016/j.coi.2015.11.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 11/16/2015] [Indexed: 12/21/2022]
Abstract
Innate immunity consists of a cellular and a humoral arm. PTX3 is a fluid patter recognition molecule (PRM) with antibody-like properties. Gene targeted mice and genetic associations in humans suggest that PTX3 plays a non-redundant role in resistance against selected pathogens (e.g. Aspergillus fumigatus, Pseudomonas aeruginosa, uropathogenic Escherichia coli) and in the regulation of inflammation. PTX3 acts as an extrinsic oncosuppressor by taming complement elicited tumor-promoting inflammation. Recent results indicate that, by interacting with provisional matrix components, PTX3 contributes to the orchestration of tissue repair. An acidic pH sets PTX3 in a tissue repair mode, while retaining anti-microbial recognition. Based on these data and scattered information on humoral PRM and matrix components, we surmise that matrix and microbial recognition are related functions in evolution.
Collapse
Affiliation(s)
- Cecilia Garlanda
- Humanitas Clinical Research Center, via Manzoni 56, 20089, Rozzano (Milano), Italy
| | - Sebastien Jaillon
- Humanitas Clinical Research Center, via Manzoni 56, 20089, Rozzano (Milano), Italy
| | - Andrea Doni
- Humanitas Clinical Research Center, via Manzoni 56, 20089, Rozzano (Milano), Italy
| | - Barbara Bottazzi
- Humanitas Clinical Research Center, via Manzoni 56, 20089, Rozzano (Milano), Italy
| | - Alberto Mantovani
- Humanitas Clinical Research Center, via Manzoni 56, 20089, Rozzano (Milano), Italy; Humanitas University, via Manzoni 56, 20089 Rozzano, Italy.
| |
Collapse
|
44
|
Khan KA, Bicknell R. Anti-angiogenic alternatives to VEGF blockade. Clin Exp Metastasis 2015; 33:197-210. [PMID: 26620208 PMCID: PMC4761368 DOI: 10.1007/s10585-015-9769-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 11/11/2015] [Indexed: 12/18/2022]
Abstract
Angiogenesis is a major requirement for tumour formation and development. Anti-angiogenic treatments aim to starve the tumour of nutrients and oxygen and also guard against metastasis. The main anti-angiogenic agents to date have focused on blocking the pro-angiogenic vascular endothelial growth factors (VEGFs). While this approach has seen some success and has provided a proof of principle that such anti-angiogenic agents can be used as treatment, the overall outcome of VEGF blockade has been somewhat disappointing. There is a current need for new strategies in inhibiting tumour angiogenesis; this article will review current and historical examples in blocking various membrane receptors and components of the extracellular matrix important in angiogenesis. Targeting these newly discovered pro-angiogenic proteins could provide novel strategies for cancer therapy.
Collapse
Affiliation(s)
- Kabir A Khan
- Angiogenesis Laboratory, Institute for Biomedical Research, School of Cardiovascular Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
| | - Roy Bicknell
- Angiogenesis Laboratory, Institute for Biomedical Research, School of Cardiovascular Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|
45
|
Chi JY, Hsiao YW, Li CF, Lo YC, Lin ZY, Hong JY, Liu YM, Han X, Wang SM, Chen BK, Tsai KK, Wang JM. Targeting chemotherapy-induced PTX3 in tumor stroma to prevent the progression of drug-resistant cancers. Oncotarget 2015; 6:23987-24001. [PMID: 26124179 PMCID: PMC4695165 DOI: 10.18632/oncotarget.4364] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 05/30/2015] [Indexed: 11/27/2022] Open
Abstract
The tumor microenvironment has been suggested to participate in tumorigenesis, but the nature of the communication between cancer cells and the microenvironment, especially in response to anticancer drugs, remains obscure. We determined that activation of the CCAAT/enhancer binding protein delta (CEBPD) response to Cisplatin and 5-Fluorouracil in cancer-associated macrophages and fibroblasts contributed to the metastasis, invasion, acquired chemoresistance and stemness of cancer cells by in vitro and in vivo assays. Specifically, reporter and in vivo DNA binding assays were used to determine that Pentraxin 3 (PTX3) is a CEBPD responsive gene and serves a protumor role upon anticancer drug treatment. Finally, a PTX3 peptide inhibitor RI37 was developed and assessed the antitumor effects by in vivo assays. RI37 could function as a promising inhibitor for preventing cancer progression and the metastasis, invasion and progression of drug-resistant cancers. The identification of PTX3 provided a new insight in the interaction between host and tumor and the RI37 peptide showed a great opportunity to largely reduce the risk of invasion and metastasis of cancer and drug-resistant cancers.
