1
|
Xie X, Zhong M, Huang X, Yuan X, Mahna N, Mussagy CU, Ren M. Astaxanthin biosynthesis for functional food development and space missions. Crit Rev Biotechnol 2025; 45:923-937. [PMID: 39428346 DOI: 10.1080/07388551.2024.2410364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 07/21/2024] [Accepted: 09/11/2024] [Indexed: 10/22/2024]
Abstract
Astaxanthin (AXT), a natural carotenoid, has strong antioxidant and anti-ageing effects and can reduce ultraviolet light-induced damage to cells and DNA, stimulate the immune system, and improve cardiovascular disease prognosis. Despite its wide applications in the: nutraceutical, cosmetic, aquaculture, and pharmaceutical industries, AXT industrial production and application are hindered by natural source scarcity, low production efficiency, and high requirements. This review compares the qualitative differences of AXT derived from different natural sources, evaluates the upstream procedures for AXT expression in different chassis organisms, and investigates synthetic biology- and cell factory-based strategies for the industrial production of natural AXT. Synthetic biology is a promising novel strategy for reprogramming plants or microorganisms to produce AXT. Additionally, genetic engineering using cell factories extends beyond terrestrial applications, as it may contribute to the long-term sustainability of human health during space exploration and migration endeavors. This review provides a theoretical basis for the efficient and accurate genetic engineering of AXT from the microalga Haematococcuspluvialis, providing a valuable reference for future research on the biomanufacturing of AXT and other biological metabolites.
Collapse
Affiliation(s)
- Xiulan Xie
- Laboratory of Space Biology, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Moyu Zhong
- Laboratory of Space Biology, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Xinxin Huang
- Laboratory of Space Biology, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
- State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Xinrui Yuan
- Laboratory of Space Biology, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Nasser Mahna
- Department of Horticultural Sciences, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Cassamo Ussemane Mussagy
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Quillota, Chile
| | - Maozhi Ren
- Laboratory of Space Biology, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
- State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
2
|
Mohd Shafie AS, Kamarudin SN, Meor Mohd Affandi MMR, Siran R. Exploring astaxanthin: a comprehensive review on its pharmacokinetics properties and neuroprotective potential. Nutr Neurosci 2025:1-28. [PMID: 40359479 DOI: 10.1080/1028415x.2025.2499559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
BACKGROUND Carotenoids are naturally occurring bio-pigments found in microalgae, plants, fungi, bacteria, and various aquatic animals. They are generally classified into carotenes and xanthophylls based on their structural features. Among them, astaxanthin-a xanthophyll carotenoid-has attracted increasing attention due to its potent antioxidant, anti-inflammatory, and anti-apoptotic properties, which contribute to a range of health benefits. METHOD This review highlights the structural features, physicochemical properties, pharmacokinetics, and therapeutic potential of astaxanthin, particularly focusing on its neuroprotective effects in neurological disorders. To provide a comprehensive overview, we systematically searched published articles across Scopus, Google Scholar, PubMed, and Medline databases from inception to January 1, 2025. RESULTS Recent advancements in drug formulation and delivery technologies have enhanced astaxanthin's ability to cross the blood-brain barrier (BBB), significantly increasing its potential as a therapeutic agent for neurological diseases. CONCLUSION With its multifaceted biological effects and growing evidence of neuroprotection, astaxanthin shows great promise in the treatment of neurological disorders, particularly stroke. These findings support its future development and application in pharmaceutical strategies aimed at brain health.
Collapse
Affiliation(s)
- A S Mohd Shafie
- Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Malaysia
| | - S N Kamarudin
- Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Malaysia
| | | | - R Siran
- Neuroscience Research Group, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Malaysia
| |
Collapse
|
3
|
Adil M, Xinbo G, Cai J, Waseem M, Manzoor MF, Osei Tutu C. Investigating the role of Lactococcus lactis D1813, salinity, and dissolved oxygen on the nutritional, chromatic, and textural profile of Litopenaeus vannamei. Food Chem X 2025; 27:102404. [PMID: 40224345 PMCID: PMC11987004 DOI: 10.1016/j.fochx.2025.102404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 04/15/2025] Open
Abstract
The present study investigated the effect of L. lactis D1813, salinity (8 and 25 ppt), dissolved oxygen (8.5 and 3.5 mg/L), and freshwater shrimp reared in natural freshwater conditions (0 ppt salinity, ∼7.5 mg/L DO) without probiotic addition on its nutritional, chromatic and textural profile. Among the nutritional composition results, the highest protein, ash, and fiber contents were observed in the Huang group meat, i.e., 15.25, 4.50, and 3.99 g/100 g, respectively. Likewise, the results for the analysis of the mineral anticipated that the highest levels of K, Cu, Se, Fe, and Zn were found in Huang head group, i.e., 536, 6.3, 603, 9.2 and 4.6 mg/kg, respectively with high levels of astaxanthin, i.e., 270 μg/g. The Huang meat group also observed maximum chewiness and cohesiveness, i.e., 79.5 and 0.4, respectively. Furthermore, the results for amino acids elucidated the presence of the highest concentrations in the Huang meat group, such as isoleucine, valine, threonine, methionine, and arginine, i.e., 1.85, 1.33, 1.17, 1.44, and 1.33 g/100 g, respectively when compared with control. The highest levels of polyunsaturated fatty acids, such as eicosapentaenoic acid and docosahexaenoic acid, were observed in the Huang head group, i.e., 11.29 and 5.57 g/100 g. Our findings suggest that using L. lactis D1813 as probiotics along with the salinity and dissolved oxygen of 8 ppt and 7.5 mg/L significantly improves the nutritional profile of L. vannamei with better nutrient efficiencies. Furthermore, the study suggests probing the different probiotics in shrimp physiology, such as immune response and disease resistance.
