1
|
Kobayashi K, Sawada Y, Sahara K, Kikuchi Y, Miyake K, Yabushita Y, Homma Y, Kumamoto T, Matsuyama R, Endo I. Clinical Relevance of High-Grade Pancreatic Intraepithelial Neoplasia at the Pancreatic Transection Margin in Patients with Pancreatic Ductal Adenocarcinoma. Ann Surg Oncol 2025:10.1245/s10434-025-17400-y. [PMID: 40360836 DOI: 10.1245/s10434-025-17400-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 04/13/2025] [Indexed: 05/15/2025]
Abstract
BACKGROUND The clinical relevance of high-grade pancreatic intraepithelial neoplasia (PanIN) at the pancreatic transection margin (PTM) during resection of pancreatic ductal adenocarcinoma (PDAC) remains unclear. PATIENTS AND METHODS A total of 358 patients who underwent R0 resection for PDAC between January 2010 and December 2022 were included. The permanent sections used for the intraoperative frozen section diagnosis of PTM were evaluated for the PanIN grade. RESULTS Among 358 patients, 35 patients had low-grade PanIN (9.8%), and 17 had high-grade PanIN (4.7%) at the PTM. The 2-year overall survival (OS), disease-free survival (DSS), and relapse-free survival (RFS) did not differ markedly among patients with normal epithelium, low-grade PanIN, or high-grade PanIN at the margin. As the clinical features differed between patients with high-grade PanIN at the PTM and those without, we adjusted the patients' background factors using propensity score matching. The 2-year OS, DSS, and RFS rates were not significantly different between the groups. In addition, we investigated the details of 17 cases of high-grade PanIN in the PTM. The analysis revealed that 11 patients experienced recurrence after surgery. Among them, two cases of T1N0 showed recurrence in the remnant pancreas more than 2 years after surgery, while nine cases exhibited recurrence outside the remnant pancreas, such as the liver and lungs, within 2 years. CONCLUSIONS Patients with high-grade PanIN at the PTM did not show a significantly different prognosis than those without; however, recurrence in the remnant pancreas was observed in long-term survivors. Therefore, rigorous long-term follow-up is essential for such patients.
Collapse
Affiliation(s)
- Kei Kobayashi
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yu Sawada
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| | - Kota Sahara
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yutaro Kikuchi
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kentaro Miyake
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yasuhiro Yabushita
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yuki Homma
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Takafumi Kumamoto
- Gastroenterological Center, Yokohama City University Medical Center, Yokohama, Japan
| | - Ryusei Matsuyama
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Itaru Endo
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
2
|
Toriyama K, Masago K, Shibata N, Haneda M, Kuwahara T, Natsume S, Kobayashi S, Fujita Y, Sasaki E, Yamao K, Kawashima H, Shimizu Y, Hara K, Yatabe Y, Hosoda W. Clinicopathological and molecular characterization of KRAS wild-type pancreatic ductal adenocarcinomas reveals precursor lesions with oncogenic mutations and fusions in RAS pathway genes. J Pathol 2025. [PMID: 40317966 DOI: 10.1002/path.6432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 03/07/2025] [Accepted: 03/26/2025] [Indexed: 05/07/2025]
Abstract
Pancreatic ductal adenocarcinomas (PDACs) with wild-type KRAS constitute a small fraction of PDACs, and these tumors were recently shown to harbor frequent actionable oncogenic mutations and fusions. However, the clinicopathological features of KRAS wild-type PDAC have not been well studied. Additionally, precancerous lesions occurring in patients with KRAS wild-type PDACs have rarely been characterized. Here, we investigated the clinicopathological characteristics and outcomes of 75 patients with KRAS wild-type PDAC. Molecular analyses were performed in 40 patients using targeted DNA and whole-exome sequencing and targeted RNA sequencing. We demonstrated that patients with metastatic PDAC with wild-type KRAS were younger (median 59.5 years) than those with mutated KRAS (median 67 years, p < 0.000055). The wild-type KRAS status was not a significant prognostic factor for metastatic disease. Molecularly, genes in the RAS pathway are frequently mutated or rearranged (46%, 16/35), including mutations in BRAF, NRAS, HRAS, EGFR, MAP2K1, FGFR1, FGFR3 and ERBB4 and fusions of FGFR2 (FGFR2::CCDC147, FGFR2::CAT, FGFR2::TXLNA), ALK (STRN::ALK, EML4::ALK), and BRAF (TRIP11::BRAF). Mismatch repair deficiency was identified in 10% (4/39) of patients. Potentially actionable alterations were identified frequently in KRAS wild-type PDACs (30%, 12/40), in which nontubular-type carcinomas were significantly enriched with actionable alterations compared with tubular adenocarcinomas [67% (6/9) versus 16% (5/31); p = 0.007]. Finally, we investigated the precursors of PDACs in 13 pancreatectomy specimens from patients with KRAS wild-type PDAC. We identified three pancreatic intraepithelial neoplasias (PanINs) and two intraductal papillary mucinous neoplasms (IPMNs) harboring oncogenic fusions of ALK and BRAF and driver mutations in BRAF and AKT1. This study suggests that in the context of unmutated KRAS, PDAC is driven by alternative oncogenic mutations or fusions of RAS pathway genes, which may be introduced during the early phase of tumorigenesis. © 2025 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Kazuhiro Toriyama
- Department of Pathology and Molecular Diagnostics, Aichi Cancer Center, Nagoya, Japan
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Katsuhiro Masago
- Department of Pathology and Molecular Diagnostics, Aichi Cancer Center, Nagoya, Japan
| | - Noriko Shibata
- Department of Pathology and Molecular Diagnostics, Aichi Cancer Center, Nagoya, Japan
| | - Masataka Haneda
- Department of Pathology and Molecular Diagnostics, Aichi Cancer Center, Nagoya, Japan
| | | | - Seiji Natsume
- Department of Gastroenterological Surgery, Aichi Cancer Center, Nagoya, Japan
| | - Shota Kobayashi
- Department of Pathology and Molecular Diagnostics, Aichi Cancer Center, Nagoya, Japan
| | - Yasuko Fujita
- Department of Pathology and Molecular Diagnostics, Aichi Cancer Center, Nagoya, Japan
| | - Eiichi Sasaki
- Department of Pathology and Molecular Diagnostics, Aichi Cancer Center, Nagoya, Japan
| | - Kenji Yamao
- Department of Gastroenterology, Narita Memorial Hospital, Toyohashi, Japan
| | - Hiroki Kawashima
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yasuhiro Shimizu
- Department of Gastroenterological Surgery, Aichi Cancer Center, Nagoya, Japan
| | - Kazuo Hara
- Department of Gastroenterology, Aichi Cancer Center, Nagoya, Japan
| | - Yasushi Yatabe
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan
| | - Waki Hosoda
- Department of Pathology and Molecular Diagnostics, Aichi Cancer Center, Nagoya, Japan
| |
Collapse
|
3
|
Liaki V, Rosas-Perez B, Guerra C. Unlocking the Genetic Secrets of Pancreatic Cancer: KRAS Allelic Imbalances in Tumor Evolution. Cancers (Basel) 2025; 17:1226. [PMID: 40227826 PMCID: PMC11987834 DOI: 10.3390/cancers17071226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 03/13/2025] [Accepted: 03/31/2025] [Indexed: 04/15/2025] Open
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) belongs to the types of cancer with the highest lethality. It is also remarkably chemoresistant to the few available cytotoxic therapeutic options. PDAC is characterized by limited mutational heterogeneity of the known driver genes, KRAS, CDKN2A, TP53, and SMAD4, observed in both early-stage and advanced tumors. In this review, we summarize the two proposed models of genetic evolution of pancreatic cancer. The gradual or stepwise accumulated mutations model has been widely studied. On the contrary, less evidence exists on the more recent simultaneous model, according to which rapid tumor evolution is driven by the concurrent accumulation of genetic alterations. In both models, oncogenic KRAS mutations are the main initiating event. Here, we analyze the emerging topic of KRAS allelic imbalances and how it arises during tumor evolution, as it is often detected in advanced and metastatic PDAC. We also summarize recent evidence on how it affects tumor biology, metastasis, and response to therapy. To this extent, we highlight the necessity to include studies of KRAS allelic frequencies in the design of future therapeutic strategies against pancreatic cancer.
Collapse
Affiliation(s)
- Vasiliki Liaki
- Molecular Oncology Program, Spanish National Cancer Research Center (CNIO), 28029 Madrid, Spain; (B.R.-P.); (C.G.)
| | - Blanca Rosas-Perez
- Molecular Oncology Program, Spanish National Cancer Research Center (CNIO), 28029 Madrid, Spain; (B.R.-P.); (C.G.)
| | - Carmen Guerra
- Molecular Oncology Program, Spanish National Cancer Research Center (CNIO), 28029 Madrid, Spain; (B.R.-P.); (C.G.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
4
|
Cocca S, Pontillo G, Lupo M, Lieto R, Marocchi M, Marsico M, Dell'Aquila E, Mangiafico S, Grande G, Conigliaro R, Bertani H. Pancreatic cancer: Future challenges and new perspectives for an early diagnosis. World J Clin Oncol 2025; 16:97248. [PMID: 39995556 PMCID: PMC11686566 DOI: 10.5306/wjco.v16.i2.97248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/27/2024] [Accepted: 10/21/2024] [Indexed: 12/11/2024] Open
Abstract
This editorial is a commentary on the case report by Furuya et al focusing on the challenging diagnosis of early pancreatic adenocarcinoma and new tools for an earlier diagnosis. Currently, pancreatic cancer still has a poor prognosis, mainly due to late diagnosis in an advanced stage. Two main precancerous routes have been identified as pathways to pancreatic adenocarcinoma: The first encompasses a large group of mucinous cystic lesions: intraductal papillary mucinous neoplasm and mucinous cystic neoplasm, and the second is pancreatic intraepithelial neoplasia. In the last decade the focus of research has been to identify high-risk patients, using advanced imaging techniques (magnetic resonance cholangiopancreatography or endoscopic ultrasonography) which could be helpful in finding "indirect signs" of early stage pancreatic lesions. Nevertheless, the survival rate still remains poor, and alternative screening methods are under investigation. Endoscopic retrograde cholangiopancreatography followed by serial pancreatic juice aspiration cytology could be a promising tool for identifying precursor lesions such as intraductal papillary mucinous neoplasm, but confirming data are still needed to validate its role. Probably a combination of cross-sectional imaging, endoscopic techniques (old and new ones) and genetic and biological biomarkers (also in pancreatic juice) could be the best solution to reach an early diagnosis. Biomarkers could help to predict and follow the progression of early pancreatic lesions. However, further studies are needed to validate their diagnostic reliability and to establish diagnostic algorithms to improve prognosis and survival in patients with pancreatic cancer.
Collapse
Affiliation(s)
- Silvia Cocca
- Gastroenterology and Endoscopy Unit, Azienda Ospedaliero Universitaria Policlinico di Modena, Modena 41121, Italy
| | - Giuseppina Pontillo
- Gastroenterology and Endoscopy Unit, Presidio Ospedaliero San Giuseppe Moscati (Aversa, CE) – ASL Caserta, Caserta 81100, Italy
| | - Marinella Lupo
- Gastroenterology and Endoscopy Unit, Azienda Ospedaliero Universitaria Policlinico di Modena, Modena 41121, Italy
| | - Raffaele Lieto
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples 80131, Campania, Italy
| | - Margherita Marocchi
- Gastroenterology and Endoscopy Unit, Azienda Ospedaliero Universitaria Policlinico di Modena, Modena 41121, Italy
| | - Maria Marsico
- Gastroenterology and Endoscopy Unit, Azienda Ospedaliero Universitaria Policlinico di Modena, Modena 41121, Italy
| | - Emanuela Dell'Aquila
- Department of Medical Oncology 1, IRCCS Regina Elena National Cancer Institute, Rome 0144, Italy
| | - Santi Mangiafico
- Gastroenterology and Endoscopy Unit, Azienda Ospedaliero Universitaria Policlinico “G Rodolico – San Marco”, Catania 95123, Sicilia, Italy
| | - Giuseppe Grande
- Gastroenterology and Endoscopy Unit, Azienda Ospedaliero Universitaria Policlinico di Modena, Modena 41121, Italy
| | - Rita Conigliaro
- Gastroenterology and Endoscopy Unit, Azienda Ospedaliero Universitaria Policlinico di Modena, Modena 41121, Italy
| | - Helga Bertani
- Gastroenterology and Endoscopy Unit, Azienda Ospedaliero Universitaria Policlinico di Modena, Modena 41121, Italy
| |
Collapse
|
5
|
Pian LL, Song MH, Wang TF, Qi L, Peng TL, Xie KP. Identification and analysis of pancreatic intraepithelial neoplasia: opportunities and challenges. Front Endocrinol (Lausanne) 2025; 15:1401829. [PMID: 39839479 PMCID: PMC11746065 DOI: 10.3389/fendo.2024.1401829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 12/17/2024] [Indexed: 01/23/2025] Open
Abstract
Pancreatic intraepithelial neoplasia (PanIN) is the most common precursor lesion of pancreatic ductal adenocarcinoma (PDAC), which has poor prognosis with a short median overall survival of 6-12 months and a low 5-year survival rate of approximately 3%. It is crucial to remove PanIN lesions to prevent the development of invasive PDAC, as PDAC spreads rapidly outside the pancreas. This review aims to provide the latest knowledge on PanIN risk, pathology, cellular origin, genetic susceptibility, and diagnosis, while identifying research gaps that require further investigation in this understudied area of precancerous lesions. PanINs are classified into PanIN 1, PanIN 2, and PanIN 3, with PanIN 3 having the highest likelihood of developing into invasive PDAC. Differentiating between PanIN 2 and PanIN 3 is clinically significant. Genetic alterations found in PDAC are also present in PanIN and increase with the grade of PanIN. Imaging methods alone are insufficient for distinguishing PanIN, necessitating the use of genetic and molecular tests for identification. In addition, metabolomics technologies and miRNAs are playing an increasingly important role in the field of cancer diagnosis, offering more possibilities for efficient identification of PanIN. Although detecting and stratifying the risk of PanIN poses challenges, the combined utilization of imaging, genetics, and metabolomics holds promise for improving patient survival in this field.
