1
|
Rosales-Barrios C, González-Sánchez ZI, Zuliani A, Jiménez-Vacas JM, Luque RM, Pozo D, Khiar N. PSMA-targeted delivery of docetaxel in prostate cancer using small-sized PDA-based micellar nanovectors. J Control Release 2025; 379:890-905. [PMID: 39864631 DOI: 10.1016/j.jconrel.2025.01.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 01/13/2025] [Accepted: 01/21/2025] [Indexed: 01/28/2025]
Abstract
In this study, we present the first comparative analysis of active and passive drug delivery systems for docetaxel (DTX) in prostate cancer using supramolecular self-assembled micellar nanovectors. Specifically, we developed two novel micelles based on polydiacetylenic amphiphiles (PDA) for passive and active targeting. The active targeting micelles were designed with a prostate-specific membrane antigen (PSMA) ligand, ACUPA, to facilitate recognition by PSMA-positive cancer cells. These PDA-based micelles feature a well-defined structure with a hydrophobic PDA core and a surface functionalized with PEG, and for active targeting, ACUPA. Our micelles demonstrated excellent encapsulation capacity, significantly improving DTX solubility in water, a crucial factor for clinical drug use. In vitro studies confirmed the safety and cytotoxic profiles of both systems, with ACUPA-functionalized micelles showing notable internalization into PSMA-positive LNCaP cells, mediated through the PSMA-ACUPA interaction. In vivo imaging revealed preferential accumulation of ACUPA-functionalized nanomicelles in LNCaP xenograft tumors, suggesting enhanced retention via specific ACUPA-PSMA interactions and active uptake by LNCaP cells. Notably, Balb/c-Foxn1nu/nu early in vivo studies showed a marked reduction in tumor volume and tumor expression levels of proliferation, cell cycle progression, cell survival and anti-apoptotic markers with DTX-loaded micelles functionalized with ACUPA compared to those without ACUPA. Overall, our studies collect initial evidence regarding the feasibility of supramolecular self-assembly of ACUPA-PDA-based nanomicelles for PSMA-targeted drug chemotherapy delivery developments.
Collapse
Affiliation(s)
- Cristian Rosales-Barrios
- Asymmetric Synthesis and Functional Nanosystems Group (Art&Fun), Institute of Chemical Research (IIQ), CSIC-University of Seville, C/ Américo Vespucio 49, 41092 Seville, Spain
| | - Zaira I González-Sánchez
- Department of Integrative Pathophysiology and Therapies, Andalusian Centre for Molecular Biology and Regenerative Medicine (CABIMER), CSIC-Universidad Pablo de Olavide-Universidad de Sevilla, Av. Americo Vespucio 24, Seville 41092, Spain; Department of Medical Biochemistry, Molecular Biology and Immunology University of Seville, Av. Sánchez Pizjuan s/n, 41009 Seville, Spain; Nanobiology Laboratory, Department of Natural and Exact Sciences, Pontificia Universidad Católica Madre y Maestra (PUCMM), Hwy. Duarte km 1.5, Santiago de los Caballeros, 822, Dominican Republic
| | - Alessio Zuliani
- Asymmetric Synthesis and Functional Nanosystems Group (Art&Fun), Institute of Chemical Research (IIQ), CSIC-University of Seville, C/ Américo Vespucio 49, 41092 Seville, Spain
| | - Juan M Jiménez-Vacas
- Maimónides Institute for Biomedical Research of Córdoba (IMIBIC), University Hospital Reina Sofía (HURS), Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Av. Menéndez Pidal s/n, Córdoba 14004, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Campus Rabanales, 14004 Córdoba, Spain
| | - Raul M Luque
- Maimónides Institute for Biomedical Research of Córdoba (IMIBIC), University Hospital Reina Sofía (HURS), Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Av. Menéndez Pidal s/n, Córdoba 14004, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Campus Rabanales, 14004 Córdoba, Spain
| | - David Pozo
- Department of Integrative Pathophysiology and Therapies, Andalusian Centre for Molecular Biology and Regenerative Medicine (CABIMER), CSIC-Universidad Pablo de Olavide-Universidad de Sevilla, Av. Americo Vespucio 24, Seville 41092, Spain; Department of Medical Biochemistry, Molecular Biology and Immunology University of Seville, Av. Sánchez Pizjuan s/n, 41009 Seville, Spain
| | - Noureddine Khiar
- Asymmetric Synthesis and Functional Nanosystems Group (Art&Fun), Institute of Chemical Research (IIQ), CSIC-University of Seville, C/ Américo Vespucio 49, 41092 Seville, Spain.
| |
Collapse
|
2
|
Hamada A, Kita Y, Sakatani T, Nakamura K, Takada H, Ikeuchi R, Koike S, Masuda N, Murakami K, Sano T, Goto T, Saito R, Teramoto Y, Fujimoto M, Hatano N, Kamada M, Ogawa O, Kobayashi T. PTEN loss drives p53 LOH and immune evasion in a novel urothelial organoid model harboring p53 missense mutations. Oncogene 2025:10.1038/s41388-025-03311-5. [PMID: 39987272 DOI: 10.1038/s41388-025-03311-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 01/15/2025] [Accepted: 02/12/2025] [Indexed: 02/24/2025]
Abstract
Despite missense mutation accounts for over 60% of p53 alterations while homozygous deletion (HOM) for only 5% or less in advanced bladder cancer cases, most of the previously reported mouse models are deficient of p53. Accordingly, few studies have addressed the mechanisms of missense mutation occurrence and its functional advantage over HOM in bladder cancer development. Organoids derived from Krt5-expressing mouse urothelium (K5-mUrorganoid) demonstrated the crucial role of Pten loss in driving loss of wild-type allele of Trp53 (Trp53R172H/LOH), which conferred tumorigenic ability to K5-mUrorganoid in athymic mice. These tumors recapitulated the histological and genetic characteristics of the human basal-squamous subtype bladder cancer. Both Trp53R172H/Δ; PtenΔ/Δ and Trp53Δ/Δ; PtenΔ/Δ K5-mUrorganoids formed tumors in athymic mice, whereas only Trp53R172H/Δ; PtenΔ/Δ K5-mUrorganoid formed tumors even when directly inoculated in immunocompetent syngeneic mice. The absence of wild-type Trp53 was associated with upregulation of proliferative signaling, and the presence of a mutant Trp53 allele was associated with immune-excluded microenvironment. This study highlights the functional significance of p53 mutant LOH in bladder carcinogenesis conferring several hallmarks of cancer such as sustaining proliferative signaling and avoiding immune destruction, thus provides a novel immunocompetent mouse model of urothelial carcinoma harboring p53 mutations as a novel tool for cancer immunology research.
Collapse
Affiliation(s)
- Akihiro Hamada
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yuki Kita
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Toru Sakatani
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kenji Nakamura
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hideaki Takada
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ryosuke Ikeuchi
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shuhei Koike
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Norihiko Masuda
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Urology, Rakuwakai Otowa Hospital, Kyoto, Japan
| | - Kaoru Murakami
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takeshi Sano
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Urology and Andrology, Kansai Medical University, Osaka, Japan
| | - Takayuki Goto
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ryoichi Saito
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yuki Teramoto
- Department of Diagnostic Pathology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masakazu Fujimoto
- Department of Diagnostic Pathology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Narumi Hatano
- Department of Biomedical Data Intelligence, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Mayumi Kamada
- Department of Biomedical Data Intelligence, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Osamu Ogawa
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Urology, Otsu Red Cross Hospital, Shiga, Japan
| | - Takashi Kobayashi
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| |
Collapse
|
3
|
Huber A, Allam AH, Dijkstra C, Thiem S, Huynh J, Poh AR, Konecnik J, Jacob SP, Busuttil R, Liao Y, Chisanga D, Shi W, Alorro MG, Forrow S, Tauriello DVF, Batlle E, Boussioutas A, Williams DS, Buchert M, Ernst M, Eissmann MF. Mutant TP53 switches therapeutic vulnerability during gastric cancer progression within interleukin-6 family cytokines. Cell Rep 2024; 43:114616. [PMID: 39128004 PMCID: PMC11372443 DOI: 10.1016/j.celrep.2024.114616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/17/2024] [Accepted: 07/25/2024] [Indexed: 08/13/2024] Open
Abstract
Although aberrant activation of the KRAS and PI3K pathway alongside TP53 mutations account for frequent aberrations in human gastric cancers, neither the sequence nor the individual contributions of these mutations have been clarified. Here, we establish an allelic series of mice to afford conditional expression in the glandular epithelium of KrasG12D;Pik3caH1047R or Trp53R172H and/or ablation of Pten or Trp53. We find that KrasG12D;Pik3caH1047R is sufficient to induce adenomas and that lesions progress to carcinoma when also harboring Pten deletions. An additional challenge with either Trp53 loss- or gain-of-function alleles further accelerated tumor progression and triggered metastatic disease. While tumor-intrinsic STAT3 signaling in response to gp130 family cytokines remained as a gatekeeper for all stages of tumor development, metastatic progression required a mutant Trp53-induced interleukin (IL)-11 to IL-6 dependency switch. Consistent with the poorer survival of patients with high IL-6 expression, we identify IL-6/STAT3 signaling as a therapeutic vulnerability for TP53-mutant gastric cancer.
Collapse
Affiliation(s)
- Anne Huber
- Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Melbourne, VIC 3084, Australia
| | - Amr H Allam
- Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Melbourne, VIC 3084, Australia
| | - Christine Dijkstra
- Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Melbourne, VIC 3084, Australia
| | - Stefan Thiem
- Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Melbourne, VIC 3084, Australia
| | - Jennifer Huynh
- Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Melbourne, VIC 3084, Australia
| | - Ashleigh R Poh
- Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Melbourne, VIC 3084, Australia
| | - Joshua Konecnik
- Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Melbourne, VIC 3084, Australia
| | - Saumya P Jacob
- Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Melbourne, VIC 3084, Australia
| | - Rita Busuttil
- Central Clinical School, Monash University, Melbourne, VIC 3004, Australia; Department of Gastroenterology, The Alfred Hospital, Melbourne, VIC 3004, Australia
| | - Yang Liao
- Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Melbourne, VIC 3084, Australia
| | - David Chisanga
- Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Melbourne, VIC 3084, Australia
| | - Wei Shi
- Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Melbourne, VIC 3084, Australia
| | - Mariah G Alorro
- Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Melbourne, VIC 3084, Australia
| | - Stephen Forrow
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Daniele V F Tauriello
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Eduard Batlle
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Alex Boussioutas
- Central Clinical School, Monash University, Melbourne, VIC 3004, Australia; Department of Gastroenterology, The Alfred Hospital, Melbourne, VIC 3004, Australia
| | - David S Williams
- Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Melbourne, VIC 3084, Australia; Department of Anatomical Pathology, Austin Health, Heidelberg, VIC 3084, Australia
| | - Michael Buchert
- Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Melbourne, VIC 3084, Australia
| | - Matthias Ernst
- Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Melbourne, VIC 3084, Australia.
| | - Moritz F Eissmann
- Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Melbourne, VIC 3084, Australia.
| |
Collapse
|
4
|
Schwab K, Riege K, Coronel L, Stanko C, Förste S, Hoffmann S, Fischer M. p53 target ANKRA2 cooperates with RFX7 to regulate tumor suppressor genes. Cell Death Discov 2024; 10:376. [PMID: 39181888 PMCID: PMC11344851 DOI: 10.1038/s41420-024-02149-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 08/07/2024] [Accepted: 08/14/2024] [Indexed: 08/27/2024] Open
Abstract
The transcription factor regulatory factor X 7 (RFX7) has been identified as a tumor suppressor that is recurrently mutated in lymphoid cancers and appears to be dysregulated in many other cancers. RFX7 is activated by the well-known tumor suppressor p53 and regulates several other known tumor suppressor genes. However, what other factors regulate RFX7 and its target genes remains unclear. Here, reporter gene assays were used to identify that RFX7 regulates the tumor suppressor gene PDCD4 through direct interaction with its X-box promoter motif. We utilized mass spectrometry to identify factors that bind to DNA together with RFX7. In addition to RFX7, we also identified RFX5, RFXAP, RFXANK, and ANKRA2 that bind to the X-box motif in the PDCD4 promoter. We demonstrate that ANKRA2 is a bona fide direct p53 target gene. We used transcriptome analyses in two cell systems to identify genes regulated by ANKRA2, its sibling RFXANK, and RFX7. These results revealed that ANKRA2 functions as a critical cofactor of RFX7, whereas RFXANK regulates largely distinct gene sets.
Collapse
Affiliation(s)
- Katjana Schwab
- Computational Biology Group, Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany
| | - Konstantin Riege
- Computational Biology Group, Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany
| | - Luis Coronel
- Computational Biology Group, Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany
| | - Clara Stanko
- Klinik für Innere Medizin II, Jena University Hospital, Comprehensive Cancer Center Central Germany, Jena, Germany
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine Jena (CMB), Jena University Hospital, Jena, Germany
| | - Silke Förste
- Computational Biology Group, Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany
| | - Steve Hoffmann
- Computational Biology Group, Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany.
| | - Martin Fischer
- Computational Biology Group, Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany.
| |
Collapse
|
5
|
Foda MY, Salem ML, AlAkwaa FM, El-Khawaga OY. Atorvastatin lowers breast cancer risk by reversing an early tumorigenic signature. Sci Rep 2024; 14:17803. [PMID: 39090164 PMCID: PMC11294600 DOI: 10.1038/s41598-024-67706-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 07/15/2024] [Indexed: 08/04/2024] Open
Abstract
Breast cancer remains a significant health challenge with complex molecular mechanisms. While many studies have explored genetic markers in breast carcinogenesis, few have studied the potential impact of pharmacological interventions such as Atorvastatin on its genetic landscape. This study aimed to elucidate the molecular distinctions between normal and tumor-adjacent tissues in breast cancer and to investigate the potential protective role of atorvastatin, primarily known for its lipid-lowering effects, against breast cancer. Searching the Gene Expression Omnibus database identified two datasets, GSE9574 and GSE20437, comparing normal breast tissues with tumor-adjacent samples, which were merged, and one dataset, GSE63427, comparing paired pre- and post-treated patients with atorvastatin. Post-ComBat application showed merged datasets' consistency, revealing 116 DEGs between normal and tumor-adjacent tissues. Although initial GSE63427 data analysis suggested a minimal impact of atorvastatin, 105 DEGs post-treatment were discovered. Thirteen genes emerged as key players, both affected by Atorvastatin and dysregulated in tumor-adjacent tissues. Pathway analysis spotlighted the significance of these genes in processes like inflammation, oxidative stress, apoptosis, and cell cycle control. Moreover, there was a noticeable interaction between these genes and the immunological microenvironment in tumor-adjacent tissues, with Atorvastatin potentially altering the suppressive immune landscape to favor anti-tumor immunity. Survival analysis further highlighted the prognostic potential of the 13-gene panel, with 12 genes associated with improved survival outcomes. The 13-gene signature offers promising insights into breast cancer's molecular mechanisms and atorvastatin's potential therapeutic role. The preliminary findings advocate for an in-depth exploration of atorvastatin's impact on.