Collapse
Affiliation(s)
- Muhammad Adil
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Guo Xinbo
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Junpeng Cai
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Muhammad Waseem
- Department of Food Science & Technology, Faculty of Agriculture & Environment, The Islamia University of Bahawalpur, Punjab, 63100, Pakistan
| | - Muhammad Faisal Manzoor
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, School of Food Science and Engineering, Foshan University, Foshan, China
- Faculty of Sciences and Technology, ILMA University, Karachi, Pakistan
| | - Crossby Osei Tutu
- Department of Family and Consumer Sciences, University of Ghana, Accra, Ghana
| |
Collapse
|
4
|
Shanaida M, Mykhailenko O, Lysiuk R, Hudz N, Balwierz R, Shulhai A, Shapovalova N, Shanaida V, Bjørklund G. Carotenoids for Antiaging: Nutraceutical, Pharmaceutical, and Cosmeceutical Applications. Pharmaceuticals (Basel) 2025; 18:403. [PMID: 40143179 PMCID: PMC11945224 DOI: 10.3390/ph18030403] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/24/2025] [Accepted: 03/06/2025] [Indexed: 03/28/2025] Open
Abstract
Background: Carotenoids are bioactive tetraterpenoid C40 pigments that are actively synthesized by plants, bacteria, and fungi. Compounds such as α-carotene, β-carotene, lycopene, lutein, astaxanthin, β-cryptoxanthin, fucoxanthin, and zeaxanthin have attracted increasing attention for their antiaging properties. They exhibit antioxidant, neuroprotective, and anti-inflammatory properties, contributing to the prevention and treatment of age-related diseases. Objectives: The aim of this study was to comprehensively analyze the pharmacological potential and biological mechanisms of carotenoids associated with age-related disorders and to evaluate their application in nutraceuticals, pharmaceuticals, and cosmeceuticals. Methods: A systematic review of studies published over the past two decades was conducted using the databases PubMed, Scopus, and Web of Science. The selection criteria included clinical, in silico, in vivo, and in vitro studies investigating the pharmacological and therapeutic effects of carotenoids. Results: Carotenoids demonstrate a variety of health benefits, including the prevention of age-related macular degeneration, cancer, cognitive decline, metabolic disorders, and skin aging. Their role in nutraceuticals is well supported by their ability to modulate oxidative stress and inflammatory pathways. In pharmaceuticals, carotenoids show promising results in formulations targeting neurodegenerative diseases and metabolic disorders. In cosmeceuticals, they improve skin health by protecting it against UV radiation and oxidative damage. However, bioavailability, optimal dosages, toxicity, and interactions with other bioactive compounds remain critical factors to maximize therapeutic efficacy and still require careful evaluation by scientists. Conclusions: Carotenoids are promising bioactive compounds for antiaging interventions with potential applications in a variety of fields. Further research is needed to optimize their formulas, improve bioavailability, and confirm their long-term safety and effectiveness, especially in the aging population.
Collapse
Affiliation(s)
- Mariia Shanaida
- Department of Pharmacognosy and Medical Botany, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine
- CONEM Ukraine Natural Drugs Research Group, 46001 Ternopil, Ukraine;
| | - Olha Mykhailenko
- Department of Pharmaceutical Chemistry, National University of Pharmacy, 61168 Kharkiv, Ukraine;
| | - Roman Lysiuk
- Department of Pharmacognosy and Botany, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine; (R.L.); (N.S.)
