1
|
Hao G, Chen Q, Liu Y, Wu C, An X, Gregory IO, Liang X. Characterization of a uridine diphosphate (UDP)-glycosyltransferase gene associated with abamectin resistance in two-spotted spider mite, Tetranychus urticae. EXPERIMENTAL & APPLIED ACAROLOGY 2025; 94:53. [PMID: 40329102 DOI: 10.1007/s10493-025-01020-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 04/12/2025] [Indexed: 05/08/2025]
Abstract
Uridine diphosphate (UDP)-glycosyltransferase (UGT) belongs to detoxification enzyme glycosylating lipophilic xenobiotic compounds in various living organisms. Tetranychus urticae is a notorious pest due to its significant threat to crop production and serious resistance problem worldwide. However, the function of UGT gene in contributing to pesticide resistance in T. urticae remained largely unknown. In this study, it was found that the laboratory selected abamectin-resistant (AbR) strain had developed over 20,000-fold resistance compared with the susceptible strain (SS). After being treated with abamectin, the activities of UGTs, and the transcription of TuUGT201D3 in the AbR strain were significantly higher than those in SS. Molecular docking indicated that the UGT201D3 protein exhibited high binding capacity with abamectin, suggesting the potential interaction between them. Furthermore, knock-down the transcription of TuUGT201D3 led to the decrease of activities of UGTs, in addition, the mortalities of AbR strain (58.4%) will significantly increase compared to control (41.1%) under 48 h of abamectin treatment. Those findings elucidated that TuUGT201D3 was correlated with abamectin resistance in T. urticae.
Collapse
Affiliation(s)
- Guifeng Hao
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 571000, China
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- Sanya Research Academy, Chinese Academy of Tropical Agriculture Science, Sanya, 572000, China
| | - Qing Chen
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 571000, China.
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.
| | - Ying Liu
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 571000, China
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Chunling Wu
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 571000, China
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Xingkui An
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 571000, China
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Ijiti Oluwole Gregory
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 571000, China
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Xiao Liang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 571000, China.
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.
| |
Collapse
|
2
|
Ye QT, Gong X, Liu HH, Wu BX, Peng CW, Hong XY, Bing XL. The symbiont Wolbachia alleviates pesticide susceptibility in the two-spotted spider mite Tetranychus urticae through enhanced host detoxification pathways. INSECT SCIENCE 2024; 31:1822-1837. [PMID: 38388801 DOI: 10.1111/1744-7917.13341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/21/2024] [Accepted: 01/24/2024] [Indexed: 02/24/2024]
Abstract
The two-spotted spider mite (Tetranychus urticae) is one of the most well-known pesticide-resistant agricultural pests, with resistance often attributed to changes such as target-site mutations and detoxification activation. Recent studies show that pesticide resistance can also be influenced by symbionts, but their involvement in this process in spider mites remains uncertain. Here, we found that infection with Wolbachia, a well-known bacterial reproductive manipulator, significantly increased mite survival after exposure to the insecticides abamectin, cyflumetofen, and pyridaben. Wolbachia-infected (WI) mites showed higher expression of detoxification genes such as P450, glutathione-S-transferase (GST), ABC transporters, and carboxyl/cholinesterases. RNA interference experiments confirmed the role of the two above-mentioned detoxification genes, TuCYP392D2 and TuGSTd05, in pesticide resistance. Increased GST activities were also observed in abamectin-treated WI mites. In addition, when wild populations were treated with abamectin, WI mites generally showed better survival than uninfected mites. However, genetically homogeneous mites with different Wolbachia strains showed similar survival. Finally, abamectin treatment increased Wolbachia abundance without altering the mite's bacterial community. This finding highlights the role of Wolbachia in orchestrating pesticide resistance by modulating host detoxification. By unraveling the intricate interplay between symbionts and pesticide resistance, our study lays the groundwork for pioneering strategies to combat agricultural pests.
Collapse
Affiliation(s)
- Qing-Tong Ye
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Xue Gong
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Huan-Huan Liu
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Bing-Xuan Wu
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Chang-Wu Peng
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Xiao-Yue Hong
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Xiao-Li Bing
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
3
|
Wang H, Jian L, Wang Z, Jiao Y, Wang Y, Ma F, Li P. Glycosylation mode of phloretin affects the morphology and stress resistance of apple plant. PLANT, CELL & ENVIRONMENT 2024; 47:4398-4415. [PMID: 38995178 DOI: 10.1111/pce.15031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/24/2024] [Accepted: 06/29/2024] [Indexed: 07/13/2024]
Abstract
Phloretin has different glycosylation modes in plants. Phlorizin (phloretin 2'-O-glucoside) is one of the glycosylation products of phloretin, and accumulates abundantly in apple plants. However, it is still unclear whether phlorizin is more beneficial for apple plants compared with other glycosylation products of phloretin. We created transgenic apple plants with different glycosylation modes of phloretin. In transgenic plants, the accumulation of phlorizin was partly replaced by that of trilobatin (phloretin 4'-O-glucoside) or phloretin 3',5'-di-C-glycoside. Compared with wild type, transgenic plants with less phlorizin showed dwarf phenotype, larger stomatal size, higher stomatal density and less tolerance to drought stress. Transcriptome and phytohormones assay indicate that phlorizin might regulate stomatal development and behaviour via controlling auxin and abscisic acid signalling pathways as well as carbonic anhydrase expressions. Transgenic apple plants with less phlorizin also showed less resistance to spider mites. Apple plants may hydrolyse phlorizin to produce phloretin, but cannot hydrolyse trilobatin or phloretin 3',5'-di-C-glycoside. Compared with its glycosylation products, phloretin is more toxic to spider mites. These results suggest that the glycosylation of phloretin to produce phlorizin is the optimal glycosylation mode in apple plants, and plays an important role in apple resistance to stresses.
Collapse
Affiliation(s)
- Haojie Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Liru Jian
- State Key Laboratory for Crop Stress Resistance and High-Efficiency/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhipeng Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Yu Jiao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuzhu Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Fengwang Ma
- State Key Laboratory for Crop Stress Resistance and High-Efficiency/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Pengmin Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
4
|
Li C, Zhao X, Liu W, Wen L, Deng Y, Shi W, Zhou N, Song R, Hu E, Guo Q, Gailike B. Biological Characteristics of the Cytochrome P 450 Family and the Mechanism of Terpinolene Metabolism in Hyalomma asiaticum (Acari: Ixodidae). Int J Mol Sci 2024; 25:11467. [PMID: 39519019 PMCID: PMC11546871 DOI: 10.3390/ijms252111467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 11/16/2024] Open
Abstract
The CYP450 enzyme is a superfamily enzyme ubiquitously found in nearly all organisms, playing a vital role in the metabolism of both endogenous and exogenous compounds, and in biosynthesis. Unfortunately, an understanding of its classification, functions, expression characteristics, and other biological traits in Hyalomma asiaticum, a vector for Crimean-Congo Hemorrhagic Fever, as well as of the genes implicated in its natural product metabolism, is lacking. Towards this end, this study has identified 120 H. asiaticum CYP450 genes via transcriptome data in the face of a joint genome threat from terpinolene. The proteins these genes encode are of higher molecular weight, devoid of a signal peptide, and composed of unstable hydrophobic proteins principally containing 1-3 variable transmembrane regions. Phylogenetic evolution classifies these H. asiaticum CYP450 genes into four subfamilies. These genes all encompass complete CYP450 conserved domains, and five specific conserved motifs, albeit with different expression levels. GO and KEGG annotation findings suggest a widespread distribution of these CYP450 genes in many physiological systems, predominantly facilitating lipid metabolism, terpenoid compound metabolism, and polyketone compound metabolism, as well as cofactor and vitamin metabolism at a cellular level. Molecular docking results reveal a hydrophobic interaction between the ARG-103, ARG-104, LEU-106, PHE-109, and ILE-119 amino acid residues in CYP3A8, which is primarily expressed in the fat body, and terpinolene, with a notably up-regulated expression, with affinity = -5.6 kcal/mol. The conservation of these five key amino acid residues varies across 12 tick species, implying differences in terpinolene metabolism efficacy among various tick species. This study thereby fills an existing knowledge gap regarding the biological characteristics of H. asiaticum CYP450 genes and paves the way for further research into the functions of these particular genes.
Collapse
Affiliation(s)
- Caishan Li
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (C.L.); (X.Z.); (L.W.); (Y.D.); (W.S.); (N.Z.); (E.H.)
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, Urumqi 830052, China
| | - Xueqing Zhao
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (C.L.); (X.Z.); (L.W.); (Y.D.); (W.S.); (N.Z.); (E.H.)
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, Urumqi 830052, China
| | - Wenlong Liu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China;
| | - Licui Wen
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (C.L.); (X.Z.); (L.W.); (Y.D.); (W.S.); (N.Z.); (E.H.)
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, Urumqi 830052, China
| | - Yuqian Deng
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (C.L.); (X.Z.); (L.W.); (Y.D.); (W.S.); (N.Z.); (E.H.)
