1
|
Huang Y, You Z, Chen H, Liu X, Mei G, Liu H, Cao D, Zheng X, Zou G. Morphological, Biochemical, and Cytological Analyses of Deep-Sowing Tolerance in Sorghum Seeds. PLANTS (BASEL, SWITZERLAND) 2025; 14:1366. [PMID: 40364395 PMCID: PMC12073692 DOI: 10.3390/plants14091366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/06/2025] [Accepted: 03/07/2025] [Indexed: 05/15/2025]
Abstract
Deep-sowing tolerance (DST) is a key trait for the field germination of sorghum (Sorghum bicolor L.) seeds, especially in arid and semi-arid regions. However, the mechanisms of DST are poorly understood in sorghum. In this study, we compared two sorghum lines with contrasting tolerance to deep sowing for morphological, biochemical, and cytological changes during germination from deep soil (15 cm). The deep-sowing-tolerant (DT) line (Daluochui) showed 79% seedlings establishment (SE), while the deep-sowing-sensitive (DS) line (Xiaobailiang) showed no established seedlings at 7 days after sowing. Mesocotyl elongation is a key morphological change that accounted for the difference in seedling establishment between DT and DS. The mesocotyl elongation in DT was jointly established by both cell division and expansion. The levels of ethylene, auxin, and spermidine were markedly higher in DT than DS and were also supported by enzyme activity and qPCR, indicating that phytohormones play an important role in seed emergence from deep soil. Furthermore, α-amylose activity, soluble sugar, and ATP contents in DT were markedly higher than in DS, suggesting that there was a better energy supply in DT during deep-sowing emergence. The activities of endo-1,4-β-xylanase and endo-β-mannanase, as well as the expression of the corresponding genes, were higher in DT than DS. This study identified potential key regulatory factors that may control sorghum DST and yield potential, thus, providing new insights into the molecular mechanism of sorghum DST.
Collapse
Affiliation(s)
- Yutao Huang
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.H.); (X.Z.)
| | - Zhaotong You
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.H.); (X.Z.)
| | - Heyun Chen
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.H.); (X.Z.)
| | - Xiuhui Liu
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.H.); (X.Z.)
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Gaofu Mei
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.H.); (X.Z.)
| | - Heqin Liu
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.H.); (X.Z.)
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Dongdong Cao
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.H.); (X.Z.)
| | - Xueqiang Zheng
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.H.); (X.Z.)
| | - Guihua Zou
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.H.); (X.Z.)
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
2
|
MacDonald MT, Mohan VR. Chemical Seed Priming: Molecules and Mechanisms for Enhancing Plant Germination, Growth, and Stress Tolerance. Curr Issues Mol Biol 2025; 47:177. [PMID: 40136431 PMCID: PMC11941364 DOI: 10.3390/cimb47030177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/28/2025] [Accepted: 03/06/2025] [Indexed: 03/27/2025] Open
Abstract
Food security is one of the world's top challenges, specifically considering global issues like climate change. Seed priming is one strategy to improve crop production, typically via increased germination, yields, and/or stress tolerance. Hydropriming, or soaking seeds in water only, is the simplest form of seed priming. However, the addition of certain seed priming agents has resulted in a variety of modified strategies, including osmopriming, halopriming, hormonal priming, PGR priming, nutripriming, and others. Most current research has focused on hormonal and nutripriming. This review will focus on the specific compounds that have been used most often over the past 3 years and the physiological effects that they have had on crops. Over half of recent research has focused on four compounds: (1) salicylic acid, (2) zinc, (3) gibberellic acid, and (4) potassium nitrate. One of the most interesting characteristics of all chemical seed priming agents is that they are exposed only to seeds yet confer benefits throughout plant development. In some cases, such benefits have been passed to subsequent generations, suggesting an epigenetic effect, which is supported by observed changes in DNA methylation and histone modification. This review will summarize the current state of knowledge on molecular changes and physiological mechanisms associated with chemical seed priming agents and discuss avenues for future research.
Collapse
Affiliation(s)
- Mason T. MacDonald
- Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Bible Hill, NS B2N 5E3, Canada;
| | | |
Collapse
|
3
|
Gong W, Proud C, Vinarao R, Fukai S, Mitchell J. Genome-Wide Association Study of Early Vigour-Related Traits for a Rice ( Oryza sativa L.) japonica Diversity Set Grown in Aerobic Conditions. BIOLOGY 2024; 13:261. [PMID: 38666873 PMCID: PMC11048181 DOI: 10.3390/biology13040261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/02/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024]
Abstract
Aerobic rice production is a relatively new system in which rice is direct-seeded and grown in non-flooded but well-watered conditions to improve water productivity. Early vigour-related traits are likely to be important in aerobic conditions. This study aimed to identify quantitative trait loci (QTL) and candidate genes associated with early vigour-related traits in aerobic conditions using a japonica rice diversity set. Field experiments and glasshouse experiments conducted under aerobic conditions revealed significant genotypic variation in early vigour-related traits. Genome-wide association analysis identified 32 QTL associated with early vigour-related traits. Notably, two QTL, qAEV1.5 and qAEV8, associated with both early vigour score and mesocotyl length, explained up to 22.1% of the phenotypic variance. In total, 23 candidate genes related to plant growth development and abiotic stress response were identified in the two regions. This study provides novel insights into the genetic basis of early vigour under aerobic conditions. Validation of identified QTL and candidate genes in different genetic backgrounds is crucial for future studies. Moreover, testing the effect of QTL on yield under different environments would be valuable. After validation, these QTL and genes can be considered for developing markers in marker-assisted selection for aerobic rice production.
Collapse
Affiliation(s)
- Wenliu Gong
- School of Agriculture and Food Sustainability, The University of Queensland, Brisbane, QLD 4072, Australia (J.M.)
| | | | | | | | | |
Collapse
|
4
|
Huang Y, Mei G, Zhu K, Ruan X, Wu H, Cao D. Shading treatment during late stage of seed development promotes subsequent seed germination and seedlings establishment in sunflower. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 341:111996. [PMID: 38272070 DOI: 10.1016/j.plantsci.2024.111996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/15/2024] [Accepted: 01/21/2024] [Indexed: 01/27/2024]
Abstract
During the sunflower seed production process, the role of artificial shading treatment (ST) in seed development and subsequent seed germination remains largely unknown. In the present study, sunflower mother plants were artificially shaded during 1-34 (full period-ST, FST), 1-22 (early period-ST, EST), and 22-34 (late period-ST, LST) days after pollination (DAP), to examine the effects of parental shading on subsequent seed germination. Both FST and EST significantly reduced the photosynthetic efficiency of sunflower, manifested as decreased seed dry weight and unfavorable seed germination. On the contrary, LST remarkably increased seed dry weight and promoted subsequent seed germination and seedling establishment. LST enhanced the activities of several key enzymes involved in triglyceride anabolism and corresponding-genes expression, which in turn increased the total fatty acid contents and altered the fatty acid composition. During early germination, the key enzyme activities involved in triglyceride disintegration and corresponding-gene expressions in LST seeds were apparently higher than those in seeds without the shading treatment (WST). Consistently, LST seeds had significant higher contents of ATP and soluble sugar. Moreover, enzyme activities related to abscisic acid (ABA) biosynthesis and corresponding gene expressions decreased within LST seeds, whereas the enzyme activities and corresponding gene expressions associated with gibberellin (GA) biosynthesis were increased. These results were also evidenced by the reduced ABA content but elevated GA level within LST seeds, giving rise to higher GA/ABA ratio. Our findings suggested that LST could promote sunflower seed development and subsequent seed germination as well as seedling establishment through modulating the dynamic metabolism of triglycerides, fatty acid and GA/ABA balance.
Collapse
Affiliation(s)
- Yutao Huang
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, 310021 Hangzhou, China
| | - Gaofu Mei
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, 310021 Hangzhou, China
| | - Kehua Zhu
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, 310021 Hangzhou, China
| | - Xiaoli Ruan
- Zhejiang Nongke Seed Co.Ltd, 310021 Hangzhou, China
| | - Huaping Wu
- Huzhou Keao Seed Co.Ltd, 313000 Huzhou 313000, China
| | - Dongdong Cao
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, 310021 Hangzhou, China.
| |
Collapse
|
5
|
Huang Y, Mei G, Cao D, Qin Y, Yang L, Ruan X. Spermidine enhances heat tolerance of rice seeds during mid-filling stage and promote subsequent seed germination. FRONTIERS IN PLANT SCIENCE 2023; 14:1230331. [PMID: 37790791 PMCID: PMC10543890 DOI: 10.3389/fpls.2023.1230331] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/25/2023] [Indexed: 10/05/2023]
Abstract
Introduction Heat stress is a vital factor which restricts rice seed quality and yield. However, the response mechanism to heat stress in the mid filling stage of rice seed is unclear. Methods In the present study we integrated phenotypic analysis with biochemical, hormone, and gene expression analysis in order to explore technologies for improving rice seeds heat tolerance and subsequent seed germination. Results Spermidine (Spd) application effectively alleviated the damage of heat stress treatment during mid-filling stage (HTM, 12-20 days after pollination) on seed development, promoted subsequent seed germination and seedlings establishment. Spd significantly increased seed dry weight, starch and amylose contents during seed development under heat stress, and improved seed germinate, seedlings establishment and seedling characteristics during germination time. Biochemical analysis indicated that, HTM significantly decreased the activities of several starch synthase enzymes and led to a decrease in starch content. While Spd treatment significantly enhanced the activities of ADP-glucose pyrophosphorylas and granule-bound starch synthase, as well as the corresponding-genes expressions in HTM rice seeds, resulting in the increases of amylose and total starch contents. In addition, Spd significantly increased the catalase and glutathione reductase activities together with corresponding-genes expressions, and lowered the overaccumulation of H2O2 and malondialdehyde in HTM seeds. In the subsequent seed germination process, HTM+Spd seeds exhibited dramatically up-regulated levels of soluble sugars, glucose, ATP and energy charges. Consistently, HTM+Spd seeds showed significantly increased of α-amylose and α-glucosidase activities as well as corresponding-genes expressions during early germination. Moreover, HTM evidently increased the abscisic acid (ABA) content, decreased the gibberellin (GA) content, and accordingly significantly declined the GA/ABA ratio during early rice seeds germination. However, Spd treatment did not significantly affect the metabolism of GA and ABA in seed germination stage. Discussion The present study suggested that Spd treatment could effectively alleviate the negative impact of HTM on seed development and the subsequent seed germination, which might be closely correlated with starch synthesis and antioxidant defense during seed filling period, starch decomposition and energy supply in seed germination period.
Collapse
Affiliation(s)
- Yutao Huang
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Gaofu Mei
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Dongdong Cao
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yebo Qin
- Zhejiang Agricultural Technology Extension Center, Hangzhou, China
| | - Liu Yang
- Zhejiang Nongke Seed Co.Ltd, Hangzhou, China
| | - Xiaoli Ruan
- Zhejiang Nongke Seed Co.Ltd, Hangzhou, China
| |
Collapse
|
6
|
Pagano A, Kunz L, Dittmann A, Araújo SDS, Macovei A, Shridhar Gaonkar S, Sincinelli F, Wazeer H, Balestrazzi A. Changes in Medicago truncatula seed proteome along the rehydration-dehydration cycle highlight new players in the genotoxic stress response. FRONTIERS IN PLANT SCIENCE 2023; 14:1188546. [PMID: 37409306 PMCID: PMC10319343 DOI: 10.3389/fpls.2023.1188546] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/24/2023] [Indexed: 07/07/2023]
Abstract
Introduction Several molecular aspects underlying the seed response to priming and the resulting vigor profile are still poorly understood. Mechanisms involved in genome maintenance deserve attention since the balance between stimulation of germination and DNA damage accumulation versus active repair is a key determinant for designing successful seed priming protocols. Methods Changes in the Medicago truncatula seed proteome were investigated in this study, using discovery mass spectrometry and label-free quantification, along the rehydration-dehydration cycle of a standard vigorization treatment (hydropriming plus dry-back), and during post-priming imbibition. Resuts and discussion From 2056 to 2190 proteins were detected in each pairwise comparison, among which six were differentially accumulated and 36 were detected only in one condition. The following proteins were selected for further investigation: MtDRP2B (DYNAMIN-RELATED PROTEIN), MtTRXm4 (THIOREDOXIN m4), and MtASPG1 (ASPARTIC PROTEASE IN GUARD CELL 1) showing changes in seeds under dehydration stress; MtITPA (INOSINE TRIPHOSPHATE PYROPHOSPHORYLASE), MtABA2 (ABSCISIC ACID DEFICIENT 2), MtRS2Z32 (SERINE/ARGININE-RICH SPLICING FACTOR RS2Z32), and MtAQR (RNA HELICASE AQUARIUS) that were differentially regulated during post-priming imbibition. Changes in the corresponding transcript levels were assessed by qRT-PCR. In animal cells, ITPA hydrolyses 2'-deoxyinosine triphosphate and other inosine nucleotides, preventing genotoxic damage. A proof of concept was performed by imbibing primed and control M. truncatula seeds in presence/absence of 20 mM 2'-deoxyinosine (dI). Results from comet assay highlighted the ability of primed seeds to cope with dI-induced genotoxic damage. The seed repair response was assessed by monitoring the expression profiles of MtAAG (ALKYL-ADENINE DNA GLYCOSILASE) and MtEndoV (ENDONUCLEASE V) genes that participate in the repair of the mismatched I:T pair in BER (base excision repair) and AER (alternative excision repair) pathways, respectively.
