1
|
Charnley GE, Alcayna T, Almuedo-Riera A, Antoniou C, Badolo A, Bartumeus F, Boodram LL, Bueno-Marí R, Codeço C, Codeço Coelho F, Costa F, Cox H, Haddad N, Hamid NA, Kittayapong P, Korukluoğlu G, Michaelakis A, Maciel-de-Freitas R, Montalvo T, Muñoz J, Oliveras SS, Palmer JR, Barboza Pizard CJ, Ribeiro GS, Lowe R. Strengthening resilience to emerging vector-borne diseases in Europe: lessons learnt from countries facing endemic transmission. THE LANCET REGIONAL HEALTH. EUROPE 2025; 53:101271. [PMID: 40247854 PMCID: PMC12002787 DOI: 10.1016/j.lanepe.2025.101271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/27/2025] [Accepted: 03/05/2025] [Indexed: 04/19/2025]
Abstract
Emerging vector-borne diseases (VBDs) are a major public health concern worldwide. Climate change, environmental degradation and globalisation have led to an expansion in the range of many vectors and an erosion of transmission barriers, increasing human exposure to new pathogens and the risk for emerging VBD outbreaks. Europe is potentially underprepared for the increasing threat of VBDs, due to attention and funding being diverted to other public health priorities. Proactive, rather than reactive, prevention and control approaches can greatly reduce the socio-economic toll of VBDs. Endemic countries globally have decades of experience in controlling VBDs, and Europe has much to learn from this knowledge. Here, we advocate for the expansion of transdisciplinary knowledge-sharing partnerships, to co-create proactive measures against VBDs. We present the experiences and expertise of our diverse international team and explore how an array of interventions can be applied and adapted to the European context.
Collapse
Affiliation(s)
- Gina E.C. Charnley
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
- School of Public Health, Imperial College London, London, United Kingdom
| | - Tilly Alcayna
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
- London School of Hygiene & Tropical Medicine, London, United Kingdom
- Red Cross Red Crescent Climate Centre, The Hague, the Netherlands
| | - Alex Almuedo-Riera
- Barcelona Institute for Global Health (ISGlobal), Universitat de Barcelona, Barcelona, Spain
- International Health Department, Hospital Clínic de Barcelona, Barcelona, Spain
| | | | - Athanase Badolo
- Laboratoire d’Entomologie Fondamentale et Appliquée, Université Joseph Ki-Zerbo, Ouagadougou, Burkina Faso
| | - Frederic Bartumeus
- Centre for Advanced Studies of Blanes (CEAB-CSIC), Girona, Spain
- Catalan Institution for Research & Advanced Studies (ICREA), Barcelona, Spain
| | - Laura-Lee Boodram
- The Caribbean Public Health Agency, Port of Spain, Trinidad & Tobago
| | - Rubén Bueno-Marí
- European Vector Control Center of Excellence, Rentokil Initial, Madrid, Spain
- Parasites and Health Research Group, Department of Pharmacy, Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, University of Valencia, Burjassot, València, Spain
| | - Claudia Codeço
- Programa de Computação Cientifica, Fiocruz, Rio de Janeiro, Brazil
| | | | - Federico Costa
- Instituto de Saúde Coletiva, Universidade Federal da Bahia, Salvador, Brazil
| | - Horace Cox
- The Caribbean Public Health Agency, Port of Spain, Trinidad & Tobago
| | - Nabil Haddad
- Medical Laboratory Sciences Program, Division of Health Professions, Faculty of Health Sciences, American University of Beirut, Beirut, Lebanon
| | - Nurulhusna Ab Hamid
- Institute for Medical Research, National Institutes of Health, Ministry of Health, Malaysia
| | - Pattamaporn Kittayapong
- Center of Excellence for Vectors and Vector-Borne Diseases, Faculty of Science, Mahidol University, Nakhon Pathom, Thailand
| | - Gülay Korukluoğlu
- University of Health Sciences, Ankara Bilkent City Hospital, Türkiye
| | | | - Rafael Maciel-de-Freitas
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Tomas Montalvo
- Agència de Salut Pública de Barcelona, Barcelona, Spain
- CIBER Epidemiologia y Salud Publica (CIBERESP), Madrid, Spain
| | - Jose Muñoz
- Barcelona Institute for Global Health (ISGlobal), Universitat de Barcelona, Barcelona, Spain
| | | | | | | | - Guilherme S. Ribeiro
- Instituto Gonçalo Moniz, Fiocruz, Salvador, Brazil
- Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Brazil
| | - Rachel Lowe
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
- London School of Hygiene & Tropical Medicine, London, United Kingdom
- Catalan Institution for Research & Advanced Studies (ICREA), Barcelona, Spain
| |
Collapse
|
2
|
Dos Santos Andrade AT, Tavares CPDS, Ferreira FADS, de Oliveira AC, Lima SC, do Nascimento Neto JF, Pereira BGV, Rodrigues GO, da Silva JS, Pinheiro VCS, Roque RA. Effect of pyriproxyfen on biological parameters and morphometry of Aedes aegypti Linnaeus, 1762 (Diptera: Culicidae) in the city of Manaus, Amazonas. Acta Trop 2025; 265:107609. [PMID: 40185218 DOI: 10.1016/j.actatropica.2025.107609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 03/27/2025] [Accepted: 03/29/2025] [Indexed: 04/07/2025]
Abstract
In Brazil, Aedes aegypti is the primary vector of arboviruses, and its control relies mainly on insecticide use. However, excessive application on these products has led to the selection of resistant populations. To address this challenge, products like Pyriproxyfen (PPF), an insect growth regulator, have been used as a viable alternative. In this context, the present study evaluated the susceptibility, resistance ratio, and biological changes of A. aegypti exposed to PPF. Samples were collected in eight neighborhoods using oviposition traps, and the Rockefeller strain was used as a susceptibility standard. Fecundity tests recorded a hatching rate of 72.4 % in the PPF groups, compared to 89.2 % in the control (p < 0.05), and fertility of 72.4 % for PPF compared to 89.2 % in the control (t = 204.5, df = 4, p < 0.05). Longevity was assessed in males, females, and couples (χ² = 20.35, df = 5, p > 0.05). Wing morphometric analyses were reinforced by Mahalanobis distance (1.7127; p < 0.001), Procrustes analysis (0.0064; p = 0.5027), and canonical variable analyses. The width of the cephalic capsules was greater in mosquitoes exposed to PPF (Mann-Whitney U = 369; p < 0.0099). The emergence inhibition rate ranged from 65.33 ± 4 to 100 ± 0 for the Rockefeller strain and from 59.33 ± 4 to 88.66 ± 2 for the field population, with a resistance ratio of 0.68. The study concludes that the A. aegypti population in Manaus, remains susceptible to PPF, and the observed alterations were not significant enough to compromise the vector's biology.
Collapse
Affiliation(s)
- Aylane Tamara Dos Santos Andrade
- Programa de Pós-Graduação, Rede de Biodiversidade e Biotecnologia da Amazônia Legal-BIONORTE, Manaus, Amazonas, Brasil; Laboratório de Controle Biológico e Biotecnologia da Malária e da Dengue, Instituto Nacional de Pesquisas da Amazônia - INPA, Manaus, Amazonas, Brasil.
| | - Cláudia Patrícia da Silva Tavares
- Programa de Pós-Graduação, Rede de Biodiversidade e Biotecnologia da Amazônia Legal-BIONORTE, Manaus, Amazonas, Brasil; Laboratório de Controle Biológico e Biotecnologia da Malária e da Dengue, Instituto Nacional de Pesquisas da Amazônia - INPA, Manaus, Amazonas, Brasil
| | | | - André Correa de Oliveira
- Laboratório de Controle Biológico e Biotecnologia da Malária e da Dengue, Instituto Nacional de Pesquisas da Amazônia - INPA, Manaus, Amazonas, Brasil; Programa de Pós-Graduação em Ciências Biológicas (Entomologia), Manaus, Amazonas, Brasil
| | - Suelen Costa Lima
- Laboratório de Controle Biológico e Biotecnologia da Malária e da Dengue, Instituto Nacional de Pesquisas da Amazônia - INPA, Manaus, Amazonas, Brasil; Programa de Pós-Graduação em Ciências Biológicas (Entomologia), Manaus, Amazonas, Brasil
| | - Joaquim Ferreira do Nascimento Neto
- Laboratório de Controle Biológico e Biotecnologia da Malária e da Dengue, Instituto Nacional de Pesquisas da Amazônia - INPA, Manaus, Amazonas, Brasil
| | - Bianca Geovana Viana Pereira
- Laboratório de Controle Biológico e Biotecnologia da Malária e da Dengue, Instituto Nacional de Pesquisas da Amazônia - INPA, Manaus, Amazonas, Brasil; Programa de Pós-Graduação em Ciências Biológicas (Entomologia), Manaus, Amazonas, Brasil
| | - Genilson Oliveira Rodrigues
- Laboratório de Controle Biológico e Biotecnologia da Malária e da Dengue, Instituto Nacional de Pesquisas da Amazônia - INPA, Manaus, Amazonas, Brasil; Programa de Pós-Graduação em Ciências Biológicas (Entomologia), Manaus, Amazonas, Brasil
| | | | | | - Rosemary Aparecida Roque
- Laboratório de Controle Biológico e Biotecnologia da Malária e da Dengue, Instituto Nacional de Pesquisas da Amazônia - INPA, Manaus, Amazonas, Brasil
| |
Collapse
|
3
|
Brunner A, Gauliard C, Tutagata J, Bordenstein SR, Bordenstein SR, Trouche B, Reveillaud J. Wolbachia and its pWCP plasmid show differential dynamics during the development of Culex mosquitoes. Microbiol Spectr 2025; 13:e0004625. [PMID: 40162749 PMCID: PMC12054023 DOI: 10.1128/spectrum.00046-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 02/28/2025] [Indexed: 04/02/2025] Open
Abstract
Mosquitoes are major vectors of pathogens such as arboviruses and parasites, causing significant health impacts each year. Wolbachia, an intracellular bacterium widely distributed among arthropods, represents a promising vector control solution. This bacterium can reduce the transmission of dengue, Zika, and chikungunya arboviruses and manipulate the reproduction of its host through its prophage WO. Although research on the Wolbachia mobilome primarily focuses on WO and the phenotypes it induces, the function of Wolbachia plasmid pWCP, recently discovered and reported to be strikingly conserved worldwide, remains unknown. In this study, we analyzed the presence and abundance of pWCP as well as Wolbachia in two different species of Culex mosquitoes, one of the most widespread genera in the world and a vector of numerous diseases. We compared the relative densities of the bacterium and its mobile genetic element in Culex pipiens molestus and Culex quinquefasciatus, a facultatively autogenous and an anautogenous species, respectively, throughout their development from the larval stage L1 to the adult individual specimen using quantitative Polymerase Chain Reaction (PCR). Our results suggest that 2-5 copies of pWCP occur in Wolbachia cells on average, and the plasmid co-replicates with Wolbachia cells. Moreover, Wolbachia and pWCP exhibit differential levels of abundance at specific development stages throughout the mosquito's life cycle in each species. These findings indicate important, and likely beneficial, roles for the plasmid in the bacterium's biology in different mosquito species as well as complex interaction dynamics between Wolbachia and its host during its life cycle.IMPORTANCEMosquitoes of the Culex genus are critical vectors for numerous diseases, causing significant public health concerns. The intracellular bacterium Wolbachia has emerged as a promising vector control solution due to its ability to interfere with pathogen transmission and manipulate mosquito reproduction. However, unlike the extensively studied WO phage, the biological significance and function of Wolbachia's pWCP plasmid, a recently discovered and strikingly conserved mobile genetic element in Culex species, remain unknown. This study investigates the developmental dynamics of pWCP and Wolbachia in two Culex mosquito species, Culex pipiens molestus and Culex quinquefasciatus across their life cycle. In general, the abundance levels of Wolbachia and the plasmid were found to vary across life stages and differ between the two species. However, a relatively small number of pWCP copies were observed per Wolbachia cell, together with a co-replication of the plasmid with the bacterium for most developmental stages. Altogether, these findings suggest a likely beneficial and non-parasitic role for pWCP in Wolbachia's biology, which may contribute to the intricate interactions between the bacterium and its mosquito hosts.
Collapse
Affiliation(s)
- Alice Brunner
- Mivegec, Université de Montpellier, INRAE, CNRS, IRD, Montpellier, France
| | - Camille Gauliard
- Mivegec, Université de Montpellier, INRAE, CNRS, IRD, Montpellier, France
| | - Jordan Tutagata
- Mivegec, Université de Montpellier, INRAE, CNRS, IRD, Montpellier, France
| | - Seth R. Bordenstein
- Departments of Biology and Entomology, One Health Microbiome Center, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Sarah R. Bordenstein
- Departments of Biology and Entomology, One Health Microbiome Center, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Blandine Trouche
- Mivegec, Université de Montpellier, INRAE, CNRS, IRD, Montpellier, France
| | - Julie Reveillaud
- Mivegec, Université de Montpellier, INRAE, CNRS, IRD, Montpellier, France
| |
Collapse
|
4
|
Moretti R, Lim JT, Ferreira AGA, Ponti L, Giovanetti M, Yi CJ, Tewari P, Cholvi M, Crawford J, Gutierrez AP, Dobson SL, Ross PA. Exploiting Wolbachia as a Tool for Mosquito-Borne Disease Control: Pursuing Efficacy, Safety, and Sustainability. Pathogens 2025; 14:285. [PMID: 40137770 PMCID: PMC11944716 DOI: 10.3390/pathogens14030285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 02/28/2025] [Accepted: 03/07/2025] [Indexed: 03/29/2025] Open
Abstract
Despite the application of control measures, mosquito-borne diseases continue to pose a serious threat to human health. In this context, exploiting Wolbachia, a common symbiotic bacterium in insects, may offer effective solutions to suppress vectors or reduce their competence in transmitting several arboviruses. Many Wolbachia strains can induce conditional egg sterility, known as cytoplasmic incompatibility (CI), when infected males mate with females that do not harbor the same Wolbachia infection. Infected males can be mass-reared and then released to compete with wild males, reducing the likelihood of wild females encountering a fertile mate. Furthermore, certain Wolbachia strains can reduce the competence of mosquitoes to transmit several RNA viruses. Through CI, Wolbachia-infected individuals can spread within the population, leading to an increased frequency of mosquitoes with a reduced ability to transmit pathogens. Using artificial methods, Wolbachia can be horizontally transferred between species, allowing the establishment of various laboratory lines of mosquito vector species that, without any additional treatment, can produce sterilizing males or females with reduced vector competence, which can be used subsequently to replace wild populations. This manuscript reviews the current knowledge in this field, describing the different approaches and evaluating their efficacy, safety, and sustainability. Successes, challenges, and future perspectives are discussed in the context of the current spread of several arboviral diseases, the rise of insecticide resistance in mosquito populations, and the impact of climate change. In this context, we explore the necessity of coordinating efforts among all stakeholders to maximize disease control. We discuss how the involvement of diverse expertise-ranging from new biotechnologies to mechanistic modeling of eco-epidemiological interactions between hosts, vectors, Wolbachia, and pathogens-becomes increasingly crucial. This coordination is especially important in light of the added complexity introduced by Wolbachia and the ongoing challenges posed by global change.
Collapse
Affiliation(s)
- Riccardo Moretti
- Casaccia Research Center, Department for Sustainability, Italian National Agency for New Technologies, Energy, and Sustainable Economic Development (ENEA), 00123 Rome, Italy; (R.M.); (L.P.)
| | - Jue Tao Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (J.T.L.); (C.J.Y.); (P.T.)
| | | | - Luigi Ponti
- Casaccia Research Center, Department for Sustainability, Italian National Agency for New Technologies, Energy, and Sustainable Economic Development (ENEA), 00123 Rome, Italy; (R.M.); (L.P.)
