1
|
Fatma M, Parveen S, Mir SS. Unraveling the kinase code: Role of protein kinase in lung cancer pathogenesis and therapeutic strategies. Biochim Biophys Acta Rev Cancer 2025; 1880:189309. [PMID: 40169080 DOI: 10.1016/j.bbcan.2025.189309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 02/05/2025] [Accepted: 03/28/2025] [Indexed: 04/03/2025]
Abstract
Lung cancer is a prominent cause of cancer-related deaths globally, prompting exploration into the molecular pathways governing cancer cell signaling. Recent insights highlight the critical role of kinases in carcinogenesis and metastasis, particularly in non-small cell lung cancer (NSCLC), where protein kinases significantly contribute to drug resistance. These diverse enzymes catalyze protein phosphorylation and are implicated in cancer through misregulated expression, amplification, aberrant phosphorylation, mutations, and chromosomal translocations. Amplifications of kinases serve as important diagnostic, prognostic, and predictive biomarkers across various cancers. Notably, the Phosphatidylinositol 3-kinase (PI3K)/AKT pathway is crucial for the survival and proliferation of tumor cells. Novel therapeutic approaches are being explored to precisely target these pathways. Peptide-based therapies offer specificity and reduced toxicity compared to conventional treatments, while gene therapy targets abnormal genetic expressions. Advances in nanotechnology and CRISPR/Cas9 systems enhance gene delivery methods, holding promise for targeting specific molecular pathways in lung cancer treatment and minimizing systemic toxicity.
Collapse
Affiliation(s)
- Mariyam Fatma
- Molecular Cell Biology Laboratory, Integral Centre of Excellence for Interdisciplinary Research-4 (ICEIR-4) Integral University, Kursi Road, Lucknow 226026, India; Department of Biosciences, Faculty of Science, Integral University, Kursi Road, Lucknow 226026, India
| | - Sana Parveen
- Molecular Cell Biology Laboratory, Integral Centre of Excellence for Interdisciplinary Research-4 (ICEIR-4) Integral University, Kursi Road, Lucknow 226026, India; Department of Biosciences, Faculty of Science, Integral University, Kursi Road, Lucknow 226026, India
| | - Snober S Mir
- Molecular Cell Biology Laboratory, Integral Centre of Excellence for Interdisciplinary Research-4 (ICEIR-4) Integral University, Kursi Road, Lucknow 226026, India; Department of Biosciences, Faculty of Science, Integral University, Kursi Road, Lucknow 226026, India.
| |
Collapse
|
2
|
Destek S, Demirbolat İ, Yabacı A, Kalemoglu M, Kartal M, Ersoy EY, Gul VO, Kayıran Z, Aysan ME. Randomized Placebo Controlled Clinical Study of Dill ( Anethum Graveolens L.) in Thyroiditis and Nodular Goiter Patients. J Med Food 2025. [PMID: 40329862 DOI: 10.1089/jmf.2024.0263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025] Open
Abstract
Thyroid nodules are common and affect half of the general population by the age of 60 years. The cause is believed to be due to hypothyroidism, mutational changes, and autoimmunity leading to thyroid carcinoma. Dill, a traditional herbal remedy, has been used to treat thyroid dysfunctions such as hyperthyroidism and hypothyroidism. This study evaluates the effects of dill (Anethum graveolens L.) on patients with thyroiditis and nodular goiter. A study was conducted on patients with benign thyroid nodules. They were divided into two groups; placebo (=35) and dill group (n = 33). Dried and ground dill was put into hydroxypropyl methylcellulose capsules and patients were given three capsules per day for 90 days. Various tests were conducted at the beginning and end of the study, including thyroid stimulating hormone (TSH), free triiodothyronine (FT3), free thyroxine (FT4), anti-thyroid peroxidase (anti-TPO), anti-thyroglobulin (anti-Tg), and C-reactive protein (CRP) analysis, and thyroid nodule dimensions were measured by ultrasound. Statistical analysis was performed. After 90 days of treatment with dill extract, patients showed significant reductions in TSH, FT4, anti-TPO, and CRP levels, as well as a decrease in thyroid nodule sizes as demonstrated by ultrasonography. The dill-treated group had significantly decreased TSH (P = .020), FT4 (P = .001), anti-TPO (P = .004), CRP (P = .003) levels, and nodule sizes (P = .001) at the beginning and end of the study. Compared to the control group, the dill group had significantly decreased TSH (P = .009), fT4 (P < .001), anti-TPO (P = .001), CRP (P < .001) levels and nodule sizes (P < .001), which reached normal values. A. graveolens suppressed inflammation of the thyroid gland, reduced nodule size, and normalized TSH levels. Dill supplementation should be recommended for the treatment of thyroid nodules in selected patients.
Collapse
Affiliation(s)
- Sabahattin Destek
- Department of General Surgery, Üsküdar University School of Medicine, Istanbul, Turkey
| | - İlker Demirbolat
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kent University, Istanbul, Turkey
| | - Ayşegül Yabacı
- Department of Biostatistics, Faculty of Medicine, Bezmialem Vakıf University, Istanbul, Turkey
| | - Murat Kalemoglu
- Department of General Surgery, Üsküdar University School of Medicine, Istanbul, Turkey
| | - Murat Kartal
- Faculty of Pharmacy, Phytotherapy Research Center, Bezmialem Vakıf University, Istanbul, Turkey
| | - Emine Yeliz Ersoy
- Department of General Surgery, Faculty of Medicine, Bezmialem Vakıf University, Istanbul Turkey
| | - Vahit Onur Gul
- General Surgery Department Cankaya, Koru Hospital , Ankara, Turkey
| | - Zulal Kayıran
- Nutrition and Dietetics Center, Bezmialem Vakıf University, Istanbul, Turkey
| | - Mustafa Erhan Aysan
- Department of General Surgery, Faculty of Medicine, Bezmialem Vakıf University, Istanbul Turkey
| |
Collapse
|
3
|
Zhang G, Zuo R, Lin X, Wang J, Wang C. Compounds from the aerial parts of Vernonia cinerea with anti-inflammatory activity. Fitoterapia 2025; 182:106448. [PMID: 39970992 DOI: 10.1016/j.fitote.2025.106448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 02/09/2025] [Accepted: 02/16/2025] [Indexed: 02/21/2025]
Abstract
Two novel compounds Yexiangniuside A (1) and B (2) along with six known sesquiterpene lactones 3-8 were isolated from the aerial parts of Vernonia cinerea. The structures of the isolated compounds were conclusively determined through extensive 1D and 2D NMR spectral analyses. The absolute configurations of 1 and 2 were proposed based on computational ECD spectrum predictions, and their molecular formulas were determined using high-resolution mass spectrometry (HR-ESI-MS). Subsequently, the anti-inflammatory activities of compounds 1-8 were evaluated in a lipopolysaccharide (LPS)-induced RAW 264.7 cells inflammatory model. The results demonstrated that compounds 1-5 significantly inhibited the activity of LPS-stimulated inflammatory factors (NO, TNF-α, IL-6, and IL-10) at concentrations ranging from 2.5 to 20 μM. These findings confirmed that compounds 1-5 are the basis for the anti-inflammatory activity of Vernonia cinerea.
Collapse
Affiliation(s)
- Gaoshan Zhang
- Guangdong Engineering Technology Research Center for Standardized Processing of Chinese Materia Medica, School of Chinese Materia Medica, Guangdong Pharmaceutical University, No. 280 Outside Loop East Road of Higher Education Mega Center, Panyu District, 510006 Guangzhou, Guangdong Province, China
| | - Rong Zuo
- Guangdong Engineering Technology Research Center for Standardized Processing of Chinese Materia Medica, School of Chinese Materia Medica, Guangdong Pharmaceutical University, No. 280 Outside Loop East Road of Higher Education Mega Center, Panyu District, 510006 Guangzhou, Guangdong Province, China
| | - Xiaoju Lin
- Guangdong Engineering Technology Research Center for Standardized Processing of Chinese Materia Medica, School of Chinese Materia Medica, Guangdong Pharmaceutical University, No. 280 Outside Loop East Road of Higher Education Mega Center, Panyu District, 510006 Guangzhou, Guangdong Province, China
| | - Jiamin Wang
- Guangdong Engineering Technology Research Center for Standardized Processing of Chinese Materia Medica, School of Chinese Materia Medica, Guangdong Pharmaceutical University, No. 280 Outside Loop East Road of Higher Education Mega Center, Panyu District, 510006 Guangzhou, Guangdong Province, China
| | - Changfu Wang
- Guangdong Engineering Technology Research Center for Standardized Processing of Chinese Materia Medica, School of Chinese Materia Medica, Guangdong Pharmaceutical University, No. 280 Outside Loop East Road of Higher Education Mega Center, Panyu District, 510006 Guangzhou, Guangdong Province, China.
| |
Collapse
|
4
|
Imtiaz I, Schloss J, Bugarcic A. Interplay Between Traditional and Scientific Knowledge: Phytoconstituents and Their Roles in Lung and Colorectal Cancer Signaling Pathways. Biomolecules 2025; 15:380. [PMID: 40149916 PMCID: PMC11940637 DOI: 10.3390/biom15030380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/27/2025] [Accepted: 02/27/2025] [Indexed: 03/29/2025] Open
Abstract
Natural plant products have been used for cancer treatment since ancient times and continue to play a vital role in modern anticancer drug development. However, only a small fraction of identified medicinal plants has been thoroughly investigated, particularly for their effects on cellular pathways in lung and colorectal cancers, two under-researched cancers with poor prognostic outcomes (lung cancers). This review focuses on the lung and colorectal cancer signaling pathways modulated by bioactive compounds from eleven traditional medicinal plants: Curcuma longa, Astragalus membranaceus, Glycyrrhiza glabra, Althaea officinalis, Echinacea purpurea, Sanguinaria canadensis, Codonopsis pilosula, Hydrastis canadensis, Lobelia inflata, Scutellaria baicalensis, and Zingiber officinale. These plants were selected based on their documented use in traditional medicine and modern clinical practice. Selection criteria involved cross-referencing herbs identified in a scoping review of traditional cancer treatments and findings from an international survey on herbal medicine currently used for lung and colorectal cancer management by our research group and the availability of existing literature on their anticancer properties. The review identifies several isolated phytoconstituents from these plants that exhibit anticancer properties by modulating key signaling pathways such as PI3K/Akt/mTOR, RAS/RAF/MAPK, Wnt/β-catenin, and TGF-β in vitro. Notable constituents include sanguinarine, berberine, hydrastine, lobeline, curcumin, gingerol, shogaol, caffeic acid, echinacoside, cichoric acid, glycyrrhizin, 18-β-glycyrrhetinic acid, astragaloside IV, lobetyolin, licochalcone A, baicalein, baicalin, wogonin, and glycyrol. Curcumin and baicalin show preclinical effectiveness but face bioavailability challenges, which may be overcome by combining them with piperine or using oral extracts to enhance gut microbiome conversion, integrating traditional knowledge with modern strategies for improved outcomes. Furthermore, herbal extracts from Echinacea, Glycyrrhiza, and Codonopsis, identified in traditional knowledge, are currently in clinical trials. Notably, curcumin and baicalin also modulate miRNA pathways, highlighting a promising intersection of modern science and traditional medicine. Thus, the development of anticancer therapeutics continues to benefit from the synergy of traditional knowledge, scientific innovation, and technological advancements.
Collapse
Affiliation(s)
| | | | - Andrea Bugarcic
- National Centre for Naturopathic Medicine, Faculty of Health, Southern Cross University, Military Road, Lismore, NSW 2480, Australia; (I.I.); (J.S.)
| |
Collapse
|
5
|
Ansari P, Reberio AD, Ansari NJ, Kumar S, Khan JT, Chowdhury S, Abd El-Mordy FM, Hannan JMA, Flatt PR, Abdel-Wahab YHA, Seidel V. Therapeutic Potential of Medicinal Plants and Their Phytoconstituents in Diabetes, Cancer, Infections, Cardiovascular Diseases, Inflammation and Gastrointestinal Disorders. Biomedicines 2025; 13:454. [PMID: 40002867 PMCID: PMC11853317 DOI: 10.3390/biomedicines13020454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/04/2025] [Accepted: 02/09/2025] [Indexed: 02/27/2025] Open
Abstract
Conditions like diabetes mellitus (DM), cancer, infections, inflammation, cardiovascular diseases (CVDs), and gastrointestinal (GI) disorders continue to have a major global impact on mortality and morbidity. Medicinal plants have been used since ancient times in ethnomedicine (e.g., Ayurveda, Unani, Traditional Chinese Medicine, and European Traditional Medicine) for the treatment of a wide range of disorders. Plants are a rich source of diverse phytoconstituents with antidiabetic, anticancer, antimicrobial, antihypertensive, antioxidant, antihyperlipidemic, cardioprotective, immunomodulatory, and/or anti-inflammatory activities. This review focuses on the 35 plants most commonly reported for the treatment of these major disorders, with a particular emphasis on their traditional uses, phytoconstituent contents, pharmacological properties, and modes of action. Active phytomolecules with therapeutic potential include cucurbitane triterpenoids, diosgenin, and limonoids (azadiradione and gedunin), which exhibit antidiabetic properties, with cucurbitane triterpenoids specifically activating Glucose Transporter Type 4 (GLUT4) translocation. Capsaicin and curcumin demonstrate anticancer activity by deactivating NF-κB and arresting the cell cycle in the G2 phase. Antimicrobial activities have been observed for piperine, reserpine, berberine, dictamnine, chelerythrine, and allitridin, with the latter two triggering bacterial cell lysis. Quercetin, catechin, and genistein exhibit anti-inflammatory properties, with genistein specifically suppressing CD8+ cytotoxic T cell function. Ginsenoside Rg1 and ginsenoside Rg3 demonstrate potential for treating cardiovascular diseases, with ginsenoside Rg1 activating PPARα promoter, and the PI3K/Akt pathway. In contrast, ternatin, tannins, and quercitrin exhibit potential in gastrointestinal disorders, with quercitrin regulating arachidonic acid metabolism by suppressing cyclooxygenase (COX) and lipoxygenase activity. Further studies are warranted to fully investigate the clinical therapeutic benefits of these plants and their phytoconstituents, as well as to elucidate their underlying molecular mechanisms of action.
Collapse
Affiliation(s)
- Prawej Ansari
- Department of Pharmacology, National Medical College and Teaching Hospital, Parsa, Birgunj 44300, Nepal
- Comprehensive Diabetes Center, Department of Genetics, Heersink School of Medicine, University of Alabama, Birmingham (UAB), Birmingham, AL 35233, USA;
- Department of Pharmacy, School of Pharmacy and Public Health, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh (J.M.A.H.)
- Centre for Diabetes Research, School of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, UK; (P.R.F.); (Y.H.A.A.-W.)
| | - Alexa D. Reberio
- Department of Pharmacy, School of Pharmacy and Public Health, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh (J.M.A.H.)
| | - Nushrat J. Ansari
- Department of Radiology, National Medical College and Teaching Hospital, Parsa, Birgunj 44300, Nepal;
| | - Sandeep Kumar
- Comprehensive Diabetes Center, Department of Genetics, Heersink School of Medicine, University of Alabama, Birmingham (UAB), Birmingham, AL 35233, USA;
| | - Joyeeta T. Khan
- Department of Pharmacy, School of Pharmacy and Public Health, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh (J.M.A.H.)
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR 72205, USA
| | - Suraiya Chowdhury
- Department of Pharmacy, School of Pharmacy and Public Health, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh (J.M.A.H.)
| | - Fatma Mohamed Abd El-Mordy
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Al-Azhar University, Cairo 11754, Egypt;
| | - J. M. A. Hannan
- Department of Pharmacy, School of Pharmacy and Public Health, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh (J.M.A.H.)
| | - Peter R. Flatt
- Centre for Diabetes Research, School of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, UK; (P.R.F.); (Y.H.A.A.-W.)
| | - Yasser H. A. Abdel-Wahab
- Centre for Diabetes Research, School of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, UK; (P.R.F.); (Y.H.A.A.-W.)
| | - Veronique Seidel
- Natural Products Research Laboratory, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK;
| |
Collapse
|
6
|
Riaz I, Bibi Y, Arshad M, Ahmad MS, Siddiqui MH, Zeng Y, Qayyum A. Unravelling anti-cancer properties of solanaceous extracts using GC-MS and HPLC. Sci Rep 2025; 15:4192. [PMID: 39905146 PMCID: PMC11794588 DOI: 10.1038/s41598-025-87654-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 01/21/2025] [Indexed: 02/06/2025] Open
Abstract
Cancer is a complex health issue that today's medical science is dealing with, which has a mortality rate that is almost identical to that of cardiac disorders. Because of the adverse effects of the majority of the medications used in its therapy, managing it remains a major concern despite the availability of numerous remedies. This article attempts to contribute to the scientific developments in the Solanaceae family's anti-cancer field. Thus, this study consisted of isolating β-amyrin, cedryl acetate, lupeol, and 2-pentadecanone, 6,10,14-trimethyl from Cestrum aurantiacum to determine the anti-tumor activity. The plant material was dried, pulverized, and small-scale extraction was done. Brine shrimps, cell lines (A549, Hela, HEPG), and Caenorhabditis elegans were used initially to examine three solanaceous plant extracts (Solanum villosum (SV), Cestrum aurantiacum (CA), and Brugmansia suaveolens (BS)). The best results were shown by ethanol extract of Cestrum aurantiacum that why large-scale extraction and GCMS of this extract were done. The antitumor potential can be explained by the presence of β-amyrin, cedryl acetate, lupeol, and 2-pentadecanone, 6,10,14-trimethyl.