Collapse
Affiliation(s)
- Andrea Pagano
- Department of Biology and Biotechnology ‘L. Spallanzani’, University of Pavia, Pavia, Italy
| | - Laura Kunz
- Functional Genomics Center Zurich (FGCZ), University of Zurich/Eidgenossische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
| | - Antje Dittmann
- Functional Genomics Center Zurich (FGCZ), University of Zurich/Eidgenossische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
| | - Susana De Sousa Araújo
- Association BLC3 - Campus of Technology and Innovation, Centre BIO R&D Unit | North Delegation, Macedo de Cavaleiros, Portugal
| | - Anca Macovei
- Department of Biology and Biotechnology ‘L. Spallanzani’, University of Pavia, Pavia, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | | | - Federico Sincinelli
- Department of Biology and Biotechnology ‘L. Spallanzani’, University of Pavia, Pavia, Italy
| | - Hisham Wazeer
- Department of Biology and Biotechnology ‘L. Spallanzani’, University of Pavia, Pavia, Italy
| | - Alma Balestrazzi
- Department of Biology and Biotechnology ‘L. Spallanzani’, University of Pavia, Pavia, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| |
Collapse
|
7
|
Pagano A, Macovei A, Balestrazzi A. Molecular dynamics of seed priming at the crossroads between basic and applied research. PLANT CELL REPORTS 2023; 42:657-688. [PMID: 36780009 PMCID: PMC9924218 DOI: 10.1007/s00299-023-02988-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
The potential of seed priming is still not fully exploited. Our limited knowledge of the molecular dynamics of seed pre-germinative metabolism is the main hindrance to more effective new-generation techniques. Climate change and other recent global crises are disrupting food security. To cope with the current demand for increased food, feed, and biofuel production, while preserving sustainability, continuous technological innovation should be provided to the agri-food sector. Seed priming, a pre-sowing technique used to increase seed vigor, has become a valuable tool due to its potential to enhance germination and stress resilience under changing environments. Successful priming protocols result from the ability to properly act on the seed pre-germinative metabolism and stimulate events that are crucial for seed quality. However, the technique still requires constant optimization, and researchers are committed to addressing some key open questions to overcome such drawbacks. In this review, an update of the current scientific and technical knowledge related to seed priming is provided. The rehydration-dehydration cycle associated with priming treatments can be described in terms of metabolic pathways that are triggered, modulated, or turned off, depending on the seed physiological stage. Understanding the ways seed priming affects, either positively or negatively, such metabolic pathways and impacts gene expression and protein/metabolite accumulation/depletion represents an essential step toward the identification of novel seed quality hallmarks. The need to expand the basic knowledge on the molecular mechanisms ruling the seed response to priming is underlined along with the strong potential of applied research on primed seeds as a source of seed quality hallmarks. This route will hasten the implementation of seed priming techniques needed to support sustainable agriculture systems.
Collapse
Affiliation(s)
- Andrea Pagano
- Department of Biology and Biotechnology 'L. Spallanzani', Via Ferrata 1, 27100, Pavia, Italy
| | - Anca Macovei
- Department of Biology and Biotechnology 'L. Spallanzani', Via Ferrata 1, 27100, Pavia, Italy
- National Biodiversity Future Center (NBFC), 90133, Palermo, Italy
| | - Alma Balestrazzi
- Department of Biology and Biotechnology 'L. Spallanzani', Via Ferrata 1, 27100, Pavia, Italy.
- National Biodiversity Future Center (NBFC), 90133, Palermo, Italy.
| |
Collapse
|
8
|
Wei J, Zhao H, Liu X, Liu S, Li L, Ma H. Physiological and Biochemical Characteristics of Two Soybean Cultivars with Different Seed Vigor During Seed Physiological Maturity. CURR PROTEOMICS 2021. [DOI: 10.2174/1570164617666200127142051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Background:
The soybean seed’s physiological maturity (R7) period is an extraordinary period
for the formation of seed vigor. However, how proteins and their related metabolic pathways in
seed and leaf change during seed physiological maturity is still not fully understood.
Methods:
In the present study, using a pair of pre-harvest seed deterioration-sensitive and -resistant
soybean cultivars Ningzhen No. 1 and Xiangdou No. 3, the changes were investigated through analyzing
leaf, cotyledon and embryo at the levels of protein, ultrastructure, and physiology and biochemistry.
Results:
Soybean cultivars with stronger photosynthetic capacity in leaf, higher nutrients accumulation
and protein biosynthesis in cotyledon, as well as stronger resistant-pathogen ability and cell stability in
embryo during seed physiological maturity, would produce higher vitality seeds.
Conclusion:
Such a study allows us to further understand the changes at protein, ultrastructure, and
physiology and biochemistry levels in developing seeds during the physiological maturity and provide
a theoretical basis for cultivating soybean cultivars with higher seed vigor.
Collapse
Affiliation(s)
- Jiaping Wei
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Haihong Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaolin Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Sushuang Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Linzhi Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Hao Ma
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
9
|
Smolikova G, Gorbach D, Lukasheva E, Mavropolo-Stolyarenko G, Bilova T, Soboleva A, Tsarev A, Romanovskaya E, Podolskaya E, Zhukov V, Tikhonovich I, Medvedev S, Hoehenwarter W, Frolov A. Bringing New Methods to the Seed Proteomics Platform: Challenges and Perspectives. Int J Mol Sci 2020; 21:E9162. [PMID: 33271881 PMCID: PMC7729594 DOI: 10.3390/ijms21239162] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 12/14/2022] Open
Abstract
For centuries, crop plants have represented the basis of the daily human diet. Among them, cereals and legumes, accumulating oils, proteins, and carbohydrates in their seeds, distinctly dominate modern agriculture, thus play an essential role in food industry and fuel production. Therefore, seeds of crop plants are intensively studied by food chemists, biologists, biochemists, and nutritional physiologists. Accordingly, seed development and germination as well as age- and stress-related alterations in seed vigor, longevity, nutritional value, and safety can be addressed by a broad panel of analytical, biochemical, and physiological methods. Currently, functional genomics is one of the most powerful tools, giving direct access to characteristic metabolic changes accompanying plant development, senescence, and response to biotic or abiotic stress. Among individual post-genomic methodological platforms, proteomics represents one of the most effective ones, giving access to cellular metabolism at the level of proteins. During the recent decades, multiple methodological advances were introduced in different branches of life science, although only some of them were established in seed proteomics so far. Therefore, here we discuss main methodological approaches already employed in seed proteomics, as well as those still waiting for implementation in this field of plant research, with a special emphasis on sample preparation, data acquisition, processing, and post-processing. Thereby, the overall goal of this review is to bring new methodologies emerging in different areas of proteomics research (clinical, food, ecological, microbial, and plant proteomics) to the broad society of seed biologists.
Collapse
Affiliation(s)
- Galina Smolikova
- Department of Plant Physiology and Biochemistry, St. Petersburg State University; 199034 St. Petersburg, Russia; (G.S.); (T.B.); (S.M.)
| | - Daria Gorbach
- Department of Biochemistry, St. Petersburg State University; 199178 St. Petersburg, Russia; (D.G.); (E.L.); (G.M.-S.); (A.S.); (A.T.); (E.R.)
| | - Elena Lukasheva
- Department of Biochemistry, St. Petersburg State University; 199178 St. Petersburg, Russia; (D.G.); (E.L.); (G.M.-S.); (A.S.); (A.T.); (E.R.)
| | - Gregory Mavropolo-Stolyarenko
- Department of Biochemistry, St. Petersburg State University; 199178 St. Petersburg, Russia; (D.G.); (E.L.); (G.M.-S.); (A.S.); (A.T.); (E.R.)
| | - Tatiana Bilova
- Department of Plant Physiology and Biochemistry, St. Petersburg State University; 199034 St. Petersburg, Russia; (G.S.); (T.B.); (S.M.)
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry; 06120 Halle (Saale), Germany
| | - Alena Soboleva
- Department of Biochemistry, St. Petersburg State University; 199178 St. Petersburg, Russia; (D.G.); (E.L.); (G.M.-S.); (A.S.); (A.T.); (E.R.)
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry; 06120 Halle (Saale), Germany
| | - Alexander Tsarev
- Department of Biochemistry, St. Petersburg State University; 199178 St. Petersburg, Russia; (D.G.); (E.L.); (G.M.-S.); (A.S.); (A.T.); (E.R.)
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry; 06120 Halle (Saale), Germany
| | - Ekaterina Romanovskaya
- Department of Biochemistry, St. Petersburg State University; 199178 St. Petersburg, Russia; (D.G.); (E.L.); (G.M.-S.); (A.S.); (A.T.); (E.R.)
| | - Ekaterina Podolskaya
- Institute of Analytical Instrumentation, Russian Academy of Science; 190103 St. Petersburg, Russia;
- Institute of Toxicology, Russian Federal Medical Agency; 192019 St. Petersburg, Russia
| | - Vladimir Zhukov
- All-Russia Research Institute for Agricultural Microbiology; 196608 St. Petersburg, Russia; (V.Z.); (I.T.)
| | - Igor Tikhonovich
- All-Russia Research Institute for Agricultural Microbiology; 196608 St. Petersburg, Russia; (V.Z.); (I.T.)
- Department of Genetics and Biotechnology, St. Petersburg State University; 199034 St. Petersburg, Russia
| | - Sergei Medvedev
- Department of Plant Physiology and Biochemistry, St. Petersburg State University; 199034 St. Petersburg, Russia; (G.S.); (T.B.); (S.M.)
| | - Wolfgang Hoehenwarter
- Proteome Analytics Research Group, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany;
| | - Andrej Frolov
- Department of Biochemistry, St. Petersburg State University; 199178 St. Petersburg, Russia; (D.G.); (E.L.); (G.M.-S.); (A.S.); (A.T.); (E.R.)
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry; 06120 Halle (Saale), Germany
| |
Collapse
|
10
|
Huang K, Zhou S, Shen K, Zhou Y, Wang F, Jiang X. Elucidation of the miR164c-Guided Gene/Protein Interaction Network Controlling Seed Vigor in Rice. FRONTIERS IN PLANT SCIENCE 2020; 11:589005. [PMID: 33281848 PMCID: PMC7688992 DOI: 10.3389/fpls.2020.589005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/26/2020] [Indexed: 05/27/2023]
Abstract
MicroRNAs (miRNAs) play important roles in various aspects of plant physiology and metabolism. The expression level of miR164c is negatively correlated with seed vigor in rice (Oryza sativa L.); however, the mechanism of seed vigor regulation by miR164c remains unknown. Anti-aging capacity is an important indicator of seed vigor. Here, we report an miR164c-guided gene/protein interaction network that regulates the anti-aging ability of rice seeds. Seeds of the wild-type (WT) rice cultivar "Kasalath" and its transgenic derivatives, miR164c-silenced line (MIM164c) and miR164c overexpression line (OE164c), with significant differences in anti-aging capacity, showed significant differences in gene and protein expression levels. The differentially expressed genes (DEGs) or proteins were significantly enriched in six metabolic functional categories related to seed vigor, including "stress response," "protein processing in endoplasmic reticulum (ER)," "embryo development," "serine-type endopeptidase inhibitor," "energy metabolism," and "other." Differences in the expression levels of genes or proteins related to energy metabolism, serine endopeptidase, and stress response in seeds under normal storage conditions may be associated with anti-aging capacity. The results of gene/protein interaction analyses suggest that miR164c first targets PSK5, and the PSK5 protein then interacts with the ubiquitin-associated gene RPS27AA, which simultaneously impacts the genes/proteins in the six above-mentioned functional categories. Expression levels of some of the key genes and proteins in the interaction network were verified by real-time fluorescence quantitative PCR (RT-qPCR) and multiple reaction monitoring mass spectrometry (MRM-MS), respectively. Thus, the present study provides new insights into the miRNA-mediated gene and protein interaction network that regulates seed vigor.
Collapse
Affiliation(s)
- Kerui Huang
- College of Life Sciences, Hunan Normal University, Changsha, China
| | - Shiqi Zhou
- College of Life Sciences, Hunan Normal University, Changsha, China
| | - Kaimin Shen
- College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yan Zhou
- College of Life Sciences, Hunan Normal University, Changsha, China
| | - Feng Wang
- College of Life Sciences, Hunan Normal University, Changsha, China
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, Changsha, China
| | - Xiaocheng Jiang
- College of Life Sciences, Hunan Normal University, Changsha, China
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, Changsha, China
| |
Collapse
|
11
|
Bose U, Juhász A, Broadbent JA, Komatsu S, Colgrave ML. Multi-Omics Strategies for Decoding Smoke-Assisted Germination Pathways and Seed Vigour. Int J Mol Sci 2020; 21:E7512. [PMID: 33053786 PMCID: PMC7593932 DOI: 10.3390/ijms21207512] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 01/02/2023] Open
Abstract
The success of seed germination and the successful establishment of seedlings across diverse environmental conditions depends on seed vigour, which is of both economic and ecologic importance. The smoke-derived exogenous compound karrikins (KARs) and the endogenous plant hormone strigolactone (SL) are two classes of butanolide-containing molecules that follow highly similar signalling pathways to control diverse biological activities in plants. Unravelling the precise mode-of-action of these two classes of molecules in model species has been a key research objective. However, the specific and dynamic expression of biomolecules upon stimulation by these signalling molecules remains largely unknown. Genomic and post-genomic profiling approaches have enabled mining and association studies across the vast genetic diversity and phenotypic plasticity. Here, we review the background of smoke-assisted germination and vigour and the current knowledge of how plants perceive KAR and SL signalling and initiate the crosstalk with the germination-associated hormone pathways. The recent advancement of 'multi-omics' applications are discussed in the context of KAR signalling and with relevance to their adoption for superior agronomic trait development. The remaining challenges and future opportunities for integrating multi-omics datasets associated with their application in KAR-dependent seed germination and abiotic stress tolerance are also discussed.
