1
|
Xiao Y, Ai M, Miao J, Yan S, Du Y, Zhang J, Tang C, Zhang K. Effects of chili meal supplementation on productive performance, intestinal health, and liver lipid metabolism of laying hens fed low-protein diets. Poult Sci 2025; 104:105001. [PMID: 40073638 PMCID: PMC11950995 DOI: 10.1016/j.psj.2025.105001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 03/01/2025] [Accepted: 03/05/2025] [Indexed: 03/14/2025] Open
Abstract
This study aimed to explore the effects of chili meal (CM), a by-product of chili pepper oil extraction, on the productive performance, intestinal health, and lipid metabolism of laying hens fed low-protein (LP) diets. A total of 384 Hy-Line brown laying hens (32 weeks old) were divided into six groups: control (CON) diet with 16.5 % crude protein (CP), LP diet with 15 % CP, and LP diets supplemented with 3 %, 5 %, 7 %, and 9 % CM. Results showed that dietary CM supplementation of up to 5 % did not negatively affect the productive performance of laying hens fed LP diets. However, the groups receiving 7 % and 9 % CM exhibited a significant increase in the feed-to-egg ratio (P < 0.05). Additionally, dietary CM supplementation effectively enhanced egg yolk color in a dose-dependent manner (P < 0.05). Intestinal morphology analysis indicated that the 5 % CM group had a higher villus height-to-crypt depth ratio than the LP and 9 % CM groups (P < 0.05), with no significant differences among the other groups. Dietary supplementation with 3 %-7 % CM did not significantly affect serum and jejunal antioxidant capacity, and the 9 % CM group exhibited the highest levels of serum and jejunal malondialdehyde among the groups (P < 0.05). Dietary CM supplementation significantly increased anti-inflammatory cytokines (IL-4 and IL-10) and decreased pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α) in the serum and jejunal tissue of laying hens (P < 0.05). Moreover, CM supplementation significantly altered the cecal microbiota composition in laying hens, increasing the abundance of beneficial bacteria, such as Desulfovibrio and Megamonas. Furthermore, dietary CM supplementation significantly decreased serum triglyceride levels; downregulated liver mRNA levels of ACC, FAS, and SREBP-1C/2; and upregulated the mRNA levels of ACOX1, PPAR-α, Apob, and CPT in laying hens fed LP diets. In conclusion, CM supplementation should not exceed 5 % to avoid negative impacts on performance while supporting intestinal health and lipid metabolism.
Collapse
Affiliation(s)
- Yudi Xiao
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, PR China; State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Mingming Ai
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Junhong Miao
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Shuhui Yan
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Yifan Du
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Junmin Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Chaohua Tang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China.
| | - Kai Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, PR China.
| |
Collapse
|
2
|
Bingül MB, Gul M, Dündar S, Sökmen K, Artas G, Polat ME, Tanrisever M, Ozcan EC. Effect of Different Administered Doses of Capsaicin and Titanium Implant Osseointegration. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1094. [PMID: 39064523 PMCID: PMC11279083 DOI: 10.3390/medicina60071094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/24/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024]
Abstract
Background and Objectives: This study aimed to evaluate the histological and biochemical effects of capsaicin on implant osseointegration and oxidative stress. Materials and Methods: Male Wistar albino rats weighing between 250 and 300 g were used in this study. Twenty-four rats were randomly divided into three equal groups: implant + control (n = 8), implant + capsaicin-1 (n = 8), and implant + capsaicin-2 (n = 8). Additionally, 2.5 mm diameter and 4 mm length titanium implants were surgically integrated into the corticocancellous bone parts of the femurs. In the treatment groups, rats were injected intraperitoneally with 25 mg/kg (implant + capsaicin-1) and 50 mg/kg (implant + capsaicin-2) of capsaicin. No additional applications were made in the control group. Three rats in total died during and after the experiment as a result of the analyses performed on 21 animals. Results: The highest total antioxidant status value was found in capsaicin dose 2, according to the analysis. The control group had the highest total oxidant status and oxidative stress index values, while group 2 of capsaicin had the lowest. After analysis, we found that there was no observed positive effect on osteointegration in this study (p > 0.05), although the bone implant connection was higher in the groups treated with capsaicin. Conclusions: A positive effect on osteointegration was not observed in this study. This may be due to osteoclast activation. However, it was found that it has a positive effect on oxidative stress. Osteoclast activation may be the cause of this phenomenon. Capsaicin was found to have a positive effect on oxidative stress (p < 0.05). It was also observed to have a positive effect on oxidative stress.
Collapse
Affiliation(s)
- Muhammet Bahattin Bingül
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Harran University, Sanliurfa 63300, Turkey; (M.B.B.); (M.E.P.)
| | - Mehmet Gul
- Department of Periodontology, Faculty of Dentistry, Harran University, Sanliurfa 63300, Turkey
| | - Serkan Dündar
- Department of Periodontology, Faculty of Dentistry, Firat University, Elazig 23119, Turkey;
| | - Kevser Sökmen
- Department of Periodontology, Faculty of Dentistry, Alanya Alaaddin Keykubat University, Antalya 07070, Turkey;
| | - Gökhan Artas
- Department of Medical, Faculty of Medicine, Pathology Firat University, Elazig 23119, Turkey;
| | - Mehmet Emrah Polat
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Harran University, Sanliurfa 63300, Turkey; (M.B.B.); (M.E.P.)
| | - Murat Tanrisever
- Department of Surgery, Faculty of Veterinary Medicine, Firat University, Elazig 23119, Turkey;
| | - Erhan Cahit Ozcan
- Department of Esthetic, Faculty of Medicine, Plastic and Reconstructive Surgery, Elazig 44090, Turkey;
| |
Collapse
|
3
|
Abdulaal WH, Asfour HZ, Helmi N, Al Sadoun H, Eldakhakhny B, Alhakamy NA, Alqarni HM, Alzahrani SAM, El-Moselhy MA, Sharkawi SS, Aboubakr EM. Capsaicin ameliorate pulmonary fibrosis via antioxidant Nrf-2/ PPAR- γ pathway activation and inflammatory TGF-β1/ NF-κB/COX II pathway inhibition. Front Pharmacol 2024; 15:1333715. [PMID: 38449809 PMCID: PMC10915016 DOI: 10.3389/fphar.2024.1333715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 01/25/2024] [Indexed: 03/08/2024] Open
Abstract
Bleomycin is an effective antibiotic with a significant anticancer properties, but its use is limited due to its potential to induce dose-dependent pulmonary fibrosis. Therefore, this study aimed to assess the therapeutic potential of Capsaicin as an additional treatment to enhance patient tolerance to Bleomycin compared to the antifibrotic drug Pirfenidone. Pulmonary fibrosis was induced in rats through by a single intratracheal Bleomycin administration in day zero, followed by either Capsaicin or Pirfenidone treatment for 7 days. After the animals were sacrificed, their lungs were dissected and examined using various stains for macroscopic and histopathological evaluation. Additionally, the study assessed various antioxidant, anti-inflammatory, and antifibrotic parameters were assessed. Rats exposed to Bleomycin exhibited visible signs of fibrosis, histopathological alterations, increased collagen deposition, and elevated mucin content. Bleomycin also led to heightened increased inflammatory cells infiltration in the bronchoalveolar lavage, elevated fibrosis biomarkers such as hydroxyproline, alpha-smooth muscle actin (α-SMA) and transforming growth factor-beta (TGF-β1), increased inflammatory markers including tumor necrosis factor-alpha (TNF-α), interlukine-6 (Il-6), interlukine-1β (Il-1β) nuclear factor-kappa B (NF-κB), and Cyclooxygenase-2 (COX-2), and transforming growth factor-beta (TGF-β1),. Furthermore, it reduced the expression of peroxisome proliferator-activated receptor-gamma (PPAR-γ), increased oxidative stress biomarkers like nitric oxide (NO), malondialdehyde (MDA), myeloperoxidase (MPO) and protein carbonyl. Bleomycin also decreased the expression of nuclear factor erythroid 2-related factor 2 (Nrf-2), reduced glutathione (GSH), total antioxidant capacity, and the activities of catalase and superoxide dismutase (SOD). Treating the animals with Capsaicin and Pirfenidone following Bleomycin exposure resulted in improved lung macroscopic and microscopic characteristics, reduced collagen deposition (collagen I and collagen III) and mucin content, decreased inflammatory cell infiltration, lowered levels of hydroxyproline, α-SMA, and TGF-β1, decreased TNF-α, Il-6, Il-1β, NF-κB, and COX-2, increased PPAR-γ and Nrf-2 expression, and improvement improved in all oxidative stress biomarkers. In summary, Capsaicin demonstrates significant antifibrotic activity against Bleomycin-induced lung injury that may be attributed, at least in part, to the antioxidant and anti-inflammatory activities of Capsaicin mediated by upregulation of PPAR-γ and Nrf-2 expression and decreasing. TGF-β1, NF-κB and COX II proteins concentrations.
Collapse
Affiliation(s)
- Wesam H. Abdulaal
- Department of Biochemistry, King Fahd Medical Research Center, Faculty of Science, Cancer and Mutagenesis Unit, King Abdulaziz University, Jeddah, Saudi Arabia
- Mohamed Saeed Tamer Chair for Pharmaceutical Industries, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hani Z. Asfour
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nawal Helmi
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Hadeel Al Sadoun
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Basmah Eldakhakhny
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nabil A. Alhakamy
- Mohamed Saeed Tamer Chair for Pharmaceutical Industries, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hani Mohammed Alqarni
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Saeed Ali Mohammed Alzahrani
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohamed A. El-Moselhy
- Clinical Pharmacy and Pharmacology Department, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Sara S. Sharkawi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Esam Mohamed Aboubakr
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, South Valley University, Qena, Egypt
| |
Collapse
|
4
|
Dludla PV, Cirilli I, Marcheggiani F, Silvestri S, Orlando P, Muvhulawa N, Moetlediwa MT, Nkambule BB, Mazibuko-Mbeje SE, Hlengwa N, Hanser S, Ndwandwe D, Marnewick JL, Basson AK, Tiano L. Bioactive Properties, Bioavailability Profiles, and Clinical Evidence of the Potential Benefits of Black Pepper ( Piper nigrum) and Red Pepper ( Capsicum annum) against Diverse Metabolic Complications. Molecules 2023; 28:6569. [PMID: 37764345 PMCID: PMC10534530 DOI: 10.3390/molecules28186569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/29/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
The consumption of food-derived products, including the regular intake of pepper, is increasingly evaluated for its potential benefits in protecting against diverse metabolic complications. The current study made use of prominent electronic databases including PubMed, Google Scholar, and Scopus to retrieve clinical evidence linking the intake of black and red pepper with the amelioration of metabolic complications. The findings summarize evidence supporting the beneficial effects of black pepper (Piper nigrum L.), including its active ingredient, piperine, in improving blood lipid profiles, including reducing circulating levels of total cholesterol, low-density lipoprotein cholesterol, and triglycerides in overweight and obese individuals. The intake of piperine was also linked with enhanced antioxidant and anti-inflammatory properties by increasing serum levels of superoxide dismutase while reducing those of malonaldehyde and C-reactive protein in individuals with metabolic syndrome. Evidence summarized in the current review also indicates that red pepper (Capsicum annum), together with its active ingredient, capsaicin, could promote energy expenditure, including limiting energy intake, which is likely to contribute to reduced fat mass in overweight and obese individuals. Emerging clinical evidence also indicates that pepper may be beneficial in alleviating complications linked with other chronic conditions, including osteoarthritis, oropharyngeal dysphagia, digestion, hemodialysis, and neuromuscular fatigue. Notably, the beneficial effects of pepper or its active ingredients appear to be more pronounced when used in combination with other bioactive compounds. The current review also covers essential information on the metabolism and bioavailability profiles of both pepper species and their main active ingredients, which are all necessary to understand their potential beneficial effects against metabolic diseases.