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, Urumqi 830052, China
| | - Wenyu Shi
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (C.L.); (X.Z.); (L.W.); (Y.D.); (W.S.); (N.Z.); (E.H.)
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, Urumqi 830052, China
| | - Na Zhou
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (C.L.); (X.Z.); (L.W.); (Y.D.); (W.S.); (N.Z.); (E.H.)
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, Urumqi 830052, China
| | - Ruiqi Song
- School of Medicine, Shihezi University, Shihezi 832003, China;
| | - Ercha Hu
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (C.L.); (X.Z.); (L.W.); (Y.D.); (W.S.); (N.Z.); (E.H.)
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, Urumqi 830052, China
- Veterinary Medicine Postdoctoral Research Station of Xinjiang Agricultural University, Urumqi 830052, China
| | - Qingyong Guo
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (C.L.); (X.Z.); (L.W.); (Y.D.); (W.S.); (N.Z.); (E.H.)
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, Urumqi 830052, China
| | - Bayinchahan Gailike
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (C.L.); (X.Z.); (L.W.); (Y.D.); (W.S.); (N.Z.); (E.H.)
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, Urumqi 830052, China
| |
Collapse
|
5
|
Xu L, Ren C, Qiang P, Zhao M, Wen X, Li J, Dou W, Feng K, He L. Differences in Mitochondrial Cytochrome b Binding Mediate Selectivity of Bifenazate toward Phytophagous and Predatory Mites. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19699-19709. [PMID: 39190753 DOI: 10.1021/acs.jafc.4c06169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Bifenazate, a potent acaricide that targets mitochondrial complex III, exhibits selective toxicity (>280-fold) toward phytophagous mites versus predatory mites. Here, a systematic study was conducted to clarify the selective mechanism. Nontarget factors were excluded through epidermal penetration tests and assessment of detoxification enzymes' activities. Quantification of IC50 values, ATP content, and reactive oxygen species (ROS) levels revealed that differences in drug-target binding determine the toxicity selectivity. Structural modeling and molecular docking revealed that variations in key amino acid sites within the cytochrome b (cytb) target might regulate this selectivity, which was validated through a microscale thermophoresis assay. Significant disparities were observed in the binding affinity between bifenazate and recombinant cytb proteins derived from phytophagous mites and predatory mites. Mutating isoleucine 139 to leucine notably reduced the binding affinity of bifenazate to cytb. Insights into bifenazate selectivity between phytophagous and predatory mites inform a basis for developing compounds that target cytochrome b.
Collapse
Affiliation(s)
- Lin Xu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, 400715 Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, 400715 Chongqing, China
- National Citrus Engineering Research Center, Southwest University, 400712 Chongqing, China
| | - Changwei Ren
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, 400715 Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, 400715 Chongqing, China
- National Citrus Engineering Research Center, Southwest University, 400712 Chongqing, China
| | - Peipei Qiang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, 400715 Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, 400715 Chongqing, China
- National Citrus Engineering Research Center, Southwest University, 400712 Chongqing, China
| | - Mingyu Zhao
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, 400715 Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, 400715 Chongqing, China
- National Citrus Engineering Research Center, Southwest University, 400712 Chongqing, China
| | - Xiang Wen
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, 400715 Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, 400715 Chongqing, China
- National Citrus Engineering Research Center, Southwest University, 400712 Chongqing, China
| | - Jinhang Li
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, 400715 Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, 400715 Chongqing, China
- National Citrus Engineering Research Center, Southwest University, 400712 Chongqing, China
| | - Wei Dou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, 400715 Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, 400715 Chongqing, China
- National Citrus Engineering Research Center, Southwest University, 400712 Chongqing, China
| | - Kaiyang Feng
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, 400715 Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, 400715 Chongqing, China
- National Citrus Engineering Research Center, Southwest University, 400712 Chongqing, China
| | - Lin He
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, 400715 Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, 400715 Chongqing, China
- National Citrus Engineering Research Center, Southwest University, 400712 Chongqing, China
| |
Collapse
|
6
|
Yu SJ, Wang L, Ding LL, Pan Q, Li SC, Liu L, Cong L, Ran C. A down-regulated cytochrome P450 in Neoseiulus barkeri Hughes (Acari: Phytoseiidae) can dechlorinate and hydroxylate chlorpyrifos without producing chlorpyrifos-oxon. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135163. [PMID: 38996679 DOI: 10.1016/j.jhazmat.2024.135163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/14/2024]
Abstract
Selection of chemical-resistant predatory mites is a good alternative to balance the contradiction between chemical control and biological control. Previously, a resistant strain of Neoseiulus barkeri for chlorpyrifos was obtained. In the current study, two up-regulated (NbCYP3A6, NbCYP3A16) and one down-regulated (NbCYP3A24) P450s were screened through differential expression analysis and other detoxification-related genes such as CCEs, GST, etc. were not found. 3D modelling and molecular docking indicated that the chlorine at position 5 on the pyridine ring of chlorpyrifos, as well as a methyl group, were closest to the heme iron of the enzymes (less than 5 Å). Three active recombinant P450 proteins were heterologously expressed and metabolized with chlorpyrifos in vitro. HPLC assay showed that only NbCYP3A24 could metabolize chlorpyrifos, with a metabolism rate of 21.60 %. Analysis of the m/z of metabolites by LC-MS/MS showed that chlorine at the 5C position of chlorpyrifos was stripped and hydroxylated, whereas chlorpyrifos-oxon, a common product of oxidation by P450, was not found. Knockdown of the NbCYP3A24 gene in the susceptiblestrain did reduce the susceptibility of N. barkeri to chlorpyrifos, suggesting that the biological activity of the metabolite may be similar to chlorpyrifos-oxon, thus enhancing the inhibitory effect on the target.
Collapse
Affiliation(s)
- Shi-Jiang Yu
- Citrus Research Institute, Southwest University, National Citrus Engineering Research Center, Chongqing 400712, China
| | - Li Wang
- Chongqing Chemical Industry Vocational College, Chongqing 401228, China
| | - Li-Li Ding
- Citrus Research Institute, Southwest University, National Citrus Engineering Research Center, Chongqing 400712, China
| | - Qi Pan
- Citrus Research Institute, Southwest University, National Citrus Engineering Research Center, Chongqing 400712, China
| | - Si-Chen Li
- Citrus Research Institute, Southwest University, National Citrus Engineering Research Center, Chongqing 400712, China
| | - Liu Liu
- Citrus Research Institute, Southwest University, National Citrus Engineering Research Center, Chongqing 400712, China
| | - Lin Cong
- Citrus Research Institute, Southwest University, National Citrus Engineering Research Center, Chongqing 400712, China
| | - Chun Ran
- Citrus Research Institute, Southwest University, National Citrus Engineering Research Center, Chongqing 400712, China.