Collapse
Affiliation(s)
- Utpal Bose
- CSIRO Agriculture and Food, 306 Carmody Rd, St Lucia, QLD 4067, Australia; (U.B.); (J.A.B.)
| | - Angéla Juhász
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, School of Science, Edith Cowan University, Joondalup, WA 6027, Australia;
| | - James A. Broadbent
- CSIRO Agriculture and Food, 306 Carmody Rd, St Lucia, QLD 4067, Australia; (U.B.); (J.A.B.)
| | - Setsuko Komatsu
- Department of Environmental and Food Sciences, Fukui University of Technology, Fukui 910-8505, Japan
| | - Michelle L. Colgrave
- CSIRO Agriculture and Food, 306 Carmody Rd, St Lucia, QLD 4067, Australia; (U.B.); (J.A.B.)
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, School of Science, Edith Cowan University, Joondalup, WA 6027, Australia;
| |
Collapse
|
12
|
Sun H, Zhao W, Liu H, Su C, Qian Y, Jiao F. MaCDSP32 From Mulberry Enhances Resilience Post-drought by Regulating Antioxidant Activity and the Osmotic Content in Transgenic Tobacco. FRONTIERS IN PLANT SCIENCE 2020; 11:419. [PMID: 32373141 PMCID: PMC7177052 DOI: 10.3389/fpls.2020.00419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 03/23/2020] [Indexed: 06/11/2023]
Abstract
Desiccation tolerance is a complex phenomenon that depends on the regulated expression of numerous genes during dehydration and subsequent rehydration. Our previous study identified a chloroplast drought-induced stress protein (MaCDSP32) in mulberry, a thioredoxin (Trx) that is upregulated under drought conditions and is likely to confer drought tolerance to transgenic plants. Mulberry (Morus spp.) is an ecologically and economically important perennial woody plant that is widely used in forest management to combat desertification. However, its stress tolerance physiology is not well understood. In this study, the functions of MaCDSP32 gene were investigated. The expression of MaCDSP32 exhibited a circadian rhythm and was induced by mild and severe water deficits. Under abiotic stress, MaCDSP32-overexpressing plants exhibited increased stress sensitivity with lower water retention capacity and more severe lipid peroxidation than the wild-type (WT) plants. Furthermore, the activity of superoxide dismutase (SOD), the contents of proline and soluble sugars and the expression of stress-related transcription factors were lower in the MaCDSP32-overexpressing plants than in the WT plants. However, the MaCDSP32-overexpressing lines exhibited stronger recovery capability after rewatering post-drought. Moreover, the SOD enzyme activity, proline content, and soluble sugar content were higher in the transgenic plants after rewatering than in the WT plants. The production of the reactive oxygen species (ROS) H2O2 and O2 - was significantly lower in the transgenic plants than in the WT plants. In addition, under abiotic stress, the MaCDSP32-overexpressing lines exhibited improved seed germination and seedling growth, these effects were regulated by a positive redox reaction involving MaCDSP32 and one of its targets. In summary, this study indicated that MaCDSP32 from mulberry regulates plant drought tolerance and ROS homeostasis mainly by controlling SOD enzyme activity and proline and soluble sugar concentrations and that this control might trigger the stress response during seed germination and plant growth. Overall, MaCDSP32 exerts pleiotropic effects on the stress response and stress recovery in plants.
Collapse
|
13
|
Wei J, Liu X, Li L, Zhao H, Liu S, Yu X, Shen Y, Zhou Y, Zhu Y, Shu Y, Ma H. Quantitative proteomic, physiological and biochemical analysis of cotyledon, embryo, leaf and pod reveals the effects of high temperature and humidity stress on seed vigor formation in soybean. BMC PLANT BIOLOGY 2020; 20:127. [PMID: 32216758 PMCID: PMC7098090 DOI: 10.1186/s12870-020-02335-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 03/09/2020] [Indexed: 05/27/2023]
Abstract
BACKGROUND Soybean developing seed is susceptible to high temperature and humidity (HTH) stress in the field, resulting in vigor reduction. Actually, the HTH in the field during soybean seed growth and development would also stress the whole plant, especially on leaf and pod, which in turn affect seed growth and development as well as vigor formation through nutrient supply and protection. RESULTS In the present study, using a pair of pre-harvest seed deterioration-sensitive and -resistant cultivars Ningzhen No. 1 and Xiangdou No. 3, the comprehensive effects of HTH stress on seed vigor formation during physiological maturity were investigated by analyzing cotyledon, embryo, leaf, and pod at the levels of protein, ultrastructure, and physiology and biochemistry. There were 247, 179, and 517 differentially abundant proteins (DAPs) identified in cotyledon, embryo, and leaf of cv. Xiangdou No. 3 under HTH stress, while 235, 366, and 479 DAPs were identified in cotyledon, embryo, and leaf of cv. Ningzhen No. 1. Moreover, 120, 144, and 438 DAPs between the two cultivars were identified in cotyledon, embryo, and leaf under HTH stress, respectively. Moreover, 120, 144, and 438 DAPs between the two cultivars were identified in cotyledon, embryo, and leaf under HTH stress, respectively. Most of the DAPs identified were found to be involved in major metabolic pathways and cellular processes, including signal transduction, tricarboxylic acid cycle, fatty acid metabolism, photosynthesis, protein processing, folding and assembly, protein biosynthesis or degradation, plant-pathogen interaction, starch and sucrose metabolism, and oxidative stress response. The HTH stress had less negative effects on metabolic pathways, cell ultrastructure, and physiology and biochemistry in the four organs of Xiangdou No. 3 than in those of Ningzhen No. 1, leading to produce higher vigor seeds in the former. CONCLUSION High seed vigor formation is enhanced by increasing protein biosynthesis and nutrient storage in cotyledon, stronger stability and viability in embryo, more powerful photosynthetic capacity and nutrient supply in leaf, and stronger protection in pod under HTH stress. These results provide comprehensive characteristics of leaf, pod and seed (cotyledon and embryo) under HTH stress, and some of them can be used as selection index in high seed vigor breeding program in soybean.
Collapse
Affiliation(s)
- Jiaping Wei
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Xiaolin Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Linzhi Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Haihong Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Sushuang Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Xingwang Yu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
- Crop and Soil Sciences Department, North Carolina State University, Raleigh, NC 27695 USA
| | - Yingzi Shen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Yali Zhou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Yajing Zhu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Yingjie Shu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
- College of Agriculture, Anhui Science and Technology University, Fengyang, 233100 China
| | - Hao Ma
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
14
|
Lost in Translation: Physiological Roles of Stored mRNAs in Seed Germination. PLANTS 2020; 9:plants9030347. [PMID: 32164149 PMCID: PMC7154877 DOI: 10.3390/plants9030347] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/04/2020] [Accepted: 03/04/2020] [Indexed: 02/07/2023]
Abstract
Seeds characteristics such as germination ability, dormancy, and storability/longevity are important traits in agriculture, and various genes have been identified that are involved in its regulation at the transcriptional and post-transcriptional level. A particularity of mature dry seeds is a special mechanism that allows them to accumulate more than 10,000 mRNAs during seed maturation and use them as templates to synthesize proteins during germination. Some of these stored mRNAs are also referred to as long-lived mRNAs because they remain translatable even after seeds have been exposed to long-term stressful conditions. Mature seeds can germinate even in the presence of transcriptional inhibitors, and this ability is acquired in mid-seed development. The type of mRNA that accumulates in seeds is affected by the plant hormone abscisic acid and environmental factors, and most of them accumulate in seeds in the form of monosomes. Release of seed dormancy during after-ripening involves the selective oxidation of stored mRNAs and this prevents translation of proteins that function in the suppression of germination after imbibition. Non-selective oxidation and degradation of stored mRNAs occurs during long-term storage of seeds so that the quality of stored RNAs is linked to the degree of seed deterioration. After seed imbibition, a population of stored mRNAs are selectively loaded into polysomes and the mRNAs, involved in processes such as redox, glycolysis, and protein synthesis, are actively translated for germination.
Collapse
|
15
|
Yan H, Jia S, Mao P. Melatonin Priming Alleviates Aging-Induced Germination Inhibition by Regulating β-oxidation, Protein Translation, and Antioxidant Metabolism in Oat ( Avena sativa L.) Seeds. Int J Mol Sci 2020; 21:ijms21051898. [PMID: 32164355 PMCID: PMC7084597 DOI: 10.3390/ijms21051898] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/06/2020] [Accepted: 03/07/2020] [Indexed: 12/20/2022] Open
Abstract
Although melatonin has been reported to play an important role in regulating metabolic events under adverse stresses, its underlying mechanisms on germination in aged seeds remain unclear. This study was conducted to investigate the effect of melatonin priming (MP) on embryos of aged oat seeds in relation to germination, ultrastructural changes, antioxidant responses, and protein profiles. Proteomic analysis revealed, in total, 402 differentially expressed proteins (DEPs) in normal, aged, and aged + MP embryos. The downregulated DEPs in aged embryos were enriched in sucrose metabolism, glycolysis, β-oxidation of lipid, and protein synthesis. MP (200 μM) turned four downregulated DEPs into upregulated DEPs, among which, especially 3-ketoacyl-CoA thiolase-like protein (KATLP) involved in the β-oxidation pathway played a key role in maintaining TCA cycle stability and providing more energy for protein translation. Furthermore, it was found that MP enhanced antioxidant capacity in the ascorbate-glutathione (AsA-GSH) system, declined reactive oxygen species (ROS), and improved cell ultrastructure. These results indicated that the impaired germination and seedling growth of aged seeds could be rescued to a certain level by melatonin, predominantly depending on β-oxidation, protein translation, and antioxidant protection of AsA-GSH. This work reveals new insights into melatonin-mediated mechanisms from protein profiles that occur in embryos of oat seeds processed by both aging and priming.
Collapse
Affiliation(s)
- Huifang Yan
- Forage Seed Laboratory, China Agricultural University, Beijing 100193, China; (H.Y.); (S.J.)
- Grassland Agri-husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Shangang Jia
- Forage Seed Laboratory, China Agricultural University, Beijing 100193, China; (H.Y.); (S.J.)
- Key Laboratory of Pratacultural Science, Beijing Municipality, China Agricultural University, Beijing 100193, China
| | - Peisheng Mao
- Forage Seed Laboratory, China Agricultural University, Beijing 100193, China; (H.Y.); (S.J.)
- Key Laboratory of Pratacultural Science, Beijing Municipality, China Agricultural University, Beijing 100193, China
- Correspondence: ; Tel.: +86-010-62733311
| |
Collapse
|
16
|
Godwin J, Farrona S. Plant Epigenetic Stress Memory Induced by Drought: A Physiological and Molecular Perspective. Methods Mol Biol 2020; 2093:243-259. [PMID: 32088901 DOI: 10.1007/978-1-0716-0179-2_17] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Drought stress is one of the most common stresses encountered by crops and other plants and leads to significant productivity losses. It commonly happens that drought stress occurs more than once during the plant's life cycle. Plants suffering from drought stress can adapt their life strategies to acclimate and survive in many different ways. Interestingly, some plants have evolved a stress response strategy referred to as stress memory which leads to an enhanced response the next time the stress is encountered. The acquisition of stress memory leads to a reprogrammed transcriptional response during subsequent stress and subsequent changes both at the physiological and molecular level. Recent advances in understanding chromatin dynamics have demonstrated the involvement of chromatin modifications, especially histone marks, associated with drought stress-responsive memory genes and subsequent enhanced transcriptional responses to repeated drought stress. In this chapter, we describe recent progress in this area and summarize techniques for the study of plant epigenetic responses to stress, including the roles of ABA and transcription factors in superinduced transcriptional activation during recurrent drought stress. We also review the possible use of seed priming to induce stress memory later in the plant life cycle. Finally, we discuss the potential implications of understanding the epigenetic mechanisms involved in plant stress memory for future applications in crop improvement and drought resistance.
Collapse
Affiliation(s)
- James Godwin
- Plant and AgriBiosciences Research Centre, Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Sara Farrona
- Plant and AgriBiosciences Research Centre, Ryan Institute, National University of Ireland Galway, Galway, Ireland.
| |
Collapse
|
17
|
Ebone LA, Caverzan A, Chavarria G. Physiologic alterations in orthodox seeds due to deterioration processes. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 145:34-42. [PMID: 31665665 DOI: 10.1016/j.plaphy.2019.10.028] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 05/22/2023]
Abstract
Seed deterioration is a partially elucidated phenomenon that happen during the life of the seed. This review describes the processes that lead to seed deterioration, including loss of seed protection capacity against reactive oxygen species (ROS), damage to the plasma membrane, consumption of reserves, and damage to genetic material. A hypothesis of how seed deterioration occurs was also addressed; in this hypothesis, seed deterioration was divided into three phases. The first is the beginning of deterioration, with a slight reduction of vigor caused by the reactions of reducing sugars with antioxidant enzymes and genetic material. In the second, the cell shows oxidative damages, causing lipid peroxidation, which leads to the leaching of solutes, the formation of malondialdehyde, and, consequently, an increase in damages to genetic material. In the third phase, there is cell collapse with mitochondrial membrane deconstruction and a high accumulation of reactive oxygen species, malondialdehyde, and reducing sugars.