Collapse
Affiliation(s)
- Ling-ling Pian
- School of Medicine, The South China University of Technology, Guangzhou, Guangdong, China
- Division of Gastroenterology, Institute of Digestive Disease, Affiliated Qingyuan Hospital, The Sixth Clinical Medical School, Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan, Guangdong, China
| | - Mei-hui Song
- Division of Gastroenterology, Institute of Digestive Disease, Affiliated Qingyuan Hospital, The Sixth Clinical Medical School, Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan, Guangdong, China
| | - Teng-fei Wang
- Division of Gastroenterology, Institute of Digestive Disease, Affiliated Qingyuan Hospital, The Sixth Clinical Medical School, Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan, Guangdong, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, China
| | - Ling Qi
- Division of Gastroenterology, Institute of Digestive Disease, Affiliated Qingyuan Hospital, The Sixth Clinical Medical School, Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan, Guangdong, China
| | - Tie-li Peng
- Division of Gastroenterology, Institute of Digestive Disease, Affiliated Qingyuan Hospital, The Sixth Clinical Medical School, Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan, Guangdong, China
| | - Ke-ping Xie
- School of Medicine, The South China University of Technology, Guangzhou, Guangdong, China
| |
Collapse
|
6
|
Park MA, Gumpper-Fedus K, Krishna SG, Genilo-Delgado MC, Brantley S, Hart PA, Dillhoff ME, Gomez MF, Basinski TL, Mok SR, Luthra AK, Fleming JB, Mohammadi A, Centeno BA, Jiang K, Karolak A, Jeong D, Chen DT, Stewart PA, Teer JK, Cruz-Monserrate Z, Permuth JB. Molecular Pathway and Immune Profile Analysis of IPMN-Derived Versus PanIN-Derived Pancreatic Ductal Adenocarcinomas. Int J Mol Sci 2024; 25:13164. [PMID: 39684873 PMCID: PMC11642437 DOI: 10.3390/ijms252313164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 12/18/2024] Open
Abstract
Intraductal papillary mucinous neoplasms (IPMN) are commonly detected pancreatic cysts that may transform into pancreatic ductal adenocarcinoma (PDAC). Predicting which IPMNs will progress to PDAC remains a clinical challenge. Moreover, identifying those clinically evident IPMNs for which a surveillance approach is best is a dire clinical need. Therefore, we aimed to identify molecular signatures that distinguished between PDAC with and without clinical evidence of an IPMN to identify novel molecular pathways related to IPMN-derived PDAC that could help guide biomarker development. Data from the Oncology Research Information Exchange Network (ORIEN) multi-institute sequencing project were utilized to analyze 66 PDAC cases from Moffitt Cancer Center and The Ohio State University Wexner Medical Center, for which tumor whole transcriptome sequencing datasets were generated. Cases were classified based on whether a tumor had originated from an IPMN (n = 16) or presumably through the pancreatic intraepithelial neoplasia (PanIN) pathway (n = 50). We then performed differential expression and pathway analysis using Gene-Set Enrichment Analysis (GSEA) and Pathway Analysis with Down-weighted Genes (PADOG) algorithms. We also analyzed immune profiles using the Tumor-Immune Microenvironment Deconvolution web portal for Bulk Transcriptomics (TIMEx). Both GSEA and TIMEx indicate that PanIN-derived PDAC tumors enrich inflammatory pathways (complement, hedgehog signaling, coagulation, inflammatory response, apical surface, IL-2/STAT5, IL-6/STAT3, EMT, KRAS signaling, apical junction, IFN-gamma, allograft rejection) and are comparatively richer in almost all immune cell types than those from IPMN-derived PDAC. IPMN-derived tumors were enriched for metabolic and energy-generating pathways (oxidative phosphorylation, unfolded protein response, pancreas beta cells, adipogenesis, fatty acid metabolism, protein secretion), and the most significantly upregulated genes (padj < 0.001) included mucin 2 (MUC2) and gastrokine-2 (GKN2). Further, the metabolic-linked gene signature enriched in the IPMN-derived samples is associated with a cluster of early-stage and long-survival (top 4th quartile) PDAC cases from The Cancer Genome Atlas (TCGA) expression database. Our data suggest that IPMN-derived and PanIN-derived PDACs differ in the expression of immune profiles and metabolic pathways. These initial findings warrant validation and follow-up to develop biomarker-based strategies for early PDAC detection and treatment.
Collapse
Affiliation(s)
- Margaret A. Park
- Department of Gastrointestinal (GI) Oncology, Moffitt Cancer Center, Tampa, FL 33612, USA; (M.A.P.); (M.C.G.-D.); (M.F.G.); (T.L.B.); (S.R.M.); (A.K.L.); (A.M.)
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL 33612, USA; (D.-T.C.); (P.A.S.); (J.K.T.)
| | - Kristyn Gumpper-Fedus
- Division of Gastroenterology, Hepatology and Nutrition, The Ohio State University Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (K.G.-F.); (S.G.K.); (P.A.H.)
| | - Somashekar G. Krishna
- Division of Gastroenterology, Hepatology and Nutrition, The Ohio State University Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (K.G.-F.); (S.G.K.); (P.A.H.)
| | - Maria C. Genilo-Delgado
- Department of Gastrointestinal (GI) Oncology, Moffitt Cancer Center, Tampa, FL 33612, USA; (M.A.P.); (M.C.G.-D.); (M.F.G.); (T.L.B.); (S.R.M.); (A.K.L.); (A.M.)
| | - Stephen Brantley
- Department of Pathology, Moffitt Cancer Center, Tampa, FL 33612, USA; (S.B.); (B.A.C.); (K.J.)
| | - Phil A. Hart
- Division of Gastroenterology, Hepatology and Nutrition, The Ohio State University Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (K.G.-F.); (S.G.K.); (P.A.H.)
| | - Mary E. Dillhoff
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA;
| | - Maria F. Gomez
- Department of Gastrointestinal (GI) Oncology, Moffitt Cancer Center, Tampa, FL 33612, USA; (M.A.P.); (M.C.G.-D.); (M.F.G.); (T.L.B.); (S.R.M.); (A.K.L.); (A.M.)
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Toni L. Basinski
- Department of Gastrointestinal (GI) Oncology, Moffitt Cancer Center, Tampa, FL 33612, USA; (M.A.P.); (M.C.G.-D.); (M.F.G.); (T.L.B.); (S.R.M.); (A.K.L.); (A.M.)
| | - Shaffer R. Mok
- Department of Gastrointestinal (GI) Oncology, Moffitt Cancer Center, Tampa, FL 33612, USA; (M.A.P.); (M.C.G.-D.); (M.F.G.); (T.L.B.); (S.R.M.); (A.K.L.); (A.M.)
| | - Anjuli K. Luthra
- Department of Gastrointestinal (GI) Oncology, Moffitt Cancer Center, Tampa, FL 33612, USA; (M.A.P.); (M.C.G.-D.); (M.F.G.); (T.L.B.); (S.R.M.); (A.K.L.); (A.M.)
| | - Jason B. Fleming
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Amir Mohammadi
- Department of Gastrointestinal (GI) Oncology, Moffitt Cancer Center, Tampa, FL 33612, USA; (M.A.P.); (M.C.G.-D.); (M.F.G.); (T.L.B.); (S.R.M.); (A.K.L.); (A.M.)
| | - Barbara A. Centeno
- Department of Pathology, Moffitt Cancer Center, Tampa, FL 33612, USA; (S.B.); (B.A.C.); (K.J.)
| | - Kun Jiang
- Department of Pathology, Moffitt Cancer Center, Tampa, FL 33612, USA; (S.B.); (B.A.C.); (K.J.)
| | - Aleksandra Karolak
- Department of Machine Learning, Moffitt Cancer Center, Tampa, FL 33612, USA;
| | - Daniel Jeong
- Department of Radiology, Moffitt Cancer Center, Tampa, FL 33612, USA;
| | - Dung-Tsa Chen
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL 33612, USA; (D.-T.C.); (P.A.S.); (J.K.T.)
| | - Paul A. Stewart
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL 33612, USA; (D.-T.C.); (P.A.S.); (J.K.T.)
| | - Jamie K. Teer
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL 33612, USA; (D.-T.C.); (P.A.S.); (J.K.T.)
| | - Zobeida Cruz-Monserrate
- Division of Gastroenterology, Hepatology and Nutrition, The Ohio State University Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (K.G.-F.); (S.G.K.); (P.A.H.)
| | - Jennifer B. Permuth
- Department of Gastrointestinal (GI) Oncology, Moffitt Cancer Center, Tampa, FL 33612, USA; (M.A.P.); (M.C.G.-D.); (M.F.G.); (T.L.B.); (S.R.M.); (A.K.L.); (A.M.)
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL 33612, USA
| |
Collapse
|
7
|
Graham S, Dmitrieva M, Vendramini-Costa DB, Francescone R, Trujillo MA, Cukierman E, Wood LD. From precursor to cancer: decoding the intrinsic and extrinsic pathways of pancreatic intraepithelial neoplasia progression. Carcinogenesis 2024; 45:801-816. [PMID: 39514554 DOI: 10.1093/carcin/bgae064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/04/2024] [Accepted: 10/02/2024] [Indexed: 11/16/2024] Open
Abstract
This review explores the progression of pancreatic intraepithelial neoplasia (PanIN) to pancreatic ductal adenocarcinoma through a dual lens of intrinsic molecular alterations and extrinsic microenvironmental influences. PanIN development begins with Kirsten rat sarcoma viral oncogene (KRAS) mutations driving PanIN initiation. Key additional mutations in cyclin-dependent kinase inhibitor 2A (CDKN2A), tumor protein p53 (TP53), and mothers against decapentaplegic homolog 4 (SMAD4) disrupt cell cycle control and genomic stability, crucial for PanIN progression from low-grade to high-grade dysplasia. Additional molecular alterations in neoplastic cells, including epigenetic modifications and chromosomal alterations, can further contribute to neoplastic progression. In parallel with these alterations in neoplastic cells, the microenvironment, including fibroblast activation, extracellular matrix remodeling, and immune modulation, plays a pivotal role in PanIN initiation and progression. Crosstalk between neoplastic and stromal cells influences nutrient support and immune evasion, contributing to tumor development, growth, and survival. This review underscores the intricate interplay between cell-intrinsic molecular drivers and cell-extrinsic microenvironmental factors, shaping PanIN predisposition, initiation, and progression. Future research aims to unravel these interactions to develop targeted therapeutic strategies and early detection techniques, aiming to alleviate the severe impact of pancreatic cancer by addressing both genetic predispositions and environmental influences.
Collapse
Affiliation(s)
- Sarah Graham
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, United States
| | - Mariia Dmitrieva
- Cancer Signaling & Microenvironment Program, M&C Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Lewis Katz School of Medicine, Temple Health, Philadelphia, PA 19111, United States
| | - Debora Barbosa Vendramini-Costa
- Henry Ford Pancreatic Cancer Center, Henry Ford Health, Henry Ford Health + Michigan State University Health Sciences, Detroit, MI 48202, United States
| | - Ralph Francescone
- Henry Ford Pancreatic Cancer Center, Henry Ford Health, Henry Ford Health + Michigan State University Health Sciences, Detroit, MI 48202, United States
| | - Maria A Trujillo
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, United States
| | - Edna Cukierman
- Cancer Signaling & Microenvironment Program, M&C Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Lewis Katz School of Medicine, Temple Health, Philadelphia, PA 19111, United States
| | - Laura D Wood
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD 21231, United States
| |
Collapse
|
8
|
Paralkar D, Akbari A, Kandukuri S, Aron M. Mucinous Borderline Tumors of the Pelvicalyceal System: Report of Two Tumors With Molecular Findings and Review of Literature. Int J Surg Pathol 2024:10668969241295350. [PMID: 39533769 DOI: 10.1177/10668969241295350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Mucinous borderline tumors of the pelvicalyceal system are exceedingly rare tumors with very little information regarding their clinicopathological characteristics and molecular underpinnings in the published literature. Herein, we report two mucinous borderline tumors and review the literature pertaining to these tumors. The patients were women who presented with flank pain without any history of nephrolithiasis. Abdominal computed tomography (CT) showed multiloculated cystic lesions without mural nodules involving the kidney (Bosniak category III). The nephrectomy specimens showed multiloculated cysts filled with mucoid material, without any solid areas. On microscopic examination, the cystic spaces were lined predominantly by a single layer of mucinous epithelium with variable foci of epithelial stratification. Extensive sampling of the tumors did not show any evidence of invasion. The tumor cells were positive for keratin 7, keratin 20, and CDX2 and were negative for urothelial markers. Molecular analysis performed on one of the tumors showed loss of function mutation of SMAD4 p.S32fs. The presence of SMAD4 alterations alludes to the potential role of the SMAD4-TGFß pathway in the pathogenesis of this tumor. On clinical follow-up, both patients are well with no evidence of disease. Our case report expands on the clinical characteristics of these rare tumors and provides insight into the previously unreported molecular landscape of this tumor.
Collapse
Affiliation(s)
- Divyangi Paralkar
- Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Amir Akbari
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Shivani Kandukuri
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Manju Aron
- Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
9
|
Al Harthi S, Al-Masqari M. Concurrent Invasive Ductal Carcinoma and Pancreatic Intraepithelial Neoplasia in Duodenal Heterotopic Pancreas: A Case Report. Oman Med J 2024; 39:e699. [PMID: 40225110 PMCID: PMC11994028 DOI: 10.5001/omj.2024.35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/18/2023] [Indexed: 04/15/2025] Open
Abstract
Heterotopic pancreatic (HP) tissue is defined as the presence of pancreatic tissue outside of its usual site with no vascular or anatomic association with the normal pancreas. This is most commonly found in the stomach, duodenum, and proximal jejunum. Most HP findings are incidental. Yet, they can occasionally produce symptoms such as bleeding, abdominal pain, and gastrointestinal obstruction symptoms. HP tissues can also become malignant. The following report details a rare case of a 77-year-old man with concurrent invasive ductal carcinoma and low-grade pancreatic intraepithelial neoplasia involving an HP tissue located at the duodenum.
Collapse
Affiliation(s)
- Sara Al Harthi
- Anatomical Pathology Residency Training Program, Oman Medical Specialty Board, Muscat, Oman
| | | |
Collapse
|
10
|
Ohtsuka T, Maguchi H, Tokunaga S, Hijioka S, Takayama Y, Koshita S, Hanada K, Sudo K, Uehara H, Tanno S, Tada M, Kimura W, Nakamura M, Kin T, Kamata K, Masamune A, Iwashita T, Akahoshi K, Ueki T, Okamura K, Kato H, Kumagi T, Kawabe K, Yoshida K, Mukai T, Sakagami J, Hirono S, Abue M, Nakafusa T, Morita M, Shimosegawa T, Tanaka M. Prospective multicenter surveillance study of branch-duct intraductal papillary mucinous neoplasm of the pancreas; risk of dual carcinogenesis. Pancreatology 2024; 24:1141-1151. [PMID: 39191596 DOI: 10.1016/j.pan.2024.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/08/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024]
Abstract
BACKGROUND The natural history of branch-duct intraductal papillary mucinous cystic neoplasms (BD-IPMNs) in the pancreas remains unclear. This study aimed to answer this clinical question by focusing on the development of concomitant pancreatic ductal adenocarcinomas (cPDAC). METHODS The Japan Pancreas Society conducted a prospective multicenter surveillance study of BD-IPMN every six months for five years. The primary endpoints were progression of BD-IPMN, progression to high-grade dysplasia/invasive carcinoma (HGD/IC), and cPDAC. Factors predicting the progression of BD-IPMN to HGD/IC and development of cPDAC were also assessed as secondary endpoints. RESULTS Among the 2104 non-operated patients, 348 (16.5 %) showed progression of primary BD-IPMN. Cumulative incidences of BD-IPMN with HGD/IC and cPDAC during the 5.17-year surveillance period were 1.90 % and 2.11 %, respectively, and standard incidence ratios of BD-IPMN with HGD/IC and cPDAC were 5.28 and 5.73, respectively. Of 38 cPDACs diagnosed during surveillance, 25 (65.8 %) were resectable. The significant predictive characteristics of BD-IPMN for progression to HGD/IC were larger cyst size (p = 0.03), larger main pancreatic duct size (p < 0.01), and mural nodules (p = 0.02). Significant predictive characteristics for the development of cPDAC were male sex (p = 0.03) and older age (p = 0.02), while the size of IPMN was not significant. CONCLUSION Careful attention should be given to "dual carcinogenesis" during BD-IPMN surveillance, indicating the progression of BD-IPMN to HGD/IC and development of cPDAC distinct from BD-IPMN, although the establishment of risk factors that predict cPDAC development remains a challenge (UMIN000007349).