| |
Collapse
|
7
|
Wen X, Chen Y, Chen Q, Tang X, Feng K, He L. UGT201H1 overexpression confers cyflumetofen resistance in Tetranychus cinnabarinus (Boisduval). PEST MANAGEMENT SCIENCE 2024; 80:4675-4685. [PMID: 38775471 DOI: 10.1002/ps.8181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/18/2024] [Accepted: 05/06/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND Tetranychus cinnabarinus is one of the most common polyphagous arthropod herbivores, and is primarily controlled by the application of acaricides. The heavy use of acaricides has led to high levels of resistance to acaricides such as cyflumetofen, which poses a threat to global resistance management programs. Cyflumetofen resistance is caused by an increase in metabolic detoxification; however, the role of uridine diphosphate (UDP)-glycosyltransferase (UGT) genes in cyflumetofen resistance remains to be determined. RESULTS Synergist 5-nitrouracil (5-Nul) significantly enhanced cyflumetofen toxicity in T. cinnabarinus, which indicated that UGTs are involved in the development of cyflumetofen resistance. Transcriptomic analysis and quantitative (q)PCR assays demonstrated that the UGT genes, especially UGT201H1, were highly expressed in the YN-CyR strain, compared to those of the YN-S strain. The RNA interference (RNAi)-mediated knockdown of UGT201H1 expression diminished the levels of cyflumetofen resistance in YN-CyR mites. The findings additionally revealed that the recombinant UGT201H1 protein plays a role in metabolizing cyflumetofen. Our results also suggested that the aromatic hydrocarbon receptor (AhR) probably regulates the overexpression of the UGT201H1 detoxification gene. CONCLUSION UGT201H1 is involved in cyflumetofen resistance, and AhR may regulates the overexpression of UGT201H1. These findings provide deeper insights into the molecular mechanisms underlying UGT-mediated metabolic resistance to chemical insecticides. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiang Wen
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Chongqing, China
- National Citrus Engineering Research Center, Southwest University, Chongqing, China
| | - Yini Chen
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Chongqing, China
- National Citrus Engineering Research Center, Southwest University, Chongqing, China
| | - Qingying Chen
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Chongqing, China
- National Citrus Engineering Research Center, Southwest University, Chongqing, China
| | - Xuejing Tang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Chongqing, China
- National Citrus Engineering Research Center, Southwest University, Chongqing, China
| | - Kaiyang Feng
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Chongqing, China
- National Citrus Engineering Research Center, Southwest University, Chongqing, China
| | - Lin He
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Chongqing, China
- National Citrus Engineering Research Center, Southwest University, Chongqing, China
| |
Collapse
|
8
|
Tsakireli D, Vandenhole M, Spiros A P, Riga M, Balabanidou V, De Rouck S, Ray J, Zimmer C, Talmann L, Van Leeuwen T, Vontas J. The cytochrome P450 subfamilies CYP392A and CYP392D are key players in acaricide metabolism in Tetranychusurticae. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 204:106031. [PMID: 39277360 DOI: 10.1016/j.pestbp.2024.106031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/08/2024] [Accepted: 07/15/2024] [Indexed: 09/17/2024]
Abstract
The spider mite Tetranychus urticae is a major agricultural pest with a global distribution, extremely diverse host range and a remarkable ability to develop resistance to a wide variety of acaricides. P450 mono-oxygenases have been frequently associated with resistance development in this species. In particular enzymes of the CYP392A-subfamily were shown to metabolize a number of key acaricides, including abamectin, amitraz, fenpyroximate and the active metabolite of pyflubumide. However, transcriptomic studies comparing highly resistant and susceptible populations have often revealed high expression of members of the CYP392D-subfamily, but these have been only poorly studied. Here, we conducted a meta-analysis of gene expression data of 20 populations and identified two key enzymes of this family, CYP392D2 and CYP392D8, whose expression is associated with resistance. We subsequently functionally expressed these enzymes, together with CYP392A11 and CYP392A16 as known metabolizers, and compared their potential to accept a wide diversity of acaricides as substrate. This study overall confirms previous discovered substrates for CYP392A11 and CYP392A16, but also reveals unreported metabolic activity towards new acaricides. These include carbaryl, chlorpyrifos and etoxazole for CYP392A16 and carbaryl, chlorpyrifos and NNI-0711-NH pyflubumide for CYP392A11. For the newly studied CYP392D-family, we show that CYP392D2 metabolizes pyridaben, fenpyroximate, etoxazole and chlorpyrifos, while CYP392D8 metabolizes carbaryl, fenazaquin and tebufenpyrad. Last, we observed that both CYP392A- and CYP392D-subfamily enzymes activate chlorpyrifos to its corresponding oxon. Our study indicates that there is both overlap and specificity in the activity of A- and D-subfamily enzymes against acaricides and model substrates. With the recent advent of highly efficient CRISPR/Cas9 gene editing protocols in T. urticae, the way is now paved to conduct further genetic experiments revealing and quantifying the role of these enzymes in the resistance phenotype in field populations.
Collapse
Affiliation(s)
- Dimitra Tsakireli
- Pesticide Science Lab, Agricultural University of Athens, 75 Iera Odos, 118 55 Athens, Greece; Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, GR-700 13 Heraklion, Crete, Greece.
| | - Marilou Vandenhole
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, Ghent, Belgium.
| | | | - Maria Riga
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, GR-700 13 Heraklion, Crete, Greece.
| | - Vasilia Balabanidou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, GR-700 13 Heraklion, Crete, Greece.
| | - Sander De Rouck
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, Ghent, Belgium.
| | - John Ray
- Syngenta Crop Protection, Berkshire RG42 6EY, Bracknell, United Kingdom.
| | - Christoph Zimmer
- Syngenta Crop Protection, Schaffhauserstrasse 101, 4332 Stein, Switzerland.
| | - Lea Talmann
- Syngenta Crop Protection, Schaffhauserstrasse 101, 4332 Stein, Switzerland.
| | - Thomas Van Leeuwen
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, Ghent, Belgium.
| | - John Vontas
- Pesticide Science Lab, Agricultural University of Athens, 75 Iera Odos, 118 55 Athens, Greece; Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, GR-700 13 Heraklion, Crete, Greece.
| |
Collapse
|
9
|
İnak E, De Rouck S, Demirci B, Dermauw W, Geibel S, Van Leeuwen T. A novel target-site mutation (H146Q) outside the ubiquinone binding site of succinate dehydrogenase confers high levels of resistance to cyflumetofen and pyflubumide in Tetranychus urticae. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 170:104127. [PMID: 38657708 DOI: 10.1016/j.ibmb.2024.104127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/19/2024] [Accepted: 04/19/2024] [Indexed: 04/26/2024]
Abstract
Mitochondrial electron transfer inhibitors at complex II (METI-II), also referred to as succinate dehydrogenase inhibitors (SDHI), represent a recently developed class of acaricides encompassing cyflumetofen, cyenopyrafen, pyflubumide and cyetpyrafen. Despite their novelty, resistance has already developed in the target pest, Tetranychus urticae. In this study a new mutation, H146Q in a highly conserved region of subunit B of complex II, was identified in a T. urticae population resistant to all METI-IIs. In contrast to previously described mutations, H146Q is located outside the ubiquinone binding site of complex II. Marker-assisted backcrossing of this mutation in a susceptible genetic background validated its association with resistance to cyflumetofen and pyflubumide, but not cyenopyrafen or cyetpyrafen. Biochemical assays and the construction of inhibition curves with isolated mitochondria corroborated this selectivity. In addition, phenotypic effects of H146Q, together with the previously described H258L, were further examined via CRISPR/Cas9 gene editing. Although both mutations were successfully introduced into a susceptible T. urticae population, the H146Q gene editing event was only recovered in individuals already harboring the I260V mutation, known to confer resistance towards cyflumetofen. The combination of H146Q + I260V conferred high resistance levels to all METI-II acaricides with LC50 values over 5000 mg a.i./L for cyflumetofen and pyflubumide. Similarly, the introduction of H258L via gene editing resulted in high resistance levels to all tested acaricides, with extreme LC50 values (>5000 mg a.i./L) for cyenopyrafen and cyetpyrafen, but lower resistance levels for pyflubumide and cyflumetofen. Together, these findings indicate that different mutations result in a different cross-resistance spectrum, probably also reflecting subtle differences in the binding mode of complex II acaricides.
Collapse
Affiliation(s)
- Emre İnak
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium; Department of Plant Protection, Faculty of Agriculture, Ankara University, 06135, Ankara, Turkey
| | - Sander De Rouck
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Berke Demirci
- Graduate School of Natural and Applied Sciences, Ankara University, 06110, Ankara, Turkey
| | - Wannes Dermauw
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Sven Geibel
- Bayer AG, Crop Science Division, Alfred-Nobel-Straße 50, 40789, Monheim, Germany
| | - Thomas Van Leeuwen
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| |
Collapse
|
10
|
Ding LL, Yu SJ, Lei S, Pan Q, Liu L, Li SC, Chen TY, Wang SQ, Wei ZT, Liu HQ, Cong L, Ran C. Identification and Functional Characterization of an Omega-Class Glutathione S-Transferase Gene PcGSTO1 Associated with Cyetpyrafen Resistance in Panonychus citri (McGregor). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7010-7020. [PMID: 38529524 DOI: 10.1021/acs.jafc.4c00732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Cyetpyrafen is a recently developed acaricide. The citrus red mite, Panonychus citri (McGregor), has developed significant resistance to cyetpyrafen. However, the molecular mechanism underlying the cyetpyrafen resistance in P. citri remains unclear. Glutathione S-transferases (GSTs) play a critical role in arthropod pesticide resistance. This study showed that GSTs were potentially related to the resistance of P. citri to cyetpyrafen through synergistic experiments and enzyme activity analysis. An omega-family GST gene, PcGSTO1, was significantly up-regulated in the egg, nymph, and adult stages of the cyetpyrafen-resistant strain. Additionally, silencing of PcGSTO1 significantly increased the mortality of P. citri to cyetpyrafen and recombinant PcGSTO1 demonstrated the ability to metabolize cyetpyrafen. Our results indicated that the overexpression of PcGSTO1 is associated with cyetpyrafen resistance in P. citri, and they also provided valuable information for managing resistance in P. citri.