Collapse
Affiliation(s)
- Phiwayinkosi V. Dludla
- Cochrane South Africa, South African Medical Research Council, Tygerberg 7505, South Africa; (N.M.); (D.N.)
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa; (N.H.); (A.K.B.)
| | - Ilenia Cirilli
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (I.C.); (F.M.); (S.S.); (P.O.); (L.T.)
| | - Fabio Marcheggiani
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (I.C.); (F.M.); (S.S.); (P.O.); (L.T.)
| | - Sonia Silvestri
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (I.C.); (F.M.); (S.S.); (P.O.); (L.T.)
| | - Patrick Orlando
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (I.C.); (F.M.); (S.S.); (P.O.); (L.T.)
| | - Ndivhuwo Muvhulawa
- Cochrane South Africa, South African Medical Research Council, Tygerberg 7505, South Africa; (N.M.); (D.N.)
- Department of Biochemistry, North-West University, Mafikeng Campus, Mmabatho 2735, South Africa; (M.T.M.); (S.E.M.-M.)
| | - Marakiya T. Moetlediwa
- Department of Biochemistry, North-West University, Mafikeng Campus, Mmabatho 2735, South Africa; (M.T.M.); (S.E.M.-M.)
| | - Bongani B. Nkambule
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4000, South Africa;
| | - Sithandiwe E. Mazibuko-Mbeje
- Department of Biochemistry, North-West University, Mafikeng Campus, Mmabatho 2735, South Africa; (M.T.M.); (S.E.M.-M.)
| | - Nokulunga Hlengwa
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa; (N.H.); (A.K.B.)
| | - Sidney Hanser
- Department of Physiology and Environmental Health, University of Limpopo, Sovenga 0727, South Africa;
| | - Duduzile Ndwandwe
- Cochrane South Africa, South African Medical Research Council, Tygerberg 7505, South Africa; (N.M.); (D.N.)
| | - Jeanine L. Marnewick
- Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology, Bellville 7535, South Africa;
| | - Albertus K. Basson
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa; (N.H.); (A.K.B.)
| | - Luca Tiano
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (I.C.); (F.M.); (S.S.); (P.O.); (L.T.)
| |
Collapse
|
5
|
Su M, She Y, Deng M, Guo Y, Li Y, Liu G, Zhang H, Sun B, Liu D. The Effect of Capsaicin on Growth Performance, Antioxidant Capacity, Immunity and Gut Micro-Organisms of Calves. Animals (Basel) 2023; 13:2309. [PMID: 37508086 PMCID: PMC10376287 DOI: 10.3390/ani13142309] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/01/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Capsaicin is the active ingredient of the red pepper plant of the genus Capsicum. The aim of this study was to investigate the effects of different doses of capsaicin on growth performance, antioxidant capacity, immunity, fecal fermentation parameters and gut microbial composition in nursing calves. Twenty-four newborn Holstein calves were randomly assigned to three treatment groups, which each consisted of eight calves. The milk replacer was supplemented with 0, 0.15 or 0.3 mL/d of capsaicin in each of the three treatment groups. During the 4-week experiment, intake was recorded daily, body weight and body size parameters were measured at the beginning and end of the trial and serum samples and rectal fecal samples were collected at the end of the trial to determine serum parameters, fecal fermentation parameters and fecal microbiome compartments. The results showed that both doses of capsaicin had no negative effect on the growth performance or the fecal fermentation parameters of calves, and the higher dose (0.3 mL/d) of capsaicin significantly improved the antioxidant capacity and immunity of calves. The calves in the high-dose capsaicin-treated group had lower fecal scores than those recorded in the control group. High doses of capsaicin increased glutathione antioxidant enzyme, superoxide dismutase, immunoglobulin A, immunoglobulin G, immunoglobulin M and interleukin-10 levels and decreased malondialdehyde and bound bead protein levels. In addition, capsaicin regulated the gut microbiota, reducing the abundance of diarrhea-associated bacteria, such as Eggerthella, Streptococcus, Enterococcus and Enterobacteriaceae, in the gut of calves in the treated group. Therefore, high doses of capsaicin can improve the antioxidant and immune capacity of calves without affecting growth performance, as well as improve the gut microbiological environment, which enables the healthy growth of calves.
Collapse
Affiliation(s)
- Minqiang Su
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
| | - Yuanhang She
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
| | - Ming Deng
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
| | - Yongqing Guo
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
| | - Yaokun Li
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
| | - Guangbin Liu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
| | - Hui Zhang
- Collaborative Innovation Center for Healthy Sheep Breeding and Zoonoses Prevention and Control, Shihezi University, Shihezi 832000, China
| | - Baoli Sun
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
| | - Dewu Liu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
- Collaborative Innovation Center for Healthy Sheep Breeding and Zoonoses Prevention and Control, Shihezi University, Shihezi 832000, China
| |
Collapse
|
6
|
Mandal SK, Rath SK, Logesh R, Mishra SK, Devkota HP, Das N. Capsicum annuum L. and its bioactive constituents: A critical review of a traditional culinary spice in terms of its modern pharmacological potentials with toxicological issues. Phytother Res 2023; 37:965-1002. [PMID: 36255140 DOI: 10.1002/ptr.7660] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 09/07/2022] [Accepted: 09/27/2022] [Indexed: 11/12/2022]
Abstract
Capsicum annuum L., commonly known as chili pepper, is used as an important spice globally and as a crude drug in many traditional medicine systems. The fruits of C. annuum have been used as a tonic, antiseptic, and stimulating agent, to treat dyspepsia, appetites, and flatulence, and to improve digestion and circulation. The article aims to critically review the phytochemical and pharmacological properties of C. annuum and its major compounds. Capsaicin, dihydrocapsaicin, and some carotenoids are reported as the major active compounds with several pharmacological potentials especially as anticancer and cardioprotectant. The anticancer effect of capsaicinoids is mainly mediated through mechanisms involving the interaction of Ca2+ -dependent activation of the MAPK pathway, suppression of NOX-dependent reactive oxygen species generation, and p53-mediated activation of mitochondrial apoptosis in cancer cells. Similarly, the cardioprotective effects of capsaicinoids are mediated through their interaction with cellular transient receptor potential vanilloid 1 channel, and restoration of calcitonin gene-related peptide via Ca2+ -dependent release of neuropeptides and suppression of bradykinin. In conclusion, this comprehensive review presents detailed information about the traditional uses, phytochemistry, and pharmacology of major bioactive principles of C. annuum with special emphasis on anticancer, cardioprotective effects, and plausible toxic adversities along with food safety.
Collapse
Affiliation(s)
- Sudip Kumar Mandal
- Department of Pharmaceutical Chemistry, Dr. B. C. Roy College of Pharmacy and AHS, Durgapur, India
| | - Santosh Kumar Rath
- School of Pharmaceuticals and Population Health Informatics, Faculty of Pharmacy, DIT University, Dehradun, India
| | - Rajan Logesh
- TIFAC CORE in Herbal Drugs, Department of Pharmacognosy, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Rockland's, Ooty, India
| | | | - Hari Prasad Devkota
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Niranjan Das
- Department of Chemistry, Ramthakur College, Agartala, India
| |
Collapse
|
7
|
López M, Quintero-Macías L, Huerta M, Rodríguez-Hernández A, Melnikov V, Cárdenas Y, Bricio-Barrios JA, Sánchez-Pastor E, Gamboa-Domínguez A, Leal C, Trujillo X, Ríos-Silva M. Capsaicin Decreases Kidney Iron Deposits and Increases Hepcidin Levels in Diabetic Rats with Iron Overload: A Preliminary Study. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227764. [PMID: 36431865 PMCID: PMC9695924 DOI: 10.3390/molecules27227764] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/27/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022]
Abstract
Iron overload (IOL) increases the risk of diabetes mellitus (DM). Capsaicin (CAP), an agonist of transient receptor potential vanilloid-1 (TRPV1), reduces the effects of IOL. We evaluated the effects of chronic CAP administration on hepcidin expression, kidney iron deposits, and urinary biomarkers in a male Wistar rat model with IOL and DM (DM-IOL). IOL was induced with oral administration of iron for 12 weeks and DM was induced with streptozotocin. Four groups were studied: Healthy, DM, DM-IOL, and DM-IOL + CAP (1 mg·kg-1·day-1 for 12 weeks). Iron deposits were visualized with Perls tissue staining and a colorimetric assay. Serum hepcidin levels were measured with an enzyme-linked immunosorbent assay. Kidney biomarkers were assayed in 24 h urine samples. In the DM-IOL + CAP group, the total area of iron deposits and the total iron content in kidneys were smaller than those observed in both untreated DM groups. CAP administration significantly increased hepcidin levels in the DM-IOL group. Urinary levels of albumin, cystatin C, and beta-2-microglobulin were similar in all three experimental groups. In conclusion, we showed that in a DM-IOL animal model, CAP reduced renal iron deposits and increased the level of circulating hepcidin.
Collapse
Affiliation(s)
- Marisa López
- University Center of Biomedical Research, Universidad de Colima, Av. 25 de Julio #965, Col. Villas San Sebastian, Colima 28045, Mexico
| | - Laura Quintero-Macías
- Faculty of Medicine, Universidad de Colima, Av. Universidad #333, Col. Las Víboras, Colima 28040, Mexico
| | - Miguel Huerta
- University Center of Biomedical Research, Universidad de Colima, Av. 25 de Julio #965, Col. Villas San Sebastian, Colima 28045, Mexico
| | | | - Valery Melnikov
- Faculty of Medicine, Universidad de Colima, Av. Universidad #333, Col. Las Víboras, Colima 28040, Mexico
| | - Yolitzy Cárdenas
- University Center of Biomedical Research, Universidad de Colima, Av. 25 de Julio #965, Col. Villas San Sebastian, Colima 28045, Mexico
| | | | - Enrique Sánchez-Pastor
- University Center of Biomedical Research, Universidad de Colima, Av. 25 de Julio #965, Col. Villas San Sebastian, Colima 28045, Mexico
| | - Armando Gamboa-Domínguez
- Belisario Domínguez Sección XVI, Pathology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Caridad Leal
- Centro de Investigaciones Biomédicas de Occidente, Instituto Mexicano del Seguro Social, Sierra Mojada No. 800, Col. Independencia, Guadalajara 44340, Mexico
| | - Xóchitl Trujillo
- University Center of Biomedical Research, Universidad de Colima, Av. 25 de Julio #965, Col. Villas San Sebastian, Colima 28045, Mexico
| | - Mónica Ríos-Silva
- University Center of Biomedical Research, CONACyT-Universidad de Colima, Av. 25 de Julio #965, Col. Villas San Sebastian, Colima 28045, Mexico
- Correspondence: ; Tel./Fax: +52-312-316-1000 (ext. 70557 or 47452)
| |
Collapse
|
8
|
Prevention and Treatment of Obesity-Related Inflammatory Diseases by Edible and Medicinal Plants and Their Active Compounds. IMMUNO 2022. [DOI: 10.3390/immuno2040038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Obesity, defined by excessive fat mass and its associated low-grade chronic inflammation, leads to insulin resistance, diabetes, and metabolic dysfunctions. The immunomodulatory properties of natural agents have gained much interest in recent decades. Some of the plant-derived agents are known to be immunomodulators that can affect both innate and adaptive immunity, e.g., thymoquinone, curcumin, punicalagin, resveratrol, quercetin, and genistein. Natural immunomodulators may contribute to the treatment of a number of inflammatory diseases, as they have significant efficacy and safety profiles. The immunomodulatory effects of traditional Greco-Arab and Islamic diets and medicinal plants are well acknowledged in abundant in vitro studies as well as in animal studies and clinical trials. This review highlights the role of Greco-Arab and Islamic diets and medicinal plants in the management of inflammation associated with obesity. Although previously published review articles address the effects of medicinal plants and phytochemicals on obesity-related inflammation, there is no systematic review that emphasizes clinical trials of the clinical significance of these plants and phytochemicals. Given this limitation, the objective of this comprehensive review is to critically evaluate the potential of the most used herbs in the management of obesity-related inflammation based on clinical trials.