Collapse
Affiliation(s)
- Mohamed Y Foda
- Biochemistry Division, Chemistry Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Mohamed L Salem
- Immunology and Biotechnology Unit, Department of Zoology, Faculty of Science, and Center of Excellence in Cancer Research, Tanta University, Tanta, Egypt
| | - Fadhl M AlAkwaa
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Omali Y El-Khawaga
- Biochemistry Division, Chemistry Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
6
|
Khan R, Pari B, Puszynski K. Comprehensive Bioinformatic Investigation of TP53 Dysregulation in Diverse Cancer Landscapes. Genes (Basel) 2024; 15:577. [PMID: 38790205 PMCID: PMC11121236 DOI: 10.3390/genes15050577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
P53 overexpression plays a critical role in cancer pathogenesis by disrupting the intricate regulation of cellular proliferation. Despite its firmly established function as a tumor suppressor, elevated p53 levels can paradoxically contribute to tumorigenesis, influenced by factors such as exposure to carcinogens, genetic mutations, and viral infections. This phenomenon is observed across a spectrum of cancer types, including bladder (BLCA), ovarian (OV), cervical (CESC), cholangiocarcinoma (CHOL), colon adenocarcinoma (COAD), diffuse large B-cell lymphoma (DLBC), esophageal carcinoma (ESCA), head and neck squamous cell carcinoma (HNSC), kidney chromophobe (KICH), kidney renal clear cell carcinoma (KIRC), liver hepatocellular carcinoma (LIHC), lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), and uterine corpus endometrial carcinoma (UCEC). This broad spectrum of cancers is often associated with increased aggressiveness and recurrence risk. Effective therapeutic strategies targeting tumors with p53 overexpression require a comprehensive approach, integrating targeted interventions aimed at the p53 gene with conventional modalities such as chemotherapy, radiation therapy, and targeted drugs. In this extensive study, we present a detailed analysis shedding light on the multifaceted role of TP53 across various cancers, with a specific emphasis on its impact on disease-free survival (DFS). Leveraging data from the TCGA database and the GTEx dataset, along with GEPIA, UALCAN, and STRING, we identify TP53 overexpression as a significant prognostic indicator, notably pronounced in prostate adenocarcinoma (PRAD). Supported by compelling statistical significance (p < 0.05), our analysis reveals the distinct influence of TP53 overexpression on DFS outcomes in PRAD. Additionally, graphical representations of overall survival (OS) underscore the notable disparity in OS duration between tumors exhibiting elevated TP53 expression (depicted by the red line) and those with lower TP53 levels (indicated by the blue line). The hazard ratio (HR) further emphasizes the profound impact of TP53 on overall survival. Moreover, our investigation delves into the intricate TP53 protein network, unveiling genes exhibiting robust positive correlations with TP53 expression across 13 out of 27 cancers. Remarkably, negative correlations emerge with pivotal tumor suppressor genes. This network analysis elucidates critical proteins, including SIRT1, CBP, p300, ATM, DAXX, HSP 90-alpha, Mdm2, RPA70, 14-3-3 protein sigma, p53, and ASPP2, pivotal in regulating cell cycle dynamics, DNA damage response, and transcriptional regulation. Our study underscores the paramount importance of deciphering TP53 dynamics in cancer, providing invaluable insights into tumor behavior, disease-free survival, and potential therapeutic avenues.
Collapse
Affiliation(s)
- Ruby Khan
- Department of Systems Biology and Engineering, Silesian University of Technology, 44-100 Gliwice, Poland;
| | - Bakht Pari
- Principal, Nursing School, Lady Reading Hospital Peshawar, Peshawar 25000, Pakistan;
| | - Krzysztof Puszynski
- Department of Systems Biology and Engineering, Silesian University of Technology, 44-100 Gliwice, Poland;
| |
Collapse
|
7
|
Wang D, Nakayama M, Hong CP, Oshima H, Oshima M. Gain-of-Function p53 Mutation Acts as a Genetic Switch for TGFβ Signaling-Induced Epithelial-to-Mesenchymal Transition in Intestinal Tumors. Cancer Res 2024; 84:56-68. [PMID: 37851521 PMCID: PMC10758690 DOI: 10.1158/0008-5472.can-23-1490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/08/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023]
Abstract
Signaling by TGFβ family cytokines plays a tumor-suppressive role by inducing cell differentiation, while it promotes malignant progression through epithelial-to-mesenchymal transition (EMT). Identification of the mechanisms regulating the switch from tumor suppression to tumor promotion could identify strategies for cancer prevention and treatment. To identify the key genetic alterations that determine the outcome of TGFβ signaling, we used mouse intestinal tumor-derived organoids carrying multiple driver mutations in various combinations to examine the relationship between genotypes and responses to the TGFβ family cytokine activin A. KrasG12D mutation protected organoid cells from activin A-induced growth suppression by inhibiting p21 and p27 expression. Furthermore, Trp53R270H gain-of-function (GOF) mutation together with loss of wild-type Trp53 by loss of heterozygosity (LOH) promoted activin A-induced partial EMT with formation of multiple protrusions on the organoid surface, which was associated with increased metastatic incidence. Histologic analysis confirmed that tumor cells at the protrusions showed loss of apical-basal polarity and glandular structure. RNA sequencing analysis indicated that expression of Hmga2, encoding a cofactor of the SMAD complex that induces EMT transcription factors, was significantly upregulated in organoids with Trp53 GOF/LOH alterations. Importantly, loss of HMGA2 suppressed expression of Twist1 and blocked activin A-induced partial EMT and metastasis in Trp53 GOF/LOH organoids. These results indicate that TP53 GOF/LOH is a key genetic state that primes for TGFβ family-induced partial EMT and malignant progression of colorectal cancer. Activin signaling may be an effective therapeutic target for colorectal cancer harboring TP53 GOF mutations. SIGNIFICANCE KRAS and TP53 mutations shift activin-mediated signaling to overcome growth inhibition and promote partial EMT, identifying a subset of patients with colorectal cancer that could benefit from inhibition of TGFβ signaling.
Collapse
Affiliation(s)
- Dong Wang
- WPI Nano-Life Science Institute (Nano-LSI), Kanazawa University, Kanazawa, Japan
| | - Mizuho Nakayama
- WPI Nano-Life Science Institute (Nano-LSI), Kanazawa University, Kanazawa, Japan
- Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | | | - Hiroko Oshima
- WPI Nano-Life Science Institute (Nano-LSI), Kanazawa University, Kanazawa, Japan
- Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Masanobu Oshima
- WPI Nano-Life Science Institute (Nano-LSI), Kanazawa University, Kanazawa, Japan
- Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
8
|
Zhou J, Guo H, Liu L, Jin Z, Zhang W, Tang T. Identification of immune-related hub genes and construction of an immune-related gene prognostic index for low-grade glioma. J Cell Mol Med 2023; 27:3851-3863. [PMID: 37775993 PMCID: PMC10718158 DOI: 10.1111/jcmm.17960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 08/14/2023] [Accepted: 09/08/2023] [Indexed: 10/01/2023] Open
Abstract
Low-grade glioma (LGG) poses significant management challenges and has a dismal prognosis. While immunotherapy has shown significant promise in cancer treatment, its progress in glioma has confronted with challenges. In our study, we aimed to develop an immune-related gene prognostic index (IRGPI) which could be used to evaluate the response and efficacy of LGG patients with immunotherapy. We included a total of 529 LGG samples from TCGA database and 1152 normal brain tissue samples from the GTEx database. Immune-related differentially expressed genes (DEGs) were screened. Then, we used weighted gene co-expression network analysis (WGCNA) to identify immune-related hub genes in LGG patients and performed Cox regression analysis to construct an IRGPI. The median IRGPI was used as the cut-off value to categorize LGG patients into IRGPI-high and low subgroups, and the molecular and immune mechanism in IRGPI-defined subgroups were analysed. Finally, we explored the relationship between IRGPI-defined subgroups and immunotherapy related indicators in patients after immunotherapy. Three genes (RHOA, NFKBIA and CCL3) were selected to construct the IRGPI. In a survival analysis using TCGA cohort as a training set, patients in the IRGPI-low subgroup had a better OS than those in IRGPI-high subgroup, consistent with the results in CGGA cohort. The comprehensive results showed that IRGPI-low subgroup had a more abundant activated immune cell population and lower TIDE score, higher MSI, higher TMB score, lower T cell dysfunction score, more likely benefit from ICIs therapy. IRGPI is a promising biomarker in the field of LGG ICIs therapy to distinguish the prognosis, the molecular and immunological characteristics of patients.
Collapse
Affiliation(s)
- Jing Zhou
- Department of Oncology, Shanxi Province Academy of Traditional Chinese MedicineShanxi Province Hospital of Traditional Chinese MedicineTaiyuanChina
| | - Hao Guo
- Department of AnesthesiologyShanxi Provincial People's HospitalTaiyuanChina
| | - Likun Liu
- Department of Oncology, Shanxi Province Academy of Traditional Chinese MedicineShanxi Province Hospital of Traditional Chinese MedicineTaiyuanChina
| | - Zengcai Jin
- Department of Oncology, Shanxi Province Academy of Traditional Chinese MedicineShanxi Province Hospital of Traditional Chinese MedicineTaiyuanChina
| | - Wencui Zhang
- Department of Oncology, Shanxi Province Academy of Traditional Chinese MedicineShanxi Province Hospital of Traditional Chinese MedicineTaiyuanChina
| | - Tao Tang
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative MedicineXiangya Hospital, Central South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaChina
| |
Collapse
|
9
|
Hatano Y. The Pathology according to p53 Pathway. Pathobiology 2023; 91:230-243. [PMID: 37963443 PMCID: PMC11313058 DOI: 10.1159/000535203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 11/12/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND Observations play a pivotal role in the progress of science, including in pathology. The cause of a disease such as cancer is analyzed by breaking it down into smaller organs, tissues, cells, and molecules. The current standard cancer diagnostic procedure, microscopic observation, relies on preserved morphological characteristics. In contrast, molecular analyses explore oncogenic pathway activation that leads to genetic mutations and aberrant protein expression. Such molecular analyses could potentially identify therapeutic targets and has gained considerable attention in clinical oncology. SUMMARY This review summarizes the cardinal biomarkers of the p53 pathway, p53, p16, and mouse double minute 2 (MDM2), in the context of traditional surgical pathology and emerging genomic oncology. The p53 pathway, which is dysregulated in more than a half of all cancers, can be applied in several diagnostic settings. A four-classification model of immunophenotype for p53 pathway gene status, tumor types with a high frequency of abnormalities for each p53 pathway gene, and a minimal p53 pathway immunohistochemical panel is also described. KEY MESSAGES Immunohistochemistry of oncogenic signals should be interpreted according to molecular findings based on genomic oncology, in addition to the microscopic findings of diagnostic pathology.
Collapse
Affiliation(s)
- Yuichiro Hatano
- Department of Pathology, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, Japan
| |
Collapse
|
10
|
Peng M, Hu Q, Wu Z, Wang B, Wang C, Yu F. Mutation of TP53 Confers Ferroptosis Resistance in Lung Cancer Through the FOXM1/MEF2C Axis. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1587-1602. [PMID: 37236507 DOI: 10.1016/j.ajpath.2023.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/17/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023]
Abstract
Ferroptosis is a highly regulated tumor suppressor process. Loss or mutation of TP53 can cause changes in sensitivity to ferroptosis. Mutations in TP53 may be associated with the malignant or indolent progression of ground glass nodules in early lung cancer, but whether ferroptosis may also be involved in determining this biological process has not yet been determined. Using in vivo and in vitro gain- and loss-of-function approaches, this study used clinical tissue for mutation analysis and pathological research to show that wild-type TP53 inhibited the expression of forkhead box M1 (FOXM1) by binding to peroxisome proliferator-activated receptor-γ coactivator 1α, maintaining the mitochondrial function and thus affecting the sensitivity to ferroptosis. This function was absent in mutant cells, resulting in overexpression of FOXM1 and ferroptosis resistance. Mechanistically, FOXM1 activated the transcription level of myocyte-specific enhancer factor 2C in the mitogen-activated protein kinase signaling pathway, leading to stress protection when exposed to ferroptosis inducers. This study provides new insights into the mechanism of association between TP53 mutation and ferroptosis tolerance, which can aid a deeper understanding of the role of TP53 in the malignant progression of lung cancer.
Collapse
Affiliation(s)
- Muyun Peng
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Qikang Hu
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Zeyu Wu
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Bin Wang
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Cheng Wang
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Fenglei Yu
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China.
| |
Collapse
|
11
|
Zhao Z, Jin T, Chen B, Dong Q, Liu M, Guo J, Song X, Li Y, Chen T, Han H, Liang H, Gu Y. Multi-omics integration analysis unveils heterogeneity in breast cancer at the individual level. Cell Cycle 2023; 22:2229-2244. [PMID: 37974462 PMCID: PMC10730166 DOI: 10.1080/15384101.2023.2281816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023] Open
Abstract
Identifying robust breast cancer subtypes will help to reveal the cancer heterogeneity. However, previous breast cancer subtypes were based on population-level quantitative gene expression, which is affected by batch effects and cannot be applied to individuals. We detected differential gene expression, genomic, and epigenomic alterations to identify driver differential expression at the individual level. The individual driver differential expression reflected the breast cancer patients' heterogeneity and revealed four subtypes. Mesenchymal subtype as the most aggressive subtype harbored deletion and downregulated expression of genes in chromosome 11q23 region. Specifically, silencing of the SDHD gene in 11q23 promoted the invasion and migration of breast cancer cells in vitro by the epithelial-mesenchymal transition. The immunologically hot subtype displayed an immune-hot microenvironment, including high T-cell infiltration and upregulated PD-1 and CTLA4. Luminal and genomic-unstable subtypes showed opposite macrophage polarization, which may be regulated by the ligand-receptor pairs of CD99. The integration of multi-omics data at the individual level provides a powerful framework for elucidating the heterogeneity of breast cancer.
Collapse
Affiliation(s)
- Zhangxiang Zhao
- The Sino-Russian Medical Research Center of Jinan University, The Institute of Chronic Disease of Jinan University, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Tongzhu Jin
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Bo Chen
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Qi Dong
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Mingyue Liu
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Jiayu Guo
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Xiaoying Song
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yawei Li
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Tingting Chen
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Huiming Han
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Haihai Liang
- The Sino-Russian Medical Research Center of Jinan University, The Institute of Chronic Disease of Jinan University, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yunyan Gu
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| |
Collapse
|
12
|
Rodney AR, Skidmore ZL, Grenier JK, Griffith OL, Miller AD, Chu S, Ahmed F, Bryan JN, Peralta S, Warren WC. Genomic landscape and gene expression profiles of feline oral squamous cell carcinoma. Front Vet Sci 2023; 10:1079019. [PMID: 37266381 PMCID: PMC10229771 DOI: 10.3389/fvets.2023.1079019] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 03/29/2023] [Indexed: 06/03/2023] Open
Abstract
Feline oral squamous cell carcinoma (FOSCC) is a cancer of the squamous cell lining in the oral cavity and represents up to 80% of all oral cancers in cats, with a poor prognosis. We have used whole exome sequencing (WES) and RNA sequencing of the tumor to discover somatic mutations and gene expression changes that may be associated with FOSCC occurrence. FOSCC offers a potential comparative model to study human head and neck squamous cell carcinoma (HNSCC) due to its similar spontaneous formation, and morphological and histological features. In this first study using WES to identify somatic mutations in feline cancer, we have identified tumor-associated gene mutations in six cats with FOSCC and found some overlap with identified recurrently mutated genes observed in HNSCC. Four samples each had mutations in TP53, a common mutation in all cancers, but each was unique. Mutations in other cellular growth control genes were also found such as KAT2B and ARID1A. Enrichment analysis of FOSCC gene expression profiles suggests a molecular similarity to human OSCC as well, including alterations in epithelial to mesenchymal transition and IL6/JAK/STAT pathways. In this preliminary study, we present exome and transcriptome results that further our understanding of FOSCC.