Collapse
Affiliation(s)
- Li-Li Ding
- Citrus Research Institute, National Engineering Research Center for Citrus, Southwest University, Chongqing 400712, China
| | - Shi-Jiang Yu
- Citrus Research Institute, National Engineering Research Center for Citrus, Southwest University, Chongqing 400712, China
| | - Shuang Lei
- Citrus Research Institute, National Engineering Research Center for Citrus, Southwest University, Chongqing 400712, China
| | - Qi Pan
- Citrus Research Institute, National Engineering Research Center for Citrus, Southwest University, Chongqing 400712, China
| | - Liu Liu
- Citrus Research Institute, National Engineering Research Center for Citrus, Southwest University, Chongqing 400712, China
| | - Si-Chen Li
- Citrus Research Institute, National Engineering Research Center for Citrus, Southwest University, Chongqing 400712, China
| | - Ting-Yu Chen
- Citrus Research Institute, National Engineering Research Center for Citrus, Southwest University, Chongqing 400712, China
| | - Shu-Qi Wang
- Citrus Research Institute, National Engineering Research Center for Citrus, Southwest University, Chongqing 400712, China
| | - Zhi-Tang Wei
- Citrus Research Institute, National Engineering Research Center for Citrus, Southwest University, Chongqing 400712, China
| | - Hao-Qiang Liu
- Citrus Research Institute, National Engineering Research Center for Citrus, Southwest University, Chongqing 400712, China
| | - Lin Cong
- Citrus Research Institute, National Engineering Research Center for Citrus, Southwest University, Chongqing 400712, China
| | - Chun Ran
- Citrus Research Institute, National Engineering Research Center for Citrus, Southwest University, Chongqing 400712, China
| |
Collapse
|
11
|
Wang A, Zhang Y, Liu S, Xue C, Zhao Y, Zhao M, Yang Y, Zhang J. Molecular mechanisms of cytochrome P450-mediated detoxification of tetraniliprole, spinetoram, and emamectin benzoate in the fall armyworm, Spodoptera frugiperda (J.E. Smith). BULLETIN OF ENTOMOLOGICAL RESEARCH 2024:1-13. [PMID: 38563228 DOI: 10.1017/s000748532300038x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The fall armyworm (FAW) Spodoptera frugiperda (J.E. Smith) is a highly damaging invasive omnivorous pest that has developed varying degrees of resistance to commonly used insecticides. To investigate the molecular mechanisms of tolerance to tetraniliprole, spinetoram, and emamectin benzoate, the enzyme activity, synergistic effect, and RNA interference were implemented in S. frugiperda. The functions of cytochrome P450 monooxygenase (P450) in the tolerance to tetraniliprole, spinetoram, and emamectin benzoate in S. frugiperda was determined by analysing changes in detoxification metabolic enzyme activity and the effects of enzyme inhibitors on susceptibility to the three insecticides. 102 P450 genes were screened via transcriptome and genome, of which 67 P450 genes were differentially expressed in response to tetraniliprole, spinetoram, and emamectin benzoate and validated by quantitative real-time PCR. The expression patterns of CYP9A75, CYP340AA4, CYP340AX8v2, CYP340L16, CYP341B15v2, and CYP341B17v2 were analysed in different tissues and at different developmental stages in S. frugiperda. Silencing CYP340L16 significantly increased the susceptibility of S. frugiperda to tetraniliprole, spinetoram, and emamectin benzoate. Furthermore, knockdown of CYP340AX8v2, CYP9A75, and CYP341B17v2 significantly increased the sensitivity of S. frugiperda to tetraniliprole. Knockdown of CYP340AX8v2 and CYP340AA4 significantly increased mortality of S. frugiperda to spinetoram. Knockdown of CYP9A75 and CYP341B15v2 significantly increased the susceptibility of S. frugiperda to emamectin benzoate. These results may help to elucidate the mechanisms of tolerance to tetraniliprole, spinetoram and emamectin benzoate in S. frugiperda.
Collapse
Affiliation(s)
- Aiyu Wang
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, China
- Yellow River Delta Modern Agriculture Research Institute, Shandong Academy of Agricultural Sciences, Dongying, China
| | - Yun Zhang
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, China
- Yellow River Delta Modern Agriculture Research Institute, Shandong Academy of Agricultural Sciences, Dongying, China
| | - Shaofang Liu
- Key Lab of Bioprocess Engineering of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Chao Xue
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yongxin Zhao
- Shandong Province Yuncheng County Agricultural and Rural Bureau, Yuncheng, China
| | - Ming Zhao
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, China
- Yellow River Delta Modern Agriculture Research Institute, Shandong Academy of Agricultural Sciences, Dongying, China
| | - Yuanxue Yang
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, China
- Yellow River Delta Modern Agriculture Research Institute, Shandong Academy of Agricultural Sciences, Dongying, China
| | - Jianhua Zhang
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, China
- Yellow River Delta Modern Agriculture Research Institute, Shandong Academy of Agricultural Sciences, Dongying, China
| |
Collapse
|
12
|
Liu XY, Li K, Pan D, Dou W, Yuan GR, Wang JJ. Cross-resistance, inheritance and biochemical mechanism of abamectin resistance in a field-derived strain of the citrus red mite, Panonychus citri (Acari: Tetranychidae). PEST MANAGEMENT SCIENCE 2024; 80:1258-1265. [PMID: 37889506 DOI: 10.1002/ps.7855] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/20/2023] [Accepted: 10/27/2023] [Indexed: 10/28/2023]
Abstract
BACKGROUND The citrus red mite, Panonychus citri (McGregor), a global pest of citrus, has developed different levels of resistance to various acaricides in the field. Abamectin is one of the most important insecticides/acaricides worldwide, targetting a wide number of insect and mite pests. The evolution of abamectin resistance in P. citri is threatening the sustainable use of abamectin for mite control. RESULTS The abamectin resistant strain (NN-Aba), derived from a field strain NN by consistent selection with abamectin, showed 4279-fold resistance to abamectin compared to a relatively susceptible strain (SS) of P. citri. Cross-resistance of NN-Aba was observed between abamectin and emamectin benzoate, pyridaben, fenpropathrin and cyflumetofen. Inheritance analyses indicated that abamectin resistance in the NN-Aba strain was autosomal, incompletely recessive and polygenic. The synergy experiment showed that abamectin toxicity was synergized by piperonyl butoxide (PBO), diethyl maleate (DEM) and tributyl phosphorotrithiotate (TPP) in the NN-Aba strain, and synergy ratios were 2.72-, 2.48- and 2.13-fold, respectively. The glutathione-S-transferases activity in the NN-Aba strain were significantly increased by 2.08-fold compared with the SS strain. CONCLUSION The abamectin resistance was autosomal, incompletely recessive and polygenic in P. citri. The NN-Aba strain showed cross-resistance to various acaricides with different modes of action. Metabolic detoxification mechanism participated in abamectin resistance in NN-Aba strain. These findings provide useful information for resistance management of P. citri in the field. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xun-Yan Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Ke Li
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Deng Pan
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Wei Dou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Guo-Rui Yuan
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing, China
| |
Collapse
|
13
|
Yang F, Ran L, He Y, Xu Z, He L, Zhang P. Enantioselective metabolism of fenpropathrin enantiomers by carboxyl/choline esterase 6 in Tetranychus cinnabarinus. PEST MANAGEMENT SCIENCE 2024; 80:1501-1509. [PMID: 37948435 DOI: 10.1002/ps.7882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND Tetranychus cinnabarinus is a polyphagous pest mite commonly found in agriculture. As an excellent acaricide, fenpropathrin (FEN) is frequently used to control T. cinnabarinus in agriculture. However, commercial FEN is a racemate with two enantiomers, R-FEN and S-FEN. Considering that investigations on the metabolism of FEN by T. cinnabarinus are based on racemate FEN, it is important to investigate the enantioselective metabolism of FEN in T. cinnabarinus. RESULTS S-FEN was more toxic to T. cinnabarinus than R-FEN by more than 68.8-fold. Moreover, the synergist bioassay revealed that carboxylesterase and cytochrome P450 were the primary enzymes engaged in the detoxification of FEN in T. cinnabarinus, with carboxylesterase playing a leading role. Seven genes were substantially different after the induction of S-FEN and R-FEN. TcCCE06 was screened and selected as a key gene that related to FEN metabolism in T. cinnabarinus. The metabolic results showed that the recombinant TcCCE06 effectively metabolized 32.1% of the R-FEN and 13.8% of the S-FEN within 4 h of incubation. Moreover, R-FEN was demonstrated to have a higher affinity for the TcCCE06 protein than S-FEN based on molecular docking. CONCLUSION Our results indicated that TcCCE06 mediates the enantioselective metabolism of FEN in T. cinnabarinus. Our findings will contribute to a more comprehensive understanding of the mechanisms underlying the differential toxicity of the FEN enantiomers against T. cinnabarinus. Furthermore, they also provide a new perspective for the development of enantiomer-enriched acaricides with higher activity and lower pesticide dosage and pollution risks. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Furong Yang
- College of Plant Protection, Southwest University, Chongqing, China
| | - Lulu Ran
- College of Plant Protection, Southwest University, Chongqing, China
| | - Yuhan He
- College of Plant Protection, Southwest University, Chongqing, China
| | - Zhifeng Xu
- College of Plant Protection, Southwest University, Chongqing, China
| | - Lin He
- College of Plant Protection, Southwest University, Chongqing, China
| | - Ping Zhang
- College of Plant Protection, Southwest University, Chongqing, China
| |
Collapse
|
14
|
Pan D, Xia M, Li C, Liu X, Archdeacon L, O'Reilly AO, Yuan G, Wang J, Dou W. CYP4CL2 Confers Metabolic Resistance to Pyridaben in the Citrus Pest Mite Panonychus citri. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19465-19474. [PMID: 38048568 DOI: 10.1021/acs.jafc.3c06921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
The citrus red mite Panonychus citri has developed strong resistance to acaricides. Cytochrome P450 monooxygenases (P450s) can detoxify pesticides and are involved in pesticide resistance in many insects. Here, a pyridaben-resistant P. citri strain showed cross-resistance to cyenopyrafen, bifenazate, fenpyroximate, and tolfenpyrad. Piperonyl butoxide, a P450 inhibitor, significantly increased the toxicity of pyridaben to resistant (Pyr_Rs) and susceptible (Pyr_Control) P. citri strains. P450 activity was significantly higher in Pyr_Rs than in Pyr_Control. Analyses of RNA-Seq data identified a P450 gene (CYP4CL2) that is potentially involved in pyridaben resistance. Consistently, it was up-regulated in two field-derived resistant populations (CQ_WZ and CQ_TN). RNA interference-mediated knockdown of CYP4CL2 significantly decreased the pyridaben resistance in P. citri. Transgenic Drosophila melanogaster expressing CYP4CL2 showed increased pyridaben resistance. Molecular docking analysis showed that pyridaben could bind to several amino acids at substrate recognition sites in CYP4CL2. These findings shed light on P450-mediated pyridaben resistance in pest mites.