Collapse
Affiliation(s)
- Luciano Antônio Ebone
- Laboratory of Plant Physiology, Agronomy Post-Graduate Program, University of Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil.
| | - Andréia Caverzan
- Laboratory of Plant Physiology, Agronomy Post-Graduate Program, University of Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil.
| | - Geraldo Chavarria
- Laboratory of Plant Physiology, Agronomy Post-Graduate Program, University of Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil.
| |
Collapse
|
18
|
Domergue JB, Abadie C, Limami A, Way D, Tcherkez G. Seed quality and carbon primary metabolism. PLANT, CELL & ENVIRONMENT 2019; 42:2776-2788. [PMID: 31323691 DOI: 10.1111/pce.13618] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/05/2019] [Accepted: 07/13/2019] [Indexed: 05/28/2023]
Abstract
Improving seed quality is amongst the most important challenges of contemporary agriculture. In fact, using plant varieties with better germination rates that are more tolerant to stress during seedling establishment may improve crop yield considerably. Therefore, intense efforts are currently being devoted to improve seed quality in many species, mostly using genomics tools. However, despite its considerable importance during seed imbibition and germination processes, primary carbon metabolism in seeds is less studied. Our knowledge of the physiology of seed respiration and energy generation and the impact of these processes on seed performance have made limited progress over the past three decades. In particular, (isotope-assisted) metabolomics of seeds has only been assessed occasionally, and there is limited information on possible quantitative relationships between metabolic fluxes and seed quality. Here, we review the recent literature and provide an overview of potential links between metabolic efficiency, metabolic biomarkers, and seed quality and discuss implications for future research, including a climate change context.
Collapse
Affiliation(s)
- Jean-Baptiste Domergue
- IRHS Institut de Recherche en Horticultures et Séances, UMR 1345, INRA, Agrocampus-Ouest, Université d'Angers SFR 4207 QuaSaV, Beaucouzé, 49070, France
| | - Cyril Abadie
- IRHS Institut de Recherche en Horticultures et Séances, UMR 1345, INRA, Agrocampus-Ouest, Université d'Angers SFR 4207 QuaSaV, Beaucouzé, 49070, France
| | - Anis Limami
- IRHS Institut de Recherche en Horticultures et Séances, UMR 1345, INRA, Agrocampus-Ouest, Université d'Angers SFR 4207 QuaSaV, Beaucouzé, 49070, France
| | - Danielle Way
- Department of Biology, University of Western Ontario, London, ON, N6A 5B7, Canada
- Research School of Biology, ANU Joint College of Sciences, Australian National University, Canberra, ACT, 2601, Australia
- Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA
| | - Guillaume Tcherkez
- IRHS Institut de Recherche en Horticultures et Séances, UMR 1345, INRA, Agrocampus-Ouest, Université d'Angers SFR 4207 QuaSaV, Beaucouzé, 49070, France
- Research School of Biology, ANU Joint College of Sciences, Australian National University, Canberra, ACT, 2601, Australia
| |
Collapse
|
19
|
Wang M, Qu H, Zhang H, Liu S, Li Y, Zhang C. Hormone and RNA-seq analyses reveal the mechanisms underlying differences in seed vigour at different maize ear positions. PLANT MOLECULAR BIOLOGY 2019; 99:461-476. [PMID: 30710225 DOI: 10.1007/s11103-019-00830-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 01/22/2019] [Indexed: 06/09/2023]
Abstract
ABA/GA4 ratio, stress resistance, carbon and nitrogen metabolism, and chromatin structure play important roles in vigour differences of seeds located at different maize ear positions. Seed vigour, which ensures rapid and uniform field emergence across diverse environments, differs at different maize ear positions. However, little is known regarding the associated mechanisms. In this study, we determined that seed vigour, stress resistance, and carbon and nitrogen metabolism were higher in seeds from middle and bottom section of the ear, while the ABA/GA4 ratio in the embryos was significantly lower. Compared with the seeds subjected to repeated pollination during silking, less variation in seed vigour and the ABA/GA4 ratio in the embryos was observed in seeds at different ear positions subjected to single pollination after complete silking. This indicated that single pollination can reduce, but not eliminate, the differences in seed vigour at different ear positions. RNA-seq analysis indicated that the seed vigour differences at the different locations of the maize ears of the single pollinated treatment were related to carbon and nitrogen metabolism. In contrast, the differences in seed vigour under repeated pollination were related to chromatin structure. The present study contributes to our understanding of the mechanisms underlying differences in seed vigour at different positions on the maize ear.
Collapse
Affiliation(s)
- Mingming Wang
- State Key Laboratory of Crop Biology, Agronomy College, Shandong Agricultural University, Taian, 271018, China
| | - Haibin Qu
- State Key Laboratory of Crop Biology, Agronomy College, Shandong Agricultural University, Taian, 271018, China
| | - Huidi Zhang
- State Key Laboratory of Crop Biology, Agronomy College, Shandong Agricultural University, Taian, 271018, China
| | - Shuai Liu
- State Key Laboratory of Crop Biology, Agronomy College, Shandong Agricultural University, Taian, 271018, China
| | - Yan Li
- State Key Laboratory of Crop Biology, Agronomy College, Shandong Agricultural University, Taian, 271018, China.
| | - Chunqing Zhang
- State Key Laboratory of Crop Biology, Agronomy College, Shandong Agricultural University, Taian, 271018, China.
| |
Collapse
|
20
|
He Y, Cheng J, He Y, Yang B, Cheng Y, Yang C, Zhang H, Wang Z. Influence of isopropylmalate synthase OsIPMS1 on seed vigour associated with amino acid and energy metabolism in rice. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:322-337. [PMID: 29947463 PMCID: PMC6335077 DOI: 10.1111/pbi.12979] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 06/24/2018] [Indexed: 05/21/2023]
Abstract
Seed vigour is an imperative trait for the direct seeding of rice. Isopropylmalate synthase (IPMS) catalyses the committed step of leucine (Leu) biosynthesis, but its effect on seed vigour remains unclear. In this study, rice OsIPMS1 and OsIPMS2 was cloned, and the roles of OsIPMS1 in seed vigour were mainly investigated. OsIPMS1 and OsIPMS2 catalyse Leu biosynthesis, and Leu feedback inhibits their IPMS activities. Disruption of OsIPMS1 resulted in low seed vigour under various conditions, which might be tightly associated with the reduction of amino acids in germinating seeds. Eleven amino acids that associated with stress tolerance, GA biosynthesis and tricarboxylic acid (TCA) cycle were significantly reduced in osipms1 mutants compared with those in wide type (WT) during seed germination. Transcriptome analysis indicated that a total of 1209 differentially expressed genes (DEGs) were altered in osipms1a mutant compared with WT at the early germination stage, wherein most of the genes were involved in glycolysis/gluconeogenesis, protein processing, pyruvate, carbon, fructose and mannose metabolism. Further analysis confirmed that the regulation of OsIPMS1 in seed vigour involved in starch hydrolysis, glycolytic activity and energy levels in germinating seeds. The effects of seed priming were tightly associated with the mRNA levels of OsIPMS1 in priming seeds. The OsIPMS1 might be used as a biomarker to determine the best stop time-point of seed priming in rice. This study provides novel insights into the function of OsIPMS1 on seed vigour and should have practical applications in seed priming of rice.
Collapse
Affiliation(s)
- Yongqi He
- The Laboratory of Seed Science and TechnologyState Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Jinping Cheng
- The Laboratory of Seed Science and TechnologyState Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Ying He
- The Laboratory of Seed Science and TechnologyState Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Bin Yang
- The Laboratory of Seed Science and TechnologyState Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Yanhao Cheng
- The Laboratory of Seed Science and TechnologyState Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Can Yang
- The Laboratory of Seed Science and TechnologyState Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Hongsheng Zhang
- The Laboratory of Seed Science and TechnologyState Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Zhoufei Wang
- The Laboratory of Seed Science and TechnologyState Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
- The Laboratory of Seed Science and TechnologyGuangdong Key Laboratory of Plant Molecular BreedingState Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
| |
Collapse
|
21
|
Mamontova T, Lukasheva E, Mavropolo-Stolyarenko G, Proksch C, Bilova T, Kim A, Babakov V, Grishina T, Hoehenwarter W, Medvedev S, Smolikova G, Frolov A. Proteome Map of Pea ( Pisum sativum L.) Embryos Containing Different Amounts of Residual Chlorophylls. Int J Mol Sci 2018; 19:E4066. [PMID: 30558315 PMCID: PMC6320946 DOI: 10.3390/ijms19124066] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/11/2018] [Accepted: 12/13/2018] [Indexed: 02/06/2023] Open
Abstract
Due to low culturing costs and high seed protein contents, legumes represent the main global source of food protein. Pea (Pisum sativum L.) is one of the major legume crops, impacting both animal feed and human nutrition. Therefore, the quality of pea seeds needs to be ensured in the context of sustainable crop production and nutritional efficiency. Apparently, changes in seed protein patterns might directly affect both of these aspects. Thus, here, we address the pea seed proteome in detail and provide, to the best of our knowledge, the most comprehensive annotation of the functions and intracellular localization of pea seed proteins. To address possible intercultivar differences, we compared seed proteomes of yellow- and green-seeded pea cultivars in a comprehensive case study. The analysis revealed totally 1938 and 1989 nonredundant proteins, respectively. Only 35 and 44 proteins, respectively, could be additionally identified after protamine sulfate precipitation (PSP), potentially indicating the high efficiency of our experimental workflow. Totally 981 protein groups were assigned to 34 functional classes, which were to a large extent differentially represented in yellow and green seeds. Closer analysis of these differences by processing of the data in KEGG and String databases revealed their possible relation to a higher metabolic status and reduced longevity of green seeds.
Collapse
Affiliation(s)
- Tatiana Mamontova
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany.
- Department of Biochemistry, St. Petersburg State University, St. Petersburg 199178, Russia.
| | - Elena Lukasheva
- Department of Biochemistry, St. Petersburg State University, St. Petersburg 199178, Russia.
| | | | - Carsten Proksch
- Proteome Analytics, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany.
| | - Tatiana Bilova
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany.
- Department of Plant Physiology and Biochemistry, St. Petersburg State University, St. Petersburg 199034, Russia.
| | - Ahyoung Kim
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany.
| | - Vladimir Babakov
- Research Institute of Hygiene, Occupational Pathology, and Human Ecology, Federal Medicobiological Agency, 188663 Kapitolovo, Russia.
| | - Tatiana Grishina
- Department of Biochemistry, St. Petersburg State University, St. Petersburg 199178, Russia.
| | - Wolfgang Hoehenwarter
- Proteome Analytics, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany.
| | - Sergei Medvedev
- Department of Plant Physiology and Biochemistry, St. Petersburg State University, St. Petersburg 199034, Russia.
| | - Galina Smolikova
- Department of Plant Physiology and Biochemistry, St. Petersburg State University, St. Petersburg 199034, Russia.
| | - Andrej Frolov
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany.
- Department of Biochemistry, St. Petersburg State University, St. Petersburg 199178, Russia.
| |
Collapse
|
22
|
Satour P, Youssef C, Châtelain E, Vu BL, Teulat B, Job C, Job D, Montrichard F. Patterns of protein carbonylation during Medicago truncatula seed maturation. PLANT, CELL & ENVIRONMENT 2018; 41:2183-2194. [PMID: 29543987 DOI: 10.1111/pce.13194] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 03/05/2018] [Accepted: 03/07/2018] [Indexed: 06/08/2023]
Abstract
Seeds mainly acquire their physiological quality during maturation, whereas oxidative conditions reign within cells triggering protein carbonylation. To better understand the role of this protein modification in legume seeds, we compared by proteomics patterns of carbonylated proteins in maturing seeds of Medicago truncatula naturally desiccated or prematurely dried, a treatment known to impair seed quality acquisition. In both cases, protein carbonylation increased in these seeds, accompanying water removal. We identified several proteins whose extent of carbonylation varied when comparing natural desiccation and premature drying and that could therefore be responsible for the impairment of seed quality acquisition or expression. In particular, we focused on PM34, a protein specific to seeds exhibiting a high sensitivity to carbonylation and of which function in dicotyledons was not known before. PM34 proved to have a cellulase activity presumably associated with cell elongation, a process required for germination and subsequent seedling growth. We discuss the possibility that PM34 (abundance or redox state) could be used to assess crop seed quality.