Collapse
Affiliation(s)
- Iqra Riaz
- Department of Botany, PMAS-Arid Agriculture University Rawalpindi, Rawalpindi, 46300, Pakistan
| | - Yamin Bibi
- Department of Botany, PMAS-Arid Agriculture University Rawalpindi, Rawalpindi, 46300, Pakistan.
- Department of Botany, Rawalpindi Women University, Rawalpindi, 46300, Pakistan.
| | - Muhammad Arshad
- Department of Botany, PMAS-Arid Agriculture University Rawalpindi, Rawalpindi, 46300, Pakistan
| | - Muhammad Sheeraz Ahmad
- University Institute of Biochemistry and Biotechnology, PMAS-Arid Agriculture University Rawalpindi, Rawalpindi, 46300, Pakistan
| | - Manzer H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Yawen Zeng
- Biotechnology and Germplasm Resources Institute, Agricultural Biotechnology Key Laboratory of Yunnan Province/Key Laboratory of the Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture, Yunnan Academy of Agricultural Sciences, Kunming, 650205, Yunnan, China
| | - Abdul Qayyum
- Department of Agronomy, The University of Haripur, Haripur, 22620, Pakistan.
| |
Collapse
|
7
|
Soto JA, Gómez AC, Vásquez M, Barreto AN, Molina KS, Zuniga-Gonzalez CA. Biological properties of Moringa oleifera: A systematic review of the last decade. F1000Res 2025; 13:1390. [PMID: 39895949 PMCID: PMC11782934 DOI: 10.12688/f1000research.157194.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/21/2025] [Indexed: 02/04/2025] Open
Abstract
Background The growing incidence of chronic diseases such as cancer and the emergence of drug-resistant microorganisms constitute one of the greatest health challenges of the 21st century. Therefore, it is critical to search for new therapeutic alternatives. Moringa oleifera is a plant well known for the properties of its phytocomponents and its role has been analyzed in a variety of fields, from medicine to biotechnology. Methods In this work, the biological activity of Moringa oleifera in human health was explored through a review of 129 original articles published between 2010 and 2021 related to antitumor activity and its potential uses against chronic and infectious diseases. Results Moringa oleifera extracts showed antioxidant, hypoglycemic, antihypertensive and cytoprotective properties at neuronal, hepatic, renal and cardiac levels. Besides, cytotoxic effects, apoptotic and antiploriferative activity against several cancer cell lines has been demonstrated. On the other hand, the antimicrobial potential of M. oleifera was also evidenced, especially against multidrug-resistant strains. Conclusions Hence, it is supported that there is a wide range of clinical entities in which Moringa oleifera exhibits significant biological activity that could contribute to counteracting metabolic, infectious and chronic diseases in a similar or improved way to the drugs traditionally used.
Collapse
Affiliation(s)
- Javier Andrés Soto
- Facultad de Ciencias Médicas y de la Salud, Instituto de Investigación Masira, University of Santander, Bucaramanga, Santander, 540003, Colombia
| | - Andrea Catalina Gómez
- Facultad de Ciencias Médicas y de la Salud, Instituto de Investigación Masira, University of Santander, Bucaramanga, Santander, 540003, Colombia
| | - Maryeli Vásquez
- Facultad de Ciencias Médicas y de la Salud, Instituto de Investigación Masira, University of Santander, Bucaramanga, Santander, 540003, Colombia
| | - Andrea Natalia Barreto
- Facultad de Ciencias Médicas y de la Salud, Instituto de Investigación Masira, University of Santander, Bucaramanga, Santander, 540003, Colombia
| | - Karen Shirley Molina
- Facultad de Ciencias Médicas y de la Salud, Instituto de Investigación Masira, University of Santander, Bucaramanga, Santander, 540003, Colombia
| | - C. A. Zuniga-Gonzalez
- Area of knowledge of Agrarian and Veterinary Sciences Research Centre, Bioeconomy and Climate Change Unit Research, National Autonomous University of Nicaragua, Leon, Leon, Leon, 21000, Nicaragua
| |
Collapse
|
8
|
Öner S, Kadı A, Tekman E, Kararenk AC, Özer EB, Ergin KN, Yuca H, Arslan ME, Duman R, Şahin AA, Pinar NM, Atila A, Bona GE, Karakaya S. Morphological, anatomical, and bioactive properties of Hypericum scabrum L.: effects on diabetes mellitus, Alzheimer's disease, and HDFa fibroblasts and U87-MG cancer cells. PROTOPLASMA 2025:10.1007/s00709-025-02037-1. [PMID: 39885008 DOI: 10.1007/s00709-025-02037-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 01/14/2025] [Indexed: 02/01/2025]
Abstract
Diabetes mellitus (DM) and cancer are multifactorial diseases with significant health consequences, and their relationship with aging makes them particularly challenging. Epidemiological data suggests that individuals with DM are more susceptible to certain cancers. This study examined the bioactive properties of Hypericum scabrum extracts, including methanol, hexane, and others, focusing on their inhibitory effects on key enzymes associated with DM and neurodegenerative diseases, such as acetylcholinesterase, butyrylcholinesterase, α-amylase, and α-glucosidase. Additionally, the impact of these extracts on human fibroblast (HDFa) and glioblastoma (U87MG) cancer cells was evaluated. The methanol extract was analyzed for elemental composition using ICP-MS, secondary metabolites, and amino acids via LC-MS/MS and underwent morphological and anatomical characterization. The methanol extract demonstrated notable inhibitory activity, with an IC50 value of < 1 µg/mL against α-glucosidase, surpassing acarbose in efficacy. The flower essential oil exhibited the highest inhibition (79.95%) of butyrylcholinesterase and the strongest acetylcholinesterase inhibition (21.62%). Elemental analysis revealed high concentrations of Na and K, while quinic acid and proline were identified as major metabolites, with proline concentrations reaching 494.0482 nmol/mL in the aerial part extract. The anticancer assays revealed higher cytotoxicity in U87MG glioblastoma cells compared to HDFa fibroblasts, suggesting potential applications for cancer therapy. The plant grows 20-50 cm tall, with yellow flowers and ovoid-ribbed capsules containing brown, reniform seeds. Its leaves are amphistomatic and ornamented, while stems feature striate cuticles and paracytic stomata. The pollen grains are microreticulate with syncolporate apertures. These results underscore the promising therapeutic potential of H. scabrum in managing DM, cancer, and neurodegenerative diseases, with its ability to inhibit key enzymes and show selective cytotoxicity against cancer cells.
Collapse
Affiliation(s)
- Sena Öner
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Türkiye
| | - Abdulrahim Kadı
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Türkiye
| | - Enes Tekman
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Atatürk University, Erzurum, Türkiye
- Ankara University Graduate School of Health Sciences, Ankara, Türkiye
| | - Ayşe Cemre Kararenk
- Department of Pharmacognosy, Faculty of Pharmacy, Atatürk University, Erzurum, Türkiye
| | - Elif Beyza Özer
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Atatürk University, Erzurum, Türkiye
| | - Kübra Nalkıran Ergin
- Department of Pharmacognosy, Faculty of Pharmacy, Atatürk University, Erzurum, Türkiye
| | - Hafize Yuca
- Department of Pharmacognosy, Faculty of Pharmacy, Atatürk University, Erzurum, Türkiye
| | - Mehmet Enes Arslan
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Türkiye
| | - Resul Duman
- Department of Biology, Faculty of Science, Ankara University, Ankara, Turkey
| | - Aydan Acar Şahin
- Department of Biology, Faculty of Science, Ankara University, Ankara, Turkey
| | - Nur Münevver Pinar
- Department of Biology, Faculty of Science, Ankara University, Ankara, Turkey
| | - Alptuğ Atila
- Department of Analytical Chemistry, Faculty of Pharmacy, Atatürk University, Erzurum, Türkiye
| | - Gülnur Ekşi Bona
- Department of Pharmaceutical Botany, Faculty of Pharmacy, İstanbul-Cerrahpaşa University, İstanbul, Türkiye
| | - Songül Karakaya
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Atatürk University, Erzurum, Türkiye.
| |
Collapse
|
9
|
Goleij P, Sanaye PM, Alam W, Zhang J, Tabari MAK, Filosa R, Jeandet P, Cheang WS, Efferth T, Khan H. Unlocking daidzein's healing power: Present applications and future possibilities in phytomedicine. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:155949. [PMID: 39217652 DOI: 10.1016/j.phymed.2024.155949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 07/29/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Cancer is one of the leading causes of death and a great threat to people around the world. Cancer treatment modalities include surgery, radiotherapy, chemotherapy, radiochemotherapy, hormone therapy, and immunotherapy. The best approach is to use a combination of several types. Among the treatment methods mentioned above, chemotherapy is frequently used, but its activity is hampered by the development of drug resistance and many side effects. In this regard, the use of medicinal plants has been discussed, and in recent decades, the use of isolated phytochemicals came into the focus of interest. By critically evaluating the available evidence and emphasizing the unique perspective offered by this review, we provide insights into the potential of daidzein as a promising therapeutic agent, as well as outline future research directions to optimize its efficacy in clinical settings. PURPOSE To summarized the therapeutic potential of daidzein, an isoflavone phytoestrogen in the management of several human diseases with the focuses on the current status and future prospects as a therapeutic agent. METHODS Several search engines, including PubMed, GoogleScholar, and ScienceDirect, were used, with the search terms "daidzein", "daidzein therapeutic potential", or individual effects. The study included all peer-reviewed articles. However, the most recent publications were given priority. RESULTS Daidzein showed protective effects against malignant diseases such as breast cancer, prostate cancer but also non-malignant diseases such as diabetes, osteoporosis, and cardiovascular diseases. Daidzein activates multiple signaling pathways leading to cell cycle arrest and apoptosis as well as antioxidant and anti-metastatic effects in malignant cells. Moreover, the anticancer effects against different cancer cells were more prominent and discussed in detail. CONCLUSIONS In short, daidzein represents a promising compound for drug development. The comprehensive potential anticancer activities of daidzein through various molecular mechanisms and its therapeutic/clinical status required further detail studies.
Collapse
Affiliation(s)
- Pouya Goleij
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Genetics, Faculty of Biology, Sana Institute of Higher Education, Sari, Iran; PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research, Network (USERN), Tehran, Iran.
| | - Pantea Majma Sanaye
- PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research, Network (USERN), Tehran, Iran; School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Waqas Alam
- Department of Pharmacy, Faculty of Chemical and Life Sciences, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Junmin Zhang
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Mohammad Amin Khazeei Tabari
- PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research, Network (USERN), Tehran, Iran; Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Mazandaran, Iran
| | - Rosanna Filosa
- Department of Science and Technology, University of Sannio, Benevento 82100, Italy
| | - Philippe Jeandet
- Département de Biologie et Biochimie Faculté des Sciences Exactes et Naturelles Université de Reims BP 1039 51687, Reims CEDEX 02, France
| | - Wai San Cheang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz 55128, Germany
| | - Haroon Khan
- Department of Pharmacy, Faculty of Chemical and Life Sciences, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan.
| |
Collapse
|
10
|
Hasan‐Abad A, Atapour A, Sobhani‐Nasab A, Motedayyen H, ArefNezhad R. Plant-Based Anticancer Compounds With a Focus on Breast Cancer. Cancer Rep (Hoboken) 2024; 7:e70012. [PMID: 39453820 PMCID: PMC11506041 DOI: 10.1002/cnr2.70012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 07/11/2024] [Accepted: 08/11/2024] [Indexed: 10/27/2024] Open
Abstract
Breast cancer is a common form of cancer among women characterized by the growth of malignant cells in the breast tissue. The most common treatments for this condition include chemotherapy, surgical intervention, radiation therapy, hormone therapy, and biological therapy. The primary issues associated with chemotherapy and radiation therapy are their adverse events and significant financial burden among patients in underdeveloped countries. This highlights the need to explore and develop superior therapeutic options that are less detrimental and more economically efficient. Plants provide an abundant supply of innovative compounds and present a promising new avenue for investigating cancer. Plants and their derivations are undergoing a revolution due to their reduced toxicity, expediency, cost-effectiveness, safety, and simplicity in comparison to conventional treatment methods. Natural products are considered promising candidates for the development of anticancer drugs, due perhaps to the diverse pleiotropic effects on target events. The effects of plant-derived products are limited to cancer cells while leaving healthy cells unaffected. Identification of compounds with strong anticancer properties and development of plant-based medications for cancer treatment might be crucial steps in breast cancer therapy. Although bioactive compounds have potent anticancer properties, they also have drawbacks that need to be resolved before their application in clinical trials and improved for the approved drugs. This study aims to give comprehensive information on known anticancer compounds, including their sources and molecular mechanisms of actions, along with opportunities and challenges in plant-based anticancer therapies.
Collapse
Affiliation(s)
| | - Amir Atapour
- Department of Medical Biotechnology, School of Advanced Medical Sciences and TechnologiesShiraz University of Medical SciencesShirazIran
| | - Ali Sobhani‐Nasab
- Autoimmune Diseases Research CenterKashan University of Medical SciencesKashanIran
| | - Hossein Motedayyen
- Autoimmune Diseases Research CenterKashan University of Medical SciencesKashanIran
| | - Reza ArefNezhad
- Department of Anatomy, School of MedicineShiraz University of Medical SciencesShirazIran
| |
Collapse
|
11
|
Banu HS, Parvin IS, Priyadharshini SD, Gayathiri E, Prakash P, Pratheep T. Molecular insights into the antioxidant and anticancer properties: A comprehensive analysis through molecular modeling, docking, and dynamics studies. J Cell Biochem 2024; 125:e30564. [PMID: 38747366 DOI: 10.1002/jcb.30564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/14/2024] [Accepted: 03/24/2024] [Indexed: 10/13/2024]
Abstract
Plants are rich sources of therapeutic compounds that often lack the side effects commonly found in synthetic chemicals. Researchers have effectively synthesized pharmaceuticals from natural sources, taking inspiration from traditional medicine, in their pursuit of modern drugs. This study aims to evaluate the phenolic and flavonoid content of Solanum virginianum seeds using different solvent extracts, enzymatic assays including 2,2-diphenyl-1-picrylhydrazyl activity, reducing power, and superoxide activity. Our phytochemical screening identified active compounds, such as phenols, flavonoids, tannins, and alkaloids. The methanol extract notably possesses higher levels of total phenolic and flavonoid content in comparison to the other extracts. The results highlight the superior antioxidant activity of methanol-extracted leaves, demonstrated by their exceptional IC50 values, which surpass the established standard. In this study, molecular docking techniques were used to assess the binding affinity and to predict the binding conformation of the compounds. Quercetin 3-O beta-d-galactopyranoside displayed a binding energy of -8.35 kcal/mol with several important amino acid residues, PHE222, TRP440, ILE184, LEU192, VAL221, LEU218, SER185, and ALA188. Kaempferol 3-O-beta-l-glucopyranoside exhibited a binding energy of -8.33 kcal/mol, interacting with specific amino acid residues including ALA 441, VAL318, VAL322, MET307, ILI409, GLY442, and PHE439. The results indicate that the methanol extract has a distinct composition of biologically active constituents compared to the other extracts. Overall, seeds exhibit promise as natural antioxidants and potential agents for combating cancer. This study highlights the significance of utilizing the therapeutic capabilities of natural compounds and enhancing our comprehension of their pharmacological characteristics.