Collapse
Affiliation(s)
- Deng Pan
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Menghao Xia
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Chuanzhen Li
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Xunyan Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Lewis Archdeacon
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool L3 5UX, U.K
| | - Andrias O O'Reilly
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool L3 5UX, U.K
| | - Guorui Yuan
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Jinjun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Wei Dou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
15
|
De Rouck S, İnak E, Dermauw W, Van Leeuwen T. A review of the molecular mechanisms of acaricide resistance in mites and ticks. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 159:103981. [PMID: 37391089 DOI: 10.1016/j.ibmb.2023.103981] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/12/2023] [Accepted: 06/11/2023] [Indexed: 07/02/2023]
Abstract
The Arachnida subclass of Acari comprises many harmful pests that threaten agriculture as well as animal health, including herbivorous spider mites, the bee parasite Varroa, the poultry mite Dermanyssus and several species of ticks. Especially in agriculture, acaricides are often used intensively to minimize the damage they inflict, promoting the development of resistance. Beneficial predatory mites used in biological control are also subjected to acaricide selection in the field. The development and use of new genetic and genomic tools such as genome and transcriptome sequencing, bulked segregant analysis (QTL mapping), and reverse genetics via RNAi or CRISPR/Cas9, have greatly increased our understanding of the molecular genetic mechanisms of resistance in Acari, especially in the spider mite Tetranychus urticae which emerged as a model species. These new techniques allowed to uncover and validate new resistance mutations in a larger range of species. In addition, they provided an impetus to start elucidating more challenging questions on mechanisms of gene regulation of detoxification associated with resistance.
Collapse
Affiliation(s)
- Sander De Rouck
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Emre İnak
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium; Department of Plant Protection, Faculty of Agriculture, Ankara University, Dıskapı, 06110, Ankara, Turkiye
| | - Wannes Dermauw
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium; Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Sciences Unit, 9820 Merelbeke, Belgium
| | - Thomas Van Leeuwen
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| |
Collapse
|
16
|
Molecular Mechanisms Underlying Metabolic Resistance to Cyflumetofen and Bifenthrin in Tetranychus urticae Koch on Cowpea. Int J Mol Sci 2022; 23:ijms232416220. [PMID: 36555861 PMCID: PMC9787285 DOI: 10.3390/ijms232416220] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Tetranychus urticae Koch (T. urticae) is one of the most tremendous herbivores due to its polyphagous characteristics, and is resistant to most acaricides. In this study, enzyme-linked immunosorbent assay (ELISA), transcriptome sequencing (RNA-seq) and quantitative real-time PCR (qRT-PCR) were carried out to analyze the mechanisms of T. urticae metabolic resistance to cyflumetofen and bifenthrin on cowpea. The enzyme activity of UDP-glucuronosyltransferases (UGTs) and carboxylesterases (CarEs) in the cyflumetofen-resistant (R_cfm) strain significantly decreased, while that of cytochrome P450 monooxygenases (P450s) significantly increased. Meanwhile, the activities of glutathione-S-transferases (GSTs), CarEs and P450s in the bifenthrin-resistant (R_bft) strain were significantly higher than those in the susceptible strain (Lab_SS). According to the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses, in the R_cfm mite strain, two carboxyl/cholinesterase (CCE) genes and two P450 genes were upregulated and one gene was downregulated, namely CYP392E7; in the R_bft mite strain, eleven CCE, nine UGT, two P450, four GST and three ABC genes were upregulated, while four CCE and three P450 genes were downregulated. Additionally, 94 differentially expressed genes (DEGs) were common to the two resistant groups. Specifically, TuCCE46 and TuCCE70 were upregulated in both resistant groups. Furthermore, the qRT-PCR validation data were consistent with those from the transcriptome sequencing analysis. Specifically, TuCCE46 (3.37-fold) was significantly upregulated in the R_cfm strain, while in the R_bft strain, TeturUGT22 (5.29-fold), teturUGT58p (1.74-fold), CYP392A11 (2.89-fold) and TuGSTd15 (5.12-fold) were significantly upregulated and TuCCE01 (0.13-fold) and CYP392A2p (0.07-fold) were significantly downregulated. Our study indicates that TuCCE46 might play the most important role in resistance to cyflumetofen, and TuCCE01, teturUGT58p, teturUGT22, CYP392A11, TuGSTd15, TuGSTm09 and TuABCG-13 were prominent in the resistance to bifenthrin. These findings provide further insight into the critical genes involved in the metabolic resistance of T. urticae to cyflumetofen and bifenthrin.
Collapse
|
17
|
Feng K, Liu J, Zhao M, Jiang Z, Liu P, Wei P, Dou W, He L. The dynamic changes of genes revealed that persistently overexpressed genes drive the evolution of cyflumetofen resistance in Tetranychus cinnabarinus. INSECT SCIENCE 2022. [PMID: 36380571 DOI: 10.1111/1744-7917.13151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 11/02/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Changes in gene expression are associated with the evolution of pesticide resistance in arthropods. In this study, transcriptome sequencing was performed in 3 different resistance levels (low, L; medium, M; and high, H) of cyflumetofen-resistant strain (YN-CyR). A total of 1 685 genes, including 97 detoxification enzyme genes, were upregulated in all 3 stages, of which 192 genes, including 11 detoxification enzyme genes, showed a continuous increase in expression level with resistance development (L to H). RNA interference experiments showed that overexpression of 7 genes (CYP392A1, TcGSTd05, CCE06, CYP389A1, TcGSTz01, CCE59, and CYP389C2) is involved in the development of cyflumetofen resistance in Tetranychus cinnabarinus. The recombinant CYP392A1 can effectively metabolize cyflumetofen, while CCE06 can bind and sequester cyflumetofen in vitro. We compared 2 methods for rapid screening of resistance molecular markers, including short-term induction and 1-time high-dose selection. Two detoxification enzyme genes were upregulated in the field susceptible strain (YN-S) by induction with 20% lethal concentration (LC20 ) of cyflumetofen. However, 16 detoxification enzyme genes were upregulated by 1-time selection with LC80 of cyflumetofen. Interestingly, the 16 genes were overexpressed in all 3 resistance stages. These results indicated that 1 685 genes that were upregulated at the L stage constituted the basis of cyflumetofen resistance, of which 192 genes in which upregulation continued to increase were the main driving force for the development of resistance. Moreover, the 1-time high-dose selection is an efficient way to rapidly obtain the resistance-related genes that can aid in the development of resistance markers and resistance management in mites.