Collapse
Affiliation(s)
- Alana R. Rodney
- Department of Animal Sciences, University of Missouri, Columbia, MO, United States
| | - Zachary L. Skidmore
- McDonnell Genome Institute, Washington University School of Medicine, St Louis, MO, United States
| | - Jennifer K. Grenier
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Obi L. Griffith
- McDonnell Genome Institute, Washington University School of Medicine, St Louis, MO, United States
| | - Andrew D. Miller
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Shirley Chu
- Department of Oncology, School of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| | - Faraz Ahmed
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Jeffrey N. Bryan
- Department of Oncology, School of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| | - Santiago Peralta
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Wesley C. Warren
- Department of Animal Sciences, University of Missouri, Columbia, MO, United States
| |
Collapse
|
13
|
Romanovsky E, Kluck K, Ourailidis I, Menzel M, Beck S, Ball M, Kazdal D, Christopoulos P, Schirmacher P, Stiewe T, Stenzinger A, Budczies J. Homogenous TP53mut-associated tumor biology across mutation and cancer types revealed by transcriptome analysis. Cell Death Discov 2023; 9:126. [PMID: 37059713 PMCID: PMC10104808 DOI: 10.1038/s41420-023-01413-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 04/16/2023] Open
Abstract
TP53 is the most frequently mutated gene in human cancer. While no TP53-targeting drugs have been approved in the USA or Europe so far, preclinical and clinical studies are underway to investigate targeting of specific or all TP53 mutations, for example, by restoration of the functionality of mutated TP53 (TP53mut) or protecting wildtype TP53 (TP53wt) from negative regulation. We performed a comprehensive mRNA expression analysis in 24 cancer types of TCGA to extract (i) a consensus expression signature shared across TP53 mutation types and cancer types, (ii) differential gene expression patterns between tumors harboring different TP53 mutation types such as loss of function, gain of function or dominant-negative mutations, and (iii) cancer-type-specific patterns of gene expression and immune infiltration. Analysis of mutational hotspots revealed both similarities across cancer types and cancer type-specific hotspots. Underlying ubiquitous and cancer type-specific mutational processes with the associated mutational signatures contributed to explaining this observation. Virtually no genes were differentially expressed between tumors harboring different TP53 mutation types, while hundreds of genes were over- and underexpressed in TP53mut compared to TP53wt tumors. A consensus list included 178 genes that were overexpressed and 32 genes that were underexpressed in the TP53mut tumors of at least 16 of the investigated 24 cancer types. In an association analysis of immune infiltration with TP53 mutations in 32 cancer subtypes, decreased immune infiltration was observed in six subtypes, increased infiltration in two subtypes, a mixed pattern of decreased and increased immune cell populations in four subtypes, while immune infiltration was not associated with TP53 status in 20 subtypes. The analysis of a large cohort of human tumors complements results from experimental studies and supports the view that TP53 mutations should be further evaluated as predictive markers for immunotherapy and targeted therapies.
Collapse
Affiliation(s)
- Eva Romanovsky
- Institute of Pathology, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Klaus Kluck
- Institute of Pathology, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Iordanis Ourailidis
- Institute of Pathology, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Michael Menzel
- Institute of Pathology, Heidelberg University Hospital, 69120, Heidelberg, Germany
- Center for Personalized Medicine (ZPM) Heidelberg, 69120, Heidelberg, Germany
| | - Susanne Beck
- Institute of Pathology, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Markus Ball
- Institute of Pathology, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Daniel Kazdal
- Institute of Pathology, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Petros Christopoulos
- Department of Thoracic Oncology, Thoraxklinik and National Center for Tumor Diseases (NCT) Heidelberg, member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Peter Schirmacher
- Institute of Pathology, Heidelberg University Hospital, 69120, Heidelberg, Germany
- Center for Personalized Medicine (ZPM) Heidelberg, 69120, Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg partner site, Heidelberg, Germany
| | - Thorsten Stiewe
- Institute of Molecular Oncology, member of the German Center for Lung Research (DZL), Philipps-University, 35037, Marburg, Germany
| | - Albrecht Stenzinger
- Institute of Pathology, Heidelberg University Hospital, 69120, Heidelberg, Germany
- Center for Personalized Medicine (ZPM) Heidelberg, 69120, Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg partner site, Heidelberg, Germany
| | - Jan Budczies
- Institute of Pathology, Heidelberg University Hospital, 69120, Heidelberg, Germany.
- Center for Personalized Medicine (ZPM) Heidelberg, 69120, Heidelberg, Germany.
- German Cancer Consortium (DKTK), Heidelberg partner site, Heidelberg, Germany.
| |
Collapse
|
14
|
Integrative bioinformatic analysis of p53 and pathway alterations in two different lung cancer subtypes. Biochem Biophys Rep 2023; 33:101404. [DOI: 10.1016/j.bbrep.2022.101404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/13/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
|
15
|
Naeem A, Knoer G, Avantaggiati ML, Rodriguez O, Albanese C. Provocative non-canonical roles of p53 and AKT signaling: A role for Thymosin β4 in medulloblastoma. Int Immunopharmacol 2023; 116:109785. [PMID: 36720193 DOI: 10.1016/j.intimp.2023.109785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/30/2023]
Abstract
The PI3K/AKT and p53 pathways are key regulators of cancer cell survival and death, respectively. Contrary to their generally accepted roles, several lines of evidence, including ours in medulloblastoma, the most common childhood brain cancer, highlight non-canonical functions for both proteins and show a complex context-dependent dynamic behavior in determining cell fate. Interestingly, p53-mediated cell survival and AKT-mediated cell death can dominate in certain conditions, and these interchangeable physiological functions may potentially be manipulated for better clinical outcomes. This review article presents studies in which p53 and AKT behave contrary to their well-established functions. We discuss the factors and circumstances that may be involved in mediating these changes and the implications of these unique roles of p53 and AKT in devising therapeutic strategies. Lastly, based on our recent finding of Thymosin beta 4-mediated chemosensitivity via an AKT-p53 interaction in medulloblastoma cells, we also discuss the possible implications of Thymosin beta-4 in enhancing drug sensitivity in this deadly childhood disease.
Collapse
Affiliation(s)
- Aisha Naeem
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA; Health Research Governance Department, Ministry of Public Health, Qatar.
| | - Grace Knoer
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Maria Laura Avantaggiati
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Olga Rodriguez
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA; Center for Translational Imaging, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Chris Albanese
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA; Department of Radiology, Georgetown University Medical Center, Washington, DC 20057, USA; Center for Translational Imaging, Georgetown University Medical Center, Washington, DC 20057, USA.
| |
Collapse
|
16
|
A targetable MYBL2-ATAD2 axis governs cell proliferation in ovarian cancer. Cancer Gene Ther 2023; 30:192-208. [PMID: 36151333 DOI: 10.1038/s41417-022-00538-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/25/2022] [Accepted: 09/12/2022] [Indexed: 01/19/2023]
Abstract
The chromatin-modifying enzyme ATAD2 confers oncogenic competence and proliferative advantage in malignances. We previously identified ATAD2 as a marker and driver of cell proliferation in ovarian cancer (OC); however, the mechanisms whereby ATAD2 is regulated and involved in cell proliferation are still unclear. Here, we disclose that ATAD2 displays a classical G2/M gene signature, functioning to facilitate mitotic progression. ATAD2 ablation caused mitotic arrest and decreased the ability of OC cells to pass through nocodazole-arrested mitosis. ChIP-seq data analyses demonstrated that DREAM and MYBL2-MuvB (MMB), two switchable MuvB-based complexes, bind the CHR elements in the ATAD2 promoter, representing a typical feature and principle mechanism of the periodic regulation of G2/M genes. As a downstream target of MYBL2, ATAD2 deletion significantly impaired MYBL2-driven cell proliferation. Intriguingly, ATAD2 silencing also fed back to destabilize the MYBL2 protein. The significant coexpression of MYBL2 and ATAD2 at both the bulk tissue and single-cell levels highlights the existence of the MYBL2-ATAD2 signaling in OC patients. This signaling is activated during tumorigenesis and correlated with TP53 mutation, and its hyperactivation was found especially in high-grade serous and drug-resistant OCs. Disrupting this signaling by CRISPR/Cas9-mediated ATAD2 ablation inhibited the in vivo growth of OC in a subcutaneous tumor xenograft mouse model, while pharmacologically targeting this signaling with an ATAD2 inhibitor demonstrated high therapeutic efficacy in both drug-sensitive and drug-resistant OC cells. Collectively, we identified a novel MYBL2-ATAD2 proliferative signaling axis and highlighted its potential application in developing new therapeutic strategies, especially for high-grade serous and drug-resistant OCs.
Collapse
|
17
|
杨 明, 朱 旭, 沈 炀, 何 麒, 秦 远, 邵 轶, 袁 琳, 叶 和. [High expression of MYBL2 promotes progression and predicts a poor survival outcome of prostate cancer]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2022; 42:1109-1118. [PMID: 36073208 PMCID: PMC9458535 DOI: 10.12122/j.issn.1673-4254.2022.08.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To explore the correlation of MYB proto-oncogene like 2 (MYBL2) with biological behaviors and clinical prognosis of prostate cancer (PCa). METHODS We detected Mybl2 mRNA expression in 45 pairs of PCa and adjacent tissues using real-time quantitative PCR, and analyzed the correlation of high (23 cases) and low expression (22 cases) of Mybl2 with clinicopathological features and prognosis of the patients using nonparametric test, Kaplan-Meier survival analysis and univariate and multivariate Cox regression. The results were verified by analysis of the data from Cancer Genome Atlas (TCGA) microarray database, and the molecular pathways were identified by gene set enrichment analysis (GSEA). The CIBERPORT algorithm was used to identify the correlations between Mybl2 expression and tumor microenvironment of PCa. We also tested the effects of MYBL2 knockdown on proliferation and invasion of PCa cell lines using cell counting kit-8 and Transwell assays and observed the growth of PC3 cell xenograft with MYBL2 knockdown in nude mice and the expression levels of Ki-67 in the xenograft using immunohistochemistry. RESULTS Mybl2 expression was significantly elevated in PCa tissues in close correlation with Gleason score and clinical and pathological stage of the tumor (P < 0.01) but not with the patients' age. Kaplan-Meier analysis indicated a significant negative correlation of high Mybl2 expression with recurrence-free survival (P < 0.05), but not with the overall survival of the patients. The data from TCGA suggested that clinical and pathological stages were independent prognostic factors for recurrence-free survival, and our data indicated that clinical stage and Gleason score were independent prognostic factors of PCa (P < 0.05). GSEA suggested that Mybl2 expression was related with the pathways involving immune function, cell adhesion, and cytokine secretion; CIBERPORT analysis suggested the involvement of Mybl2 expression with memory B cells and resting mast cells (P < 0.05). In LNCaP and PC-3 cells, MYBL2 knockdown significantly inhibited cell proliferation and invasion (P < 0.05); in the tumor-bearing nude mice, the xenografts derived from PC-3 cells with MYBL2 knockdown exhibited a lowered mean tumor weight and positivity rate for Ki67 (P < 0.05). CONCLUSION Mybl2 is an oncogene related with multiple pathological indicators of PCa and can serve as a potential prognostic marker as well as a therapeutic target for patients with PCa.
Collapse
Affiliation(s)
- 明 杨
- 南京中医药大学第二附属医院泌尿外科,江苏 南京 210017Department of Urology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210017, China
| | - 旭东 朱
- 南京中医药大学第二附属医院泌尿外科,江苏 南京 210017Department of Urology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210017, China
| | - 炀 沈
- 南京中医药大学第二附属医院泌尿外科,江苏 南京 210017Department of Urology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210017, China
| | - 麒 何
- 南京中医药大学第二附属医院泌尿外科,江苏 南京 210017Department of Urology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210017, China
| | - 远 秦
- 南京中医药大学第二附属医院泌尿外科,江苏 南京 210017Department of Urology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210017, China
| | - 轶群 邵
- 上海中医药大学附属岳阳中西医结合医院泌尿外科,上海 200437Department of Urology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - 琳 袁
- 南京中医药大学附属医院泌尿外科,江苏 南京 210029Department of Urology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - 和松 叶
- 南京中医药大学第二附属医院泌尿外科,江苏 南京 210017Department of Urology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210017, China
| |
Collapse
|
18
|
Zhong F, Liu J, Gao C, Chen T, Li B. Downstream Regulatory Network of MYBL2 Mediating Its Oncogenic Role in Melanoma. Front Oncol 2022; 12:816070. [PMID: 35664780 PMCID: PMC9159763 DOI: 10.3389/fonc.2022.816070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 04/14/2022] [Indexed: 01/03/2023] Open
Abstract
The transcription factor MYBL2 is widely expressed in proliferating cells. Aberrant expression of MYBL2 contributes to tumor malignancy and is associated with poor patient prognosis. However, the downstream transcriptional network that mediates its oncogenic properties remains elusive. In the present study, we observed that MYBL2 was overexpressed in malignant and metastatic melanoma patient samples and that the high expression level of MYBL2 was significantly associated with poor prognosis. A loss-of-function study demonstrated that MYBL2 depletion significantly decreased cell proliferation and migration and prevented cell cycle progression. We also determined that MYBL2 promoted the formation of melanoma stem-like cell populations, indicating its potential as a therapeutic target for treating resistant melanoma. Mechanistically, we constructed an MYBL2 regulatory network in melanoma by integrating RNA-seq and ChIP-seq data. EPPK1, PDE3A, and FCGR2A were identified as three core target genes of MYBL2. Importantly, multivariate Cox regression and survival curve analysis revealed that PDE3A and EPPK1 were negatively correlated with melanoma patient survival; however, FCGR2A was positively correlated with patient survival. Overall, our findings elucidate an MYBL2 regulatory network related to cell proliferation and cancer development in melanoma, suggesting that MYBL2 may be potentially targeted for melanoma diagnosis and treatment.
Collapse
Affiliation(s)
- Feiliang Zhong
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, China
| | - Jia Liu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, China
| | - Chang Gao
- Life Science Institute, Jinzhou Medical University, Jinzhou, China
| | - Tingting Chen
- School of Basic Medicine, Guangdong Medical University, Dongguan, China
| | - Bo Li
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, China.,Life Science Institute, Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
19
|
Dratwa M, Wysoczanska B, Brankiewicz W, Stachowicz-Suhs M, Wietrzyk J, Matkowski R, Ekiert M, Szelachowska J, Maciejczyk A, Szajewski M, Baginski M, Bogunia-Kubik K. Relationship between Telomere Length, TERT Genetic Variability and TERT, TP53, SP1, MYC Gene Co-Expression in the Clinicopathological Profile of Breast Cancer. Int J Mol Sci 2022; 23:5164. [PMID: 35563554 PMCID: PMC9102200 DOI: 10.3390/ijms23095164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/15/2022] [Accepted: 05/04/2022] [Indexed: 12/11/2022] Open
Abstract
The molecular mechanisms of telomerase reverse transcriptase (TERT) upregulation in breast cancer (BC) are complex. We compared genetic variability within TERT and telomere length with the clinical data of patients with BC. Additionally, we assessed the expression of the TERT, MYC, TP53 and SP1 genes in BC patients and in BC organoids (3D cell cultures obtained from breast cancer tissues). We observed the same correlation in the blood of BC patients and in BC organoids between the expression of TERT and TP53. Only in BC patients was a correlation found between the expression of the TERT and MYC genes and between TP53 and MYC. We found associations between TERT genotypes (rs2735940 and rs10069690) and TP53 expression and telomere length. BC patients with the TT genotype rs2735940 have a shorter telomere length, but patients with A allele rs10069690 have a longer telomere length. BC patients with a short allele VNTR-MNS16A showed higher expression of the SP1 and had a longer telomere. Our results bring new insight into the regulation of TERT, MYC, TP53 and SP1 gene expression related to TERT genetic variability and telomere length. Our study also showed for the first time a similar relationship in the expression of the above genes in BC patients and in BC organoids. These findings suggest that TERT genetic variability, expression and telomere length might be useful biomarkers for BC, but their prognostic value may vary depending on the clinical parameters of BC patients and tumor aggressiveness.