Collapse
Affiliation(s)
- Hamza Serina Banu
- Department of Chemistry, Vellalar College for Women (Autonomous), Erode, Tamilnadu, India
| | - Ismail Sheriff Parvin
- Department of Chemistry, Vellalar College for Women (Autonomous), Erode, Tamilnadu, India
| | | | - Ekambaram Gayathiri
- Department of Plant Biology and Plant Biotechnology, Guru Nanak College (Autonomous), Chennai, India
| | - Palanisamy Prakash
- Department of Botany, Periyar University, Periyar Palkalai Nagar, Salem, Tamil Nadu, India
| | - Thangaraj Pratheep
- Department of Biotechnology, Rathinam College of Arts and Science, Coimbatore, Tamil Nadu, India
| |
Collapse
|
12
|
Manoharan R, Nair CS, Eissa N, Cheng H, Ge P, Ren M, Jaleel A. Therapeutic Potential of Solanum Alkaloids with Special Emphasis on Cancer: A Comprehensive Review. Drug Des Devel Ther 2024; 18:3063-3074. [PMID: 39050799 PMCID: PMC11268566 DOI: 10.2147/dddt.s470925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/07/2024] [Indexed: 07/27/2024] Open
Abstract
Cancer has emerged as a formidable global health challenge, with treatment methods like chemotherapy and radiation often exacerbating the situation due to their associated side effects. Opting for natural sources like plants as a safer and environmentally friendly alternative seems promising. Historically, plants have served as valuable sources for treating diverse health conditions, attributable to their rich composition of therapeutic phytochemicals. Within this array of phytochemicals, alkaloids, especially those found in the Solanaceae plant family, are notably prominent. Alkaloids from Solanaceae plant family called Solanum alkaloids demonstrate noteworthy anti-tumour characteristics and exert a potent inhibitory influence on cancer cell proliferation. They trigger programmed cell death in cancerous cells through various molecular pathways, whether administered alone or combined with other medications. Solanum alkaloids act upon cancer cells via multiple mechanisms, including apoptosis induction, suppression of cell growth and migration, as well as inhibition of angiogenesis. This review provides insights into the anti-cancer attributes of Solanum alkaloids found in various Solanum plant species, along with a brief overview of their other medicinal properties.
Collapse
Affiliation(s)
- Ramya Manoharan
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Chythra Somanathan Nair
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Nermin Eissa
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | - Hao Cheng
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu, People’s Republic of China
| | - Pengliang Ge
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Maozhi Ren
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu, People’s Republic of China
| | - Abdul Jaleel
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
13
|
Newton HB. Indian Ayurvedic medicine: Overview and application to brain cancer. J Ayurveda Integr Med 2024; 15:101013. [PMID: 39181067 PMCID: PMC11385779 DOI: 10.1016/j.jaim.2024.101013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/27/2024] [Accepted: 06/02/2024] [Indexed: 08/27/2024] Open
Abstract
Ayurveda is the traditional medicine system of India, and has been in practice for millennia. It is a traditional approach that uses 1000's of different plant preparations in various combinations for treatment of human ailments, including cancer. Ethnopharmacological and phytochemical analyses are now elucidating the bioactive constituents of the different plant species and herbal formulations, including ashwagandha, curcumin, guduchi, triphala, and others. To provide an overview of: 1) the ethnopharmacology of Ayurveda and several of its most important plant species and formulations, including pharmacological and molecular mechanisms of its anti-cancer effects; 2) review the literature applying Ayurvedic herbs and formulations to brain tumors. A detailed PubMed search was performed that included publications involving Ayurveda, cancer, ethnopharmacology, phytochemical analysis, molecular analysis, and brain tumors. In recent decades, significant research has begun to elucidate the bioactive compounds of ashwagandha, tumeric, guduchi, and triphala, such as withaferin A, withanolides, curcumin, palmatine, and many others. These compounds and extracts are now being applied to brain tumor cells in vitro and in animal models, with positive signs of anti-cancer activity including reduced cell growth, increased apoptosis, cell cycle arrest, increased differentiation, and inhibition of important internal signal transduction pathways. Several Ayurvedic herbs (ashwagandha, curcumin) have bioactive compounds with significant anti-cancer activity, and are effective in early pre-clinical testing against brain tumor cells in vitro and in animal models. Further pre-clinical testing is warranted, along with advancement into phase I and phase II clinical trials of patients with glioblastoma and other brain tumors.
Collapse
Affiliation(s)
- Herbert B Newton
- Neuro-Oncology Center and Brain Tumor Institute, University Hospitals of Cleveland Medical Center, Seidman Cancer Center, Cleveland, Ohio, USA; Molecular Oncology Program, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA.
| |
Collapse
|
14
|
Lagu IJL, Nyamai DW, Njeru SN. Phytochemical analysis, in-vitro and in-silico study of antiproliferative activity of ethyl acetate fraction of Launaea cornuta (Hochst. ex Oliv. & Hiern) C. Jeffrey against human cervical cancer cell line. Front Pharmacol 2024; 15:1399885. [PMID: 39005932 PMCID: PMC11239972 DOI: 10.3389/fphar.2024.1399885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/28/2024] [Indexed: 07/16/2024] Open
Abstract
Introduction: Cervical cancer is one of the leading causes of death among women globally due to the limitation of current treatment methods and their associated adverse side effects. Launaea cornuta is used as traditional medicine for the treatment of a variety of diseases including cancer. However, there is no scientific validation on the antiproliferative activity of L. cornuta against cervical cancer. Objective: This study aimed to evaluate the selective antiproliferative, cytotoxic and antimigratory effects of L. cornuta and to explore its therapeutical mechanisms in human cervical cancer cell lines (HeLa-229) through a network analysis approach. Materials and methods: The cytotoxic effect of L. cornuta ethyl acetate fraction on the proliferation of cervical cancer cells was evaluated by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) bioassay and the antimigratory effect was assessed by wound healing assays. Compounds were analysed using the qualitative colour method and gas chromatography-mass spectroscopy (GC-MS). Subsequently, bioinformatic analyses, including the protein-protein interaction (PPI) network analysis, Gene Ontology (GO), and Kyoto Encyclopaedia of Genes and Genomes (KEGG) analysis, were performed to screen for potential anticervical cancer therapeutic target genes of L. cornuta. Molecular docking (MD) was performed to predict and understand the molecular interactions of the ligands against cervical cancer. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was performed to validate the network analysis results. Results: L. cornuta ethyl acetate fraction exhibited a remarkable cytotoxic effect on HeLa-229 proliferation (IC50 of 20.56 ± 2.83 μg/mL) with a selectivity index (SI) of 2.36 with minimal cytotoxicity on non-cancerous cells (Vero-CCL 81 (IC50 of 48.83 ± 23.02). The preliminary screening revealed the presence of glycosides, phenols, saponins, terpenoids, quinones, and tannins. Thirteen compounds were also identified by GC-MS analysis. 124 potential target genes associated with the effect of L. cornuta ethyl acetate fraction on human cervical cancer were obtained, including AKT1, MDM2, CDK2, MCL1 and MTOR were identified among the top hub genes and PI3K/Akt1, Ras/MAPK, FoxO and EGFR signalling pathways were identified as the significantly enriched pathways. Molecular docking results showed that stigmasteryl methyl ether had a good binding affinity against CDK2, ATK1, BCL2, MDM2, and Casp9, with binding energy ranging from -7.0 to -12.6 kcal/mol. Tremulone showed a good binding affinity against TP53 and P21 with -7.0 and -8.0 kcal/mol, respectively. This suggests a stable molecular interaction of the ethyl acetate fraction of L. cornuta compounds with the selected target genes for cervical cancer. Furthermore, RT-qPCR analysis revealed that CDK2, MDM2 and BCL2 were downregulated, and Casp9 and P21 were upregulated in HeLa-229 cells treated with L. cornuta compared to the negative control (DMSO 0.2%). Conclusion: The findings indicate that L. cornuta ethyl acetate fraction phytochemicals modulates various molecular targets and pathways to exhibit selective antiproliferative and cytotoxic effects against HeLa-229 cells. This study lays a foundation for further research to develop innovative clinical anticervical cancer agents.
Collapse
Affiliation(s)
- Inyani John Lino Lagu
- Department of Molecular Biology and Biotechnology, Pan African University Institute for Basic Sciences, Technology and Innovation, Nairobi, Kenya
| | - Dorothy Wavinya Nyamai
- Department of Biochemistry, School of Biomedical Sciences, College of Health Sciences, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Sospeter Ngoci Njeru
- Centre for Traditional Medicine and Drug Research (CTMDR), Kenya Medical Institute (KEMRI), Nairobi, Kenya
| |
Collapse
|
15
|
Aswathy M, Parama D, Hegde M, Dr S, Lankalapalli RS, Radhakrishnan KV, Kunnumakkara AB. Natural Prenylflavones from the Stem Bark of Artocarpus altilis: Promising Anticancer Agents for Oral Squamous Cell Carcinoma Targeting the Akt/mTOR/STAT-3 Signaling Pathway. ACS OMEGA 2024; 9:24252-24267. [PMID: 38882137 PMCID: PMC11170706 DOI: 10.1021/acsomega.3c08376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/19/2024] [Accepted: 04/29/2024] [Indexed: 06/18/2024]
Abstract
Artonin E (AA2) and artobiloxanthone (AA3) were extracted and purified from the acetone extract of the stem bark of Artocarpus altilis (Parkinson) Fosberg. Preliminary investigations of both candidates revealed promising cytotoxic effects in oral cancer cells. Moreover, these candidates modulated the expression of pivotal proteins linked to oral cancer progression, eliciting apoptosis through caspase-3 and caspase-9 activation. Additionally, our results showed that AA2 and AA3 suppressed several proteins linked with oral cancer, such as Bcl-2, COX-2, VEGF, and MMP-9, and modulated the cell signaling pathways, such as Akt/mTOR and STAT-3, offering valuable insights into the underlying mechanism of action of these compounds. These findings were robustly validated in silico using molecular docking and molecular dynamic simulations. To our knowledge, these findings have not been previously reported, and the continued exploration and development of these natural products may offer a potential avenue for the effective management of this malignancy.
Collapse
Affiliation(s)
- Maniyamma Aswathy
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695019, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Dey Parama
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati 781039, Assam, India
| | - Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati 781039, Assam, India
| | - Sherin Dr
- Kerala University of Digital Sciences, Innovation and Technology (Digital University Kerala), Thiruvananthapuram 695317, Kerala, India
| | - Ravi S Lankalapalli
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695019, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Kokkuvayil Vasu Radhakrishnan
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695019, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati 781039, Assam, India
| |
Collapse
|
16
|
Sharma AN, Dewangan HK, Upadhyay PK. Comprehensive Review on Herbal Medicine: Emphasis on Current Therapy and Role of Phytoconstituents for Cancer Treatment. Chem Biodivers 2024; 21:e202301468. [PMID: 38206170 DOI: 10.1002/cbdv.202301468] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/04/2024] [Accepted: 01/04/2024] [Indexed: 01/12/2024]
Abstract
INTRODUCTION Cancer poses a significant public health challenge in both developed and developing nations, with a rising global incidence of patients facing the threat of death due to abnormal cell proliferation. AIM Review explores the utilization of different parts of herbal medicinal plants and their active pharmaceutical constituents in the prevention and treatment of various types of cancer. METHODOLOGY Various anticancer medicinal plants have been identified, demonstrating their therapeutic effects by inhibiting cancer-stimulating enzymes and hormones, activating DNA repair processes, boosting the synthesis of protective stimulants, reducing the formation of free radicals, and enhancing individual immunity. Data for this study were gathered from diverse online bibliographic and databases, including Google, Google Scholar, Mendeley, Springer Link, Research Gate, and PubMed. RESULT Herbal drugs have a huge contribution to the inhibition of the progression of cancer.A large volume of clinical studies has reported the beneficial effects of herbal medicines on the survival, immune modulation, and quality of life (QOL) of cancer patients, when these herbal medicines are used in combination with conventional therapeutics. CONCLUSION The latest medicines for the clinical purpose (Above 50 %) are derived from herbal products. Furthermore, combination of these herbs with nanotechnology shows promise in treating specific carcinomas.
Collapse
Affiliation(s)
- Alok Nath Sharma
- Institute of Pharmaceutical Research(IPR), GLA University, NH-2 Mathura Delhi Road, P.O.-Chaumuhan, Mathura, 281406 (U.P.), India
- Faculty of Pharmacy, Raja Balwant Singh Engineering Technical Campus, Bichpuri, Agra, 283102
| | - Hitesh Kumar Dewangan
- University Institute of Pharma Sciences (UIPS), Chandigarh University, Panjab, NH-95 Mohali Ludhiana Road
| | - Prabhat Kumar Upadhyay
- Institute of Pharmaceutical Research(IPR), GLA University, NH-2 Mathura Delhi Road, P.O.-Chaumuhan, Mathura, 281406 (U.P.), India
| |
Collapse
|
17
|
Kahar N, Mishra P, Bhatt R, Seth R. Chemical characterization of the crude extract of Sauromatum venosum (voodoo lily) and docking study with 12-O-acetylingol 8-tiglate for cytotoxicity testing in SaOS 2 (osteoblastic osteosarcoma cells). ANAL SCI 2024; 40:151-162. [PMID: 37872463 DOI: 10.1007/s44211-023-00441-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 09/25/2023] [Indexed: 10/25/2023]
Abstract
The current study was carried out to investigate the anticancer potential of Sauromatum venosum (SV) tuber by gas chromatography with high-resolution mass spectrometry (GC-HRMS) analysis of ethanolic (eSV), hydroalcoholic (hSV), and aqueous extracts (wSV), and in silico study were performed to investigate the main targets of 12-O-acetylingol 8-tiglate by computational docking. The GC-HRMS analysis of three plant samples was carried out on a system equipped with a high-resolution mass spectrometer. The major compounds were identified in all crude extracts. Computation docking analysis was performed for the prediction of the main target of the cancer proliferation of active compound of the Sauromatum venosum tuber extract in cancer therapy. A total of 45 phytocompounds were detected including diterpenoids, esters of fatty acid, hydrocarbons, and alkanes in the tuber of SV. Among all the crude samples tested, eSV showed the lowest IC50 value treated with SaOS2 cells. 12-O-acetylingol 8-tiglate is one of the phytocompounds identified in eSV extract and has been found to exhibit cytotoxic effects against various cancer cells, as reported in the research. It shows the optimum binding affinity with - 8.59 kcal/mol binding energy with a molecular target protein TNF-α (PDB ID: 7PKA). The observed interactions strongly support the anticancer activity of 12-O-acetylingol 8-tiglate and its role in the medicinal efficacy of the plant. These findings highlight the potential of the compound as a valuable source for the development of a therapeutic agent aimed at combating cancer. However, it is important to note that additional in vitro and in vivo studies are required to validate these findings and establish the therapeutic potential.
Collapse
Affiliation(s)
- Namrata Kahar
- Department of Zoology, Guru Ghasidas Vishwavidyalaya, Koni, Bilaspur, Chhattisgarh, 495009, India
| | | | - Renu Bhatt
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Koni, Bilaspur, Chhattisgarh, 495009, India
| | - Rohit Seth
- Department of Zoology, Guru Ghasidas Vishwavidyalaya, Koni, Bilaspur, Chhattisgarh, 495009, India.
| |
Collapse
|
18
|
Evbuomwan IO, Stephen Adeyemi O, Oluba OM. Indigenous medicinal plants used in folk medicine for malaria treatment in Kwara State, Nigeria: an ethnobotanical study. BMC Complement Med Ther 2023; 23:324. [PMID: 37716985 PMCID: PMC10504731 DOI: 10.1186/s12906-023-04131-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/17/2023] [Indexed: 09/18/2023] Open
Abstract
BACKGROUND Folk medicine is crucial to healthcare delivery in the underdeveloped countries. It is frequently used as a primary treatment option or as a complementary therapy for malaria. Malaria is a deadly disease which greatly threatens global public health, claiming incredible number of lives yearly. The study was aimed at documenting the medicinal plants used for malaria treatment in folk medicine in Kwara State, Nigeria. METHODS Ethnobotanical information was collected from selected consenting registered traditional medicine practitioners (TMPs) through oral face-to-face interviews using in-depth, semi-structured interview guide. The ethnobotanical data were analysed, and descriptive statistical methods were used to compile them. RESULTS Sixty-two indigenous medicinal plants, including 13 new plants, used for malaria treatment were identified in this study. The TMPs preferred decoction in aqueous solvent (34%) and steeping in decaffeinated soft drink (19%) for herbal preparations. Oral administration (74%) was the main route of administration, while leaves (40%) and stem barks (32%) were the most dominant plant parts used in herbal preparations. The most cited families were Fabaceae (15%) and Rutaceae (6%), while Mangifera indica (77.14%), Enantia chlorantha (65.71%), Alstonia boonei (57.14%) followed by Cymbopogon citratus (54.29%) were the most used plants. Besides, the antimalarial activities of many of the plants recorded and their isolated phytocompounds have been demonstrated. Furthermore, the conservation status of 4 identified plants were Vulnerable. CONCLUSION The study showed strong ethnobotanical knowledge shared by the TMPs in the State and provides preliminary information that could be explored for the discovery of more potent antimalarial compounds.