Collapse
Affiliation(s)
- Kaiyang Feng
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China
| | - Jialu Liu
- Key Scientific Research Base of Pest and Mold Control of Heritage Collection (Chongqing China Three Gorges Museum), State Administration of Cultural Heritage, Chongqing, China
| | - Mingyu Zhao
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China
- Key Scientific Research Base of Pest and Mold Control of Heritage Collection (Chongqing China Three Gorges Museum), State Administration of Cultural Heritage, Chongqing, China
| | - Zhixin Jiang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China
| | - Peilin Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China
| | - Peng Wei
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China
| | - Wei Dou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China
| | - Lin He
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China
| |
Collapse
|
18
|
İnak E, Alpkent YN, Saalwaechter C, Albayrak T, İnak A, Dermauw W, Geibel S, Van Leeuwen T. Long-term survey and characterization of cyflumetofen resistance in Tetranychus urticae populations from Turkey. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 188:105235. [PMID: 36464352 DOI: 10.1016/j.pestbp.2022.105235] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/09/2022] [Accepted: 09/10/2022] [Indexed: 06/17/2023]
Abstract
The two-spotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae) is the most economically important mite pest in agricultural areas and chemical acaricides are widely used to control T. urticae populations. Cyflumetofen is a recently introduced acaricide that inhibits the mitochondrial electron transport chain at complex II (succinate dehydrogenase, SDH), which represents the most recently developed mode of action for mite control worldwide. In the present study, started upon the launch of cyflumetofen in Turkey, a five-year survey was performed to monitor cyflumetofen susceptibility in 28 T. urticae populations collected from agricultural fields across the country. The first resistance case that might cause control failure in practical field conditions was uncovered in 2019, three years after the registration of cyflumetofen. In addition, an extremely resistant population (1722-fold resistance) was also detected towards the end of 2019. Cyflumetofen resistance did not decrease in the laboratory after relaxation of selection pressure for over one year in field-collected populations, suggesting the absence of a fitness cost associated with resistance in these populations. Next to phenotypic resistance, metabolic and physiological mechanisms underlying the decreased susceptibility were also investigated. Synergism assays showed the involvement of P450 monooxygenases in cyflumetofen resistance. Downregulation of carboxylesterases as resistance mechanism, is underpinned by the fact that pre-treatment with esterase inhibitor DEF decreased cyflumetofen toxicity in field-collected strains. Furthermore, a novel H258L substitution in the subunit B of complex II was uncovered in a field population. In silico modeling of the new mutation suggested that the mutation might indeed influence toxicity to complex II inhibitors cyenopyrafen and pyflubumide, but most likely not cyflumetofen. However, further studies are needed to uncover the exact role of this mutation in resistance to this new class of complex II inhibitors.
Collapse
Affiliation(s)
- Emre İnak
- Department of Plant Protection, Faculty of Agriculture, Ankara University, Diskapi 06110, Ankara, Turkey; Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Yasin Nazım Alpkent
- Republic of Turkey Ministry of Agriculture and Forestry Directorate of Plant Protection Central Research Institute, Ministry of Agriculture and Forestry, Yenimahalle 06172, Ankara, Turkey
| | | | - Tuba Albayrak
- Agricultural Credit Cooperatives of Turkey, Karapınar, 2863 Bucak, Burdur, Turkey
| | - Arda İnak
- Agro Project Academy, 01100 Seyhan, Adana, Turkey
| | - Wannes Dermauw
- Flanders Research Institute for Agriculture, Fisheries and Food, Plant Sciences Unit, Burg. Van Gansberghelaan 96, B-9820 Merelbeke, Belgium
| | - Sven Geibel
- Bayer AG, Crop Science Division, 40789 Monheim, Germany
| | - Thomas Van Leeuwen
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| |
Collapse
|
19
|
Zhu J, Feng J, Tian K, Li C, Li M, Qiu X. Functional characterization of CYP6G4 from the house fly in propoxur metabolism and resistance. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 187:105186. [PMID: 36127048 DOI: 10.1016/j.pestbp.2022.105186] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 07/24/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
The house fly (Musca domestica L.) (Diptera: Muscidae) is a global vector that can transmit >250 human and animal diseases. The control of house flies has heavily relied on the application of various chemical insecticides. The carbamate insecticide propoxur has been widely used for the control of house flies, and resistance to propoxur has been documented in many house fly populations worldwide. Previous studies have identified several propoxur resistance-conferring mutations in the target protein acetylcholinesterase; however, the molecular basis for metabolic resistance to propoxur remains unknown. In this study, we investigated the involvement of CYP6G4, a cytochrome P450 overexpressed in many insecticide resistant populations of Musca domestica, in propoxur metabolism and resistance by using combined approaches of recombinant protein-based insecticide metabolism and the Drosophila GAL4/UAS transgenic system. The recombinant CYP6G4 and its redox partners (NADPH-dependent cytochrome P450 reductase and cytochrome b5) were functionally expressed in Escherichia coli. Metabolism experiments showed that CYP6G4 was able to transform propoxur with a turnover rate of around 0.79 min-1. Six metabolites were putatively identified, suggesting that CYP6G4 could metabolize propoxur via hydroxylation, O-depropylation and N-demethylation. Moreover, bioassay results showed that ectopic overexpression of CYP6G4 in fruit flies significantly increased their tolerance to propoxur. Our in vivo and in vitro data convincingly demonstrate that CYP6G4 contributes to propoxur metabolism and resistance.
Collapse
Affiliation(s)
- Jiang Zhu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences. Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Feng
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences. Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kai Tian
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences. Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chong Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences. Beijing 100101, China
| | - Mei Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences. Beijing 100101, China
| | - Xinghui Qiu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences. Beijing 100101, China.
| |
Collapse
|
20
|
Papapostolou KM, Riga M, Samantsidis GR, Skoufa E, Balabanidou V, Van Leeuwen T, Vontas J. Over-expression in cis of the midgut P450 CYP392A16 contributes to abamectin resistance in Tetranychus urticae. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 142:103709. [PMID: 34995778 DOI: 10.1016/j.ibmb.2021.103709] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/22/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
Cytochrome P450 mediated metabolism is a well-known mechanism of insecticide resistance. However, to what extent qualitative or quantitative changes are responsible for increased metabolism, is not well understood. Increased expression of P450 genes is most often reported, but the underlying regulatory mechanisms remain widely unclear. In this study, we investigate CYP392A16, a P450 from the polyphagous and major agricultural pest Tetranychus urticae. High expression levels of CYP392A16 and in vitro metabolism assays have previously associated this P450 with abamectin resistance. Here, we show that CYP392A16 is primarily localized in the midgut epithelial cells, as indicated by immunofluorescence analysis, a finding also supported by a comparison between feeding and contact toxicity bioassays. Silencing via RNAi of CYP392A16 in a highly resistant T. urticae population reduced insecticide resistance levels from 3400- to 1900- fold, compared to the susceptible reference strain. Marker-assisted backcrossing, using a single nucleotide polymorphism (SNP) found in the CYP392A16 allele from the resistant population, was subsequently performed to create congenic lines bearing this gene in a susceptible genetic background. Toxicity assays indicated that the allele derived from the resistant strain confers 3.6-fold abamectin resistance compared to the lines with susceptible genetic background. CYP392A16 is over-expressed at the same levels in these lines, pointing to cis-regulation of gene expression. In support of that, functional analysis of the putative promoter region from the resistant and susceptible parental strains revealed a higher reporter gene expression, confirming the presence of cis-acting regulatory mechanisms.
Collapse
Affiliation(s)
- Kyriaki Maria Papapostolou
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 100 N. Plastira Street, GR-700 13, Heraklion, Crete, Greece; Department of Biology, University of Crete, Vassilika Vouton, 70013, Heraklion, Greece
| | - Maria Riga
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 100 N. Plastira Street, GR-700 13, Heraklion, Crete, Greece; Department of Biology, University of Crete, Vassilika Vouton, 70013, Heraklion, Greece.
| | - George-Rafael Samantsidis
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 100 N. Plastira Street, GR-700 13, Heraklion, Crete, Greece; Department of Biology, University of Crete, Vassilika Vouton, 70013, Heraklion, Greece
| | - Evangelia Skoufa
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 100 N. Plastira Street, GR-700 13, Heraklion, Crete, Greece; Department of Biology, University of Crete, Vassilika Vouton, 70013, Heraklion, Greece
| | - Vasileia Balabanidou
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 100 N. Plastira Street, GR-700 13, Heraklion, Crete, Greece
| | - Thomas Van Leeuwen
- Department of Plants and Crops, Faculty of Bioscience Engineering, Coupure Links 653, Ghent University, B-9000, Ghent, Belgium
| | - John Vontas
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 100 N. Plastira Street, GR-700 13, Heraklion, Crete, Greece; Department of Crop Science, Agricultural University of Athens, 75 Iera Odos Street, GR-11855, Athens, Greece.
| |
Collapse
|
21
|
Feng K, Jiang Z, Liu P, Liu J, Wen X, He L. Circular RNA, circ1-3p, is Involved in Cyflumetofen Resistance by Acting as a Competitive RNA against miR-1-3p in Tetranychus cinnabarinus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1068-1078. [PMID: 35072460 DOI: 10.1021/acs.jafc.1c07155] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
As a newly recognized type of noncoding RNA, circular RNA can mediate a variety of physiological changes in mammals by regulating the post-transcriptional expression level of genes. However, the function of circRNA in the evolution of pesticide resistance in arthropods is still unknown. In this study, 2546 circRNAs were identified in Tetranychus cinnabarinus by transcriptome sequencing. The differentially expressed gene analysis indicated that 44 circRNAs were overexpressed in a cyflumetofen-resistant strain, of which a circRNA (named circ1-3p) was found to contain the response elements of miR-1-3p, an miRNA that is involved in cyflumetofen resistance by targeting TcGSTm04. The circular structure of circ1-3p was further determined using a divergent primer. The results of different molecular assays in vitro and in vivo showed that circ1-3p can compete with TcGSTm04 in miR-1-3p binding. The colocalization of circ1-3p and miR-1-3p was found using fluorescence in situ hybridization, suggesting that circ1-3p can directly sponge miR-1-3p in T. cinnabarinus. In addition, silencing the expression of circ1-3p resulted in the upregulation of miR-1-3p and the downregulation of TcGSTm04 as well as a significant increase in the sensitivity of T. cinnabarinus to cyflumetofen. All these pieces of evidence indicates that overexpressed circ1-3p promotes the expression of TcGSTm04 through sponging miR-1-3p, thereby involving in the evolution of cyflumetofen resistance in T. cinnabarinus.