- Center for the Analysis of Sustainable Agricultural Systems, Kensington, CA 94707, USA or (A.P.G.)
| | - Marta Giovanetti
- René Rachou Institute, Oswaldo Cruz Foundation, Belo Horizonte 30190-002, Brazil; (A.G.A.F.); (M.G.)
- Department of Sciences and Technologies for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, 00128 Roma, Italy
| | - Chow Jo Yi
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (J.T.L.); (C.J.Y.); (P.T.)
| | - Pranav Tewari
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (J.T.L.); (C.J.Y.); (P.T.)
| | - Maria Cholvi
- Area of Parasitology, Department of Pharmacy and Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, Universitat de València, 46100 Valencia, Spain; (M.C.)
| | - Jacob Crawford
- Verily Life Sciences, South San Francisco, CA 94080, USA; (J.C.)
| | - Andrew Paul Gutierrez
- Center for the Analysis of Sustainable Agricultural Systems, Kensington, CA 94707, USA or (A.P.G.)
- Division of Ecosystem Science, College of Natural Resources, University of California, Berkeley, CA 94720, USA
| | - Stephen L. Dobson
- Department of Entomology, University of Kentucky, Lexington, KY 40546, USA or (S.L.D.)
- MosquitoMate, Inc., Lexington, KY 40502, USA
| | - Perran A. Ross
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 2052, Australia; (P.A.R.)
| |
Collapse
|
5
|
Gu L, Li L, Sun J, Zhao Y, Wan K, Zhang M, Li J, Zhang M, Zhu G, Tang J. Rahnella aquatilis Isolated from Aedes albopictus Impairs Mosquito Reproduction Capacity. INSECTS 2025; 16:257. [PMID: 40266721 PMCID: PMC11942639 DOI: 10.3390/insects16030257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/08/2025] [Accepted: 02/26/2025] [Indexed: 04/25/2025]
Abstract
Aedes albopictus is one of the most important vectors of Dengue, which poses a serious threat to public health. The bacterial microbiota has an effect on the parameters of mosquitos, such as larval development and fecundity, and it has emerged as a promising field to be explored for novel environmentally friendly control strategies. Rahnella sp. are present in many insects, including Ae. Albopictus, and play a role in bacterial-insect interactions; however, the role of the bacteria in mosquito biology has not yet been characterized. In this study, we characterized the Rahnella isolate RAeA1 obtained from Ae. albopcitus, and its colonization stability in Ae. albopictus was investigated by generating GFP-tagged bacteria. The influences of the bacteria on larval development and mosquito reproductive capacity were evaluated by inoculating RAeA1 in axenic larvae and antibiotic-treated adult mosquitoes, respectively. The results indicated that RAeA1, which is widespread in the field population of Ae. albopictus, can be transmitted directly from the parental strain to the progeny and can rescue axenic larvae developing into adults with a prolonged development time to pupation. RAeA1 inoculation can impair egg production and ovary maturation, as well as reducing the synthesis of ecdysteroids and vitellogenin in Ae. albopictus females. Overall, our results provide a thorough study of bacterium function characterization that will facilitate the development of potential strategies in relation to the design of microbiomes for vector control.
Collapse
Affiliation(s)
- Ling Gu
- School of Public Health, Nanjing Medical University, Nanjing 211166, China; (L.G.); (L.L.); (J.S.)
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Provincial Medical Key Laboratory, Jiangsu Institute of Parasitic Diseases, Wuxi 214064, China (M.Z.); (J.L.); (M.Z.)
| | - Lin Li
- School of Public Health, Nanjing Medical University, Nanjing 211166, China; (L.G.); (L.L.); (J.S.)
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Provincial Medical Key Laboratory, Jiangsu Institute of Parasitic Diseases, Wuxi 214064, China (M.Z.); (J.L.); (M.Z.)
| | - Jinyang Sun
- School of Public Health, Nanjing Medical University, Nanjing 211166, China; (L.G.); (L.L.); (J.S.)
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Provincial Medical Key Laboratory, Jiangsu Institute of Parasitic Diseases, Wuxi 214064, China (M.Z.); (J.L.); (M.Z.)
| | - Yongqiao Zhao
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Provincial Medical Key Laboratory, Jiangsu Institute of Parasitic Diseases, Wuxi 214064, China (M.Z.); (J.L.); (M.Z.)
| | - Kai Wan
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China;
| | - Meichun Zhang
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Provincial Medical Key Laboratory, Jiangsu Institute of Parasitic Diseases, Wuxi 214064, China (M.Z.); (J.L.); (M.Z.)
| | - Julin Li
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Provincial Medical Key Laboratory, Jiangsu Institute of Parasitic Diseases, Wuxi 214064, China (M.Z.); (J.L.); (M.Z.)
| | - Meihua Zhang
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Provincial Medical Key Laboratory, Jiangsu Institute of Parasitic Diseases, Wuxi 214064, China (M.Z.); (J.L.); (M.Z.)
| | - Guoding Zhu
- School of Public Health, Nanjing Medical University, Nanjing 211166, China; (L.G.); (L.L.); (J.S.)
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Provincial Medical Key Laboratory, Jiangsu Institute of Parasitic Diseases, Wuxi 214064, China (M.Z.); (J.L.); (M.Z.)
| | - Jianxia Tang
- School of Public Health, Nanjing Medical University, Nanjing 211166, China; (L.G.); (L.L.); (J.S.)
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Provincial Medical Key Laboratory, Jiangsu Institute of Parasitic Diseases, Wuxi 214064, China (M.Z.); (J.L.); (M.Z.)
| |
Collapse
|
6
|
Kittayapong P, Ninphanomchai S, Thayanukul P, Yongyai J, Limohpasmanee W. Comparison on the quality of sterile Aedes aegypti mosquitoes produced by either radiation-based sterile insect technique or Wolbachia-induced incompatible insect technique. PLoS One 2025; 20:e0314683. [PMID: 39937795 PMCID: PMC11819552 DOI: 10.1371/journal.pone.0314683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/14/2024] [Indexed: 02/14/2025] Open
Abstract
Novel and alternative vector control approaches using a sterile male-based release to suppress Aedes aegypti mosquito vectors have recently been tested in the field in many countries. These approaches included the sterile insect technique (SIT), incompatible insect technique (IIT), and a combination of both techniques. In this study, we conducted a series of experiments to compare the quality between radiation-based and Wolbachia-induced sterile males in terms of flight ability, sterility, mating competitiveness, survival rate, and longevity. Aedes aegypti mosquitoes irradiated at 50 Gy (SIT) and those trans-infected with wAlbB Wolbachia (IIT) were used for quality comparison. Our results showed that irradiated and Wolbachia trans-infected males were not significantly different in flight ability (p > 0.05) and both could induce sterility in wild-type females. In addition, although irradiation at 50 Gy or Wolbachia trans-infection reduced male mating competitiveness, combined irradiation and Wolbachia wAlbB trans-infection increased male competitiveness at the one-to-one ratio. Increasing the number of sterile males released could compensate for reduced competitiveness but it does not make them more competitive. Irradiation did not affect the survival and longevity of irradiated males, but it showed significant negative impacts on females (p < 0.05); while the opposite was observed in the case of Wolbachia infection, i.e., with significant increase in the survival rate of Wolbachia trans-infected males (p < 0.05), but both survival and longevity were reduced in Wolbachia trans-infected females with no significant impacts (p > 0.05). In conclusion, neither irradiation nor Wolbachia trans-infection significantly affected the quality of sterile males except their mating competitiveness; but this could compensate by increasing the number of sterile males released. Sterility could be induced by either 50 Gy irradiation or wAlbB trans-infection. Mating competitiveness results showed that a higher number of sterile males produced by irradiation need to be released in comparison to those produced by Wolbachia trans-infection. Our results should be useful for planning SIT, IIT, or a combination for Ae. aegypti vector control.
Collapse
Affiliation(s)
- Pattamaporn Kittayapong
- Center of Excellence for Vectors and Vector-Borne Diseases, Faculty of Science, Mahidol University at Salaya, Nakhon Pathom, Thailand
| | - Suwannapa Ninphanomchai
- Center of Excellence for Vectors and Vector-Borne Diseases, Faculty of Science, Mahidol University at Salaya, Nakhon Pathom, Thailand
| | - Parinda Thayanukul
- Center of Excellence for Vectors and Vector-Borne Diseases, Faculty of Science, Mahidol University at Salaya, Nakhon Pathom, Thailand
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Jiraporn Yongyai
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Wanitch Limohpasmanee
- Thailand Institute of Nuclear Technology, Ministry of Higher Education, Science, Research and Innovation, Nakhon Nayok, Thailand
| |
Collapse
|
7
|
Sharpe SR, Madhav M, Klein MJ, Blasdell KR, Paradkar PN, Lynch SE, Eagles D, López-Denman AJ, Ahmed KA. Characterisation of the virome of Culicoides brevitarsis Kieffer (Diptera: Ceratopogonidae) , a vector of bluetongue virus in Australia. J Gen Virol 2025; 106:002076. [PMID: 39976626 PMCID: PMC11842880 DOI: 10.1099/jgv.0.002076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/22/2025] [Indexed: 02/23/2025] Open
Abstract
Culicoides spp., a common biting midge genus, are haematophagous insects that can transmit pathogens to humans and other animals. Some species transmit arboviruses, including bluetongue virus, epizootic haemorrhagic disease virus, African horse sickness virus and Schmallenberg virus to vertebrates, which can be detrimental to livestock and wild animals. Culicoides spp. can also have a diversity of insect-specific viruses (ISVs) that can only be transmitted between insects and others related to known arboviruses. For Culicoides brevitarsis and other Culicoides spp. in Australia, the virome is largely unexplored. We used high-throughput sequencing to characterise the virome of C. brevitarsis collected from Casino, New South Wales, Australia. For virus detection, the total RNA was extracted from pools of C. brevitarsis followed by rRNA depletion and Illumina short-read-based RNA sequencing. The reads were quality-checked, filtered and assembled into contigs, compared with the non-redundant protein and conserved domain databases for viral detection and genome organisation, respectively. The phylogenetic analysis was used to further characterise the viruses. We detected new virus diversity including ten viruses belonging to eight different families with complete or near-complete coding regions. Seven of these were novel virus species belonging to the families: Chuviridae, Orthomyxoviridae, Peribunyaviridae, Qinviridae, Rhabdoviridae and Solemoviridae. In addition, the novel Peribunyaviridae virus should also be considered part of a new genus. Whilst most of the detected viruses grouped into families with viruses that can infect insects, animals or both, the novel species of Solemoviridae was closely related to an economically important plant pathogen, the sugarcane yellow leaf virus. Our quantitative PCR-based screening confirmed the absence of any Wolbachia endosymbiont within the collected samples. Furthermore, we detected fragments of three more virus families known to infect fungi and plants. The detection of potential arboviruses and ISVs in Culicoides spp. is important in understanding virus epidemiology.
Collapse
Affiliation(s)
- Stephen R. Sharpe
- CSIRO Australian Centre for Disease Preparedness (ACDP), East Geelong, VIC 3220, Australia
| | - Mukund Madhav
- CSIRO Australian Centre for Disease Preparedness (ACDP), East Geelong, VIC 3220, Australia
| | - Melissa J. Klein
- CSIRO Australian Centre for Disease Preparedness (ACDP), East Geelong, VIC 3220, Australia
| | - Kim R. Blasdell
- CSIRO Australian Centre for Disease Preparedness (ACDP), East Geelong, VIC 3220, Australia
| | - Prasad N. Paradkar
- CSIRO Australian Centre for Disease Preparedness (ACDP), East Geelong, VIC 3220, Australia
| | - Stacey E. Lynch
- CSIRO Australian Centre for Disease Preparedness (ACDP), East Geelong, VIC 3220, Australia
| | - Debbie Eagles
- CSIRO Australian Centre for Disease Preparedness (ACDP), East Geelong, VIC 3220, Australia
| | - Adam J. López-Denman
- CSIRO Australian Centre for Disease Preparedness (ACDP), East Geelong, VIC 3220, Australia
| | - Khandaker Asif Ahmed
- CSIRO Australian Centre for Disease Preparedness (ACDP), East Geelong, VIC 3220, Australia
| |
Collapse
|
8
|
Yao RK, Gomgnimbou MK, Coulibaly IZ, Essoh CY, Traoré I, Amara MF, Ako BA, Diabate A, Bilgo E. Molecular detection of Wolbachia sp. and Cytoplasmic incompatibility factors (CifA/B) in wild caught mosquitoes in Côte d'Ivoire. Mol Biol Rep 2025; 52:181. [PMID: 39888481 DOI: 10.1007/s11033-025-10280-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 01/20/2025] [Indexed: 02/01/2025]
Abstract
BACKGROUND Wolbachia is an endosymbiont bacterium known to stimulate host immunity against arboviruses and protozoa. Côte d'Ivoire is in a malaria-endemic region, and has experienced several dengue epidemics in recent decades as well. In order to help reduce the transmission of pathogens by mosquito vectors, we studied the prevalence of Wolbachia and the distribution of Cytoplasmic incompatibility factors (Cif) genes in different mosquito species caught in the wild in Cote d'Ivoire. METHODS AND RESULTS Mosquitoes of the genera Anopheles, Aedes, Culex, Eretmapodites and Mansonia were captured in five cities. Mosquitoes were collected at larval stage in breeding sites and adults were captured using BG sentinel traps. The mosquitoes were identified morphologically and Wolbachia and Cif were screened using qPCR targeting the 16s rRNA gene and the CifA, B genes. A total of 518 mosquito samples belonging to 15 species and 4 genera were examined. 60% of the species were infected with Wolbachia. The three medically important mosquito species Aedes aegypti, Anopheles gambiae s.l. and Culex quinquefasciatus had a prevalence of 12.84%, 13.46% and 72.64% respectively. The Wolbachia strains infecting the different mosquito species of the genus Culex encoded 98.46% for the CifA gene and 77.69% for the CifB gene. CONCLUSION The presence of Wolbachia and CifA, B genes in mosquitoes of different species in Côte d'Ivoire offer a promising opportunity to reduce the competence of mosquito vectors. Characterization of Wolbachia strains and cytoplasmic incompatibility factors will provide a better understanding of these endosymbionts, enabling the development of vector control strategies.
Collapse
Affiliation(s)
- Raymond Karlhis Yao
- Ecole Doctorale Sciences Naturelles et Agronomiques, Université Nazi Boni, Bobo-Dioulasso, Burkina Faso
- Equipe Biologie Moléculaire et Biotechnologies, Laboratoire de Recherche, Centre MURAZ, Institut National de Santé Publique, Bobo-Dioulasso, Burkina Faso
- Centre d'Excellence Africain en Innovations Biotechnologiques pour l'élimination des Maladies à Transmission Vectorielle (CEA/ITECH-MTV), Université Nazi BONI, Bobo-Dioulasso, Burkina Faso
| | - Michel Kiréopori Gomgnimbou
- Equipe Biologie Moléculaire et Biotechnologies, Laboratoire de Recherche, Centre MURAZ, Institut National de Santé Publique, Bobo-Dioulasso, Burkina Faso.
- Centre d'Excellence Africain en Innovations Biotechnologiques pour l'élimination des Maladies à Transmission Vectorielle (CEA/ITECH-MTV), Université Nazi BONI, Bobo-Dioulasso, Burkina Faso.