Collapse
Affiliation(s)
- Takao Ohtsuka
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Digestive Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan.
| | - Hiroyuki Maguchi
- Education and Research Center, Teine-Keijinkai Hospital, Sapporo, Hokkaido, Japan.
| | - Shoji Tokunaga
- Medical Information Center, Kyushu University Hospital, Fukuoka, Japan
| | - Susumu Hijioka
- Department of Gastroenterology, Aichi Cancer Center Hospital, Nagoya, Aichi, Japan; Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Yukiko Takayama
- Department of Medicine, Institute of Gastroenterology, Tokyo Women's Medical University, Tokyo, Japan
| | - Shinsuke Koshita
- Department of Gastroenterology, Sendai City Medical Center, Sendai, Miyagi, Japan
| | - Keiji Hanada
- Department of Gastroenterology, Onomichi General Hospital, Onomichi, Japan
| | - Kentaro Sudo
- Department of Gastroenterology, Chiba Cancer Center, Chiba, Japan
| | - Hiroyuki Uehara
- Department of Hepatobiliary and Pancreatic Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Satoshi Tanno
- Department of Gastroenterology, IMS Sapporo Digestive Center General Hospital, Sapporo, Hokkaido, Japan
| | - Minoru Tada
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Department of Gastroenterology, National Hospital Organization, Chiba Medical Center, Chiba, Japan
| | - Wataru Kimura
- First Department of Surgery, Graduate School of Medical Science, Yamagata University, Yamagata, Japan; Department of Surgery, Tokyo Metropolitan Kasukabe Hospital, Medical Corporation Zenjin-kai, Kasukabe, Saitama, Japan
| | - Masafumi Nakamura
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toshifumi Kin
- Center for Gastroenterology, Teine-Keijinkai Hospital, Sapporo, Hokkaido, Japan
| | - Ken Kamata
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Sayama, Osaka, Japan
| | - Atsushi Masamune
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Takuji Iwashita
- First Department of Internal Medicine, Gifu University Hospital, Gifu, Japan
| | - Kazuya Akahoshi
- Department of Gastroenterology, Aso Iizuka Hospital, Iizuka, Fukuoka, Japan
| | - Toshiharu Ueki
- Department of Gastroenterology, Fukuoka University Chikushi Hospital, Fukuoka, Japan
| | - Keiya Okamura
- Department of Bilio-pancreatolpgy, Sapporo Kosei General Hospital, Sapporo, Hokkaido, Japan
| | - Hironari Kato
- Department of Gastroenterology, Okayama University Hospital, Okayama, Japan
| | - Teru Kumagi
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Ken Kawabe
- Department of Gastroenterology, NHO Kyushu Medical Center, Fukuoka, Japan; Department of Gastroenterology, NHO Kokura Medical Center, Kitakyusu, Japan
| | - Koji Yoshida
- Department of Gastroenterology and Hepatology, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Tsuyoshi Mukai
- Department of Gastroenterology, Gifu Municipal Hospital, Gifu, Japan; Department of Gastroenterological Endoscopy, Kanazawa Medical University Hospital, Ishikawa, Japan
| | - Junichi Sakagami
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Seiko Hirono
- Second Department of Surgery, School of Medicine, Wakayama Medical University, Wakayama, Japan; Division of Hepato-Biliary-Pancreatic Surgery, Department of Gastroenterological Surgery, Hyogo Medical University, Hyogo, Japan
| | - Makoto Abue
- Department of Gastroenterology, Miyagi Cancer Center, Natori, Miyagi, Japan
| | - Tomoki Nakafusa
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Makiko Morita
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toru Shimosegawa
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Masao Tanaka
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Surgery, Shimonoseki City Hospital, Shimonoseki, Yamaguchi, Japan.
| |
Collapse
|
11
|
Briones-Andrade J, Ramírez-Santiago G, Romero-Arias JR. A mathematical model for pancreatic cancer during intraepithelial neoplasia. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240702. [PMID: 39493299 PMCID: PMC11528534 DOI: 10.1098/rsos.240702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/20/2024] [Accepted: 09/11/2024] [Indexed: 11/05/2024]
Abstract
Cancer is the result of complex interactions of intrinsic and extrinsic cell processes, which promote sustained proliferation, resistance to apoptosis, reprogramming and reorganization. The evolution of any type of cancer emerges from the role of the microenvironmental conditions and their impact of some molecular complexes on certain signalling pathways. The understanding of the early onset of cancer requires a multiscale analysis of the cellular microenvironment. In this paper, we analyse a qualitative multiscale model of pancreatic adenocarcinoma by modelling the cellular microenvironment through elastic cell interactions and their intercellular communication mechanisms, such as growth factors and cytokines. We focus on the low-grade dysplasia (PanIN 1) and moderate dysplasia (PanIN 2) stages of pancreatic adenocarcinoma. To this end, we propose a gene-regulatory network associated with the processes of proliferation and apoptosis of pancreatic cells and its kinetics in terms of delayed differential equations to mimic cell development. Likewise, we couple the cell cycle with the spatial distribution of cells and the transport of growth factors to show that the adenocarcinoma evolution is triggered by inflammatory processes. We show that the oncogene RAS may be an important target for developing anti-inflammatory strategies that limit the emergence of more aggressive adenocarcinomas.
Collapse
Affiliation(s)
| | | | - J. Roberto Romero-Arias
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| |
Collapse
|
12
|
Makohon-Moore AP. Emerging and extensive clonal evolution in the pancreas. Trends Cancer 2024; 10:669-670. [PMID: 38977383 PMCID: PMC11415008 DOI: 10.1016/j.trecan.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/10/2024]
Abstract
Pancreatic cancer is one of the most lethal malignancies, yet much remains to be learned regarding how its precursors develop. In a recent Nature publication, Braxton and Kiemen et al. found that the normal, adult pancreas harbors hundreds to thousands of pancreatic cancer precursors evolving by a variety of routes.
Collapse
Affiliation(s)
- Alvin P Makohon-Moore
- Hackensack Meridian Health Center for Discovery and Innovation, Nutley, NJ, USA; Hackensack Meridian School of Medicine, Nutley, NJ, USA; Georgetown University Lombardi Comprehensive Cancer Center, Washington, DC, USA.
| |
Collapse
|
13
|
Kinny-Köster B, Ahmad Y, Pflüger MJ, Habib JR, Fujikura K, Hutchings D, Cameron JL, Shubert CR, Lafaro KJ, Burkhart RA, Burns WR, Javed AA, Yu J, Hruban RH, Wood LD, Thompson ED, He J. Clinical Relevance of Cancerization of Ducts in Resected Pancreatic Ductal Adenocarcinoma. Pancreas 2024; 53:e528-e536. [PMID: 38888841 DOI: 10.1097/mpa.0000000000002326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
OBJECTIVES Although prevalent in 50%-90% of pancreatic ductal adenocarcinomas, the clinical relevance of "cancerization of ducts" (COD) remains unknown. METHODS Pathologists retrospectively reviewed slides classifying prevalence of COD. Histopathological parameters, location of first recurrence, recurrence-free survival (RFS), and overall survival (OS) were collected from the institutional pancreatectomy registry. RESULTS Among 311 pancreatic ductal adenocarcinomas, COD was present in 216 (69.5%) and more prevalent in the cohort that underwent upfront surgery (75.3% vs 63.1%, P = 0.019). Furthermore, COD was associated with female gender (P = 0.040), advanced T stage (P = 0.007), perineural invasion (P = 0.014), lymphovascular invasion (P = 0.025), and R1 margin (P = 0.009), but not N stage (P = 0.401) or tumor differentiation (P = 0.717). In multivariable regression, COD was associated with less liver recurrence (odds ratio, 0.44; P < 0.005). This association was driven by the cohort of patients who had received preoperative treatment (odds ratio, 0.18; P < 0.001). COD was not predictive for RFS or OS. CONCLUSIONS Cancerization of ducts was not associated with RFS or OS. Currently underrecognized, standardized implementation into histopathological reports may have merit, and further mechanistic scientific experiments need to illuminate its clinical and biologic impact.
Collapse
Affiliation(s)
- Benedict Kinny-Köster
- From the Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Yembur Ahmad
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Michael J Pflüger
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Joseph R Habib
- From the Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Kohei Fujikura
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Danielle Hutchings
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - John L Cameron
- From the Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Christopher R Shubert
- From the Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Kelly J Lafaro
- From the Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Richard A Burkhart
- From the Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - William R Burns
- From the Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Ammar A Javed
- From the Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jun Yu
- From the Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Ralph H Hruban
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Laura D Wood
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Elizabeth D Thompson
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jin He
- From the Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
14
|
Liu R, Li J, Liu L, Wang W, Jia J. Tumor-associated macrophages (TAMs): Constructing an immunosuppressive microenvironment bridge for pancreatic ductal adenocarcinoma (PDAC). CANCER PATHOGENESIS AND THERAPY 2024. [DOI: 10.1016/j.cpt.2024.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2025]
|
15
|
Braxton AM, Kiemen AL, Grahn MP, Forjaz A, Parksong J, Mahesh Babu J, Lai J, Zheng L, Niknafs N, Jiang L, Cheng H, Song Q, Reichel R, Graham S, Damanakis AI, Fischer CG, Mou S, Metz C, Granger J, Liu XD, Bachmann N, Zhu Y, Liu Y, Almagro-Pérez C, Jiang AC, Yoo J, Kim B, Du S, Foster E, Hsu JY, Rivera PA, Chu LC, Liu F, Fishman EK, Yuille A, Roberts NJ, Thompson ED, Scharpf RB, Cornish TC, Jiao Y, Karchin R, Hruban RH, Wu PH, Wirtz D, Wood LD. 3D genomic mapping reveals multifocality of human pancreatic precancers. Nature 2024; 629:679-687. [PMID: 38693266 DOI: 10.1038/s41586-024-07359-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/26/2024] [Indexed: 05/03/2024]
Abstract
Pancreatic intraepithelial neoplasias (PanINs) are the most common precursors of pancreatic cancer, but their small size and inaccessibility in humans make them challenging to study1. Critically, the number, dimensions and connectivity of human PanINs remain largely unknown, precluding important insights into early cancer development. Here, we provide a microanatomical survey of human PanINs by analysing 46 large samples of grossly normal human pancreas with a machine-learning pipeline for quantitative 3D histological reconstruction at single-cell resolution. To elucidate genetic relationships between and within PanINs, we developed a workflow in which 3D modelling guides multi-region microdissection and targeted and whole-exome sequencing. From these samples, we calculated a mean burden of 13 PanINs per cm3 and extrapolated that the normal intact adult pancreas harbours hundreds of PanINs, almost all with oncogenic KRAS hotspot mutations. We found that most PanINs originate as independent clones with distinct somatic mutation profiles. Some spatially continuous PanINs were found to contain multiple KRAS mutations; computational and in situ analyses demonstrated that different KRAS mutations localize to distinct cell subpopulations within these neoplasms, indicating their polyclonal origins. The extensive multifocality and genetic heterogeneity of PanINs raises important questions about mechanisms that drive precancer initiation and confer differential progression risk in the human pancreas. This detailed 3D genomic mapping of molecular alterations in human PanINs provides an empirical foundation for early detection and rational interception of pancreatic cancer.
Collapse
Affiliation(s)
- Alicia M Braxton
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Comparative Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Ashley L Kiemen
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mia P Grahn
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - André Forjaz
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jeeun Parksong
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jaanvi Mahesh Babu
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jiaying Lai
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Lily Zheng
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, USA
- McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Noushin Niknafs
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Liping Jiang
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haixia Cheng
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qianqian Song
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rebecca Reichel
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sarah Graham
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alexander I Damanakis
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Catherine G Fischer
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Stephanie Mou
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Cameron Metz
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Julie Granger
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xiao-Ding Liu
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Niklas Bachmann
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yutong Zhu
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - YunZhou Liu
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Cristina Almagro-Pérez
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Ann Chenyu Jiang
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jeonghyun Yoo
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Bridgette Kim
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Scott Du
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Eli Foster
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jocelyn Y Hsu
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Paula Andreu Rivera
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Linda C Chu
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Fengze Liu
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elliot K Fishman
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alan Yuille
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - Nicholas J Roberts
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elizabeth D Thompson
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert B Scharpf
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Toby C Cornish
- Department of Pathology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Yuchen Jiao
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- Institute of Cancer Research, Henan Academy of Innovations in Medical Science, Zhengzhou, China.
| | - Rachel Karchin
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Ralph H Hruban
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Pei-Hsun Wu
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Denis Wirtz
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Laura D Wood
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
16
|
Silva LGDO, Lemos FFB, Luz MS, Rocha Pinheiro SL, Calmon MDS, Correa Santos GL, Rocha GR, de Melo FF. New avenues for the treatment of immunotherapy-resistant pancreatic cancer. World J Gastrointest Oncol 2024; 16:1134-1153. [PMID: 38660642 PMCID: PMC11037047 DOI: 10.4251/wjgo.v16.i4.1134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/26/2024] [Accepted: 03/04/2024] [Indexed: 04/10/2024] Open
Abstract
Pancreatic cancer (PC) is characterized by its extremely aggressive nature and ranks 14th in the number of new cancer cases worldwide. However, due to its complexity, it ranks 7th in the list of the most lethal cancers worldwide. The pathogenesis of PC involves several complex processes, including familial genetic factors associated with risk factors such as obesity, diabetes mellitus, chronic pancreatitis, and smoking. Mutations in genes such as KRAS, TP53, and SMAD4 are linked to the appearance of malignant cells that generate pancreatic lesions and, consequently, cancer. In this context, some therapies are used for PC, one of which is immunotherapy, which is extremely promising in various other types of cancer but has shown little response in the treatment of PC due to various resistance mechanisms that contribute to a drop in immunotherapy efficiency. It is therefore clear that the tumor microenvironment (TME) has a huge impact on the resistance process, since cellular and non-cellular elements create an immunosuppressive environment, characterized by a dense desmoplastic stroma with cancer-associated fibroblasts, pancreatic stellate cells, extracellular matrix, and immunosuppressive cells. Linked to this are genetic mutations in TP53 and immunosuppressive factors that act on T cells, resulting in a shortage of CD8+ T cells and limited expression of activation markers such as interferon-gamma. In this way, finding new strategies that make it possible to manipulate resistance mechanisms is necessary. Thus, techniques such as the use of TME modulators that block receptors and stromal molecules that generate resistance, the use of genetic manipulation in specific regions, such as microRNAs, the modulation of extrinsic and intrinsic factors associated with T cells, and, above all, therapeutic models that combine these modulation techniques constitute the promising future of PC therapy. Thus, this study aims to elucidate the main mechanisms of resistance to immunotherapy in PC and new ways of manipulating this process, resulting in a more efficient therapy for cancer patients and, consequently, a reduction in the lethality of this aggressive cancer.
Collapse
Affiliation(s)
| | - Fabian Fellipe Bueno Lemos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Marcel Silva Luz
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Samuel Luca Rocha Pinheiro
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Mariana dos Santos Calmon
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Gabriel Lima Correa Santos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Gabriel Reis Rocha
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Fabrício Freire de Melo
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| |
Collapse
|
17
|
Zheng C, Wang J, Wang J, Zhang Q, Liang T. Cell of Origin of Pancreatic cancer: Novel Findings and Current Understanding. Pancreas 2024; 53:e288-e297. [PMID: 38277420 PMCID: PMC11882172 DOI: 10.1097/mpa.0000000000002301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/08/2023] [Indexed: 01/28/2024]
Abstract
ABSTRACT Pancreatic ductal adenocarcinoma (PDAC) stands as one of the most lethal diseases globally, boasting a grim 5-year survival prognosis. The origin cell and the molecular signaling pathways that drive PDAC progression are not entirely understood. This review comprehensively outlines the categorization of PDAC and its precursor lesions, expounds on the creation and utility of genetically engineered mouse models used in PDAC research, compiles a roster of commonly used markers for pancreatic progenitors, duct cells, and acinar cells, and briefly addresses the mechanisms involved in the progression of PDAC. We acknowledge the value of precise markers and suitable tracing tools to discern the cell of origin, as it can facilitate the creation of more effective models for PDAC exploration. These conclusions shed light on our existing understanding of foundational genetically engineered mouse models and focus on the origin and development of PDAC.