Collapse
Affiliation(s)
- Pascale Satour
- IRHS, Université d'Angers, INRA, Agrocampus-Ouest, SFR 4207 QUASAV, 49071, Beaucouzé, France
| | - Chvan Youssef
- IRHS, Université d'Angers, INRA, Agrocampus-Ouest, SFR 4207 QUASAV, 49071, Beaucouzé, France
| | - Emilie Châtelain
- IRHS, Université d'Angers, INRA, Agrocampus-Ouest, SFR 4207 QUASAV, 49071, Beaucouzé, France
| | - Benoît Ly Vu
- IRHS, Université d'Angers, INRA, Agrocampus-Ouest, SFR 4207 QUASAV, 49071, Beaucouzé, France
| | - Béatrice Teulat
- IRHS, Université d'Angers, INRA, Agrocampus-Ouest, SFR 4207 QUASAV, 49071, Beaucouzé, France
| | - Claudette Job
- Laboratoire mixte CNRS/Université Claude Bernard Lyon/INSA/Bayer CropScience-UMR 5240, Bayer CropScience-14, rue Pierre Baizet, 69263, Lyon cedex 9, France
| | - Dominique Job
- Laboratoire mixte CNRS/Université Claude Bernard Lyon/INSA/Bayer CropScience-UMR 5240, Bayer CropScience-14, rue Pierre Baizet, 69263, Lyon cedex 9, France
| | - Françoise Montrichard
- IRHS, Université d'Angers, INRA, Agrocampus-Ouest, SFR 4207 QUASAV, 49071, Beaucouzé, France
| |
Collapse
|
23
|
Rathi D, Pareek A, Gayali S, Chakraborty S, Chakraborty N. Variety-specific nutrient acquisition and dehydration-induced proteomic landscape of grasspea (Lathyrus sativus L.). J Proteomics 2018; 183:45-57. [PMID: 29852296 DOI: 10.1016/j.jprot.2018.05.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/30/2018] [Accepted: 05/23/2018] [Indexed: 12/15/2022]
Abstract
Grasspea, a stress-resilient pulse crop, has largely remained outside the realm of phytochemical and functional genomics analyses despite its high nutritional significance. To unravel the intervarietal variability in nutrient acquisition of grasspea, we conducted a series of physicochemical experiments using two cultivated varieties, LP-24 and Prateek. The analyses revealed high percentage of starch, cellulose, peroxides, carotenoids, phytic acid and minerals in cv. LP-24, whereas large amounts of protein, soluble carbohydrates and antioxidants in Prateek. To dissect the mechanism of stress tolerance, 3-week-old seedlings of cv. LP-24 and Prateek were afflicted with dehydration for a period of 144 h. The physicochemical indices indicated better adaptation in cv. LP-24, with high abundance of proline, phenolics and flavonoids. Dehydration-responsive proteome landscape of cv. LP-24 revealed 152 proteins with variance at a statistically 94% significance level. The comparative proteomics analysis led to the identification of 120 dehydration-responsive proteins (DRPs), most of which were associated with carbohydrate metabolism, amino acid synthesis, antioxidant reactions and cell defense. We report, for the first time, the dehydration-induced proteome landscape of grasspea, whose genome is yet to be sequenced. The results provide unique insights into variety-specific nutrient acquisition attributes and dehydration-tolerance of grasspea. BIOLOGICAL SIGNIFICANCE Grasspea is a great source of protein and antioxidants with nitrogen fixing ability, besides its tolerance to multivariate environmental stress as compared to major legume species. This represents the first report on nutrient profile and health-promoting attributes of grasspea. The cultivars under study are nutritionally enriched that possess high protein, amino acids and health-promoting factors and may therefore be projected as a vital part of a healthy diet. Grasspea is known for its hardy nature, water-use efficiency and efficacy as a stress-tolerant pulse. Further, this study portrays the dehydration-responsive proteomic landscape of grasspea. The proteomics analyses provide crucial insights into the dehydration response, presumably orchestrated by proteins belonging to an array of functional classes including photosynthesis, protein and RNA metabolism, protein folding, antioxidant enzymes and defense. The interplay of the differentially regulated proteins might aid in reinforcing the mechanisms of dehydration avoidance and/or tolerance.
Collapse
Affiliation(s)
- Divya Rathi
- National Institute of Plant Genome Research, Jawaharlal Nehru University, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Akanksha Pareek
- National Institute of Plant Genome Research, Jawaharlal Nehru University, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Saurabh Gayali
- National Institute of Plant Genome Research, Jawaharlal Nehru University, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Subhra Chakraborty
- National Institute of Plant Genome Research, Jawaharlal Nehru University, Aruna Asaf Ali Marg, New Delhi 110067, India.
| | - Niranjan Chakraborty
- National Institute of Plant Genome Research, Jawaharlal Nehru University, Aruna Asaf Ali Marg, New Delhi 110067, India.
| |
Collapse
|
24
|
Wang W, He A, Peng S, Huang J, Cui K, Nie L. The Effect of Storage Condition and Duration on the Deterioration of Primed Rice Seeds. FRONTIERS IN PLANT SCIENCE 2018; 9:172. [PMID: 29487612 PMCID: PMC5816925 DOI: 10.3389/fpls.2018.00172] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 01/30/2018] [Indexed: 05/24/2023]
Abstract
Seed priming is a successful practice to improve crop establishment under adverse environment. However, reduced longevity of primed rice (Oryza sativa L.) seeds during storage limited the adoption of this technique. Present study investigated the effect of temperature, relative air humidity (RH) and oxygen on the longevity of primed rice seeds in a range of 60 days storage. In addition, the biochemical and morphological mechanisms associated with deterioration of primed seeds during storage were explored. Three types of priming treated rice seeds and one non-primed control were stored under (1) low temperature-vacuum (LT-V), (2) room temperature-vacuum (RT-V), (3) room temperature-aerobic-low RH (RT-A-LH) and (4) room temperature-aerobic- high RH (RT-A-HH) for 0, 15, 30, 45, and 60 days. The results showed that storage of seeds under different conditions for 15-60 days did not influence the longevity of non-primed rice seeds. Meanwhile, the viability of primed rice seeds did not reduce when stored under LT-V, RT-V, and RT-A-LH, but was significantly reduced under RT-A-HH. Under vacuum condition, the increases of storage temperature (30°C) did not reduce the longevity of primed seeds. Likewise, the oxygen did not influence the longevity of primed rice seeds stored under low RH. Nevertheless, increase of RH significantly reduced the viability of primed seeds stored for 15-60 days. Reduced starch metabolism, the consumption of starch reserves in rice endosperms, the accumulation of malondialdehyde and the decreases of antioxidant enzyme activities might be associated with the deterioration of primed rice seeds during storage. In conclusion, storage of primed seeds under high RH condition beyond 15 days is deteriorative for germination and growth of rice. The primed rice seeds are recommended to store at vacuum or low RH or low temperature condition to ensure good crop establishment.
Collapse
Affiliation(s)
- Weiqin Wang
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Aibin He
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shaobing Peng
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jianliang Huang
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Kehui Cui
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Lixiao Nie
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou, China
| |
Collapse
|
25
|
Villegente M, Marmey P, Job C, Galland M, Cueff G, Godin B, Rajjou L, Balliau T, Zivy M, Fogliani B, Sarramegna-Burtet V, Job D. A Combination of Histological, Physiological, and Proteomic Approaches Shed Light on Seed Desiccation Tolerance of the Basal Angiosperm Amborella trichopoda. Proteomes 2017; 5:E19. [PMID: 28788068 PMCID: PMC5620536 DOI: 10.3390/proteomes5030019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 07/22/2017] [Accepted: 07/25/2017] [Indexed: 12/13/2022] Open
Abstract
Desiccation tolerance allows plant seeds to remain viable in a dry state for years and even centuries. To reveal potential evolutionary processes of this trait, we have conducted a shotgun proteomic analysis of isolated embryo and endosperm from mature seeds of Amborella trichopoda, an understory shrub endemic to New Caledonia that is considered to be the basal extant angiosperm. The present analysis led to the characterization of 415 and 69 proteins from the isolated embryo and endosperm tissues, respectively. The role of these proteins is discussed in terms of protein evolution and physiological properties of the rudimentary, underdeveloped, Amborella embryos, notably considering that the acquisition of desiccation tolerance corresponds to the final developmental stage of mature seeds possessing large embryos.
Collapse
Affiliation(s)
- Matthieu Villegente
- Institut des Sciences Exactes et Appliquées (EA 7484), Université de Nouvelle-Calédonie, BP R4, 98851 Nouméa, Nouvelle-Calédonie.
| | - Philippe Marmey
- Institut de recherche pour le développement (IRD), UMR Diversité, Adaptation et Développement des plantes (DIADE), BP A5, 98848 Nouméa Cedex, Nouvelle-Calédonie.
| | - Claudette Job
- Centre National de la Recherche Scientifique (CNRS), CNRS-Université Claude Bernard Lyon-Institut National des Sciences Appliquées-Bayer CropScience (UMR5240), Bayer CropScience, F-69263 Lyon CEDEX 9, France.
| | - Marc Galland
- IJPB, Institut Jean-Pierre Bourgin (Institut National de la Rechercherche Agronomique(INRA), AgroParisTech, CNRS, Université Paris-Saclay) ; « Saclay Plant Sciences (SPS) » - RD10, F-78026 Versailles, France.
| | - Gwendal Cueff
- IJPB, Institut Jean-Pierre Bourgin (Institut National de la Rechercherche Agronomique(INRA), AgroParisTech, CNRS, Université Paris-Saclay) ; « Saclay Plant Sciences (SPS) » - RD10, F-78026 Versailles, France.
- AgroParisTech, Département « Science de la Vie et Santé », Unité de Formation-Recherche en Physiologie végétale, F-75231 Paris, France.
| | - Béatrice Godin
- IJPB, Institut Jean-Pierre Bourgin (Institut National de la Rechercherche Agronomique(INRA), AgroParisTech, CNRS, Université Paris-Saclay) ; « Saclay Plant Sciences (SPS) » - RD10, F-78026 Versailles, France.
- AgroParisTech, Département « Science de la Vie et Santé », Unité de Formation-Recherche en Physiologie végétale, F-75231 Paris, France.
| | - Loïc Rajjou
- IJPB, Institut Jean-Pierre Bourgin (Institut National de la Rechercherche Agronomique(INRA), AgroParisTech, CNRS, Université Paris-Saclay) ; « Saclay Plant Sciences (SPS) » - RD10, F-78026 Versailles, France.
- AgroParisTech, Département « Science de la Vie et Santé », Unité de Formation-Recherche en Physiologie végétale, F-75231 Paris, France.
| | - Thierry Balliau
- Plateforme d'Analyse Protéomique de Paris Sud Ouest (PAPPSO), GQE-Le Moulon, INRA, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, F-91190 Gif-sur-Yvette, France.
| | - Michel Zivy
- Plateforme d'Analyse Protéomique de Paris Sud Ouest (PAPPSO), GQE-Le Moulon, INRA, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, F-91190 Gif-sur-Yvette, France.
| | - Bruno Fogliani
- Institut des Sciences Exactes et Appliquées (EA 7484), Université de Nouvelle-Calédonie, BP R4, 98851 Nouméa, Nouvelle-Calédonie.
- Institut Agronomique Néo-Calédonien (IAC), Équipe ARBOREAL, Agriculture Biodiversité et Valorisation, BP 73 Port Laguerre, 98890 Païta, Nouvelle-Calédonie.
| | - Valérie Sarramegna-Burtet
- Institut des Sciences Exactes et Appliquées (EA 7484), Université de Nouvelle-Calédonie, BP R4, 98851 Nouméa, Nouvelle-Calédonie.
| | - Dominique Job
- Centre National de la Recherche Scientifique (CNRS), CNRS-Université Claude Bernard Lyon-Institut National des Sciences Appliquées-Bayer CropScience (UMR5240), Bayer CropScience, F-69263 Lyon CEDEX 9, France.
- AgroParisTech, Département « Science de la Vie et Santé », Unité de Formation-Recherche en Physiologie végétale, F-75231 Paris, France.
| |
Collapse
|
26
|
Zhang H, Zhou KX, Wang WQ, Liu SJ, Song SQ. Proteome analysis reveals an energy-dependent central process for Populus×canadensis seed germination. JOURNAL OF PLANT PHYSIOLOGY 2017; 213:134-147. [PMID: 28384531 DOI: 10.1016/j.jplph.2017.03.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/15/2017] [Accepted: 03/15/2017] [Indexed: 06/07/2023]
Abstract
Poplar (Populus×canadensis) seeds rapidly germinated in darkness at 10, 15, and 20°C and reached 50% seed germination after about 22, 4.5, and 3.5h, respectively. Germination of poplar seeds was markedly inhibited by abscisic acid (ABA) at 50μM and cycloheximide (CHX) at 100μM, and these inhibitive roles were temperature-dependent. In the present study, mature poplar seeds were used to investigate the differentially changed proteome of seeds germinating in water, ABA, and CHX. A total of 130 protein spots showed a significant change (1.5-fold increase/decrease, P<0.05) in abundance, and 101 protein spots were successfully identified. Most of the proteins were associated with cell defense and rescue (21%), storage proteins (21%), protein synthesis and destination (20%), metabolism (16%), and energy (14%). The germination of poplar seeds is closely related with the increase in those proteins involved in amino acid and lipid metabolism, the tricarboxylic acid cycle and pentose phosphate pathway, protein synthesis and destination, cell defense and rescue, and degradation of storage proteins. ABA and CHX inhibit the germination of poplar seeds by decreasing the protein abundance associated with protein proteolysis, protein folding, and storage proteins. We conclude that poplar seed germination is an energy-dependent active process, and is accompanied by increasing amino acid activation, protein synthesis and destination, as well as cell defense and rescue, and degradation of storage proteins.
Collapse
Affiliation(s)
- Hong Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Ke-Xin Zhou
- Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, Nanjing 210042, China
| | - Wei-Qing Wang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Shu-Jun Liu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Song-Quan Song
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| |
Collapse
|
27
|
Wu X, Ning F, Hu X, Wang W. Genetic Modification for Improving Seed Vigor Is Transitioning from Model Plants to Crop Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:8. [PMID: 28149305 PMCID: PMC5241287 DOI: 10.3389/fpls.2017.00008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 01/03/2017] [Indexed: 05/09/2023]
Abstract
Although seed vigor is a complex physiological trait controlled by quantitative trait loci, technological advances in the laboratory are being translated into applications for enhancing seed vigor in crop plants. In this article, we summarize and discuss pioneering work in the genetic modification of seed vigor, especially through the over-expression of protein L-isoaspartyl methyltransferase (PIMT, EC 2.1.1.77) in seeds. The impressive success in improving rice seed vigor through the over-expression of PIMT provides a valuable reference for engineering high-vigor seeds for crop production. In recent decades, numerous genes/proteins associated with seed vigor have been identified. It is hoped that such potential candidates may be used in the development of genetically edited crops for a high and stable yield potential in crop production. This possibility is very valuable in the context of a changing climate and increasing world population.