Collapse
Affiliation(s)
- Ikponmwosa Owen Evbuomwan
- SDG #03 Group - Good Health and Well-being, Landmark University, Ipetu Road, PMB 1001, Omu-Aran, 251101, Nigeria.
- Department of Biochemistry, Landmark University, Ipetu Road, PMB 1001, Omu-Aran, 251101, Nigeria.
- Department of Microbiology, Cellular Parasitology Unit, Landmark University, Ipetu Road, PMB 1001, Omu-Aran, 251101, Nigeria.
| | - Oluyomi Stephen Adeyemi
- SDG #03 Group - Good Health and Well-being, Landmark University, Ipetu Road, PMB 1001, Omu-Aran, 251101, Nigeria.
- Department of Biochemistry, Landmark University, Ipetu Road, PMB 1001, Omu-Aran, 251101, Nigeria.
- Laboratory of Sustainable Animal Environment, Graduate School of Agricultural Science, Tohoku University, 232-3 Yomogida, Naruko-Onsen, Osaki, Miyagi, 989-6711, Japan.
| | - Olarewaju Michael Oluba
- SDG #03 Group - Good Health and Well-being, Landmark University, Ipetu Road, PMB 1001, Omu-Aran, 251101, Nigeria.
- Department of Biochemistry, Landmark University, Ipetu Road, PMB 1001, Omu-Aran, 251101, Nigeria.
| |
Collapse
|
19
|
Ranasinghe S, Aspinall S, Beynon A, Ash A, Lymbery A. Traditional medicinal plants in the treatment of gastrointestinal parasites in humans: A systematic review and meta-analysis of clinical and experimental evidence. Phytother Res 2023; 37:3675-3687. [PMID: 37230485 DOI: 10.1002/ptr.7895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/22/2023] [Accepted: 05/09/2023] [Indexed: 05/27/2023]
Abstract
Gastrointestinal (GI) parasites cause significant morbidity and mortality worldwide. The use of conventional antiparasitic drugs is often inhibited due to limited availability, side effects or parasite resistance. Medicinal plants can be used as alternatives or adjuncts to current antiparasitic therapies. This systematic review and meta-analysis aimed to critically synthesise the literature on the efficacy of different plants and plant compounds against common human GI parasites and their toxicity profiles. Searches were conducted from inception to September 2021. Of 5393 screened articles, 162 were included in the qualitative synthesis (159 experimental studies and three randomised control trials [RCTs]), and three articles were included in meta-analyses. A total of 507 plant species belonging to 126 families were tested against different parasites, and most of these (78.4%) evaluated antiparasitic efficacy in vitro. A total of 91 plant species and 34 compounds were reported as having significant in vitro efficacy against parasites. Only a few plants (n = 57) were evaluated for their toxicity before testing their antiparasitic effects. The meta-analyses revealed strong evidence of the effectiveness of Lepidium virginicum L. against Entamoeba histolytica with a pooled mean IC50 of 198.63 μg/mL (95% CI 155.54-241.72). We present summary tables and various recommendations to direct future research.
Collapse
Affiliation(s)
- Sandamalie Ranasinghe
- Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Perth, Western Australia, Australia
| | - Sasha Aspinall
- School of Allied Health, College of Health and Education, Murdoch University, Perth, Western Australia, Australia
| | - Amber Beynon
- Department of Chiropractic, Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie Park, New South Wales, Australia
| | - Amanda Ash
- Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Perth, Western Australia, Australia
| | - Alan Lymbery
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Perth, Western Australia, Australia
| |
Collapse
|
20
|
Baldassari S, Balboni A, Drava G, Donghia D, Canepa P, Ailuno G, Caviglioli G. Phytochemicals and Cancer Treatment: Cell-Derived and Biomimetic Vesicles as Promising Carriers. Pharmaceutics 2023; 15:1445. [PMID: 37242687 PMCID: PMC10221807 DOI: 10.3390/pharmaceutics15051445] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
The majority of anticancer agents currently used derive from natural sources: plants, frequently the ones employed in traditional medicines, are an abundant source of mono- and diterpenes, polyphenols, and alkaloids that exert antitumor activity through diverse mechanisms. Unfortunately, many of these molecules are affected by poor pharmacokinetics and limited specificity, shortcomings that may be overcome by incorporating them into nanovehicles. Cell-derived nanovesicles have recently risen to prominence, due to their biocompatibility, low immunogenicity and, above all, targeting properties. However, due to difficult scalability, the industrial production of biologically-derived vesicles and consequent application in clinics is difficult. As an efficient alternative, bioinspired vesicles deriving from the hybridization of cell-derived and artificial membranes have been conceived, revealing high flexibility and appropriate drug delivery ability. In this review, the most recent advances in the application of these vesicles to the targeted delivery of anticancer actives obtained from plants are presented, with specific focus on vehicle manufacture and characterization, and effectiveness evaluation performed through in vitro and in vivo assays. The emerging overall outlook appears promising in terms of efficient drug loading and selective targeting of tumor cells, suggesting further engrossing developments in the future.
Collapse
Affiliation(s)
- Sara Baldassari
- Department of Pharmacy, University of Genova, 16148 Genova, Italy; (S.B.); (A.B.); (G.D.); (D.D.)
| | - Alice Balboni
- Department of Pharmacy, University of Genova, 16148 Genova, Italy; (S.B.); (A.B.); (G.D.); (D.D.)
| | - Giuliana Drava
- Department of Pharmacy, University of Genova, 16148 Genova, Italy; (S.B.); (A.B.); (G.D.); (D.D.)
| | - Daniela Donghia
- Department of Pharmacy, University of Genova, 16148 Genova, Italy; (S.B.); (A.B.); (G.D.); (D.D.)
| | - Paolo Canepa
- Department of Physics, University of Genova, 16146 Genova, Italy;
| | - Giorgia Ailuno
- Department of Pharmacy, University of Genova, 16148 Genova, Italy; (S.B.); (A.B.); (G.D.); (D.D.)
| | - Gabriele Caviglioli
- Department of Pharmacy, University of Genova, 16148 Genova, Italy; (S.B.); (A.B.); (G.D.); (D.D.)
| |
Collapse
|
21
|
Sapkal PR, Tatiya AU, Firke SD, Redasani VK, Gurav SS, Ayyanar M, Jamkhande PG, Surana SJ, Mutha RE, Kalaskar MG. Phytochemical profile, antioxidant, cytotoxic and anti-inflammatory activities of stem bark extract and fractions of Ailanthus excelsa Roxb.: In vitro, in vivo and in silico approaches. Heliyon 2023; 9:e15952. [PMID: 37187902 PMCID: PMC10176067 DOI: 10.1016/j.heliyon.2023.e15952] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 04/20/2023] [Accepted: 04/27/2023] [Indexed: 05/17/2023] Open
Abstract
This study aimed to assess the phytochemical composition, in vitro antioxidant, cytotoxicity, and in vivo anti-inflammatory activities of the methanolic extract of Ailanthus excelsa (Simaroubaceae) stem bark and its fractions. Quantitative phytochemical analysis revealed that methanolic extract and all fractions contained a high level of flavonoids (20.40-22.91 mg/g QE), phenolics (1.72-7.41 mg/g GAE), saponins (33.28-51.87 mg/g DE), and alkaloids (0.21-0.33 mg/g AE). The antioxidant potential was evaluated in vitro using a range of assays, i.e., DPPH•, ABTS radical scavenging ability, and total antioxidant capacity. The chloroform and ethyl acetate fractions showed stronger antioxidant activity than the methanol extract. In vitro cytotoxic activity was investigated in three human tumor cell lines (A-549, MCF7 and HepG2) using the SRB assay. In addition, the in vivo anti-inflammatory effect was assessed by carrageenan-induced paw edema in rats. The chloroform fraction showed a more pronounced effect by effectively controlling the growth with the lowest GI50 and TGI concentrations. The human lung cancer cell line (A-549) was found to be more sensitive to the chloroform fraction. Furthermore, the chloroform fraction exhibited significant anti-inflammatory activity at a dose of 200 mg/kg in the latter phase of inflammation. Besides, methanol extract and ethyl acetate fraction revealed a significant cytotoxic and anti-inflammatory effects. The chloroform fraction of stem bark showed a strong anti-inflammatory effect in experimental animals and significant COX-2 inhibitory potential in the in vitro experiments. GC-MS analysis of chloroform fraction identified the phytochemicals like caftaric acid, 3,4-dihydroxy phenylacetic acid, arachidonic acid, cinnamic acid, 3-hydroxyphenylvaleric acid, caffeic acid, hexadeconoic acid, and oleanolic acid. The in-silico results suggest that identified compounds have better affinity towards the selected targets, viz. the BAX protein (PDB ID: 1F16), p53-binding protein Mdm-2 (PDB ID: 1YCR), and topoisomerase II (PDB ID: 1QZR). Amongst all, caftaric acid exhibited the best binding affinity for all three targets. Thus, it can be concluded that caftaric acid in combination with other phenolic compounds, might be responsible for the studied activity. Additional in vivo and in vitro studies are required to establish their exact molecular mechanisms and consider them as lead molecules in developing of valuable drugs for treating oxidative stress-induced disorders, cancers, and inflammations.
Collapse
Affiliation(s)
- Priyanka R. Sapkal
- R. C. Patel Institute of Pharmaceutical Education & Research, Shirpur, Maharashtra 425405, India
| | - Anilkumar U. Tatiya
- R. C. Patel Institute of Pharmaceutical Education & Research, Shirpur, Maharashtra 425405, India
| | - Sandip D. Firke
- R. C. Patel Institute of Pharmaceutical Education & Research, Shirpur, Maharashtra 425405, India
| | - Vivek K. Redasani
- Yashoda Technical Campus, Faculty of Pharmacy, Satara, Maharashtra 412 802, India
| | - Shailendra S. Gurav
- Department of Pharmacognosy, Goa College of Pharmacy, Goa University, Panaji, Goa 403 001, India
| | - Muniappan Ayyanar
- Department of Botany, A.V.V.M. Sri Pushpam College (Affiliated to Bharathidasan University), Poondi, Thanjavur, Tamil Nadu 613 503, India
| | - Prasad G. Jamkhande
- Centre for Research in Pharmaceutical Sciences, Sharda Bhavan Education Society's Nanded Pharmacy College, Nanded, Maharashtra, 431605, India
| | - Sanjay J. Surana
- R. C. Patel Institute of Pharmaceutical Education & Research, Shirpur, Maharashtra 425405, India
| | - Rakesh E. Mutha
- H. R. Patel Institute of Pharmaceutical Education & Research, Shirpur, Maharashtra 425405, India
| | - Mohan G. Kalaskar
- R. C. Patel Institute of Pharmaceutical Education & Research, Shirpur, Maharashtra 425405, India
- Corresponding author.
| |
Collapse
|
22
|
Kola P, Manjula SN, Metowogo K, Madhunapantula SV, Eklu-Gadegbeku K. Four Togolese plant species exhibiting cytotoxicity and antitumor activities lightning polytherapy approach in cancer treatment. Heliyon 2023; 9:e13869. [PMID: 36873464 PMCID: PMC9982628 DOI: 10.1016/j.heliyon.2023.e13869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 02/06/2023] [Accepted: 02/14/2023] [Indexed: 02/25/2023] Open
Abstract
Background Cancer is leading to premature deaths across the globe. Therapeutic approaches are still being developed to enhance the survival of cancer patients. In our previous study, extracts from four Togolese plants, namely, Cochlospermum planchonii (CP), Piliostigma thonningii (PT), Paullinia pinnata (PP), and Securidaca longipedunculata (SL), actually used in traditional medicine for cancer treatment, showed beneficial health effects against oxidative stress, inflammation, and angiogenesis. Purpose In the present study, we aimed to investigate the cytotoxicity and antitumor activities of these four plant extracts. Material and methods Breast, lung, cervical, and liver cancer cell lines were exposed to the extracts, and viability was assessed using the Sulforhodamine B method. P. pinnata and S. longipedunculata with significant cytotoxicity were selected for in vivo tests. The acute oral toxicity of these extracts was assessed using BALB/c mice. The antitumor activity was evaluated using the EAC tumor bearing mice model, wherein mice were orally treated with extracts at different concentrations for 14 days. The standard drug was cisplatin (3.5 mg/kg, i.p), single dose. Results Cytotoxicity tests revealed that SL, PP, and CP extracts have more than 50% cytotoxicity at 150 μg/mL. The acute oral toxicity of PP and SL at 2000 mg/kg did not show any toxic signs. At therapeutic doses of 100 mg/kg, 200 mg/kg and 400 mg/kg of PP and 40 mg/kg, 80 mg/kg, and 160 mg/kg of SL, extracts showed beneficial health effects by modulating several biological parameters. SL extract significantly reduced tumor volume (P < 0.001), cell viability, and normalized hematological parameters. SL also demonstrated a strong anti-inflammatory activity similar to the standard drug. The SL extract also revealed a significant increase of the life span of treated mice. PP extract reduced the tumor volume and significantly improved the values of endogenous antioxidants. Both PP and SL extracts also exerted significant anti-angiogenic potency. Conclusion The study indicated that polytherapy would be a panacea for the efficient use of medicinal plant extracts against cancer. This approach will make it possible to act simultaneously on several biological parameters. Molecular studies of both extracts targeting key cancer genes in several cancer cells are currently underway.
Collapse
Affiliation(s)
- P Kola
- Research Unit Pathophysiology-Bioactive Substances and Safety, Faculty of Sciences, University of Lome, 01 BP: 1515, Lome, Togo.,Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, 570015, India.,Centre of Excellence in Molecular Biology and Regenerative Medicine (DST-FIST Supported Centre), Department of Biochemistry (DST-FIST Supported Department) - Special Interest Group in Cancer Biology and Cancer Stem Cells (SIG-CBCSC), JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, 570015, India
| | - S N Manjula
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, 570015, India
| | - K Metowogo
- Research Unit Pathophysiology-Bioactive Substances and Safety, Faculty of Sciences, University of Lome, 01 BP: 1515, Lome, Togo
| | - S V Madhunapantula
- Centre of Excellence in Molecular Biology and Regenerative Medicine (DST-FIST Supported Centre), Department of Biochemistry (DST-FIST Supported Department) - Special Interest Group in Cancer Biology and Cancer Stem Cells (SIG-CBCSC), JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, 570015, India
| | - K Eklu-Gadegbeku
- Research Unit Pathophysiology-Bioactive Substances and Safety, Faculty of Sciences, University of Lome, 01 BP: 1515, Lome, Togo
| |
Collapse
|
23
|
Gancedo NC, Isolani R, de Oliveira NC, Nakamura CV, de Medeiros Araújo DC, Sanches ACC, Tonin FS, Fernandez-Llimos F, Chierrito D, de Mello JCP. Chemical Constituents, Anticancer and Anti-Proliferative Potential of Limonium Species: A Systematic Review. Pharmaceuticals (Basel) 2023; 16:293. [PMID: 37259435 PMCID: PMC9958820 DOI: 10.3390/ph16020293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 04/13/2024] Open
Abstract
Limonium species represent a source of bioactive compounds that have been widely used in folk medicine. This study aimed to synthesize the anticancer and anti-proliferative potential of Limonium species through a systematic review. Searches were performed in the electronic databases PubMed/MEDLINE, Scopus, and Scielo and via a manual search. In vivo or in vitro studies that evaluated the anticancer or anti-proliferative effect of at least one Limonium species were included. In total, 942 studies were identified, with 33 articles read in full and 17 studies included for qualitative synthesis. Of these, 14 (82.35%) refer to in vitro assays, one (5.88%) was in vivo, and two (11.76%) were designed as in vitro and in vivo assays. Different extracts and isolated compounds from Limonium species were evaluated through cytotoxic analysis against various cancer cells lines (especially hepatocellular carcinoma-HepG2; n = 7, 41.18%). Limonium tetragonum was the most evaluated species. The possible cellular mechanism involved in the anticancer activity of some Limonium species included the inhibition of enzymatic activities and expression of matrix metalloproteinases (MMPs), which suggested anti-metastatic effects, anti-melanogenic activity, cell proliferation inhibition pathways, and antioxidant and immunomodulatory effects. The results reinforce the potential of Limonium species as a source for the discovery and development of new potential cytotoxic and anticancer agents. However, further studies and improvements in experimental designs are needed to better demonstrate the mechanism of action of all of these compounds.