Collapse
Affiliation(s)
- Marta Dratwa
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland;
| | - Barbara Wysoczanska
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland;
| | - Wioletta Brankiewicz
- Department of Pharmaceutical Technology and Biochemistry Faculty of Chemistry, Gdansk University of Technology, 80-233 Gdansk, Poland; (W.B.); (M.B.)
| | - Martyna Stachowicz-Suhs
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (M.S.-S.); (J.W.)
| | - Joanna Wietrzyk
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (M.S.-S.); (J.W.)
| | - Rafał Matkowski
- Breast Unit, Lower Silesian Oncology, Pulmonology and Hematology Center, 53-413 Wroclaw, Poland; (R.M.); (M.E.); (J.S.); (A.M.)
- Department of Oncology, Wroclaw Medical University, 53-413 Wroclaw, Poland
| | - Marcin Ekiert
- Breast Unit, Lower Silesian Oncology, Pulmonology and Hematology Center, 53-413 Wroclaw, Poland; (R.M.); (M.E.); (J.S.); (A.M.)
- Department of Oncology, Wroclaw Medical University, 53-413 Wroclaw, Poland
| | - Jolanta Szelachowska
- Breast Unit, Lower Silesian Oncology, Pulmonology and Hematology Center, 53-413 Wroclaw, Poland; (R.M.); (M.E.); (J.S.); (A.M.)
- Department of Oncology, Wroclaw Medical University, 53-413 Wroclaw, Poland
| | - Adam Maciejczyk
- Breast Unit, Lower Silesian Oncology, Pulmonology and Hematology Center, 53-413 Wroclaw, Poland; (R.M.); (M.E.); (J.S.); (A.M.)
- Department of Oncology, Wroclaw Medical University, 53-413 Wroclaw, Poland
| | - Mariusz Szajewski
- Department of Oncological Surgery, Gdynia Oncology Centre, 81-519 Gdynia, Poland;
- Division of Propaedeutics of Oncology, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Maciej Baginski
- Department of Pharmaceutical Technology and Biochemistry Faculty of Chemistry, Gdansk University of Technology, 80-233 Gdansk, Poland; (W.B.); (M.B.)
| | - Katarzyna Bogunia-Kubik
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland;
| |
Collapse
|
20
|
Miller JJ, Kwan K, Gaiddon C, Storr T. A role for bioinorganic chemistry in the reactivation of mutant p53 in cancer. J Biol Inorg Chem 2022; 27:393-403. [PMID: 35488931 DOI: 10.1007/s00775-022-01939-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/11/2022] [Indexed: 12/19/2022]
Abstract
Metal ion dysregulation has been implicated in a number of diseases from neurodegeneration to cancer. While defective metal ion transport mechanisms are known to cause specific diseases of genetic origin, the role of metal dysregulation in many diseases has yet to be elucidated due to the complicated function (both good and bad!) of metal ions in the body. A breakdown in metal ion speciation can manifest in several ways from increased reactive oxygen species (ROS) generation to an increase in protein misfolding and aggregation. In this review, we will discuss the role of Zn in the proper function of the p53 protein in cancer. The p53 protein plays a critical role in the prevention of genome mutations via initiation of apoptosis, DNA repair, cell cycle arrest, anti-angiogenesis, and senescence pathways to avoid propagation of damaged cells. p53 is the most frequently mutated protein in cancer and almost all cancers exhibit malfunction along the p53 pathway. Thus, there has been considerable effort dedicated to restoring normal p53 expression and activity to mutant p53. This includes understanding the relative populations of the Zn-bound and Zn-free p53 in wild-type and mutant forms, and the development of metallochaperones to re-populate the Zn binding site to restore mutant p53 activity. Parallels will be made to the development of multifunctional metal binding agents for modulating the aggregation of the amyloid-beta peptide in Alzheimer's Disease (AD).
Collapse
Affiliation(s)
- Jessica J Miller
- Department of Chemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Kalvin Kwan
- Department of Chemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Christian Gaiddon
- Inserm UMR_S1113, IRFAC, team Streinth, Strasbourg University, Strasbourg, France
| | - Tim Storr
- Department of Chemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada.
| |
Collapse
|
21
|
Spinelli R, Florese P, Parrillo L, Zatterale F, Longo M, D’Esposito V, Desiderio A, Nerstedt A, Gustafson B, Formisano P, Miele C, Raciti GA, Napoli R, Smith U, Beguinot F. ZMAT3 hypomethylation contributes to early senescence of preadipocytes from healthy first-degree relatives of type 2 diabetics. Aging Cell 2022; 21:e13557. [PMID: 35146866 PMCID: PMC8920444 DOI: 10.1111/acel.13557] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/16/2021] [Accepted: 01/09/2022] [Indexed: 12/18/2022] Open
Abstract
Senescence of adipose precursor cells (APC) impairs adipogenesis, contributes to the age-related subcutaneous adipose tissue (SAT) dysfunction, and increases risk of type 2 diabetes (T2D). First-degree relatives of T2D individuals (FDR) feature restricted adipogenesis, reflecting the detrimental effects of APC senescence earlier in life and rendering FDR more vulnerable to T2D. Epigenetics may contribute to these abnormalities but the underlying mechanisms remain unclear. In previous methylome comparison in APC from FDR and individuals with no diabetes familiarity (CTRL), ZMAT3 emerged as one of the top-ranked senescence-related genes featuring hypomethylation in FDR and associated with T2D risk. Here, we investigated whether and how DNA methylation changes at ZMAT3 promote early APC senescence. APC from FDR individuals revealed increases in multiple senescence markers compared to CTRL. Senescence in these cells was accompanied by ZMAT3 hypomethylation, which caused ZMAT3 upregulation. Demethylation at this gene in CTRL APC led to increased ZMAT3 expression and premature senescence, which were reverted by ZMAT3 siRNA. Furthermore, ZMAT3 overexpression in APC determined senescence and activation of the p53/p21 pathway, as observed in FDR APC. Adipogenesis was also inhibited in ZMAT3-overexpressing APC. In FDR APC, rescue of ZMAT3 methylation through senolytic exposure simultaneously downregulated ZMAT3 expression and improved adipogenesis. Interestingly, in human SAT, aging and T2D were associated with significantly increased expression of both ZMAT3 and the P53 senescence marker. Thus, DNA hypomethylation causes ZMAT3 upregulation in FDR APC accompanied by acquisition of the senescence phenotype and impaired adipogenesis, which may contribute to FDR predisposition for T2D.
Collapse
Affiliation(s)
- Rosa Spinelli
- Department of Translational Medical SciencesFederico II University of NaplesNaplesItaly
- URT Genomics of DiabetesInstitute of Experimental Endocrinology and OncologyNational Research CouncilNaplesItaly
| | - Pasqualina Florese
- Department of Translational Medical SciencesFederico II University of NaplesNaplesItaly
- URT Genomics of DiabetesInstitute of Experimental Endocrinology and OncologyNational Research CouncilNaplesItaly
| | - Luca Parrillo
- Department of Translational Medical SciencesFederico II University of NaplesNaplesItaly
- URT Genomics of DiabetesInstitute of Experimental Endocrinology and OncologyNational Research CouncilNaplesItaly
| | - Federica Zatterale
- Department of Translational Medical SciencesFederico II University of NaplesNaplesItaly
- URT Genomics of DiabetesInstitute of Experimental Endocrinology and OncologyNational Research CouncilNaplesItaly
| | - Michele Longo
- Department of Translational Medical SciencesFederico II University of NaplesNaplesItaly
- URT Genomics of DiabetesInstitute of Experimental Endocrinology and OncologyNational Research CouncilNaplesItaly
| | - Vittoria D’Esposito
- Department of Translational Medical SciencesFederico II University of NaplesNaplesItaly
- URT Genomics of DiabetesInstitute of Experimental Endocrinology and OncologyNational Research CouncilNaplesItaly
| | - Antonella Desiderio
- Department of Translational Medical SciencesFederico II University of NaplesNaplesItaly
- URT Genomics of DiabetesInstitute of Experimental Endocrinology and OncologyNational Research CouncilNaplesItaly
| | - Annika Nerstedt
- Lundberg Laboratory for Diabetes ResearchDepartment of Molecular and Clinical MedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Birgit Gustafson
- Lundberg Laboratory for Diabetes ResearchDepartment of Molecular and Clinical MedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Pietro Formisano
- Department of Translational Medical SciencesFederico II University of NaplesNaplesItaly
- URT Genomics of DiabetesInstitute of Experimental Endocrinology and OncologyNational Research CouncilNaplesItaly
| | - Claudia Miele
- Department of Translational Medical SciencesFederico II University of NaplesNaplesItaly
- URT Genomics of DiabetesInstitute of Experimental Endocrinology and OncologyNational Research CouncilNaplesItaly
| | - Gregory Alexander Raciti
- Department of Translational Medical SciencesFederico II University of NaplesNaplesItaly
- URT Genomics of DiabetesInstitute of Experimental Endocrinology and OncologyNational Research CouncilNaplesItaly
| | - Raffaele Napoli
- Department of Translational Medical SciencesFederico II University of NaplesNaplesItaly
| | - Ulf Smith
- Lundberg Laboratory for Diabetes ResearchDepartment of Molecular and Clinical MedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Francesco Beguinot
- Department of Translational Medical SciencesFederico II University of NaplesNaplesItaly
- URT Genomics of DiabetesInstitute of Experimental Endocrinology and OncologyNational Research CouncilNaplesItaly
| |
Collapse
|
22
|
Targeting Post-Translational Regulation of p53 in Colorectal Cancer by Exploiting Vulnerabilities in the p53-MDM2 Axis. Cancers (Basel) 2022; 14:cancers14010219. [PMID: 35008383 PMCID: PMC8750794 DOI: 10.3390/cancers14010219] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/23/2021] [Accepted: 12/30/2021] [Indexed: 02/05/2023] Open
Abstract
The role played by the key tumor suppressor gene p53 and the implications of p53 mutations for the development and progression of neoplasia continue to expand. This review focuses on colorectal cancer and the regulators of p53 expression and activity identified over the past decade. These newly recognized regulatory mechanisms include (1) direct regulation of mouse double minute 2 homolog (MDM2), an E3 ubiquitin-protein ligase; (2) modulation of the MDM2-p53 interaction; (3) MDM2-independent p53 degradation; and (4) inhibition of p53 nuclear translocation. We positioned these regulatory mechanisms in the context of p53 missense mutations, which not only evade canonical p53 degradation machinery but also exhibit gain-of-function phenotypes that enhance tumor survival and metastasis. Lastly, we discuss current and potential therapeutic strategies directed against p53 mutant-bearing tumors.
Collapse
|
23
|
Prognostic influence of microsatellite alterations of muscle-invasive bladder cancer treated with radical cystectomy. Urol Oncol 2021; 40:64.e9-64.e15. [PMID: 34538725 DOI: 10.1016/j.urolonc.2021.08.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/30/2021] [Accepted: 08/19/2021] [Indexed: 11/22/2022]
Abstract
OBJECTIVE To examine the prognostic effect of microsatellite instability (MSI) and loss of heterozygosity (LOH) on cancer-specific survival (CSS) in patients with muscle-invasive bladder cancer (MIBC). PATIENTS AND METHODS The liquid nitrogen-preserved specimens of 220 patients between March 2009 and December 2012 were analyzed for the presence of MSI and LOH in 12 loci (ACTBP2, D16S310, D16S476, D18S51, D4S243, D9S162, D9S171, D9S747, FGA, INF-α, MBP, MJD) using polymerase chain reaction. MSI was defined as MSI-stable, MSI-Low, or MSI-High if instability was detected in 0, 1, or 2 or more of the examined markers, respectively. The association between MSI-High and LOH and CSS was analyzed using uni- and multivariate analyses and the degree of agreement between tumor and urine samples were determined. RESULTS MSI were found in 1030 (39%) and 1148 (43.5%) in tumor and urine specimens, respectively (Kappa = 0.77). On the other hand, LOH was found in 163 (6.2%) of tumor tissues and 44 (1.7%) in urine specimens (Kappa = 0.34). Microsatellite alterations were significantly associated with worse CSS at 1- and 5-year in tumor tissue (95% and 83.7% vs. 65.8% and 3.5%, respectively; P < 0.001) and in urine sample (90% and 64% vs. 46.5% and 9.3%, respectively; P < 0.001). MSI and/or LOH was an independent predictor of CSS (HR: 9.8; 95%CI: 5.1-18.9; P < 0.001). CONCLUSIONS Microsatellite alterations were potentially an independent predictor of CSS in patients with MIBC. The agreement was good between tumor and urine MSI but weak for LOH.
Collapse
|
24
|
B-Myb participated in ionizing radiation-induced apoptosis and cell cycle arrest in human glioma cells. Biochem Biophys Res Commun 2021; 573:19-26. [PMID: 34375765 DOI: 10.1016/j.bbrc.2021.08.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 11/20/2022]
Abstract
As a common treatment of human glioma, ionizing radiation (IR) was reported to result in cell cycle arrest. However, the mechanisms underlying IR-induced abnormal cell cycle remain largely unclear. Here we found that IR caused an elevated expression of B-Myb and cell cycle-related proteins, as well as G2/M phase arrest in U251 cells instead of U87 cells. However, the knockdown of B-Myb by small interfering RNAs ameliorated the increasing of cell cycle-related proteins and G2/M phase arrest induced by IR. Further analysis demonstrated that decreased-B-Myb enhanced the sensitivity of U251 cells to IR. Moreover, the establishment of H1299 cell line proved that B-Myb expression was associated with the status of p53. Immunoprecipitation (IP) and chromatin immunoprecipitation (CHIP) assay results indicated that mutant p53 and SP1 regulated the expression of B-Myb via different mechanisms. This study not only elucidated the role of B-Myb in IR-induced cell cycle alternation, but also provided insight into mechanism of B-Myb expression.