Collapse
Affiliation(s)
- Jhih-Ying Chi
- Institute of Basic Medical Science, National Cheng Kung University, Tainan, Taiwan R.O.C
| | - Yu-Wei Hsiao
- Institute of Bioinformatics and Biosignal Transduction, National Cheng Kung University, Tainan, Taiwan R.O.C
| | - Chien-Feng Li
- Department of Pathology, Chi-Mei Medical Center, Tainan, Taiwan R.O.C
| | - Yu-Chih Lo
- Institute of Bioinformatics and Biosignal Transduction, National Cheng Kung University, Tainan, Taiwan R.O.C
| | - Zu-Yau Lin
- Cancer Center and Division of Hepatobiliary Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Taiwan R.O.C
| | - Jhen-Yi Hong
- Institute of Bioinformatics and Biosignal Transduction, National Cheng Kung University, Tainan, Taiwan R.O.C
| | - Yang-Ming Liu
- Institute of Bioinformatics and Biosignal Transduction, National Cheng Kung University, Tainan, Taiwan R.O.C
| | - Xiu Han
- Institute of Bioinformatics and Biosignal Transduction, National Cheng Kung University, Tainan, Taiwan R.O.C
| | - Shao-Ming Wang
- Institute of Basic Medical Science, National Cheng Kung University, Tainan, Taiwan R.O.C
| | - Ben-Kuen Chen
- Institute of Bioinformatics and Biosignal Transduction, National Cheng Kung University, Tainan, Taiwan R.O.C
| | - Kelvin K. Tsai
- National Institute of Cancer Research and Translational Center for Glandular Malignancies, National Health Research Institutes, Tainan, Taiwan R.O.C
| | - Ju-Ming Wang
- Institute of Bioinformatics and Biosignal Transduction, National Cheng Kung University, Tainan, Taiwan R.O.C
- Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan R.O.C
| |
Collapse
|
46
|
Ronca R, Giacomini A, Di Salle E, Coltrini D, Pagano K, Ragona L, Matarazzo S, Rezzola S, Maiolo D, Torrella R, Moroni E, Mazzieri R, Escobar G, Mor M, Colombo G, Presta M. Long-Pentraxin 3 Derivative as a Small-Molecule FGF Trap for Cancer Therapy. Cancer Cell 2015; 28:225-39. [PMID: 26267536 DOI: 10.1016/j.ccell.2015.07.002] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 04/10/2015] [Accepted: 07/10/2015] [Indexed: 11/16/2022]
Abstract
The fibroblast growth factor (FGF)/FGF receptor (FGFR) system plays a crucial role in cancer by affecting tumor growth, angiogenesis, drug resistance, and escape from anti-angiogenic anti-vascular endothelial growth factor therapy. The soluble pattern recognition receptor long-pentraxin 3 (PTX3) acts as a multi-FGF antagonist. Here we demonstrate that human PTX3 overexpression in transgenic mice driven by the Tie2 promoter inhibits tumor growth, angiogenesis, and metastasis in heterotopic, orthotopic, and autochthonous FGF-dependent tumor models. Using pharmacophore modeling of the interaction of a minimal PTX3-derived FGF-binding pentapeptide with FGF2, we identified a small-molecule chemical (NSC12) that acts as an extracellular FGF trap with significant implications in cancer therapy.
Collapse
Affiliation(s)
- Roberto Ronca
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy.
| | - Arianna Giacomini
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Emanuela Di Salle
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Daniela Coltrini
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Katiuscia Pagano
- NMR Laboratory, Istituto per lo Studio delle Macromolecole, CNR, 20133 Milan, Italy
| | - Laura Ragona
- NMR Laboratory, Istituto per lo Studio delle Macromolecole, CNR, 20133 Milan, Italy
| | - Sara Matarazzo
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Sara Rezzola
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Daniele Maiolo
- Chemistry for Technologies Laboratory and INSTM, School of Engineering, University of Brescia, 25123 Brescia, Italy
| | - Rubben Torrella
- Istituto di Chimica del Riconoscimento Molecolare, CNR, 20133 Milan, Italy
| | - Elisabetta Moroni
- Istituto di Chimica del Riconoscimento Molecolare, CNR, 20133 Milan, Italy
| | - Roberta Mazzieri
- University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Giulia Escobar
- San Raffaele Telethon Institute for Gene Therapy, 20132 Milan, Italy; Vita Salute San Raffaele University, 20132 Milan, Italy
| | - Marco Mor
- Department of Pharmacy, University of Parma, 43121 Parma, Italy
| | - Giorgio Colombo
- Istituto di Chimica del Riconoscimento Molecolare, CNR, 20133 Milan, Italy
| | - Marco Presta
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy.