Collapse
Affiliation(s)
- Naiara Cássia Gancedo
- Laboratory of Pharmaceutical Biology, Department of Pharmacy, Universidade Estadual de Maringá, Palafito, Maringá 87020-900, Brazil
| | - Raquel Isolani
- Laboratory of Pharmaceutical Biology, Department of Pharmacy, Universidade Estadual de Maringá, Palafito, Maringá 87020-900, Brazil
| | - Natalia Castelhano de Oliveira
- Laboratory of Pharmaceutical Biology, Department of Pharmacy, Universidade Estadual de Maringá, Palafito, Maringá 87020-900, Brazil
| | - Celso Vataru Nakamura
- Laboratory of Technological Innovation in the Development of Drugs and Cosmetics, Department of Basic Health Sciences, Universidade Estadual de Maringá, Maringá 87020-900, Brazil
| | | | | | - Fernanda Stumpf Tonin
- Pharmaceutical Sciences Post-Graduate Research Program, Universidade Federal do Paraná, Curitiba 80210-170, Brazil
- H&TRC—Health & Technology Research Center, ESTeSL—Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisboa, Portugal
| | - Fernando Fernandez-Llimos
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Danielly Chierrito
- Department of Pharmacy, Centro Universitário Ingá, Maringá 87035-510, Brazil
| | - João Carlos Palazzo de Mello
- Laboratory of Pharmaceutical Biology, Department of Pharmacy, Universidade Estadual de Maringá, Palafito, Maringá 87020-900, Brazil
| |
Collapse
|
24
|
Tuli HS, Rath P, Chauhan A, Ranjan A, Ramniwas S, Sak K, Aggarwal D, Kumar M, Dhama K, Lee EHC, Yap KCY, Capinpin SM, Kumar AP. Cucurbitacins as Potent Chemo-Preventive Agents: Mechanistic Insight and Recent Trends. Biomolecules 2022; 13:57. [PMID: 36671442 PMCID: PMC9855938 DOI: 10.3390/biom13010057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
Cucurbitacins constitute a group of cucumber-derived dietary lipids, highly oxidized tetracyclic triterpenoids, with potential medical uses. These compounds are known to interact with a variety of recognized cellular targets to impede the growth of cancer cells. Accumulating evidence has suggested that inhibition of tumor cell growth via induction of apoptosis, cell-cycle arrest, anti-metastasis and anti-angiogenesis are major promising chemo-preventive actions of cucurbitacins. Cucurbitacins may be a potential choice for investigations of synergism with other drugs to reverse cancer cells' treatment resistance. The detailed molecular mechanisms underlying these effects include interactions between cucurbitacins and numerous cellular targets (Bcl-2/Bax, caspases, STAT3, cyclins, NF-κB, COX-2, MMP-9, VEGF/R, etc.) as well as control of a variety of intracellular signal transduction pathways. The current study is focused on the efforts undertaken to find possible molecular targets for cucurbitacins in suppressing diverse malignant processes. The review is distinctive since it presents all potential molecular targets of cucurbitacins in cancer on one common podium.
Collapse
Affiliation(s)
- Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala 133207, India
| | - Prangya Rath
- Amity Institute of Environmental Sciences, Amity University, Noida 201303, India
| | - Abhishek Chauhan
- Amity Institute of Environmental Toxicology, Safety and Management, Amity University, Noida 201303, India
| | - Anuj Ranjan
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia
| | - Seema Ramniwas
- University Centre for Research and Development, University Institute of Pharmaceutical Sciences, Chandigarh University, Mohali 140413, India
| | | | - Diwakar Aggarwal
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala 133207, India
| | - Manoj Kumar
- Department of Chemistry, Maharishi Markandeshwar University Sadopur, Ambala 134007, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly 243122, India
| | - E Hui Clarissa Lee
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| | - Kenneth Chun-Yong Yap
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| | - Sharah Mae Capinpin
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| |
Collapse
|
25
|
Yang F, Shi X, Yang W, Gao C, Cui Z, Wang W. Pueraria montana (Kudzu vine) Ameliorate the Inflammation and Oxidative Stress against Fe-NTA Induced Renal Cancer. J Oleo Sci 2022; 71:1481-1492. [PMID: 36089399 DOI: 10.5650/jos.ess22151] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Renal tissue plays a crucial function in maintaining homeostasis, making it vulnerable to xenobiotic toxicity. Pueraria montana has more beneficial potential against the various diseases and has long history used as a traditional Chinese medicine. But its effect against the renal cancer not scrutinize. The goal of this study is to see if Pueraria montana can protect rats from developing kidney tumors caused by diethylnitrosamine (DEN) and ferric nitrite (Fe-NTA). Wistar rats was selected for the current study and DEN (use as an inducer) and Fe-NTA (promoter) for induction the renal cancer. For 22 weeks, the rats were given orally Pueraria montana (12.5, 25, and 50 mg/kg) treatment. At regular intervals, the body weight and food intake were calculated. The rats were macroscopically evaluated for identification of cancer in the renal tissue. The renal tumor makers, renal parameters, antioxidant enzymes, phase I and II enzymes, inflammatory cytokines and mediators were estimated at end of the experimental study. Pueraria montana treated rats displayed the suppression of renal tumors, incidence of the tumors along with suppression of tumor percentage. Pueraria montana treated rats significantly (p < 0.001) increased body weight and suppressed the renal weight and food intake. It also reduced the level of renal tumor marker ornithine decarboxylase (ODC) and [3H] thymidine incorporation along with suppression of renal parameter such as uric acid, blood urea nitrogen (BUN), urea and creatinine. Pueraria montana treatment significantly (p < 0.001) altered the level of phase enzymes and antioxidant. Pueraria montana treatment significantly (p < 0.001) repressed the level of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6) and improved the level of interleukin-10 (IL-10). Pueraria montana treatment suppressed the level of prostaglandin (PGE2), cyclooxygenase-2 (COX-2), nuclear kappa B factor (NF-κB) and transforming growth factor beta 1 (TGF-β1). Pueraria montana suppressed the inflammatory necrosis, size the bowman capsules in the renal histopathology. Pueraria montana exhibited the chemoprotective effect via dual mechanism such as suppression of inflammatory reaction and oxidative stress.
Collapse
Affiliation(s)
- Fan Yang
- Department of Urology Surgery, Affiliated Hospital of Hebei University
| | - Xiaoqiang Shi
- Department of Urology Surgery, Affiliated Hospital of Hebei University
| | - Weidong Yang
- Department of Urology Surgery, Affiliated Hospital of Hebei University
| | - Chao Gao
- Department of Urology Surgery, Affiliated Hospital of Hebei University
| | - Zhenyu Cui
- Department of Urology Surgery, Affiliated Hospital of Hebei University
| | - Wentao Wang
- Department of Urology Surgery, Affiliated Hospital of Hebei University
| |
Collapse
|
26
|
Addressing artifacts of colorimetric anticancer assays for plant-based drug development. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:198. [PMID: 36071299 DOI: 10.1007/s12032-022-01791-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 07/06/2022] [Indexed: 10/14/2022]
Abstract
Cancer has become the silent killer in less-developed countries and the most significant cause of morbidity worldwide. The accessible and frequently used treatments include surgery, radiotherapy, chemotherapy, and immunotherapy. Chemotherapeutic drugs traditionally involve using plant-based medications either in the form of isolated compounds or as scaffolds for synthetic drugs. To launch a drug in the market, it has to pass through several intricate steps. The multidrug resistance in cancers calls for novel drug discovery and development. Every year anticancer potential of several plant-based compounds and extracts is reported but only a few advances to clinical trials. The false-positive or negative results impact the progress of the cell-based anticancer assays. There are several cell-based assays but the widely used include MTT, MTS, and XTT. In this article, we have discussed various pitfalls and workable solutions.
Collapse
|
27
|
Yan HW, Yang YN, Zhang X, Jiang JS, Yuan X, Feng ZM, Zhang PC. Eight new arnebinol B-based meroterpenoids with planar chirality in the constrained 6/10/5 tricyclic skeleton from Arnebia euchroma and their cytotoxicities. Bioorg Chem 2022; 128:106091. [PMID: 36029650 DOI: 10.1016/j.bioorg.2022.106091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 08/07/2022] [Indexed: 11/02/2022]
Abstract
Eight new arnebinol B-based meroterpenoids ((-)-1, 2, 3, (-)-5, and 7-10) with a constrained 6/10/5 tricyclic backbone were isolated from the roots of Arnebia euchroma. The planar and steric structures of these new compounds were unambiguously elucidated by extensive spectroscopic analyses, X-ray diffraction crystallography, and ECD calculations. The predominant relative orientation between H-7 and the Z double bond with a methyl substituent in the rigid 10-membered carbocycle, along with the planar chirality of the Z double bond was analyzed and discussed for the first time. The illustration of the planar chirality derived from the Z double bond should be paid great importance during the structure elucidation on these homologous meroterpenoids. All the isolated meroterpenoids were screened for their cytotoxicities against the HCT-8, PANC-1, HGC-27, HepG2, and PC9 cell lines, and compounds (+)-5 and (-)-5 exhibited the most potent cytotoxicity.
Collapse
Affiliation(s)
- Hai-Wei Yan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ya-Nan Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xu Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jian-Shuang Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiang Yuan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zi-Ming Feng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Pei-Cheng Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
28
|
Talib WH, Daoud S, Mahmod AI, Hamed RA, Awajan D, Abuarab SF, Odeh LH, Khater S, Al Kury LT. Plants as a Source of Anticancer Agents: From Bench to Bedside. Molecules 2022; 27:molecules27154818. [PMID: 35956766 PMCID: PMC9369847 DOI: 10.3390/molecules27154818] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 12/03/2022] Open
Abstract
Cancer is the second leading cause of death after cardiovascular diseases. Conventional anticancer therapies are associated with lack of selectivity and serious side effects. Cancer hallmarks are biological capabilities acquired by cancer cells during neoplastic transformation. Targeting multiple cancer hallmarks is a promising strategy to treat cancer. The diversity in chemical structure and the relatively low toxicity make plant-derived natural products a promising source for the development of new and more effective anticancer therapies that have the capacity to target multiple hallmarks in cancer. In this review, we discussed the anticancer activities of ten natural products extracted from plants. The majority of these products inhibit cancer by targeting multiple cancer hallmarks, and many of these chemicals have reached clinical applications. Studies discussed in this review provide a solid ground for researchers and physicians to design more effective combination anticancer therapies using plant-derived natural products.
Collapse
Affiliation(s)
- Wamidh H. Talib
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (R.A.H.); (D.A.); (S.F.A.); (L.H.O.); (S.K.)
- Correspondence:
| | - Safa Daoud
- Department Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmacy, Applied Science Private University, Amman 11931, Jordan;
| | - Asma Ismail Mahmod
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (R.A.H.); (D.A.); (S.F.A.); (L.H.O.); (S.K.)
| | - Reem Ali Hamed
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (R.A.H.); (D.A.); (S.F.A.); (L.H.O.); (S.K.)
| | - Dima Awajan
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (R.A.H.); (D.A.); (S.F.A.); (L.H.O.); (S.K.)
| | - Sara Feras Abuarab
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (R.A.H.); (D.A.); (S.F.A.); (L.H.O.); (S.K.)
| | - Lena Hisham Odeh
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (R.A.H.); (D.A.); (S.F.A.); (L.H.O.); (S.K.)
| | - Samar Khater
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (R.A.H.); (D.A.); (S.F.A.); (L.H.O.); (S.K.)
| | - Lina T. Al Kury
- Department of Health Sciences, College of Natural and Health Sciences, Zayed University, Abu Dhabi 144534, United Arab Emirates;
| |
Collapse
|
29
|
Evodiamine as the Active Compound of Evodiae fructus to Inhibit Proliferation and Migration of Prostate Cancer through PI3K/AKT/NF-κB Signaling Pathway. DISEASE MARKERS 2022; 2022:4399334. [PMID: 35899176 PMCID: PMC9313987 DOI: 10.1155/2022/4399334] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/30/2022] [Indexed: 12/24/2022]
Abstract
Evodiae fructus (EF) is a traditional Chinese medicine which is widely used for the treatment of obesity, inflammation, cardiovascular disease, and diseases of the central nervous system. Recent studies have demonstrated the anticancer property of EF, but the active compounds of EF against prostate cancer and its underlying mechanism remain unknown. In this study, a network pharmacology-based approach was used to explore the multiple ingredients and targets of EF. Through protein-protein interaction (PPI), Gene Ontology (GO) enrichment, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses, the potential targets and corresponding ingredients of EF against prostate cancer cells were obtained. CCK8 and colony formation assays were performed to evaluate the antiproliferative effect of the active compounds on DU145 cells. Cell cycle analysis, Annexin V-FITC/PI staining assay, and Hoechst 33258 staining assay were used to explore the way of evodiamine-induced cell death. The capacities of cell migration after evodiamine treatment were evaluated by wound-healing assay. PharmMapper database was used to predict the potential targets of evodiamine against cancer cell migration. Western blot assay was performed to investigate the signaling pathway through which evodiamine inhibits cell proliferation and migration. The binding of evodiamine to PI3K and AKT was verified by molecular docking. As a consequence, 24 active compounds and 141 corresponding targets were obtained through a network pharmacology-based approach. The results of PPI analysis, GO enrichment, and KEGG pathway enrichment indicated that molecules in the PI3K/AKT/NF-κB signaling pathway were the potential targets of EF against prostate cancer, and evodiamine was the potential active compound. In vitro study demonstrated that evodiamine displays antiproliferative effect on DU145 cells obviously. Evodiamine induces G2/M cell cycle arrest by Cdc25c/CDK1/cyclin B1 signaling. Additionally, evodiamine also promotes mitochondrial apoptosis and inhibits cell migration through PI3K/AKT/NF-κB signaling in DU145 cells. In conclusion, evodiamine is the active compound of EF to inhibit proliferation and migration of prostate cancer through PI3K/AKT/NF-κB signaling pathway, indicating that evodiamine may serve as a potential lead drug for prostate cancer treatment.
Collapse
|
30
|
Usman M, Khan WR, Yousaf N, Akram S, Murtaza G, Kudus KA, Ditta A, Rosli Z, Rajpar MN, Nazre M. Exploring the Phytochemicals and Anti-Cancer Potential of the Members of Fabaceae Family: A Comprehensive Review. Molecules 2022; 27:molecules27123863. [PMID: 35744986 PMCID: PMC9230627 DOI: 10.3390/molecules27123863] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/05/2022] [Accepted: 06/09/2022] [Indexed: 02/06/2023] Open
Abstract
Cancer is the second-ranked disease and a cause of death for millions of people around the world despite many kinds of available treatments. Phytochemicals are considered a vital source of cancer-inhibiting drugs and utilize specific mechanisms including carcinogen inactivation, the induction of cell cycle arrest, anti-oxidant stress, apoptosis, and regulation of the immune system. Family Fabaceae is the second most diverse family in the plant kingdom, and species of the family are widely distributed across the world. The species of the Fabaceae family are rich in phytochemicals (flavonoids, lectins, saponins, alkaloids, carotenoids, and phenolic acids), which exhibit a variety of health benefits, especially anti-cancer properties; therefore, exploration of the phytochemicals present in various members of this family is crucial. These phytochemicals of the Fabaceae family have not been explored in a better way yet; therefore, this review is an effort to summarize all the possible information related to the phytochemical status of the Fabaceae family and their anti-cancer properties. Moreover, various research gaps have been identified with directions for future research.