Collapse
|
25
|
Isermann T, Şener ÖÇ, Stender A, Klemke L, Winkler N, Neesse A, Li J, Wegwitz F, Moll UM, Schulz-Heddergott R. Suppression of HSF1 activity by wildtype p53 creates a driving force for p53 loss-of-heterozygosity. Nat Commun 2021; 12:4019. [PMID: 34188043 PMCID: PMC8242083 DOI: 10.1038/s41467-021-24064-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 05/27/2021] [Indexed: 02/06/2023] Open
Abstract
The vast majority of human tumors with p53 mutations undergo loss of the remaining wildtype p53 allele (loss-of-heterozygosity, p53LOH). p53LOH has watershed significance in promoting tumor progression. However, driving forces for p53LOH are poorly understood. Here we identify the repressive WTp53-HSF1 axis as one driver of p53LOH. We find that the WTp53 allele in AOM/DSS chemically-induced colorectal tumors (CRC) of p53R248Q/+ mice retains partial activity and represses heat-shock factor 1 (HSF1), the master regulator of the proteotoxic stress response (HSR) that is ubiquitously activated in cancer. HSR is critical for stabilizing oncogenic proteins including mutp53. WTp53-retaining CRC tumors, tumor-derived organoids and human CRC cells all suppress the tumor-promoting HSF1 program. Mechanistically, retained WTp53 activates CDKN1A/p21, causing cell cycle inhibition and suppression of E2F target MLK3. MLK3 links cell cycle with the MAPK stress pathway to activate the HSR response. In p53R248Q/+ tumors WTp53 activation by constitutive stress represses MLK3, thereby weakening the MAPK-HSF1 response necessary for tumor survival. This creates selection pressure for p53LOH which eliminates the repressive WTp53-MAPK-HSF1 axis and unleashes tumor-promoting HSF1 functions, inducing mutp53 stabilization enabling invasion.
Collapse
Affiliation(s)
- Tamara Isermann
- Institute of Molecular Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Özge Çiçek Şener
- Institute of Molecular Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Adrian Stender
- Institute of Molecular Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Luisa Klemke
- Institute of Molecular Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Nadine Winkler
- Institute of Molecular Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Albrecht Neesse
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Göttingen, Göttingen, Germany
| | - Jinyu Li
- Department of Pathology, Stony Brook University, Stony Brook, NY, USA
| | - Florian Wegwitz
- Department of Gynecology and Obstetrics, University Medical Center Göttingen, Göttingen, Germany
| | - Ute M Moll
- Institute of Molecular Oncology, University Medical Center Göttingen, Göttingen, Germany
- Department of Pathology, Stony Brook University, Stony Brook, NY, USA
| | | |
Collapse
|
26
|
Timmerman DM, Remmers TL, Hillenius S, Looijenga LHJ. Mechanisms of TP53 Pathway Inactivation in Embryonic and Somatic Cells-Relevance for Understanding (Germ Cell) Tumorigenesis. Int J Mol Sci 2021; 22:ijms22105377. [PMID: 34065345 PMCID: PMC8161298 DOI: 10.3390/ijms22105377] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/14/2021] [Accepted: 05/15/2021] [Indexed: 01/10/2023] Open
Abstract
The P53 pathway is the most important cellular pathway to maintain genomic and cellular integrity, both in embryonic and non-embryonic cells. Stress signals induce its activation, initiating autophagy or cell cycle arrest to enable DNA repair. The persistence of these signals causes either senescence or apoptosis. Over 50% of all solid tumors harbor mutations in TP53 that inactivate the pathway. The remaining cancers are suggested to harbor mutations in genes that regulate the P53 pathway such as its inhibitors Mouse Double Minute 2 and 4 (MDM2 and MDM4, respectively). Many reviews have already been dedicated to P53, MDM2, and MDM4, while this review additionally focuses on the other factors that can deregulate P53 signaling. We discuss that P14ARF (ARF) functions as a negative regulator of MDM2, explaining the frequent loss of ARF detected in cancers. The long non-coding RNA Antisense Non-coding RNA in the INK4 Locus (ANRIL) is encoded on the same locus as ARF, inhibiting ARF expression, thus contributing to the process of tumorigenesis. Mutations in tripartite motif (TRIM) proteins deregulate P53 signaling through their ubiquitin ligase activity. Several microRNAs (miRNAs) inactivate the P53 pathway through inhibition of translation. CCCTC-binding factor (CTCF) maintains an open chromatin structure at the TP53 locus, explaining its inactivation of CTCF during tumorigenesis. P21, a downstream effector of P53, has been found to be deregulated in different tumor types. This review provides a comprehensive overview of these factors that are known to deregulate the P53 pathway in both somatic and embryonic cells, as well as their malignant counterparts (i.e., somatic and germ cell tumors). It provides insights into which aspects still need to be unraveled to grasp their contribution to tumorigenesis, putatively leading to novel targets for effective cancer therapies.
Collapse
|
27
|
Gencel-Augusto J, Lozano G. p53 tetramerization: at the center of the dominant-negative effect of mutant p53. Genes Dev 2021; 34:1128-1146. [PMID: 32873579 PMCID: PMC7462067 DOI: 10.1101/gad.340976.120] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this review, Gencel-Augusto and Lozano summarize the data on p53 mutants with a functional tetramerization domain that form mixed tetramers and in some cases have dominant-negative effects (DNE) that inactivate wild-type p53. They conclude that the DNE is mostly observed after DNA damage but fails in other contexts. The p53 tumor suppressor functions as a tetrameric transcription factor to regulate hundreds of genes—many in a tissue-specific manner. Missense mutations in cancers in the p53 DNA-binding and tetramerization domains cement the importance of these domains in tumor suppression. p53 mutants with a functional tetramerization domain form mixed tetramers, which in some cases have dominant-negative effects (DNE) that inactivate wild-type p53. DNA damage appears necessary but not sufficient for DNE, indicating that upstream signals impact DNE. Posttranslational modifications and protein–protein interactions alter p53 tetramerization affecting transcription, stability, and localization. These regulatory components limit the dominant-negative effects of mutant p53 on wild-type p53 activity. A deeper understanding of the molecular basis for DNE may drive development of drugs that release WT p53 and allow tumor suppression.
Collapse
Affiliation(s)
- Jovanka Gencel-Augusto
- Genetics and Epigenetics Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas 77030, USA.,Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Guillermina Lozano
- Genetics and Epigenetics Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas 77030, USA.,Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
28
|
Iness AN, Rubinsak L, Meas SJ, Chaoul J, Sayeed S, Pillappa R, Temkin SM, Dozmorov MG, Litovchick L. Oncogenic B-Myb Is Associated With Deregulation of the DREAM-Mediated Cell Cycle Gene Expression Program in High Grade Serous Ovarian Carcinoma Clinical Tumor Samples. Front Oncol 2021; 11:637193. [PMID: 33747961 PMCID: PMC7969987 DOI: 10.3389/fonc.2021.637193] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/08/2021] [Indexed: 12/21/2022] Open
Abstract
Cell cycle control drives cancer progression and treatment response in high grade serous ovarian carcinoma (HGSOC). MYBL2 (encoding B-Myb), an oncogene with prognostic significance in several cancers, is highly expressed in most HGSOC cases; however, the clinical significance of B-Myb in this disease has not been well-characterized. B-Myb is associated with cell proliferation through formation of the MMB (Myb and MuvB core) protein complex required for transcription of mitotic genes. High B-Myb expression disrupts the formation of another transcriptional cell cycle regulatory complex involving the MuvB core, DREAM (DP, RB-like, E2F, and MuvB), in human cell lines. DREAM coordinates cell cycle dependent gene expression by repressing over 800 cell cycle genes in G0/G1. Here, we take a bioinformatics approach to further evaluate the effect of B-Myb expression on DREAM target genes in HGSOC and validate our cellular model with clinical specimens. We show that MYBL2 is highly expressed in HGSOC and correlates with expression of DREAM and MMB target genes in both The Cancer Genome Atlas (TCGA) as well as independent analyses of HGSOC primary tumors (N = 52). High B-Myb expression was also associated with poor overall survival in the TCGA cohort and analysis by a DREAM target gene expression signature yielded a negative impact on survival. Together, our data support the conclusion that high expression of MYBL2 is associated with deregulation of DREAM/MMB-mediated cell cycle gene expression programs in HGSOC and may serve as a prognostic factor independent of its cell cycle role. This provides rationale for further, larger scale studies aimed to determine the clinical predictive value of the B-Myb gene expression signature for treatment response as well as patient outcomes.
Collapse
Affiliation(s)
- Audra N Iness
- Division of Hematology, Oncology and Palliative Care, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Lisa Rubinsak
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, VA, United States
| | - Steven J Meas
- School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Jessica Chaoul
- School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Sadia Sayeed
- Department of Pathology, Virginia Commonwealth University, Richmond, VA, United States.,Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Raghavendra Pillappa
- Department of Pathology, Virginia Commonwealth University, Richmond, VA, United States
| | - Sarah M Temkin
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, VA, United States
| | - Mikhail G Dozmorov
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States.,Department of Biostatistics, Virginia Commonwealth University, Richmond, VA, United States.,Department of Pathology, Virginia Commonwealth University, Richmond, VA, United States
| | - Larisa Litovchick
- Division of Hematology, Oncology and Palliative Care, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, United States.,Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
29
|
Yang CM, Kang MK, Jung WJ, Joo JS, Kim YJ, Choi Y, Kim HP. p53 expression confers sensitivity to 5-fluorouracil via distinct chromatin accessibility dynamics in human colorectal cancer. Oncol Lett 2021; 21:226. [PMID: 33613715 PMCID: PMC7856692 DOI: 10.3892/ol.2021.12487] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/03/2020] [Indexed: 12/12/2022] Open
Abstract
One of the most commonly used drugs in chemotherapy, 5-fluorouracil (5-FU) has been shown to be effective in only 10-15% of patients with colon cancer. Thus, studies of the mechanisms affecting 5-FU sensitivity in these patients are necessary. The tumor suppressor protein p53 is a transcription factor that serves important roles in cell apoptosis by regulating the cell cycle. It has also been characterized as a key factor influencing drug sensitivity. Furthermore, accessible chromatin is a hallmark of active DNA regulatory elements and functions as a crucial epigenetic factor regulating cancer mechanisms. The present study assessed the genetic regulatory landscape in colon cancer by performing RNA sequencing and Assay for Transposase-Accessible Chromatin sequencing, and investigated the effects of 5-FU on chromatin accessibility and gene expression. Notably, while treatment with 5-FU mediated global increases in chromatin accessibility, chromatin organization in several genomic regions differed depending on the expression status of p53. Since the occupancy of p53 does not overlap with accessible chromatin regions, the 5-FU-mediated changes in chromatin accessibility were not regulated by direct binding of p53. In the p53-expressing condition, the 5-FU-mediated accessible chromatin region was primarily associated with genes encoding cell death pathways. Additionally, 5-FU was revealed to induce open chromatin conformation at regions containing binding motifs for AP-1 family transcription factors, which may drive expression of apoptosis pathway genes. In conclusion, expression of p53 may confer 5-FU sensitivity by regulating chromatin accessibility of distinct genes associated with cell apoptosis in a transcription-independent manner.
Collapse
Affiliation(s)
- Chul Min Yang
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| | - Moo-Koo Kang
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| | - Woong-Jae Jung
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| | - Jung-Sik Joo
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| | - Yong-Jin Kim
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| | - Yeeun Choi
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| | - Hyoung-Pyo Kim
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea.,Department of Environmental Medical Biology, Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| |
Collapse
|
30
|
Garcia-Lezana T, Lopez-Canovas JL, Villanueva A. Signaling pathways in hepatocellular carcinoma. Adv Cancer Res 2020; 149:63-101. [PMID: 33579428 DOI: 10.1016/bs.acr.2020.10.002] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Despite the recent introduction of new effective systemic agents, the survival of patients with hepatocellular carcinoma (HCC) at advanced stages remains dismal. This underscores the need for new therapies, which has spurred extensive research on the identification of the main drivers of pathway de-regulation as a source of novel therapeutic targets. Frequently altered pathways in HCC involve growth factor receptors (e.g., VEGFR, FGFR, TGFA, EGFR, IGFR) and/or its cytoplasmic intermediates (e.g., PI3K-AKT-mTOR, RAF/ERK/MAPK) as well as key pathways in cell differentiation (e.g., Wnt/β-catenin, JAK/STAT, Hippo, Hedgehog, Notch). Somatic mutations, chromosomal aberrations and epigenetic changes are common mechanisms for pathway deregulation in HCC. Aberrant pathway activation has also been explored as a biomarker to predict response to specific therapies, but currently, these strategies are not implemented when deciding systemic therapies in HCC patients. Beyond the well-established molecular cascades, there are numerous emerging signaling pathways also deregulated in HCC (e.g., tumor microenvironment, non-coding RNA, intestinal microbiota), which have opened new avenues for therapeutic exploration.
Collapse
Affiliation(s)
- Teresa Garcia-Lezana
- Division of Liver Diseases, Liver Cancer Program, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Juan Luis Lopez-Canovas
- Department of Cell Biology, Physiology and Immunology, Maimonides Institute of Biomedical Research of Córdoba (IMIBIC), University of Córdoba, Córdoba, Spain
| | - Augusto Villanueva
- Division of Liver Diseases, Liver Cancer Program, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| |
Collapse
|
31
|
Donehower LA, Soussi T, Korkut A, Liu Y, Schultz A, Cardenas M, Li X, Babur O, Hsu TK, Lichtarge O, Weinstein JN, Akbani R, Wheeler DA. Integrated Analysis of TP53 Gene and Pathway Alterations in The Cancer Genome Atlas. Cell Rep 2020; 28:1370-1384.e5. [PMID: 31365877 DOI: 10.1016/j.celrep.2019.07.001] [Citation(s) in RCA: 371] [Impact Index Per Article: 74.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 05/09/2019] [Accepted: 06/27/2019] [Indexed: 12/14/2022] Open
Abstract
The TP53 tumor suppressor gene is frequently mutated in human cancers. An analysis of five data platforms in 10,225 patient samples from 32 cancers reported by The Cancer Genome Atlas (TCGA) enables comprehensive assessment of p53 pathway involvement in these cancers. More than 91% of TP53-mutant cancers exhibit second allele loss by mutation, chromosomal deletion, or copy-neutral loss of heterozygosity. TP53 mutations are associated with enhanced chromosomal instability, including increased amplification of oncogenes and deep deletion of tumor suppressor genes. Tumors with TP53 mutations differ from their non-mutated counterparts in RNA, miRNA, and protein expression patterns, with mutant TP53 tumors displaying enhanced expression of cell cycle progression genes and proteins. A mutant TP53 RNA expression signature shows significant correlation with reduced survival in 11 cancer types. Thus, TP53 mutation has profound effects on tumor cell genomic structure, expression, and clinical outlook.