Collapse
Affiliation(s)
- Kaiyang Feng
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing 400715, China
| | - Zhixin Jiang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing 400715, China
| | - Peilin Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing 400715, China
| | - Jie Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing 400715, China
| | - Xiang Wen
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing 400715, China
| | - Lin He
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing 400715, China
| |
Collapse
|
22
|
Katsavou E, Riga M, Ioannidis P, King R, Zimmer CT, Vontas J. Functionally characterized arthropod pest and pollinator cytochrome P450s associated with xenobiotic metabolism. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 181:105005. [PMID: 35082029 DOI: 10.1016/j.pestbp.2021.105005] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/12/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
The cytochrome P450 family (P450s) of arthropods includes diverse enzymes involved in endogenous essential physiological functions and in the oxidative metabolism of xenobiotics, insecticides and plant allelochemicals. P450s can also establish insecticide selectivity in bees and pollinators. Several arthropod P450s, distributed in different phylogenetic groups, have been associated with xenobiotic metabolism, and some of them have been functionally characterized, using different in vitro and in vivo systems. The purpose of this review is to summarize scientific publications on arthropod P450s from major insect and mite agricultural pests, pollinators and Papilio sp, which have been functionally characterized and shown to metabolize xenobiotics and/or their role (direct or indirect) in pesticide toxicity or resistance has been functionally validated. The phylogenetic relationships among these P450s, the functional systems employed for their characterization and their xenobiotic catalytic properties are presented, in a systematic approach, including critical aspects and limitations. The potential of the primary P450-based metabolic pathway of target and non-target organisms for the development of highly selective insecticides and resistance-breaking formulations may help to improve the efficiency and sustainability of pest control.
Collapse
Affiliation(s)
- Evangelia Katsavou
- Pesticide Science Laboratory, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Maria Riga
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology (FORTH), Nikolaou Plastira Street 100, 70013 Heraklion, Crete, Greece.
| | - Panagiotis Ioannidis
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology (FORTH), Nikolaou Plastira Street 100, 70013 Heraklion, Crete, Greece
| | - Rob King
- Department of Computational and Analytical Sciences, Rothamsted Research, Harpenden, UK
| | - Christoph T Zimmer
- Syngenta Crop Protection, Werk Stein, Schaffhauserstrasse, Stein CH4332, Switzerland
| | - John Vontas
- Pesticide Science Laboratory, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology (FORTH), Nikolaou Plastira Street 100, 70013 Heraklion, Crete, Greece.
| |
Collapse
|
23
|
Susceptibility to Acaricides and the Frequencies of Point Mutations in Etoxazole- and Pyridaben-Resistant Strains and Field Populations of the Two-Spotted Spider Mite, Tetranychus urticae (Acari: Tetranychidae). INSECTS 2021; 12:insects12070660. [PMID: 34357320 PMCID: PMC8306671 DOI: 10.3390/insects12070660] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 11/17/2022]
Abstract
The two-spotted spider mite Tetranychus urticae Koch is a major agricultural pest worldwide and is known to rapidly develop resistance to pesticides. In the present study, we explored a field strain that was collected in 2000 and 2003 and has been exhibiting resistance to etoxazole and pyridaben over the last 16 years. The resistance ratios of the etoxazole- and pyridaben-resistant strains (ER and PR) to etoxazole or pyridaben were more than 5,000,000- and 4109.6-fold higher than that of the susceptible strain, respectively. All field-collected populations showed resistance to etoxazole and pyridaben. The ER and PR strains showed cross-resistance to several acaricides. Both I1017F and H92R point mutations were detected in 7 out of 8 field groups. Spirodiclofen and spiromesifen resulted in more than 77.5% mortality in the 8 field groups. In addition, the genotype frequency of the I1017F point mutation was 100.0% in the ER strain, and that of the H92R point mutation was 97.0% in the PR strain. All of the field populations were found to have a high frequency of I1017F. These results suggest that the observation of resistance patterns will help in designing a sustainable IPM program for T. urticae.
Collapse
|
24
|
Liu J, Jiang Z, Feng K, Lu W, Wen X, Sun J, Li J, Liu J, He L. Transcriptome analysis revealed that multiple genes were related to the cyflumetofen resistance of Tetranychus cinnabarinus (Boisduval). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 173:104799. [PMID: 33771268 DOI: 10.1016/j.pestbp.2021.104799] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/17/2020] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
Metabolic resistance is one of the main causes of acaricide resistance. Many previous studies focused on the function of specific genes in insecticides/acaricides resistance. However, during the development of resistance, the overall dynamic of expression levels of detoxification enzyme genes in mites is still unclear. Tetranychus cinnabarinus, a major agricultural pest, which is notorious for developing resistance to acaricides rapidly. In this study, a field susceptible strain (YS) was continuously selected for 16, 25 and 32 generations, and developed to low resistance (7.83-fold, L), medium resistance (17.23-fold, M) and high resistance (86.05-fold, H), respectively. Transcriptome sequencing was performed in YS, L, M and H strains. Overall, compared with YS strain, the number of differential expression genes increased slightly with the development of cyflumetofen-resistance. As for detoxification genes, the median of fold change of up-regulated P450、CCE and GST genes was higher than those of all up-regulated genes in three resistance level, but only the number and the median of fold change of up-regulated P450 genes was increased slightly with the development of resistance. In addition, synergism experiments also proved that P450 and GST genes were the major contributors to the metabolic resistance of cyflumetofen of T. cinnabarinus. These results showed that the resistance of T. cinnabarinus to cyflumetofen was related to many resistant genes, among which P450 genes could play crucial roles in cyflumefen resistance.
Collapse
Affiliation(s)
- Jialu Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China; Academy of Agricultural Sciences, Southwest University, Chongqing, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China
| | - Zhixin Jiang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China; Academy of Agricultural Sciences, Southwest University, Chongqing, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China
| | - Kaiyang Feng
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China; Academy of Agricultural Sciences, Southwest University, Chongqing, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China
| | - Wencai Lu
- Institute of Agricultural Resources and Environment, Chongqing Academy of Agricultural Sciences, Chongqing 401329, China
| | - Xiang Wen
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China; Academy of Agricultural Sciences, Southwest University, Chongqing, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China
| | - Jingyu Sun
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China; Academy of Agricultural Sciences, Southwest University, Chongqing, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China
| | - Jinhang Li
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China; Academy of Agricultural Sciences, Southwest University, Chongqing, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China
| | - Jie Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China; Academy of Agricultural Sciences, Southwest University, Chongqing, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China
| | - Lin He
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China; Academy of Agricultural Sciences, Southwest University, Chongqing, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China.
| |
Collapse
|
25
|
Papapostolou KM, Riga M, Charamis J, Skoufa E, Souchlas V, Ilias A, Dermauw W, Ioannidis P, Van Leeuwen T, Vontas J. Identification and characterization of striking multiple-insecticide resistance in a Tetranychus urticae field population from Greece. PEST MANAGEMENT SCIENCE 2021; 77:666-676. [PMID: 33051974 DOI: 10.1002/ps.6136] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/18/2020] [Accepted: 10/13/2020] [Indexed: 05/23/2023]
Abstract
BACKGROUND Tetranychus urticae is a notorious crop pest with a worldwide distribution that has developed resistance to a wide range of acaricides. Here, we investigated the resistance levels of a T. urticae population collected from an ornamental greenhouse in Peloponnese, Greece, and analyzed its resistance mechanisms at the molecular level. RESULTS Toxicological assays showed resistance against compounds with different modes of action, with resistance ratios of: 89-fold for abamectin; > 1000-fold for clofentezine; > 5000-fold for etoxazole; 27-fold for fenpyroximate and pyridaben; 20- and 36-fold for spirodiclofen and spirotetramat, respectively; and 116- and > 500-fold for cyenopyrafen and cyflumetofen, respectively. Bioassays with synergists indicated the involvement of detoxification enzymes in resistance to abamectin, but not to cyflumetofen and spirodiclofen. RNA sequencing (RNA-seq) analysis showed significant over-expression of several genes encoding detoxification enzymes such as cytochrome P450 monooxygenases and UDP-glycosyltransferases, which have been previously associated with acaricide resistance. Known target-site resistance mutations were identified in acetyl-choline esterase, chitin synthase 1 and NDUFS7/psst, but putative novel resistance mutations were also discovered in targets such as glutamate-gated chloride channel subunit 3. Interestingly, target-site resistance mutations against pyrethroids or bifenazate were not identified, possibly indicating a recent reduced selection pressure in Greece, as well as a possible opportunity to rotate these chemistries. CONCLUSION We identified and characterized a striking case of multiple acaricide resistance in a field population of T. urticae. Exceptionally strong resistance phenotypes, with accumulation of multiple resistance mutations and over-expression of P450s and other detoxification genes in the same field population are reported.