Collapse
Affiliation(s)
- Muhammad Usman
- Department of Botany, Government College University Lahore, Katchery Road, Lahore 54000, Pakistan; (M.U.); (N.Y.)
| | - Waseem Razzaq Khan
- Institut Ekosains Borneo, Universiti Putra Malaysia Kampus Bintulu, Bintulu 97008, Malaysia;
| | - Nousheen Yousaf
- Department of Botany, Government College University Lahore, Katchery Road, Lahore 54000, Pakistan; (M.U.); (N.Y.)
| | - Seemab Akram
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Ghulam Murtaza
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China;
| | - Kamziah Abdul Kudus
- Department of Forestry Science and Biodiversity, Faculty of Forestry and Environment, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Allah Ditta
- Department of Environmental Sciences, Shaheed Benazir Bhutto University Sheringal, Upper Dir 18000, Pakistan
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
- Correspondence: or (A.D.); (M.N.)
| | - Zamri Rosli
- Department of Forestry Science, Faculty of Agriculture and Forestry Sciences, Universiti Putra Malaysia Kampus Bintulu, Bintulu 97008, Malaysia;
| | - Muhammad Nawaz Rajpar
- Department of Forestry, Faculty of Life Sciences, SBBU Sheringal, Dir Upper 18000, Pakistan;
| | - Mohd Nazre
- Department of Forestry Science and Biodiversity, Faculty of Forestry and Environment, Universiti Putra Malaysia, Serdang 43400, Malaysia;
- Correspondence: or (A.D.); (M.N.)
| |
Collapse
|
31
|
Okuno K, Garg R, Yuan YC, Tokunaga M, Kinugasa Y, Goel A. Berberine and Oligomeric Proanthocyanidins Exhibit Synergistic Efficacy Through Regulation of PI3K-Akt Signaling Pathway in Colorectal Cancer. Front Oncol 2022; 12:855860. [PMID: 35600365 PMCID: PMC9114748 DOI: 10.3389/fonc.2022.855860] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Naturally occurring dietary botanicals offer time-tested safety and anti-cancer efficacy, and a combination of certain compounds has shown to overcome the elusive chemotherapeutic resistance, which is of great significance for improving the mortality of patients with colorectal cancer (CRC). Accordingly, herein, we hypothesized that berberine (BBR) and oligomeric proanthocyanidins (OPCs) might regulate synergistically multiple oncogenic pathways to exert a superior anti-cancer activity in CRC. METHODS We performed a series of cell culture studies, followed by their interrogation in patient-derived organoids to evaluate the synergistic effect of BBR and OPCs against CRC. In addition, by performing whole genome transcriptomic profiling we identified the key targeted genes and pathways regulated by the combined treatment. RESULTS We first demonstrated that OPCs facilitated enhanced cellular uptake of BBR in CRC cells by measuring the fluorescent signal of BBR in cells treated individually or their combination. The synergism between BBR and OPCs were investigated in terms of their anti-tumorigenic effect on cell viability, clonogenicity, migration, and invasion. Furthermore, the combination treatment potentiated the cellular apoptosis in an Annexin V binding assay. Transcriptomic profiling identified oncogene MYB in PI3K-AKT signaling pathway might be critically involved in the anti-tumorigenic properties of the combined treatment. Finally, we successfully validated these findings in patient-derived CRC tumor organoids. CONCLUSIONS Collectively, we for the first time demonstrate that a combined treatment of BBR and OPCs synergistically promote the anti-tumorigenic properties in CRC possibly through the regulation of cellular apoptosis and oncogene MYB in the PI3K-Akt signaling pathway.
Collapse
Affiliation(s)
- Keisuke Okuno
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Monrovia, CA, United States
- Department of Gastrointestinal Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Rachana Garg
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Monrovia, CA, United States
| | - Yate-Ching Yuan
- Translational Bioinformatics, Center for Informatics, City of Hope, Duarte, CA, United States
| | - Masanori Tokunaga
- Department of Gastrointestinal Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yusuke Kinugasa
- Department of Gastrointestinal Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Monrovia, CA, United States
- City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| |
Collapse
|
32
|
Herbal Medicines against Hydatid Disease: A Systematic Review (2000-2021). Life (Basel) 2022; 12:life12050676. [PMID: 35629345 PMCID: PMC9145516 DOI: 10.3390/life12050676] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/28/2022] [Accepted: 04/28/2022] [Indexed: 11/16/2022] Open
Abstract
Echinococcosis is a serious public health issue that affects people and livestock all over the world. Many synthetic and natural products have been examined in vitro and in vivo on Echinococcus species but only a few are used clinically, however, they may cause some complications and side effects. To overcome these limitations, new horizons of herbal drugs to cure echinococcosis are opening with every passing day. To summarize the developments during the last 21 years, we conducted this review of the literature to identify medicinal herbs utilized throughout the world that have anti-Echinococcus activity. From 2000 to 2021, data were carefully obtained from four English databases: Science Direct, PubMed, Scopus, and OpenGrey. Botanical name, extraction technique, extract quantities, efficacy, duration of treatment, year of publication, and half-maximal inhibitory concentration (IC50) values were all well noted. Ninety-one published papers, with 78 in vitro and 15 in vivo, fulfilled our selection criteria. Fifty-eight different plant species were thoroughly tested against Echinococcus granulosus. Zataria multiflora, Nigella sativa, Berberis vulgaris, Zingiber officinale (ginger), and Allium sativum were the most often utilized anti-Echinococcus herbs and the leaves of the herbs were extensively used. The pooled value of IC50 was 61 (95% CI 60−61.9) according to the random effect model and a large degree of diversity among studies was observed. The current systematic study described the medicinal plants with anti-Echinococcus activity, which could be investigated in future experimental and clinical studies to identify their in vivo efficacy, lethal effects, and mechanisms of action.
Collapse
|
33
|
Hussain A, Bourguet-Kondracki ML, Hussain F, Rauf A, Ibrahim M, Khalid M, Hussain H, Hussain J, Ali I, Khalil AA, Alhumaydhi FA, Khan M, Hussain R, Rengasamy KRR. The potential role of dietary plant ingredients against mammary cancer: a comprehensive review. Crit Rev Food Sci Nutr 2022; 62:2580-2605. [DOI: 10.1080/10408398.2020.1855413] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Amjad Hussain
- Department of Chemistry, University of Okara, Okara, Pakistan
- Laboratoire Molécules de Communication et Adaptation des Micro-organismes, UMR 7245 MNHN-CNRS, Muséum National d’Histoire Naturelle, Paris, France
- Department of Applied Chemistry, Government College University, Faisalabad, Pakistan
| | - Marie-Lise Bourguet-Kondracki
- Laboratoire Molécules de Communication et Adaptation des Micro-organismes, UMR 7245 MNHN-CNRS, Muséum National d’Histoire Naturelle, Paris, France
| | - Farhad Hussain
- Department of Applied Chemistry, Government College University, Faisalabad, Pakistan
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Anbar, Khyber Pukhtanuk (KP), Pakistan
| | - Muhammad Ibrahim
- Department of Applied Chemistry, Government College University, Faisalabad, Pakistan
| | - Muhammad Khalid
- Department of Chemistry, Khwaja Fareed University of Engineering & Information Technology, Punjab, Pakistan
| | - Hidayat Hussain
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Halle (Salle), Germany
| | - Javid Hussain
- Department of Biological Sciences & Chemistry, College of Arts and Sciences, University of Nizwa, Nizwa, Sultanate of Oman
| | - Iftikhar Ali
- Department of Chemistry, Karakoram International University, Gilgit, Pakistan
| | - Anees Ahmed Khalil
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Muhammad Khan
- Department of Chemistry, University of Okara, Okara, Pakistan
| | - Riaz Hussain
- Department of Chemistry, University of Okara, Okara, Pakistan
| | - Kannan R. R. Rengasamy
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
- Faculty of Environment and Chemical Engineering, Duy Tan University, Da Nang, Vietnam
- Indigenous Knowledge Systems Centre, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| |
Collapse
|
34
|
Mahindrakar KV, Rathod VK. Ultrasound-assisted intensified aqueous extraction of phenolics from waste Syzygium cumini leaves: Kinetic studies and evaluation of antioxidant, antidiabetic and anticancer potential. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101547] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Kola P, Metowogo K, Manjula SN, Katawa G, Elkhenany H, Mruthunjaya KM, Eklu-Gadegbeku K, Aklikokou KA. Ethnopharmacological evaluation of antioxidant, anti-angiogenic, and anti-inflammatory activity of some traditional medicinal plants used for treatment of cancer in Togo/Africa. JOURNAL OF ETHNOPHARMACOLOGY 2022; 283:114673. [PMID: 34571077 DOI: 10.1016/j.jep.2021.114673] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/07/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cancer is a multistep disease and its management is exceedingly expensive. Nowadays medicinal plants are gaining more attention in drug discovery and approximately 70% of anticancer drugs were developed from natural products or plants. A strong candidate from medicinal plant with anticancer potential should have four major properties: antioxidant, anti-inflammatory, anti-angiogenic, and cytotoxic activities. AIM OF THE STUDY In order to assess Togolese traditional healer's claims about the anticancer potential of medicinal plants and obtain candidate plants for anticancer drug discovery, some species were selected from surveys and evaluated for their antioxidant, anti-inflammatory, anti-angiogenic and cytotoxic activities. METHODS Four species, Cochlospermum planchonii (CP), Piliostigma thonningii (PT), Paullinia pinnata (PP), and Securidaca longipedunculata (SL) were selected and analyzed to detect the phytochemical components. The mentioned bioactivities were evaluated using in vitro, ex vivo and in vivo assays. RESULTS Relative to SL extract, CP and PT have shown significantly high polyphenols and flavonoids content. The DPPH, FRAP, and TAC of the extracts revealed that CP, PT, and PP have a potent antioxidant effect compared to SL. MDA analysis revealed the same antioxidant activity as CP, PT and PP showed a minor MDA level. The egg albumin denaturation assay showed that IC50 of CP and PP was significantly higher than control (P < 0.05). In contrast, the Bovine Serum Albumin (BSA) results showed a nonsignificant effect (P > 0.05). Notably, SL extract was nonsignificant to control in both Egg Albumin and BSA. Furthermore, angiogenesis assay showed that SL at 50 μg/ml and PP at 100 μg/ml effectively reduced the number of blood vessels than control and showed a potent anti-angiogenic effect (2.7-fold and 2.5-fold, respectively, P < 0.05). No cytotoxicity on PBMC was reported for CP, PP, and PT up to 1000 μg/ml, whereas SL at 1000 μg/ml exhibit benign cytotoxicity (P < 0.0001). CONCLUSION This study provided in vitro evidence supporting further evaluation on cancer cell lines and tumors in vivo.
Collapse
Affiliation(s)
- P Kola
- Research Unit Pathophysiology-Bioactive Substances and Safety, Faculty of Sciences, University of Lome, 01 BP: 1515, Lome, Togo; Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, 570015, India; Department of Pharmacognosy, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, 570015, India.
| | - K Metowogo
- Research Unit Pathophysiology-Bioactive Substances and Safety, Faculty of Sciences, University of Lome, 01 BP: 1515, Lome, Togo
| | - S N Manjula
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, 570015, India
| | - G Katawa
- Unité de Recherche en Immunologie et Immunomodulation (UR2IM), Université de Lomé, 01 BP: 1515, Lome, Togo
| | - H Elkhenany
- Department of Surgery, Faculty of Veterinary Medicine, Alexandria University, Alexandria, 22785, Egypt
| | - K M Mruthunjaya
- Department of Pharmacognosy, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, 570015, India
| | - K Eklu-Gadegbeku
- Research Unit Pathophysiology-Bioactive Substances and Safety, Faculty of Sciences, University of Lome, 01 BP: 1515, Lome, Togo
| | - K A Aklikokou
- Research Unit Pathophysiology-Bioactive Substances and Safety, Faculty of Sciences, University of Lome, 01 BP: 1515, Lome, Togo
| |
Collapse
|
36
|
Fofana S, Ouédraogo M, Esposito RC, Ouedraogo WP, Delporte C, Van Antwerpen P, Mathieu V, Guissou IP. Systematic Review of Potential Anticancerous Activities of Erythrina senegalensis DC (Fabaceae). PLANTS (BASEL, SWITZERLAND) 2021; 11:plants11010019. [PMID: 35009024 PMCID: PMC8747466 DOI: 10.3390/plants11010019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/11/2021] [Accepted: 12/16/2021] [Indexed: 05/04/2023]
Abstract
The objective of this study was to carry out a systematic review of the substances isolated from the African medicinal plant Erythrina senegalensis, focusing on compounds harboring activities against cancer models detailed in depth herein at both in vitro and in vivo preclinical levels. The review was conducted through Pubmed and Google Scholar. Nineteen out of the forty-two secondary metabolites isolated to date from E. senegalensis displayed interesting in vitro and/or in vivo antitumor activities. They belonged to alkaloid (Erysodine), triterpenes (Erythrodiol, maniladiol, oleanolic acid), prenylated isoflavonoids (senegalensin, erysenegalensein E, erysenegalensein M, alpinumisoflavone, derrone, warangalone), flavonoids (erythrisenegalone, senegalensein, lupinifolin, carpachromene) and pterocarpans (erybraedine A, erybraedine C, phaseollin). Among the isoflavonoids called "erysenegalensein", only erysenealenseins E and M have been tested for their anticancerous properties and turned out to be cytotoxic. Although the stem bark is the most frequently used part of the plant, all pterocarpans were isolated from roots and all alkaloids from seeds. The mechanisms of action of its metabolites include apoptosis, pyroptosis, autophagy and mitophagy via the modulation of cytoplasmic proteins, miRNA and enzymes involved in critical pathways deregulated in cancer. Alpinumisoflavone and oleanolic acid were studied in a broad spectrum of cancer models both in vitro and in preclinical models in vivo with promising results. Other metabolites, including carpachromen, phaseollin, erybraedin A, erysenegalensein M and maniladiol need to be further investigated, as they display potent in vitro effects.
Collapse
Affiliation(s)
- Souleymane Fofana
- Laboratory of Drug Science, Higher Institute of Health Sciences (INSSA), Nazi BONI University, Bobo-Dioulasso P.O. Box 1091, Burkina Faso;
| | - Moussa Ouédraogo
- Laboratory of Drug Development (LADME), Training and Research Unit, Health Sciences, Joseph KI-ZERBO University, Ouagadougou P.O. Box 7021, Burkina Faso; (M.O.); (W.P.O.)
| | - Rafaèle Calvo Esposito
- Department of Pharmacotherapy and Pharmaceuticals, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium;
- Protein Chemistry Unit, Department of General Chemistry I, Faculty of Medicine, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Windbedema Prisca Ouedraogo
- Laboratory of Drug Development (LADME), Training and Research Unit, Health Sciences, Joseph KI-ZERBO University, Ouagadougou P.O. Box 7021, Burkina Faso; (M.O.); (W.P.O.)
| | - Cédric Delporte
- RD3-Pharmacognosy, Bioanalysis and Drug Discovery Unit and Analytical Platform, Faculty of Pharmacy, Universite’ Libre de Bruxelles (ULB), 1050 Brussels, Belgium; (C.D.); (P.V.A.)
| | - Pierre Van Antwerpen
- RD3-Pharmacognosy, Bioanalysis and Drug Discovery Unit and Analytical Platform, Faculty of Pharmacy, Universite’ Libre de Bruxelles (ULB), 1050 Brussels, Belgium; (C.D.); (P.V.A.)
| | - Véronique Mathieu
- Department of Pharmacotherapy and Pharmaceuticals, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium;
- ULB Cancer Research Center, Université Libre de Bruxelles (ULB), 1050 Bruxelles, Belgium
- Correspondence: (V.M.); (I.P.G.); Tel.: +32-478-31-73-88 (V.M.)
| | - Innocent Pierre Guissou
- Faculty of Health Sciences, Saint Thomas d’Aquin University, Ouagadougou P.O. Box 10212, Burkina Faso
- Correspondence: (V.M.); (I.P.G.); Tel.: +32-478-31-73-88 (V.M.)
| |
Collapse
|
37
|
Abstract
Tomentosin is a natural compound known for its presence in some medicinal plants of the Asteraceae family such as Inula viscosa. Recent studies have highlighted its anticancer and anti-inflammatory properties. Its anticancer mechanisms are unique and act at different levels ranging from cellular organization to molecular transcriptional factors and epigenetic modifications. Tomentosin’s possession of the modulatory effect on telomerase expression on tumor cell lines has captured the interest of researchers and spurred a more robust study on its anticancer effect. Since inflammation has a close link with cancer disease, this natural compound appears to be a potential cancer-fighting drug. Indeed, its recently demonstrated anti-inflammatory action can be considered as a starting point for its evaluation as an anticancer chemo-preventive agent
Collapse
|
38
|
Use of complementary traditional phytotherapy to manage cancer in Morocco: A decade-long review of ethnopharmacological studies. J Herb Med 2021. [DOI: 10.1016/j.hermed.2021.100494] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
39
|
Burlacu E, Tanase C. Anticancer Potential of Natural Bark Products-A Review. PLANTS 2021; 10:plants10091895. [PMID: 34579427 PMCID: PMC8467168 DOI: 10.3390/plants10091895] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/02/2021] [Accepted: 09/08/2021] [Indexed: 12/22/2022]
Abstract
Cell biology, plant-based extracts, structural chemistry, and laboratory in vitro or in vivo experiments are the principal aspects or interfaces that can contribute to discovering new possibilities in cancer therapy and to developing improved chemotherapeutics. Forestry residues can be used for their wealthy resource in polyphenols and other phytoconstituents known for anticancer properties. This review is designed to bring together information on the in vitro or in vivo anticancer potential of woody vascular plants especially the bark extracts (BE) and biosynthesized metallic nanoparticles (BMN) using bark extracts. Type of extracts, main phytoconstituents found in extracts responsible for the anticancer activity, and targeted cancerous cell lines were followed. The literature data were collected via Clarivate Analytics, Science Direct, PubMed, and Google Academic (2011-2021). The search terms were: bark extracts, metallic nanoparticles, silver nanoparticles, gold nanoparticles, anticancer, cytotoxic activity, antiproliferative effect, and antimetastatic potential in vitro and in vivo. All of the search terms listed above were used in different combinations. The literature data highlight the efficaciousness of the BE and BMN as anticancer agents in in vitro experiments and showed the mechanism of action and their advantage of nontoxicity on normal cells. In vitro testing has shown promising results of the BE and BMN effect on different cancer cell lines. In vivo testing is lacking and more data is necessary for drug development on animal models.