- Institut Supérieur des Sciences de la Santé (IN.S.SA), Université Nazi BONI, Bobo-Dioulasso, Burkina Faso.
| | | | - Christiane You Essoh
- Département de Biochemie-Genetique, UFR Sciences Biologique, Péléforo Gon Coulibaly University, Korhogo, BP, 1328, Côte d'Ivoire
| | - Issouf Traoré
- Unité d'Entomologie et Herpetologie, Pasteur Institute de Côte d'Ivoire, Abidjan, Côte d'Ivoire
| | - Miriam Félicité Amara
- Ecole Doctorale Sciences Naturelles et Agronomiques, Université Nazi Boni, Bobo-Dioulasso, Burkina Faso
- Centre d'Excellence Africain en Innovations Biotechnologiques pour l'élimination des Maladies à Transmission Vectorielle (CEA/ITECH-MTV), Université Nazi BONI, Bobo-Dioulasso, Burkina Faso
- Equipe Parasitologie-Mycologie et Entomologie, Laboratoire de Recherche, Centre MURAZ, Institut National de Santé Publique, Bobo-Dioulasso, Burkina Faso
| | | | - Abdoulaye Diabate
- Institut de Recherche en Sciences de la Santé (IRSS), Direction Régionale de l'Ouest, Bobo-Dioulasso, Burkina Faso
| | - Etienne Bilgo
- Equipe Biologie Moléculaire et Biotechnologies, Laboratoire de Recherche, Centre MURAZ, Institut National de Santé Publique, Bobo-Dioulasso, Burkina Faso
- Institut de Recherche en Sciences de la Santé (IRSS), Direction Régionale de l'Ouest, Bobo-Dioulasso, Burkina Faso
| |
Collapse
|
9
|
Rahul A, Reegan AD, Shriram AN, Fouque F, Rahi M. Innovative sterile male release strategies for Aedes mosquito control: progress and challenges in integrating evidence of mosquito population suppression with epidemiological impact. Infect Dis Poverty 2024; 13:91. [PMID: 39627857 PMCID: PMC11613880 DOI: 10.1186/s40249-024-01258-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/14/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND Aedes mosquitoes pose a significant global threat as vectors for several debilitating arboviruses, including dengue, Zika, yellow fever, and chikungunya. Their unique breeding habits, behavior, and daytime activity complicate control efforts, prompting the search for innovative solutions. The sterile insect technique (SIT) and incompatible insect technique (IIT) are promising new techniques under investigation. This review synthesizes findings from field trials on SIT and/or IIT for Aedes mosquito control. METHODS A scoping review was conducted through comprehensive searches on Scopus, Web of Science, MEDLINE, PubMed, and preprint repositories up to April 25, 2024. Studies were initially screened for relevance based on their titles and abstracts, followed by a full-text review conducted by two independent extractors. Only field trials with control groups were included, with the final assessment focusing on trials reporting epidemiological outcomes. Data were abstracted into templates, emphasizing study design, intervention details, and outcomes. The review adhered to the PRISMA-ScR guidelines. RESULTS The search identified 21 field trials in various countries against Aedes mosquitoes. These trials employed diverse methodologies and mosquito release strategies, achieving varying levels of mosquito population suppression. Notably, two SIT and two Wolbachia-based IIT trials reported epidemiological outcomes, including reductions in dengue incidence and associated risk ratios. However, the reliance on national surveillance data for assessing dengue incidence suggests caution due to the potential underreporting of subclinical cases. CONCLUSIONS The review underscores the promise of SIT and IIT for controlling Aedes mosquito populations, citing successful reductions in mosquito densities and dengue transmission. However, it calls for more rigorous study designs and standardized methodologies, as well as the adoption of comprehensive frameworks to accurately assess the effectiveness of these interventions. Future research should focus on bridging gaps in real-world effectiveness by addressing factors such as feasibility, acceptability, scalability, and cost, which are crucial for guiding their successful large-scale deployment in any country.
Collapse
Affiliation(s)
- Arya Rahul
- ICMR-Vector Control Research Centre, Indira Nagar, Puducherry, India
| | - Appadurai Daniel Reegan
- ICMR-Vector Control Research Centre, Indira Nagar, Puducherry, India
- Academy of Scientific and Innovation Research (AcSIR), CSIR-Human Resource Development Centre, (CSIR-HRDC) Campus, Ghaziabad, Uttar Pradesh, India
| | - A N Shriram
- ICMR-Vector Control Research Centre, Indira Nagar, Puducherry, India
- Academy of Scientific and Innovation Research (AcSIR), CSIR-Human Resource Development Centre, (CSIR-HRDC) Campus, Ghaziabad, Uttar Pradesh, India
| | | | - Manju Rahi
- ICMR-Vector Control Research Centre, Indira Nagar, Puducherry, India.
- Academy of Scientific and Innovation Research (AcSIR), CSIR-Human Resource Development Centre, (CSIR-HRDC) Campus, Ghaziabad, Uttar Pradesh, India.
| |
Collapse
|
10
|
Lombardi G, Lampazzi E, Calvitti M. Incompatible insect technique: insights on potential outcomes of releasing contaminant females: a proof of concept under semi-field conditions. PEST MANAGEMENT SCIENCE 2024; 80:5342-5352. [PMID: 39031863 DOI: 10.1002/ps.8263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/31/2024] [Accepted: 06/06/2024] [Indexed: 07/22/2024]
Abstract
BACKGROUND Releasing large numbers of Aedes albopictus males, carrying the artificially introduced Wolbachia 'wPip' strain, results in a decrease in the reproductive capacity of wild females due to a phenomenon known as cytoplasmic incompatibility (CI). This vector control strategy is referred to as the incompatible insect technique (IIT). However, its widespread implementation faces various challenges, including the complexity of removing fertile females from the males intended for release. Here, we present the results of semi-field experiments comparing the impact of minimal female co-release on two IIT modes: unidirectional CI-based (UnCI IIT) and bidirectional CI-based (BiCI IIT), specifically targeting Ae. albopictus. RESULTS The contamination of 'wPip' infected females (2%) during male releases significantly weakened the overall effectiveness of IIT, emphasizing the need for thorough sex separation. Specifically, with UnCI IIT, despite the low rate of co-released females, there was a gradual rise in 'wPip' infection frequency, resulting in more compatible mating and subsequently higher rates of egg hatching. Conversely, this pattern was effectively mitigated in BiCI IIT owing to the reciprocal sterility between the wild-type and the 'wPip' infected populations. CONCLUSION Through an experimental approach, conducted in a semi-field setting, we have contributed to advancing scientific understanding regarding the potential outcomes of implementing the IIT strategy in the absence of a complete sexing system. The results suggest that safety measures for mitigating the potential impacts of co-released females can be tailored according to the specific type of IIT being utilized. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Giulia Lombardi
- Biotechnology and Agroindustry Division, ENEA (Italian National Agency for New Technologies, Energy and Sustainable Economic Development), Casaccia Research Center, Rome, Italy
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Elena Lampazzi
- Biotechnology and Agroindustry Division, ENEA (Italian National Agency for New Technologies, Energy and Sustainable Economic Development), Casaccia Research Center, Rome, Italy
| | - Maurizio Calvitti
- Biotechnology and Agroindustry Division, ENEA (Italian National Agency for New Technologies, Energy and Sustainable Economic Development), Casaccia Research Center, Rome, Italy
| |
Collapse
|
11
|
Sun X, Wang Y, Yuan F, Zhang Y, Kang X, Sun J, Wang P, Lu T, Sae Wang F, Gu J, Wang J, Xia Q, Zheng A, Zou Z. Gut symbiont-derived sphingosine modulates vector competence in Aedes mosquitoes. Nat Commun 2024; 15:8221. [PMID: 39300135 DOI: 10.1038/s41467-024-52566-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 09/11/2024] [Indexed: 09/22/2024] Open
Abstract
The main vectors of Zika virus (ZIKV) and dengue virus (DENV) are Aedes aegypti and Ae. albopictus, with Ae. aegypti being more competent. However, the underlying mechanisms remain unclear. Here, we find Ae. albopictus shows comparable vector competence to ZIKV/DENV with Ae. aegypti by blood-feeding after antibiotic treatment or intrathoracic injection. This suggests that midgut microbiota can influence vector competence. Enterobacter hormaechei_B17 (Eh_B17) is isolated from field-collected Ae. albopictus and conferred resistance to ZIKV/DENV infection in Ae. aegypti after gut-transplantation. Sphingosine, a metabolite secreted by Eh_B17, effectively suppresses ZIKV infection in both Ae. aegypti and cell cultures by blocking viral entry during the fusion step, with an IC50 of approximately 10 μM. A field survey reveals that Eh_B17 preferentially colonizes Ae. albopictus compared to Ae. aegypti. And field Ae. albopictus positive for Eh_B17 are more resistant to ZIKV infection. These findings underscore the potential of gut symbiotic bacteria, such as Eh_B17, to modulate the arbovirus vector competence of Aedes mosquitoes. As a natural antiviral agent, Eh_B17 holds promise as a potential candidate for blocking ZIKV/DENV transmission.
Collapse
Affiliation(s)
- Xiaomei Sun
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Yanhong Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Fei Yuan
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yanan Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Xun Kang
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Jian Sun
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Pengcheng Wang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Tengfei Lu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Fanny Sae Wang
- Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Jinbao Gu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jinglin Wang
- Yunnan Tropical and Subtropical Animal Viral Disease Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Qianfeng Xia
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, China.
| | - Aihua Zheng
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China.
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
12
|
Melo T, Sousa CA, Delacour-Estrella S, Bravo-Barriga D, Seixas G. Characterization of the microbiome of Aedes albopictus populations in different habitats from Spain and São Tomé. Sci Rep 2024; 14:20545. [PMID: 39232089 PMCID: PMC11375178 DOI: 10.1038/s41598-024-71507-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024] Open
Abstract
The mosquito microbiome significantly influences vector competence, including in Aedes albopictus, a globally invasive vector. Describing the microbiome and Wolbachia strains of Ae. albopictus from different regions can guide area-specific control strategies. Mosquito samples from Spain and São Tomé were analyzed using 16S rRNA gene sequencing and metagenomic sequencing. Wolbachia infection patterns were observed by sex and population. Female mosquitoes were blood-fed, a factor considered in analyzing their microbiota. Results revealed a dominance of dual Wolbachia infections, strains A and B, in the microbiome of both populations of Ae. albopictus, especially among females. Both populations shared a core microbiome, although 5 and 9 other genera were only present in Spain and São Tomé populations, respectively. Genera like Pelomonas and Nevskia were identified for the first time in Aedes mosquitoes. This study is the first to describe the Ae. albopictus bacteriome in Spain and São Tomé, offering insights for the development of targeted mosquito control strategies. Understanding the specific microbiome composition can help in designing more effective interventions, such as microbiome manipulation and Wolbachia-based approaches, to reduce vector competence and transmission potential of these mosquitoes.
Collapse
Affiliation(s)
- Tiago Melo
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, UNL, Rua da Junqueira, 100, 1349-008, Lisboa, Portugal
| | - Carla Alexandra Sousa
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, UNL, Rua da Junqueira, 100, 1349-008, Lisboa, Portugal
| | - Sarah Delacour-Estrella
- Animal Health Department, The AgriFood Institute of Aragon (IA2), School of Veterinary Medicine, University of Zaragoza, 50013, Zaragoza, Spain
- Departamento de Investigación y Desarrollo (I+D), Quimera. B.S. Calle Olivo, 14, 50016, La Puebla de Alfindén, Spain
| | - Daniel Bravo-Barriga
- Departamento de Sanidad Animal, Grupo de Investigación en Salud Animal y Zoonosis (GISAZ), UIC Zoonosis y Enfermedades Emergentes (ENZOEM), Universidad de Córdoba, Córdoba, Spain
| | - Gonçalo Seixas
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, UNL, Rua da Junqueira, 100, 1349-008, Lisboa, Portugal.
| |
Collapse
|
13
|
Madhav M, Blasdell KR, Trewin B, Paradkar PN, López-Denman AJ. Culex-Transmitted Diseases: Mechanisms, Impact, and Future Control Strategies using Wolbachia. Viruses 2024; 16:1134. [PMID: 39066296 PMCID: PMC11281716 DOI: 10.3390/v16071134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Mosquitoes of the Culex genus are responsible for a large burden of zoonotic virus transmission globally. Collectively, they play a significant role in the transmission of medically significant diseases such as Japanese encephalitis virus and West Nile virus. Climate change, global trade, habitat transformation and increased urbanisation are leading to the establishment of Culex mosquitoes in new geographical regions. These novel mosquito incursions are intensifying concerns about the emergence of Culex-transmitted diseases and outbreaks in previously unaffected areas. New mosquito control methods are currently being developed and deployed globally. Understanding the complex interaction between pathogens and mosquitoes is essential for developing new control strategies for Culex species mosquitoes. This article reviews the role of Culex mosquitos as vectors of zoonotic disease, discussing the transmission of viruses across different species, and the potential use of Wolbachia technologies to control disease spread. By leveraging the insights gained from recent successful field trials of Wolbachia against Aedes-borne diseases, we comprehensively discuss the feasibility of using this technique to control Culex mosquitoes and the potential for the development of next generational Wolbachia-based control methods.
Collapse
Affiliation(s)
- Mukund Madhav
- Australian Centre for Disease Preparedness, CSIRO Health and Biosecurity, Geelong, VIC 3220, Australia
| | - Kim R Blasdell
- Australian Centre for Disease Preparedness, CSIRO Health and Biosecurity, Geelong, VIC 3220, Australia
| | - Brendan Trewin
- CSIRO Health and Biosecurity, Dutton Park, Brisbane, QLD 4102, Australia
| | - Prasad N Paradkar
- Australian Centre for Disease Preparedness, CSIRO Health and Biosecurity, Geelong, VIC 3220, Australia
| | - Adam J López-Denman
- Australian Centre for Disease Preparedness, CSIRO Health and Biosecurity, Geelong, VIC 3220, Australia
| |
Collapse
|
14
|
Kaur R, McGarry A, Shropshire JD, Leigh BA, Bordenstein SR. Prophage proteins alter long noncoding RNA and DNA of developing sperm to induce a paternal-effect lethality. Science 2024; 383:1111-1117. [PMID: 38452081 PMCID: PMC11187695 DOI: 10.1126/science.adk9469] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/30/2024] [Indexed: 03/09/2024]
Abstract
The extent to which prophage proteins interact with eukaryotic macromolecules is largely unknown. In this work, we show that cytoplasmic incompatibility factor A (CifA) and B (CifB) proteins, encoded by prophage WO of the endosymbiont Wolbachia, alter long noncoding RNA (lncRNA) and DNA during Drosophila sperm development to establish a paternal-effect embryonic lethality known as cytoplasmic incompatibility (CI). CifA is a ribonuclease (RNase) that depletes a spermatocyte lncRNA important for the histone-to-protamine transition of spermiogenesis. Both CifA and CifB are deoxyribonucleases (DNases) that elevate DNA damage in late spermiogenesis. lncRNA knockdown enhances CI, and mutagenesis links lncRNA depletion and subsequent sperm chromatin integrity changes to embryonic DNA damage and CI. Hence, prophage proteins interact with eukaryotic macromolecules during gametogenesis to create a symbiosis that is fundamental to insect evolution and vector control.