Collapse
Affiliation(s)
- Kyriaki Maria Papapostolou
- Institute of Molecular Biology & Biotechnology, Foundation of Research & Technology Hellas, Heraklion, Greece
- Department of Biology, University of Crete, Heraklion, Greece
| | - Maria Riga
- Institute of Molecular Biology & Biotechnology, Foundation of Research & Technology Hellas, Heraklion, Greece
| | - Jason Charamis
- Institute of Molecular Biology & Biotechnology, Foundation of Research & Technology Hellas, Heraklion, Greece
- Department of Biology, University of Crete, Heraklion, Greece
| | - Evangelia Skoufa
- Institute of Molecular Biology & Biotechnology, Foundation of Research & Technology Hellas, Heraklion, Greece
- Department of Biology, University of Crete, Heraklion, Greece
| | - Vassilis Souchlas
- Laboratory of Pesticide Science, Department of Crop Science, Agricultural University of Athens, Athens, Greece
| | - Aris Ilias
- Institute of Molecular Biology & Biotechnology, Foundation of Research & Technology Hellas, Heraklion, Greece
| | - Wannes Dermauw
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Panagiotis Ioannidis
- Institute of Molecular Biology & Biotechnology, Foundation of Research & Technology Hellas, Heraklion, Greece
| | - Thomas Van Leeuwen
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - John Vontas
- Institute of Molecular Biology & Biotechnology, Foundation of Research & Technology Hellas, Heraklion, Greece
- Laboratory of Pesticide Science, Department of Crop Science, Agricultural University of Athens, Athens, Greece
| |
Collapse
|
26
|
Dang M, Liu M, Huang L, Ou X, Long C, Liu X, Ren Y, Zhang P, Huang M, Liu A. Design, synthesis, and bioactivities of novel pyridazinone derivatives containing
2‐phenylthiazole
or oxazole skeletons. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.4118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mingming Dang
- Department of Resources and Environment Hunan Nonferrous Metals Vocational and Technical College Zhuzhou China
- National Engineering Research Center for Agrochemicals Hunan Research Institute of Chemical Industry Changsha China
| | - Minhua Liu
- National Engineering Research Center for Agrochemicals Hunan Research Institute of Chemical Industry Changsha China
- Hunan Province Key Laboratory for Agrochemicals Changsha China
| | - Lu Huang
- National Engineering Research Center for Agrochemicals Hunan Research Institute of Chemical Industry Changsha China
- Hunan J & F Test Co., Ltd. Changsha China
| | - Xiaoming Ou
- National Engineering Research Center for Agrochemicals Hunan Research Institute of Chemical Industry Changsha China
- Hunan J & F Test Co., Ltd. Changsha China
| | - Chuyun Long
- National Engineering Research Center for Agrochemicals Hunan Research Institute of Chemical Industry Changsha China
- Hunan J & F Test Co., Ltd. Changsha China
| | - Xingping Liu
- National Engineering Research Center for Agrochemicals Hunan Research Institute of Chemical Industry Changsha China
- Hunan Province Key Laboratory for Agrochemicals Changsha China
| | - Yeguo Ren
- National Engineering Research Center for Agrochemicals Hunan Research Institute of Chemical Industry Changsha China
- Hunan Province Key Laboratory for Agrochemicals Changsha China
| | - Ping Zhang
- National Engineering Research Center for Agrochemicals Hunan Research Institute of Chemical Industry Changsha China
- Hunan J & F Test Co., Ltd. Changsha China
| | - Mingzhi Huang
- National Engineering Research Center for Agrochemicals Hunan Research Institute of Chemical Industry Changsha China
- Hunan Province Key Laboratory for Agrochemicals Changsha China
| | - Aiping Liu
- National Engineering Research Center for Agrochemicals Hunan Research Institute of Chemical Industry Changsha China
- Hunan Province Key Laboratory for Agrochemicals Changsha China
| |
Collapse
|
27
|
Feng K, Liu J, Wei P, Ou S, Wen X, Shen G, Xu Z, Xu Q, He L. lincRNA_Tc13743.2-miR-133-5p-TcGSTm02 regulation pathway mediates cyflumetofen resistance in Tetranychus cinnabarinus. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 123:103413. [PMID: 32534987 DOI: 10.1016/j.ibmb.2020.103413] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/29/2020] [Accepted: 05/10/2020] [Indexed: 06/11/2023]
Abstract
Differential expression of metabolic detoxification enzymes is an important mechanism involved in pesticide/acaricide resistance of mite pests. The competing endogenous RNA hypothesis offers a new opportunity to investigate post-transcriptional regulation of those genes. In this study, 4454 long non-coding RNAs were identified in the carmine spider mite Tetranychus cinnabarinus by transcriptome sequencing. Software-based predictions indicated that a long intergenic non-coding RNA, (lincRNA)_Tc13743.2 and a detoxification enzyme gene, TcGSTm02, both contained a microRNA (miR-133-5p) response element. Over-expression of lincRNA_Tc13743.2 and TcGSTm02 were detected in a cyflumetofen-resistant T. cinnabarinus strain (CyR), whereas down-regulation of miR-133-5p was observed in this strain. Conversely, up-regulation of miR-133-5p could inhibit TcGSTm02 expression levels, and both lincRNA_Tc13743.2 and TcGSTm02 were significantly enriched in miR-133-5p biotin-avidin pull-down assays. RNA-binding protein immunoprecipitation assay showed that lincRNA_Tc13743.2 and TcGSTm02 bound to a silencing complex containing miR-133-5p. Moreover, a luciferase reporter assay based on a human cell line revealed that over-expression of lincRNA_Tc13743.2 could significantly reduce the inhibition exerted by miR-133-5p through the TcGSTm02 3'UTR. In addition, co-localization of lincRNA_Tc13743.2 and miR-133-5p was detected using fluorescence in situ hybridization, suggesting that lincRNA_Tc13743.2 interacts directly with miR-133-5p in spider mites. More importantly, silencing the expression of lincRNA_Tc13743.2 significantly reduced the expression levels of TcGSTm02 and increased the sensitivity of spider mites to cyflumetofen. Our data show that lincRNA_Tc13743.2 up-regulates TcGSTm02 expression by competing for miR-133-5p binding, demonstrating that a lincRNA_Tc13743.2-miR-133-5p-TcGSTm02 pathway mediates cyflumetofen resistance in mites.
Collapse
Affiliation(s)
- Kaiyang Feng
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China; Academy of Agricultural Sciences, Southwest University, Chongqing, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China
| | - Jie Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China; Academy of Agricultural Sciences, Southwest University, Chongqing, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China
| | - Peng Wei
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China; Academy of Agricultural Sciences, Southwest University, Chongqing, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China
| | - Shiyuan Ou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China; Academy of Agricultural Sciences, Southwest University, Chongqing, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China
| | - Xiang Wen
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China; Academy of Agricultural Sciences, Southwest University, Chongqing, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China
| | - Guangmao Shen
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China; Academy of Agricultural Sciences, Southwest University, Chongqing, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China
| | - Zhifeng Xu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China; Academy of Agricultural Sciences, Southwest University, Chongqing, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China
| | - Qiang Xu
- Department of Biology, Abilene Christian University, Abilene, TX, 79699, USA
| | - Lin He
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China; Academy of Agricultural Sciences, Southwest University, Chongqing, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China.
| |
Collapse
|
28
|
Liu X, Zhu X, Wang H, Liu T, Cheng J, Jiang H. Discovery and modification of cytochrome P450 for plant natural products biosynthesis. Synth Syst Biotechnol 2020; 5:187-199. [PMID: 32637672 PMCID: PMC7332504 DOI: 10.1016/j.synbio.2020.06.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/21/2020] [Accepted: 06/22/2020] [Indexed: 11/28/2022] Open
Abstract
Cytochrome P450s are widespread in nature and play key roles in the diversification and functional modification of plant natural products. Over the last few years, there has been remarkable progress in plant P450s identification with the rapid development of sequencing technology, "omics" analysis and synthetic biology. However, challenges still persist in respect of crystal structure, heterologous expression and enzyme engineering. Here, we reviewed several research hotspots of P450 enzymes involved in the biosynthesis of plant natural products, including P450 databases, gene mining, heterologous expression and protein engineering.
Collapse
Affiliation(s)
- Xiaonan Liu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoxi Zhu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui Wang
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Tian Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, 530004, China.,Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Jian Cheng
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Huifeng Jiang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| |
Collapse
|