Collapse
Affiliation(s)
- Chenlei Zheng
- From the Department of Hepatobiliary and Pancreatic Surgery
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine
| | - Jianing Wang
- From the Department of Hepatobiliary and Pancreatic Surgery
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine
| | - Junli Wang
- From the Department of Hepatobiliary and Pancreatic Surgery
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine
| | - Qi Zhang
- From the Department of Hepatobiliary and Pancreatic Surgery
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province
- Zhejiang University Cancer Center, Hangzhou, China
| | - Tingbo Liang
- From the Department of Hepatobiliary and Pancreatic Surgery
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province
- Zhejiang University Cancer Center, Hangzhou, China
| |
Collapse
|
18
|
Abi-Saab T, Cunningham AM, Rush PS, Matkowskyj KA. Pathologic Features of Primary Pancreatic Malignancies. Cancer Treat Res 2024; 192:89-117. [PMID: 39212917 DOI: 10.1007/978-3-031-61238-1_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
This chapter explores the pathologic features of benign and malignant lesions of the pancreas. As pathologic classifications evolve particularly for cystic lesions and neuroendocrine tumors, it is important for physicians who treat patients with gastrointestinal malignance to fully evaluate these pathologic classifications.
Collapse
Affiliation(s)
- Tarek Abi-Saab
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Patrick S Rush
- Virginia Tech Carilion School of Medicine, Roanoke, VA, USA
- Dominion Pathology Associates, Roanoke, VA, USA
| | | |
Collapse
|
19
|
Matsuoka T, Yashiro M. Current status and perspectives of genetic testing in gastrointestinal cancer (Review). Oncol Lett 2024; 27:21. [PMID: 38058469 PMCID: PMC10696628 DOI: 10.3892/ol.2023.14155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/30/2023] [Indexed: 12/08/2023] Open
Abstract
Genetic testing has become widespread in daily medical care for gastrointestinal (GI) cancers. However, unlike breast cancer and non-small cell lung cancer, in which personalized medicine targeting various driver genes is standardized, the incidence of targeted gene abnormalities in GI cancers is low. Nevertheless, such abnormalities may be linked to therapeutic agents and the further development of therapeutic agents for personalized medicine for GI cancers is desired. A liquid biopsy is of great benefit in offering clinical decision support, in applications such as GI cancer screening, surgical interventions, monitoring disease status and enhancing patient survival outcomes, all of which would contribute to personalized medicine. Germline genetic testing is required for several types of GI cancer, which shows clinical indications of hereditary predisposition. The increasing use of multigene panel testing has redefined gene-cancer associations, and consequently the estimate of cancer risk that vary from low to high penetrance. Comprehensive genetic testing can enable the detection of novel treatment targets and the discovery of undefined multiple diagnostic/predictive markers, which may enhance the molecular-level understanding of GI cancers. Genetic testing can also aid the design of more appropriate and adequate genomic-driven therapies for patients who may benefit from other standardized therapeutic methods.
Collapse
Affiliation(s)
- Tasuku Matsuoka
- Department of Molecular Oncology and Therapeutics, Osaka Metropolitan University Graduate School of Medicine, Osaka 5458585, Japan
| | - Masakazu Yashiro
- Department of Molecular Oncology and Therapeutics, Osaka Metropolitan University Graduate School of Medicine, Osaka 5458585, Japan
- Institute of Medical Genetics, Osaka Metropolitan University, Osaka 5458585, Japan
| |
Collapse
|
20
|
Zhang SL, Wang HL. Ancillary tests for hepatobiliary neoplasms: what we know and what we need to know. Hum Pathol 2023; 141:183-200. [PMID: 36775105 DOI: 10.1016/j.humpath.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/29/2023] [Accepted: 02/04/2023] [Indexed: 02/12/2023]
Abstract
Ancillary tests are commonly used in the surgical pathology setting for diagnosing challenging neoplastic diseases of the liver and biliary tract, while histology and clinical correlation remain to be critically important. With continuous discoveries, more and more useful ancillary tests have become available, which can help distinguish between malignant and benign hepatocellular neoplasms, malignant and benign biliary tract entities, and intrahepatic and metastatic carcinomas. This review will focus on existing and emerging biomarkers (such as glutamine synthetase, organic anion transporting polypeptide 1B3, insulin-like growth factor-II mRNA binding protein-3, S100P, SMAD4, enhancer of zeste homolog 2, albumin, hepatocyte nuclear factor-1β, etc.) that can be used for the diagnosis, classification and prognostication of hepatobiliary neoplasms.
Collapse
Affiliation(s)
- Sarah L Zhang
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine and Ronald Reagan Medical Center, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Hanlin L Wang
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine and Ronald Reagan Medical Center, University of California at Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
21
|
Wood LD, Adsay NV, Basturk O, Brosens LAA, Fukushima N, Hong SM, Kim SJ, Lee JW, Luchini C, Noë M, Pitman MB, Scarpa A, Singhi AD, Tanaka M, Furukawa T. Systematic review of challenging issues in pathology of intraductal papillary mucinous neoplasms. Pancreatology 2023; 23:878-891. [PMID: 37604731 DOI: 10.1016/j.pan.2023.08.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 08/23/2023]
Abstract
BACKGROUND Intraductal papillary mucinous neoplasms (IPMNs) are a cystic precursor to pancreatic cancer. IPMNs deemed clinically to be at high-risk for malignant progression are frequently treated with surgical resection, and pathological examination of the pancreatectomy specimen is a key component of the clinical care of IPMN patients. METHODS Systematic literature reviews were conducted around eight topics of clinical relevance in the examination of pathological specimens in patients undergoing resection of IPMN. RESULTS This review provides updated perspectives on morphological subtyping of IPMNs, classification of intraductal oncocytic papillary neoplasms, nomenclature for high-grade dysplasia, assessment of T stage, distinction of carcinoma associated or concomitant with IPMN, role of molecular assessment of IPMN tissue, role of intraoperative assessment by frozen section, and preoperative evaluation of cyst fluid cytology. CONCLUSIONS This analysis provides the foundation for data-driven approaches to several challenging issues in the pathology of IPMNs.
Collapse
Affiliation(s)
- Laura D Wood
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - N Volkan Adsay
- Department of Pathology, Koç University Hospital and Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey
| | - Olca Basturk
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lodewijk A A Brosens
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Noriyoshi Fukushima
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Seung-Mo Hong
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sung-Joo Kim
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jae W Lee
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Claudio Luchini
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, 37134, Verona, Italy; ARC-Net Research Center, University of Verona, 37134, Verona, Italy
| | - Michaël Noë
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Martha B Pitman
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Aldo Scarpa
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, 37134, Verona, Italy; ARC-Net Research Center, University of Verona, 37134, Verona, Italy
| | - Aatur D Singhi
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Mariko Tanaka
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Toru Furukawa
- Department of Investigative Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
22
|
Li O, Li L, Sheng Y, Ke K, Wu J, Mou Y, Liu M, Jin W. Biological characteristics of pancreatic ductal adenocarcinoma: Initiation to malignancy, intracellular to extracellular. Cancer Lett 2023; 574:216391. [PMID: 37714257 DOI: 10.1016/j.canlet.2023.216391] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 09/04/2023] [Accepted: 09/10/2023] [Indexed: 09/17/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly life-threatening tumour with a low early-detection rate, rapid progression and a tendency to develop resistance to chemotherapy. Therefore, understanding the regulatory mechanisms underlying the initiation, development and metastasis of pancreatic cancer is necessary for enhancing therapeutic effectiveness. In this review, we summarised single-gene mutations (including KRAS, CDKN2A, TP53, SMAD4 and some other less prevalent mutations), epigenetic changes (including DNA methylation, histone modifications and RNA interference) and large chromosome alterations (such as copy number variations, chromosome rearrangements and chromothripsis) associated with PDAC. In addition, we discussed variations in signalling pathways that act as intermediate oncogenic factors in PDAC, including PI3K/AKT, MAPK/ERK, Hippo and TGF-β signalling pathways. The focus of this review was to investigate alterations in the microenvironment of PDAC, particularly the role of immunosuppressive cells, cancer-associated fibroblasts, lymphocytes, other para-cancerous cells and tumour extracellular matrix in tumour progression. Peripheral axons innervating the pancreas have been reported to play a crucial role in the development of cancer. In addition, tumour cells can influence the behaviour of neighbouring non-tumour cells by secreting certain factors, both locally and at a distance. In this review, we elucidated the alterations in intracellular molecules and the extracellular environment that occur during the progression of PDAC. Altogether, this review may enhance the understanding of the biological characteristics of PDAC and guide the development of more precise treatment strategies.
Collapse
Affiliation(s)
- Ou Li
- General Surgery, Cancer Center, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Li Li
- General Surgery, Cancer Center, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yunru Sheng
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Kun Ke
- General Surgery, Cancer Center, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jianzhang Wu
- General Surgery, Cancer Center, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yiping Mou
- General Surgery, Cancer Center, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Mingyang Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center, China; National Clinical Research Center for Cancer, China; Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Weiwei Jin
- General Surgery, Cancer Center, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
23
|
Sarkar R, Xu Z, Perera CJ, Apte MV. Emerging role of pancreatic stellate cell-derived extracellular vesicles in pancreatic cancer. Semin Cancer Biol 2023; 93:114-122. [PMID: 37225047 DOI: 10.1016/j.semcancer.2023.05.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/17/2023] [Accepted: 05/19/2023] [Indexed: 05/26/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer that is characterised by a prominent collagenous stromal reaction/desmoplasia surrounding tumour cells. Pancreatic stellate cells (PSCs) are responsible for the production of this stroma and have been shown to facilitate PDAC progression. Recently, extracellular vesicles (EVs), in particular, small extracellular vesicles (exosomes) have been a topic of interest in the field of cancer research for their emerging roles in cancer progression and diagnosis. EVs act as a form of intercellular communication by carrying their molecular cargo from one cell to another, regulating functions of the recipient cells. Although the knowledge of the bi-directional interactions between the PSCs and cancer cells that promote disease progression has advanced significantly over the past decade, studies on PSC-derived EVs in PDAC are currently rather limited. This review provides an overview of PDAC, pancreatic stellate cells and their interactions with cancer cells, as well as the currently known role of extracellular vesicles derived from PSCs in PDAC progression.
Collapse
Affiliation(s)
- Rohit Sarkar
- Pancreatic Research Group, South West Sydney Clinical Campuses, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney 2052, Australia; Ingham Institute of Applied Medical Research, Sydney 2170, Australia
| | - Zhihong Xu
- Pancreatic Research Group, South West Sydney Clinical Campuses, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney 2052, Australia; Ingham Institute of Applied Medical Research, Sydney 2170, Australia
| | - Chamini J Perera
- Pancreatic Research Group, South West Sydney Clinical Campuses, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney 2052, Australia; Ingham Institute of Applied Medical Research, Sydney 2170, Australia.
| | - Minoti V Apte
- Pancreatic Research Group, South West Sydney Clinical Campuses, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney 2052, Australia; Ingham Institute of Applied Medical Research, Sydney 2170, Australia
| |
Collapse
|
24
|
Libeert A, Mutluoglu M, Trenson F, Gryspeerdt S. When Aunt Minnie turns out to be a Zebra: distal bile duct adenomyoma stimulating pancreas head tumor. REVISTA ESPANOLA DE ENFERMEDADES DIGESTIVAS 2023; 115:458. [PMID: 36263806 DOI: 10.17235/reed.2022.9240/2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A 55-year-old female patient with a history of ethyl and nicotine abuse presented with chronic diarrhoea, significant weight loss and abnormal liver tests. Ultrasound examination revealed dilatation of the bile ducts and computed tomography scan with IV contrast further established simultaneous dilatation of the common bile duct and pancreatic duct (double duct sign). The dilatation abruptly stopped at the level of the pancreatic head which demonstrated a small irregular hypovascular zone (1.2 cm), suspected for malignancy. The following week, a radical pancreaticoduodenectomy was performed. Anatomopathological analysis revealed an adenomyoma (12 mm) located distal to the common bile duct, without arguments for malignancy.
Collapse
|
25
|
Paranal RM, Jiang Z, Hutchings D, Kryklyva V, Gauthier C, Fujikura K, Nanda N, Huang B, Skaro M, Wolfgang CL, He J, Klimstra DS, Brand RE, Singhi AD, DeMarzo A, Zheng L, Goggins M, Brosens LAA, Hruban RH, Klein AP, Lotan T, Wood LD, Roberts NJ. Somatic loss of ATM is a late event in pancreatic tumorigenesis. J Pathol 2023; 260:455-464. [PMID: 37345735 PMCID: PMC10524278 DOI: 10.1002/path.6136] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/12/2023] [Accepted: 05/05/2023] [Indexed: 06/23/2023]
Abstract
Understanding the timing and spectrum of genetic alterations that contribute to the development of pancreatic cancer is essential for effective interventions and treatments. The aim of this study was to characterize somatic ATM alterations in noninvasive pancreatic precursor lesions and invasive pancreatic adenocarcinomas from patients with and without pathogenic germline ATM variants. DNA was isolated and sequenced from the invasive pancreatic ductal adenocarcinomas and precursor lesions of patients with a pathogenic germline ATM variant. Tumor and precursor lesions from these patients as well as colloid carcinoma from patients without a germline ATM variant were immunolabeled to assess ATM expression. Among patients with a pathogenic germline ATM variant, somatic ATM alterations, either mutations and/or loss of protein expression, were identified in 75.0% of invasive pancreatic adenocarcinomas but only 7.1% of pancreatic precursor lesions. Loss of ATM expression was also detected in 31.0% of colloid carcinomas from patients unselected for germline ATM status, significantly higher than in pancreatic precursor lesions [pancreatic intraepithelial neoplasms (p = 0.0013); intraductal papillary mucinous neoplasms, p = 0.0040] and pancreatic ductal adenocarcinoma (p = 0.0076) unselected for germline ATM status. These data are consistent with the second hit to ATM being a late event in pancreatic tumorigenesis. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Raymond M. Paranal
- Department of Pathology, the Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Human Genetics Predoctoral Training Program, the McKusick-Nathans Department of Genetic Medicine, The Johns Hopkins University School of Medicine, Baltimore, United States
| | - Zhengdong Jiang
- Department of Pathology, the Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of General surgery, the First Affiliated Hospital of Xi’an Jiaotong University Shaanxi, Xi’an, China
| | - Danielle Hutchings
- Department of Pathology, the Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Valentyna Kryklyva
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Christian Gauthier
- Department of Pathology, the Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kohei Fujikura
- Department of Pathology, the Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Neha Nanda
- Department of Pathology, the Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Bo Huang
- Department of Pathology, the Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael Skaro
- Department of Pathology, the Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Jin He
- Department of Surgery, the Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, the Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David S. Klimstra
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Current Affiliation: Paige AI, New York, NY, USA
| | - Randall E. Brand
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Aatur D. Singhi
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Angelo DeMarzo
- Department of Pathology, the Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lei Zheng
- Department of Oncology, the Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael Goggins
- Department of Pathology, the Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lodewijk A. A. Brosens
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Pathology, University Medical Center, Utrecht, The Netherlands
| | - Ralph H. Hruban
- Department of Pathology, the Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, the Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alison P. Klein
- Department of Pathology, the Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, the Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tamara Lotan
- Department of Pathology, the Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Laura D. Wood
- Department of Pathology, the Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, the Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nicholas J. Roberts
- Department of Pathology, the Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, the Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
26
|
Guo D, Ye L, Wu W, Yu X, Jin K. Novel strategy for oncogenic alteration-induced lipid metabolism reprogramming in pancreatic cancer. Acta Biochim Biophys Sin (Shanghai) 2023; 55:923-937. [PMID: 37021976 PMCID: PMC10326418 DOI: 10.3724/abbs.2023045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/20/2023] [Indexed: 03/18/2023] Open
Abstract
The pathogenesis of pancreatic cancer involves substantial metabolic reprogramming, resulting in abnormal proliferation of tumor cells. This tumorigenic reprogramming is often driven by genetic mutations, such as activating mutations of the KRAS oncogene and inactivating or deletions of the tumor suppressor genes SMAD4, CDKN2A, and TP53, which play a critical role in the initiation and development of pancreatic cancer. As a normal cell gradually develops into a cancer cell, a series of signature characteristics are acquired: activation of signaling pathways that sustain proliferation; an ability to resist growth inhibitory signals and evade apoptosis; and an ability to generate new blood vessels and invade and metastasize. In addition to these features, recent research has revealed that metabolic reprogramming and immune escape are two other novel characteristics of tumor cells. The effect of the interactions between tumor and immune cells on metabolic reprogramming is a key factor determining the antitumor immunotherapy response. Lipid metabolism reprogramming, a feature of many malignancies, not only plays a role in maintaining tumor cell proliferation but also alters the tumor microenvironment by inducing the release of metabolites that in turn affect the metabolism of normal immune cells, ultimately leading to the attenuation of the antitumor immune response and resistance to immunotherapy. Pancreatic cancer has been found to have substantial lipid metabolism reprogramming, but the mechanisms remain elusive. Therefore, this review focuses on the mechanisms regulating lipid metabolism reprogramming in pancreatic cancer cells to provide new therapeutic targets and aid the development of new therapeutic strategies for pancreatic cancer.