Collapse
Affiliation(s)
- Rupinder Kaur
- Pennsylvania State University, Departments of Biology and Entomology, University Park, PA 16802, USA
- One Health Microbiome Center, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
- Vanderbilt University, Department of Biological Sciences, Nashville, TN 37235, USA
| | - Angelina McGarry
- Pennsylvania State University, Departments of Biology and Entomology, University Park, PA 16802, USA
- One Health Microbiome Center, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - J. Dylan Shropshire
- Vanderbilt University, Department of Biological Sciences, Nashville, TN 37235, USA
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| | - Brittany A. Leigh
- Vanderbilt University, Department of Biological Sciences, Nashville, TN 37235, USA
| | - Seth R. Bordenstein
- Pennsylvania State University, Departments of Biology and Entomology, University Park, PA 16802, USA
- One Health Microbiome Center, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
- Vanderbilt University, Department of Biological Sciences, Nashville, TN 37235, USA
| |
Collapse
|
15
|
Shi H, Yu X, Cheng G. Impact of the microbiome on mosquito-borne diseases. Protein Cell 2023; 14:743-761. [PMID: 37186167 PMCID: PMC10599646 DOI: 10.1093/procel/pwad021] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
Mosquito-borne diseases present a significant threat to human health, with the possibility of outbreaks of new mosquito-borne diseases always looming. Unfortunately, current measures to combat these diseases such as vaccines and drugs are often either unavailable or ineffective. However, recent studies on microbiomes may reveal promising strategies to fight these diseases. In this review, we examine recent advances in our understanding of the effects of both the mosquito and vertebrate microbiomes on mosquito-borne diseases. We argue that the mosquito microbiome can have direct and indirect impacts on the transmission of these diseases, with mosquito symbiotic microorganisms, particularly Wolbachia bacteria, showing potential for controlling mosquito-borne diseases. Moreover, the skin microbiome of vertebrates plays a significant role in mosquito preferences, while the gut microbiome has an impact on the progression of mosquito-borne diseases in humans. As researchers continue to explore the role of microbiomes in mosquito-borne diseases, we highlight some promising future directions for this field. Ultimately, a better understanding of the interplay between mosquitoes, their hosts, pathogens, and the microbiomes of mosquitoes and hosts may hold the key to preventing and controlling mosquito-borne diseases.
Collapse
Affiliation(s)
- Huicheng Shi
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen 518000, China
| | - Xi Yu
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen 518000, China
| | - Gong Cheng
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen 518000, China
- Department of Parasitology, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| |
Collapse
|
16
|
Polidori C, Ferrari A, Borruso L, Mattarelli P, Dindo ML, Modesto M, Carrieri M, Puggioli A, Ronchetti F, Bellini R. Aedes albopictus microbiota: Differences between wild and mass-reared immatures do not suggest negative impacts from a diet based on black soldier fly larvae and fish food. PLoS One 2023; 18:e0292043. [PMID: 37751428 PMCID: PMC10521979 DOI: 10.1371/journal.pone.0292043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/12/2023] [Indexed: 09/28/2023] Open
Abstract
The "Sterile Insect Technique" (SIT), a promising method to control Aedes albopictus, the Asian tiger mosquito, is gaining increasing interest. Recently, the role of microbiota in mosquito fitness received attention, but the link between microbiota and larval diet in mass rearing programs for SIT remains largely unexplored. We characterized the microbiota of four larval instars, pupae and eggs of non-wild (NW) lab-reared Ae. albopictus fed with a diet based on Black soldier fly (Hermetia illucens) larvae powder and fish food KOI pellets. We compared it with wild (W) field-collected individuals and the bacterial community occurring in rearing water-diet (DIET). A total of 18 bacterial classes with > 0.10% abundance were found overall in the samples, with seven classes being especially abundant. Overall, the microbiota profile significantly differed among NW, W and DIET. Verrucomicrobiae were significantly more abundant in W and DIET, Bacteroidia were more abundant in NW and DIET, and Gammaproteobacteria were only more abundant in W than in DIET. W-eggs microbiota differed from all the other groups. Large differences also appeared at the bacterial genus-level, with the abundance of 14 genera differing among groups. Three ASVs of Acinetobacter, known to have positive effects on tiger mosquitoes, were more abundant in NW than in W, while Serratia, known to have negative or neutral effects on another Aedes species, was less abundant in NW than in W. The bacterial community of W-eggs was the richest in species, while dominance and diversity did not differ among groups. Our data show that the diet based on Black soldier fly powder and fish food KOI influences the microbiota of NW tiger mosquito immature stages, but not in a way that may suggest a negative impact on their quality in SIT programs.
Collapse
Affiliation(s)
- Carlo Polidori
- Department of Environmental Science and Policy (ESP), University of Milan, Via Celoria, Milan, Italy
| | - Andrea Ferrari
- Department of Environmental Science and Policy (ESP), University of Milan, Via Celoria, Milan, Italy
| | - Luigimaria Borruso
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bolzano, Piazza Università, Bolzano, Italy
| | - Paola Mattarelli
- Department of Agricultural and Food Sciences, University of Bologna, Viale G. Fanin, Bologna, Italy
| | - Maria Luisa Dindo
- Department of Agricultural and Food Sciences, University of Bologna, Viale G. Fanin, Bologna, Italy
| | - Monica Modesto
- Department of Agricultural and Food Sciences, University of Bologna, Viale G. Fanin, Bologna, Italy
| | - Marco Carrieri
- Centro Agricoltura Ambiente “G. Nicoli”, IAEA Collaborating Centre, Via Sant’Agata, Crevalcore, Italy
| | - Arianna Puggioli
- Centro Agricoltura Ambiente “G. Nicoli”, IAEA Collaborating Centre, Via Sant’Agata, Crevalcore, Italy
| | - Federico Ronchetti
- Department of Biosciences and Pediatric Clinical Research Center “Romeo and Enrica Invernizzi”, University of Milan, Milan, Italy
- Italian Malaria Network, Inter University Center for Malaria Research, University of Milan, Milan, Italy
| | - Romeo Bellini
- Centro Agricoltura Ambiente “G. Nicoli”, IAEA Collaborating Centre, Via Sant’Agata, Crevalcore, Italy
| |
Collapse
|
17
|
Caputo B, Moretti R, Virgillito C, Manica M, Lampazzi E, Lombardi G, Serini P, Pichler V, Beebe NW, Della Torre A, Calvitti M. A bacterium against the tiger: further evidence of the potential of noninundative releases of males with manipulated Wolbachia infection in reducing fertility of Aedes albopictus field populations in Italy. PEST MANAGEMENT SCIENCE 2023; 79:3167-3176. [PMID: 37022600 DOI: 10.1002/ps.7495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/31/2023] [Accepted: 04/06/2023] [Indexed: 05/10/2023]
Abstract
BACKGROUND Incompatible insect technique (IIT) is a population suppression approach based on the release of males with manipulated Wolbachia infection inducing egg inviability in wild females. We here present results of multiple field releases of incompatible ARwP males carried out in 2019 in a 2.7-ha green area within urban Rome (Italy) to assess the effect on Aedes albopictus egg viability. Data are compared with results obtained in 2018, when the approach was tested for the first time in Europe. RESULTS An average of 4674 ARwP males were released weekly for 7 weeks, resulting in a mean ARwP:wild male ratio of 1.1:1 (versus 0.7:1 in 2018). Egg-viability dynamics in ovitraps significantly varied between treated and control sites, with an estimated overall reduction of 35% (versus 15% in 2018). The estimated proportion of females classified as mated with ARwP males was 41.8% and the viability rate of eggs laid by these females (9.5%) was on average significantly lower than that of females only mated with wild males (87.8%); however, high variability in fertility was observed. Values of ARwP male competitiveness were 0.36 and 0.73 based on the overall viability rate of eggs in ovitraps and on female fertility, respectively; thus, well above the conventional 0.2 threshold for an effective suppressive impact in the field. CONCLUSIONS Results further support the potential of IIT as a tool to contribute to Ae. albopictus control in the urban context, stressing the need for larger field trials to evaluate the cost-efficacy of the approach in temperate regions. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Beniamino Caputo
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, Rome, Italy
| | - Riccardo Moretti
- Biotechnology and Agroindustry Division, ENEA (Italian National Agency for New Technologies, Energy and Sustainable Economic Development), Casaccia Research Center, Rome, Italy
| | - Chiara Virgillito
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, Rome, Italy
| | - Mattia Manica
- Center for Health Emergencies, Fondazione Bruno Kessler, Trento, Italy
| | - Elena Lampazzi
- Biotechnology and Agroindustry Division, ENEA (Italian National Agency for New Technologies, Energy and Sustainable Economic Development), Casaccia Research Center, Rome, Italy
| | - Giulia Lombardi
- Biotechnology and Agroindustry Division, ENEA (Italian National Agency for New Technologies, Energy and Sustainable Economic Development), Casaccia Research Center, Rome, Italy
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Paola Serini
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, Rome, Italy
| | - Verena Pichler
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, Rome, Italy
| | - Nigel W Beebe
- School of Biological Sciences, University of Queensland, & CSIRO, Brisbane, Australia
| | - Alessandra Della Torre
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, Rome, Italy
| | - Maurizio Calvitti
- Biotechnology and Agroindustry Division, ENEA (Italian National Agency for New Technologies, Energy and Sustainable Economic Development), Casaccia Research Center, Rome, Italy
| |
Collapse
|
18
|
Zheng R, Wang Q, Wu R, Paradkar PN, Hoffmann AA, Wang GH. Holobiont perspectives on tripartite interactions among microbiota, mosquitoes, and pathogens. THE ISME JOURNAL 2023; 17:1143-1152. [PMID: 37231184 PMCID: PMC10356850 DOI: 10.1038/s41396-023-01436-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 04/18/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023]
Abstract
Mosquito-borne diseases like dengue and malaria cause a significant global health burden. Unfortunately, current insecticides and environmental control strategies aimed at the vectors of these diseases are only moderately effective in decreasing disease burden. Understanding and manipulating the interaction between the mosquito holobiont (i.e., mosquitoes and their resident microbiota) and the pathogens transmitted by these mosquitoes to humans and animals could help in developing new disease control strategies. Different microorganisms found in the mosquito's microbiota affect traits related to mosquito survival, development, and reproduction. Here, we review the physiological effects of essential microbes on their mosquito hosts; the interactions between the mosquito holobiont and mosquito-borne pathogen (MBP) infections, including microbiota-induced host immune activation and Wolbachia-mediated pathogen blocking (PB); and the effects of environmental factors and host regulation on the composition of the microbiota. Finally, we briefly overview future directions in holobiont studies, and how these may lead to new effective control strategies against mosquitoes and their transmitted diseases.
Collapse
Affiliation(s)
- Ronger Zheng
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qiqi Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Runbiao Wu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Prasad N Paradkar
- CSIRO Health and Biosecurity, Australian Centre for Disease Preparedness, Geelong, VIC, Australia
| | - Ary A Hoffmann
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | - Guan-Hong Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
19
|
Chao LL, Shih CM. First Detection and Genetic Identification of Wolbachia Endosymbiont in Field-Caught Aedes aegypti (Diptera: Culicidae) Mosquitoes Collected from Southern Taiwan. Microorganisms 2023; 11:1911. [PMID: 37630471 PMCID: PMC10459532 DOI: 10.3390/microorganisms11081911] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
The prevalence and genetic character of Wolbachia endosymbionts in field-collected Aedes aegypti mosquitoes were examined for the first time in Taiwan. A total of 665 Ae. aegypti were screened for Wolbachia infection using a PCR assay targeting the Wolbachia surface protein (wsp) gene. In general, the prevalence of Wolbachia infection was detected in 3.3% Ae. aegypti specimens (2.0% female and 5.2% male). Group-specific Wolbachia infection was detected with an infection rate of 1.8%, 0.8% and 0.8% in groups A, B and A&B, respectively. Genetic analysis demonstrated that all Wolbachia strains from Taiwan were phylogenetically affiliated with Wolbachia belonging to the supergroups A and B, with high sequence similarities of 99.4-100% and 99.2-100%, respectively. Phylogenetic relationships can be easily distinguished by maximum likelihood (ML) analysis and were congruent with the unweighted pair group with the arithmetic mean (UPGMA) method. The intra- and inter-group analysis of genetic distance (GD) values revealed a lower level within the Taiwan strains (GD < 0.006 for group A and GD < 0.008 for group B) and a higher level (GD > 0.498 for group A and GD > 0.286 for group B) as compared with other Wolbachia strains. Our results describe the first detection and molecular identification of Wolbachia endosymbiont in field-caught Ae. aegypti mosquitoes collected from Taiwan, and showed a low Wolbachia infection rate belonging to supergroups A and B in Ae. aegypti mosquitoes.
Collapse
Affiliation(s)
- Li-Lian Chao
- Program in Tropical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Chien-Ming Shih
- Program in Tropical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| |
Collapse
|
20
|
Accoti A, Damiani C, Nunzi E, Cappelli A, Iacomelli G, Monacchia G, Turco A, D’Alò F, Peirce MJ, Favia G, Spaccapelo R. Anopheline mosquito saliva contains bacteria that are transferred to a mammalian host through blood feeding. Front Microbiol 2023; 14:1157613. [PMID: 37533823 PMCID: PMC10392944 DOI: 10.3389/fmicb.2023.1157613] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/29/2023] [Indexed: 08/04/2023] Open
Abstract
Introduction Malaria transmission occurs when Plasmodium sporozoites are transferred from the salivary glands of anopheline mosquitoes to a human host through the injection of saliva. The need for better understanding, as well as novel modes of inhibiting, this key event in transmission has driven intense study of the protein and miRNA content of saliva. Until now the possibility that mosquito saliva may also contain bacteria has remained an open question despite the well documented presence of a rich microbiome in salivary glands. Methods Using both 16S rRNA sequencing and MALDI-TOF approaches, we characterized the composition of the saliva microbiome of An. gambiae and An. stephensi mosquitoes which respectively represent two of the most important vectors for the major malaria-causing parasites P. falciparum and P. vivax. Results To eliminate the possible detection of non-mosquito-derived bacteria, we used a transgenic, fluorescent strain of one of the identified bacteria, Serratiamarcescens, to infect mosquitoes and detect its presence in mosquito salivary glands as well as its transfer to, and colonization of, mammalian host tissues following a mosquito bite. We also showed that Plasmodium infection modified the mosquito microbiota, increasing the presence of Serratia while diminishing the presence of Elizabethkingia and that both P. berghei and Serratia were transferred to, and colonized mammalian tissues. Discussion These data thus document the presence of bacteria in mosquito saliva, their transfer to, and growth in a mammalian host as well as possible interactions with Plasmodium transmission. Together they raise the possible role of mosquitoes as vectors of bacterial infection and the utility of commensal mosquito bacteria for the development of transmission-blocking strategies within a mammalian host.