| |
Collapse
|
47
|
Ronca R, Giacomini A, Rusnati M, Presta M. The potential of fibroblast growth factor/fibroblast growth factor receptor signaling as a therapeutic target in tumor angiogenesis. Expert Opin Ther Targets 2015; 19:1361-77. [PMID: 26125971 DOI: 10.1517/14728222.2015.1062475] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
INTRODUCTION Fibroblast growth factors (FGFs) are endowed with a potent pro-angiogenic activity. Activation of the FGF/FGF receptor (FGFR) system occurs in a variety of human tumors. This may lead to neovascularization, supporting tumor progression and metastatic dissemination. Thus, a compelling biologic rationale exists for the development of anti-FGF/FGFR agents for the inhibition of tumor angiogenesis in cancer therapy. AREAS COVERED A comprehensive search on PubMed was performed to identify studies on the role of the FGF/FGFR system in angiogenesis. Endothelial FGFR signaling, the pro-angiogenic function of canonical FGFs, and their role in human tumors are described. In addition, experimental approaches aimed at the identification and characterization of nonselective and selective FGF/FGFR inhibitors and their evaluation in clinical trials are summarized. EXPERT OPINION Different approaches can be envisaged to inhibit the FGF/FGFR system, a target for the development of 'two-compartment' anti-angiogenic/anti-tumor agents, including FGFR selective and nonselective small-molecule tyrosine kinase inhibitors, anti-FGFR antibodies, and FGF ligand traps. Further studies are required to define the correlation between tumor vascularization and activation of the FGF/FGFR system and for the identification of cancer patients more likely to benefit from anti-FGF/FGFR treatments. In addition, advantages and disadvantages about the use of selective versus non-selective FGF inhibitors remain to be elucidated.
Collapse
Affiliation(s)
- Roberto Ronca
- a University of Brescia, Department of Molecular and Translational Medicine , Brescia, Italy +39 030 371 7311 ;
| | - Arianna Giacomini
- a University of Brescia, Department of Molecular and Translational Medicine , Brescia, Italy +39 030 371 7311 ;
| | - Marco Rusnati
- a University of Brescia, Department of Molecular and Translational Medicine , Brescia, Italy +39 030 371 7311 ;
| | - Marco Presta
- a University of Brescia, Department of Molecular and Translational Medicine , Brescia, Italy +39 030 371 7311 ;
| |
Collapse
|
48
|
Choi B, Lee EJ, Song DH, Yoon SC, Chung YH, Jang Y, Kim SM, Song Y, Kang SW, Yoon SY, Chang EJ. Elevated Pentraxin 3 in bone metastatic breast cancer is correlated with osteolytic function. Oncotarget 2015; 5:481-92. [PMID: 24457902 PMCID: PMC3964223 DOI: 10.18632/oncotarget.1664] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Pentraxin 3 (PTX3), a modulator of tumor-associated inflammation, is known to be positively correlated with tumor grade and severity of malignancies, but its exact role remains unclear. This study found that PTX3 expression was up-regulated in distant bone metastases of breast cancer compared to lung, liver, and brain metastases in 64 human breast cancer patients. Elevated expression of PTX3 was correlated with poor survival in patients with breast cancer. PTX3 expression was also up-regulated in a bone metastatic breast cancer cell line and further enhanced by pro-inflammatory cytokine TNFα. Administration of PTX3 promoted the migratory potential of breast cancer cells and the mobilization of macrophages, a precursor of osteoclasts (OCs), toward breast cancer cells. In addition, elevated expression of PTX3 by TNFα led to enhanced OC formation, implying the distinct role of PTX3 in osteolytic bone metastasis of breast cancer cells. Furthermore, PTX3 silencing using siRNA-specific siRNA prevented breast cancer cell migration, macrophage Chemotaxis, and subsequent OC formation. These findings provide an important insight into the key role of PTX3 in inflammation-associated osteolytic complications of breast cancer.
Collapse
Affiliation(s)
- Bongkun Choi
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Jaillon S, Bonavita E, Gentile S, Rubino M, Laface I, Garlanda C, Mantovani A. The long pentraxin PTX3 as a key component of humoral innate immunity and a candidate diagnostic for inflammatory diseases. Int Arch Allergy Immunol 2014; 165:165-78. [PMID: 25531094 DOI: 10.1159/000368778] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The innate immune system is composed of a cellular arm and a humoral arm. Components of the humoral arm include members of the complement cascade and soluble pattern recognition molecules (PRMs). These PRMs recognize pathogen-associated molecular patterns and are functional ancestors of antibodies, playing a role in complement activation, opsonization and agglutination. Pentraxins consist of a set of multimeric soluble proteins and represent the prototypic components of humoral innate immunity. The prototypic long pentraxin PTX3 is highly conserved in evolution and produced by somatic and innate immune cells after proinflammatory stimuli. PTX3 interacts with a set of self, nonself and modified self ligands and exerts essential roles in innate immunity, inflammation control and matrix deposition. In addition, translational studies suggest that PTX3 may be a useful biomarker of human pathologies complementary to C-reactive protein. In this study, we will review the general functions of pentraxins in innate immunity and inflammation, focusing our attention on the prototypic long pentraxin PTX3.
Collapse
|
50
|
Liu C, Yao Y, Wang W. Pentraxin-3 as a prognostic marker in patients with small-cell lung cancer. Med Oncol 2014; 31:207. [DOI: 10.1007/s12032-014-0207-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Accepted: 08/23/2014] [Indexed: 01/14/2023]
|