Collapse
Affiliation(s)
- Duancheng Guo
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
- Shanghai Pancreatic Cancer InstituteShanghai200032China
- Pancreatic Cancer InstituteFudan UniversityShanghai200032China
| | - Longyun Ye
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
- Shanghai Pancreatic Cancer InstituteShanghai200032China
- Pancreatic Cancer InstituteFudan UniversityShanghai200032China
| | - Weiding Wu
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
- Shanghai Pancreatic Cancer InstituteShanghai200032China
- Pancreatic Cancer InstituteFudan UniversityShanghai200032China
| | - Xianjun Yu
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
- Shanghai Pancreatic Cancer InstituteShanghai200032China
- Pancreatic Cancer InstituteFudan UniversityShanghai200032China
| | - Kaizhou Jin
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
- Shanghai Pancreatic Cancer InstituteShanghai200032China
- Pancreatic Cancer InstituteFudan UniversityShanghai200032China
| |
Collapse
|
27
|
Marin AM, Sanchuki HBS, Namur GN, Uno M, Zanette DL, Aoki MN. Circulating Cell-Free Nucleic Acids as Biomarkers for Diagnosis and Prognosis of Pancreatic Cancer. Biomedicines 2023; 11:biomedicines11041069. [PMID: 37189687 DOI: 10.3390/biomedicines11041069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/15/2023] [Accepted: 03/24/2023] [Indexed: 04/05/2023] Open
Abstract
A lack of reliable early diagnostic tools represents a major challenge in the management of pancreatic cancer (PCa), as the disease is often only identified after it reaches an advanced stage. This highlights the urgent need to identify biomarkers that can be used for the early detection, staging, treatment monitoring, and prognosis of PCa. A novel approach called liquid biopsy has emerged in recent years, which is a less- or non-invasive procedure since it focuses on plasmatic biomarkers such as DNA and RNA. In the blood of patients with cancer, circulating tumor cells (CTCs) and cell-free nucleic acids (cfNAs) have been identified such as DNA, mRNA, and non-coding RNA (miRNA and lncRNA). The presence of these molecules encouraged researchers to investigate their potential as biomarkers. In this article, we focused on circulating cfNAs as plasmatic biomarkers of PCa and analyzed their advantages compared to traditional biopsy methods.
Collapse
Affiliation(s)
- Anelis Maria Marin
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Prof Algacyr Munhoz Mader 3775 Street, Curitiba 81350-010, Brazil
| | - Heloisa Bruna Soligo Sanchuki
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Prof Algacyr Munhoz Mader 3775 Street, Curitiba 81350-010, Brazil
| | - Guilherme Naccache Namur
- Center for Translational Research in Oncology (LIM24), Departamento de Radiologia e Oncologia, Instituto do Câncer do Estado de São Paulo (ICESP), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo 01246-000, Brazil
| | - Miyuki Uno
- Center for Translational Research in Oncology (LIM24), Departamento de Radiologia e Oncologia, Instituto do Câncer do Estado de São Paulo (ICESP), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo 01246-000, Brazil
| | - Dalila Luciola Zanette
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Prof Algacyr Munhoz Mader 3775 Street, Curitiba 81350-010, Brazil
| | - Mateus Nóbrega Aoki
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Prof Algacyr Munhoz Mader 3775 Street, Curitiba 81350-010, Brazil
| |
Collapse
|
28
|
Kikuyama M, Nakahodo J, Honda G, Suzuki M, Horiguchi SI, Chiba K, Tabata H, Ome Y, Uemura SI, Kawamoto Y, Kamisawa T. Pancreatic duct epithelial malignancy suggested by large focal pancreatic parenchymal atrophy in cystic diseases of the pancreas. Pancreatology 2023:S1424-3903(23)00066-2. [PMID: 37003856 DOI: 10.1016/j.pan.2023.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/23/2023] [Accepted: 03/12/2023] [Indexed: 04/03/2023]
Abstract
BACKGROUND /Objectives: A cystic lesion is common in the pancreas. Focal pancreatic parenchymal atrophy (FPPA) has been reported as a sign of high-grade pancreatic intraepithelial neoplasia/carcinoma in situ (HGP/CIS). Some cystic lesions accompany FPPA. However, the relationship between a cystic lesion, FPPA, and the histopathological background of the pancreatic duct is unknown. METHODS We retrospectively evaluated the data of 98 patients with a cystic lesion who underwent serial pancreatic juice aspiration cytologic examination (SPACE) because of accompanying FPPA, increased size of the cystic lesion, and pancreatic duct stricture at the base. RESULTS The clinical diagnosis of a cystic lesion was intraductal papillary mucinous neoplasia (IPMN) and cysts in 72 (73.5%) and 26 (26.5%) patients, respectively. Ninety of the 98 patients (91.8%) had FPPA. Positive results (adenocarcinoma and suspicion) on SPACE were observed in 56 of all cases (57.1%), 48 of IPMN (66.7%), 8 of cysts (30.8%), and 54 of FPPA (59.3%), and were significantly associated with IPMN (p = 0.002) and the large FPPA (>269.79 mm2,p = 0.0001); moreover, these disorders are considerably related (p = 0.0003). Fifty patients (51.0%) with positive results on SPACE underwent surgery, with the histopathological diagnosis of epithelial malignancy in 42 patients (42.9%, 42/50, 84%). Many cystic lesions clinically diagnosed as IPMN were dilated branches covered by pancreatic intraepithelial neoplasia. CONCLUSIONS Positive results on SPACE were significantly associated with the clinical diagnosis of IPMN and the large FPPA. Moreover, these disorders are significantly related. Surgery owing to positive results could lead to the histopathological diagnosis of HGP/CIS.
Collapse
Affiliation(s)
- Masataka Kikuyama
- Department of Gastroenterology, Tokyo Women's Medical Hospital, Tokyo, Japan; Department of Gastroenterology, Tokyo Metropolitan Komagome Hospital, Tokyo, Japan.
| | - Jun Nakahodo
- Department of Gastroenterology, Tokyo Metropolitan Komagome Hospital, Tokyo, Japan
| | - Goro Honda
- Department of Surgery, Tokyo Women's Medical Hospital, Tokyo, Japan
| | - Mizuka Suzuki
- Department of Radiology, Tokyo Metropolitan Komagome Hospital, Tokyo, Japan
| | | | - Kazuro Chiba
- Department of Gastroenterology, Tokyo Metropolitan Komagome Hospital, Tokyo, Japan
| | - Hiroki Tabata
- Department of Gastroenterology, Tokyo Metropolitan Komagome Hospital, Tokyo, Japan
| | - Yusuke Ome
- Department of Surgery, Tokyo Women's Medical Hospital, Tokyo, Japan
| | | | - Yusuke Kawamoto
- Department of Surgery, Tokyo Women's Medical Hospital, Tokyo, Japan
| | - Terumi Kamisawa
- Department of Gastroenterology, Tokyo Metropolitan Komagome Hospital, Tokyo, Japan
| |
Collapse
|
29
|
Mello SS, Flowers BM, Mazur PK, Lee JJ, Müller F, Denny SK, Ferreira S, Hanson K, Kim SK, Greenleaf WJ, Wood LD, Attardi LD. Multifaceted role for p53 in pancreatic cancer suppression. Proc Natl Acad Sci U S A 2023; 120:e2211937120. [PMID: 36848578 PMCID: PMC10013849 DOI: 10.1073/pnas.2211937120] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 01/05/2023] [Indexed: 03/01/2023] Open
Abstract
The vast majority of human pancreatic ductal adenocarcinomas (PDACs) harbor TP53 mutations, underscoring p53's critical role in PDAC suppression. PDAC can arise when pancreatic acinar cells undergo acinar-to-ductal metaplasia (ADM), giving rise to premalignant pancreatic intraepithelial neoplasias (PanINs), which finally progress to PDAC. The occurrence of TP53 mutations in late-stage PanINs has led to the idea that p53 acts to suppress malignant transformation of PanINs to PDAC. However, the cellular basis for p53 action during PDAC development has not been explored in detail. Here, we leverage a hyperactive p53 variant-p5353,54-which we previously showed is a more robust PDAC suppressor than wild-type p53, to elucidate how p53 acts at the cellular level to dampen PDAC development. Using both inflammation-induced and KRASG12D-driven PDAC models, we find that p5353,54 both limits ADM accumulation and suppresses PanIN cell proliferation and does so more effectively than wild-type p53. Moreover, p5353,54 suppresses KRAS signaling in PanINs and limits effects on the extracellular matrix (ECM) remodeling. While p5353,54 has highlighted these functions, we find that pancreata in wild-type p53 mice similarly show less ADM, as well as reduced PanIN cell proliferation, KRAS signaling, and ECM remodeling relative to Trp53-null mice. We find further that p53 enhances chromatin accessibility at sites controlled by acinar cell identity transcription factors. These findings reveal that p53 acts at multiple stages to suppress PDAC, both by limiting metaplastic transformation of acini and by dampening KRAS signaling in PanINs, thus providing key new understanding of p53 function in PDAC.
Collapse
Affiliation(s)
- Stephano S. Mello
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA94305
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY14642
| | - Brittany M. Flowers
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA94305
| | - Pawel K. Mazur
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - James J. Lee
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA94305
- Calico Life Sciences LLC, South San Francisco, CA94080
| | - Fabian Müller
- Department of Genetics, Stanford University School of Medicine, Stanford, CA94305
- Integrative Cellular Biology and Bioinformatics, Saarland University, 66123Saarbrücken, Germany
| | - Sarah K. Denny
- Department of Genetics, Stanford University School of Medicine, Stanford, CA94305
| | - Sofia Ferreira
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA94305
| | - Kathryn Hanson
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA94305
- Department of Genetics, Stanford University School of Medicine, Stanford, CA94305
| | - Seung K. Kim
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA94305
| | - William J. Greenleaf
- Department of Genetics, Stanford University School of Medicine, Stanford, CA94305
| | - Laura D. Wood
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD21287
| | - Laura D. Attardi
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA94305
- Department of Genetics, Stanford University School of Medicine, Stanford, CA94305
| |
Collapse
|
30
|
Braxton AM, Kiemen AL, Grahn MP, Forjaz A, Babu JM, Zheng L, Jiang L, Cheng H, Song Q, Reichel R, Graham S, Damanakis AI, Fischer CG, Mou S, Metz C, Granger J, Liu XD, Bachmann N, Almagro-Pérez C, Jiang AC, Yoo J, Kim B, Du S, Foster E, Hsu JY, Rivera PA, Chu LC, Liu F, Niknafs N, Fishman EK, Yuille A, Roberts NJ, Thompson ED, Scharpf RB, Cornish TC, Jiao Y, Karchin R, Hruban RH, Wu PH, Wirtz D, Wood LD. Three-dimensional genomic mapping of human pancreatic tissue reveals striking multifocality and genetic heterogeneity in precancerous lesions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.27.525553. [PMID: 36747709 PMCID: PMC9900989 DOI: 10.1101/2023.01.27.525553] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Pancreatic intraepithelial neoplasia (PanIN) is a precursor to pancreatic cancer and represents a critical opportunity for cancer interception. However, the number, size, shape, and connectivity of PanINs in human pancreatic tissue samples are largely unknown. In this study, we quantitatively assessed human PanINs using CODA, a novel machine-learning pipeline for 3D image analysis that generates quantifiable models of large pieces of human pancreas with single-cell resolution. Using a cohort of 38 large slabs of grossly normal human pancreas from surgical resection specimens, we identified striking multifocality of PanINs, with a mean burden of 13 spatially separate PanINs per cm3 of sampled tissue. Extrapolating this burden to the entire pancreas suggested a median of approximately 1000 PanINs in an entire pancreas. In order to better understand the clonal relationships within and between PanINs, we developed a pipeline for CODA-guided multi-region genomic analysis of PanINs, including targeted and whole exome sequencing. Multi-region assessment of 37 PanINs from eight additional human pancreatic tissue slabs revealed that almost all PanINs contained hotspot mutations in the oncogene KRAS, but no gene other than KRAS was altered in more than 20% of the analyzed PanINs. PanINs contained a mean of 13 somatic mutations per region when analyzed by whole exome sequencing. The majority of analyzed PanINs originated from independent clonal events, with distinct somatic mutation profiles between PanINs in the same tissue slab. A subset of the analyzed PanINs contained multiple KRAS mutations, suggesting a polyclonal origin even in PanINs that are contiguous by rigorous 3D assessment. This study leverages a novel 3D genomic mapping approach to describe, for the first time, the spatial and genetic multifocality of human PanINs, providing important insights into the initiation and progression of pancreatic neoplasia.