Collapse
Affiliation(s)
- Anastasia Accoti
- Department of Medicine and Surgery, CIRM Italian Malaria Network Perugia, Functional Genomic Center (C.U.R.Ge.F), University of Perugia, Perugia, Italy
| | - Claudia Damiani
- School of Biosciences and Veterinary Medicine, University of Camerino, CIRM Italian Malaria Network, Via Gentile III da Varano, Camerino, Italy
| | - Emilia Nunzi
- Department of Medicine and Surgery, CIRM Italian Malaria Network Perugia, Functional Genomic Center (C.U.R.Ge.F), University of Perugia, Perugia, Italy
| | - Alessia Cappelli
- School of Biosciences and Veterinary Medicine, University of Camerino, CIRM Italian Malaria Network, Via Gentile III da Varano, Camerino, Italy
| | - Gloria Iacomelli
- Department of Medicine and Surgery, CIRM Italian Malaria Network Perugia, Functional Genomic Center (C.U.R.Ge.F), University of Perugia, Perugia, Italy
| | - Giulia Monacchia
- Department of Medicine and Surgery, CIRM Italian Malaria Network Perugia, Functional Genomic Center (C.U.R.Ge.F), University of Perugia, Perugia, Italy
| | - Antonella Turco
- Department of Medicine and Surgery, CIRM Italian Malaria Network Perugia, Functional Genomic Center (C.U.R.Ge.F), University of Perugia, Perugia, Italy
| | - Francesco D’Alò
- Department of Medicine and Surgery, CIRM Italian Malaria Network Perugia, Functional Genomic Center (C.U.R.Ge.F), University of Perugia, Perugia, Italy
| | - Matthew J. Peirce
- Department of Medicine and Surgery, CIRM Italian Malaria Network Perugia, Functional Genomic Center (C.U.R.Ge.F), University of Perugia, Perugia, Italy
| | - Guido Favia
- School of Biosciences and Veterinary Medicine, University of Camerino, CIRM Italian Malaria Network, Via Gentile III da Varano, Camerino, Italy
| | - Roberta Spaccapelo
- Department of Medicine and Surgery, CIRM Italian Malaria Network Perugia, Functional Genomic Center (C.U.R.Ge.F), University of Perugia, Perugia, Italy
- Interuniversity Consortium for Biotechnology (C.I.B.), Trieste, Italy
| |
Collapse
|
21
|
Alomar AA, Pérez-Ramos DW, Kim D, Kendziorski NL, Eastmond BH, Alto BW, Caragata EP. Native Wolbachia infection and larval competition stress shape fitness and West Nile virus infection in Culex quinquefasciatus mosquitoes. Front Microbiol 2023; 14:1138476. [PMID: 37007535 PMCID: PMC10050331 DOI: 10.3389/fmicb.2023.1138476] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/23/2023] [Indexed: 03/17/2023] Open
Abstract
IntroductionWolbachia transinfections established in key mosquito vectors, including Aedes aegypti are typically associated with pathogen blocking—reduced susceptibility to infection with key pathogens and reduced likelihood those pathogens are transmitted to new hosts. Host-symbiont-virus interactions are less well understood in mosquitoes like Culex quinquefasciatus, which naturally harbor Wolbachia, with pathogen blocking observed in some populations but not others, potentially due to innate differences in their Wolbachia load. In nature, mosquito larvae are often subject to developmental stresses associated with larval competition, which can lead to reduced body size and differential susceptibility to arbovirus infection.MethodsIn this study, we sought to understand whether competition stress and Wolbachia infection in Cx. quinquefasciatus combine to impact host fitness and susceptibility to infection with West Nile virus. We reared Wolbachia-infected and uninfected Cx. quinquefasciatus larvae under three competition stress levels, increasing larval density without increasing the amount of food supplied. We then monitored larval development and survival, measured wing length and quantified Wolbachia density in adults, and then challenged mosquitoes from each treatment group orally with West Nile virus.Results and DiscussionWe observed that high competition stress extended development time, decreased the likelihood of eclosion, decreased body size, and increased susceptibility to West Nile virus (WNV) infection. We also observed that Wolbachia infection reduced WNV load under low competition stress, and significantly improved the rate of survival for larval reared under higher competition stress. Consequently, our data suggest that native Wolbachia infection in Cx. quinquefasciatus has differential consequences for host fitness and susceptibility to WNV infection depending on competition stress.
Collapse
|
22
|
Zeng Q, She L, Yuan H, Luo Y, Wang R, Mao W, Wang W, She Y, Wang C, Shi M, Cao T, Gan R, Li Y, Zhou J, Qian W, Hu S, Wang Y, Zheng X, Li K, Bai L, Pan X, Xi Z. A standalone incompatible insect technique enables mosquito suppression in the urban subtropics. Commun Biol 2022; 5:1419. [PMID: 36575240 PMCID: PMC9793375 DOI: 10.1038/s42003-022-04332-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/01/2022] [Indexed: 12/28/2022] Open
Abstract
The strong suppression of Aedes albopictus on two Guangzhou islands in China has been successfully achieved by releasing males with an artificial triple-Wolbachia infection. However, it requires the use of radiation to sterilize residual females to prevent population replacement. To develop a highly effective tool for dengue control, we tested a standalone incompatible insect technique (IIT) to control A. albopictus in the urban area of Changsha, an inland city where dengue recently emerged. Male mosquitoes were produced in a mass rearing facility in Guangzhou and transported over 670 km under low temperature to the release site. After a once-per-week release with high numbers of males (phase I) and a subsequent twice-per-week release with low numbers of males (phase II), the average numbers of hatched eggs and female adults collected weekly per trap were reduced by 97% and 85%, respectively. The population suppression caused a 94% decrease in mosquito biting at the release site compared to the control site. Remarkably, this strong suppression was achieved using only 28% of the number of males released in a previous trial. Despite the lack of irradiation to sterilize residual females, no triple-infected mosquitoes were detected in the field post release based on the monitoring of adult and larval A. albopictus populations for two years, indicating that population replacement was prevented. Our results support the feasibility of implementing a standalone IIT for dengue control in urban areas.
Collapse
Affiliation(s)
- Qin Zeng
- grid.411427.50000 0001 0089 3695The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Department of Medical Laboratory Science, Hunan Normal University School of Medicine, Changsha, Hunan PR China ,grid.411427.50000 0001 0089 3695The Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Normal University, Changsha, Hunan PR China
| | - Lingzhi She
- grid.411427.50000 0001 0089 3695The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Department of Medical Laboratory Science, Hunan Normal University School of Medicine, Changsha, Hunan PR China ,grid.411427.50000 0001 0089 3695The Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Normal University, Changsha, Hunan PR China
| | - Hao Yuan
- grid.411427.50000 0001 0089 3695The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Department of Medical Laboratory Science, Hunan Normal University School of Medicine, Changsha, Hunan PR China ,grid.411427.50000 0001 0089 3695The Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Normal University, Changsha, Hunan PR China
| | - Yuying Luo
- grid.411427.50000 0001 0089 3695The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Department of Medical Laboratory Science, Hunan Normal University School of Medicine, Changsha, Hunan PR China ,grid.411427.50000 0001 0089 3695The Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Normal University, Changsha, Hunan PR China
| | - Renke Wang
- grid.411427.50000 0001 0089 3695The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Department of Medical Laboratory Science, Hunan Normal University School of Medicine, Changsha, Hunan PR China ,grid.411427.50000 0001 0089 3695The Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Normal University, Changsha, Hunan PR China
| | - Wei Mao
- grid.411427.50000 0001 0089 3695The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Department of Medical Laboratory Science, Hunan Normal University School of Medicine, Changsha, Hunan PR China ,grid.411427.50000 0001 0089 3695The Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Normal University, Changsha, Hunan PR China
| | - Weifeng Wang
- grid.411427.50000 0001 0089 3695The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Department of Medical Laboratory Science, Hunan Normal University School of Medicine, Changsha, Hunan PR China ,grid.411427.50000 0001 0089 3695The Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Normal University, Changsha, Hunan PR China
| | - Yueting She
- grid.411427.50000 0001 0089 3695The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Department of Medical Laboratory Science, Hunan Normal University School of Medicine, Changsha, Hunan PR China ,grid.411427.50000 0001 0089 3695The Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Normal University, Changsha, Hunan PR China
| | - Chaojun Wang
- grid.411427.50000 0001 0089 3695The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Department of Medical Laboratory Science, Hunan Normal University School of Medicine, Changsha, Hunan PR China ,grid.411427.50000 0001 0089 3695The Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Normal University, Changsha, Hunan PR China
| | - Mengyi Shi
- grid.411427.50000 0001 0089 3695The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Department of Medical Laboratory Science, Hunan Normal University School of Medicine, Changsha, Hunan PR China ,grid.411427.50000 0001 0089 3695The Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Normal University, Changsha, Hunan PR China
| | - Ting Cao
- grid.411427.50000 0001 0089 3695The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Department of Medical Laboratory Science, Hunan Normal University School of Medicine, Changsha, Hunan PR China ,grid.411427.50000 0001 0089 3695The Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Normal University, Changsha, Hunan PR China
| | - Renxian Gan
- Guangzhou Wolbaki Biotech Co., Ltd, Guangzhou, Guangdong PR China
| | - Yongjun Li
- Guangzhou Wolbaki Biotech Co., Ltd, Guangzhou, Guangdong PR China ,grid.258164.c0000 0004 1790 3548Present Address: Department of Pathogen Biology, School of Medicine, Jinan University, Guangzhou, PR China
| | - Jiayi Zhou
- Guangzhou Wolbaki Biotech Co., Ltd, Guangzhou, Guangdong PR China
| | - Wei Qian
- Guangzhou Wolbaki Biotech Co., Ltd, Guangzhou, Guangdong PR China
| | - Shixiong Hu
- grid.508374.dHunan Provincial Center for Disease Control and Prevention, Changsha, Hunan PR China
| | - Yong Wang
- grid.216417.70000 0001 0379 7164Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan PR China
| | - Xiaoying Zheng
- grid.12981.330000 0001 2360 039XSun Yat-sen University—Michigan State University Joint Center of Vector Control for Tropical Diseases, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong PR China
| | - Kuibiao Li
- grid.508371.80000 0004 1774 3337Guangzhou Center for Disease Control and Prevention, Guangzhou, Guangdong PR China
| | - Lianyang Bai
- grid.410598.10000 0004 4911 9766Hunan Academy of Agricultural Sciences, Changsha, Hunan PR China
| | - Xiaoling Pan
- grid.411427.50000 0001 0089 3695The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Department of Medical Laboratory Science, Hunan Normal University School of Medicine, Changsha, Hunan PR China ,grid.411427.50000 0001 0089 3695The Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Normal University, Changsha, Hunan PR China
| | - Zhiyong Xi
- Guangzhou Wolbaki Biotech Co., Ltd, Guangzhou, Guangdong PR China ,grid.17088.360000 0001 2150 1785Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI USA
| |
Collapse
|
23
|
Trájer AJ, Sebestyén V, Domokos E, Abonyi J. Indicators for climate change-driven urban health impact assessment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 323:116165. [PMID: 36116263 DOI: 10.1016/j.jenvman.2022.116165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 08/15/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
Climate change can cause multiply potential health issues in urban areas, which is the most susceptible environment in terms of the presently increasing climate volatility. Urban greening strategies make an important part of the adaptation strategies which can ameliorate the negative impacts of climate change. It was aimed to study the potential impacts of different kinds of greenings against the adverse effects of climate change, including waterborne, vector-borne diseases, heat-related mortality, and surface ozone concentration in a medium-sized Hungarian city. As greening strategies, large and pocket parks were considered, based on our novel location identifier algorithm for climate risk minimization. A method based on publicly available data sources including satellite pictures, climate scenarios and urban macrostructure has been developed to evaluate the health-related indicator patterns in cities. The modelled future- and current patterns of the indicators have been compared. The results can help the understanding of the possible future state of the studied indicators and the development of adequate greening strategies. Another outcome of the study is that it is not the type of health indicator but its climate sensitivity that determines the extent to which it responds to temperature rises and how effective greening strategies are in addressing the expected problem posed by the factor.
Collapse
Affiliation(s)
- Attila János Trájer
- Sustainability Solutions Research Lab, University of Pannonia, Egyetem u. 10., Veszprém, 8200, Hungary
| | - Viktor Sebestyén
- Sustainability Solutions Research Lab, University of Pannonia, Egyetem u. 10., Veszprém, 8200, Hungary; MTA-PE "Lendület" Complex Systems Monitoring Research Group, University of Pannonia, Egyetem u. 10., Veszprém, 8200, Hungary.
| | - Endre Domokos
- Sustainability Solutions Research Lab, University of Pannonia, Egyetem u. 10., Veszprém, 8200, Hungary
| | - János Abonyi
- MTA-PE "Lendület" Complex Systems Monitoring Research Group, University of Pannonia, Egyetem u. 10., Veszprém, 8200, Hungary
| |
Collapse
|
24
|
Pichler V, Caputo B, Valadas V, Micocci M, Horvath C, Virgillito C, Akiner M, Balatsos G, Bender C, Besnard G, Bravo-Barriga D, Bueno-Mari R, Collantes F, Delacour-Estrella S, Dikolli E, Falcuta E, Flacio E, García-Pérez AL, Kalan K, Kavran M, L'Ambert G, Lia RP, Marabuto E, Medialdea R, Melero-Alcibar R, Michaelakis A, Mihalca A, Mikov O, Miranda MA, Müller P, Otranto D, Pajovic I, Petric D, Rebelo MT, Robert V, Rogozi E, Tello A, Zitko T, Schaffner F, Pinto J, Della Torre A. Geographic distribution of the V1016G knockdown resistance mutation in Aedes albopictus: a warning bell for Europe. Parasit Vectors 2022; 15:280. [PMID: 35932088 PMCID: PMC9356396 DOI: 10.1186/s13071-022-05407-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 07/14/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Colonization of large part of Europe by the Asian tiger mosquito Aedes albopictus is causing autochthonous transmission of chikungunya and dengue exotic arboviruses. While pyrethroids are recommended only to reduce/limit transmission, they are widely implemented to reduce biting nuisance and to control agricultural pests, increasing the risk of insurgence of resistance mechanisms. Worryingly, pyrethroid resistance (with mortality < 70%) was recently reported in Ae. albopictus populations from Italy and Spain and associated with the V1016G point mutation in the voltage-sensitive sodium channel gene conferring knockdown resistance (kdr). Genotyping pyrethroid resistance-associated kdr mutations in field mosquito samples represents a powerful approach to detect early signs of resistance without the need for carrying out phenotypic bioassays which require availability of live mosquitoes, dedicated facilities and appropriate expertise. METHODS Here we report results on the PCR-genotyping of the V1016G mutation in 2530 Ae. albopictus specimens from 69 sampling sites in 19 European countries. RESULTS The mutation was identified in 12 sites from nine countries (with allele frequencies ranging from 1 to 8%), mostly distributed in two geographical clusters. The western cluster includes Mediterranean coastal sites from Italy, France and Malta as well as single sites from both Spain and Switzerland. The eastern cluster includes sites on both sides of the Black Sea in Bulgaria, Turkey and Georgia as well as one site from Romania. These results are consistent with genomic data showing high connectivity and close genetic relationship among West European populations and a major barrier to gene flow between West European and Balkan populations. CONCLUSIONS The results of this first effort to map kdr mutations in Ae. albopictus on a continental scale show a widespread presence of the V1016G allele in Europe, although at lower frequencies than those previously reported from Italy. This represents a wake-up call for mosquito surveillance programs in Europe to include PCR-genotyping of pyrethroid resistance alleles, as well as phenotypic resistance assessments, in their routine activities.