Collapse
|
9
|
Moraes DCA, Nagi JG, Fritzen J, Vitagliano LA, Oliveira ER, Oba A, Silva CA. Effect of capsaicin on the feed intake and immunoglobin concentration of sows, and performance of piglets. Trop Anim Health Prod 2022; 54:241. [PMID: 35896831 DOI: 10.1007/s11250-022-03233-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 07/13/2022] [Indexed: 11/27/2022]
Abstract
Capsaicin is a recognized alkaloid that can be used as a flavoring and palatability agent. These effects can increase feed intake in lactating sows during farrowing, especially under thermal stress conditions, and provide antioxidant and immunostimulant activities. The objective of this work was to find out the effects of a capsaicin-based product on the feed intake of sows, immunomodulation, and repercussions on litter performance and the control of piglet diarrhea conditions. A total of 132 pregnant sows and lactating sows and their respective litters were divided into 66 sows each and submitted to one of two possible treatments: a capsaicin-free diet (control group) or capsaicin per meal/day. Capsaicin was mixed with gestation and lactation diets in the proportion of 98.6 g of feed and 1.4 g of capsaicin/kg feed, with the dose administered "on top" of 100 g per treatment day on the first feeding. The sows were treated between 90 days of gestation and 21 days of lactation. Backfat thickness, feed intake during farrowing, colostrum production, IgG colostrum concentration, sow reproductive performance, piglet performance, and diarrhea were evaluated. Compared to the sows in the control group, those that received capsaicin had higher feed intake (+ 0.69 kg/day during lactation, P = 0.008), higher levels of IgG in colostrum (185.75 versus 153.80 mg/mL, P = 0.04), an 11.2% higher litter weight gain, with individual piglet weight gains greater than 5.24% (P = 0.045), and an effective reduction in the frequency of piglet diarrhea on the 10th and 17th days of age (P = 0.013 and P = 0.001, respectively). Capsaicin is an additive with potential effects on the sow's performance, with positive influences on the health and growth of suckling piglets.
Collapse
Affiliation(s)
- D C A Moraes
- Department of Animal Science, Universidade Estadual de Londrina, UEL, Londrina, PR, 86057-970, Brazil.
| | - J G Nagi
- Department of Animal Science, Universidade Estadual de Londrina, UEL, Londrina, PR, 86057-970, Brazil
| | - J Fritzen
- Animal Virology Laboratory, Universidade Estadual de Londrina, UEL, Londrina, PR, 86057-970, Brazil
| | | | | | - A Oba
- Department of Animal Science, Universidade Estadual de Londrina, UEL, Londrina, PR, 86057-970, Brazil
| | - C A Silva
- Department of Animal Science, Universidade Estadual de Londrina, UEL, Londrina, PR, 86057-970, Brazil
| |
Collapse
|
10
|
Liu Z, Wang W, Li X, Tang S, Meng D, Xia W, Wang H, Wu Y, Zhou X, Zhang J. Capsaicin ameliorates renal fibrosis by inhibiting TGF-β1-Smad2/3 signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 100:154067. [PMID: 35349832 DOI: 10.1016/j.phymed.2022.154067] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 03/14/2022] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND AND PURPOSE Chronic kidney disease (CKD), characterized by renal fibrosis, is a global refractory disease with few effective therapeutic strategies. It has been reported that capsaicin exerts many pharmacological effects including liver and cardiac fibrosis. However, whether capsaicin plays a therapeutic role in renal fibrosis remains unclear. METHODS We investigated antifibrotic effects of capsaicin in two mouse renal fibrosis models as follows: C57BL/6J mice were subjected to unilateral ureteral obstruction (UUO) and fed with an adenine-rich diet. We uncovered and verified the mechanisms of capsaicin in human proximal tubular epithelial cells (HK2). We mainly used histochemistry, immunohistochemistry and immunofluorescence staining, western blot assay, biochemical examination and other tools to examine the effects of capsaicin on renal fibrosis and the underlying mechanisms. RESULTS Capsaicin treatment significantly alleviated fibronectin and collagen depositions in the tubulointerstitium of the injured kidneys from UUO and adenine-fed mice. Meanwhile, capsaicin treatment obviously reduced α-SMA expression. Moreover, capsaicin treatment dramatically protected against the phenotypic alteration of tubular epithelial cells by increasing E-cadherin expression and decreasing vimentin expression during renal fibrosis. Mechanistically, capsaicin treatment effectively suppressed α-SMA and vimentin expressions but promoted E-cadherin expression in HK2 cells mainly through the inhibition of TGF-β1-Smad2/3 signaling. CONCLUSION Capsaicin significantly ameliorated renal fibrosis possibly by retarding the activation of myofibroblasts and protecting against the phenotypic alteration of tubular epithelial cells mainly through the inhibition of TGF-β1-Smad2/3 signaling. Thus, our findings may provide a new insight into the clinical application of capsaicin in renal fibrosis.
Collapse
Affiliation(s)
- Zhenyu Liu
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, PR China
| | - Weili Wang
- School of Medicine, Chongqing University, Chongqing 400030, PR China; College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - Xueqin Li
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, PR China
| | - Sha Tang
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, PR China
| | - Dongwei Meng
- Institute of Immunology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, PR China
| | - Wenli Xia
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, PR China
| | - Hong Wang
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, PR China
| | - Yuzhang Wu
- Institute of Immunology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, PR China
| | - Xinyuan Zhou
- Institute of Immunology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, PR China.
| | - Jingbo Zhang
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, PR China.
| |
Collapse
|
11
|
Chaudhary A, Gour JK, Rizvi SI. Capsaicin has potent anti-oxidative effects in vivo through a mechanism which is non-receptor mediated. Arch Physiol Biochem 2022; 128:141-147. [PMID: 31566018 DOI: 10.1080/13813455.2019.1669056] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Capsaicin (8-methyl-N-vanillyl-trans-6-nonenamide) is the active ingredient of chilli peppers and is responsible for the characteristic pungency. The ubiquitous human consumption of chilli peppers indicates their influence on human health. The effect of capsaicin through sensory neurons via TRPV1 activation has been well studied, but its non-neuronal effects are still not extensively explored. The purpose of this study was to investigate the in vivo antioxidant effect of capsaicin on erythrocytes of male Wistar rats. Markers of oxidative stress in blood were determined by assessing the plasma total antioxidant potential, activity of plasma membrane redox system, intracellular glutathione (GSH) level, ROS level, protein oxidation and lipid peroxidation. Results of this study suggest a significant protective effect of capsaicin against oxidative stress by enhancing FRAP, GSH level, PMRS activity and ameliorating ROS, MDA, PCO and AOPP.
Collapse
Affiliation(s)
- Ankita Chaudhary
- Department of Biochemistry, University of Allahabad, Allahabad, India
| | - Jalaj Kumar Gour
- Department of Biochemistry, University of Allahabad, Allahabad, India
| | | |
Collapse
|
12
|
Doğan MF, Başak Türkmen N, Taşlıdere A, Şahin Y, Çiftçi O. The protective effects of capsaicin on oxidative damage-induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin in rats. Drug Chem Toxicol 2021; 45:2463-2470. [PMID: 34308744 DOI: 10.1080/01480545.2021.1957912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The present study aimed to investigate the protective role of capsaicin in a rat model of 2,3,7,8-tetracholorodibenzo-p-dioxin (TCDD)-induced toxicity. Exposure to TCDD which is an environmental toxicant causes severe toxic effects in the animal and human tissues. Therefore, the potential protective effect of capsaicin in TCDD-induced organ damage was investigated in rats by measuring thiobarbituric acid reactive substances (TBARS) level, superoxide dismutase (SOD) activity, and glutathione (GSH) level in the heart, liver, and kidney tissues for oxidant/antioxidant balance. Thirty-two healthy adults (250-300 g weight and 3-4 months old) male Wistar albino rats were randomly distributed into four equal groups (n = 8): Control, CAP, TCDD, TCDD + CAP. A dose of 2 μg/kg TCDD or a dose of 25 mg/kg capsaicin were dissolved in corn oil and orally administered to the rats for 30 days. The results indicated that TCDD-induced oxidative stress by increasing the level of TBARS and by decreasing the levels of GSH, and SOD activity in the tissues of rats. However, capsaicin treatment was significantly decreased TBARS levels and was significantly increased GSH level and SOD activity (p < 0.05). In addition, capsaicin (25 mg/kg) significantly attenuated TCDD-induced histopathological alteration associated with oxidative stress in the heart, liver, and kidney tissues (p < 0.05). As capsaicin regulates oxidative imbalance and attenuates histopathological alterations in the rat tissues, it may be preventing agents in TCDD toxicity.
Collapse
Affiliation(s)
- Muhammed Fatih Doğan
- Department of Pharmacology, Faculty of Medicine, University of Pamukkale, Denizli, Turkey
| | - Neşe Başak Türkmen
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, University of Inonu, Malatya, Turkey
| | - Aslı Taşlıdere
- Department of Histology and Embryology, Faculty of Medicine, University of Inonu, Malatya, Turkey
| | - Yasemin Şahin
- Department of Pharmacology, Faculty of Medicine, University of Pamukkale, Denizli, Turkey
| | - Osman Çiftçi
- Department of Pharmacology, Faculty of Medicine, University of Pamukkale, Denizli, Turkey
| |
Collapse
|
13
|
Liu SJ, Wang J, He TF, Liu HS, Piao XS. Effects of natural capsicum extract on growth performance, nutrient utilization, antioxidant status, immune function, and meat quality in broilers. Poult Sci 2021; 100:101301. [PMID: 34273651 PMCID: PMC8313837 DOI: 10.1016/j.psj.2021.101301] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/19/2021] [Accepted: 05/27/2021] [Indexed: 11/29/2022] Open
Abstract
This research was conducted to determine the effects of natural capsaicin extract (NCE) as an alternative to the antibiotic (chlortetracycline, CTC) on growth performance, antioxidant capacity, immune function, and meat quality of broiler chickens. A total of 168 one-day-old Arbor Acre male broiler chickens with an average weight of 46.4 ± 0.6 g were randomly allotted to 3 dietary treatments, with 7 replicates per treatment and 8 broilers per pen. These 3 dietary treatments included a corn-soybean meal basal diet (CON), a basal diet + 75 mg/kg CTC (CTC), and a basal diet + 80 mg/kg NCE (NCE). Broilers from the NCE group showed higher average daily gain compared to broilers from the CON group at all stages (P < 0.05). On d 42, NCE supplementation improved dietary nitrogen-corrected apparent metabolizable energy compared to nonsupplemented or CTC-supplemented diets (P < 0.05). The digestibility of organic matter and crude protein were higher in the NCE diet than in the CON or CTC diets (P < 0.05). Higher relative weight of bursa of Fabricius was observed in broilers fed NCE diets compared with CON (P < 0.05). Pancreatic trypsin and lipase activities were significantly increased in the NCE group compared with those in the CON group (P < 0.05). The value of lightness (L*) of breast muscles from broilers fed NCE diets was significantly lower compared to those fed CON diets (P < 0.05). Broilers fed NCE diets also had higher levels of serum total antioxidant capacity, glutathione peroxidase, superoxide dismutase, and lower levels of interleukin-1β, and tumor necrosis factor-α compared with broilers fed CON diets (P < 0.05). The liver catalase activity of broilers was also significantly increased in the NCE group than the CON group (P < 0.05). In addition, broilers from NCE group had lower concentrations of serum urea-N, low-density lipoprotein cholesterol, and total cholesterol, and higher concentration of growth hormone compared with those from the CON group (P < 0.05). Therefore, we concluded that supplementation of 80 mg/kg of NCE in diets could improve growth performance, nutrient digestibility, antioxidant status, immune function, and meat quality in broilers.