- CONEM Ukraine Life Science Research Group, 79010 Lviv, Ukraine
| | - Nataliia Hudz
- Department of Drug Technology and Biopharmacy, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine;
- Department of Pharmacy and Ecological Chemistry, University of Opole, 45-052 Opole, Poland;
| | - Radosław Balwierz
- Department of Pharmacy and Ecological Chemistry, University of Opole, 45-052 Opole, Poland;
| | - Arkadii Shulhai
- Department of Public Health and Healthcare Management, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine;
| | - Nataliya Shapovalova
- Department of Pharmacognosy and Botany, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine; (R.L.); (N.S.)
| | - Volodymyr Shanaida
- CONEM Ukraine Natural Drugs Research Group, 46001 Ternopil, Ukraine;
- Design of Machine Tools, Instruments and Machines Department, Ternopil Ivan Puluj National Technical University, 46001 Ternopil, Ukraine
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine, 8610 Mo i Rana, Norway
| |
Collapse
|
5
|
Chik MW, Meor Mohd Affandi MMR, Mohd Nor Hazalin NA, Surindar Singh GK. Astaxanthin nanoemulsion improves cognitive function and synaptic integrity in Streptozotocin-induced Alzheimer's disease model. Metab Brain Dis 2025; 40:136. [PMID: 40047916 DOI: 10.1007/s11011-025-01560-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 02/22/2025] [Indexed: 03/26/2025]
Abstract
Astaxanthin derived from natural sources has excellent antioxidant and anti-inflammatory effects, and it is currently being widely researched as a neuroprotectant. However, astaxanthin possesses low oral bioavailability, and thus, astaxanthin extract from Haematococcus pluvialis was formulated into a nanoemulsion to improve its bioavailability and administered to Alzheimer's disease (AD)-like rats to study its possible neuroprotective benefits. Astaxanthin nanoemulsion was administered orally once a day for 28 days to streptozotocin (STZ)-induced AD rats at concentrations of 160, 320, and 640 mg/kg of body weight (bw) and subsequently assessed for cognitive function using behavioral assessments. Brain samples were collected for the assessment of AD biomarkers. Astaxanthin nanoemulsion at a dosage of 640 mg/kg bw significantly improved spatial learning, spatial memory, and recognition memory against STZ-AD rats. At 320 and 640 mg/kg bw, astaxanthin nanoemulsion significantly reduced levels of hippocampus synaptosomal amyloid beta and paired-helical fibrillary tau protein while increasing neuron survival. Additionally, astaxanthin nanoemulsion at 640 mg/kg bw significantly increased acetylcholine levels in the hippocampus and cerebellum. Astaxanthin nanoemulsion at all treatment dosages significantly reduced malondialdehyde, a lipid peroxidation product, and neuroinflammatory mediators (GFAP and TNF-α). Astaxanthin nanoemulsion supplementation has the potential to improve cognitive function and synaptic function by lowering amyloid beta and tau levels, as well as preserve neuron integrity by reducing neuroinflammation and lipid peroxidation, indicating that it may be able to treat some of the underlying causes of AD.
Collapse
Affiliation(s)
- Mazzura Wan Chik
- Department of Pharmacology and Life Sciences, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Selangor Branch, Puncak Alam Campus, Puncak Alam, 42300, Selangor, Malaysia
| | - Meor Mohd Redzuan Meor Mohd Affandi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Puncak Alam Campus, Puncak Alam, 42300, Selangor, Malaysia
| | - Nurul Aqmar Mohd Nor Hazalin
- Department of Pharmacology and Life Sciences, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Selangor Branch, Puncak Alam Campus, Puncak Alam, 42300, Selangor, Malaysia
- Integrative Pharmacogenomics Institute (iPROMiSE), Level 7, FF3, Universiti Teknologi MARA, Selangor Branch, Puncak Alam Campus, Bandar Puncak Alam, Selangor, 42300, Malaysia
| | - Gurmeet Kaur Surindar Singh
- Department of Pharmacology and Life Sciences, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Selangor Branch, Puncak Alam Campus, Puncak Alam, 42300, Selangor, Malaysia.
- Brain Degeneration and Therapeutics Group, Pharmaceutical and Life Sciences Community of Research, Universiti Teknologi MARA (UiTM), Shah Alam, Selangor, 40450, Malaysia.
| |
Collapse
|
6
|
Jia L, Wang W, Zhao H, Ding X, Zheng M, Cai D, Wang Y, Wang Z, Liu H. Innovative Nano Delivery Systems for Astaxanthin: Enhancing Stability, Bioavailability, and Targeted Therapeutic Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:3286-3304. [PMID: 39886831 DOI: 10.1021/acs.jafc.4c09415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Astaxanthin (AST), as a natural antioxidant, has broad application prospects in medicine and health products. However, its highly unsaturated structure and significant lipophilic characteristics limit its dispersibility and bioavailability, thereby restricting its application in food, medicines, and nutraceuticals. To overcome these limitations, researchers have proposed the use of nano delivery systems. This review summarizes various nanocarriers, including liposomes, nanostructured lipid carriers, nanoparticles, and others, and analyzes their advantages in enhancing the solubility, stability, and bioavailability of AST. Furthermore, the study focuses on targeted delivery systems achieved through biomolecular modifications, which enable precise delivery of AST to specific cells or tissues, enhancing therapeutic effects. Additionally, smart-responsive delivery systems, such as pH-responsive and light-sensitive systems, are also discussed, showing their immense potential in precise release and targeted therapy. These findings provide new perspectives for the precise nutrition and clinical applications of AST. Future research should further optimize the design of nanocarriers to enable broader applications.