Collapse
Affiliation(s)
- Alicia M Braxton
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Ashley L Kiemen
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Mia P Grahn
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD
| | - André Forjaz
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD
| | - Jaanvi Mahesh Babu
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Lily Zheng
- McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University, Baltimore, MD
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD
| | - Liping Jiang
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing, China
| | - Haixia Cheng
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing, China
| | - Qianqian Song
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing, China
| | - Rebecca Reichel
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Sarah Graham
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Alexander I Damanakis
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Catherine G Fischer
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Stephanie Mou
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Cameron Metz
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Julie Granger
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Xiao-Ding Liu
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Pathology, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Niklas Bachmann
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Cristina Almagro-Pérez
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD
| | - Ann Chenyu Jiang
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD
| | - Jeonghyun Yoo
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD
| | - Bridgette Kim
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD
| | - Scott Du
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD
| | - Eli Foster
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD
| | - Jocelyn Y Hsu
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD
| | - Paula Andreu Rivera
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD
| | - Linda C Chu
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Fengze Liu
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Noushin Niknafs
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Elliot K Fishman
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Alan Yuille
- Department of Computer Science, Johns Hopkins University, Baltimore, MD
| | - Nicholas J Roberts
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Elizabeth D Thompson
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Robert B Scharpf
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Toby C Cornish
- Department of Pathology, University of Colorado School of Medicine, Aurora, CO
| | - Yuchen Jiao
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD
| | - Rachel Karchin
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD
| | - Ralph H Hruban
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Pei-Hsun Wu
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD
| | - Denis Wirtz
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Laura D Wood
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
31
|
Nakaoka K, Ohno E, Kawabe N, Kuzuya T, Funasaka K, Nakagawa Y, Nagasaka M, Ishikawa T, Watanabe A, Tochio T, Miyahara R, Shibata T, Kawashima H, Hashimoto S, Hirooka Y. Current Status of the Diagnosis of Early-Stage Pancreatic Ductal Adenocarcinoma. Diagnostics (Basel) 2023; 13:215. [PMID: 36673023 PMCID: PMC9857526 DOI: 10.3390/diagnostics13020215] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/15/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) can be treated with surgery, chemotherapy, and radiotherapy. Despite medical progress in each field in recent years, it is still insufficient for managing PDAC, and at present, the only curative treatment is surgery. A typical pancreatic cancer is relatively easy to diagnose with imaging. However, it is often not recommended for surgical treatment at the time of diagnosis due to metastatic spread beyond the pancreas. Even if it is operable, it often recurs during postoperative follow-up. In the case of PDAC with a diameter of 10 mm or less, the 5-year survival rate is as good as 80% or more, and the best index for curative treatment is tumor size. The early detection of pancreatic cancer with a diameter of less than 10 mm or carcinoma in situ is critical. Here, we provide an overview of the current status of diagnostic imaging features and genetic tests for the accurate diagnosis of early-stage PDAC.
Collapse
Affiliation(s)
- Kazunori Nakaoka
- Department of Gastroenterology and Hepatology, Fujita Health University, Toyoake 470-1192, Aichi, Japan
| | - Eizaburo Ohno
- Department of Gastroenterology and Hepatology, Fujita Health University, Toyoake 470-1192, Aichi, Japan
| | - Naoto Kawabe
- Department of Gastroenterology and Hepatology, Fujita Health University, Toyoake 470-1192, Aichi, Japan
| | - Teiji Kuzuya
- Department of Gastroenterology and Hepatology, Fujita Health University, Toyoake 470-1192, Aichi, Japan
| | - Kohei Funasaka
- Department of Gastroenterology and Hepatology, Fujita Health University, Toyoake 470-1192, Aichi, Japan
| | - Yoshihito Nakagawa
- Department of Gastroenterology and Hepatology, Fujita Health University, Toyoake 470-1192, Aichi, Japan
| | - Mitsuo Nagasaka
- Department of Gastroenterology and Hepatology, Fujita Health University, Toyoake 470-1192, Aichi, Japan
| | - Takuya Ishikawa
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya 464-0813, Aichi, Japan
| | - Ayako Watanabe
- Department of Gastroenterology and Hepatology, Fujita Health University, Toyoake 470-1192, Aichi, Japan
| | - Takumi Tochio
- Department of Medical Research on Prebiotics and Probiotics, Fujita Health University, Toyoake 470-1101, Aichi, Japan
| | - Ryoji Miyahara
- Department of Gastroenterology and Hepatology, Fujita Health University, Toyoake 470-1192, Aichi, Japan
| | - Tomoyuki Shibata
- Department of Gastroenterology and Hepatology, Fujita Health University, Toyoake 470-1192, Aichi, Japan
| | - Hiroki Kawashima
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya 464-0813, Aichi, Japan
| | - Senju Hashimoto
- Department of Gastroenterology and Hepatology, Fujita Health University, Toyoake 470-1192, Aichi, Japan
| | - Yoshiki Hirooka
- Department of Gastroenterology and Hepatology, Fujita Health University, Toyoake 470-1192, Aichi, Japan
| |
Collapse
|
32
|
Systematic review and meta-analysis: Diagnostic performance of DNA alterations in pancreatic juice for the detection of pancreatic cancer. Pancreatology 2022; 22:973-986. [PMID: 35864067 DOI: 10.1016/j.pan.2022.06.260] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS Pancreatic cancer has a dismal prognosis. So far, imaging has been proven incapable of establishing an early enough diagnosis. Thus, biomarkers are urgently needed for early detection and improved survival. Our aim was to evaluate the pooled diagnostic performance of DNA alterations in pancreatic juice. METHODS A systematic literature search was performed in EMBASE, MEDLINE Ovid, Cochrane CENTRAL and Web of Science for studies concerning the diagnostic performance of DNA alterations in pancreatic juice to differentiate patients with high-grade dysplasia or pancreatic cancer from controls. Study quality was assessed using QUADAS-2. The pooled prevalence, sensitivity, specificity and diagnostic odds ratio were calculated. RESULTS Studies mostly concerned cell-free DNA mutations (32 studies: 939 cases, 1678 controls) and methylation patterns (14 studies: 579 cases, 467 controls). KRAS, TP53, CDKN2A, GNAS and SMAD4 mutations were evaluated most. Of these, TP53 had the highest diagnostic performance with a pooled sensitivity of 42% (95% CI: 31-54%), specificity of 98% (95%-CI: 92%-100%) and diagnostic odds ratio of 36 (95% CI: 9-133). Of DNA methylation patterns, hypermethylation of CDKN2A, NPTX2 and ppENK were studied most. Hypermethylation of NPTX2 performed best with a sensitivity of 39-70% and specificity of 94-100% for distinguishing pancreatic cancer from controls. CONCLUSIONS This meta-analysis shows that, in pancreatic juice, the presence of distinct DNA mutations (TP53, SMAD4 or CDKN2A) and NPTX2 hypermethylation have a high specificity (close to 100%) for the presence of high-grade dysplasia or pancreatic cancer. However, the sensitivity of these DNA alterations is poor to moderate, yet may increase if they are combined in a panel.
Collapse
|
33
|
Taherian M, Wang H, Wang H. Pancreatic Ductal Adenocarcinoma: Molecular Pathology and Predictive Biomarkers. Cells 2022; 11:cells11193068. [PMID: 36231030 PMCID: PMC9563270 DOI: 10.3390/cells11193068] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/21/2022] [Accepted: 09/24/2022] [Indexed: 11/23/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has an extremely poor prognosis due to the lack of methods or biomarkers for early diagnosis and its resistance to conventional treatment modalities, targeted therapies, and immunotherapies. PDACs are a heterogenous group of malignant epithelial neoplasms with various histomorphological patterns and complex, heterogenous genetic/molecular landscapes. The newly proposed molecular classifications of PDAC based on extensive genomic, transcriptomic, proteomic and epigenetic data have provided significant insights into the molecular heterogeneity and aggressive biology of this deadly disease. Recent studies characterizing the tumor microenvironment (TME) have shed light on the dynamic interplays between the tumor cells and the immunosuppressive TME of PDAC, which is essential to disease progression, as well as its resistance to chemotherapy, newly developed targeted therapy and immunotherapy. There is a critical need for the development of predictive markers that can be clinically utilized to select effective personalized therapies for PDAC patients. In this review, we provide an overview of the histological and molecular heterogeneity and subtypes of PDAC, as well as its precursor lesions, immunosuppressive TME, and currently available predictive molecular markers for patients.
Collapse
Affiliation(s)
- Mehran Taherian
- Department of Anatomical Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hua Wang
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Huamin Wang
- Department of Anatomical Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Correspondence: ; Tel.: +1-713-563-1846; Fax: +1-713-563-1848
| |
Collapse
|
34
|
Wood LD, Canto MI, Jaffee EM, Simeone DM. Pancreatic Cancer: Pathogenesis, Screening, Diagnosis, and Treatment. Gastroenterology 2022; 163:386-402.e1. [PMID: 35398344 PMCID: PMC9516440 DOI: 10.1053/j.gastro.2022.03.056] [Citation(s) in RCA: 420] [Impact Index Per Article: 140.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/13/2022] [Accepted: 03/25/2022] [Indexed: 12/13/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a clinically challenging cancer, due to both its late stage at diagnosis and its resistance to chemotherapy. However, recent advances in our understanding of the biology of PDAC have revealed new opportunities for early detection and targeted therapy of PDAC. In this review, we discuss the pathogenesis of PDAC, including molecular alterations in tumor cells, cellular alterations in the tumor microenvironment, and population-level risk factors. We review the current status of surveillance and early detection of PDAC, including populations at high risk and screening approaches. We outline the diagnostic approach to PDAC and highlight key treatment considerations, including how therapeutic approaches change with disease stage and targetable subtypes of PDAC. Recent years have seen significant improvements in our approaches to detect and treat PDAC, but large-scale, coordinated efforts will be needed to maximize the clinical impact for patients and improve overall survival.
Collapse
Affiliation(s)
- Laura D Wood
- Departments of Pathology and Oncology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Marcia Irene Canto
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Elizabeth M Jaffee
- Sidney Kimmel Cancer Center, Skip Viragh Center for Pancreatic Cancer Research and Clinical Care, Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Diane M Simeone
- Departments of Surgery and Pathology, Perlmutter Cancer Center, NYU Langone Health, New York, New York
| |
Collapse
|
35
|
Hanada K, Shimizu A, Kurihara K, Ikeda M, Yamamoto T, Okuda Y, Tazuma S. Endoscopic approach in the diagnosis of high-grade pancreatic intraepithelial neoplasia. Dig Endosc 2022; 34:927-937. [PMID: 35165942 DOI: 10.1111/den.14240] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/02/2022] [Accepted: 01/16/2022] [Indexed: 02/08/2023]
Abstract
Early diagnosis of pancreatic ductal adenocarcinoma (PDAC) is essential for improving prognosis; however, diagnosing PDAC at an early stage is challenging. In patients with localized high-grade pancreatic intraepithelial neoplasia (HG-PanIN), whose tumorous lesion is undetectable on cross-sectional images such as computed tomography or magnetic resonance image, long-term survival is expected. Pancreatic cystic lesions or main pancreatic duct (MPD) dilatation are important indirect findings for the initial diagnosis of HG-PanIN. Magnetic resonance cholangiopancreatography (MRCP) and endoscopic ultrasound (EUS) should play important roles in detecting abnormal image findings, such as local irregular MPD stenosis, caliber MPD changes, small cystic lesions, or branch duct dilatation. Additionally, EUS could detect hypoechoic areas around the MPD stenosis in some patients with HG-PanIN. Subsequently, endoscopic retrograde cholangiopancreatography (ERCP) and its associated pancreatic juice cytology, including serial pancreatic juice aspiration cytologic examination (SPACE) after placement of an endoscopic nasopancreatic drainage (ENPD) tube, may have high diagnostic accuracy for confirming the malignancy in HG-PanIN. Although ERCP and its associated pancreatic cytology, including SPACE, may be associated with post-ERCP pancreatitis (PEP), a recent randomized trial suggested that a 4-Fr ENPD tube may reduce the incidence of PEP. In the future, further prospective multicenter studies are required to establish a standard method of SPACE. Additionally, further studies for novel biomarkers could help to establish evolutionary methods with duodenal fluid and pancreatic juice for the early and accurate diagnosis of early-stage PDAC.
Collapse
Affiliation(s)
- Keiji Hanada
- Department of Gastroenterology, Onomichi General Hospital, Hiroshima, Japan
| | - Akihiro Shimizu
- Department of Gastroenterology, Onomichi General Hospital, Hiroshima, Japan
| | - Keisuke Kurihara
- Department of Gastroenterology, Onomichi General Hospital, Hiroshima, Japan
| | - Morito Ikeda
- Department of Gastroenterology, Onomichi General Hospital, Hiroshima, Japan
| | - Takuya Yamamoto
- Department of Gastroenterology, Onomichi General Hospital, Hiroshima, Japan
| | - Yasuhiro Okuda
- Department of Gastroenterology, Onomichi General Hospital, Hiroshima, Japan
| | - Susumu Tazuma
- Department of Gastroenterology, Onomichi General Hospital, Hiroshima, Japan
| |
Collapse
|
36
|
Chidambaram S, Kawka M, Gall TM, Cunningham D, Jiao LR. Can we predict the progression of premalignant pancreatic cystic tumors to ductal adenocarcinoma? Future Oncol 2022; 18:2605-2612. [PMID: 35730473 DOI: 10.2217/fon-2021-1545] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most prevalent malignant pancreatic tumor. Few studies have shown how often PDACs arise from cystic precursor lesions. This special report aims to summarize the evidence on the progression of precancerous lesions to PDAC. A review of the literature found four studies that discussed pancreatic intraepithelial lesions (PanINs), three that discussed mucinous cystic neoplasms (MCN) and five that discussed intraductal papillary neoplasms (IPMNs). PanINs were the most common precursors lesion, with approximately 80% of PDACs originating from this lesion. The lack of evidence characterizing the features of PDAC precursor cystic lesions potentially leads to a subset of patients undergoing surgery unnecessarily. Advancements in molecular techniques could allow the study of cystic lesions at a genetic level, leading to more personalized management.
Collapse
Affiliation(s)
- Swathikan Chidambaram
- Department of Surgery & Cancer, Hammersmith Hospital Campus, Imperial College, London, W12 0HS, UK
- Imperial College London, Exhibition Road, South Kensington, London, SW7 2BU, UK
| | - Michal Kawka
- Imperial College London, Exhibition Road, South Kensington, London, SW7 2BU, UK
| | - Tamara Mh Gall
- Department of Surgery & Cancer, Hammersmith Hospital Campus, Imperial College, London, W12 0HS, UK
- Imperial College London, Exhibition Road, South Kensington, London, SW7 2BU, UK
| | - David Cunningham
- Department of Academic Surgery, The Royal Marsden Hospital, 203 Fulham Road, London, SW3 6JJ, UK
| | - Long R Jiao
- Imperial College London, Exhibition Road, South Kensington, London, SW7 2BU, UK
- Department of Academic Surgery, The Royal Marsden Hospital, 203 Fulham Road, London, SW3 6JJ, UK
| |
Collapse
|
37
|
Zhong Z, Harmston N, Wood KC, Madan B, Virshup DM. A p300/GATA6 axis determines differentiation and Wnt dependency in pancreatic cancer models. J Clin Invest 2022; 132:e156305. [PMID: 35536676 PMCID: PMC9197518 DOI: 10.1172/jci156305] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 05/04/2022] [Indexed: 11/17/2022] Open
Abstract
Wnt signaling regulates the balance between stemness and differentiation in multiple tissues and in cancer. RNF43-mutant pancreatic cancers are dependent on Wnt production, and pharmacologic blockade of the pathway, e.g., by PORCN inhibitors, leads to tumor differentiation. However, primary resistance to these inhibitors has been observed. To elucidate potential mechanisms, we performed in vivo CRISPR screens in PORCN inhibitor-sensitive RNF43-mutant pancreatic cancer xenografts. As expected, genes in the Wnt pathway whose loss conferred drug resistance were identified, including APC, AXIN1, and CTNNBIP1. Unexpectedly, the screen also identified the histone acetyltransferase EP300 (p300), but not its paralog, CREBBP (CBP). We found that EP300 is silenced due to genetic alterations in all the existing RNF43-mutant pancreatic cancer cell lines that are resistant to PORCN inhibitors. Mechanistically, loss of EP300 directly downregulated GATA6 expression, thereby silencing the GATA6-regulated differentiation program and leading to a phenotypic transition from the classical subtype to the dedifferentiated basal-like/squamous subtype of pancreatic cancer. EP300 mutation and loss of GATA6 function bypassed the antidifferentiation activity of Wnt signaling, rendering these cancer cells resistant to Wnt inhibition.