Collapse
|
28
|
Hussain S, Yin H, Peng S, Khan FA, Khan F, Sameeullah M, Hussain HA, Huang J, Cui K, Nie L. Comparative Transcriptional Profiling of Primed and Non-primed Rice Seedlings under Submergence Stress. FRONTIERS IN PLANT SCIENCE 2016; 7:1125. [PMID: 27516766 PMCID: PMC4964843 DOI: 10.3389/fpls.2016.01125] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 07/14/2016] [Indexed: 05/08/2023]
Abstract
Submergence stress is a limiting factor for direct-seeded rice systems in rainfed lowlands and flood-prone areas of South and Southeast Asia. The present study demonstrated that submergence stress severely hampered the germination and seedling growth of rice, however, seed priming alleviated the detrimental effects of submergence stress. To elucidate the molecular basis of seed priming-induced submergence tolerance, transcriptome analyses were performed using 4-day-old primed (selenium-Se and salicylic acid-SA priming) and non-primed rice seedlings under submergence stress. Genomewide transcriptomic profiling identified 2371 and 2405 transcripts with Se- and SA-priming, respectively, that were differentially expressed in rice compared with non-priming treatment under submergence. Pathway and gene ontology term enrichment analyses revealed that genes involved in regulation of secondary metabolism, development, cell, transport, protein, and metal handling were over-represented after Se- or SA-priming. These coordinated factors might have enhanced the submergence tolerance and maintained the better germination and vigorous seedling growth of primed rice seedlings. It was also found that many genes involved in cellular and metabolic processes such as carbohydrate metabolism, cellular, and metabolic biosynthesis, nitrogen compound metabolic process, transcription, and response to oxidative stress were induced and overlapped in seed priming treatments, a finding which reveals the common mechanism of seed priming-induced submergence tolerance. Taken together, these results may provide new avenues for understanding and advancing priming-induced responses to submergence tolerance in crop plants.
Collapse
Affiliation(s)
- Saddam Hussain
- National Key Laboratory of Crop Genetic Improvement, MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
- College of Resources and Environment, Huazhong Agricultural UniversityWuhan, China
| | - Hanqi Yin
- Shanghai Biotechnology CorporationShanghai, China
| | - Shaobing Peng
- National Key Laboratory of Crop Genetic Improvement, MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Faheem A. Khan
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Huazhong Agricultural UniversityWuhan, China
| | - Fahad Khan
- National Key Laboratory of Crop Genetic Improvement, MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
- College of Resources and Environment, Huazhong Agricultural UniversityWuhan, China
| | - Muhammad Sameeullah
- Faculty of Agriculture and Natural Sciences, Abant Izzet Baysal UniversityBolu, Turkey
| | - Hafiz A. Hussain
- Department of Agronomy, University of AgricultureFaisalabad, Pakistan
| | - Jianliang Huang
- National Key Laboratory of Crop Genetic Improvement, MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Kehui Cui
- National Key Laboratory of Crop Genetic Improvement, MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Lixiao Nie
- National Key Laboratory of Crop Genetic Improvement, MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| |
Collapse
|
29
|
Hussain S, Yin H, Peng S, Khan FA, Khan F, Sameeullah M, Hussain HA, Huang J, Cui K, Nie L. Comparative Transcriptional Profiling of Primed and Non-primed Rice Seedlings under Submergence Stress. FRONTIERS IN PLANT SCIENCE 2016; 7:1125. [PMID: 27516766 DOI: 10.3389/fpls.2016.01125/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 07/14/2016] [Indexed: 05/25/2023]
Abstract
Submergence stress is a limiting factor for direct-seeded rice systems in rainfed lowlands and flood-prone areas of South and Southeast Asia. The present study demonstrated that submergence stress severely hampered the germination and seedling growth of rice, however, seed priming alleviated the detrimental effects of submergence stress. To elucidate the molecular basis of seed priming-induced submergence tolerance, transcriptome analyses were performed using 4-day-old primed (selenium-Se and salicylic acid-SA priming) and non-primed rice seedlings under submergence stress. Genomewide transcriptomic profiling identified 2371 and 2405 transcripts with Se- and SA-priming, respectively, that were differentially expressed in rice compared with non-priming treatment under submergence. Pathway and gene ontology term enrichment analyses revealed that genes involved in regulation of secondary metabolism, development, cell, transport, protein, and metal handling were over-represented after Se- or SA-priming. These coordinated factors might have enhanced the submergence tolerance and maintained the better germination and vigorous seedling growth of primed rice seedlings. It was also found that many genes involved in cellular and metabolic processes such as carbohydrate metabolism, cellular, and metabolic biosynthesis, nitrogen compound metabolic process, transcription, and response to oxidative stress were induced and overlapped in seed priming treatments, a finding which reveals the common mechanism of seed priming-induced submergence tolerance. Taken together, these results may provide new avenues for understanding and advancing priming-induced responses to submergence tolerance in crop plants.
Collapse
Affiliation(s)
- Saddam Hussain
- National Key Laboratory of Crop Genetic Improvement, MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China; College of Resources and Environment, Huazhong Agricultural UniversityWuhan, China
| | - Hanqi Yin
- Shanghai Biotechnology Corporation Shanghai, China
| | - Shaobing Peng
- National Key Laboratory of Crop Genetic Improvement, MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University Wuhan, China
| | - Faheem A Khan
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Huazhong Agricultural University Wuhan, China
| | - Fahad Khan
- National Key Laboratory of Crop Genetic Improvement, MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China; College of Resources and Environment, Huazhong Agricultural UniversityWuhan, China
| | - Muhammad Sameeullah
- Faculty of Agriculture and Natural Sciences, Abant Izzet Baysal University Bolu, Turkey
| | - Hafiz A Hussain
- Department of Agronomy, University of Agriculture Faisalabad, Pakistan
| | - Jianliang Huang
- National Key Laboratory of Crop Genetic Improvement, MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University Wuhan, China
| | - Kehui Cui
- National Key Laboratory of Crop Genetic Improvement, MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University Wuhan, China
| | - Lixiao Nie
- National Key Laboratory of Crop Genetic Improvement, MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University Wuhan, China
| |
Collapse
|
30
|
Kołodziejczyk I, Dzitko K, Szewczyk R, Posmyk MM. Exogenous melatonin improves corn (Zea mays L.) embryo proteome in seeds subjected to chilling stress. JOURNAL OF PLANT PHYSIOLOGY 2016. [PMID: 26945210 DOI: 10.1007/s11738-016-2166-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Melatonin (MEL; N-acetyl-5-methoxytryptamine) plays an important role in plant stress defense. Various plant species rich in this indoleamine have shown a higher capacity for stress tolerance. Moreover, it has great potential for plant biostimulation, is biodegradable and non-toxic for the environment. All this indicates that our concept of seed enrichment with exogenous MEL is justified. This work concerns the effects of corn (Zea mays L.) seed pre-sowing treatments supplemented with MEL. Non-treated seeds (nt), and those hydroprimed with water (H) or with MEL solutions 50 and 500 μM (HMel50, HMel500) were compared. Positive effects of seed priming are particularly apparent during germination under suboptimal conditions. The impact of MEL applied by priming on seed protein profiles during imbibition/germination at low temperature has not been investigated to date. In order to identify changes in the corn seed proteome after applying hydropriming techniques, purified protein extracts of chilling stressed seed embryos (14 days, 5°C) were separated by two-dimensional electrophoresis. Then proteome maps were graphically and statistically compared and selected protein spots were qualitatively analyzed using mass spectrometry techniques and identified. This study aimed to analyze the priming-induced changes in maize embryo proteome and at identifying priming-associated and MEL-associated proteins in maize seeds subjected to chilling. We attempt to explain how MEL expands plant capacity for stress tolerance.
Collapse
Affiliation(s)
- Izabela Kołodziejczyk
- Department of Ecophysiology and Plant Development, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha Str., 90-237 Lodz, Poland.
| | - Katarzyna Dzitko
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha Str., 90-237 Lodz, Poland.
| | - Rafał Szewczyk
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha Str., 90-237 Lodz, Poland.
| | - Małgorzata M Posmyk
- Department of Ecophysiology and Plant Development, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha Str., 90-237 Lodz, Poland.
| |
Collapse
|
31
|
Zhang YX, Xu HH, Liu SJ, Li N, Wang WQ, Møller IM, Song SQ. Proteomic Analysis Reveals Different Involvement of Embryo and Endosperm Proteins during Aging of Yliangyou 2 Hybrid Rice Seeds. FRONTIERS IN PLANT SCIENCE 2016; 7:1394. [PMID: 27708655 PMCID: PMC5031166 DOI: 10.3389/fpls.2016.01394] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 09/01/2016] [Indexed: 05/03/2023]
Abstract
Seed aging is a process that results in a delayed germination, a decreased germination percentage, and finally a total loss of seed viability. However, the mechanism of seed aging is poorly understood. In the present study, Yliangyou 2 hybrid rice (Oryza sativa L.) seeds were artificially aged at 100% relative humidity and 40°C, and the effect of artificial aging on germination, germination time course and the change in protein profiles of embryo and endosperm was studied to understand the molecular mechanism behind seed aging. With an increasing duration of artificial aging, the germination percentage and germination rate of hybrid rice seeds decreased. By comparing the protein profiles from the seeds aged for 0, 10 and 25 days, a total of 91 and 100 protein spots were found to show a significant change of more than 2-fold (P < 0.05) in abundance, and 71 and 79 protein spots were identified, in embryos and endosperms, respectively. The great majority of these proteins increased in abundance in embryos (95%) and decreased in abundance in endosperms (99%). In embryos, most of the identified proteins were associated with energy (30%), with cell defense and rescue (28%), and with storage protein (18%). In endosperms, most of the identified proteins were involved in metabolism (37%), in energy (27%), and in protein synthesis and destination (11%). The most marked change was the increased abundance of many glycolytic enzymes together with the two fermentation enzymes pyruvate decarboxylase and alcohol dehydrogenase in the embryos during aging. We hypothesize that the decreased viability of hybrid rice seeds during artificial aging is caused by the development of hypoxic conditions in the embryos followed by ethanol accumulation.
Collapse
Affiliation(s)
- Ying-Xue Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Heng-Heng Xu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Shu-Jun Liu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Ni Li
- Hunan Hybrid Rice Research Center/State Key Laboratory of Hybrid RiceChangsha, China
| | - Wei-Qing Wang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Ian M. Møller
- Department of Molecular Biology and Genetics, Aarhus UniversityFlakkebjerg, Denmark
| | - Song-Quan Song
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of SciencesBeijing, China
- *Correspondence: Song-Quan Song
| |
Collapse
|
32
|
Zhang H, Wang WQ, Liu SJ, Møller IM, Song SQ. Proteome Analysis of Poplar Seed Vigor. PLoS One 2015; 10:e0132509. [PMID: 26172265 PMCID: PMC4501749 DOI: 10.1371/journal.pone.0132509] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 06/15/2015] [Indexed: 12/12/2022] Open
Abstract
Seed vigor is a complex property that determines the seed’s potential for rapid uniform emergence and subsequent growth. However, the mechanism for change in seed vigor is poorly understood. The seeds of poplar (Populus × Canadensis Moench), which are short-lived, were stored at 30°C and 75±5% relative humidity for different periods of time (0–90 days) to obtain different vigor seeds (from 95 to 0% germination). With decreasing seed vigor, the temperature range of seed germination became narrower; the respiration rate of the seeds decreased markedly, while the relative electrolyte leakage increased markedly, both levelling off after 45 days. A total of 81 protein spots showed a significant change in abundance (≥ 1.5-fold, P < 0.05) when comparing the proteomes among seeds with different vigor. Of the identified 65 proteins, most belonged to the groups involved in metabolism (23%), protein synthesis and destination (22%), energy (18%), cell defense and rescue (17%), and storage protein (15%). These proteins accounted for 95% of all the identified proteins. During seed aging, 53 and 6 identified proteins consistently increased and decreased in abundance, respectively, and they were associated with metabolism (22%), protein synthesis and destination (22%), energy (19%), cell defense and rescue (19%), storage proteins (15%), and cell growth and structure (3%). These data show that the decrease in seed vigor (aging) is an energy-dependent process, which requires protein synthesis and degradation as well as cellular defense and rescue.
Collapse
Affiliation(s)
- Hong Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Wei-Qing Wang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Shu-Jun Liu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Ian Max Møller
- Department of Molecular Biology and Genetics, Aarhus University, Flakkebjerg, Slagelse, Denmark
| | - Song-Quan Song
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
33
|
Fu YB, Ahmed Z, Diederichsen A. Towards a better monitoring of seed ageing under ex situ seed conservation. CONSERVATION PHYSIOLOGY 2015; 3:cov026. [PMID: 27293711 PMCID: PMC4778438 DOI: 10.1093/conphys/cov026] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 06/06/2015] [Accepted: 05/08/2015] [Indexed: 05/22/2023]
Abstract
Long-term conservation of 7.4 million ex situ seed accessions held in agricultural genebanks and botanic gardens worldwide is a challenging mission for human food security and ecosystem services. Recent advances in seed biology and genomics may have opened new opportunities for effective management of seed germplasm under long-term storage. Here, we review the current development of tools for assessing seed ageing and research advances in seed biology and genomics, with a focus on exploring their potential as better tools for monitoring of seed ageing. Seed ageing is found to be associated with the changes reflected in reactive oxygen species and mitochondria-triggered programmed cell deaths, expression of antioxidative genes and DNA and protein repair genes, chromosome telomere lengths, epigenetic regulation of related genes (microRNA and methylation) and altered organelle and nuclear genomes. Among these changes, the signals from mitochondrial and nuclear genomes may show the most promise for use in the development of tools to predict seed ageing. Non-destructive and non-invasive analyses of stored seeds through calorimetry or imaging techniques are also promising. It is clear that research into developing advanced tools for monitoring seed ageing to supplement traditional germination tests will be fruitful for effective conservation of ex situ seed germplasm.