Collapse
Affiliation(s)
- Ema Burlacu
- Residency Department, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology of Târgu Mureș, 38 Gheorghe Marinescu Street, 540139 Târgu Mureș, Romania;
| | - Corneliu Tanase
- Department of Pharmaceutical Botany, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology of Târgu Mureș, 38 Gheorghe Marinescu Street, 540139 Târgu Mureș, Romania
- Correspondence: ; Tel.:+40-744-215-543
| |
Collapse
|
40
|
Anjum S, Hashim M, Malik SA, Khan M, Lorenzo JM, Abbasi BH, Hano C. Recent Advances in Zinc Oxide Nanoparticles (ZnO NPs) for Cancer Diagnosis, Target Drug Delivery, and Treatment. Cancers (Basel) 2021; 13:4570. [PMID: 34572797 PMCID: PMC8468934 DOI: 10.3390/cancers13184570] [Citation(s) in RCA: 167] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 12/24/2022] Open
Abstract
Cancer is regarded as one of the most deadly and mirthless diseases and it develops due to the uncontrolled proliferation of cells. To date, varieties of traditional medications and chemotherapies have been utilized to fight tumors. However, their immense drawbacks, such as reduced bioavailability, insufficient supply, and significant adverse effects, make their use limited. Nanotechnology has evolved rapidly in recent years and offers a wide spectrum of applications in the healthcare sectors. Nanoscale materials offer strong potential for curing cancer as they pose low risk and fewer complications. Several metal oxide NPs are being developed to diagnose or treat malignancies, but zinc oxide nanoparticles (ZnO NPs) have remarkably demonstrated their potential in the diagnosis and treatment of various types of cancers due to their biocompatibility, biodegradability, and unique physico-chemical attributes. ZnO NPs showed cancer cell specific toxicity via generation of reactive oxygen species and destruction of mitochondrial membrane potential, which leads to the activation of caspase cascades followed by apoptosis of cancerous cells. ZnO NPs have also been used as an effective carrier for targeted and sustained delivery of various plant bioactive and chemotherapeutic anticancerous drugs into tumor cells. In this review, at first we have discussed the role of ZnO NPs in diagnosis and bio-imaging of cancer cells. Secondly, we have extensively reviewed the capability of ZnO NPs as carriers of anticancerous drugs for targeted drug delivery into tumor cells, with a special focus on surface functionalization, drug-loading mechanism, and stimuli-responsive controlled release of drugs. Finally, we have critically discussed the anticancerous activity of ZnO NPs on different types of cancers along with their mode of actions. Furthermore, this review also highlights the limitations and future prospects of ZnO NPs in cancer theranostic.
Collapse
Affiliation(s)
- Sumaira Anjum
- Department of Biotechnology, Kinnaird College for Women, Jail Road, Lahore 54000, Pakistan; (M.H.); (S.A.M.); (M.K.)
| | - Mariam Hashim
- Department of Biotechnology, Kinnaird College for Women, Jail Road, Lahore 54000, Pakistan; (M.H.); (S.A.M.); (M.K.)
| | - Sara Asad Malik
- Department of Biotechnology, Kinnaird College for Women, Jail Road, Lahore 54000, Pakistan; (M.H.); (S.A.M.); (M.K.)
| | - Maha Khan
- Department of Biotechnology, Kinnaird College for Women, Jail Road, Lahore 54000, Pakistan; (M.H.); (S.A.M.); (M.K.)
| | - José M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Avenida de Galicia 4, Parque Tecnológico de Galicia, 32900 San Cibrao das Viñas, Ourense, Spain;
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
| | - Bilal Haider Abbasi
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 15320, Pakistan;
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRAE USC1328, Eure & Loir Campus, University of Orleans, 28000 Chartres, France;
| |
Collapse
|
41
|
Alnomasy S, Al-Awsi GRL, Raziani Y, Albalawi AE, Alanazi AD, Niazi M, Mahmoudvand H. Systematic review on medicinal plants used for the treatment of Giardia infection. Saudi J Biol Sci 2021; 28:5391-5402. [PMID: 34466120 PMCID: PMC8381067 DOI: 10.1016/j.sjbs.2021.05.069] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 11/30/2022] Open
Abstract
Background However, broad adoption of herbal remedies for giardiasis is at present hampered by uncertain findings of investigation not always sufficiently powered. This study was aimed at systematically reviewing the existing literature in herbal medicines to treat giardiasis. Methods This review was carried out 06- PRISMA guideline and registered in the CAMARADES-NC3Rs Preclinical Systematic Review and Meta-Analysis Facility (SyRF) database. The search was performed in five databases which are Scopus, PubMed, Web of Science, EMBASE, and Google Scholar without time limitation for all published articles (in vitro, in vivo, and clinical studies). The searched words and terms were: “Giardia”, “giardiasis”, “extract”, “essential oil”, “herbal medicines”, “anti-Giardia”, “In vitro”, “In vivo”, “clinical trial” etc. Results Out of 1585 papers, 40 papers including 28 in vitro (70.0%), 7 in vivo (17.5%), 2 in vitro/ in vivo (5.0%), and 3 clinical trials (7.5%) up to 2020, met the inclusion criteria for discussion in this systematic review. The most widely used medicinal plants against Giardia infection belong to the family Lamiaceae (30.0%) followed by Asteraceae (13.5%), Apiaceae (10.5%). The most common parts used in the studies were aerial parts (45.0%) followed by leaves (27.4%) and seeds (7.5%). The aqueous extract (30.0%), essential oil (25.4%) and hydroalcholic and methanolic (10.5%) were considered as the desired approaches of herbal extraction, respectively. Conclusion The current review showed that the plant-based anti-Giardia agents are very promising as an alternative and complementary resource for treating giardiasis since had low significant toxicity. However, more studies are required to elucidate this conclusion, especially in clinical systems.
Collapse
Affiliation(s)
- Sultan Alnomasy
- Medical Laboratories Department, College of Applied Medical Sciences, Al- Quwayiyah, Shaqra University, Riyadh, Saudi Arabia
| | | | - Yosra Raziani
- College of Medicine, Department of Nursing, Komar University of Science and Technology, Sulaymaniyah, Kurdistan Region, Iraq
| | | | - Abdullah D Alanazi
- Department of Biological Sciences, Faculty of Science and Humanities, Shaqra University, P.O. Box 1040, Ad-Dawadimi 11911, Saudi Arabia
| | - Massumeh Niazi
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Hossein Mahmoudvand
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
42
|
Bhat MN, Singh B, Surmal O, Singh B, Shivgotra V, Musarella CM. Ethnobotany of the Himalayas: Safeguarding Medical Practices and Traditional Uses of Kashmir Regions. BIOLOGY 2021; 10:851. [PMID: 34571728 PMCID: PMC8465354 DOI: 10.3390/biology10090851] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/06/2021] [Accepted: 08/23/2021] [Indexed: 02/07/2023]
Abstract
The present study was carried out to enlist the medicinal plants used by the local inhabitants of developing countries such as India, and the district of Kupwara of the Kashmir Himalaya has been targeted. Our research is one of the first study focusing on the statistical evaluation of the cross-cultural analysis between three different communities i.e., Dard, Kashmiri and Gujjar, of the study area. Sampling was carried out in eight villages in 2017 to 2020, and data were collected from 102 informants based on walking transects, to collect plant specimens, and semi-structured interviews. The medical usages of all collected taxa were grouped into 15 disease categories and 81 biomedical ailments. In this study, we documented around 107 plant taxa belonging to 52 families from the local inhabitants of the Kashmir Himalaya, which regulate the livelihood of the people and support cultural ecosystem services. Asteraceae, Rosaceae, Lamiaceae, Malvaceae, Ranunculaceae, Poaceae, Solanaceae, Polygonaceae, Plantaginaceae and Brassicaceae are the top most dominant families. Herbaceous groups of plants were more common than trees and shrubs, and 71.96% of herb taxa were employed as medicine. Liliaceae, Caprifoliaceae and Portulacaceae (FUV = 0.24 each) have the highest family use value (FUV). The most prominent family was Asteraceae (seven genera, nine taxa), followed by Rosaceae and Lamiaceae (six genera, six taxa each). Persicaria Mill., Rheum L., Aconitum L. and Artemisia L. were prominent genera. Valeriana jatamansi Jones ex Roxb. (47UR), Fritillaria cirrhosa D. Don (45UR), Arisaema jacquemontii Blume (37UR), Asparagus racemosus Willd. (36UR) and Rumex acetosa L. (35UR) were the most important plant taxa with reference to use-reports. The ethnomedicinal applications of Aesculus indica Wall. ex Cambess., Solanum pseudocapsicum L., Ranunculus hirtellus Royle and Cormus domestica (L.) Spach plant taxa are reported here for the first time from the Himalayan Kashmiri people. We recommend further research on ethnopharmacological application of these newly recorded ethnobotanical plants. The medical usage of the plant was limited to different parts of the plant. In terms of the usage percentage, whole plant (26.17%), leaves (24.30%) and roots (19.63%) were found to have the highest utilization. The powder form (40.19%) was the most frequently employed method of drug/medicine preparation, followed by the utilization of extracted juice and/or other extracts (22.43%). The ICF values range from 0.85 to 1.00. Their use to remedy parasitic problems (PAR) and insect bites (IB) (ICF = 1.0 each) had the maximum consensus mentioned by the informants, although the number of taxa employed under this category was very limited. The different plant taxa used for the treatment of the gastrointestinal problems (GAS) was the most prominent disease category (262 URs, 16.19%, 25 taxa, ICF = 0.90). About 65% of the plant taxa studied is indigenous to the Asia or Himalayan regions, and around 35% is found to be exotic in nature. A strong positive correlation was found between age, gender, educational qualification and medicinal plant knowledge. No significant association was between people of different communities interviewed in terms of medical knowledge of the plants, p = 0.347 (>0.05) and χ2 = 2.120. No significant difference was found between the number of species documented concerning gender as p = 0.347 (>0.05) and χ2 =0.885. This study provides the comprehensive status of ethnomedicinal knowledge among three different communities of the study area. This study provided an impetus in discovering the baseline primary data for molecules which would help in drug discovery and management of various diseases, apart from conserving the genepool of plants in the investigated area.
Collapse
Affiliation(s)
- Mudasir Nazir Bhat
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India; (M.N.B.); (O.S.)
- Plant Sciences (Biodiversity and Applied Botany Division), CSIR-Indian Institute of Integrative Medicine, Jammu 180001, Jammu and Kashmir, India
| | - Bikarma Singh
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India; (M.N.B.); (O.S.)
- Botanic Garden Division, CSIR-National Botanical Research Institute (NBRI), Rana Pratap Marg, Lucknow 226001, Uttar Pradesh, India
| | - Opender Surmal
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India; (M.N.B.); (O.S.)
- Plant Sciences (Biodiversity and Applied Botany Division), CSIR-Indian Institute of Integrative Medicine, Jammu 180001, Jammu and Kashmir, India
| | - Bishander Singh
- Department of Botany, Veer Kunwar Singh University, Ara 802301, Bihar, India;
| | - Vijay Shivgotra
- Department of Biostatistics, University of Jammu, Baba Saheb Ambedkar Road, Jammu 180006, Jammu and Kashmir, India;
| | - Carmelo Maria Musarella
- Department of Agraria, Mediterranea University of Reggio Calabria, Feo di Vito Snc, 89122 Reggio Calabria, Italy;
| |
Collapse
|
43
|
Mukaila YO, Oladipo OT, Ogunlowo I, Ajao AAN, Sabiu S. Which Plants for What Ailments: A Quantitative Analysis of Medicinal Ethnobotany of Ile-Ife, Osun State, Southwestern Nigeria. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:5711547. [PMID: 34394387 PMCID: PMC8355999 DOI: 10.1155/2021/5711547] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/16/2021] [Accepted: 07/23/2021] [Indexed: 11/19/2022]
Abstract
Studies on medicinal ethnobotany in rural areas and communities are important for documentation and generation of indigenous knowledge on the medicinal use of plants, as well as identification of new botanicals of pharmacological significance. This paper presents, for the first time, the quantitative ethnobotanical uses of medicinal plants in Ile-Ife, Osun State, Nigeria. The ethnobotanical survey was carried out by conducting semistructured interviews with 70 informants/collaborators. Data were analyzed using various quantitative indices, namely, Ethnobotanical Knowledge Index (EKI), Species Popularity Index (SPI), Relative Frequency of Citation (RFC), Cultural Importance Index (CII), Informant Consensus Factor (FIC), Fidelity Level (FL), and Species Therapeutic Index (STI). A total of 87 plant species belonging to 43 families were documented along with their medicinal uses. Euphorbiaceae is the most implicated family (9%) of the plants documented, and herbs (36%) were the prevalent life form while leaf (46%) was the most used plant part. Fevers are the most common diseases treated with the medicinal plants with 1012 use-reports, followed by skin diseases with 314 use-reports while the most common mode of preparation is decoction (37%). Telfaria occidentalis has the highest SPI and RFC (0.99, 0.99) while Khaya grandifoliola has the highest CII of 1.91. The community has EKI of 0.57 indicating a good knowledge of medicinal plants around them. Species such as Citrus aurantifolia, Khaya grandifoliola, and Ocimum gratissimum have high quantitative indices suggesting that they are effective in the treatment of various diseases in the community and therefore should be considered for pharmacological studies to validate their folkloric usages.
Collapse
Affiliation(s)
- Yusuf Ola Mukaila
- Department of Botany, Obafemi Awolowo University, Ile-Ife 220005, Osun State, Nigeria
| | | | - Ifeoluwa Ogunlowo
- Department of Pharmacognosy, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife 220005, Osun State, Nigeria
| | - Abdulwakeel Ayokun-nun Ajao
- Department of Botany and Plant Biotechnology, University of Johannesburg, P.O. Box 524, Auckland Park 2006, Johannesburg, South Africa
| | - Saheed Sabiu
- Department of Biotechnology and Food Science, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa
| |
Collapse
|
44
|
Aliyu-Amoo H, Isa HI, Njoya EM, McGaw LJ. Antiproliferative effect of extracts and fractions of the root of Terminalia avicennioides (Combretaceae) Guill and Perr. on HepG2 and Vero cell lines. CLINICAL PHYTOSCIENCE 2021. [DOI: 10.1186/s40816-021-00307-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Terminalia avicennioides Guill and Perr (Combretaceae) is an important West African medicinal plant. The plant is used locally against microbes and parasites in both humans and animals and studies have demonstrated its cytotoxicity potential. Thus, this study was carried out to test the cytotoxic effect of the extracts and fractions of the root of the medicinal plant Terminalia avicennioides Guill and Perr (Combretaceae) in two different cell lines.
Methods
Methanol, ethanol, 30 % ethanol, hot water and cold water extracts and ethylacetate, hexane, chloroform, butanol and residual water fractions, were evaluated at 1000, 750, 500, 250, 100 and 50 µg/mL concentrations, with doxorubicin as positive control. The cells were incubated with the extracts for 48 h at 37 °C in a 5 % CO2 humidified incubator. The inhibition of cell viability, determined with the methyl blue thiazole tetrazolium bromide (MTT) assay, was used to assess the anti-proliferative effect of the extracts, in normal Vero Monkey kidney and human liver cancer (HepG2) cell lines.