Collapse
Affiliation(s)
- Lawrence A Donehower
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Thierry Soussi
- Sorbonne Université, UPMC University Paris 06, 75005 Paris, France; Department of Oncology-Pathology, Cancer Center Karolinska (CCK), Karolinska Institutet, Stockholm, Sweden; INSERM, U1138, Équipe 11, Centre de Recherche des Cordeliers, Paris, France
| | - Anil Korkut
- Department of Bioinformatics and Computational Biology, Division of Science, M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Yuexin Liu
- Department of Bioinformatics and Computational Biology, Division of Science, M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Andre Schultz
- Department of Bioinformatics and Computational Biology, Division of Science, M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Maria Cardenas
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xubin Li
- Department of Bioinformatics and Computational Biology, Division of Science, M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Ozgun Babur
- Computational Biology Program, Oregon Health and Science University, Portland, OR 97239, USA
| | - Teng-Kuei Hsu
- Department of Biochemistry & Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Olivier Lichtarge
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Computational and Integrative Biomedical Research Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - John N Weinstein
- Department of Bioinformatics and Computational Biology, Division of Science, M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Rehan Akbani
- Department of Bioinformatics and Computational Biology, Division of Science, M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - David A Wheeler
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
32
|
Jeong JH, Ryu JH. Broussoflavonol B from Broussonetia kazinoki Siebold Exerts Anti-Pancreatic Cancer Activity through Downregulating FoxM1. Molecules 2020; 25:E2328. [PMID: 32429421 PMCID: PMC7287790 DOI: 10.3390/molecules25102328] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/11/2020] [Accepted: 05/15/2020] [Indexed: 11/22/2022] Open
Abstract
Pancreatic cancer has a high mortality rate due to poor rates of early diagnosis. One tumor suppressor gene in particular, p53, is frequently mutated in pancreatic cancer, and mutations in p53 can inactivate normal wild type p53 activity and increase expression of transcription factor forkhead box M1 (FoxM1). Overexpression of FoxM1 accelerates cellular proliferation and cancer progression. Therefore, inhibition of FoxM1 represents a therapeutic strategy for treating pancreatic cancer. Broussoflavonol B (BF-B), isolated from the stem bark of Broussonetia kazinoki Siebold has previously been shown to inhibit the growth of breast cancer cells. This study aimed to investigate whether BF-B exhibits anti-pancreatic cancer activity and if so, identify the underlying mechanism. BF-B reduced cell proliferation, induced cell cycle arrest, and inhibited cell migration and invasion of human pancreatic cancer PANC-1 cells (p53 mutated). Interestingly, BF-B down-regulated FoxM1 expression at both the mRNA and protein level. It also suppressed the expression of FoxM1 downstream target genes, such as cyclin D1, cyclin B1, and survivin. Cell cycle analysis showed that BF-B induced the arrest of G0/G1 phase. BF-B reduced the phosphorylation of extracellular signal-regulated kinase ½ (ERK½) and expression of ERK½ downstream effector c-Myc, which regulates cell proliferation. Furthermore, BF-B inhibited cell migration and invasion, which are downstream functional properties of FoxM1. These results suggested that BF-B could repress pancreatic cancer cell proliferation by inactivation of the ERK/c-Myc/FoxM1 signaling pathway. Broussoflavonol B from Broussonetia kazinoki Siebold may represent a novel chemo-therapeutic agent for pancreatic cancer.
Collapse
Affiliation(s)
| | - Jae-Ha Ryu
- Research Institute of Pharmaceutical Sciences and College of Pharmacy, Sookmyung Women’s University, Seoul 04310, Korea;
| |
Collapse
|
33
|
Nakayama M, Hong CP, Oshima H, Sakai E, Kim SJ, Oshima M. Loss of wild-type p53 promotes mutant p53-driven metastasis through acquisition of survival and tumor-initiating properties. Nat Commun 2020; 11:2333. [PMID: 32393735 PMCID: PMC7214469 DOI: 10.1038/s41467-020-16245-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 04/23/2020] [Indexed: 02/07/2023] Open
Abstract
Missense-type mutant p53 plays a tumor-promoting role through gain-of-function (GOF) mechanism. In addition, the loss of wild-type TP53 through loss of heterozygosity (LOH) is widely found in cancer cells. However, malignant progression induced by cooperation of TP53 GOF mutation and LOH remains poorly understood. Here, we show that mouse intestinal tumors carrying Trp53 GOF mutation with LOH (AKTPM/LOH) are enriched in metastatic lesions when heterozygous Trp53 mutant cells (AKTP+/M) are transplanted. We show that Trp53 LOH is required for dormant cell survival and clonal expansion of cancer cells. Moreover, AKTPM/LOH cells show an increased in vivo tumor-initiating ability compared with AKTPNull and AKTP+/M cells. RNAseq analyses reveal that inflammatory and growth factor/MAPK pathways are specifically activated in AKTPM/LOH cells, while the stem cell signature is upregulated in both AKTPM/LOH and AKTPNull cells. These results indicate that TP53/Trp53 LOH promotes TP53/Trp53 GOF mutation-driven metastasis through the activation of distinct pathway combination.
Collapse
Affiliation(s)
- Mizuho Nakayama
- Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, 920-1192, Japan.,WPI Nano Life Science Institute, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Chang Pyo Hong
- Theragen Etex Bio Institute, Suwon, 16229, Republic of Korea
| | - Hiroko Oshima
- Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, 920-1192, Japan.,WPI Nano Life Science Institute, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Eri Sakai
- Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Seong-Jin Kim
- Theragen Etex Bio Institute, Suwon, 16229, Republic of Korea.,Precision Medicine Research Center, Advanced Institute of Convergence Technology and Department of Transdisciplinary Studies, Seoul National University, Suwon, 16229, Republic of Korea
| | - Masanobu Oshima
- Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, 920-1192, Japan. .,WPI Nano Life Science Institute, Kanazawa University, Kanazawa, 920-1192, Japan.
| |
Collapse
|
34
|
Schomberg J. Identification of Targetable Pathways in Oral Cancer Patients via Random Forest and Chemical Informatics. Cancer Inform 2019; 18:1176935119889911. [PMID: 31819345 PMCID: PMC6883365 DOI: 10.1177/1176935119889911] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 10/31/2019] [Indexed: 02/06/2023] Open
Abstract
Treatment of head and neck cancer has been slow to change with epidermal growth
factor receptor (EGFR) inhibitors, PD1 inhibitors, and
taxane-/plant-alkaloid-derived chemotherapies being the only therapies approved
by the U.S. Food and Drug Administration (FDA) in the last 10 years for the
treatment of head and neck cancers. Head and neck cancer is a relatively rare
cancer compared to breast or lung cancers. However, it is possible that existing
therapies for more common solid tumors or for the treatment of other diseases
could also prove effective against oral cancers. Many therapies have molecular
targets that could be appropriate in oral cancer as well as the cancer in which
the drug gained initial FDA approval. Also, there may be targets in oral cancer
for which existing FDA-approved drugs could be applied. This study describes
informatics methods that use machine learning to identify influential gene
targets in patients receiving platinum-based chemotherapy, non-platinum-based
chemotherapy, and genes influential in both groups of patients. This analysis
yielded 6 small molecules that had a high Tanimoto similarity (>50%) to
ligands binding genes shown to be highly influential in determining treatment
response in oral cancer patients. In addition to influencing treatment response,
these genes were also found to act as gene hubs connected to more than 100 other
genes in pathways enriched with genes determined to be influential in treatment
response by a random forest classifier with 20 000 trees trying 320 variables at
each tree node. This analysis validates the use of multiple informatics methods
to identify small molecules that have a greater likelihood of efficacy in a
given cancer of interest.
Collapse
Affiliation(s)
- John Schomberg
- CHOC Children's, Orange, CA, USA.,School of Population Health Science, University of California Irvine, Irvine, CA, USA.,Afecta Pharmaceuticals, Irvine, CA, USA
| |
Collapse
|
35
|
Ghaleb A, Yallowitz A, Marchenko N. Irradiation induces p53 loss of heterozygosity in breast cancer expressing mutant p53. Commun Biol 2019; 2:436. [PMID: 31799437 PMCID: PMC6881331 DOI: 10.1038/s42003-019-0669-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 10/16/2019] [Indexed: 01/10/2023] Open
Abstract
Mutations in one allele of the TP53 gene in cancer early stages are frequently followed by the loss of the remaining wild-type allele (LOH) during tumor progression. However, the clinical impact of TP53 mutations and p53LOH, especially in the context of genotoxic modalities, remains unclear. Using MMTV;ErbB2 model carrying a heterozygous R172H p53 mutation, we report a previously unidentified oncogenic activity of mutant p53 (mutp53): the exacerbation of p53LOH after irradiation. We show that wild-type p53 allele is partially transcriptionally competent and enables the maintenance of the genomic integrity under normal conditions in mutp53 heterozygous cells. In heterozygous cells γ-irradiation promotes mutp53 stabilization, which suppresses DNA repair and the cell cycle checkpoint allowing cell cycle progression in the presence of inefficiently repaired DNA, consequently increases genomic instability leading to p53LOH. Hence, in mutp53 heterozygous cells, irradiation facilitates the selective pressure for p53LOH that enhances cancer cell fitness and provides the genetic plasticity for acquiring metastatic properties.
Collapse
Affiliation(s)
- Amr Ghaleb
- Department of Pathology, Stony Brook University, Stony Brook, NY 11794-8691 USA
| | - Alisha Yallowitz
- Department of Pathology, Stony Brook University, Stony Brook, NY 11794-8691 USA
- Weill Cornell Medicine, 1300 York Avenue, LC-902, New York, NY 10065 USA
| | - Natalia Marchenko
- Department of Pathology, Stony Brook University, Stony Brook, NY 11794-8691 USA
| |
Collapse
|
36
|
Datta J, Da Silva EM, Kandoth C, Song T, Russo AE, Hernandez JM, Taylor BS, Janjigian YY, Tang LH, Solit DB, Strong VE. Poor survival after resection of early gastric cancer: extremes of survivorship analysis reveal distinct genomic profile. Br J Surg 2019; 107:14-19. [PMID: 31763684 DOI: 10.1002/bjs.11443] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/23/2019] [Accepted: 11/01/2019] [Indexed: 11/06/2022]
Abstract
A subset of patients with early gastric cancer demonstrate early recurrence and poor survival despite margin-negative resection. This study used an extremes-of-survivorship approach to identify an association between TP53 hotspot mutations co-occurring with loss of heterozygosity and unexpectedly poor survival in early gastric cancer. This distinct genomic profile may be a novel biomarker of poor survival in patients with completely resected early gastric cancer, and warrants large-scale validation. Promising, validation needed.
Collapse
Affiliation(s)
- J Datta
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, USA.,Department of Surgery, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Miami, Florida, USA
| | - E M Da Silva
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, USA
| | - C Kandoth
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, USA
| | - T Song
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, USA
| | - A E Russo
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, USA
| | - J M Hernandez
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, USA.,Thoracic and Oncologic Surgery Branch, National Institutes of Health, Bethesda, Maryland, USA
| | - B S Taylor
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Y Y Janjigian
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, USA
| | - L H Tang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, USA
| | - D B Solit
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, USA.,Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, USA
| | - V E Strong
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, USA
| |
Collapse
|
37
|
VAN Roekel EH, Dugué PA, Jung CH, Joo JE, Makalic E, Wong EEM, English DR, Southey MC, Giles GG, Lynch BM, Milne RL. Physical Activity, Television Viewing Time, and DNA Methylation in Peripheral Blood. Med Sci Sports Exerc 2019; 51:490-498. [PMID: 30376510 DOI: 10.1249/mss.0000000000001827] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Physical activity may affect health via DNA methylation. The epigenetic influences of sedentary behaviors such as television viewing are unknown. We performed a genomewide study of DNA methylation in peripheral blood in relation to physical activity and television viewing time. METHODS DNA methylation was measured using the Illumina Infinium HumanMethylation450K BeadChip array in blood samples collected at baseline (N = 5513) and follow-up (N = 1249) from participants in the Melbourne Collaborative Cohort Study. At baseline, times per week of leisure-time physical activity were self-reported. At follow-up, the International Physical Activity Questionnaire was used to assess MET-hours per week of total and leisure-time physical activity and hours per day of television viewing time. Linear mixed models were used to assess associations between physical activity and television viewing measures and DNA methylation at individual CpG sites, adjusted for potential confounders and batch effects. RESULTS At follow-up, total physical activity was associated with DNA methylation at cg10266336 (P = 6.0 × 10), annotated to the SAA2 gene. Weaker evidence of associations (P < 1.0 × 10) were observed for an additional 14 CpG sites with total physical activity, for 7 CpG sites with leisure-time physical activity, and for 9 CpG sites with television viewing time. Changes in leisure-time physical activity between baseline and follow-up were associated with methylation changes (P < 0.05) at four of the seven CpG sites with weaker evidence of cross-sectional associations with leisure-time physical activity. CONCLUSION Physical activity and television viewing may be associated with blood DNA methylation, a potential pathway to chronic disease development. Further research using accelerometer data and larger sample sizes is warranted.
Collapse
Affiliation(s)
- Eline H VAN Roekel
- Cancer Epidemiology and Intelligence Division, Cancer Council Victoria, Melbourne, AUSTRALIA.,Department of Epidemiology, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, THE NETHERLANDS
| | - Pierre-Antoine Dugué
- Cancer Epidemiology and Intelligence Division, Cancer Council Victoria, Melbourne, AUSTRALIA.,Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, AUSTRALIA
| | - Chol-Hee Jung
- Melbourne Bioinformatics, The University of Melbourne, Parkville, AUSTRALIA
| | - Jihoon E Joo
- Genetic Epidemiology Laboratory, Department of Clinical Pathology, The University of Melbourne, Parkville, AUSTRALIA
| | - Enes Makalic
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, AUSTRALIA
| | - E E Ming Wong
- Genetic Epidemiology Laboratory, Department of Clinical Pathology, The University of Melbourne, Parkville, AUSTRALIA.,Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, AUSTRALIA
| | - Dallas R English
- Cancer Epidemiology and Intelligence Division, Cancer Council Victoria, Melbourne, AUSTRALIA.,Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, AUSTRALIA
| | - Melissa C Southey
- Genetic Epidemiology Laboratory, Department of Clinical Pathology, The University of Melbourne, Parkville, AUSTRALIA.,Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, AUSTRALIA
| | - Graham G Giles
- Cancer Epidemiology and Intelligence Division, Cancer Council Victoria, Melbourne, AUSTRALIA.,Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, AUSTRALIA
| | - Brigid M Lynch
- Cancer Epidemiology and Intelligence Division, Cancer Council Victoria, Melbourne, AUSTRALIA.,Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, AUSTRALIA.,Physical Activity Laboratory, Baker Heart and Diabetes Institute, Melbourne, AUSTRALIA
| | - Roger L Milne
- Cancer Epidemiology and Intelligence Division, Cancer Council Victoria, Melbourne, AUSTRALIA.,Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, AUSTRALIA
| |
Collapse
|
38
|
Adduri RSR, George SA, Kavadipula P, Bashyam MD. SMARCD1
is a transcriptional target of specific non‐hotspot mutant p53 forms. J Cell Physiol 2019; 235:4559-4570. [DOI: 10.1002/jcp.29332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 09/30/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Raju S. R. Adduri
- Laboratory of Molecular Oncology Centre for DNA Fingerprinting and Diagnostics Hyderabad Telangana India
- Graduate Studies Manipal Academy of Higher Education Manipal Karnataka India
| | - Sara A. George
- Laboratory of Molecular Oncology Centre for DNA Fingerprinting and Diagnostics Hyderabad Telangana India
- Graduate Studies Regional Centre for Biotechnology Faridabad Haryana India
| | - Padmavathi Kavadipula
- Laboratory of Molecular Oncology Centre for DNA Fingerprinting and Diagnostics Hyderabad Telangana India
| | - Murali D. Bashyam
- Laboratory of Molecular Oncology Centre for DNA Fingerprinting and Diagnostics Hyderabad Telangana India
- Adjunct Faculty Regional Centre for Biotechnology Faridabad Haryana India
| |
Collapse
|
39
|
Liu X, Feng D, Huo X, Xiao X, Chen Z. Association of intron microsatellite status and exon mutational profiles of TP53 in human colorectal cancer. Exp Ther Med 2019; 18:4287-4294. [PMID: 31777536 PMCID: PMC6862561 DOI: 10.3892/etm.2019.8095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 09/10/2019] [Indexed: 01/10/2023] Open
Abstract
Microsatellite instability (MSI) and loss of heterozygosity (LOH), which cause genomic instability, contribute to cancer pathogenesis. However, only few studies have evaluated the association of a single microsatellite locus of the TP53 gene with the mutation spectra of TP53 exons. A total of 256 patients with colorectal cancer were enrolled in the present study. MSI/LOH alterations of a microsatellite in the TP53 intron (TP53ALU) were assessed via short tandem repeat scanning. The exon mutation profile was evaluated by direct sequencing. The mutation rate of TP53 exons was significantly higher in tumors with LOH alterations of TP53 introns compared with those in tumors with a microsatellite-stable status in the TP53 intron (P=0.0047). TNM stage II was significantly more frequent in MSI vs. LOH or MSS of the TP53 intron (P=0.027 and P=0.048, respectively). Thus, microsatellite alterations may be valuable predictors of TP53 exon mutation and the TNM stage of colorectal cancers.