Collapse
Affiliation(s)
- Yong-Bi Fu
- Plant Genetic Resources of Canada, Saskatoon Research Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, Canada S7N 0X2
| | - Zaheer Ahmed
- Plant Genetic Resources of Canada, Saskatoon Research Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, Canada S7N 0X2
| | - Axel Diederichsen
- Plant Genetic Resources of Canada, Saskatoon Research Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, Canada S7N 0X2
| |
Collapse
|
34
|
Jorrín-Novo JV, Pascual J, Sánchez-Lucas R, Romero-Rodríguez MC, Rodríguez-Ortega MJ, Lenz C, Valledor L. Fourteen years of plant proteomics reflected in Proteomics: moving from model species and 2DE-based approaches to orphan species and gel-free platforms. Proteomics 2015; 15:1089-112. [PMID: 25487722 DOI: 10.1002/pmic.201400349] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Revised: 10/23/2014] [Accepted: 12/04/2014] [Indexed: 12/21/2022]
Abstract
In this article, the topic of plant proteomics is reviewed based on related papers published in the journal Proteomics since publication of the first issue in 2001. In total, around 300 original papers and 41 reviews published in Proteomics between 2000 and 2014 have been surveyed. Our main objective for this review is to help bridge the gap between plant biologists and proteomics technologists, two often very separate groups. Over the past years a number of reviews on plant proteomics have been published . To avoid repetition we have focused on more recent literature published after 2010, and have chosen to rather make continuous reference to older publications. The use of the latest proteomics techniques and their integration with other approaches in the "systems biology" direction are discussed more in detail. Finally we comment on the recent history, state of the art, and future directions of plant proteomics, using publications in Proteomics to illustrate the progress in the field. The review is organized into two major blocks, the first devoted to provide an overview of experimental systems (plants, plant organs, biological processes) and the second one to the methodology.
Collapse
Affiliation(s)
- Jesus V Jorrín-Novo
- Agroforestry and Plant Biochemistry and Proteomics Research Group, Department of Biochemistry and Molecular Biology, University of Cordoba-CeiA3, Cordoba, Spain
| | | | | | | | | | | | | |
Collapse
|
35
|
Kubala S, Garnczarska M, Wojtyla Ł, Clippe A, Kosmala A, Żmieńko A, Lutts S, Quinet M. Deciphering priming-induced improvement of rapeseed (Brassica napus L.) germination through an integrated transcriptomic and proteomic approach. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 231:94-113. [PMID: 25575995 DOI: 10.1016/j.plantsci.2014.11.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 11/19/2014] [Accepted: 11/22/2014] [Indexed: 05/03/2023]
Abstract
Rape seeds primed with -1.2 MPa polyethylene glycol 6000 showed improved germination performance. To better understand the beneficial effect of osmopriming on seed germination, a global expression profiling method was used to compare, for the first time, transcriptomic and proteomic data for osmoprimed seeds at the crucial phases of priming procedure (soaking, drying), whole priming process and subsequent germination. Brassica napus was used here as a model to dissect the process of osmopriming into its essential components. A total number of 952 genes and 75 proteins were affected during the main phases of priming and post-priming germination. Transcription was not coordinately associated with translation resulting in a limited correspondence between mRNAs level and protein abundance. Soaking, drying and final germination of primed seeds triggered distinct specific pathways since only a minority of genes and proteins were involved in all phases of osmopriming while a vast majority was involved in only one single phase. A particular attention was paid to genes and proteins involved in the transcription, translation, reserve mobilization, water uptake, cell cycle and oxidative stress processes.
Collapse
Affiliation(s)
- Szymon Kubala
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University in Poznan, ul. Umultowska 89, 61-614 Poznan, Poland
| | - Małgorzata Garnczarska
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University in Poznan, ul. Umultowska 89, 61-614 Poznan, Poland.
| | - Łukasz Wojtyla
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University in Poznan, ul. Umultowska 89, 61-614 Poznan, Poland
| | - André Clippe
- Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud 45, boîte L7.07.02, B-1348 Louvain-la-Neuve, Belgium
| | - Arkadiusz Kosmala
- Department of Environmental Stress Biology, Institute of Plant Genetics, Polish Academy of Sciences, ul. Strzeszynska 34, 60-479 Poznan, Poland
| | - Agnieszka Żmieńko
- Laboratory of Molecular and Systems Biology, Institute of Bioorganic Chemistry, Polish Academy of Science, ul. Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Stanley Lutts
- Groupe de Recherche en Physiologie Végétale (GRPV), Earth and Life Institute-Agronomy (ELI-A), Université catholique de Louvain, Croix du Sud 45, boîte L7.07.13, B-1348 Louvain-la-Neuve, Belgium
| | - Muriel Quinet
- Groupe de Recherche en Physiologie Végétale (GRPV), Earth and Life Institute-Agronomy (ELI-A), Université catholique de Louvain, Croix du Sud 45, boîte L7.07.13, B-1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
36
|
Wang WQ, Liu SJ, Song SQ, Møller IM. Proteomics of seed development, desiccation tolerance, germination and vigor. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 86:1-15. [PMID: 25461695 DOI: 10.1016/j.plaphy.2014.11.003] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 11/03/2014] [Indexed: 05/19/2023]
Abstract
Proteomics, the large-scale study of the total complement of proteins in a given sample, has been applied to all aspects of seed biology mainly using model species such as Arabidopsis or important agricultural crops such as corn and rice. Proteins extracted from the sample have typically been separated and quantified by 2-dimensional polyacrylamide gel electrophoresis followed by liquid chromatography and mass spectrometry to identify the proteins in the gel spots. In this way, qualitative and quantitative changes in the proteome during seed development, desiccation tolerance, germination, dormancy release, vigor alteration and responses to environmental factors have all been studied. Many proteins or biological processes potentially important for each seed process have been highlighted by these studies, which greatly expands our knowledge of seed biology. Proteins that have been identified to be particularly important for at least two of the seed processes are involved in detoxification of reactive oxygen species, the cytoskeleton, glycolysis, protein biosynthesis, post-translational modifications, methionine metabolism, and late embryogenesis-abundant (LEA) proteins. It will be useful for molecular biologists and molecular plant breeders to identify and study genes encoding particularly interesting target proteins with the aim to improve the yield, stress tolerance or other critical properties of our crop species.
Collapse
Affiliation(s)
- Wei-Qing Wang
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China
| | - Shu-Jun Liu
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China
| | - Song-Quan Song
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China.
| | - Ian Max Møller
- Department of Molecular Biology and Genetics, Aarhus University, Flakkebjerg, DK-4200 Slagelse, Denmark.
| |
Collapse
|
37
|
Abts W, Van de Poel B, Vandenbussche B, De Proft MP. Ethylene is differentially regulated during sugar beet germination and affects early root growth in a dose-dependent manner. PLANTA 2014; 240:679-86. [PMID: 25034827 DOI: 10.1007/s00425-014-2124-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 07/07/2014] [Indexed: 05/09/2023]
Abstract
By integrating molecular, biochemical, and physiological data, ethylene biosynthesis in sugar beet was shown to be differentially regulated, affecting root elongation in a concentration-dependent manner. There is a close relation between ethylene production and seedling growth of sugar beet (Beta vulgaris L.), yet the exact function of ethylene during this early developmental stage is still unclear. While ethylene is mostly considered to be a root growth inhibitor, we found that external 1-aminocyclopropane-1-carboxylic acid (ACC) regulates root growth in sugar beet in a concentration-dependent manner: low concentrations stimulate root growth while high concentrations inhibit root growth. These results reveal that ethylene action during root elongation is strongly concentration dependent. Furthermore our detailed study of ethylene biosynthesis kinetics revealed a very strict gene regulation pattern of ACC synthase (ACS) and ACC oxidase (ACO), in which ACS is the rate liming step during sugar beet seedling development.
Collapse
Affiliation(s)
- Willem Abts
- Division of Crop Biotechnics, Department of Biosystems, Katholieke Universiteit Leuven, Willem de Croylaan 42, bus 2427, 3001, Leuven, Belgium,
| | | | | | | |
Collapse
|
38
|
Webb KM, Broccardo CJ, Prenni JE, Wintermantel WM. Proteomic Profiling of Sugar Beet ( Beta vulgaris) Leaves during Rhizomania Compatible Interactions. Proteomes 2014; 2:208-223. [PMID: 28250378 PMCID: PMC5302737 DOI: 10.3390/proteomes2020208] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 03/15/2014] [Accepted: 03/27/2014] [Indexed: 11/16/2022] Open
Abstract
Rhizomania, caused by Beet necrotic yellow vein virus (BNYVV), severely impacts sugar beet (Beta vulgaris) production throughout the world, and is widely prevalent in most production regions. Initial efforts to characterize proteome changes focused primarily on identifying putative host factors that elicit resistant interactions with BNYVV, but as resistance breaking strains become more prevalent, effective disease control strategies will require the application of novel methods based on better understanding of disease susceptibility and symptom development. Herein, proteomic profiling was conducted on susceptible sugar beet, infected with two strains of BNYVV, to clarify the types of proteins prevalent during compatible virus-host plant interactions. Total protein was extracted from sugar beet leaf tissue infected with BNYVV, quantified, and analyzed by mass spectrometry. A total of 203 proteins were confidently identified, with a predominance of proteins associated with photosynthesis and energy, metabolism, and response to stimulus. Many proteins identified in this study are typically associated with systemic acquired resistance and general plant defense responses. These results expand on relatively limited proteomic data available for sugar beet and provide the ground work for additional studies focused on understanding the interaction of BNYVV with sugar beet.
Collapse
Affiliation(s)
- Kimberly M Webb
- USDA-ARS-SBRU, Crops Research Laboratory, 1701 Centre Ave., Fort Collins, CO 80526, USA.
| | - Carolyn J Broccardo
- Proteomics and Metabolomics Facility, Colorado State University, C130 Microbiology, 2021 Campus Delivery, Fort Collins, CO 80523, USA.
| | - Jessica E Prenni
- Proteomics and Metabolomics Facility, Colorado State University, C130 Microbiology, 2021 Campus Delivery, Fort Collins, CO 80523, USA.
| | | |
Collapse
|
39
|
Abstract
Two-dimensional electrophoresis has nurtured the birth of proteomics. It is however no longer the exclusive setup used in proteomics, with the development of shotgun proteomics techniques that appear more fancy and fashionable nowadays.Nevertheless, 2D gel-based proteomics still has valuable features, and sometimes unique ones, which make it often an attractive choice when a proteomics strategy must be selected. These features are detailed in this chapter, as is the rationale for selecting or not 2D gel-based proteomics as a proteomic strategy.
Collapse
|
40
|
Galland M, Huguet R, Arc E, Cueff G, Job D, Rajjou L. Dynamic proteomics emphasizes the importance of selective mRNA translation and protein turnover during Arabidopsis seed germination. Mol Cell Proteomics 2014; 13:252-68. [PMID: 24198433 PMCID: PMC3879618 DOI: 10.1074/mcp.m113.032227] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 10/23/2013] [Indexed: 01/02/2023] Open
Abstract
During seed germination, the transition from a quiescent metabolic state in a dry mature seed to a proliferative metabolic state in a vigorous seedling is crucial for plant propagation as well as for optimizing crop yield. This work provides a detailed description of the dynamics of protein synthesis during the time course of germination, demonstrating that mRNA translation is both sequential and selective during this process. The complete inhibition of the germination process in the presence of the translation inhibitor cycloheximide established that mRNA translation is critical for Arabidopsis seed germination. However, the dynamics of protein turnover and the selectivity of protein synthesis (mRNA translation) during Arabidopsis seed germination have not been addressed yet. Based on our detailed knowledge of the Arabidopsis seed proteome, we have deepened our understanding of seed mRNA translation during germination by combining two-dimensional gel-based proteomics with dynamic radiolabeled proteomics using a radiolabeled amino acid precursor, namely [(35)S]-methionine, in order to highlight de novo protein synthesis, stability, and turnover. Our data confirm that during early imbibition, the Arabidopsis translatome keeps reflecting an embryonic maturation program until a certain developmental checkpoint. Furthermore, by dividing the seed germination time lapse into discrete time windows, we highlight precise and specific patterns of protein synthesis. These data refine and deepen our knowledge of the three classical phases of seed germination based on seed water uptake during imbibition and reveal that selective mRNA translation is a key feature of seed germination. Beyond the quantitative control of translational activity, both the selectivity of mRNA translation and protein turnover appear as specific regulatory systems, critical for timing the molecular events leading to successful germination and seedling establishment.