Collapse
Affiliation(s)
- S J Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - J Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - T F He
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - H S Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - X S Piao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
14
|
Regulation of Actg1 and Gsta2 is possible mechanism by which capsaicin alleviates apoptosis in cell model of 6-OHDA-induced Parkinson's disease. Biosci Rep 2021; 40:225257. [PMID: 32537633 PMCID: PMC7317588 DOI: 10.1042/bsr20191796] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 02/08/2023] Open
Abstract
The present study aimed to identify the gene expression changes conferred by capsaicin in the cell model of 6-OHDA-induced Parkinson's disease, to disclose the molecular mechanism of action of capsaicin. We used capsaicin-treated and paraffin-embedded wax blocks containing substantia nigra tissue from 6-OHDA-induced Parkinson's disease rats to analyze transcriptional changes using Affymetrix GeneChip Whole Transcript Expression Arrays. A total of 108 genes were differentially expressed in response to capsaicin treatment, and seven of these genes were selected for further analysis: Olr724, COX1, Gsta2, Rab5a, Potef, Actg1, and Acadsb, of which Actg1 (actin gamma 1) was down-regulated and Gsta2 (Glutathione S-transferase alpha 2) was up-regulated. We successfully overexpressed Actg1 and Gsta2 in vitro. CCK-8 detection and flow cytometry demonstrated that overexpression of Actg1 and Gsta2 increased apoptosis in the 6-OHDA-induced Parkinson's disease cell model. The imbalance between Actg1 and Gsta2 may be one of the mechanisms of cell damage in Parkinson's disease (PD). Capsaicin can protect the cells and reduce the apoptosis rate by regulating Actg1 and Gsta2.
Collapse
|
15
|
Liu JG, Xia WG, Chen W, Abouelezz KFM, Ruan D, Wang S, Zhang YN, Huang XB, Li KC, Zheng CT, Deng JP. Effects of capsaicin on laying performance, follicle development, and ovarian antioxidant capacity in aged laying ducks. Poult Sci 2020; 100:100901. [PMID: 33667870 PMCID: PMC7933805 DOI: 10.1016/j.psj.2020.11.070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/12/2020] [Accepted: 11/23/2020] [Indexed: 11/26/2022] Open
Abstract
The present study was conducted to evaluate the effects of dietary addition of capsaicin (CAP) on egg production performance, follicular development, and ovarian antioxidant capacity in laying ducks. Three hundred seventy eight 58-wk-old laying ducks were randomly divided into 3 treatments, each treatment consisted 6 replicates, with 12 individually caged laying ducks per replicate. Ducks fed a basal diet served as control, the other 2 groups of ducks were fed the same diet containing 150 mg/kg CAP but in the manner of feed restriction (pair-fed) or ad libitum fed. The experiment lasted for 8 wk. The results showed that the dietary supplementation with CAP under conditions of ad libitum feeding increased feed intake (P < 0.001) and tended (P < 0.1) to increase egg production and egg weight in laying ducks but had no effects on daily egg mass and feed conversion ratio. The relative weight of large yellow follicles from the 2 CAP-supplemented groups at 64 wk of age were significantly higher than that of the controls (P = 0.01). The relative weight of the small yellow follicles in the CAP free-fed group was significantly higher than that of the other 2 groups (P < 0.01). Capsaicin supplementation under ad libitum feding conditions tended to increase the number of dominant follicles in laying ducks (P = 0.06). The ovarian mRNA expression of genes related to calcium signaling (TRPV4, ATP2A2, ITPR1, and CaM) in the CAP ad libitum fed groups were significantly higher than those of the other 2 groups (P < 0.05). The ovarian mRNA expression of CDK1 in CAP free-fed ducks was significantly higher than that of the other 2 groups (P = 0.01). Capsaicin supplementation significantly increased the plasma glutathione peroxidase activity (P < 0.01) in comparison with the control group but reduced the malondialdehyde content in the ovaries of laying ducks (P < 0.01). The results of this study indicates that dietary supplementation of CAP increased feed intake and improved egg production performance probably by activating calcium signaling pathway and improving redox status.
Collapse
Affiliation(s)
- J G Liu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - W G Xia
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China
| | - W Chen
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China
| | - K F M Abouelezz
- Department of Poultry Production, Faculty of Agriculture, Assiut University, Assiut 71526, Egypt
| | - D Ruan
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China
| | - S Wang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China
| | - Y N Zhang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China
| | - X B Huang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China
| | - K C Li
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China
| | - C T Zheng
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China
| | - J P Deng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
16
|
Jang HH, Lee J, Lee SH, Lee YM. Effects of Capsicum annuum supplementation on the components of metabolic syndrome: a systematic review and meta-analysis. Sci Rep 2020; 10:20912. [PMID: 33262398 PMCID: PMC7708630 DOI: 10.1038/s41598-020-77983-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/28/2020] [Indexed: 01/07/2023] Open
Abstract
Metabolic syndrome (MetS) has increasingly gained importance as the main risk factor for cardiovascular diseases and type II diabetes mellitus. Various natural compounds derived from plants are associated with beneficial effects on the incidence and progression of MetS. This study aimed to evaluate the effects of Capsicum annuum on factors related to MetS by assessing randomized controlled trials (written in English). We searched the online databases of PubMed, Embase, Google scholar, and Cochrane Library up to April 2020. 'Patient/Population, Intervention, Comparison and Outcomes' format was used to determine whether intervention with C. annuum supplementation compared with placebo supplementation had any effect on the components of MetS among participants. We considered standardized mean differences (SMD) with 95% confidence intervals (CI) as effect size measures using random-effects model. Analysis of the included 11 studies (n = 609) showed that C. annuum supplementation had significant effect on low density lipoprotein-cholesterol [SMD = - 0.39; 95% CI - 0.72, - 0.07; P = 0.02; prediction interval, - 1.28 to 0.50] and marginally significant effect on body weight [SMD = - 0.19; 95% CI - 0.40, 0.03; P = 0.09]. However, larger and well-designed clinical trials are needed to investigate the effects of C. annuum on MetS.
Collapse
Affiliation(s)
- Hwan-Hee Jang
- Functional Food Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, 55365, South Korea
| | - Jounghee Lee
- Department of Food and Nutrition, Kunsan National University, Gunsan, 54150, South Korea
| | - Sung-Hyen Lee
- Functional Food Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, 55365, South Korea
| | - Young-Min Lee
- Division of Applied Food System, Major of Food and Nutrition, Seoul Women's University, Seoul, 01797, South Korea.
| |
Collapse
|
17
|
Capsaicin Exerts Anti-convulsant and Neuroprotective Effects in Pentylenetetrazole-Induced Seizures. Neurochem Res 2020; 45:1045-1061. [PMID: 32036609 DOI: 10.1007/s11064-020-02979-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/07/2020] [Accepted: 01/31/2020] [Indexed: 02/06/2023]
Abstract
The transient receptor potential vanilloid-1 (TRPV1) receptor has been implicated in the development of epileptic seizures. We examined the effect of the TRPV1 agonist capsaicin on epileptic seizures, neuronal injury and oxidative stress in a model of status epilepticus induced in the rat by intraperitoneal (i.p.) injections of pentylenetetrazole (PTZ). Capsaicin was i.p. given at 1 or 2 mg/kg, 30 min before the first PTZ injection. Other groups were i.p. treated with the vehicle or the anti-epileptic drug phenytoin (30 mg/kg) alone or co-administered with capsaicin at 2 mg/kg. Brain levels of malondialdehyde (MDA), reduced glutathione (GSH), nitric oxide, and paraoxonase-1 (PON-1) activity, seizure scores, latency time and PTZ dose required to reach status epilepticus were determined. Histopathological assessment of neuronal damage was done. Results showed that brain MDA decreased by treatment with capsaicin, phenytoin or capsaicin/phenytoin. Nitric oxide decreased by capsaicin or capsaicin/phenytoin. GSH and PON-1 activity increased after capsaicin, phenytoin or capsaicin/phenytoin. Mean total seizure score decreased by 48.8% and 66.3% by capsaicin compared with 78.7% for phenytoin and 69.8% for capsaicin/phenytoin treatment. Only phenytoin increased the latency (115.7%) and threshold dose of PTZ (78.3%). Capsaicin did not decrease the anti-convulsive effect of phenytoin but prevented the phenytoin-induced increase in latency time and threshold dose. Neuronal damage decreased by phenytoin or capsaicin at 2 mg/kg but almost completely prevented by capsaicin/phenytoin. Thus in this model of status epilepticus, capsaicin decreased brain oxidative stress, the severity of seizures and neuronal injury and its co-administration with phenytoin afforded neuronal protection.
Collapse
|
18
|
Effects of Chronic Administration of Capsaicin on Biomarkers of Kidney Injury in Male Wistar Rats with Experimental Diabetes. Molecules 2018; 24:molecules24010036. [PMID: 30583465 PMCID: PMC6337195 DOI: 10.3390/molecules24010036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 12/13/2018] [Accepted: 12/18/2018] [Indexed: 02/07/2023] Open
Abstract
Capsaicin is an agonist of the transient receptor potential vanilloid type 1 (TRPV1) channel, which has been related to the pathophysiology of kidney disease secondary to diabetes. This study aimed to evaluate the chronic effect of capsaicin administration on biomarkers of kidney injury in an experimental rat model of diabetes. Male Wistar rats were assigned to four groups: (1) healthy controls without diabetes (CON), (2) healthy controls plus capsaicin at 1 mg/kg/day (CON + CAPS), (3) experimental diabetes without capsaicin (DM), and (4) experimental diabetes plus capsaicin at 1 mg/kg/day (DM + CAPS). For each group, 24-h urine samples were collected to determine diuresis, albumin, cystatin C, β2 microglobulin, epidermal growth factor (EGF), alpha (1)-acid glycoprotein, and neutrophil gelatinase-associated lipocalin (NAG-L). Blood samples were drawn to measure fasting glucose. After 8 weeks, the CON + CAPS and DM + CAPS groups showed increased diuresis compared to the CON and DM groups, but the difference was significant only in the DM + CAPS group. The two-way ANOVA only showed a statistically significant effect of CAPS on the urinary EGF levels, as well as a tendency to have a significant effect in the urinary NAG-L levels. The EGF levels decreased in both CAPS-treated groups, but the change was only significant in the CON + CAPS group vs. CON group; and the NAG-L levels were lower in both CAPS-treated groups. These results show that capsaicin had a diuretic effect in healthy and diabetic rats; additionally, it increased the urinary EGF levels and tended to decrease the urinary NAG-L levels.