Results
There was a concentration-dependent inhibition of cell viability in both the HepG2 and Vero cell lines. For HepG2 cells, antiproliferative effect was highest for the hexane fraction (viability ranged from 19.63 ± 1.10 % to 70.30 ± 1.78 % for 1000 and 50 µg/mL, respectively. For Vero cells, the highest antiproliferative effect, at 1000 µg/mL, was with hexane fraction (cell viability 21.37 ± 3.50 %), while at 50 µg/mL the chloroform fraction demonstrated the highest effect (viability of 86.10 ± 1.95 %).
Conclusions
The extracts and fractions from the root of Terminalia avicennioides have antiproliferative effect on the Vero and HepG2 cell lines tested. However, the extracts and fractions were not more toxic to the HepG2 than to the Vero cells. The cytotoxic effect of stem-bark and leaf extracts could be evaluated in the future to determine its anticancer potential.
Collapse
|
45
|
Patel A, Vanecha R, Patel J, Patel D, Shah U, Bambharoliya T. Development of Natural Bioactive Alkaloids: Anticancer perspective. Mini Rev Med Chem 2021; 22:200-212. [PMID: 34254913 DOI: 10.2174/1389557521666210712111331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/11/2021] [Accepted: 04/20/2021] [Indexed: 11/22/2022]
Abstract
Cancer is a frightful disease that still poses a 'nightmare' worldwide, causing millions of casualties annually due to one of the human race's most significant healthcare challenges that requires a pragmatic treatment strategy. However, plants and plant-derived products revolutionize the field as they are quick, cleaner, eco-friendly, low-cost, effective, and less toxic than conventional treatment methods. Plants are repositories for new chemical entities and have a promising cancer research path, supplying 60% of the anticancer agents currently used. Alkaloids are important chemical compounds that serve as a rich reservoir for drug discovery and development. However, some alkaloids derived from natural herbs display anti-proliferation and antimetastatic activity on different forms of cancer, both in vitro and in vivo. Alkaloids have also been widely formulated as anticancer medications, such as camptothecin and vinblastine. Still, more research and clinical trials are required before final recommendations can be made on specific alkaloids. This review focuses on the naturally-derived bioactive alkaloids with prospective anticancer properties based on the information in the literature.
Collapse
Affiliation(s)
- Ashish Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT-Campus, Changa-388421, Anand, Gujarat, India
| | - Ravi Vanecha
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT-Campus, Changa-388421, Anand, Gujarat, India
| | - Jay Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT-Campus, Changa-388421, Anand, Gujarat, India
| | - Divy Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT-Campus, Changa-388421, Anand, Gujarat, India
| | - Umang Shah
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT-Campus, Changa-388421, Anand, Gujarat, India
| | | |
Collapse
|
46
|
Upreti S, Pandey SC, Bisht I, Samant M. Evaluation of the target-specific therapeutic potential of herbal compounds for the treatment of cancer. Mol Divers 2021; 26:1823-1835. [PMID: 34240331 DOI: 10.1007/s11030-021-10271-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 07/02/2021] [Indexed: 11/25/2022]
Abstract
Cancer is among one of the most fatal diseases leading to millions of death around the globe. Chemotherapy is the most popular conventional approach for the treatment of cancer. However, this is usually associated with various side effects and puts the patients under extreme physical and mental stress. Besides, there are increasing concerns about drug resistance. Thus, to surmount these limitations, there is a need to explore some alternative treatments. Studies related to plant-derived compounds are crucial in the search for safer and more efficient treatments. Plants and their associated secondary metabolites have been a revolutionary approach in the field of cancer treatment, as they give answers to almost all the constraints faced by synthetic drugs. Various plants and associated secondary metabolites display a great prospective as cytotoxic anticancer agents due to their specific interference with validated drug targets, such as inhibitors of mitosis, topoisomerase I and II inhibitor, DNA interactive agent, protein kinase inhibitors, inhibitors of DNA synthesis. In this review, the therapeutic potential of various natural compounds and their derivatives are presented based on their molecular targets. These herbal compounds and their derivatives could provide a rich resource for novel anticancer drug development.
Collapse
Affiliation(s)
- Shobha Upreti
- Cell and Molecular Biology Laboratory, Department Of Zoology, Kumaun University, SSJ Campus, Almora, Uttarakhand, India
| | - Satish Chandra Pandey
- Cell and Molecular Biology Laboratory, Department Of Zoology, Kumaun University, SSJ Campus, Almora, Uttarakhand, India
| | - Ila Bisht
- Cell and Molecular Biology Laboratory, Department Of Zoology, Kumaun University, SSJ Campus, Almora, Uttarakhand, India
| | - Mukesh Samant
- Cell and Molecular Biology Laboratory, Department Of Zoology, Kumaun University, SSJ Campus, Almora, Uttarakhand, India.
| |
Collapse
|
47
|
Silva BO, Orlando JB, Pires CL, Hiruma-Lima CA, de Mascarenhas Gaivão I, Perazzo FF, Maistro EL. Genotoxicity induced by nerol, an essential oil present in citric plants using human peripheral blood mononuclear cells (PBMC) and HepG2/C3A cells as a model. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2021; 84:518-528. [PMID: 33761836 DOI: 10.1080/15287394.2021.1902443] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nerol (cis-3,7-dimethyl-2,6-octadien-1-ol) is a monoterpene widely used in cosmetic products, household detergents and cleaners, as well as a flavoring in several food products. Despite the high level of human exposure to nerol, an absence of studies regarding potential genetic toxicity in human cells exists. The aim of this investigation was to examine the cytotoxic and genotoxic potential of this monoterpene on human peripheral blood mononuclear cells as well as hepatic metabolizing HepG2/C3A human cell line. Cytotoxicity was assessed using trypan blue staining and MTT assay while genotoxicity was determined utilizing the comet and micronucleus test. Cytotoxicity tests showed cell viability greater than 70% for concentrations between 2.5 and 500 µg/ml. Both cell types exhibited significant DNA damage and chromosomal mutations after medium and high concentration incubation with nerol indicating that the safety of use of this monoterpene in various formulations to which humans are exposed needs to be monitored and requires more comprehensive investigations.
Collapse
Affiliation(s)
- Brian Ogushi Silva
- Speech and Hearing Therapy Department, São Paulo State University - UNESP - Faculty of Philosophy and Sciences, Marília, Brazil
| | - Juliana Botinhon Orlando
- Speech and Hearing Therapy Department, São Paulo State University - UNESP - Faculty of Philosophy and Sciences, Marília, Brazil
| | - Camila Lehnhardt Pires
- Programa De Pós-Graduação Em Biologia Geral E Aplicada - São Paulo State University (UNESP), Instituto De Biociências, Botucatu, Brazil
| | - Clélia Akiko Hiruma-Lima
- Programa De Pós-Graduação Em Biologia Geral E Aplicada - São Paulo State University (UNESP), Instituto De Biociências, Botucatu, Brazil
| | - Isabel de Mascarenhas Gaivão
- Department of Genetics and Biotechnology and Animal and Veterinary Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Fábio Ferreira Perazzo
- Institute of Environmental, Chemistry and Pharmaceutical Sciences, Federal University of São Paulo (UNIFESP), Diadema, Brazil
| | - Edson Luis Maistro
- Speech and Hearing Therapy Department, São Paulo State University - UNESP - Faculty of Philosophy and Sciences, Marília, Brazil
- Programa De Pós-Graduação Em Biologia Geral E Aplicada - São Paulo State University (UNESP), Instituto De Biociências, Botucatu, Brazil
| |
Collapse
|
48
|
Ali R, Rooman M, Mussarat S, Norin S, Ali S, Adnan M, Khan SN. A Systematic Review on Comparative Analysis, Toxicology, and Pharmacology of Medicinal Plants Against Haemonchus contortus. Front Pharmacol 2021; 12:644027. [PMID: 34040520 PMCID: PMC8141741 DOI: 10.3389/fphar.2021.644027] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 03/26/2021] [Indexed: 12/19/2022] Open
Abstract
Background:Haemonchus contortus is an important pathogenic nematode parasite and major economic constraint of small ruminants in tropics and subtropics regions. This review is an attempt to systematically address the; (a) efficacy of different plants against H. contortus by in vitro and in vivo proof; (b) toxicology, mechanism of action, and active phyto-compounds involve in anti-haemonchiasis activity; (c) and comparative analysis of plant species evaluated both in vitro and in vivo. Methods: Online databases (Google Scholar, PubMed, Scopus, and ScienceDirect) were searched and published research articles (1980–2020) were gathered and reviewed. Results: A total of 187 plant species were reported belonging to 59 families and 145 genera with Asteraceae and Fabaceae being frequently used. Out of the total plant species, 171 species were found to be evaluated in vitro and only 40 species in vivo. Twenty-four species were commonly evaluated for in vitro and in vivo anti-haemonchiasis activity. Among the reported assays, egg hatching test (EHT) and fecal egg count reduction (FECR) were the most widely used assays in vitro and in vivo, respectively. Moreover, sheep were the frequently used experimental model in vivo. After comparative analysis, Lachesiodendron viridiflorum, Corymbia citriodora, Calotropis procera, and Artemisia herba-alba were found highly effective both in vitro and in vivo. L. viridiflorum inhibited enzymatic activities and metabolic processes of the parasite and was found to be safe without toxic effects. C. citriodora was moderately toxic in vivo, however, the plant extract produced promising nematicidal effects by causing muscular disorganization and changes in the mitochondrial profile. Additionally, C. procera and A. herba-alba despite of their high anti-haemonchiasis activity were found to be highly toxic at the tested concentrations. C. procera caused perforation and tegumental disorganization along with adult worm paralysis. Nineteen compounds were reported, among which anethole and carvone completely inhibited egg hatching in vitro and significantly reduced fecal egg count, decreased male length, and reproductive capacity of female in vivo. Conclusion: This review summarized different medicinal plants owing to nematicidal activities against H. contortus eggs, larvae, and adult worms. Plants like L. viridiflorum, C. citriodora, C. procera, and A. herba-alba, while compounds anethole and carvone having promising nematicidal activities and could be an alternative source for developing novel drugs after further investigation.
Collapse
Affiliation(s)
- Rehman Ali
- Department of Zoology, Faculty of Biological Sciences, Kohat University of Science and Technology, Kohat, Pakistan
| | - Muhammad Rooman
- Department of Zoology, Hazara University Mansehra, Kohat, Pakistan
| | - Sakina Mussarat
- Department of Botanical and Environmental Sciences, Faculty of Biological Sciences, Kohat University of Science and Technology, Kohat, Pakistan
| | - Sadia Norin
- Department of Zoology, Faculty of Biological Sciences, Kohat University of Science and Technology, Kohat, Pakistan
| | - Shandana Ali
- Department of Zoology, Faculty of Biological Sciences, Kohat University of Science and Technology, Kohat, Pakistan
| | - Muhammad Adnan
- Department of Botanical and Environmental Sciences, Faculty of Biological Sciences, Kohat University of Science and Technology, Kohat, Pakistan
| | - Shahid Niaz Khan
- Department of Zoology, Faculty of Biological Sciences, Kohat University of Science and Technology, Kohat, Pakistan
| |
Collapse
|
49
|
Vidal-Gutiérrez M, Torres-Moreno H, Hernández-Gutiérrez S, Velazquez C, Robles-Zepeda RE, Vilegas W. Antiproliferative activity of standardized phytopreparations from Ibervillea sonorae (S. Watson) Greene. Steroids 2021; 169:108824. [PMID: 33727120 DOI: 10.1016/j.steroids.2021.108824] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 02/16/2021] [Accepted: 03/04/2021] [Indexed: 12/19/2022]
Abstract
Ibervillea sonorae (Cucurbitaceae) is a medicinal plant utilized in Northwest Mexico against Diabetes and cancer. This natural product is taken orally, its presentation is capsules containing the plant's dried and powdered caudices. There is no regulation or standardized dosage that allows reproducibility of its pharmacological effects. Cucurbitacins are the main group of compounds found in I. sonorae and are known for their antiproliferative activity in cancer cells. Cucurbitacin IIb (CIIb), one of the compounds present in I. sonorae, has demonstrated in experimental models with HeLa cervical cancer cells an apoptotic and anti-tumoral activity. The objective of this study is to obtain and standardize two phytopreparations of I. sonorae based on their CIIb content, evaluate their antiproliferative activity in cancer cell lines, and compare the results with those obtained with CIIb; expecting to find phytopreparations with anti-cancer potential. APCI-IT-MSn is utilized for the identification of cucurbitacins, FT-ICR-MS/MS for the quantification of CIIb, and the MTT assay for the evaluation of the antiproliferative activity. The CIIb content was 0.67% for Fito-Ison-EtOH and 1.84% for Fito-Ison-EtOAc. In both phytopreparations, six cucurbitacins have been identified, and a seventh one not previously identified. Phytopreparations were more effective against HeLa, with IC50 of 30.0 and 18.6 µg/mL for Fito-Ison-EtOH and Fito-Ison-EtOAc, respectively. This effect is lower than observed on CIIb in HeLa (5.8 µg/mL). There are no significant differences (p > 0.05) in the antiproliferative activity between Fito-Ison-EtOAc and CIIb in A549, LS180, and MDA-MB-231 cells. Phytopreparations of I. sonorae have potential for the development of anti-cancer products.
Collapse
Affiliation(s)
- Max Vidal-Gutiérrez
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Araraquara - São Paulo, Brasil. Rodovia Araraquara - Jaú, Km 1 - CEP: 14800-903; Departamento de Ciencias Químico Biológicas y de la Salud, Universidad de Sonora - Blvd. Luis Donaldo Colosio esq. Rosales S/N, Centro, Hermosillo Sonora, México - CP: 83000
| | - Heriberto Torres-Moreno
- Departamento de Ciencias Químico Biológicas y Agropecuarias, Universidad de Sonora - Avenida Universidad e Irigoyen, Caborca Sonora, México - CP:83621
| | - Salomón Hernández-Gutiérrez
- Departamento de Medicina, Universidad Panamericana - Augusto Rodin No. 498, Col. Insurgentes Mixcoac. Ciudad de México - CP: 03920
| | - Carlos Velazquez
- Departamento de Ciencias Químico Biológicas y de la Salud, Universidad de Sonora - Blvd. Luis Donaldo Colosio esq. Rosales S/N, Centro, Hermosillo Sonora, México - CP: 83000
| | - Ramón E Robles-Zepeda
- Departamento de Ciencias Químico Biológicas y de la Salud, Universidad de Sonora - Blvd. Luis Donaldo Colosio esq. Rosales S/N, Centro, Hermosillo Sonora, México - CP: 83000.
| | - Wagner Vilegas
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Araraquara - São Paulo, Brasil. Rodovia Araraquara - Jaú, Km 1 - CEP: 14800-903; Universidade Estadual Paulista (UNESP), Coastal Campus of São Vicente, São Vicente, SP Praça Infante Dom Henrique s/n, CEP 11330-205.
| |
Collapse
|
50
|
Khwaza V, Mlala S, Oyedeji OO, Aderibigbe BA. Pentacyclic Triterpenoids with Nitrogen-Containing Heterocyclic Moiety, Privileged Hybrids in Anticancer Drug Discovery. Molecules 2021; 26:molecules26092401. [PMID: 33918996 PMCID: PMC8122576 DOI: 10.3390/molecules26092401] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 11/28/2020] [Accepted: 11/29/2020] [Indexed: 12/12/2022] Open
Abstract
Pentacyclic triterpenoids are well-known phytochemicals with various biological activities commonly found in plants as secondary metabolites. The wide range of biological activities exhibited by triterpenoids has made them the most valuable sources of pharmacological agents. A number of novel triterpenoid derivatives with many skeletal modifications have been developed. The most important modifications are the formation of analogues or derivatives with nitrogen-containing heterocyclic scaffolds. The derivatives with nitrogen-containing heterocyclic compounds are among the most promising candidate for the development of novel therapeutic drugs. About 75% of FDA-approved drugs are nitrogen-containing heterocyclic moieties. The unique properties of heterocyclic compounds have encouraged many researchers to develop new triterpenoid analogous with pharmacological activities. In this review, we discuss recent advances of nitrogen-containing heterocyclic triterpenoids as potential therapeutic agents. This comprehensive review will assist medicinal chemists to understand new strategies that can result in the development of compounds with potential therapeutic efficacy.
Collapse
|