Collapse
Affiliation(s)
- Marc Galland
- From ‡INRA, Jean-Pierre Bourgin Institute (IJPB, UMR1318 INRA-AgroParisTech), Laboratory of Excellence “Saclay Plant Sciences” (LabEx SPS), F-78026 Versailles, France
- §AgroParisTech, Chair of Plant Physiology, F-75231 Paris, France
| | - Romain Huguet
- ¶CNRS/Bayer CropScience Joint Laboratory (UMR5240), F-69263 Lyon, France
| | - Erwann Arc
- From ‡INRA, Jean-Pierre Bourgin Institute (IJPB, UMR1318 INRA-AgroParisTech), Laboratory of Excellence “Saclay Plant Sciences” (LabEx SPS), F-78026 Versailles, France
- §AgroParisTech, Chair of Plant Physiology, F-75231 Paris, France
| | - Gwendal Cueff
- From ‡INRA, Jean-Pierre Bourgin Institute (IJPB, UMR1318 INRA-AgroParisTech), Laboratory of Excellence “Saclay Plant Sciences” (LabEx SPS), F-78026 Versailles, France
- §AgroParisTech, Chair of Plant Physiology, F-75231 Paris, France
| | - Dominique Job
- §AgroParisTech, Chair of Plant Physiology, F-75231 Paris, France
- ¶CNRS/Bayer CropScience Joint Laboratory (UMR5240), F-69263 Lyon, France
| | - Loïc Rajjou
- From ‡INRA, Jean-Pierre Bourgin Institute (IJPB, UMR1318 INRA-AgroParisTech), Laboratory of Excellence “Saclay Plant Sciences” (LabEx SPS), F-78026 Versailles, France
- §AgroParisTech, Chair of Plant Physiology, F-75231 Paris, France
| |
Collapse
|
41
|
Gel-free proteomics reveal potential biomarkers of priming-induced salt tolerance in durum wheat. J Proteomics 2013; 91:486-99. [DOI: 10.1016/j.jprot.2013.08.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Revised: 07/19/2013] [Accepted: 08/12/2013] [Indexed: 11/18/2022]
|
42
|
Chen K, Arora R. Priming memory invokes seed stress-tolerance. ENVIRONMENTAL AND EXPERIMENTAL BOTANY 2013. [PMID: 0 DOI: 10.1016/j.envexpbot.2012.03.005] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
|
43
|
Pedreschi R, Lurie S, Hertog M, Nicolaï B, Mes J, Woltering E. Post-harvest proteomics and food security. Proteomics 2013; 13:1772-83. [PMID: 23483703 DOI: 10.1002/pmic.201200387] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 10/27/2012] [Accepted: 11/11/2012] [Indexed: 12/12/2022]
Abstract
To guarantee sufficient food supply for a growing world population, efforts towards improving crop yield and plant resistance should be complemented with efforts to reduce post-harvest losses. Post-harvest losses are substantial and occur at different stages of the food chain in developed and developing countries. In recent years, a substantially increasing interest can be seen in the application of proteomics to understand post-harvest events. In the near future post-harvest proteomics will be poised to move from fundamental research to aiding the reduction of food losses. Proteomics research can help in reducing food losses through (i) identification and validation of gene products associated to specific quality traits supporting marker-assisted crop improvement programmes, (ii) delivering markers of initial quality that allow optimisation of distribution conditions and prediction of remaining shelf-life for decision support systems and (iii) delivering early detection tools of physiological or pathogen-related post-harvest problems. In this manuscript, recent proteomics studies on post-harvest and stress physiology are reviewed and discussed. Perspectives on future directions of post-harvest proteomics studies aiming to reduce food losses are presented.
Collapse
Affiliation(s)
- Romina Pedreschi
- Food & Biobased Research Centre, Wageningen University, Wageningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
44
|
|
45
|
Wang WQ, Møller IM, Song SQ. Proteomic analysis of embryonic axis of Pisum sativum seeds during germination and identification of proteins associated with loss of desiccation tolerance. J Proteomics 2012; 77:68-86. [PMID: 22796356 DOI: 10.1016/j.jprot.2012.07.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Revised: 06/20/2012] [Accepted: 07/02/2012] [Indexed: 12/26/2022]
Abstract
Seed germination is an important stage in life cycle of higher plants. The germination processes and its associated loss of desiccation tolerance, however, are still poorly understood. In present study, pea seeds were used to study changes in embryonic axis proteome during germination by 2-DE and mass spectrometry. We identified a total of 139 protein spots showing a significant (>2-fold) change during germination. The results show that seed germination is not only the activation of a series of metabolic processes, but also involves reorganization of cellular structure and activation of protective systems. To uncouple the physiological processes of germination and its associated loss of desiccation tolerance, we used the fact that pea seeds have different desiccation tolerance when imbibed in water, CaCl(2) and methylviologen at the same germination stage. We compared the proteome amongst these seeds to identify the candidate proteins associated with the loss of desiccation tolerance and found a total of seven proteins - tubulin alpha-1 chain, seed biotin-containing protein SBP65, P54 protein, vicilin, vicilin-like antimicrobial peptides 2-3, convicilin and TCP-1/cpn60 chaperonin family protein. The metabolic function of these proteins indicates that seed desiccation tolerance is related to pathogen defense, protein conformation conservation and cell structure stabilization.
Collapse
Affiliation(s)
- Wei-Qing Wang
- Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing 100093, China
| | | | | |
Collapse
|
46
|
Garza-Caligaris LE, Avendaño-Vázquez AO, Alvarado-López S, Zúñiga-Sánchez E, Orozco-Segovia A, Pérez-Ruíz RV, Gamboa-Debuen A. At3g08030 transcript: a molecular marker of seed ageing. ANNALS OF BOTANY 2012; 110:1253-60. [PMID: 22975286 PMCID: PMC3478058 DOI: 10.1093/aob/mcs200] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 07/23/2012] [Indexed: 05/20/2023]
Abstract
BACKGROUND AND AIMS Prolonged storage generally reduces seed viability and vigour, although the rate of deterioration varies among species and environmental conditions. Here, we suggest a possible ageing molecular marker: At3g08030 mRNA. At3g08030 is a member of the DUF642 highly conserved family of cell-wall-associated proteins that is specific for spermatophytes. METHODS At3g08030 expression was performed by RT-PCR and qRT-PCR analysis in seed samples differing in their rate of germination and final germination following a matrix priming and/or controlled deterioration (rapid ageing) treatment. KEY RESULTS The At3g08030 gene transcript was present during the entire Arabidopsis thaliana plant life cycle and in seeds, during maturation, the ripening period and after germination. Matrix priming treatment increased the rate of germination of control seeds and seeds aged by controlled deterioration. Priming treatments also increased At3g08030 expression. To determine whether the orthologues of this gene are also age markers in other plant species, At3g08030 was cloned in two wild species, Ceiba aesculifolia and Wigandia urens. As in A. thaliana, the At3g08030 transcript was not present in aged seeds of the tested species but was present in recently shed seeds. A reduction in germination performance of the aged seeds under salt stress was determined by germination assays. CONCLUSIONS At3g08030 mRNA detection in a dry seed lot has potential for use as a molecular marker for germination performance in a variety of plant species.
Collapse
Affiliation(s)
- Luz Elena Garza-Caligaris
- Instituto de Ecología, Universidad Nacional Autónoma de México, Apartado Postal 70-275, Ciudad Universitaria 04510, México, DF México.
| | | | | | | | | | | | | |
Collapse
|
47
|
Ventura L, Donà M, Macovei A, Carbonera D, Buttafava A, Mondoni A, Rossi G, Balestrazzi A. Understanding the molecular pathways associated with seed vigor. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2012; 60:196-206. [PMID: 22995217 DOI: 10.1016/j.plaphy.2012.07.031] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 07/31/2012] [Indexed: 05/17/2023]
Abstract
Farmers and growers are constantly looking for high quality seeds able to ensure uniform field establishment and increased production. Seed priming is used to induce pre-germinative metabolism and then enhance germination efficiency and crop yields. It has been hypothesized that priming treatments might also improve stress tolerance in germinating seeds, leaving a sort of 'stress memory'. However, the molecular bases of priming still need to be clarified and the identification of molecular indicators of seed vigor is nowadays a relevant goal for the basic and applied research in seed biology. It is generally acknowledged that enhanced seed vigor and successful priming depend on DNA repair mechanisms, activated during imbibition. The complexity of the networks of DNA damage control/repair functions has been only partially elucidated in plants and the specific literature that address seeds remains scanty. The DNA repair pathways hereby described (Nucleotide and Base Excision Repair, Non-Homologous End Joining, Homologous Recombination) play specific roles, all of them being critical to ensure genome stability. This review also focuses on some novel regulatory mechanisms of DNA repair (chromatin remodeling and small RNAs) while the possible use of telomere sequences as markers of aging in seed banks is discussed. The significant contribution provided by Electron Paramagnetic Resonance in elucidating the kinetics of seed aging, in terms of free radical profiles and membrane integrity is reported.
Collapse
Affiliation(s)
- Lorenzo Ventura
- Dipartimento di Chimica, via Taramelli 12, 27100 Pavia, Italy
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Arc E, Chibani K, Grappin P, Jullien M, Godin B, Cueff G, Valot B, Balliau T, Job D, Rajjou L. Cold stratification and exogenous nitrates entail similar functional proteome adjustments during Arabidopsis seed dormancy release. J Proteome Res 2012; 11:5418-32. [PMID: 22985405 DOI: 10.1021/pr3006815] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Despite having very similar initial pools of stored mRNAs and proteins in the dry state, mature Arabidopsis seeds can either proceed toward radicle protrusion or stay in a dormant state upon imbibition. Dormancy breaking, a prerequisite to germination completion, can be induced by different treatments though the underlying mechanisms remain elusive. Thus, we investigated the consequence of such treatments on the seed proteome. Two unrelated dormancy-releasing treatments were applied to dormant seeds, namely, cold stratification and exogenous nitrates, in combination with differential proteomic tools to highlight the specificities of the imbibed dormant state. The results reveal that both treatments lead to highly similar proteome adjustments. In the imbibed dormant state, enzymes involved in reserve mobilization are less accumulated and it appears that several energetically costly processes associated to seed germination and preparation for subsequent seedling establishment are repressed. Our data suggest that dormancy maintenance is associated to an abscisic-acid-dependent recapitulation of the late maturation program resulting in a higher potential to cope with environmental stresses. The comparison of the present results with previously published -omic data sets reinforces and extends the assumption that post-transcriptional, translational, and post-translational regulations are determinant for seed germination.
Collapse
Affiliation(s)
- Erwann Arc
- INRA, Jean-Pierre Bourgin Institute (IJPB, UMR1318 INRA-AgroParisTech), Laboratory of Excellence Saclay Plant Sciences, RD10, F-78002 Versailles Cedex, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
López E, Cho WCS. Phosphoproteomics and lung cancer research. Int J Mol Sci 2012; 13:12287-12314. [PMID: 23202899 PMCID: PMC3497273 DOI: 10.3390/ijms131012287] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 09/14/2012] [Accepted: 09/19/2012] [Indexed: 12/28/2022] Open
Abstract
Massive evidence suggests that genetic abnormalities contribute to the development of lung cancer. These molecular abnormalities may serve as diagnostic, prognostic and predictive biomarkers for this deadly disease. It is imperative to search these biomarkers in different tumorigenesis pathways so as to provide the most appropriate therapy for each individual patient with lung malignancy. Phosphoproteomics is a promising technology for the identification of biomarkers and novel therapeutic targets for cancer. Thousands of proteins interact via physical and chemical association. Moreover, some proteins can covalently modify other proteins post-translationally. These post-translational modifications ultimately give rise to the emergent functions of cells in sequence, space and time. Phosphoproteomics clinical researches imply the comprehensive analysis of the proteins that are expressed in cells or tissues and can be employed at different stages. In addition, understanding the functions of phosphorylated proteins requires the study of proteomes as linked systems rather than collections of individual protein molecules. In fact, proteomics approaches coupled with affinity chromatography strategies followed by mass spectrometry have been used to elucidate relevant biological questions. This article will discuss the relevant clues of post-translational modifications, phosphorylated proteins, and useful proteomics approaches to identify molecular cancer signatures. The recent progress in phosphoproteomics research in lung cancer will be also discussed.
Collapse
Affiliation(s)
- Elena López
- Hospital Universitario Niño Jesús, Department of Oncohematology of Children, Madrid 28009, Spain; E-Mail:
| | - William C. S. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong
| |
Collapse
|
50
|
Zhou Y, Chen H, Chu P, Li Y, Tan B, Ding Y, Tsang EWT, Jiang L, Wu K, Huang S. NnHSP17.5, a cytosolic class II small heat shock protein gene from Nelumbo nucifera, contributes to seed germination vigor and seedling thermotolerance in transgenic Arabidopsis. PLANT CELL REPORTS 2012; 31:379-89. [PMID: 22009054 DOI: 10.1007/s00299-011-1173-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 09/28/2011] [Accepted: 10/05/2011] [Indexed: 05/23/2023]
Abstract
In plants, small heat shock proteins (sHSPs) are unusually abundant and diverse proteins involved in various abiotic stresses, but their functions in seed vigor remain to be fully explored. In this study, we report the isolation and functional characterization of a sHSP gene, NnHSP17.5, from sacred lotus (Nelumbo nucifera Gaertn.) in seed germination vigor and seedling thermotolerance. Sequence alignment and phylogenetic analysis indicate that NnHSP17.5 is a cytosolic class II sHSP, which was further supported by the cytosolic localization of the NnHSP17.5-YFP fusion protein. NnHSP17.5 was specifically expressed in seeds under normal conditions, and was strongly up-regulated in germinating seeds upon heat and oxidative stresses. Transgenic Arabidopsis seeds ectopically expressing NnHSP17.5 displayed enhanced seed germination vigor and exhibited increased superoxide dismutase activity after accelerated aging treatment. In addition, improved basal thermotolerance was also observed in the transgenic seedlings. Taken together, this work highlights the importance of a plant cytosolic class II sHSP both in seed germination vigor and seedling thermotolerance.
Collapse
Affiliation(s)
- Yuliang Zhou
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|