Collapse
|
19
|
Kursunluoglu G, Taskiran D, Kayali HA. The Investigation of the Antitumor Agent Toxicity and Capsaicin Effect on the Electron Transport Chain Enzymes, Catalase Activities and Lipid Peroxidation Levels in Lung, Heart and Brain Tissues of Rats. Molecules 2018; 23:E3267. [PMID: 30544766 PMCID: PMC6320812 DOI: 10.3390/molecules23123267] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/12/2018] [Accepted: 11/19/2018] [Indexed: 11/16/2022] Open
Abstract
Cisplatin is one of the most active cytotoxic agents in cancer treatment. To clarify the interaction with mitochondria, we hypothesize that the activities of mitochondrial electron transport chain (ETC) enzymes succinate dehydrogenase (SDH) and cytochrome c oxidase (COX), nucleotide levels, as well as levels of catalase (CAT) enzyme and membrane lipid peroxidation (LPO) can be affected by cisplatin. There was a significant decrease of both SDH and COX activities in the lung, heart, and brain tissues at the 1st day after cisplatin exposure, and the observed decreased levels of adenosine triphosphate (ATP) and adenosine diphosphate (ADP) in comparison with the control could be because of cisplatin-induced mitochondrial dysfunction. The investigations suggested that cisplatin inhibits SDH, COX, and ATP synthase. The higher LPO level in the studied tissues after 1 and 4 days post-exposure to cisplatin compared to control can be inferred to be a result of elevated electron leakage from the ETC, and reactive oxygen species (ROS) can lead to wide-ranging tissue damage such as membrane lipid damage. Consequently, it was observed that capsaicin may have a possible protective effect on ETC impairment caused by cisplatin. The activities of SDH and COX were higher in heart and brain exposed to cisplatin + capsaicin compared to cisplatin groups, while LPO levels were lower. The investigated results in the cisplatin + capsaicin groups suggested that the antioxidant capacity of capsaicin scavenges ROS and prevents membrane destruction.
Collapse
Affiliation(s)
- Gizem Kursunluoglu
- Izmir Biomedicine and Genome Center (IBG), İzmir 35340, Turkey.
- Department of Chemistry, The Graduate School of Natural and Applied Sciences, Dokuz Eylul University, İzmir 35160, Turkey.
| | - Dilek Taskiran
- Department of Physiology, Ege University School of Medicine, İzmir 35100, Turkey.
| | - Hulya Ayar Kayali
- Izmir Biomedicine and Genome Center (IBG), İzmir 35340, Turkey.
- Department of Chemistry, Division of Biochemistry, Faculty of Science, Dokuz Eylul University, İzmir 35160, Turkey.
| |
Collapse
|
20
|
Olatunji TL, Afolayan AJ. The suitability of chili pepper ( Capsicum annuum L.) for alleviating human micronutrient dietary deficiencies: A review. Food Sci Nutr 2018; 6:2239-2251. [PMID: 30510724 PMCID: PMC6261225 DOI: 10.1002/fsn3.790] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 08/06/2018] [Accepted: 08/07/2018] [Indexed: 12/21/2022] Open
Abstract
Human micronutrient dietary deficiency remains an enormous global problem and probably accounts for the cause of many chronic health conditions and diseases. Above two (2) billion individuals on the planet today have been estimated to be deficient in major minerals and vitamins, predominantly zinc, iodine, vitamin A, and iron primarily due to inadequate dietary intake. The eradication of deficiencies in micronutrient on a sustainable basis will be conceivable only when diets of vulnerable populace provide all required nutrients in adequate amounts. Among the numerous approaches toward eradicating human dietary deficiency, feeding on a wide range of foods, especially vegetables that have an array of micronutrients, is still perceived as the best sustainable solution. The universal consumption of chili peppers (Capsicum annuum), known for their high nutritional content (which includes a good range of vitamins, minerals, phytochemicals, and dietary fiber), may play a role in decreasing human micronutrient deficiencies. Significant portions of recommended daily nutrients could be supplied by the incorporation of nutrient-rich chili pepper into human diets which could help in combating nutrient deficiencies. This present review, therefore, gives an overview of the universal occurrence of micronutrient deficiency. It also discusses approaches that have been used to tackle the situation while stressing the potentials of chili pepper as a promising vegetable which could be utilized in alleviating human micronutrient dietary deficiencies. For all available information provided, research databases (Science direct, Academic journals, PubMed, and Google Scholar) were searched independently using keyword search strategy. Titles and abstracts were examined initially, and full papers were retrieved if studies met the inclusion criteria.
Collapse
Affiliation(s)
- Tomi L. Olatunji
- Department of BotanyMedicinal Plants and Economic Development (MPED) Research CentreUniversity of Fort HareAliceSouth Africa
| | - Anthony J. Afolayan
- Department of BotanyMedicinal Plants and Economic Development (MPED) Research CentreUniversity of Fort HareAliceSouth Africa
| |
Collapse
|
21
|
Sina Z, Nasrollahzadeh J, Shokraei S, Rismanchi M, Foroughi F. Black and red peppers attenuates plasma and lipopolysaccharide-induced splenocytes production of tumor necrosis factor-α in mice fed a high-fat, high-sucrose diet. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.07.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
22
|
Yang S, Liu L, Meng L, Hu X. Capsaicin is beneficial to hyperlipidemia, oxidative stress, endothelial dysfunction, and atherosclerosis in Guinea pigs fed on a high-fat diet. Chem Biol Interact 2018; 297:1-7. [PMID: 30342015 DOI: 10.1016/j.cbi.2018.10.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 09/27/2018] [Accepted: 10/16/2018] [Indexed: 12/31/2022]
Abstract
Capsaicin has anti-inflammatory and antioxidant effects, as well as some benefits on the cardiovascular system. The exact effects of capsaicin on atherosclerosis are poorly understood. To investigate the effects of capsaicin on hyperlipidemia and atherosclerosis in guinea pigs fed on a high-fat diet, as well as its potential mechanisms. Guinea pigs (n = 48) were randomly divided into six groups (n = 8/group): normal diet (control); high fat diet (model); model + low-dose capsaicin (2.5 mg/kg); model + moderate-dose capsaicin (5 mg/kg); model + high-dose capsaicin (10 mg/kg), and model + simvastatin (1.5 mg/kg) (positive control). After 14 weeks, serum lipids, apolipoprotein B100, malondialdehyde (MDA), superoxide dismutase (SOD), nitric oxide (NO), and endothelin-1 were measured. Aortic atherosclerotic lesions were histologically examined. eNOS and iNOS were assessed by immunohistochemistry. The model group developed severe dyslipidemia and associated histologic changes and endothelial dysfunction. All doses of capsaicin decreased total cholesterol, triglycerides, low-density lipoprotein cholesterol, and apolipoprotein B-100, and increased high-density lipoprotein cholesterol (all P < 0.05). Capsaicin alleviated the plaque area (-17.9-70.5%), plaque area to intima ratio (-18.0-73.6%), and intima thickness (-20.5-83.6%) (all P < 0.05). Capsaicin decreased MDA (-45.5-76.1%), ET-1 (-19.6-51.6%), and average gray value (AGV) of eNOS (-10.9-48.8%), and increased SOD activity (+31.7-76.1%), NO (+11.2-36.8%), and AGV of iNOS (+6.8-+93.0%) (all P < 0.05). Similar changes were observed with simvastatin. Capsaicin is beneficial to hyperlipidemia and atherosclerosis in guinea pigs fed on a high-fat diet. Reduced oxidative stress and endothelial dysfunction were involved in these benefits. This could represent a novel approach to prevent cardiovascular diseases.
Collapse
Affiliation(s)
- Siyuan Yang
- Division of Cardiac Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, China.
| | - Lin Liu
- Department of Respiratory & Critical Care Medicine, Guizhou Provincial People's Hospital, Guiyang, Guizhou, 550002, China
| | - Like Meng
- School of Principle Medicine, Guizhou Medical University, Guiyang, Guizhou, 550025, China
| | - Xuanyi Hu
- Division of Cardiac Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, China
| |
Collapse
|
23
|
Gómez-Sierra T, Eugenio-Pérez D, Sánchez-Chinchillas A, Pedraza-Chaverri J. Role of food-derived antioxidants against cisplatin induced-nephrotoxicity. Food Chem Toxicol 2018; 120:230-242. [DOI: 10.1016/j.fct.2018.07.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/22/2018] [Accepted: 07/06/2018] [Indexed: 12/21/2022]
|
24
|
Panchal SK, Bliss E, Brown L. Capsaicin in Metabolic Syndrome. Nutrients 2018; 10:E630. [PMID: 29772784 PMCID: PMC5986509 DOI: 10.3390/nu10050630] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 05/07/2018] [Accepted: 05/14/2018] [Indexed: 12/21/2022] Open
Abstract
Capsaicin, the major active constituent of chilli, is an agonist on transient receptor potential vanilloid channel 1 (TRPV1). TRPV1 is present on many metabolically active tissues, making it a potentially relevant target for metabolic interventions. Insulin resistance and obesity, being the major components of metabolic syndrome, increase the risk for the development of cardiovascular disease, type 2 diabetes, and non-alcoholic fatty liver disease. In vitro and pre-clinical studies have established the effectiveness of low-dose dietary capsaicin in attenuating metabolic disorders. These responses of capsaicin are mediated through activation of TRPV1, which can then modulate processes such as browning of adipocytes, and activation of metabolic modulators including AMP-activated protein kinase (AMPK), peroxisome proliferator-activated receptor α (PPARα), uncoupling protein 1 (UCP1), and glucagon-like peptide 1 (GLP-1). Modulation of these pathways by capsaicin can increase fat oxidation, improve insulin sensitivity, decrease body fat, and improve heart and liver function. Identifying suitable ways of administering capsaicin at an effective dose would warrant its clinical use through the activation of TRPV1. This review highlights the mechanistic options to improve metabolic syndrome with capsaicin.
Collapse
Affiliation(s)
- Sunil K Panchal
- Functional Foods Research Group, University of Southern Queensland, Toowoomba QLD 4350, Australia.
| | - Edward Bliss
- Functional Foods Research Group, University of Southern Queensland, Toowoomba QLD 4350, Australia.
- School of Health and Wellbeing, University of Southern Queensland, Toowoomba QLD 4350, Australia.
| | - Lindsay Brown
- Functional Foods Research Group, University of Southern Queensland, Toowoomba QLD 4350, Australia.
- School of Health and Wellbeing, University of Southern Queensland, Toowoomba QLD 4350, Australia.
| |
Collapse
|
25
|
Sarica S, Ozdemir D. The effects of dietary oleuropein and organic selenium supplementation in heat-stressed quails on tonic immobility duration and fluctuating asymmetry. ITALIAN JOURNAL OF ANIMAL SCIENCE 2018. [DOI: 10.1080/1828051x.2017.1351325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Senay Sarica
- Department of Animal Science, Gaziosmanpasa University, Tokat, Turkey
| | - Demir Ozdemir
- Vocational School in Technical Sciences, Akdeniz University, Antalya, Turkey
| |
Collapse
|
26
|
Sahin K, Orhan C, Tuzcu M, Sahin N, Ozdemir O, Juturu V. Ingested capsaicinoids can prevent low-fat-high-carbohydrate diet and high-fat diet-induced obesity by regulating the NADPH oxidase and Nrf2 pathways. J Inflamm Res 2017; 10:161-168. [PMID: 29180887 PMCID: PMC5691899 DOI: 10.2147/jir.s149087] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Objective Capsaicinoids (CAPs), most commonly found in chili peppers, have a multitude of pharmacological and physiological effects, such as anti-inflammation, antioxidant, and anticancer effects. In the present study, we set out to investigate the hypothesis that CAPs mitigate obesity in rats and the possible mechanisms thereof. Materials and methods Rats were divided into six groups, including control (±10 mg CAPs/kg body weight [BW]), low-fat–high-sucrose diet (±10 mg CAPs/kg BW), and high-fat diet (±10 mg CAPs/kg BW). Blood samples and liver and aortic tissues were taken at the end of the study. Results CAPs supplementation significantly reduced hyperglycemia and hyperlipidemia (P<0.001) and ameliorated oxidative damage by reducing malondialdehyde concentrations in serum and liver and by increasing total antioxidant capacity in serum induced by the low-fat–high-sucrose and high-fat diets (P<0.001 for all). CAPs also depressed levels of NFκB p65, gp91phox, and p22phox, essential components of NADPH oxidase, in the aorta of rats. However, levels of Nrf2, Sirt1, and endothelial nitric oxide synthase were significantly increased in the aorta. Conclusion CAPs may at least partially reduce adverse effects due to high-fat diet and sucrose consumption through regulation of energy metabolism, oxidative stress, and proteins involved in vasoprotection.