Collapse
Affiliation(s)
- Verena Pichler
- Dipartimento di Sanità Pubblica & Malattie Infettive, Università di Roma Sapienza, Rome, Italy
| | - Beniamino Caputo
- Dipartimento di Sanità Pubblica & Malattie Infettive, Università di Roma Sapienza, Rome, Italy
| | - Vera Valadas
- Global Health and Tropical Medicine, Instituto De Higiene E Medicina Tropical, Universidade Nova De Lisboa, Lisbon, Portugal
| | - Martina Micocci
- Dipartimento di Sanità Pubblica & Malattie Infettive, Università di Roma Sapienza, Rome, Italy
| | - Cintia Horvath
- University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Chiara Virgillito
- Dipartimento di Sanità Pubblica & Malattie Infettive, Università di Roma Sapienza, Rome, Italy
| | | | - Georgios Balatsos
- Laboratory of Insects & Parasites of Medical Importance, Benaki Phytopathological Institute, Kifisia, Greece
| | - Christelle Bender
- Syndicat de Lutte Contre Les Moustiques du Bas-Rhin, Strasbourg, France
| | - Gilles Besnard
- Entente Interdépartementale Rhône-Alpes pour la Démoustication, Chindrieux, France
| | - Daniel Bravo-Barriga
- Animal Health Department, Veterinary Faculty, University of Extremadura (UEx), Cáceres, Spain
| | | | | | | | | | - Elena Falcuta
- Cantacuzino, National Military-Medical Institute of Research and Development, Bucharest, Romania
| | - Eleonora Flacio
- University of Applied Sciences of Southern Switzerland, Manno, Switzerland
| | - Ana L García-Pérez
- Neiker-Basque Institute for Agricultural Research and Development, Derio, Spain
| | | | | | - Gregory L'Ambert
- Entente Interdépartementale Rhône-Alpes pour la Démoustication, Chindrieux, France
| | | | - Eduardo Marabuto
- Museum of Zoology, Senckenberg Natural History Collections Dresden, Dresden, Germany
| | | | | | - Antonios Michaelakis
- Laboratory of Insects & Parasites of Medical Importance, Benaki Phytopathological Institute, Kifisia, Greece
| | - Andrei Mihalca
- University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Ognyan Mikov
- National Centre of Infectious and Parasitic Diseases, Sofia, Bulgaria
| | - Miguel A Miranda
- Applied Zoology and Animal Conservation, University of the Balearic Islands, Palma, Spain
| | - Pie Müller
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | | | | | | | - Maria Teresa Rebelo
- CESAM-Ciências, Faculdade de Ciências da Universidade de Lisboa, , Lisbon, Portugal
| | - Vincent Robert
- Mivegec Laboratory, Institut de Recherche pour le Développement, Centre National de la Recherche Scientifique, University of Montpellier, Montpellier, France
| | | | - Ana Tello
- Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, Madrid, Spain
| | - Toni Zitko
- Institute of Public Health of Split-Dalmatia County, Split, Croatia
| | | | - Joao Pinto
- Global Health and Tropical Medicine, Instituto De Higiene E Medicina Tropical, Universidade Nova De Lisboa, Lisbon, Portugal
| | - Alessandra Della Torre
- Dipartimento di Sanità Pubblica & Malattie Infettive, Università di Roma Sapienza, Rome, Italy.
| |
Collapse
|
25
|
Current Status of Mosquito Handling, Transporting and Releasing in Frame of the Sterile Insect Technique. INSECTS 2022; 13:insects13060532. [PMID: 35735869 PMCID: PMC9224830 DOI: 10.3390/insects13060532] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/04/2022] [Accepted: 06/08/2022] [Indexed: 11/17/2022]
Abstract
The sterile insect technique (SIT) and its related technologies are considered to be a powerful weapon for fighting against mosquitoes. As an important part of the area-wide integrated pest management (AW-IPM) programs, SIT can help reduce the use of chemical pesticides for mosquito control, and consequently, the occurrence of insecticide resistance. The mosquito SIT involves several important steps, including mass rearing, sex separation, irradiation, packing, transportation, release and monitoring. To enable the application of SIT against mosquitoes to reduce vector populations, the Joint Food and Agriculture Organization of the United Nations (FAO) and the International Atomic Energy Agency (IAEA) Centre (previously called Division) of Nuclear Techniques in Food and Agriculture (hereinafter called Joint FAO/IAEA Centre) and its Insects Pest Control sub-program promoted a coordinated research project (CRP) entitled "Mosquito handling, transport, release and male trapping methods" to enhance the success of SIT. This article summarizes the existing explorations that are critical to the handling and transporting of male mosquitoes, offers an overview of detailed steps in SIT and discusses new emerging methods for mosquito releases, covering most processes of SIT.
Collapse
|
26
|
Mejia AJ, Dutra HLC, Jones MJ, Perera R, McGraw EA. Cross-tissue and generation predictability of relative Wolbachia densities in the mosquito Aedes aegypti. Parasit Vectors 2022; 15:128. [PMID: 35413938 PMCID: PMC9004076 DOI: 10.1186/s13071-022-05231-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 03/03/2022] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND The insect endosymbiotic bacterium Wolbachia is being deployed in field populations of the mosquito Aedes aegypti for biological control. This microbe prevents the replication of human disease-causing viruses inside the vector, including dengue, Zika and chikungunya. Relative Wolbachia densities may in part predict the strength of this 'viral blocking' effect. Additionally, Wolbachia densities may affect the strength of the reproductive manipulations it induces, including cytoplasmic incompatibility (CI), maternal inheritance rates or induced fitness effects in the insect host. High rates of CI and maternal inheritance and low rates of fitness effects are also key to the successful spreading of Wolbachia through vector populations and its successful use in biocontrol. The factors that control Wolbachia densities are not completely understood. METHODS We used quantitative PCR-based methods to estimate relative density of the Wolbachia wAlbB strain in both the somatic and reproductive tissues of adult male and female mosquitoes, as well as in eggs. Using correlation analyses, we assessed whether densities in one tissue predict those in others within the same individual, but also across generations. RESULTS We found little relationship among the relative Wolbachia densities of different tissues in the same host. The results also show that there was very little relationship between Wolbachia densities in parents and those in offspring, both in the same and different tissues. The one exception was with ovary-egg relationships, where there was a strong positive association. Relative Wolbachia densities in reproductive tissues were always greater than those in the somatic tissues. Additionally, the densities were consistent in females over their lifetime regardless of tissue, whereas they were generally higher and more variable in males, particularly in the testes. CONCLUSIONS Our results indicate that either stochastic processes or local tissue-based physiologies are more likely factors dictating Wolbachia densities in Ae. aegypti individuals, rather than shared embryonic environments or heritable genetic effects of the mosquito genome. These findings have implications for understanding how relative Wolbachia densities may evolve and/or be maintained over the long term in Ae. aegypti.
Collapse
Affiliation(s)
- Austin J. Mejia
- grid.29857.310000 0001 2097 4281Department of Entomology, The Pennsylvania State University, University Park, PA 16802 USA ,grid.29857.310000 0001 2097 4281The Center for Infectious Disease Dynamics, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802 USA
| | - H. L. C. Dutra
- grid.29857.310000 0001 2097 4281The Center for Infectious Disease Dynamics, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802 USA ,grid.29857.310000 0001 2097 4281Department of Biology, The Pennsylvania State University, University Park, PA 16802 USA
| | - M. J. Jones
- grid.29857.310000 0001 2097 4281The Center for Infectious Disease Dynamics, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802 USA ,grid.29857.310000 0001 2097 4281Department of Biology, The Pennsylvania State University, University Park, PA 16802 USA
| | - R. Perera
- grid.47894.360000 0004 1936 8083Center for Vector-Borne Infectious Diseases, Colorado State University, Fort Collins, CO 80523 USA
| | - E. A. McGraw
- grid.29857.310000 0001 2097 4281Department of Entomology, The Pennsylvania State University, University Park, PA 16802 USA ,grid.29857.310000 0001 2097 4281The Center for Infectious Disease Dynamics, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802 USA ,grid.29857.310000 0001 2097 4281Department of Biology, The Pennsylvania State University, University Park, PA 16802 USA
| |
Collapse
|
27
|
Moretti R, Lampazzi E, Damiani C, Fabbri G, Lombardi G, Pioli C, Desiderio A, Serrao A, Calvitti M. Increased biting rate and decreased Wolbachia density in irradiated Aedes mosquitoes. Parasit Vectors 2022; 15:67. [PMID: 35209944 PMCID: PMC8867665 DOI: 10.1186/s13071-022-05188-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/01/2022] [Indexed: 11/21/2022] Open
Abstract
Background Releasing considerable numbers of radiation-sterilized males is a promising strategy to suppress mosquito vectors. However, releases may also include small percentages of biting females, which translate to non-negligible numbers when releases are large. Currently, the effects of irradiation on host-seeking and host-biting behaviors have not been exhaustively investigated. Information is also lacking regarding the effects of sterilizing treatment on the endosymbiotic bacterium Wolbachia, which is known to affect the vector competence of infected mosquitos. Methods To ascertain the effects of irradiation on females, the pupae of two Aedes albopictus strains, differing in their natural or artificial Wolbachia infection type, and Aedes aegypti—which is not infected by Wolbachia—were treated with various doses of X-rays and monitored for key fitness parameters and biting behavior over a period of 2 weeks. The effect of radiation on Wolbachia was investigated by quantitative polymerase chain reaction (qPCR) and fluorescence in situ hybridization (FISH) analysis. Results Partial Aedes albopictus female sterility was achieved at 28 Gy, but the number of weekly bites more than doubled compared to that of the controls. Radiation doses of 35 and 45 Gy completely inhibited progeny production but did not significantly affect the survival or flight ability of Ae. albopictus females and caused a tripling of the number of bites per female per week (compared to untreated controls). These results were also confirmed in Ae. aegypti after treatment at 50 Gy. Wolbachia density decreased significantly in 45-Gy-irradiated females, with the greatest decreases in the early irradiation group (26 ± 2-h-old pupae). Wolbachia density also decreased as adults aged. This trend was confirmed in ovaries but not in extra-ovarian tissues. FISH analysis showed a strongly reduced Wolbachia-specific fluorescence in the ovaries of 13 ± 1-day-old females. Conclusions These results suggest that, under sterile insect technique (SIT) programs, the vector capacity of a target population could increase with the frequency of the irradiated females co-released with the sterile males due to an increased biting rate. In the context of successful suppression, the related safety issues are expected to be generally negligible, but they should be conservatively evaluated when large-scale programs relying on imperfect sexing and high overflooding release ratios are run for long periods in areas endemic for arboviral diseases. Also, the effects of irradiation on the vector competence deserve further investigation. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05188-9.
Collapse
Affiliation(s)
- Riccardo Moretti
- Biotechnology and Agroindustry Division, ENEA (Italian National Agency for New Technologies, Energy and Sustainable Economic Development), Casaccia Research Center, Rome, Italy.
| | - Elena Lampazzi
- Biotechnology and Agroindustry Division, ENEA (Italian National Agency for New Technologies, Energy and Sustainable Economic Development), Casaccia Research Center, Rome, Italy
| | - Claudia Damiani
- School of Biosciences and Medical Veterinary, University of Camerino, Camerino, MC, Italy.,Biovecblok S.r.L, Camerino, MC, Italy
| | - Giulia Fabbri
- Biotechnology and Agroindustry Division, ENEA (Italian National Agency for New Technologies, Energy and Sustainable Economic Development), Casaccia Research Center, Rome, Italy.,School of Biosciences and Medical Veterinary, University of Camerino, Camerino, MC, Italy
| | - Giulia Lombardi
- Biotechnology and Agroindustry Division, ENEA (Italian National Agency for New Technologies, Energy and Sustainable Economic Development), Casaccia Research Center, Rome, Italy.,School of Biosciences and Medical Veterinary, University of Camerino, Camerino, MC, Italy
| | - Claudio Pioli
- Laboratory of Biomedical Technologies, ENEA (Italian National Agency for New Technologies, Energy and Sustainable Economic Development), Casaccia Research Center, Rome, Italy
| | - Angiola Desiderio
- Biotechnology and Agroindustry Division, ENEA (Italian National Agency for New Technologies, Energy and Sustainable Economic Development), Casaccia Research Center, Rome, Italy
| | - Aurelio Serrao
- School of Biosciences and Medical Veterinary, University of Camerino, Camerino, MC, Italy.,Biovecblok S.r.L, Camerino, MC, Italy
| | - Maurizio Calvitti
- Biotechnology and Agroindustry Division, ENEA (Italian National Agency for New Technologies, Energy and Sustainable Economic Development), Casaccia Research Center, Rome, Italy
| |
Collapse
|
28
|
Aikawa T, Maehara N, Ichihara Y, Masuya H, Nakamura K, Anbutsu H. Cytoplasmic incompatibility in the semivoltine longicorn beetle Acalolepta fraudatrix (Coleoptera: Cerambycidae) double infected with Wolbachia. PLoS One 2022; 17:e0261928. [PMID: 35030199 PMCID: PMC8759696 DOI: 10.1371/journal.pone.0261928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 12/13/2021] [Indexed: 11/18/2022] Open
Abstract
Wolbachia are obligatory endosymbiotic α-proteobacteria found in many arthropods. They are maternally inherited, and can induce reproductive alterations in the hosts. Despite considerable recent progress in studies on the associations between Wolbachia and various taxonomic groups of insects, none of the researches have revealed the effects of Wolbachia on longicorn beetles as the host insect. Acalolepta fraudatrix is a forest longicorn beetle that is distributed in East Asia. In this study, the relationship between Wolbachia and A. fraudatrix was investigated. Out of two populations of A. fraudatrix screened for Wolbachia using the genes ftsZ, wsp, and 16S rRNA, only one of the populations showed detection of all three genes indicating the presence of Wolbachia. Electron microscopy and fluorescent in situ hybridization also confirmed that the A. fraudatrix population was infected with Wolbachia. Sequencing the wsp genes derived from single insects revealed that two strains of Wolbachia coexisted in the insects based on the detection of two different sequences of the wsp gene. We designated these strains as wFra1 and wFra2. The bacterial titers of wFra1 were nearly 2-fold and 3-fold higher than wFra2 in the testes and ovaries, respectively. The two strains of Wolbachia in the insects were completely eliminated by rearing the insects on artificial diets containing 1% concentration of tetracycline for 1 generation. Reciprocal crosses between Wolbachia-infected and Wolbachia-uninfected A. fraudatrix demonstrated that only eggs produced by the crosses between Wolbachia-infected males and Wolbachia-uninfected females did not hatch, indicating that Wolbachia infecting A. fraudatrix causes cytoplasmic incompatibility in the host insect. This is the first report showing the effect of Wolbachia on reproductive function in a longicorn beetle, A. fraudatrix.
Collapse
Affiliation(s)
- Takuya Aikawa
- Tohoku Research Center, Forestry and Forest Products Research Institute, Morioka, Iwate, Japan
- * E-mail:
| | - Noritoshi Maehara
- Department of Forest Entomology, Forestry and Forest Products Research Institute, Tsukuba, Ibaraki, Japan
| | - Yu Ichihara
- Kansai Research Center, Forestry and Forest Products Research Institute, Kyoto, Japan
| | - Hayato Masuya
- Department of Mushroom Science and Forest Microbiology, Forestry and Forest Products Research Institute, Tsukuba, Ibaraki, Japan
| | - Katsunori Nakamura
- Tohoku Research Center, Forestry and Forest Products Research Institute, Morioka, Iwate, Japan
| | - Hisashi Anbutsu
- Computational Bio Big-Data Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, Shinjuku-ku, Tokyo, Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
- Research Organization for Nano and Life Innovation, Waseda University, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
29
|
Lab-scale characterization and semi-field trials of Wolbachia Strain wAlbB in a Taiwan Wolbachia introgressed Ae. aegypti strain. PLoS Negl Trop Dis 2022; 16:e0010084. [PMID: 35015769 PMCID: PMC8752028 DOI: 10.1371/journal.pntd.0010084] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 12/09/2021] [Indexed: 11/19/2022] Open
Abstract
Dengue fever is one of the most severe viral diseases transmitted by Aedes mosquitoes, with traditional approaches of disease control proving insufficient to prevent significant disease burden. Release of Wolbachia-transinfected mosquitoes offers a promising alternative control methodologies; Wolbachia-transinfected female Aedes aegypti demonstrate reduced dengue virus transmission, whilst Wolbachia-transinfected males cause zygotic lethality when crossed with uninfected females, providing a method for suppressing mosquito populations. Although highly promising, the delicate nature of population control strategies and differences between local species populations means that controlled releases of Wolbachia-transinfected mosquitoes cannot be performed without extensive testing on specific local Ae. aegypti populations. In order to investigate the potential for using Wolbachia to suppress local Ae. aegypti populations in Taiwan, we performed lab-based and semi-field fitness trials. We first transinfected the Wolbachia strain wAlbB into a local Ae. aegypti population (wAlbB-Tw) and found no significant changes in lifespan, fecundity and fertility when compared to controls. In the laboratory, we found that as the proportion of released male mosquitoes carrying Wolbachia was increased, population suppression could reach up to 100%. Equivalent experiments in semi-field experiments found suppression rates of up to 70%. The release of different ratios of wAlbB-Tw males in the semi-field system provided an estimate of the optimal size of male releases. Our results indicate that wAlbB-Tw has significant potential for use in vector control strategies aimed at Ae. aegypti population suppression in Taiwan. Open field release trials are now necessary to confirm that wAlbB-Tw mediated suppression is feasible in natural environments.