Collapse
Affiliation(s)
- Xin Liu
- Department of Medical Genetics, School of Basic Medical Sciences, Capital Medical University, Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing 100069, P.R. China
| | - Dandan Feng
- Department of Medical Genetics, School of Basic Medical Sciences, Capital Medical University, Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing 100069, P.R. China
| | - Xueyun Huo
- Department of Medical Genetics, School of Basic Medical Sciences, Capital Medical University, Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing 100069, P.R. China
| | - Xiaoqin Xiao
- Department of Medical Genetics, School of Basic Medical Sciences, Capital Medical University, Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing 100069, P.R. China
| | - Zhenwen Chen
- Department of Medical Genetics, School of Basic Medical Sciences, Capital Medical University, Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing 100069, P.R. China
| |
Collapse
|
40
|
Trp53 null and R270H mutant alleles have comparable effects in regulating invasion, metastasis, and gene expression in mouse colon tumorigenesis. J Transl Med 2019; 99:1454-1469. [PMID: 31148594 PMCID: PMC6759392 DOI: 10.1038/s41374-019-0269-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/22/2019] [Accepted: 04/07/2019] [Indexed: 12/25/2022] Open
Abstract
Somatic APC (adenomatous polyposis coli), TP53, KRAS mutations are present in roughly 80%, 60%, and 40%, respectively, of human colorectal cancers (CRCs). Most TP53 mutant alleles in CRCs encode missense mutant proteins with loss-of-function (LOF) of p53's transcriptional activity and dominant negative (DN) effects on wild-type p53 function. Missense mutant p53 proteins have been reported to exert gain-of-function (GOF) effects in cancer. We compared the phenotypic effects of the common human cancer-associated TP53 R273H missense mutation to p53 null status in a genetically engineered mouse CRC model. Inactivation of one allele of Apc together with activation of a Kras mutant allele in mouse colon epithelium instigated development of serrated and hyperplastic epithelium and adenomas (AK mice). Addition of a Trp53R270H or Trp53null mutant allele to the model (AKP mice) led to markedly shortened survival and increased tumor burden relative to that of AK mice, including adenocarcinomas in AKP mice. Comparable life span and tumor burden were seen in AKP mice carrying Trp53R270H or Trp53null alleles, along with similar frequencies of spontaneous metastasis to lymph nodes, lung, and liver. The fraction of adenocarcinomas with submucosa or deeper invasion was higher in AKP270/fl mice than in AKPfl/fl mice, but the incidence of adenocarcinomas per mouse did not differ significantly between AKPfl/fl and AKP270/fl mice. In line with their comparable biological behaviors, mouse primary tumors and tumor-derived organoids with the Trp53R270H or Trp53null alleles had highly similar gene expression profiles. Human CRCs with TP53 R273 missense mutant or null alleles also had essentially homogeneous gene expression patterns. Our findings indicate the R270H/R273H p53 mutant protein does not manifest definite GOF biological effects in mouse and human CRCs, suggesting possible GOF effects of mutant p53 in cancer phenotypes are likely allele-specific and/or context-dependent.
Collapse
|
41
|
Laaniste L, Srivastava PK, Stylianou J, Syed N, Cases-Cunillera S, Shkura K, Zeng Q, Rackham OJL, Langley SR, Delahaye-Duriez A, O'Neill K, Williams M, Becker A, Roncaroli F, Petretto E, Johnson MR. Integrated systems-genetic analyses reveal a network target for delaying glioma progression. Ann Clin Transl Neurol 2019; 6:1616-1638. [PMID: 31420939 PMCID: PMC6764637 DOI: 10.1002/acn3.50850] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 12/12/2022] Open
Abstract
Objective To identify a convergent, multitarget proliferation characteristic for astrocytoma transformation that could be targeted for therapy discovery. Methods Using an integrated functional genomics approach, we prioritized networks associated with astrocytoma progression using the following criteria: differential co‐expression between grade II and grade III IDH1‐mutated and 1p/19q euploid astrocytomas, preferential enrichment for genetic risk to cancer, association with patient survival and sample‐level genomic features. Drugs targeting the identified multitarget network characteristic for astrocytoma transformation were computationally predicted using drug transcriptional perturbation data and validated using primary human astrocytoma cells. Results A single network, M2, consisting of 177 genes, was associated with glioma progression on the basis of the above criteria. Functionally, M2 encoded physically interacting proteins regulating cell cycle processes and analysis of genome‐wide gene‐regulatory interactions using mutual information and DNA–protein interactions revealed the known regulators of cell cycle processes FoxM1, B‐Myb, and E2F2 as key regulators of M2. These results suggest functional disruption of M2 via gene mutation or altered expression as a convergent pathway regulating astrocytoma transformation. By considering M2 as a multitarget drug target regulating astrocytoma transformation, we identified several drugs that are predicted to restore M2 expression in anaplastic astrocytoma toward its low‐grade profile and of these, we validated the known antiproliferative drug resveratrol as down‐regulating multiple nodes of M2 including at nanomolar concentrations achievable in human cerebrospinal fluid by oral dosing. Interpretation Our results identify M2 as a multitarget network characteristic for astrocytoma progression and encourage M2‐based drug screening to identify new compounds for preventing glioma transformation.
Collapse
Affiliation(s)
- Liisi Laaniste
- Division of Brain Sciences, Imperial College Faculty of Medicine, London, UK
| | | | - Julianna Stylianou
- John Fulcher Neuro-oncology Laboratory, Division of Brain Sciences, Imperial College Faculty of Medicine, London, UK
| | - Nelofer Syed
- John Fulcher Neuro-oncology Laboratory, Division of Brain Sciences, Imperial College Faculty of Medicine, London, UK
| | | | - Kirill Shkura
- Division of Brain Sciences, Imperial College Faculty of Medicine, London, UK
| | - Qingyu Zeng
- John Fulcher Neuro-oncology Laboratory, Division of Brain Sciences, Imperial College Faculty of Medicine, London, UK
| | | | - Sarah R Langley
- Division of Brain Sciences, Imperial College Faculty of Medicine, London, UK.,Duke-NUS Medical School, Singapore
| | - Andree Delahaye-Duriez
- Division of Brain Sciences, Imperial College Faculty of Medicine, London, UK.,PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, France
| | - Kevin O'Neill
- Department of Neurosurgery, Imperial College Healthcare NHS Trust, London, UK
| | - Matthew Williams
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
| | - Albert Becker
- Department of Neuropathology, University of Bonn Medical Centre, Bonn, Germany
| | - Federico Roncaroli
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Enrico Petretto
- Duke-NUS Medical School, Singapore.,MRC London Institute of Medical Sciences (LMS), Imperial College London, London, UK
| | - Michael R Johnson
- Division of Brain Sciences, Imperial College Faculty of Medicine, London, UK
| |
Collapse
|
42
|
Li N, Cui T, Guo W, Wang D, Mao L. MiR-155-5p accelerates the metastasis of cervical cancer cell via targeting TP53INP1. Onco Targets Ther 2019; 12:3181-3196. [PMID: 31118671 PMCID: PMC6500876 DOI: 10.2147/ott.s193097] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 03/13/2019] [Indexed: 12/27/2022] Open
Abstract
Background: The dysregulation of microRNAs has been implicated in the progression of different malignancies. Herein, we sought to identify the precise roles of miR-155-5p in the progression of cervical cancer. Materials and methods: The expressions of miR-155-5p in cervical carcinoma cells and clinical tissues were assessed using qRT-PCR analysis. The functions of miR-155-5p on the growth of cervical cancer cell were investigated using MTT and colony formation. The Transwell and wound closure assays were selected to explore the influence of miR-155-5p on the invasion and migration of cervical cancer cell. The effect of miR-155-5p on cervical carcinoma cell growth and metastasis in vivo was investigated using xenograft model and experimental lung metastasis model. Bioinformatics analysis and luciferase reporter assay were applied to identify that tumor protein p53-inducible nuclear protein 1 (TP53INP1) was the target of miR-155-5p. Results: MiR-155-5p was significantly upregulated in cervical cancer tissue than that in control normal tissue. Downexpression of miR-155-5p decreased the growth, migration as well as invasiveness abilities of cervical cancer cell in vitro whereas overregulation of miR-155-5p caused the opposite outcomes. In addition, the in vivo mice xenograft model suggested that downexpression of miR-155-5p restrained the progression of cervical cancer cell whereas overexpression of miR-155-5p caused opposite outcomes. Furthermore, we revealed that TP53INP1 was the target of miR-155-5p and the level of TP53INP1 was inversely associated with miR-155-5p level in cervical carcinoma. Furthermore, TP53INP1 knockdown mimicked the influence of miR-155-5p on cervical cancer proliferation, migration and invasion phenotypes. Finally, overexpression of TP53INP1 impaired the promote effect of miR-155-5p on cervical cancer cell and downregulation of TP53INP1 counteracted the suppressive impact of miR-155-5p on the aggressiveness of cervical cancer cell. Conclusion: Our study indicated that miR-155-5p regulated the development of cervical cancer cell by regulating the expression of TP53INP1.
Collapse
Affiliation(s)
- Ning Li
- Obstetrical Department, Binzhou Central Hospital, Binzhou, Shandong 251700, People's Republic of China
| | - Tao Cui
- Anesthesiology Department, Huimin County Maternal and Child Health Hospital, Binzhou, Shandong, 251700, People's Republic of China
| | - Wenling Guo
- Obstetrical Department, Binzhou Central Hospital, Binzhou, Shandong 251700, People's Republic of China
| | - Dianwei Wang
- Obstetrical Department, Binzhou Central Hospital, Binzhou, Shandong 251700, People's Republic of China
| | - Li Mao
- Gynecology Department, Binzhou Central Hospital, Binzhou, Shandong 251700, People's Republic of China
| |
Collapse
|
43
|
Fernandez AGL, Crescenzi B, Pierini V, Di Battista V, Barba G, Pellanera F, Di Giacomo D, Roti G, Piazza R, Adelman ER, Figueroa ME, Mecucci C. A distinct epigenetic program underlies the 1;7 translocation in myelodysplastic syndromes. Leukemia 2019; 33:2481-2494. [PMID: 30923319 DOI: 10.1038/s41375-019-0433-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/23/2018] [Accepted: 02/08/2019] [Indexed: 02/06/2023]
Abstract
The unbalanced translocation dic(1;7)(q10;p10) in myelodysplastic syndromes (MDS) is originated by centromeric juxtaposition resulting into 1q trisomy and 7q monosomy. More than half of cases arise after chemo/radio-therapy. To date, given the absence of genes within the centromeric regions, no specific molecular events have been identified in this cytogenetic subgroup. We performed the first comprehensive genetic and epigenetic analysis of MDS with dic(1;7)(q10;p10) compared to normal controls and therapy-related myeloid neoplasms (t-MNs). RNA-seq showed a unique downregulated signature in dic(1;7) cases, affecting more than 80% of differentially expressed genes. As revealed by pathway and gene ontology analyses, downregulation of ATP-binding cassette (ABC) transporters and lipid-related genes and upregulation of p53 signaling were the most relevant biological features of dic(1;7). Epigenetic supervised analysis revealed hypermethylation at intronic enhancers in the dicentric subgroup, in which low expression levels of enhancer putative target genes accounted for around 35% of the downregulated signature. Enrichment of Krüppel-like transcription factor binding sites emerged at enhancers. Furthermore, a specific hypermethylated pattern on 1q was found to underlie the hypo-expression of more than 50% of 1q-deregulated genes, despite trisomy. In summary, dic(1;7) in MDS establishes a specific transcriptional program driven by a unique epigenomic signature.
Collapse
Affiliation(s)
| | - Barbara Crescenzi
- Department of Medicine, Hematology and Bone Marrow Transplantation Unit, University of Perugia, Perugia, Italy
| | - Valentina Pierini
- Department of Medicine, Hematology and Bone Marrow Transplantation Unit, University of Perugia, Perugia, Italy
| | - Valeria Di Battista
- Department of Medicine, Hematology and Bone Marrow Transplantation Unit, University of Perugia, Perugia, Italy
| | - Gianluca Barba
- Department of Medicine, Hematology and Bone Marrow Transplantation Unit, University of Perugia, Perugia, Italy
| | - Fabrizia Pellanera
- Department of Medicine, Hematology and Bone Marrow Transplantation Unit, University of Perugia, Perugia, Italy
| | - Danika Di Giacomo
- Department of Medicine, Hematology and Bone Marrow Transplantation Unit, University of Perugia, Perugia, Italy
| | | | - Rocco Piazza
- Hematology, School of Medicine and Surgery, University of Milano Bicocca, Milano, Italy
| | - Emmalee R Adelman
- Sylvester Comprehensive Cancer Center and Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Maria E Figueroa
- Sylvester Comprehensive Cancer Center and Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Cristina Mecucci
- Department of Medicine, Hematology and Bone Marrow Transplantation Unit, University of Perugia, Perugia, Italy.
| |
Collapse
|
44
|
Wu YM, Cieślik M, Lonigro RJ, Vats P, Reimers MA, Cao X, Ning Y, Wang L, Kunju LP, de Sarkar N, Heath EI, Chou J, Feng FY, Nelson PS, de Bono JS, Zou W, Montgomery B, Alva A, Robinson DR, Chinnaiyan AM. Inactivation of CDK12 Delineates a Distinct Immunogenic Class of Advanced Prostate Cancer. Cell 2019; 173:1770-1782.e14. [PMID: 29906450 DOI: 10.1016/j.cell.2018.04.034] [Citation(s) in RCA: 423] [Impact Index Per Article: 70.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 02/23/2018] [Accepted: 04/24/2018] [Indexed: 12/15/2022]
Abstract
Using integrative genomic analysis of 360 metastatic castration-resistant prostate cancer (mCRPC) samples, we identified a novel subtype of prostate cancer typified by biallelic loss of CDK12 that is mutually exclusive with tumors driven by DNA repair deficiency, ETS fusions, and SPOP mutations. CDK12 loss is enriched in mCRPC relative to clinically localized disease and characterized by focal tandem duplications (FTDs) that lead to increased gene fusions and marked differential gene expression. FTDs associated with CDK12 loss result in highly recurrent gains at loci of genes involved in the cell cycle and DNA replication. CDK12 mutant cases are baseline diploid and do not exhibit DNA mutational signatures linked to defects in homologous recombination. CDK12 mutant cases are associated with elevated neoantigen burden ensuing from fusion-induced chimeric open reading frames and increased tumor T cell infiltration/clonal expansion. CDK12 inactivation thereby defines a distinct class of mCRPC that may benefit from immune checkpoint immunotherapy.