Collapse
Affiliation(s)
- Kazim Sahin
- Department of Animal Nutrition, Veterinary Faculty, Firat University, Elazig, Turkey
| | - Cemal Orhan
- Department of Animal Nutrition, Veterinary Faculty, Firat University, Elazig, Turkey
| | - Mehmet Tuzcu
- Department of Biology, Faculty of Science, Firat University, Elazig, Turkey
| | - Nurhan Sahin
- Department of Animal Nutrition, Veterinary Faculty, Firat University, Elazig, Turkey
| | - Oguzhan Ozdemir
- Department of Biology, Faculty of Science, Firat University, Elazig, Turkey
| | - Vijaya Juturu
- Scientific and Clinical Affairs, Research and Development, OmniActive Health Technologies, Inc., Morristown, NJ, USA
| |
Collapse
|
27
|
Association between spicy food consumption and lipid profiles in adults: a nationwide population-based study. Br J Nutr 2017; 118:144-153. [PMID: 28673367 DOI: 10.1017/s000711451700157x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
CVD remains the leading cause of mortality worldwide, with abnormal lipid metabolism as a major risk factor. The aim of this study was to investigate associations between spicy food consumption and serum lipids in Chinese adults. Data were extracted from the 2009 phase of the China Health and Nutrition Survey, consisting of 6774 apparently healthy Chinese adults aged 18-65 years. The frequency of consumption and degree of pungency of spicy food were self-reported, and regular spicy food consumption was assessed using three consecutive 24-h recalls. Total cholesterol, TAG, LDL-cholesterol and HDL-cholesterol in fasting serum were measured. Multilevel mixed-effects models were constructed to estimate associations between spicy food consumption and serum lipid profiles. The results showed that the frequency and the average amount of spicy food intake were both inversely associated with LDL-cholesterol and LDL-cholesterol:HDL-cholesterol ratio (all P for trend<0·05) after adjustment for potential confounders and cluster effects. HDL-cholesterol in participants who usually consumed spicy food (≥5 times/week) and who consumed spicy food perceived as moderate in pungency were significantly higher than those who did not (both P<0·01). The frequency and the average amount of spicy food intake and the degree of pungency in spicy food were positively associated with TAG (all P for trend<0·05). Spicy food consumption was inversely associated with serum cholesterol and positively associated with serum TAG, and additional studies are needed to confirm the findings as well as to elucidate the potential roles of spicy food consumption in lipid metabolism.
Collapse
|
28
|
Taghizadeh M, Farzin N, Taheri S, Mahlouji M, Akbari H, Karamali F, Asemi Z. The Effect of Dietary Supplements Containing Green Tea, Capsaicin and Ginger Extracts on Weight Loss and Metabolic Profiles in Overweight Women: A Randomized Double-Blind Placebo-Controlled Clinical Trial. ANNALS OF NUTRITION & METABOLISM 2017; 70:277-285. [PMID: 28595182 DOI: 10.1159/000471889] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 03/20/2017] [Indexed: 12/16/2023]
Abstract
BACKGROUND This study was conducted to determine the effects of dietary supplements containing green tea, capsaicin and ginger extracts on weight loss and metabolic profiles among overweight women. METHODS This randomized double-blind placebo-controlled clinical trial was implemented among 50 overweight women. Participants were randomly divided into 2 groups. Group A received dietary supplements containing 125 mg green tea, 25 mg capsaicin and 50 mg ginger extracts (n = 25) group B received placebos (n = 25) twice with lunch and twice with dinner daily for 8 weeks. RESULTS Compared with placebo, taking dietary supplements containing green tea, capsaicin and ginger resulted in a significant decrease in weight (-1.8 ± 1.5 vs. +0.4 ± 1.2 kg, respectively, p < 0.001) and body mass index (BMI; -0.7 ± 0.5 vs. +0.1 ± 0.5 kg/m2, respectively, p < 0.001). In addition, subjects who received green tea, capsaicin and ginger co-supplements had significantly decreased serum insulin concentrations (-2.6 ± 3.9 vs. -0.6 ± 2.0 µIU/mL, p = 0.02), homeostatic model of assessment for insulin resistance (-0.5 ± 0.8 vs. -0.05 ± 0.6, p = 0.01), and increased quantitative insulin sensitivity check index (+0.01 ± 0.01 vs. +0.001 ± 0.01, p = 0.008) and plasma glutathione (GSH) levels (+73.8 ± 120.6 vs. -28.3 ± 193.4 µmol/L, p = 0.03) compared with the placebo. CONCLUSIONS Our study indicated that taking green tea, capsaicin and ginger co-supplements for 8 weeks among overweight women had beneficial effects on weight, BMI, markers of insulin metabolism and plasma GSH levels.
Collapse
Affiliation(s)
- Mohsen Taghizadeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | | | | | | | | | | | | |
Collapse
|
29
|
Srinivasan K. Biological Activities of Red Pepper (Capsicum annuum) and Its Pungent Principle Capsaicin: A Review. Crit Rev Food Sci Nutr 2017; 56:1488-500. [PMID: 25675368 DOI: 10.1080/10408398.2013.772090] [Citation(s) in RCA: 243] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Capsaicin, the pungent alkaloid of red pepper (Capsicum annuum) has been extensively studied for its biological effects which are of pharmacological relevance. These include: cardio protective influence, antilithogenic effect, antiinflammatory, and analgesia, thermogenic influence, and beneficial effects on gastrointestinal system. Therefore, capsaicinoids may have the potential clinical value for pain relief, cancer prevention and weight loss. It has been shown that capsaicinoids are potential agonists of capsaicin receptor (TRPV1). They could exert the effects not only through the receptor-dependent pathway but also through the receptor-independent one. The involvement of neuropeptide Substance P, serotonin, and somatostatin in the pharmacological actions of capsaicin has been extensively investigated. Topical application of capsaicin is proved to alleviate pain in arthritis, postoperative neuralgia, diabetic neuropathy, psoriasis, etc. Toxicological studies on capsaicin administered by different routes are documented. Capsaicin inhibits acid secretion, stimulates alkali and mucus secretion and particularly gastric mucosal blood flow which helps in prevention and healing of gastric ulcers. Antioxidant and antiinflammatory properties of capsaicin are established in a number of studies. Chemopreventive potential of capsaicin is evidenced in cell line studies. The health beneficial hypocholesterolemic influence of capsaicin besides being cardio protective has other implications, viz., prevention of cholesterol gallstones and protection of the structural integrity of erythrocytes under conditions of hypercholesterolemia. Beneficial influences of capsaicin on gastrointestinal system include digestive stimulant action and modulation of intestinal ultrastructure so as to enhance permeability to micronutrients.
Collapse
Affiliation(s)
- Krishnapura Srinivasan
- a Department of Biochemistry and Nutrition , CSIR-Central Food Technological Research Institute , Mysore , India
| |
Collapse
|
30
|
Lu M, Ho CT, Huang Q. Extraction, bioavailability, and bioefficacy of capsaicinoids. J Food Drug Anal 2017; 25:27-36. [PMID: 28911540 PMCID: PMC9333420 DOI: 10.1016/j.jfda.2016.10.023] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 10/27/2016] [Accepted: 10/28/2016] [Indexed: 12/18/2022] Open
Abstract
Capsaicinoids are active constituents responsible for the pungent and spicy flavor in chili peppers. During the past few decades, various extraction methods of capsaicinoids from peppers have been developed with high yields. Through biological studies, pharmacological benefits have been reported such as pain relief, antiinflammation, anticancer, cardioprotection, as well as weight loss. In this paper, the extraction methods and bioavailability of capsaicinoids are reviewed and discussed. In addition, the pharmacological effects and their underlying mechanisms are also studied.
Collapse
Affiliation(s)
| | - Chi-Tang Ho
- Corresponding authors: Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901-8520, USA. E-mail addresses: (C.-T. Ho), (Q. Huang)
| | - Qingrong Huang
- Corresponding authors: Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901-8520, USA. E-mail addresses: (C.-T. Ho), (Q. Huang)
| |
Collapse
|
31
|
Sahin N, Orhan C, Tuzcu M, Juturu V, Sahin K. Capsaicinoids improve egg production by regulating ovary nuclear transcription factors against heat stress in quail. Br Poult Sci 2016; 58:177-183. [PMID: 27869499 DOI: 10.1080/00071668.2016.1262001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
1. To examine the molecular mechanism of capsaicinoid supplementation from capsicum extract, laying Japanese quail (n = 180, 5 weeks old) were reared either at 22°C for 24 h/d (thermoneutral, TN) or at 34°C for 8 h/d (heat stress, HS) and fed on one of three diets containing 0, 25 or 50 mg of capsaicinoids per kilogram for 12 weeks (2 × 3 factorial arrangement). 2. The results revealed that exposure to HS decreased feed consumption by 10.7% and egg production by 13.6%, increased serum and ovary malondialdehyde (MDA) levels by 66.9% and 88.1%, respectively, and reduced ovary superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) activities by 28.3%, 48.7% and 43.8%, respectively. 3. There were magnifications in the ovary nuclear factor kappa-light-chain-enhancer of activated B cell (NF-κB) levels by 42.4% and suppressions in nuclear factor (erythroid-derived 2)-like 2 (Nrf2), protein kinase B (Akt) and haem-oxygenase 1 (HO-1) levels by 29.2%, 38.2% and 30.7%, respectively, in heat-stressed quail. 4. With increasing supplemental capsaicinoids, there were linear increases in egg production, antioxidant enzyme activity, linear decreases in ovary MDA and NF-κB levels and linear increases in ovary Nrf2, Akt and HO-1 levels at a greater extent in quail reared under TN condition than those reared under HS condition. Two-way treatment interactions showed that the degree of restorations in all response variables was more notable under the HS environment than under the TN environment as supplemental capsaicinoid level was increased. 5. In conclusion, capsaicinoid supplementation alleviates oxidative stress through regulating the ovary nuclear transcription factors in heat-stressed quail.
Collapse
Affiliation(s)
- N Sahin
- a Department of Animal Nutrition, Faculty of Veterinary Medicine , Firat University , Elazig , Turkey
| | - C Orhan
- a Department of Animal Nutrition, Faculty of Veterinary Medicine , Firat University , Elazig , Turkey
| | - M Tuzcu
- b Department of Biology, Faculty of Science , Firat University , Elazig , Turkey
| | - V Juturu
- c Research and Development , OmniActive Health Technologies Inc ., Morristown , NJ , USA
| | - K Sahin
- a Department of Animal Nutrition, Faculty of Veterinary Medicine , Firat University , Elazig , Turkey
| |
Collapse
|
32
|
Márquez-Ibarra A, Huerta M, Villalpando-Hernández S, Ríos-Silva M, Díaz-Reval MI, Cruzblanca H, Mancilla E, Trujillo X. The Effects of Dietary Iron and Capsaicin on Hemoglobin, Blood Glucose, Insulin Tolerance, Cholesterol, and Triglycerides, in Healthy and Diabetic Wistar Rats. PLoS One 2016; 11:e0152625. [PMID: 27064411 PMCID: PMC4827844 DOI: 10.1371/journal.pone.0152625] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 03/16/2016] [Indexed: 12/11/2022] Open
Abstract
Objective Our aim was to assess the effects of dietary iron, and the compound capsaicin, on hemoglobin as well as metabolic indicators including blood glucose, cholesterol, triglycerides, insulin, and glucose tolerance. Materials and Methods Our animal model was the Wistar rat, fed a chow diet, with or without experimentally induced diabetes. Diabetic males were fed control, low, or high-iron diets, the latter, with or without capsaicin. Healthy rats were fed identical diets, but without the capsaicin supplement. We then measured the parameters listed above, using the Student t-test and ANOVA, to compare groups. Results Healthy rats fed a low-iron diet exhibited significantly reduced total cholesterol and triglyceride levels, compared with rats fed a control diet. Significantly reduced blood lipid was also provoked by low dietary iron in diabetic rats, compared with those fed a control diet. Insulin, and glucose tolerance was only improved in healthy rats fed the low-iron diet. Significant increases in total cholesterol were found in diabetic rats fed a high-iron diet, compared with healthy rats fed the same diet, although no statistical differences were found for triglycerides. Hemoglobin levels, which were not statistically different in diabetic versus healthy rats fed the high-iron diet, fell when capsaicin was added. Capsaicin also provoked a fall in the level of cholesterol and triglycerides in diabetic animals, versus diabetics fed with the high iron diet alone. In conclusion, low levels of dietary iron reduced levels of serum triglycerides, hemoglobin, and cholesterol, and significantly improved insulin, and glucose tolerance in healthy rats. In contrast, a high-iron diet increased cholesterol significantly, with no significant changes to triglyceride concentrations. The addition of capsaicin to the high-iron diet (for diabetic rats) further reduced levels of hemoglobin, cholesterol, and triglycerides. These results suggest that capsaicin, may be suitable for the treatment of elevated hemoglobin, in patients.