Collapse
Affiliation(s)
- Lei Jia
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China
- National Engineering Research Center for Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Wei Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China
- National Engineering Research Center for Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Hongyu Zhao
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Xiaoyu Ding
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China
- National Engineering Research Center for Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Mingzhu Zheng
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China
- National Engineering Research Center for Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Dan Cai
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China
- National Engineering Research Center for Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Yuhua Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Zhitong Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Huimin Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China
- National Engineering Research Center for Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun, Jilin 130118, China
| |
Collapse
|
7
|
Polamraju SM, Manochkumar J, Ganeshbabu M, Ramamoorthy S. Unveiling astaxanthin: biotechnological advances, delivery systems and versatile applications in nutraceuticals and cosmetics. Arch Microbiol 2025; 207:45. [PMID: 39869136 DOI: 10.1007/s00203-025-04241-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/04/2025] [Accepted: 01/07/2025] [Indexed: 01/28/2025]
Abstract
Astaxanthin (ASX), "king of carotenoids", is a xanthophyll carotenoid that is characterized by a distinct reddish-orange hue, procured from diverse sources including plants, microalgae, fungi, yeast, and lichens. It exhibits potent antioxidant and anti-ageing properties and has been demonstrated to mitigate ultraviolet-induced cellular and DNA damage, enhance immune system function, and improve cardiovascular diseases. Despite its broad utilization across nutraceutical, cosmetic, aquaculture, and pharmaceutical sectors, the large-scale production and application of ASX are constrained by the limited availability of natural sources, low production yields and stringent production requirements. This review provides a comprehensive analysis of ASX applications, emphasizing its dual roles in cosmetic and nutraceutical fields. It integrates insights into the qualitative differences of ASX from various natural sources and assesses biosynthetic pathways across organisms. Advanced biotechnological strategies for industrial-scale production are explored alongside innovative delivery systems, such as emulsions, films, microcapsules, nanoliposomes, and nanoparticles, designed to enhance ASX's bioavailability and functional efficacy. By unifying perspectives on its nutraceutical and cosmetic applications, this review highlights the challenges and advancements in formulation and commercialization. Prospective research directions for optimizing ASX's production and applications are also discussed, providing a roadmap for its future development.
Collapse
Affiliation(s)
- Sai Manojna Polamraju
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Janani Manochkumar
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Madhubala Ganeshbabu
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Siva Ramamoorthy
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India.
| |
Collapse
|
8
|
Yin B, Ren J, Liu X, Zhang Y, Zuo J, Wen R, Pei H, Lu M, Zhu S, Zhang Z, Wang Z, Zhai Y, Ma Y. Astaxanthin mitigates doxorubicin-induced cardiotoxicity via inhibiting ferroptosis and autophagy: a study based on bioinformatic analysis and in vivo/ vitro experiments. Front Pharmacol 2025; 16:1524448. [PMID: 39906141 PMCID: PMC11790656 DOI: 10.3389/fphar.2025.1524448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 01/02/2025] [Indexed: 02/06/2025] Open
Abstract
Background Doxorubicin (DOX), a widely employed chemotherapeutic agent in cancer treatment, has seen restricted use in recent years owing to its associated cardiotoxicity. Current reports indicate that doxorubicin-induced cardiotoxicity (DIC) is a complex phenomenon involving various modes of cell death. Astaxanthin (ASX), a natural carotenoid pigment, has garnered significant attention for its numerous health benefits. Recent studies have shown that ASX has a broad and effective cardiovascular protective effect. Our study aims to investigate the protective effects of ASX against DIC and elucidate its underlying mechanisms. This has substantial practical significance for the clinical application of DOX. Methods Bioinformatic analyses were conducted using transcriptomic data from the gene expression omnibus (GEO) database to identify key mechanisms underlying DIC. Network pharmacology was employed to predict the potential pathways and targets through which ASX exerts its effects on DIC. In vitro experiments, following pretreatment with ASX, H9C2 cells were exposed to DOX. Cell viability, injury and the protein expression levels associated with ferroptosis and autophagy were assessed. In the animal experiments, rats underwent 4 weeks of gavage treatment with various doses of ASX, followed by intraperitoneal injections of DOX every 2 days during the final week. Histological, serum, and protein analyses were conducted to evaluate the effects of ASX on DIC. Results The bioinformatics analysis revealed that ferroptosis and autophagy are closely associated with the development of DIC. ASX may exert an anti-DIC effect by modulating ferroptosis and autophagy. The experimental results show that ASX significantly mitigates DOX-induced myocardial tissue damage, inflammatory response, oxidative stress, and damage to H9C2 cells. Mechanistically, ASX markedly ameliorates levels of ferroptosis and autophagy both in vitro and in vivo. Specifically, ASX upregulates solute carrier family 7 member 11 (SLC7A11) and glutathione peroxidase 4 (GPX4), while downregulating the expression of transferrin receptor 1 (TFRC), ferritin heavy chain (FTH1) and ferritin light chain (FTL). Additionally, ASX enhances the expression of P62 and decreases levels of Beclin1 and microtubule-associated proteins light chain 3 (LC3). Conclusion Our results indicate that ferroptosis and autophagy are critical factors influencing the occurrence and progression of DOX-induced cardiotoxicity. ASX can alleviate DIC by inhibiting ferroptosis and autophagy.