Collapse
|
30
|
Manoj RRS, Latrofa MS, Bezerra-Santos MA, Sgroi G, Samarelli R, Mendoza-Roldan JA, Otranto D. Molecular detection and characterization of the endosymbiont Wolbachia in the European hedgehog flea, Archaeopsylla erinacei. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 97:105161. [PMID: 34843992 DOI: 10.1016/j.meegid.2021.105161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/19/2021] [Accepted: 11/24/2021] [Indexed: 06/13/2023]
Abstract
Wolbachia, the endosymbiont of arthropods and onchocercid nematodes is present in many medically important insect species, being also considered for the indirect control of parasitic ones. Archaeopsylla erinacei is a flea species infesting hedgehogs acting as vector of Rickettsia felis, Bartonella henselae, and Rickettsia helvetica, thus having public health relevance. The Wolbachia surface protein (wsp) and 16S rRNA genes were used to determine the presence, prevalence and molecular typing of Wolbachia in this flea species collected in two regions of southern Italy. Of the 45 fleas tested (n = 16 males, 35.6%; n = 29 females, 64.4%), 43 (95.6%; 95% CI: 84.8-99.2) scored positive for Wolbachia, of which 15 (33.3%) and 28 (62.2%) were males and females, respectively. The sex-wise prevalence of this endosymbiont was almost equal in both sexes (males 93.8%; 95% CI: 69.5-99.7; females 96.7%; 95% CI: 83.1-99.8). Single locus sequence analysis (SLST) of Wolbachia revealed two sequence types for 16S rRNA gene, named as wAr_15227 and wAr_15234, which came from two different areas, equally distributed in male and female fleas, whilst only one sequence type was identified for wsp gene. The phylogenetic analysis placed the two 16S rRNA sequence types in paraphyletic clades belonging to the supergroup A and B, respectively. Whilst, the tree of wsp gene clustered the corresponding sequence in the same clade including those of Wolbachia supergroup A. In MLST analyses, both Wolbachia sequence types clustered in a monophyletic clade with Drosophila nikananu (wNik) and Drosophila sturtevanti (wStv) from supergroup A. ClonalFrame analysis revealed a recombination event in the wAr_15234 strain which came from Apulia region. Scientific knowledge of the presence/prevalence of Wolbachia among medically important fleas, may contribute to develop an alternative biological method for the vector control.
Collapse
Affiliation(s)
| | | | | | - Giovanni Sgroi
- Department of Veterinary Medicine, University of Bari, Valenzano, Italy
| | | | | | - Domenico Otranto
- Department of Veterinary Medicine, University of Bari, Valenzano, Italy; Faculty of Veterinary Sciences, Bu-Ali Sina University, Hamedan, Iran.
| |
Collapse
|
31
|
Wolbachia Detection in Field-Collected Mosquitoes from Cameroon. INSECTS 2021; 12:insects12121133. [PMID: 34940221 PMCID: PMC8704151 DOI: 10.3390/insects12121133] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/10/2021] [Accepted: 12/14/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary Wolbachia bacteria from different strains, carried by many insects and nematodes, can interact in many ways with their hosts by changing their biology in different ways, including by suppressing vector population and reducing parasite transmission. Consequently, Wolbachia play an important role in vector control strategies. This study assessed the prevalence of natural Wolbachia infections in mosquitoes collected in Cameroon. Despite the low prevalence that was revealed, Wolbachia spp. were found in eight species of field-collected mosquitoes and are closely related to clades A and B. Aedes aegypti and A. gambiae sl., the main vectors of dengue and malaria, respectively, were not infected in this study, while C. moucheti recorded a high prevalence (46.67%). Future characterisation of the Wolbachia bacteria obtained is needed. Abstract Wolbachia spp., known to be maternally inherited intracellular bacteria, are widespread among arthropods, including mosquitoes. Our study assessed the presence and prevalence of Wolbachia infection in wild mosquitoes collected in Cameroon, using the combination of 23s rRNA Anaplasmatacea and 16s rRNA Wolbachia genes. Mosquitoes that were positive for Wolbachia were sequenced for subsequent phylogenetic analysis. Out of a total of 1740 individual mosquitoes belonging to 22 species and five genera screened, 33 mosquitoes (1.87%) belonging to eight species (namely, Aedes albopictus, A. contigus, Culex quinquefasciatus, C. perfuscus, C. wigglesworthi, C. duttoni, Anopheles paludis and Coquillettidia sp.) were found to be positive for Wolbachia infections. Wolbachia spp. were absent in A. gambiae and A. aegypti, the main vectors of malaria and dengue, respectively. Phylogenetic analysis of the 16S RNA sequences showed they belong mainly to two distinct subgroups (A and B). This study reports the presence of Wolbachia in about eight species of mosquitoes in Cameroon and suggests that future characterisation of the strains is needed.
Collapse
|
32
|
Releasing incompatible males drives strong suppression across populations of wild and Wolbachia-carrying Aedes aegypti in Australia. Proc Natl Acad Sci U S A 2021; 118:2106828118. [PMID: 34607949 PMCID: PMC8521666 DOI: 10.1073/pnas.2106828118] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2021] [Indexed: 11/18/2022] Open
Abstract
With over 40% of humans at risk from mosquito-borne diseases such as dengue, yellow fever, chikungunya, and Zika, the development of environmentally friendly mosquito-control tools is critical. The release of reproductively incompatible male mosquitoes carrying a Wolbachia bacterium can drive mating events that kill the eggs. Through replicated treatment and control experiments in northern Australia, regular releases of Aedes aegypti males infected with a Wolbachia from Aedes albopictus was shown to drive strong population suppression in mosaic populations of wild-type (no Wolbachia) and wMel-Wolbachia–carrying Ae. aegypti. In a demonstration of bidirectional incompatibility between different Wolbachia strains in the field, we also demonstrate that one season’s suppression experiment can also show an ongoing effect into the following season. Releasing sterile or incompatible male insects is a proven method of population management in agricultural systems with the potential to revolutionize mosquito control. Through a collaborative venture with the “Debug” Verily Life Sciences team, we assessed the incompatible insect technique (IIT) with the mosquito vector Aedes aegypti in northern Australia in a replicated treatment control field trial. Backcrossing a US strain of Ae. aegypti carrying Wolbachia wAlbB from Aedes albopictus with a local strain, we generated a wAlbB2-F4 strain incompatible with both the wild-type (no Wolbachia) and wMel-Wolbachia Ae. aegypti now extant in North Queensland. The wAlbB2-F4 strain was manually mass reared with males separated from females using Verily sex-sorting technologies to obtain no detectable female contamination in the field. With community consent, we delivered a total of three million IIT males into three isolated landscapes of over 200 houses each, releasing ∼50 males per house three times a week over 20 wk. Detecting initial overflooding ratios of between 5:1 and 10:1, strong population declines well beyond 80% were detected across all treatment landscapes when compared to controls. Monitoring through the following season to observe the ongoing effect saw one treatment landscape devoid of adult Ae. aegypti early in the season. A second landscape showed reduced adults, and the third recovered fully. These encouraging results in suppressing both wild-type and wMel-Ae. aegypti confirms the utility of bidirectional incompatibility in the field setting, show the IIT to be robust, and indicate that the removal of this arbovirus vector from human-occupied landscapes may be achievable.
Collapse
|
33
|
Ross PA. Designing effective Wolbachia release programs for mosquito and arbovirus control. Acta Trop 2021; 222:106045. [PMID: 34273308 DOI: 10.1016/j.actatropica.2021.106045] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 07/04/2021] [Accepted: 07/06/2021] [Indexed: 01/22/2023]
Abstract
Mosquitoes carrying endosymbiotic bacteria called Wolbachia are being released in mosquito and arbovirus control programs around the world through two main approaches: population suppression and population replacement. Open field releases of Wolbachia-infected male mosquitoes have achieved over 95% population suppression by reducing the fertility of wild mosquito populations. The replacement of populations with Wolbachia-infected females is self-sustaining and can greatly reduce local dengue transmission by reducing the vector competence of mosquito populations. Despite many successful interventions, significant questions and challenges lie ahead. Wolbachia, viruses and their mosquito hosts can evolve, leading to uncertainty around the long-term effectiveness of a given Wolbachia strain, while few ecological impacts of Wolbachia releases have been explored. Wolbachia strains are diverse and the choice of strain to release should be made carefully, taking environmental conditions and the release objective into account. Mosquito quality control, thoughtful community awareness programs and long-term monitoring of populations are essential for all types of Wolbachia intervention. Releases of Wolbachia-infected mosquitoes show great promise, but existing control measures remain an important way to reduce the burden of mosquito-borne disease.
Collapse
|
34
|
Caputo B, Langella G, Petrella V, Virgillito C, Manica M, Filipponi F, Varone M, Primo P, Puggioli A, Bellini R, D’Antonio C, Iesu L, Tullo L, Rizzo C, Longobardi A, Sollazzo G, Perrotta MM, Fabozzi M, Palmieri F, Saccone G, Rosà R, della Torre A, Salvemini M. Aedes albopictus bionomics data collection by citizen participation on Procida Island, a promising Mediterranean site for the assessment of innovative and community-based integrated pest management methods. PLoS Negl Trop Dis 2021; 15:e0009698. [PMID: 34529653 PMCID: PMC8445450 DOI: 10.1371/journal.pntd.0009698] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 08/02/2021] [Indexed: 02/05/2023] Open
Abstract
In the last decades, the colonization of Mediterranean Europe and of other temperate regions by Aedes albopictus created an unprecedented nuisance problem in highly infested areas and new public health threats due to the vector competence of the species. The Sterile Insect Technique (SIT) and the Incompatible Insect Technique (IIT) are insecticide-free mosquito-control methods, relying on mass release of irradiated/manipulated males, able to complement existing and only partially effective control tools. The validation of these approaches in the field requires appropriate experimental settings, possibly isolated to avoid mosquito immigration from other infested areas, and preliminary ecological and entomological data. We carried out a 4-year study in the island of Procida (Gulf of Naples, Italy) in strict collaboration with local administrators and citizens to estimate the temporal dynamics, spatial distribution, and population size of Ae. albopictus and the dispersal and survival of irradiated males. We applied ovitrap monitoring, geo-spatial analyses, mark-release-recapture technique, and a citizen-science approach. Results allow to predict the seasonal (from April to October, with peaks of 928-9,757 males/ha) and spatial distribution of the species, highlighting the capacity of Ae. albopictus population of Procida to colonize and maintain high frequencies in urban as well as in sylvatic inhabited environments. Irradiated males shown limited ability to disperse (mean daily distance travelled <60m) and daily survival estimates ranging between 0.80 and 0.95. Overall, the ecological characteristics of the island, the acquired knowledge on Ae. albopictus spatial and temporal distribution, the high human and Ae. albopictus densities and the positive attitude of the resident population in being active parts in innovative mosquito control projects provide the ground for evidence-based planning of the interventions and for the assessment of their effectiveness. In addition, the results highlight the value of creating synergies between research groups, local administrators, and citizens for affordable monitoring (and, in the future, control) of mosquito populations.
Collapse
Affiliation(s)
- Beniamino Caputo
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, Rome, Italy
| | - Giuliano Langella
- Department of Agriculture, University of Naples Federico II, Naples, Italy
| | - Valeria Petrella
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Chiara Virgillito
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, Rome, Italy
- Department of Biodiversity and Molecular Ecology, Edmund Mach Foundation, San Michele all’Adige, Italy
| | - Mattia Manica
- Department of Biodiversity and Molecular Ecology, Edmund Mach Foundation, San Michele all’Adige, Italy
- Center for Health Emergencies, Bruno Kessler Foundation, Trento, Italy
| | - Federico Filipponi
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, Rome, Italy
- Istituto Superiore per la Protezione e la Ricerca Ambientale, Rome, Italy
| | - Marianna Varone
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Pasquale Primo
- Department of Biology, University of Naples Federico II, Naples, Italy
| | | | - Romeo Bellini
- Centro Agricoltura Ambiente “Giorgio Nicoli”, Crevalcore, Italy
| | | | - Luca Iesu
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Liliana Tullo
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Ciro Rizzo
- Department of Biology, University of Naples Federico II, Naples, Italy
| | | | - Germano Sollazzo
- Department of Biology, University of Naples Federico II, Naples, Italy
| | | | - Miriana Fabozzi
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Fabiana Palmieri
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Giuseppe Saccone
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Roberto Rosà
- Department of Biodiversity and Molecular Ecology, Edmund Mach Foundation, San Michele all’Adige, Italy
- Centre Agriculture Food Environment, University of Trento, San Michele all’Adige (TN), Italy
| | - Alessandra della Torre
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, Rome, Italy
| | - Marco Salvemini
- Department of Biology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
35
|
Zhang D, Chen S, Abd-Alla AMM, Bourtzis K. The Effect of Radiation on the Gut Bacteriome of Aedes albopictus. Front Microbiol 2021; 12:671699. [PMID: 34305838 PMCID: PMC8299835 DOI: 10.3389/fmicb.2021.671699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 06/14/2021] [Indexed: 11/17/2022] Open
Abstract
The sterile insect technique (SIT) has been developed as a component of area-wide integrated pest management approaches to control the populations of Aedes albopictus, a mosquito vector capable of transmission of dengue, Zika and chikungunya viruses. One of the key factors for the success of SIT is the requirement of high biological quality sterile males, which upon their release would be able to compete with wild males for matings with wild females in the field. In insects, gut bacteriome have played a catalytic role during evolution significantly affecting several aspects of their biology and ecology. Given the importance of gut-associated bacterial species for the overall ecological fitness and biological quality of their hosts, it is of interest to understand the effects of radiation on the gut-associated bacteriome of Ae. albopictus. In this study, the effect of radiation on the composition and density levels of the gut-associated bacterial species at the pupal stage as well as at 1- and 4-day-old males and females was studied using 16S rRNA gene-based next generation sequencing (NGS) and quantitative PCR (qPCR) approaches. Age, diet, sex, and radiation were shown to affect the gut-associated bacterial communities, with age having the highest impact triggering significant changes on bacterial diversity and clustering among pupae, 1- and 4-day-old adult samples. qPCR analysis revealed that the relative density levels of Aeromonas are higher in male samples compared to all other samples and that the irradiation triggers an increase in the density levels of both Aeromonas and Elizabethkingia in the mosquito gut at specific stages. Our results suggest that Aeromonas could potentially be used as probiotics to enhance protandry and sex separation in support of SIT applications against Ae. albopictus, while the functional role of Elizabethkingia in respect to oxidative stress and damage in irradiated mosquitoes needs further investigation.