Collapse
Affiliation(s)
- Adriana Márquez-Ibarra
- Unidad de Investigación Dr. Enrico Stefani, Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Col. Villas San Sebastián, Colima, Colima, México
| | - Miguel Huerta
- Unidad de Investigación Dr. Enrico Stefani, Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Col. Villas San Sebastián, Colima, Colima, México
| | - Salvador Villalpando-Hernández
- Centro de Investigación en Nutrición y Salud, Instituto Nacional de Salud Pública, Universidad No. 655 Colonia Santa María Ahuacatitlán, Cerrada Los Pinos y Caminera C.P., Cuernavaca, Morelos, México
| | - Mónica Ríos-Silva
- Unidad de Investigación Dr. Enrico Stefani, Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Col. Villas San Sebastián, Colima, Colima, México
| | - María I. Díaz-Reval
- Unidad de Investigación Dr. Enrico Stefani, Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Col. Villas San Sebastián, Colima, Colima, México
| | - Humberto Cruzblanca
- Unidad de Investigación Dr. Enrico Stefani, Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Col. Villas San Sebastián, Colima, Colima, México
| | - Evelyn Mancilla
- Unidad de Investigación Dr. Enrico Stefani, Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Col. Villas San Sebastián, Colima, Colima, México
| | - Xóchitl Trujillo
- Unidad de Investigación Dr. Enrico Stefani, Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Col. Villas San Sebastián, Colima, Colima, México
- * E-mail:
| |
Collapse
|
33
|
Oh J, Giallongo F, Frederick T, Pate J, Walusimbi S, Elias RJ, Wall EH, Bravo D, Hristov AN. Effects of dietary Capsicum oleoresin on productivity and immune responses in lactating dairy cows. J Dairy Sci 2015; 98:6327-39. [PMID: 26188565 DOI: 10.3168/jds.2014-9294] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 06/05/2015] [Indexed: 01/21/2023]
Abstract
This study investigated the effect of Capsicum oleoresin in granular form (CAP) on nutrient digestibility, immune responses, oxidative stress markers, blood chemistry, rumen fermentation, rumen bacterial populations, and productivity of lactating dairy cows. Eight multiparous Holstein cows, including 3 ruminally cannulated, were used in a replicated 4×4 Latin square design experiment. Experimental periods were 25 d in duration, including a 14-d adaptation and an 11-d data collection and sampling period. Treatments included control (no CAP) and daily supplementation of 250, 500, or 1,000 mg of CAP/cow. Dry matter intake was not affected by CAP (average 27.0±0.64 kg/d), but milk yield tended to quadratically increase with CAP supplementation (50.3 to 51.9±0.86 kg/d). Capsicum oleoresin quadratically increased energy-corrected milk yield, but had no effect on milk fat concentration. Rumen fermentation variables, apparent total-tract digestibility of nutrients, and N excretion in feces and urine were not affected by CAP. Blood serum β-hydroxybutyrate was quadratically increased by CAP, whereas the concentration of nonesterified fatty acids was similar among treatments. Rumen populations of Bacteroidales, Prevotella, and Roseburia decreased and Butyrivibrio increased quadratically with CAP supplementation. T cell phenotypes were not affected by treatment. Mean fluorescence intensity for phagocytic activity of neutrophils tended to be quadratically increased by CAP. Numbers of neutrophils and eosinophils and the ratio of neutrophils to lymphocytes in peripheral blood linearly increased with increasing CAP. Oxidative stress markers were not affected by CAP. Overall, in the conditions of this experiment, CAP did not affect feed intake, rumen fermentation, nutrient digestibility, T cell phenotypes, and oxidative stress markers. However, energy-corrected milk yield was quadratically increased by CAP, possibly as a result of enhanced mobilization of body fat reserves. In addition, CAP increased neutrophil activity and immune cells related to acute phase immune response.
Collapse
Affiliation(s)
- J Oh
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | - F Giallongo
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | - T Frederick
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | - J Pate
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | - S Walusimbi
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | - R J Elias
- Department of Food Science, The Pennsylvania State University, University Park 16802
| | - E H Wall
- Pancosma S.A., CH-1218 Geneva, Switzerland
| | - D Bravo
- InVivo Animal Nutrition & Health, Talhouët, 56250 Saint-Nolff, France
| | - A N Hristov
- Department of Animal Science, The Pennsylvania State University, University Park 16802.
| |
Collapse
|
34
|
Thiamhirunsopit K, Phisalaphong C, Boonkird S, Kijparkorn S. Effect of chili meal (Capsicum frutescens LINN.) on growth performance, stress index, lipid peroxidation and ileal nutrient digestibility in broilers reared under high stocking density condition. Anim Feed Sci Technol 2014. [DOI: 10.1016/j.anifeedsci.2014.03.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
35
|
|
36
|
Pande S, Srinivasan K. Protective effect of dietary tender cluster beans (Cyamopsis tetragonoloba) in the gastrointestinal tract of experimental rats. Appl Physiol Nutr Metab 2013; 38:169-76. [DOI: 10.1139/apnm-2012-0091] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this study, the gastrointestinal protective effect of soluble, dietary fiber-rich tender cluster beans, with respect to the activities of antioxidant enzymes and the concentration of antioxidant molecules, was examined in Wistar rats. Dietary intervention with tender cluster beans (15% freeze-dried powder in the diet for 8 weeks) significantly enhanced the activities of antioxidant enzymes (superoxide dismutase, catalase, glutathione reductase, glutathione-S-transferase, and GPX) and the concentrations of antioxidant molecules in both gastric and intestinal mucosa. Further, in combination with capsaicin (0.01%), the beneficial effect was even higher. There is a strong indication that tender cluster beans offer a significant gastroprotective effect, and a much greater effect when combined with capsaicin in terms of increased antioxidant status. In a separate study, these dietary components were found to alleviate the diminished activities of antioxidant enzymes and antioxidant molecules in gastric and intestinal mucosa under conditions of ethanol-induced oxidative stress. The gastroprotective effect of the cluster bean was also reflected in its positive effect on gastric mucosal glycoproteins, resulting in a lowering of mucosal injury. Incidentally, the serum and liver also showed an elevated antioxidant status, thus suggesting desirable lowered oxidative stress results when tender cluster beans are consumed.
Collapse
Affiliation(s)
- Shubhra Pande
- Department of Biochemistry and Nutrition, Central Food Technological Research Institute, CSIR, Mysore 570020, India
| | - Krishnapura Srinivasan
- Department of Biochemistry and Nutrition, Central Food Technological Research Institute, CSIR, Mysore 570020, India
| |
Collapse
|
37
|
Abdel-Salam OME, Abdel-Rahman RF, Sleem AA, Farrag AR. Modulation of lipopolysaccharide-induced oxidative stress by capsaicin. Inflammopharmacology 2012; 20:207-217. [PMID: 22127606 DOI: 10.1007/s10787-011-0101-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 11/10/2011] [Indexed: 10/15/2022]
Abstract
This study investigated the effect of capsaicin (the active principle of hot red pepper and a sensory excitotoxin) on oxidative stress after systemic administration of the endotoxin lipopolysaccharide (100 μg/kg, i.p.) in rats. Capsaicin (15, 150 or 1,500 μg/kg; 10, 100 or 400 μg/mL) was given via intragastric (i.g.) or intraperitoneal (i.p.) routes at time of endotoxin administration. Rats were killed 4 h later. Malondialdehyde (MDA) and reduced glutathione (GSH) were measured in brain, liver, and lungs. Alanine aminotransferase (ALT), aspartate aminotransferase, alkaline phosphatase (ALP), nitric oxide, and glucose were measured in serum. In addition, histopathological examination of liver tissue was performed. In LPS-treated rats, hepatic GSH increased significantly by 40.8% after i.p. capsaicin at 1,500 μg/kg. Liver MDA increased significantly by 32.9% after the administration of i.g. capsaicin at 1,500 μg/kg and by 27.8 and 37.6% after the administration of i.p. capsaicin at 150 and 1,500 μg/kg, respectively. In lung tissue, both MDA and GSH were decreased by capsaicin administration. MDA decreased by 19-20.8% after i.g. capsaicin and by 17.5-23.2% after i.p. capsaicin (150-1,500 μg/kg), respectively. GSH decreased by 39.3-64.3% and by 35.7-41.1% after i.g. or i.p. capsaicin (150-1,500 μg/kg), respectively. Brain GSH increased significantly after the highest dose of i.g. or i.p. capsaicin (by 20.6 and 15.9%, respectively). The increase in serum ALT and ALP after endotoxin administration was decreased by oral or i.p. capsaicin. Serum nitric oxide showed marked increase after LPS injection, but was markedly decreased after capsaicin (1,500 μg/kg, i.p.). Serum glucose increased markedly after the administration of LPS, and was normalized by capsaicin treatment. It is suggested that in the presence of mild systemic inflammation, acute capsaicin administration might alter oxidative status in some tissues and exert an anti-inflammatory effect. Capsaicin exerted protective effects in the liver and lung against the LPS-induced tissue damage.
Collapse
Affiliation(s)
- Omar M E Abdel-Salam
- Department of Toxicology and Narcotics, National Research Centre, Tahrir St., Dokki, Cairo, Egypt.
| | | | | | | |
Collapse
|
38
|
Galano A, Martínez A. Capsaicin, a Tasty Free Radical Scavenger: Mechanism of Action and Kinetics. J Phys Chem B 2012; 116:1200-8. [DOI: 10.1021/jp211172f] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Annia Galano
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, C. P. 09340, México D. F., México
| | - Ana Martínez
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior S. N., Ciudad Universitaria, CP 04510, México D.F., México
| |
Collapse
|
39
|
Capsaicin prevents kainic acid-induced epileptogenesis in mice. Neurochem Int 2011; 58:634-40. [PMID: 21333704 DOI: 10.1016/j.neuint.2011.01.027] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 01/14/2011] [Accepted: 01/31/2011] [Indexed: 12/11/2022]
Abstract
Epilepsy is a neurodegenerative disease with periodic occurrences of spontaneous seizures as the main symptom. The aim of this study was to investigate the neuroprotective effects of capsaicin, the major ingredient of hot peppers, in a kainic acid (KA)-induced status epilepticus model. After intraperitoneal injections of KA (30mg/kg) in 8-week-old male ICR mice, the animals were treated subcutaneously with capsaicin (0.33mg/kg or 1mg/kg) and then examined for any anti-ictogenic, hypothermic, antioxidative, anti-inflammatory, and anti-apoptotic effects of the capsaicin treatment 3 days after KA treatment. KA injections significantly enhanced neurodegenerative conditions but co-injection with capsaicin reduced the detrimental effects of KA in a dose-dependent manner in mice. The co-administered group that received KA and 1mg/kg of capsaicin showed significantly decreased behavioral seizure activity and body temperature for 3h and also remarkably blocked intense and high-frequency seizure discharges in the parietal cortex for 3 days compared with those that received KA alone. Capsaicin treatment significantly diminished the levels of oxidant activity and malondialdehyde concentration and increased the antioxidant activity in the blood and brain of KA-treated mice. In addition, capsaicin significantly lowered the KA-induced increase in the concentration of the cytokines IL-1β and TNF-α in the brain. Furthermore, co-treatment of KA and capsaicin (1mg/kg) resulted in considerably decreased apoptotic cell death in the cornu ammonis sections of the hippocampus compared with that seen in the KA-alone group. These findings indicate that capsaicin is preventative for the epileptogenesis induced by KA in mice.