Collapse
Affiliation(s)
- Zheng Zhong
- Program in Cancer and Stem Cell Biology, Duke–NUS Medical School, Singapore
- Department of Physiology, National University of Singapore, Singapore
| | - Nathan Harmston
- Program in Cancer and Stem Cell Biology, Duke–NUS Medical School, Singapore
- Science Division, Yale–NUS College, Singapore
| | - Kris C. Wood
- Department of Pharmacology and Cancer Biology and
| | - Babita Madan
- Program in Cancer and Stem Cell Biology, Duke–NUS Medical School, Singapore
| | - David M. Virshup
- Program in Cancer and Stem Cell Biology, Duke–NUS Medical School, Singapore
- Department of Pediatrics, Duke University, Durham, North Carolina, USA
| |
Collapse
|
38
|
McDonald OG. The biology of pancreatic cancer morphology. Pathology 2022; 54:236-247. [PMID: 34872751 PMCID: PMC8891077 DOI: 10.1016/j.pathol.2021.09.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 02/08/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal of all human malignancies. PDAC precursor lesions, invasive primary PDAC, and metastatic PDAC each display distinct morphologies that reflect unique biology. This 'biomorphology' is determined by a complex neoplastic history of clonal phylogenetic relationships, geographic locations, external environmental exposures, intrinsic metabolic demands, and tissue migration patterns. Understanding the biomorphological evolution of PDAC progression is not only of academic interest but also of great practical value. Applying this knowledge to surgical pathology practice facilitates the correct diagnosis on routine H&E stains without additional ancillary studies in most cases. Here I provide a concise overview of the entire biomorphological spectrum of PDAC progression beginning with initial neoplastic transformation and ending in terminal distant metastasis. Most biopsy and resection specimens are currently obtained prior to treatment. As such, our understanding of untreated PDAC biomorphology is mature. The biomorphology of treated PDAC is less defined but will assume greater importance as the frequency of neoadjuvant therapy increases. Although this overview is slanted towards pathology, it is written so that pathologists, clinicians, and scientists alike might find it instructive for their respective disciplines.
Collapse
|
39
|
Sekita‐Hatakeyama Y, Fujii T, Nishikawa T, Mitoro A, Sawai M, Itami H, Morita K, Uchiyama T, Takeda M, Sho M, Yoshiji H, Hatakeyama K, Ohbayashi C. Evaluation and diagnostic value of next-generation sequencing analysis of residual liquid-based cytology specimens of pancreatic masses. Cancer Cytopathol 2022; 130:202-214. [PMID: 34665935 PMCID: PMC9297882 DOI: 10.1002/cncy.22525] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/21/2021] [Accepted: 10/01/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Liquid-based cytology (LBC) is a widely used method for processing specimens obtained by endoscopic biopsy. This study evaluated next-generation sequencing (NGS) analysis of LBC specimens to improve the diagnostic accuracy of pancreatic lesions. METHODS Upon the diagnosis of a suspected pancreatic mass, LBC residues were used retrospectively. The quantity and quality of DNA extracted from residual LBC samples were evaluated, and an NGS analysis targeting 6 genes (KRAS, GNAS, TP53, CDKN2A, SMAD4, and PIK3CA) was performed. RESULTS The library was prepared from LBC specimens taken from 52 cases: 44 were successful, and 8 preparations failed. An analysis of DNA quantity and quality suggested that the success or failure of NGS implementation depended on both properties. The final diagnosis was achieved by a combination of the pathological analysis of the surgical excision or biopsy material with clinical information. Among the 33 cases of pancreatic ductal adenocarcinoma (PDAC), KRAS, TP53, CDKN2A, and SMAD4 mutations were identified in 31 (94%), 16 (48%), 3 (9%), and 2 (6%), respectively. Among the 11 benign cases, only a KRAS mutation was identified in 1 case. On the basis of NGS results, 18 of 33 PDACs (55%) were classified as highly dysplastic or more, and 10 of 11 benign lesions were evaluated as nonmalignant, which was consistent with the final diagnosis. CONCLUSIONS NGS analysis using LBC specimens from which DNA of appropriate quantity and quality has been extracted could contribute to improving the assessment of pancreatic tumor malignancies and the application of molecular-targeted drugs.
Collapse
Affiliation(s)
| | - Tomomi Fujii
- Department of Diagnostic PathologyNara Medical UniversityKashiharaJapan
| | - Takeshi Nishikawa
- Department of Diagnostic PathologyNara Medical UniversityKashiharaJapan
| | - Akira Mitoro
- Department of GastroenterologyNara Medical UniversityKashiharaJapan
| | - Masayoshi Sawai
- Department of GastroenterologyMinami‐Nara General Medical CenterOyodo‐ChoJapan
| | - Hiroe Itami
- Department of Diagnostic PathologyNara Medical UniversityKashiharaJapan
| | - Kouhei Morita
- Department of Diagnostic PathologyNara Medical UniversityKashiharaJapan
| | - Tomoko Uchiyama
- Department of Diagnostic PathologyNara Medical UniversityKashiharaJapan
| | - Maiko Takeda
- Department of Diagnostic PathologyNara Medical UniversityKashiharaJapan
| | - Masayuki Sho
- Department of SurgeryNara Medical UniversityKashiharaJapan
| | - Hitoshi Yoshiji
- Department of GastroenterologyNara Medical UniversityKashiharaJapan
| | - Kinta Hatakeyama
- Department of Diagnostic PathologyNara Medical UniversityKashiharaJapan
- Department of PathologyNational Cerebral and Cardiovascular CenterSuitaJapan
| | - Chiho Ohbayashi
- Department of Diagnostic PathologyNara Medical UniversityKashiharaJapan
| |
Collapse
|
40
|
The Role of SMAD4 Inactivation in Epithelial-Mesenchymal Plasticity of Pancreatic Ductal Adenocarcinoma: The Missing Link? Cancers (Basel) 2022; 14:cancers14040973. [PMID: 35205719 PMCID: PMC8870198 DOI: 10.3390/cancers14040973] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/11/2022] [Accepted: 02/11/2022] [Indexed: 01/27/2023] Open
Abstract
Simple Summary Pancreatic ductal adenocarcinoma (PDAC) is currently one of the deadliest cancers. Despite the progress that has been made in the research of patient care and the understanding of pancreatic cancer, the survival rate remains mediocre. SMAD4, a tumor-suppressor gene, is specifically inactivated in 50–55% of pancreatic cancers. The role of SMAD4 protein loss in PDAC remains controversial, but seems to be associated with worse overall survival and metastasis. Here, we review the function of SMAD4 inactivation in the context of a specific biological process called epithelial–mesenchymal transition, as it has been increasingly associated with tumor formation, metastasis and resistance to therapy. By improving our understanding of these molecular mechanisms, we hope to find new targets for therapy and improve the care of patients with PDAC. Abstract Pancreatic ductal adenocarcinoma (PDAC) presents a five-year survival rate of 10% and its incidence increases over the years. It is, therefore, essential to improve our understanding of the molecular mechanisms that promote metastasis and chemoresistance in PDAC, which are the main causes of death in these patients. SMAD4 is inactivated in 50% of PDACs and its loss has been associated with worse overall survival and metastasis, although some controversy still exists. SMAD4 is the central signal transducer of the transforming growth factor-beta (TGF-beta) pathway, which is notably known to play a role in epithelial–mesenchymal transition (EMT). EMT is a biological process where epithelial cells lose their characteristics to acquire a spindle-cell phenotype and increased motility. EMT has been increasingly studied due to its potential implication in metastasis and therapy resistance. Recently, it has been suggested that cells undergo EMT transition through intermediary states, which is referred to as epithelial–mesenchymal plasticity (EMP). The intermediary states are characterized by enhanced aggressiveness and more efficient metastasis. Therefore, this review aims to summarize and analyze the current knowledge on SMAD4 loss in patients with PDAC and to investigate its potential role in EMP in order to better understand its function in PDAC carcinogenesis.
Collapse
|
41
|
Nikas IP, Proctor T, Seide S, Chatziioannou SS, Reynolds JP, Ntourakis D. Diagnostic Performance of Pancreatic Cytology with the Papanicolaou Society of Cytopathology System: A Systematic Review, before Shifting into the Upcoming WHO International System. Int J Mol Sci 2022; 23:1650. [PMID: 35163571 PMCID: PMC8835850 DOI: 10.3390/ijms23031650] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/19/2022] [Accepted: 01/28/2022] [Indexed: 02/01/2023] Open
Abstract
The Papanicolaou Society of Cytopathology (PSC) reporting system classifies pancreatobiliary samples into six categories (I-VI), providing guidance for personalized management. As the World Health Organization (WHO) has been preparing an updated reporting system for pancreatobiliary cytopathology, this systematic review aimed to evaluate the risk of malignancy (ROM) of each PSC category, also the sensitivity and specificity of pancreatic FNA cytology using the current PSC system. Five databases were investigated with a predefined search algorithm. Inclusion and exclusion criteria were applied to select the eligible studies for subsequent data extraction. A study quality assessment was also performed. Eight studies were included in the qualitative analysis. The ROM of the PSC categories I, II, III, IV, V, VI were in the ranges of 8-50%, 0-40%, 28-100%, 0-31%, 82-100%, and 97-100%, respectively. Notably, the ROM IVB ("neoplastic-benign") subcategory showed a 0% ROM. Four of the included studies reported separately the ROMs for the IVO subcategory ("neoplastic-other"; its overall ROM ranged from 0 to 34%) with low (LGA) and high-grade atypia (HGA). ROM for LGA ranged from 4.3 to 19%, whereas ROM for HGA from 64 to 95.2%. When the subcategory IVO with HGA was considered as cytologically positive, together with the categories V and VI, there was a higher sensitivity of pancreatic cytology, at minimal expense of the specificity. Evidence suggests the proposed WHO international system changes-shifting the IVB entities into the "benign/negative for malignancy" category and establishing two new categories, the "pancreatic neoplasm, low-risk/grade" and "pancreatic neoplasm, high-risk/grade"-could stratify pancreatic neoplasms more effectively than the current PSC system.
Collapse
Affiliation(s)
- Ilias P. Nikas
- School of Medicine, European University Cyprus, Nicosia 2404, Cyprus; (S.S.C.); (D.N.)
| | - Tanja Proctor
- Institute of Medical Biometry, University of Heidelberg, 69120 Heidelberg, Germany; (T.P.); (S.S.)
| | - Svenja Seide
- Institute of Medical Biometry, University of Heidelberg, 69120 Heidelberg, Germany; (T.P.); (S.S.)
| | | | - Jordan P. Reynolds
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, FL 32256, USA;
| | - Dimitrios Ntourakis
- School of Medicine, European University Cyprus, Nicosia 2404, Cyprus; (S.S.C.); (D.N.)
| |
Collapse
|
42
|
Sakihama K, Koga Y, Yamamoto T, Shimada Y, Yamada Y, Kawata J, Shindo K, Nakamura M, Oda Y. RNF43 as a predictor of malignant transformation of pancreatic mucinous cystic neoplasm. Virchows Arch 2022; 480:1189-1199. [PMID: 35066614 DOI: 10.1007/s00428-022-03277-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/23/2021] [Accepted: 01/12/2022] [Indexed: 11/26/2022]
Abstract
Mucinous cystic neoplasm (MCN) of the pancreas rarely progresses to invasive carcinoma, but few studies have analyzed genomic alterations involved in its malignant transformation. The relationships of ring finger protein 43 (RNF43) mutations with cytological atypia, RNF43 protein expression, and Wnt signaling proteins in MCN remain unclear. This study included 106 MCN cases, classified into 89 low-grade dysplasia (LG), 9 high-grade dysplasia (HG), and 8 invasive carcinoma (INV). We analyzed HG/INV and LG lesions of 9 HG/INV cases and LG lesions of 9 LG cases using targeted sequencing and confirmed the protein expression of RNF43 and β-catenin. The frequency of RNF43 mutations was significantly higher in HG/INV cases than in LG cases. Furthermore, HG/INV lesions (56%) and LG lesions (33%) of HG/INV cases possessed RNF43 mutation, whereas no such mutation was detected in any LG cases. The expression of RNF43 was reduced in 71% of HG/INV cases and significantly correlated with histological grade and aberrant expression of β-catenin. In 3 of 5 RNF43-mutated cases, the expression of RNF43 was reduced, but there was no significant correlation between RNF43 mutation and protein expression. MCNs frequently harbored KRAS mutations, at rates of 100% in HG/INV lesions and 50% in LG lesions of HG/INV and LG cases. There was no significant difference in mutation frequency in LG lesions between HG/INV and LG cases. These results suggest that RNF43 mutations may be involved in and predictive of malignant transformation from an early stage of MCN.
Collapse
Affiliation(s)
- Kukiko Sakihama
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashiku, Fukuoka, 812-8582, Japan
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yutaka Koga
- Department of Pathology, National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| | - Takeo Yamamoto
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashiku, Fukuoka, 812-8582, Japan
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuki Shimada
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashiku, Fukuoka, 812-8582, Japan
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yutaka Yamada
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashiku, Fukuoka, 812-8582, Japan
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Jun Kawata
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashiku, Fukuoka, 812-8582, Japan
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koji Shindo
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masafumi Nakamura
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashiku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
43
|
Chen H, Zu F, Zeng T, Chen Z, Wei J, Liu P, Li Z, Zhou L, Wang H, Tan H, Tan X. Prognostic Value and Correlation With Tumor Immune Infiltration of a Novel Metabolism-Related Gene Signature in Pancreatic Cancer. Front Oncol 2022; 11:757791. [PMID: 35127473 PMCID: PMC8807690 DOI: 10.3389/fonc.2021.757791] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 12/20/2021] [Indexed: 12/13/2022] Open
Abstract
Background Energy metabolism has been considered as one of the novel features of neoplasms. This study aimed to establish the prognostic signature for pancreatic cancer (PC) based on metabolism-related genes (MRGs). Methods We obtained MRGs from the Molecular Signatures Database (MSigDB) and gene sequence data in the Cancer Genome Atlas (TCGA) databases. Then, differentially expressed MRGs (DE-MRGs) were identified utilizing the R software. We built the prognostic model via multivariate Cox regression. Moreover, external validation of the prognostic signature was also performed. Nomogram was created to predict the overall survival (OS). Next, this study analyzed the prognostic value, clinical relationship, and metabolism-related signaling pathways of the prognostic signature. The role in tumor infiltration was further evaluated. Eventually, the expression level of the three MRGs along with the function of NT5E was validated. Results Twenty-two MRGs were chosen, eight of which were identified to be most significantly correlated with the prognosis of PC. Meanwhile, a 3-MRG prognostic signature was established, and we verified this prognostic model in two separate external cohorts. What is more, the nomogram was used to predict 1-/2-/3-year OS of PC patients. In addition, the immune cell infiltration and expression of immune checkpoint were significantly influenced by the risk score. Finally, three MRGs were highly expressed in PC cell lines, and NT5E was associated with the proliferation and migration ability of PC. Conclusion To sum up, the study established and validated a 3-MRG prognostic signature for PC, and the signature could be utilized to predict the prognosis and assist the individualized clinical management of patients with PC.