Collapse
Affiliation(s)
- Bowen Yin
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China
| | - Jingyi Ren
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China
| | - Xuanyi Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China
| | - Yadong Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China
| | - Jinshi Zuo
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China
| | - Rui Wen
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China
| | - Huanting Pei
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China
| | - Miaomiao Lu
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China
| | - Siqi Zhu
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China
| | - Zhenao Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China
| | - Ziyi Wang
- Undergraduate of College of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Yanyi Zhai
- Undergraduate of College of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Yuxia Ma
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China
| |
Collapse
|
9
|
Wang Y, Geng X, Qin S, Che T, Yan L, Yuan B, Li W. Advance on the effects of algal carotenoids on inflammatory signaling pathways. Eur J Med Chem 2025; 281:117020. [PMID: 39536497 DOI: 10.1016/j.ejmech.2024.117020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/27/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
The development of inflammation has an indispensable importance in the self-protection of the human body. However, over-inflammation may damage human health, and inflammatory pathways and inflammasomes have a significant impact on the onset of inflammation. Therefore, how to constrain the development of inflammation through inflammatory pathways or inflammasomes becomes a hot research issue. Carotenoids are a natural pigment and an active substance in algae, with anti-inflammatory and antioxidant effects. Many studies have shown that carotenoids have inhibitory effects on the inflammatory pathways and inflammasomes. In this review, we discussed the mechanism of carotenoids targeting those important inflammatory pathways and their effects on common inflammasome NLRP3 and inflammation-related diseases from the perspective of several inflammatory pathways, including p38 MAPK, IL-6/JAK/STAT3, and PI3K, with a focus on the targets and targeting effects of carotenoids on different inflammatory signaling pathways, and at last proposed possible anti-inflammatory targets.
Collapse
Affiliation(s)
- Yudi Wang
- Institute of Marine Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Qingdao, Shandong, 266112, China; Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| | - Xinrong Geng
- Institute of Marine Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Qingdao, Shandong, 266112, China; Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| | - Song Qin
- Institute of Marine Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Qingdao, Shandong, 266112, China; Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| | - Tuanjie Che
- Zhigong Biomedicine Co., Ltd, Yantai, Shandong, 2640035, China
| | - Libo Yan
- Zhigong Biomedicine Co., Ltd, Yantai, Shandong, 2640035, China
| | - Biao Yuan
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| | - Wenjun Li
- Institute of Marine Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Qingdao, Shandong, 266112, China; Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China.
| |
Collapse
|
10
|
Gao C, Gong N, Chen F, Hu S, Zhou Q, Gao X. The Effects of Astaxanthin on Metabolic Syndrome: A Comprehensive Review. Mar Drugs 2024; 23:9. [PMID: 39852511 PMCID: PMC11766962 DOI: 10.3390/md23010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/21/2024] [Accepted: 12/25/2024] [Indexed: 01/26/2025] Open
Abstract
Metabolic syndrome (MS) represents a complex cluster of metabolic disorders primarily characterized by obesity, insulin resistance, hyperglycemia, dyslipidemia, hypertension, and hyperuricemia. Diet and functional ingredients play a pivotal role in seeking non-pharmacological strategies to prevent and ameliorate MS. Astaxanthin (AST), a carotenoid found in various marine organisms, exhibits exceptional antioxidant properties and holds great promise as a natural compound that improves MS. This article introduces the basic properties of AST, including its absorptance and metabolic pathways, along with various isomers. Most importantly, we comprehensively review the effects and mechanisms of AST on improving the primary components of MS. These mechanisms primarily involve regulating signal transduction, transport, or metabolic pathways within the body, as well as influencing intestinal microbiota and metabolites, thereby exerting positive effects on metabolism and inhibiting the occurrence of MS. This review emphasizes the potential efficacy of AST in managing MS. However, more studies are needed to confirm the clinical effect of AST on MS and reveal potential molecular mechanisms.