Collapse
Affiliation(s)
- Dongjing Zhang
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Vienna, Austria.,Key Laboratory of Tropical Disease Control of the Ministry of Education, Sun Yat-sen University-Michigan State University Joint Center of Vector Control for Tropical Diseases, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Chinese Atomic Energy Agency Center of Excellence on Nuclear Technology Applications for Insect Control, Sun Yat-sen University, Guangzhou, China
| | - Shi Chen
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Vienna, Austria.,Institute of Biological Control, Fujian Agricultural and Forestry University, Fuzhou, China
| | - Adly M M Abd-Alla
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - Kostas Bourtzis
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| |
Collapse
|
36
|
Kaur R, Shropshire JD, Cross KL, Leigh B, Mansueto AJ, Stewart V, Bordenstein SR, Bordenstein SR. Living in the endosymbiotic world of Wolbachia: A centennial review. Cell Host Microbe 2021; 29:879-893. [PMID: 33945798 PMCID: PMC8192442 DOI: 10.1016/j.chom.2021.03.006] [Citation(s) in RCA: 190] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/28/2021] [Accepted: 03/08/2021] [Indexed: 02/08/2023]
Abstract
The most widespread intracellular bacteria in the animal kingdom are maternally inherited endosymbionts of the genus Wolbachia. Their prevalence in arthropods and nematodes worldwide and stunning arsenal of parasitic and mutualistic adaptations make these bacteria a biological archetype for basic studies of symbiosis and applied outcomes for curbing human and agricultural diseases. Here, we conduct a summative, centennial analysis of living in the Wolbachia world. We synthesize literature on Wolbachia's host range, phylogenetic diversity, genomics, cell biology, and applications to filarial, arboviral, and agricultural diseases. We also review the mobilome of Wolbachia including phage WO and its essentiality to hallmark reproductive phenotypes in arthropods. Finally, the Wolbachia system is an exemplar for discovery-based science education using biodiversity, biotechnology, and bioinformatics lessons. As we approach a century of Wolbachia research, the interdisciplinary science of this symbiosis stands as a model for consolidating and teaching the integrative rules of endosymbiotic life.
Collapse
Affiliation(s)
- Rupinder Kaur
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, TN 37235, USA.
| | - J Dylan Shropshire
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Karissa L Cross
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Brittany Leigh
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Alexander J Mansueto
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Victoria Stewart
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Sarah R Bordenstein
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Seth R Bordenstein
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, TN 37235, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37235, USA.
| |
Collapse
|
37
|
Yang Y, Zhu Q, Zhang K, Zhao S. Synthesis, antimosquito activities, photodegradation, and toxic assessment of novel pyrethroids containing 2-chlorobiphenyl and 2-chlorophenylpyridine. PEST MANAGEMENT SCIENCE 2021; 77:2773-2784. [PMID: 33512752 DOI: 10.1002/ps.6308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 01/23/2021] [Accepted: 01/29/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Aedes albopictus is a mosquito species and a vector of dengue virus and malaria parasites that represents a significant threat to global public health. Although mosquito populations have been effectively controlled through the use of synthetic insecticides, the emergence of widespread insecticide resistance in wild mosquito populations is a strong motivation to explore new insecticidal chemistries. RESULTS In this study, A. albopictus was treated with a series of novel pyrethroids containing 2-chlorobiphenyl and 2-chlorophenylpyridine via topical application. The relative antimosquito activity of each novel compound was determined, as measured by the LC50 , and compared with the synthetic pyrethroid bifenthrin. The most antimosquito activity compound (SZ-B-11) was 4.69 times more active than bifenthrin. The novel compounds were also sensitive to wild A. albopictus. In addition, in silico toxicity assessment of aquatic organisms showed that the acute toxicity and chronic toxicity of SZ-B-11 were 31.96 times and 934.40 times lower than those of bifenthrin, respectively. Cytotoxicity assessment demonstrated that all tested compounds were nontoxic against SH-SY5Y cell lines. Furthermore, photolytic results suggested that SZ-B-11 would be photodegraded more easily than bifenthrin and would reduce secondary pollution. CONCLUSION Novel pyrethroids containing 2-chlorobiphenyl and 2-chlorophenylpyridine, through simple synthesis steps, have better antimosquito activity, low resistance, less ecotoxicity, readily degradable characteristics, and may reduce secondary pollution. They are promising insecticides with potential application prospects in agricultural production and environmental protection. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yang Yang
- Faculty of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, People's Republic of China
| | - Qiuyan Zhu
- Faculty of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, People's Republic of China
| | - Kun Zhang
- Faculty of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, People's Republic of China
- Faculty of Biotechnology and Health, Wuyi University, Jiangmen, People's Republic of China
| | - Suqing Zhao
- Faculty of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, People's Republic of China
| |
Collapse
|
38
|
|
39
|
Moretti R, Calvitti M. Issues with combining incompatible and sterile insect techniques. Nature 2021; 590:E1-E2. [PMID: 33536643 DOI: 10.1038/s41586-020-03164-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 12/07/2020] [Indexed: 01/02/2023]
Affiliation(s)
- Riccardo Moretti
- Biotechnology and Agroindustry Division, ENEA (Italian National Agency for New Technologies, Energy & Sustainable Economic Development), Rome, Italy.
| | - Maurizio Calvitti
- Biotechnology and Agroindustry Division, ENEA (Italian National Agency for New Technologies, Energy & Sustainable Economic Development), Rome, Italy
| |
Collapse
|
40
|
Madhav M, Baker D, Morgan JAT, Asgari S, James P. Wolbachia: A tool for livestock ectoparasite control. Vet Parasitol 2020; 288:109297. [PMID: 33248417 DOI: 10.1016/j.vetpar.2020.109297] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/24/2020] [Accepted: 10/26/2020] [Indexed: 12/14/2022]
Abstract
Ectoparasites and livestock-associated insects are a major concern throughout the world because of their economic and welfare impacts. Effective control is challenging and relies mainly on the use of chemical insecticides and acaricides. Wolbachia, an arthropod and nematode-infecting, maternally-transmitted endosymbiont is currently of widespread interest for use in novel strategies for the control of a range of arthropod-vectored human diseases and plant pests but to date has received only limited consideration for use in the control of diseases of veterinary concern. Here, we review the currently available information on Wolbachia in veterinary ectoparasites and disease vectors, consider the feasibility for use of Wolbachia in the control of livestock pests and diseases and highlight critical issues which need further investigation.
Collapse
Affiliation(s)
- Mukund Madhav
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Dalton Baker
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jess A T Morgan
- Department of Agriculture and Fisheries, Brisbane, Australia
| | - Sassan Asgari
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Peter James
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
41
|
Shropshire JD, Leigh B, Bordenstein SR. Symbiont-mediated cytoplasmic incompatibility: what have we learned in 50 years? eLife 2020; 9:61989. [PMID: 32975515 PMCID: PMC7518888 DOI: 10.7554/elife.61989] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 09/14/2020] [Indexed: 12/12/2022] Open
Abstract
Cytoplasmic incompatibility (CI) is the most common symbiont-induced reproductive manipulation. Specifically, symbiont-induced sperm modifications cause catastrophic mitotic defects in the fertilized embryo and ensuing lethality in crosses between symbiotic males and either aposymbiotic females or females harboring a different symbiont strain. However, if the female carries the same symbiont strain, then embryos develop properly, thereby imparting a relative fitness benefit to symbiont-transmitting mothers. Thus, CI drives maternally-transmitted bacteria to high frequencies in arthropods worldwide. In the past two decades, CI experienced a boom in interest due to its (i) deployment in worldwide efforts to curb mosquito-borne diseases, (ii) causation by bacteriophage genes, cifA and cifB, that modify sexual reproduction, and (iii) important impacts on arthropod speciation. This review serves as a gateway to experimental, conceptual, and quantitative themes of CI and outlines significant gaps in understanding CI’s mechanism that are ripe for investigation from diverse subdisciplines in the life sciences.
Collapse
Affiliation(s)
- J Dylan Shropshire
- Department of Biological Sciences, Vanderbilt University, Nashville, United States.,Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, United States
| | - Brittany Leigh
- Department of Biological Sciences, Vanderbilt University, Nashville, United States.,Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, United States
| | - Seth R Bordenstein
- Department of Biological Sciences, Vanderbilt University, Nashville, United States.,Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, United States.,Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, United States.,Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, United States
| |
Collapse
|
42
|
Madhav M, Brown G, Morgan JAT, Asgari S, McGraw EA, James P. Transinfection of buffalo flies (Haematobia irritans exigua) with Wolbachia and effect on host biology. Parasit Vectors 2020; 13:296. [PMID: 32522243 PMCID: PMC7285521 DOI: 10.1186/s13071-020-04161-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 06/01/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Buffalo flies (Haematobia irritans exigua) (BF) and closely related horn flies (Haematobia irritans irritans) (HF) are invasive haematophagous parasites with significant economic and welfare impacts on cattle production. Wolbachia are intracellular bacteria found widely in insects and currently of much interest for use in novel strategies for the area wide control of insect pests and insect-vectored diseases. In this paper, we report the transinfection of BF towards the development of area-wide controls. METHODS Three stages of BF; embryos, pupae and adult female flies, were injected with different Wolbachia strains (wAlbB, wMel and wMelPop). The success of transinfection and infection dynamics was compared by real-time PCR and FISH and fitness effects were assessed in transinfected flies. RESULTS BF eggs were not easily injected because of their tough outer chorion and embryos were frequently damaged with less than 1% hatch rate of microinjected eggs. No Wolbachia infection was recorded in flies successfully reared from injected eggs. Adult and pupal injection resulted in higher survival rates and somatic and germinal tissue infections, with transmission to the succeeding generations on some occasions. Investigations of infection dynamics in flies from injected pupae confirmed that Wolbachia were actively multiplying in somatic tissues. Ovarian infections were confirmed with wMel and wMelPop in a number of instances, though not with wAlbB. Measurement of fitness traits indicated reduced longevity, decreased and delayed adult emergence, and reduced fecundity in Wolbachia-infected flies compared to mock-injected flies. Effects varied with the Wolbachia strain injected with most marked changes seen in the wMelPop-injected flies and least severe effects seen with wAlbB. CONCLUSIONS Adult and pupal injection were the most suitable methods for transinfecting BF and all three strains of Wolbachia successfully replicated in somatic tissues. The Wolbachia-induced fitness effects seen in transinfected BF suggest potential for use of the wMel or wMelPop strains in Wolbachia-based biocontrol programmes for BF.
Collapse
Affiliation(s)
- Mukund Madhav
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Geoff Brown
- Department of Agriculture and Fisheries, Brisbane, 4001, Australia
| | - Jess A T Morgan
- Department of Agriculture and Fisheries, Brisbane, 4001, Australia
| | - Sassan Asgari
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Elizabeth A McGraw
- Department of Entomology, Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, 16802, USA
| | - Peter James
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
43
|
Mateos M, Martinez Montoya H, Lanzavecchia SB, Conte C, Guillén K, Morán-Aceves BM, Toledo J, Liedo P, Asimakis ED, Doudoumis V, Kyritsis GA, Papadopoulos NT, Augustinos AA, Segura DF, Tsiamis G. Wolbachia pipientis Associated With Tephritid Fruit Fly Pests: From Basic Research to Applications. Front Microbiol 2020; 11:1080. [PMID: 32582067 PMCID: PMC7283806 DOI: 10.3389/fmicb.2020.01080] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/30/2020] [Indexed: 12/19/2022] Open
Abstract
Members of the true fruit flies (family Tephritidae) are among the most serious agricultural pests worldwide, whose control and management demands large and costly international efforts. The need for cost-effective and environmentally friendly integrated pest management (IPM) has led to the development and implementation of autocidal control strategies. These approaches include the widely used sterile insect technique and the incompatible insect technique (IIT). IIT relies on maternally transmitted bacteria (namely Wolbachia) to cause a conditional sterility in crosses between released mass-reared Wolbachia-infected males and wild females, which are either uninfected or infected with a different Wolbachia strain (i.e., cytoplasmic incompatibility; CI). Herein, we review the current state of knowledge on Wolbachia-tephritid interactions including infection prevalence in wild populations, phenotypic consequences, and their impact on life history traits. Numerous pest tephritid species are reported to harbor Wolbachia infections, with a subset exhibiting high prevalence. The phenotypic effects of Wolbachia have been assessed in very few tephritid species, due in part to the difficulty of manipulating Wolbachia infection (removal or transinfection). Based on recent methodological advances (high-throughput DNA sequencing) and breakthroughs concerning the mechanistic basis of CI, we suggest research avenues that could accelerate generation of necessary knowledge for the potential use of Wolbachia-based IIT in area-wide integrated pest management (AW-IPM) strategies for the population control of tephritid pests.
Collapse
Affiliation(s)
- Mariana Mateos
- Departments of Ecology and Conservation Biology, and Wildlife and Fisheries Sciences, Texas A&M University, College Station, TX, United States
| | - Humberto Martinez Montoya
- Laboratorio de Genética y Genómica Comparativa, Unidad Académica Multidisciplinaria Reynosa Aztlan, Universidad Autónoma de Tamaulipas, Ciudad Victoria, Mexico
| | - Silvia B Lanzavecchia
- Instituto de Genética 'Ewald A. Favret' - GV IABIMO (INTA-CONICET) Hurlingham, Buenos Aires, Argentina
| | - Claudia Conte
- Instituto de Genética 'Ewald A. Favret' - GV IABIMO (INTA-CONICET) Hurlingham, Buenos Aires, Argentina
| | | | | | - Jorge Toledo
- El Colegio de la Frontera Sur, Tapachula, Mexico
| | - Pablo Liedo
- El Colegio de la Frontera Sur, Tapachula, Mexico
| | - Elias D Asimakis
- Department of Environmental Engineering, University of Patras, Agrinio, Greece
| | - Vangelis Doudoumis
- Department of Environmental Engineering, University of Patras, Agrinio, Greece
| | - Georgios A Kyritsis
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Larissa, Greece
| | - Nikos T Papadopoulos
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Larissa, Greece
| | - Antonios A Augustinos
- Department of Plant Protection, Institute of Industrial and Forage Crops, Hellenic Agricultural Organization - DEMETER, Patras, Greece
| | - Diego F Segura
- Instituto de Genética 'Ewald A. Favret' - GV IABIMO (INTA-CONICET) Hurlingham, Buenos Aires, Argentina
| | - George Tsiamis
- Department of Environmental Engineering, University of Patras, Agrinio, Greece
| |
Collapse
|
44
|
Mancini MV, Herd CS, Ant TH, Murdochy SM, Sinkins SP. Wolbachia strain wAu efficiently blocks arbovirus transmission in Aedes albopictus. PLoS Negl Trop Dis 2020; 14:e0007926. [PMID: 32155143 PMCID: PMC7083328 DOI: 10.1371/journal.pntd.0007926] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/20/2020] [Accepted: 01/17/2020] [Indexed: 12/22/2022] Open
Abstract
The global incidence of arboviral diseases transmitted by Aedes mosquitoes, including dengue, chikungunya, yellow fever, and Zika, has increased dramatically in recent decades. The release of Aedes aegypti carrying the maternally inherited symbiont Wolbachia as an intervention to control arboviruses is being trialled in several countries. However, these efforts are compromised in many endemic regions due to the co-localization of the secondary vector Aedes albopictus, the Asian tiger mosquito. Ae. albopictus has an expanding global distribution following incursions into a number of new territories. To date, only the wMel and wPip strains of Wolbachia have been reported to be transferred into and characterized in this vector. A Wolbachia strain naturally infecting Drosophila simulans, wAu, was selected for transfer into a Malaysian Ae. albopictus line to create a novel triple-strain infection. The newly generated line showed self-compatibility, moderate fitness cost and complete resistance to Zika and dengue infections.
Collapse
Affiliation(s)
| | - Christie S. Herd
- MRC- University of Glasgow- Centre for Virus Research, Glasgow, United Kingdom
| | - Thomas H. Ant
- MRC- University of Glasgow- Centre for Virus Research, Glasgow, United Kingdom
| | - Shivan M. Murdochy
- MRC- University of Glasgow- Centre for Virus Research, Glasgow, United Kingdom
| | - Steven P. Sinkins
- MRC- University of Glasgow- Centre for Virus Research, Glasgow, United Kingdom
| |
Collapse
|