Collapse
Affiliation(s)
- Hui Chen
- General Surgery, Department of Pancreatic and Thyroid Ward, Shengjing Hospital of China Medical University, Shenyang, China
| | - Fuqiang Zu
- General Surgery, Department of Pancreatic and Thyroid Ward, Shengjing Hospital of China Medical University, Shenyang, China
| | - Taofei Zeng
- General Surgery, Department of Hepatobiliary and Splenic Ward, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ziang Chen
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jinhong Wei
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Peng Liu
- General Surgery, Department of Pancreatic and Thyroid Ward, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zeyu Li
- General Surgery, Department of Pancreatic and Thyroid Ward, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lei Zhou
- General Surgery, Department of Pancreatic and Thyroid Ward, Shengjing Hospital of China Medical University, Shenyang, China
| | - Huaitao Wang
- General Surgery, Department of Pancreatic and Thyroid Ward, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hao Tan
- General Surgery, Department of Pancreatic and Endocrine Ward, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaodong Tan
- General Surgery, Department of Pancreatic and Thyroid Ward, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Xiaodong Tan,
| |
Collapse
|
44
|
Nikas IP, Mountzios G, Sydney GI, Ioakim KJ, Won JK, Papageorgis P. Evaluating Pancreatic and Biliary Neoplasms with Small Biopsy-Based Next Generation Sequencing (NGS): Doing More with Less. Cancers (Basel) 2022; 14:cancers14020397. [PMID: 35053560 PMCID: PMC8773813 DOI: 10.3390/cancers14020397] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Pancreatic cancer and cholangiocarcinoma are aggressive diseases mostly diagnosed at an advanced and inoperable stage. This review presents the value of next-generation sequencing (NGS) when performed on small biopsies—including fine-needle aspiration/biopsy samples, brushings, pancreatic juice and bile, and also blood—in the field of pancreatobiliary neoplasia. NGS could guide physicians while evaluating pancreatic solid and cystic lesions or suspicious biliary strictures, performing surveillance in high-risk individuals, or monitoring the disease and assessing prognosis in already diagnosed cancer patients. Evidence suggests that NGS performed on small biopsies is a robust tool for the diagnosis and pre-operative risk stratification of pancreatic and biliary lesions, whereas it also carries significant prognostic and therapeutic value. However, effective standardization of the pre-analytical and analytical assay parameters used for each clinical scenario is needed to fully implement NGS into routine practice and provide more personalized management in patients with suspected or established pancreatobiliary neoplasia. Abstract Pancreatic cancer and cholangiocarcinoma are lethal diseases mainly diagnosed at an inoperable stage. As pancreatobiliary surgical specimens are often unavailable for further molecular testing, this review aimed to highlight the diagnostic, prognostic, and therapeutic impact of next-generation sequencing (NGS) performed on distinct small biopsies, including endoscopic ultrasound fine-needle aspirations and biopsies of pancreatic solid and cystic lesions, biliary duct brushings, and also “liquid biopsies” such as the pancreatic juice, bile, and blood. NGS could clarify indeterminate pancreatic lesions or biliary strictures, for instance by identifying TP53 or SMAD4 mutations indicating high-grade dysplasia or cancer. It could also stratify pancreatic cystic lesions, by distinguishing mucinous from non-mucinous cysts and identifying high-risk cysts that should be excised in surgically fit patients, whereas the combination of cytology, elevated cystic CEA levels and NGS could improve the overall diagnostic accuracy. When NGS is performed on the pancreatic juice, it could stratify high-risk patients under surveillance. On the plasma, it could dynamically monitor the disease course and response to therapy. Notably, the circulating tumor DNA (ctDNA) levels have been associated with staging, grading, and survival. Lastly, NGS has shown potential in identifying potentially actionable molecular alterations. In conclusion, NGS applied on small biopsies could carry significant diagnostic, prognostic, and therapeutic value.
Collapse
Affiliation(s)
- Ilias P. Nikas
- School of Medicine, European University Cyprus, Nicosia 2404, Cyprus; (G.I.S.); (K.J.I.)
- Correspondence:
| | - Giannis Mountzios
- Fourth Department of Medical Oncology and Clinical Trials Unit, Henry Dunant Hospital Center, 11526 Athens, Greece;
| | - Guy I. Sydney
- School of Medicine, European University Cyprus, Nicosia 2404, Cyprus; (G.I.S.); (K.J.I.)
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL 62702, USA
| | - Kalliopi J. Ioakim
- School of Medicine, European University Cyprus, Nicosia 2404, Cyprus; (G.I.S.); (K.J.I.)
- Department of Internal Medicine, Limassol General Hospital, Limassol 4131, Cyprus
| | - Jae-Kyung Won
- Department of Pathology, Seoul National University Hospital and College of Medicine, Seoul 03080, Korea;
| | - Panagiotis Papageorgis
- Tumor Microenvironment, Metastasis and Experimental Therapeutics Laboratory, Basic and Translational Cancer Research Center, Department of Life Sciences, European University Cyprus, Nicosia 2404, Cyprus;
| |
Collapse
|
45
|
Kim J, Ekstrom T, Yang W, Donahue G, Grygoryev D, Ngo TT, Muschler JL, Morgan T, Zaret KS. Longitudinal Analysis of Human Pancreatic Adenocarcinoma Development Reveals Transient Gene Expression Signatures. Mol Cancer Res 2021; 19:1854-1867. [PMID: 34330844 PMCID: PMC9398181 DOI: 10.1158/1541-7786.mcr-21-0483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/17/2021] [Accepted: 07/26/2021] [Indexed: 01/07/2023]
Abstract
Previous transcriptome studies of human pancreatic ductal adenocarcinoma (PDAC) compare non-cancerous pancreatic intraepithelial neoplasias (PanIN) with late-stage PDAC obtained from different patients, thus have limited ability to discern network dynamics that contribute to the disease progression. We demonstrated previously that the 10-22 cell line, an induced pluripotent stem cell-like line reprogrammed from late-stage human PDAC cells, recapitulated the progression from PanINs to PDAC upon transplantation into NOD/LtSz-scid/IL2R-gammanull mice. Herein, we investigated the transition from precursor to PDAC using the isogenic model. We analyzed transcriptomes of genetically tagged 10-22 cells progressing from PanINs to PDAC in mice and validated the results using The Cancer Genome Atlas PDAC dataset, human clinical PanIN and PDAC tissues, and a well-established murine PDAC model. We functionally studied candidate proteins using human normal (H6C7) and cancerous (Miapaca2, Aspc1) pancreatic ductal epithelial cell lines. 10-22 cell-derived PDAC displayed the molecular signature of clinical human PDAC. Expression changes of many genes were transient during PDAC progression. Pathways for extracellular vesicle transport and neuronal cell differentiation were derepressed in the progression of PanINs to PDAC. HMG-box transcription factor 1 (HBP1) and BTB domain and CNC homolog 1 (BACH1) were implicated in regulating dynamically expressed genes during PDAC progression, and their expressions inversely correlated with PDAC patients' prognosis. Ectopic expression of HBP1 increased proliferation and migration of normal and cancerous pancreatic cells, indicating that HBP1 may confer the cell dissemination capacity in early PDAC progression. This unique longitudinal analysis provides insights into networks underlying human PDAC progression and pathogenesis. IMPLICATIONS: Manipulation of HBP1, BACH1, and RUN3 networks during PDAC progression can be harnessed to develop new targets for treating PDAC.
Collapse
Affiliation(s)
- Jungsun Kim
- Department of Molecular and Medical Genetics, Oregon Health & Science University School of Medicine, Portland, Oregon.,Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University School of Medicine, Portland, Oregon.,Knight Cancer Institute (Cancer Biology Research Program), Oregon Health & Science University School of Medicine, Portland, Oregon.,Corresponding Author: Jungsun Kim, Department of Molecular & Medical Genetics, Cancer Early Detection Advanced Research Center, Knight Cancer Institute. Oregon Health & Science University, Portland, OR 97239. Phone: 503-346-1967; E-mail:
| | - Taelor Ekstrom
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University School of Medicine, Portland, Oregon
| | - Wenli Yang
- Department of Medicine, Institute for Regenerative Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Greg Donahue
- Institute for Regenerative Medicine, Department of Cell and Developmental Biology, Abramson Cancer Center (Tumor Biology Program), University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Dmytro Grygoryev
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University School of Medicine, Portland, Oregon
| | - Thuy T.M. Ngo
- Department of Molecular and Medical Genetics, Oregon Health & Science University School of Medicine, Portland, Oregon.,Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University School of Medicine, Portland, Oregon.,Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon
| | - John L. Muschler
- Knight Cancer Institute (Cancer Biology Research Program), Oregon Health & Science University School of Medicine, Portland, Oregon.,Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon
| | - Terry Morgan
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University School of Medicine, Portland, Oregon.,Department of Pathology, Oregon Health & Science University, Portland, Oregon
| | - Kenneth S. Zaret
- Institute for Regenerative Medicine, Department of Cell and Developmental Biology, Abramson Cancer Center (Tumor Biology Program), University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
46
|
Abstract
The latest WHO classification of tumors of the digestive system (2019) has introduced new concepts for the stratification of intraductal neoplasms of the pancreas, mostly based on molecular genetics and malignant potential. Among them, pancreatic intraepithelial neoplasias (PanINs) and intraductal papillary mucinous neoplasms (IPMN) are both precursors of pancreatic ductal adenocarcinoma, whereas intraductal oncocytic papillary neoplasms (IOPN) and intraductal tubulopapillary neoplasms (ITPN) are usually associated with less aggressive subtypes of pancreatic cancer and therefore have a much better prognosis. Hence, it is of utmost importance to correctly classify these lesions and to distinguish them from each other as well as from other nonductal types of neoplasms, which can rarely display an intraductal growth, such as neuroendocrine tumors and acinar cell carcinomas. PanIN are microscopic lesions with limited clinical significance. In contrast, all other intraductal neoplasms can be identified as cystic processes and/or solid tumors by means of imaging, thereby setting an indication for a potential surgical resection. This review presents diagnostically relevant aspects of intraductal neoplasms of the pancreas, which are instrumental for the discussion within interdisciplinary tumor boards (resection vs. watch-and-wait strategies) as well as to determine the extent of resection intraoperatively.
Collapse
|
47
|
Grimont A, Leach SD, Chandwani R. Uncertain Beginnings: Acinar and Ductal Cell Plasticity in the Development of Pancreatic Cancer. Cell Mol Gastroenterol Hepatol 2021; 13:369-382. [PMID: 34352406 PMCID: PMC8688164 DOI: 10.1016/j.jcmgh.2021.07.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 12/15/2022]
Abstract
The pancreas consists of several specialized cell types that display a remarkable ability to alter cellular identity in injury, regeneration, and repair. The abundant cellular plasticity within the pancreas appears to be exploited in tumorigenesis, with metaplastic, dedifferentiation, and transdifferentiation processes central to the development of pancreatic intraepithelial neoplasia and intraductal papillary neoplasms, precursor lesions to pancreatic ductal adenocarcinoma. In the face of shifting cellular identity, the cell of origin of pancreatic cancer has been difficult to elucidate. However, with the extensive utilization of in vivo lineage-traced mouse models coupled with insights from human samples, it has emerged that the acinar cell is most efficiently able to give rise to both intraductal papillary neoplasms and pancreatic intraepithelial neoplasia but that acinar and ductal cells can undergo malignant transformation to pancreatic ductal adenocarcinoma. In this review, we discuss the cellular reprogramming that takes place in both the normal and malignant pancreas and evaluate the current state of evidence that implicate both the acinar and ductal cell as context-dependent origins of this deadly disease.
Collapse
Affiliation(s)
- Adrien Grimont
- Department of Surgery, Weill Cornell Medicine, New York, New York; Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York
| | - Steven D Leach
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| | - Rohit Chandwani
- Department of Surgery, Weill Cornell Medicine, New York, New York; Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York; Department of Cell and Developmental Biology, Weill Cornell Graduate School of Medical Sciences, New York, New York.
| |
Collapse
|
48
|
Häberle L, Schramm M, Esposito I. [Preoperative diagnostics of pancreatic neoplasms]. DER PATHOLOGE 2021; 42:491-500. [PMID: 34292387 DOI: 10.1007/s00292-021-00972-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/07/2021] [Indexed: 11/30/2022]
Abstract
While patients with clinico-radiologically diagnosed resectable pancreatic cancer usually undergo surgery without preoperative cytological or histopathological diagnostics, patients with inoperable tumors or ambiguous findings in imaging often undergo EUS-FNA or EUS-FNB (endoscopic ultrasound-guided fine-needle aspiration or endoscopic ultrasound-guided fine-needle biopsy). In many cases, this concerns pancreatic cystic lesions, which can range from benign inflammatory pseudocysts to invasive pancreatic cancer emerging from intraductal papillary mucinous neoplasms (IPMNs) or mucinous cystic neoplasms (MCNs). However, the evaluation of EUS-FNA material can be especially hampered by contamination with gastric or enteric cells or mucin, degenerative changes, or low or even no cellularity of the sample. Next-generation-sequencing-based molecular analyses, especially of cystic lesions, can significantly increase the accuracy of EUS-FNA diagnostics of the pancreas. Interpretation of morphological and molecular data considering each case's clinico-radiological context is crucial. While reliable molecular markers for the detection of mucinous and specific nonmucinous pancreatic neoplasms already exist, establishing valid markers for the detection of high-grade lesions is an urgent future goal.
Collapse
Affiliation(s)
- Lena Häberle
- Institut für Pathologie, Heinrich-Heine-Universität und Universitätsklinikum Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Deutschland.
| | - Martin Schramm
- Institut für Pathologie, Heinrich-Heine-Universität und Universitätsklinikum Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Deutschland
| | - Irene Esposito
- Institut für Pathologie, Heinrich-Heine-Universität und Universitätsklinikum Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Deutschland
| |
Collapse
|
49
|
Abstract
Pancreatic cancer is a genetic disease, and the recurrent genetic alterations characteristic of pancreatic cancer indicate the cellular processes that are targeted for malignant transformation. In addition to somatic alterations in the most common driver genes (KRAS, CDKN2A, TP53 and SMAD4), large-scale studies have revealed major roles for genetic alterations of the SWI/SNF and COMPASS complexes, copy number alterations in GATA6 and MYC that partially define phenotypes of pancreatic cancer, and the role(s) of polyploidy and chromothripsis as factors contributing to pancreatic cancer biology and progression. Germline variants that increase the risk of pancreatic cancer continue to be discovered along with a greater appreciation of the features of pancreatic cancers with mismatch repair deficiencies and homologous recombination deficiencies that confer sensitivity to therapeutic targeting. Wild-type KRAS pancreatic cancers, some of which are driven by alternative oncogenic events affecting NRG1 or NTRK1 - for which targeted therapies exist - further underscore that pancreatic cancer is formally entering the era of precision medicine. Given the vast developments within this field, here we review the wide-ranging and most current information related to pancreatic cancer genomics with the goal of integrating this information into a unifying description of the life history of pancreatic cancer.
Collapse
|
50
|
Early detection of pancreatic cancer using DNA-based molecular approaches. Nat Rev Gastroenterol Hepatol 2021; 18:457-468. [PMID: 34099908 DOI: 10.1038/s41575-021-00470-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/13/2021] [Indexed: 02/08/2023]
Abstract
Due to its poor prognosis and the late stage at which it is typically diagnosed, early detection of pancreatic cancer is a pressing clinical problem. Advances in genomic analysis of human pancreatic tissue and other biospecimens such as pancreatic cyst fluid, pancreatic juice and blood have opened the possibility of DNA-based molecular approaches for early detection of pancreatic cancer. In this Review, we discuss and focus on the pathological and molecular features of precancerous lesions of the pancreas, including pancreatic intraepithelial neoplasia, intraductal papillary mucinous neoplasm and mucinous cystic neoplasm, which are target lesions of early detection approaches. We also discuss the most prevalent genetic alterations in these precancerous lesions, including somatic mutations in the oncogenes KRAS and GNAS as well as tumour suppressor genes CDKN2A, TP53 and SMAD4. We highlight the latest discoveries related to genetic heterogeneity and multifocal neoplasia in precancerous lesions. In addition, we review specific approaches, challenges and clinically available assays for early detection of pancreatic cancer using DNA-based molecular techniques. Although detection and risk stratification of precancerous pancreatic neoplasms are difficult problems, progress in this field highlights the promise of molecular approaches for improving survival of patients with this disease.
Collapse
|