Collapse
Affiliation(s)
- Chunhao Gao
- College of Life Sciences, Qingdao University, Qingdao 266071, China; (C.G.); (N.G.); (S.H.)
| | - Nengyun Gong
- College of Life Sciences, Qingdao University, Qingdao 266071, China; (C.G.); (N.G.); (S.H.)
| | - Fangtian Chen
- Department of Marine Technology, Rizhao Polytechnic, Shandong Engineering and Technology Research Center for Marine Crustacean Resources Comprehensive Utilization, Shandong Engineering Research Center for Efficient Utilization Technology of Marine Food Resources, Rizhao Key Laboratory of Efficient Utilization of Marine Food Resources, Rizhao 276826, China;
| | - Shiran Hu
- College of Life Sciences, Qingdao University, Qingdao 266071, China; (C.G.); (N.G.); (S.H.)
| | - Qingxin Zhou
- Department of Marine Technology, Rizhao Polytechnic, Shandong Engineering and Technology Research Center for Marine Crustacean Resources Comprehensive Utilization, Shandong Engineering Research Center for Efficient Utilization Technology of Marine Food Resources, Rizhao Key Laboratory of Efficient Utilization of Marine Food Resources, Rizhao 276826, China;
| | - Xiang Gao
- College of Life Sciences, Qingdao University, Qingdao 266071, China; (C.G.); (N.G.); (S.H.)
| |
Collapse
|
11
|
Pandita G, Sharma S, Elsa Oommen I, Madaan N, Bhosale Y, Nagy V, Mukarram Shaikh A, Kovács B. Comprehensive review on the potential of ultrasound for blue food protein extraction, modification and impact on bioactive properties. ULTRASONICS SONOCHEMISTRY 2024; 111:107087. [PMID: 39362033 PMCID: PMC11480250 DOI: 10.1016/j.ultsonch.2024.107087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/05/2024]
Abstract
Food security for the increasing global population is a significant challenge of the current times particularly highlighting the protein deficiencies. Plant-based proteins could be considered as alternate source of the protein. The digestibility and PDCASS value of these proteins are still a concern. Blue proteins, the new approach of utilizing the proteins from aquatic sources could be a possible solution as it contains all the essential amino acids. However, the conjugation of these proteins with fats and glycogen interferes with their techno-functional properties and consequently their applicability. The application of power ultrasound for extraction and modification of these proteins from aquatic sources to break open the cellular structure, increase extractability, alter the protein structure and consequently provide proteins with higher bioavailability and bioactive properties could be a potential approach for their effective utilization into food systems. The current review focuses on the application of power ultrasound when applied as extraction treatment, alters the sulphite and peptide bond and modifies protein to elevated digestibility. The degree of alteration is influenced by intensity, frequency, and exposure time. The extracted proteins will serve as a source of essential amino acids. Furthermore, modification will lead to the development of bioactive peptides with different functional applications. Numerous studies reveal that blue proteins have beneficial impacts on amino acid availability, and subsequently food security with higher PDCAAS values. In many cases, converted peptides give anti-hypertensive, anti-diabetic, and anti-oxidant activity. Therefore, researchers are concentrating on ultrasound-based extraction, modification, and application in food and pharmaceutical systems.
Collapse
Affiliation(s)
- Ghumika Pandita
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India
| | | | - Irin Elsa Oommen
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India
| | - Nishchhal Madaan
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India
| | - Yuvraj Bhosale
- Research Engineer, Indian Institute of Technology, Kharagpur, India.
| | - Vivien Nagy
- Faculty of Agriculture, Food Science, and Environmental Management, Institute of Food Technology, University of Debrecen, Böszörményi út 138, 4032 Debrecen, Hungary; Doctoral School of Nutrition and Food Sciences, University of Debrecen, Böszörményi út 138, 4032 Debrecen, Hungary.
| | - Ayaz Mukarram Shaikh
- Faculty of Agriculture, Food Science, and Environmental Management, Institute of Food Science, University of Debrecen, Böszörményi út 138, 4032 Debrecen, Hungary; Doctoral School of Nutrition and Food Sciences, University of Debrecen, Böszörményi út 138, 4032 Debrecen, Hungary.
| | - Béla Kovács
- Faculty of Agriculture, Food Science, and Environmental Management, Institute of Food Science, University of Debrecen, Böszörményi út 138, 4032 Debrecen, Hungary; Doctoral School of Nutrition and Food Sciences, University of Debrecen, Böszörményi út 138, 4032 Debrecen, Hungary.
| |
Collapse
|
12
|
Hegde PS, Agni MB, Rai P, Upadhyay SS, Aravind A, Keshava Prasad TS, Gowda KMD. Supplementation of diet with Astaxanthin and DHA prevents gestational and lactational undernourishment-induced metabolic derangements in dams: a metabolomic approach. J Dev Orig Health Dis 2024; 15:e30. [PMID: 39606856 DOI: 10.1017/s2040174424000345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Nutrition is the critical nongenetic factor that has a major influence on the health status of an organism. The nutritional status of the mother during gestation and lactation plays a vital role in defining the offspring's health. Undernutrition during these critical periods may induce chronic metabolic disorders like obesity and cardiovascular diseases in mothers as well as in offspring. The present study aims to evaluate the impact of undernutrition during gestational and lactational periods on the plasma metabolic profile of dams. Additionally, we investigated the potential synergistic mitigating effects of astaxanthin and docosahexaenoic acid (DHA) on dysregulated plasma metabolic profiles. Evaluation of plasma lipid profile revealed that undernourishment resulted in elevated levels of total cholesterol, triglycerides, low density and very low-density lipoproteins in dams. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) based untargeted metabolomics illustrated that pathways related to lipid metabolism, such as cholesterol metabolism, steroid biosynthesis and metabolism of amine-derived hormones, were dysregulated by undernourishment. Additionally, pathway enrichment analysis predicted that there is a high incidence of development of desmosterolosis, hypercholesterolaemia, lysosomal acid lipase deficiency and Smith-Lemli-Opitz syndrome in the offspring, reflecting predisposition in mothers. However, synergistic supplementation of astaxanthin and DHA ameliorated these adverse effects by regulating a separate set of metabolic pathways associated with lipid metabolism. They included branched chain amino acid degradation such as valine, leucine and isoleucine, metabolism of alpha-linolenic acid, lipoic acid, lysine degradation, biosynthesis, elongation and degradation of fatty acids.