Collapse
|
40
|
TRPV1 activation prevents high-salt diet-induced nocturnal hypertension in mice. Pflugers Arch 2011; 461:345-53. [DOI: 10.1007/s00424-011-0921-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 12/26/2010] [Accepted: 12/31/2010] [Indexed: 11/26/2022]
|
41
|
Prieto M, Campo J. Effect of heat and several additives related to stress levels on fluctuating asymmetry, heterophil:lymphocyte ratio, and tonic immobility duration in White Leghorn chicks. Poult Sci 2010; 89:2071-7. [DOI: 10.3382/ps.2010-00716] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
42
|
Hachani R, DAB H, Sakly M, Vicaut E, Callebert J, Sercombe R, Kacem K. Influence of antagonist sensory and sympathetic nerves on smooth muscle cell differentiation in hypercholesterolemic rat. Auton Neurosci 2010; 155:82-90. [DOI: 10.1016/j.autneu.2010.02.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 01/31/2010] [Accepted: 02/01/2010] [Indexed: 11/29/2022]
|
43
|
Prakash UNS, Srinivasan K. Gastrointestinal protective effect of dietary spices during ethanol-induced oxidant stress in experimental rats. Appl Physiol Nutr Metab 2010; 35:134-41. [PMID: 20383223 DOI: 10.1139/h09-133] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Spices are traditionally known to have digestive stimulant action and to cure digestive disorders. In this study, the protective effect of dietary spices with respect to activities of antioxidant enzymes in gastric and intestinal mucosa was examined. Groups of Wistar rats were fed for 8 weeks with diets containing black pepper (0.5%), piperine (0.02%), red pepper (3.0%), capsaicin (0.01%), and ginger (0.05%). All these spices significantly enhanced the activities of antioxidant enzymes--superoxide dismutase, catalase, glutathione reductase, and glutathione-S-transferase--in both gastric and intestinal mucosa, suggesting a gastrointestinal protective role for these spices. In a separate study, these dietary spices were found to alleviate the diminished activities of antioxidant enzymes in gastric and intestinal mucosa under conditions of ethanol-induced oxidative stress. The gastroprotective effect of the spices was also reflected in their positive effect on mucosal glycoproteins, thereby lowering mucosal injury. The amelioration of the ethanol-induced decrease in the activities of antioxidant enzymes in gastric and intestinal mucosa by dietary spices suggests their beneficial gastrointestinal protective role. This is the first report on the gastrointestinal protective potential of dietary spices.
Collapse
Affiliation(s)
- Usha N S Prakash
- Department of Biochemistry and Nutrition, Central Food Technological Research Institute, Council of Scientific and Industrial Research, Mysore, India
| | | |
Collapse
|
44
|
Kim MR, Lee KN, Yon JM, Lee SR, Jin Y, Baek IJ, Lee BJ, Yun YW, Nam SY. Capsaicin prevents ethanol-induced teratogenicity in cultured mouse whole embryos. Reprod Toxicol 2008; 26:292-7. [DOI: 10.1016/j.reprotox.2008.09.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Revised: 09/05/2008] [Accepted: 09/30/2008] [Indexed: 11/29/2022]
|
45
|
Hypolipidemic and Antioxidant Effects of Dietary Curcumin and Capsaicin in Induced Hypercholesterolemic Rats. Lipids 2007; 42:1133-42. [DOI: 10.1007/s11745-007-3120-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2007] [Accepted: 09/11/2007] [Indexed: 10/22/2022]
|
46
|
Manjunatha H, Srinivasan K. Hypolipidemic and antioxidant effects of curcumin and capsaicin in high-fat-fed rats. Can J Physiol Pharmacol 2007; 85:588-96. [PMID: 17823620 DOI: 10.1139/y07-044] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The beneficial hypolipidemic and antioxidant influences of the dietary spice compounds curcumin and capsaicin were evaluated. Curcumin, capsaicin, or their combination were included in the diet of high-(30%)-fat-fed rats for 8 weeks. Dietary high-fat-induced hypertriglyceridemia was countered by dietary curcumin, capsaicin, or their combination by 12%–20%. Curcumin, capsaicin, and their combination also produced a slight decrease in serum total cholesterol in these animals. Serum α-tocopherol content was increased by dietary curcumin, capsaicin, and their combination in high-fat-fed rats. Serum total thiol content in high-fat-fed animals and serum ascorbic acid in normal animals was elevated by the combination of curcumin and capsaicin. Hepatic glutathione was increased by curcumin, capsaicin, or their combination in normal animals. Hepatic glutathione and α-tocopherol were increased, whereas lipid peroxide level was reduced by dietary curcumin and combination of curcumin and capsaicin in high-fat-fed animals. Serum glutathione peroxidase and glutathione transferase in high-fat-fed rats were generally higher as a result of dietary curcumin, capsaicin, and the combination of curcumin and capsaicin. Hepatic glutathione reductase and glutathione peroxidase were significantly elevated by dietary spice principles in high-fat-fed animals. The additive effect of the 2 bioactive compounds was generally not evident with respect to hypolipidemic or antioxidant potential. However, the effectiveness of the combination was higher in a few instances.
Collapse
Affiliation(s)
- H Manjunatha
- Department of Biochemistry & Nutrition, Central Food Technological Research Institute, Mysore - 570 020, India
| | | |
Collapse
|
47
|
Ahuja KDK, Ball MJ. Effects of daily ingestion of chilli on serum lipoprotein oxidation in adult men and women. Br J Nutr 2007; 96:239-42. [PMID: 16923216 DOI: 10.1079/bjn20061788] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Laboratory studies have shown that the resistance of isolated LDL-cholesterol or linoleic acid to oxidation is increased in incubations with chilli extracts or capsaicin – the active ingredient of chilli. It is unknown if these in vitro antioxidative effects also occur in the serum of individuals eating chilli regularly. The present study investigated the effects of regular consumption of chilli on in vitro serum lipoprotein oxidation and total antioxidant status (TAS) in healthy adult men and women. In a randomised cross-over study, twenty-seven participants (thirteen men and fourteen women) ate ‘freshly chopped chilli’ blend (30g/d; 55% cayenne chilli) and no chilli (bland) diets, for 4 weeks each. Use of other spices, such as cinnamon, ginger, garlic and mustard, was restricted to minimum amounts. At the end of each dietary period serum samples were analysed for lipids, lipoproteins, TAS and Cu-induced lipoprotein oxidation. Lag time (before initiation of oxidation) and rate of oxidation (slope of propagation phase) were calculated. There was no difference in the serum lipid, lipoproteins and TAS at the end of the two dietary periods. In the whole group, the rate of oxidation was significantly lower (mean difference −0·23 absorbance ×10−3/min; P=0·04) after the chilli diet, compared with the bland diet. In women, lag time was higher (mean difference 9·61min; P<0·001) after the chilli diet, compared with the bland diet. In conclusion, regular consumption of chilli for 4 weeks increases the resistance of serum lipoproteins to oxidation.
Collapse
Affiliation(s)
- Kiran D K Ahuja
- School of Human Life Sciences, University of Tasmania, Launceston, Tasmania 7250, Australia
| | | |
Collapse
|
48
|
Ahuja KDK, Robertson IK, Geraghty DP, Ball MJ. The effect of 4-week chilli supplementation on metabolic and arterial function in humans. Eur J Clin Nutr 2006; 61:326-33. [PMID: 16929238 DOI: 10.1038/sj.ejcn.1602517] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
OBJECTIVE To investigate the effects of regular chilli ingestion on some indicators of metabolic and vascular function. DESIGN A randomized cross-over dietary intervention study. SETTING Launceston, Australia. SUBJECTS Healthy free-living individuals. INTERVENTION Thirty-six participants (22 women and 14 men), aged 46+/-12 (mean+/-s.d.) years; BMI 26.4+/-4.8 kg/m(2), consumed 30 g/day of a chilli blend (55% cayenne chilli) with their normal diet (chilli diet), and a bland diet (chilli-free) for 4 weeks each. Metabolic and vascular parameters, including plasma glucose, serum lipids and lipoproteins, insulin, basal metabolic rate, blood pressure, heart rate, augmentation index (AIx; an indicator of arterial stiffness), and subendocardial-viability ratio (SEVR; a measure of myocardial perfusion), were measured at the end of each diet. In a sub-study, during week 3 of each dietary period, the vascular responses of 15 subjects to glyceryl-trinitrate (GTN) and salbutamol were also studied. RESULTS For the whole group, there were no significant differences between any of the measured parameters when compared at the end of the two dietary periods. When analysed separately, men had a lower resting heart rate (P=0.02) and higher SEVR (P=0.05) at the end of the chilli diet than the bland diet. In the sub-study, baseline AIx on the chilli diet was lower (P<0.001) than on the bland diet, but there was no difference in the effects of GTN and salbutamol between the two diets. CONCLUSION Four weeks of regular chilli consumption has no obvious beneficial or harmful effects on metabolic parameters but may reduce resting heart rate and increase effective myocardial perfusion pressure time in men.
Collapse
Affiliation(s)
- K D K Ahuja
- School of Human Life Sciences, University of Tasmania, Launceston, TAS, Australia
| | | | | | | |
Collapse
|
49
|
Shimeda Y, Hirotani Y, Akimoto Y, Shindou K, Ijiri Y, Nishihori T, Tanaka K. Protective Effects of Capsaicin against Cisplatin-Induced Nephrotoxicity in Rats. Biol Pharm Bull 2005; 28:1635-8. [PMID: 16141530 DOI: 10.1248/bpb.28.1635] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cisplatin-induced nephrotoxicity is related to an increase in lipid peroxidation and oxygen free radicals in a kidney. In the present study, we investigated the effect of the dietary antioxidants, capsaicin (Cap), against cisplatin-induced lipid peroxidation and nephrotoxicity in rats. Nephrotoxicity induced by treatment with a single dose of cisplatin (5 mg/kg body weight i.p.). The animals were divided into 4 groups. Cap (10 mg/kg/d) was given by gavage from the same day of cisplatin injection. Cisplatin administration resulted in significant increases in the kidney weight as a percentage of the total body weight, urine volume, serum creatinine, and blood urea nitrogen by about 132, 315, 797, and 556% in comparison with the control rats, respectively (p < 0.05). Also, the renal tissue from the cisplatin-treated rats showed significant decreases in the kidney glutathione (GSH) content and superoxide dismustase (SOD) activity and a significant increase in malondialdehyde (MDA) production in comparison to the values at 0 h (p < 0.05). Seven days after Cap plus cisplatin treatments, the renal damage induced by cisplatin recovered to a significant statistically level. In addition, Cap prevented the rise of MDA and the reduction of SOD activities. These results suggest that Cap has protective effects against cisplatin-induced nephrotoxicity and lipid peroxidation in rats.
Collapse
Affiliation(s)
- Yuka Shimeda
- Department of Clinical Pharmacy & Clinical Pharmacokinetics, Osaka University of Pharmaceutical Sciences, Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|