Collapse
Affiliation(s)
- Yi-Mi Wu
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Marcin Cieślik
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Robert J Lonigro
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Pankaj Vats
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Melissa A Reimers
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xuhong Cao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yu Ning
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lisha Wang
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lakshmi P Kunju
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Navonil de Sarkar
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Elisabeth I Heath
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, MI 48201, USA
| | - Jonathan Chou
- Department of Medicine, University of California at San Francisco, San Francisco, CA 94143, USA
| | - Felix Y Feng
- Department of Medicine, University of California at San Francisco, San Francisco, CA 94143, USA; Department of Radiation Oncology, University of California at San Francisco, San Francisco, CA 94143, USA; Department of Urology, University of California at San Francisco, San Francisco, CA 94143, USA; Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA 94143, USA
| | - Peter S Nelson
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Department of Medicine, University of Washington, Seattle, WA 98109, USA; Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Johann S de Bono
- Cancer Biomarkers Team, Division of Clinical Studies, The Institute of Cancer Research, London SM2 5NG, UK; Prostate Cancer Targeted Therapy Group and Drug Development Unit, The Royal Marsden NHS Foundation Trust, London SM2 5NG, UK
| | - Weiping Zou
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Bruce Montgomery
- Department of Medicine, University of Washington, Seattle, WA 98109, USA; Veterans Affairs Puget Sound Health Care System, University of Washington, Seattle, WA 98109, USA
| | - Ajjai Alva
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Dan R Robinson
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Arul M Chinnaiyan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA; Department of Urology, University of Michigan, Ann Arbor, MI 48109, USA; Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
45
|
Catherwood MA, Gonzalez D, Donaldson D, Clifford R, Mills K, Thornton P. Relevance of TP53 for CLL diagnostics. J Clin Pathol 2019; 72:343-346. [PMID: 30712002 DOI: 10.1136/jclinpath-2018-205622] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 01/14/2019] [Accepted: 01/14/2019] [Indexed: 12/12/2022]
Abstract
TP53 disruption in chronic lymphocytic leukaemia (CLL) is a well-established prognostic marker and informs on the appropriate course of treatment for patients. TP53 status is commonly assessed by fluorescence in situ hybridisation for del(17 p) and Sanger sequencing for TP53 mutations. At present, current screening methods for TP53 mutations fail to detect diagnostically relevant mutations potentially leading to inappropriate treatment decisions. In addition, low levels of mutations that are proving to be clinically relevant may not be discovered with current less sensitive techniques. This review describes the structure, function and regulation of the TP53 protein, the mutations found in cancer and CLL, the relevance of TP53 disruption in CLL and the current screening methods for TP53 mutations including next-generation sequencing.
Collapse
Affiliation(s)
- Mark A Catherwood
- Haematology Department, Belfast Health and Social Care Trust, Belfast, UK
| | - David Gonzalez
- Centre for Cancer Research and Cell Biology (CCRCB), Queen's University Belfast, Belfast, UK
| | - David Donaldson
- Haematology Department, Belfast Health and Social Care Trust, Belfast, UK
| | - Ruth Clifford
- Department of Haematology, University Hospital Limerick, Ireland
| | - Ken Mills
- Centre for Cancer Research and Cell Biology (CCRCB), Queen's University Belfast, Belfast, UK
| | | |
Collapse
|
46
|
Schulz-Heddergott R, Stark N, Edmunds SJ, Li J, Conradi LC, Bohnenberger H, Ceteci F, Greten FR, Dobbelstein M, Moll UM. Therapeutic Ablation of Gain-of-Function Mutant p53 in Colorectal Cancer Inhibits Stat3-Mediated Tumor Growth and Invasion. Cancer Cell 2018; 34:298-314.e7. [PMID: 30107178 PMCID: PMC6582949 DOI: 10.1016/j.ccell.2018.07.004] [Citation(s) in RCA: 176] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 04/27/2018] [Accepted: 07/16/2018] [Indexed: 12/19/2022]
Abstract
Over half of colorectal cancers (CRCs) harbor TP53 missense mutations (mutp53). We show that the most common mutp53 allele R248Q (p53Q) exerts gain of function (GOF) and creates tumor dependence in mouse CRC models. mutp53 protein binds Stat3 and enhances activating Stat3 phosphorylation by displacing the phosphatase SHP2. Ablation of the p53Q allele suppressed Jak2/Stat3 signaling, growth, and invasiveness of established, mutp53-driven tumors. Treating tumor-bearing mice with an HSP90 inhibitor suppressed mutp53 levels and tumor growth. Importantly, human CRCs with stabilized mutp53 exhibit enhanced Jak2/Stat3 signaling and are associated with poorer patient survival. Cancers with TP53R248Q/W are associated with a higher patient death risk than are those having nonR248 mutp53. These findings identify GOF mutp53 as a therapeutic target in CRC.
Collapse
Affiliation(s)
| | - Nadine Stark
- Institute of Molecular Oncology, University Medical Center Göttingen, Göttingen 37077, Germany
| | - Shelley J Edmunds
- Institute of Molecular Oncology, University Medical Center Göttingen, Göttingen 37077, Germany
| | - Jinyu Li
- Department of Pathology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Lena-Christin Conradi
- Department of General, Visceral, and Pediatric Surgery, University Medical Center Göttingen, Göttingen 37075, Germany
| | - Hanibal Bohnenberger
- Department of Pathology, University Medical Center Göttingen, Göttingen 37075, Germany
| | - Fatih Ceteci
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfu am Main 60596, Germany
| | - Florian R Greten
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfu am Main 60596, Germany
| | - Matthias Dobbelstein
- Institute of Molecular Oncology, University Medical Center Göttingen, Göttingen 37077, Germany.
| | - Ute M Moll
- Institute of Molecular Oncology, University Medical Center Göttingen, Göttingen 37077, Germany; Department of Pathology, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
47
|
Wild-type p53 oligomerizes more efficiently than p53 hot-spot mutants and overcomes mutant p53 gain-of-function via a "dominant-positive" mechanism. Oncotarget 2018; 9:32063-32080. [PMID: 30174797 PMCID: PMC6112834 DOI: 10.18632/oncotarget.25944] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 07/21/2018] [Indexed: 12/24/2022] Open
Abstract
Human p53 protein acts as a transcription factor predominantly in a tetrameric form. Single residue changes, caused by hot-spot mutations of the TP53 gene in human cancer, transform wild-type (wt) p53 tumor suppressor proteins into potent oncoproteins - with gain-of-function, tumor-promoting activity. Oligomerization of p53 allows for a direct interplay between wt and mutant p53 proteins if both are present in the same cells - where a mutant p53's dominant-negative effect known to inactivate wt p53, co-exists with an opposite mechanism - a "dominant-positive" suppression of the mutant p53's gain-of-function activity by wt p53. In this study we determine the oligomerization efficiency of wt and mutant p53 in living cells using FRET-based assays and describe wt p53 to be more efficient than mutant p53 in entering p53 oligomers. The biased p53 oligomerization helps to interpret earlier reports of a low efficiency of the wt p53 inactivation via the dominant-negative effect, while it also implies that the "dominant-positive" effect may be more pronounced. Indeed, we show that at similar wt:mutant p53 concentrations in cells - the mutant p53 gain-of-function stimulation of gene transcription and cell migration is more efficiently inhibited than the wt p53's tumor-suppressive transactivation and suppression of cell migration. These results suggest that the frequent mutant p53 accumulation in human tumor cells does not only directly strengthen its gain-of-function activity, but also protects the oncogenic p53 mutants from the functional dominance of wt p53.
Collapse
|
48
|
Singh NP, Bapi RS, Vinod PK. Machine learning models to predict the progression from early to late stages of papillary renal cell carcinoma. Comput Biol Med 2018; 100:92-99. [PMID: 29990647 DOI: 10.1016/j.compbiomed.2018.06.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 06/12/2018] [Accepted: 06/25/2018] [Indexed: 12/27/2022]
Abstract
Papillary Renal Cell Carcinoma (PRCC) is a heterogeneous disease with variations in disease progression and clinical outcomes. The advent of next generation sequencing techniques (NGS) has generated data from patients that can be analysed to develop a predictive model. In this study, we have adopted a machine learning approach to identify biomarkers and build classifiers to discriminate between early and late stages of PRCC from gene expression profiles. A machine learning pipeline incorporating different feature selection algorithms and classification models is developed to analyse RNA sequencing dataset (RNASeq). Further, to get a reliable feature set, we extracted features from different partitions of the training dataset and aggregated them into feature sets for classification. We evaluated the performance of different algorithms on the basis of 10-fold cross validation and independent test dataset. 10-fold cross validation was also performed on a microarray dataset of PRCC. A random forest based feature selection (varSelRF) yielded minimum number of features (104) and a best performance with area under Precision Recall curve (PR-AUC) of 0.804, MCC (Matthews Correlation Coefficient) of 0.711 and accuracy of 88% with Shrunken Centroid classifier on a test dataset. We identified 80 genes that are consistently altered between stages by different feature selection algorithms. The extracted features are related to cellular components - centromere, kinetochore and spindle, and biological process mitotic cell cycle. These observations reveal potential mechanisms for an increase in chromosome instability in the late stage of PRCC. Our study demonstrates that the gene expression profiles can be used to classify stages of PRCC.
Collapse
Affiliation(s)
- Noor Pratap Singh
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology (IIIT), Hyderabad, 500032, India
| | - Raju S Bapi
- Cognitive Science Lab, International Institute of Information Technology (IIIT), Hyderabad, 500032, India; School of Computer and Information Sciences, University of Hyderabad, 500046, India
| | - P K Vinod
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology (IIIT), Hyderabad, 500032, India.
| |
Collapse
|
49
|
Sabrkhany S, Kuijpers MJE, Knol JC, Olde Damink SWM, Dingemans AMC, Verheul HM, Piersma SR, Pham TV, Griffioen AW, Oude Egbrink MGA, Jimenez CR. Exploration of the platelet proteome in patients with early-stage cancer. J Proteomics 2018; 177:65-74. [PMID: 29432918 DOI: 10.1016/j.jprot.2018.02.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 12/29/2017] [Accepted: 02/05/2018] [Indexed: 02/07/2023]
Abstract
Platelets play an important role in tumor growth and, at the same time, platelet characteristics are affected by cancer presence. Therefore, we investigated whether the platelet proteome harbors differentially expressed proteins associated with early-stage cancer. For this proof-of-concept study, patients with early-stage lung (n = 8) or head of pancreas cancer (n = 4) were included, as were healthy sex- and age-matched controls for both subgroups. Blood samples were collected from controls and from patients before surgery. Furthermore, from six of the patients, a second sample was collected two months after surgery. NanoLC-MS/MS-based proteomics of gel-fractionated platelet proteins was used for comparative spectral count analyses of patients to controls and before to after surgery samples. The total platelet proteome dataset included 4384 unique proteins of which 85 were significantly (criteria Fc > 1.5 and p < 0.05) changed in early-stage cancer compared to controls. In addition, the levels of 81 platelet proteins normalized after tumor resection. When filtering for the most discriminatory proteins, we identified seven promising platelet proteins associated with early-stage cancer. In conclusion, this pioneering study on the platelet proteome in cancer patients clearly identifies platelets as a new source of candidate protein biomarkers of early-stage cancer. BIOLOGICAL SIGNIFICANCE Currently, most blood-based diagnostics/biomarker research is performed in serum or plasma, while the content of blood cells is usually neglected. It is known that especially blood platelets, which are the main circulating pool of many bioactive proteins, such as growth factors, chemokines, and cytokines, are a potentially rich source of biomarkers. The current study is the first to measure the effect of early-stage cancer on the platelet proteome of patients. Our study demonstrates that the platelet proteome of patients with early-stage lung or head of pancreas cancer differs considerably compared to that of healthy individuals of matched sex and age. In addition, the platelet proteome of cancer patients normalized after surgical resection of the tumor. Exploiting platelet proteome differences linked to both tumor presence and disease status, we were able to demonstrate that the platelet proteome can be mined for potential biomarkers of cancer.
Collapse
Affiliation(s)
- Siamack Sabrkhany
- Cardiovascular Research Institute Maastricht, Department of Physiology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Marijke J E Kuijpers
- Cardiovascular Research Institute Maastricht, Department of Biochemistry, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Jaco C Knol
- OncoProteomics Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, VU Medical Center, Amsterdam, The Netherlands
| | - Steven W M Olde Damink
- Cardiovascular Research Institute Maastricht, Department of Surgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Anne-Marie C Dingemans
- Cardiovascular Research Institute Maastricht, Department of Pulmonology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Henk M Verheul
- OncoProteomics Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, VU Medical Center, Amsterdam, The Netherlands
| | - Sander R Piersma
- OncoProteomics Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, VU Medical Center, Amsterdam, The Netherlands
| | - Thang V Pham
- OncoProteomics Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, VU Medical Center, Amsterdam, The Netherlands
| | - Arjan W Griffioen
- Angiogenesis Laboratory, Department of Medical Oncology, VU Medical Center, Amsterdam, The Netherlands
| | - Mirjam G A Oude Egbrink
- Cardiovascular Research Institute Maastricht, Department of Physiology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Connie R Jimenez
- OncoProteomics Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, VU Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
50
|
Kelleher FC, O'Sullivan H. FOXM1 in sarcoma: role in cell cycle, pluripotency genes and stem cell pathways. Oncotarget 2018; 7:42792-42804. [PMID: 27074562 PMCID: PMC5173172 DOI: 10.18632/oncotarget.8669] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 03/29/2016] [Indexed: 01/25/2023] Open
Abstract
FOXM1 is a pro-proliferative transcription factor that promotes cell cycle progression at the G1-S, and G2-M transitions. It is activated by phosphorylation usually mediated by successive cyclin – cyclin dependent kinase complexes, and is highly expressed in sarcoma. p53 down regulates FOXM1 and FOXM1 inhibition is also partly dependent on Rb and p21. Abnormalities of p53 or Rb are frequent in sporadic sarcomas with bone or soft tissue sarcoma, accounting for 36% of index cancers in the high penetrance TP53 germline disorder, Li-Fraumeni syndrome. FOXM1 stimulates transcription of pluripotency related genes including SOX2, KLF4, OCT4, and NANOG many of which are important in sarcoma, a disorder of mesenchymal stem cell/ partially committed progenitor cells. In a selected specific, SOX2 is uniformly expressed in synovial sarcoma. Embryonic pathways preferentially used in stem cell such as Hippo, Hedgehog, and Wnt dominate in FOXM1 stoichiometry to alter rates of FOXM1 production or degradation. In undifferentiated pleomorphic sarcoma, liposarcoma, and fibrosarcoma, dysregulation of the Hippo pathway increases expression of the effector co-transcriptional activator Yes-Associated Protein (YAP). A complex involving YAP and the transcription factor TEAD elevates FOXM1 in these sarcoma subtypes. In another scenario 80% of desmoid tumors have nuclear localization of β-catenin, the Wnt pathway effector molecule. Thiazole antibiotics inhibit FOXM1 and because they have an auto-regulator loop FOXM1 expression is also inhibited. Current systemic treatment of sarcoma is of limited efficacy and inhibiting FOXM1 represents a potential new strategy.
Collapse
Affiliation(s)
- Fergal C Kelleher
- St. James Hospital, Dublin, Ireland.,Trinity College Dublin, Dublin, Ireland
| | | |
Collapse
|