Collapse
Affiliation(s)
- Pramukh Subrahmanya Hegde
- Department of Physiology, KS Hegde Medical Academy, Nitte (Deemed to be University), Karnataka, Mangalore, India
| | - Megha Bhat Agni
- Department of Physiology, KS Hegde Medical Academy, Nitte (Deemed to be University), Karnataka, Mangalore, India
| | - Praveen Rai
- Division of Infectious Diseases & Microbial Genomics, Nitte University Centre for Science Education and Research (NUCSER), Nitte (Deemed to be University), Mangalore, Karnataka, India
| | - Shubham Sukerndeo Upadhyay
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Anjana Aravind
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | | | - K M Damodara Gowda
- Department of Physiology, KS Hegde Medical Academy, Nitte (Deemed to be University), Karnataka, Mangalore, India
| |
Collapse
|
13
|
Zhang Z, Li X, Teng H, Han Y, Jin Y, Xu Q. Preparation and characterization of ovomucin self-assembly nanoparticles under glycerol compression for astaxanthin delivery: Sustained release and antioxidant activity. J Food Sci 2024; 89:7336-7347. [PMID: 39374415 DOI: 10.1111/1750-3841.17429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/30/2024] [Accepted: 09/12/2024] [Indexed: 10/09/2024]
Abstract
Astaxanthin (AST) is a natural hydrophobic nutrient with various biological activities, but its low solubility limits its application. In this study, self-assembly nanoparticles were prepared by ovomucin (OVM) and Ca2+ with the enhancement of glycerol to deliver AST. Glycerol compressed the particle size of nanoparticles from 175.7 ± 1.8 to 142.9 ± 0.6 nm, and the nanoparticles had a strong negative charge (-28.9 ± 0.6 mV). Ultraviolet-visible spectroscopy and X-ray diffraction (XRD) confirmed the successful encapsulation of AST in an amorphous form with a high encapsulation efficiency (82.9% ± 2.1%). Fourier transform infrared and circular dichroism analyses demonstrated that nanoparticles formation mainly involved electrostatic interactions and hydrophobic interactions. AST in nanoparticles presented excellent gastric juice resistance and sustained release ability, whereas free radical scavenging efficiency reached up to 75%. In addition, the nanoparticles had no apparent toxicity to cell viability. This study is expected to provide a new insight into the safe and efficient delivery of AST, while demonstrating the potential of OVM as a delivery carrier in the food and health industries.
Collapse
Affiliation(s)
- Zhenqing Zhang
- Institute of Advanced Cross-Field Science, College of Life Science, Qingdao University, Qingdao, P. R. China
| | - Xuanchen Li
- Institute of Advanced Cross-Field Science, College of Life Science, Qingdao University, Qingdao, P. R. China
| | - Haoye Teng
- Institute of Advanced Cross-Field Science, College of Life Science, Qingdao University, Qingdao, P. R. China
| | - Yumeng Han
- Institute of Advanced Cross-Field Science, College of Life Science, Qingdao University, Qingdao, P. R. China
| | - Yongguo Jin
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, P. R. China
| | - Qi Xu
- Institute of Advanced Cross-Field Science, College of Life Science, Qingdao University, Qingdao, P. R. China
| |
Collapse
|
14
|
Shafie A, Aleyasin A, Saffari M, Saedi M, Rostami S, Rezayi S, Mohammadi SD, Amidi F. Astaxanthin improves assisted reproductive technology outcomes in poor ovarian responders through alleviating oxidative stress, inflammation, and apoptosis: a randomized clinical trial. J Ovarian Res 2024; 17:212. [PMID: 39482765 PMCID: PMC11526544 DOI: 10.1186/s13048-024-01537-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 10/15/2024] [Indexed: 11/03/2024] Open
Abstract
BACKGROUND Poor ovarian response (POR) to controlled ovarian stimulation (COS) remains challenging, especially in advanced-age women with diminished ovarian reserve, resulting in low live birth rates. Many patients prefer to conceive with their eggs, underscoring the need for improved treatments. This study explores astaxanthin potential as a COS adjuvant to improve ovarian response and assisted reproductive technology (ART) outcomes, considering its impact on oxidative stress (OS), inflammation, and apoptosis, which are key factors in POR. METHODS In this randomized, triple-blind, placebo-controlled trial, 60 infertile POR patients from POSEIDON Group 4 (the poorest prognosis category, age > 35 and poor ovarian reserve (anti-müllerian hormone < 1.2 ng/ml or antral follicle count < 5) undergoing intracytoplasmic sperm injection were enrolled. Patients were assigned to receive either 12 mg/day AST or placebo for eight weeks. All patients underwent a gonadotropin-releasing hormone antagonist regimen for COS. ART outcomes were compared between groups. Blood serum and follicular fluid (FF) were analyzed for OS markers (superoxide dismutase [SOD], total antioxidant capacity [TAC], and malondialdehyde [MDA]), and pro-inflammatory cytokines (interleukin-6 [IL-6], interleukin-8 [IL-8], and vascular endothelial growth factor [VEGF]) via enzyme-linked immunosorbent assay kits, and cell-free DNA [cfDNA] (apoptotic marker) via ALU quantitative polymerase chain reaction. RESULTS After the intervention, the AST group exhibited a significant elevation in serum (P = 0.013) and TAC (P = 0.030), accompanied by a significant reduction in serum MDA (P = 0.005). No significant differences between AST and placebo groups were observed in OS markers in FF. AST group showed significant reductions in the serum IL-6 (P < 0.001), IL-8 (P = 0.001), and VEGF (P = 0.002) levels following AST therapy. In the AST group, FF levels of IL-6 (P = 0 < 001), IL-8 (P = 0.036), VEGF (P = 0.006), and cfDNA (P < 0.001) were significantly lower than in the placebo group. Between-group comparisons showed significant differences in the alterations of serum SOD (P = 0.027), IL-6 (P < 0.001), and IL-8 (P = 0.035) levels between AST and placebo groups. The AST group showed significant increases in the number of retrieved oocytes (P = 0.003), MII oocytes (P = 0.004), frozen embryos (P = 0.037), and high-quality embryos (P = 0.014) compared to the placebo group. CONCLUSION AST shows promise as a COS adjuvant therapy, potentially enhancing some ART outcomes in POR through alleviating OS, inflammation, and apoptosis. TRIAL REGISTRATION Clinical trial registration number: IRCT20230223057510N1, URL: https://irct.behdasht.gov.ir/trial/68870 , registration date: 2023 March 16.
Collapse
Affiliation(s)
- Anahid Shafie
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Poorsina Ave, P.O. Box: 1461884513, Tehran, Iran
| | - Ashraf Aleyasin
- Department of Infertility, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Department of Obstetrics and Gynecology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mojtaba Saffari
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mojtaba Saedi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Poorsina Ave, P.O. Box: 1461884513, Tehran, Iran
| | - Sahar Rostami
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Poorsina Ave, P.O. Box: 1461884513, Tehran, Iran
- Department of Obstetrics and Gynecology, Yas Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeede Rezayi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Poorsina Ave, P.O. Box: 1461884513, Tehran, Iran
| | - Seyed Danial Mohammadi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Poorsina Ave, P.O. Box: 1461884513, Tehran, Iran
| | - Fardin Amidi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Poorsina Ave, P.O. Box: 1461884513, Tehran, Iran.
- Department of Obstetrics and Gynecology, Yas Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Ayub Mohammed Salih S, Jabarpour M, Sedighi Gilani MA, Sajadi H, Saedi Marghmaleki M, Shabani Nashtaei M, Salem M, Amidi F. The effect of astaxanthin after varicocele surgery on antioxidant status and semen quality in infertile men: A triple-blind randomized clinical trial. Food Sci Nutr 2024; 12:7977-7988. [PMID: 39479675 PMCID: PMC11521721 DOI: 10.1002/fsn3.4365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 11/02/2024] Open
Abstract
Varicocele (VC) is widely recognized as a prevalent etiological factor contributing to male infertility. It has been established that the generation of reactive oxygen species (ROS) plays a significant role in the progression and development of VC. Antioxidants may regulate ROS levels in these patients. Astaxanthin (ASX) is a carotenoid compound with notable antioxidant and anti-inflammatory characteristics. The current study postulated that the administration of ASX following varicocelectomy (VCT) could potentially enhance antioxidant status and semen quality in these patients. A total of 40 infertile males with clinical VC and abnormal semen analyses were randomly assigned to take part in the current trial. For 3 months following surgery, the intervention group took ASX (6 mg/day) while the control group received a placebo. After intervention, semen parameters, antioxidant status, and pro-inflammatory cytokines were compared between the two groups. Regarding semen parameters, antioxidant treatment led to a significant improvement in total and progressive motility in the treatment group (p < 0.05). Additionally, ASX led to a considerable increase in the expression levels of NRF2, Keap1, SOD2, SOD3, and BCL2, though the enhancement in the expression level of SOD3 was not statistically significant (p > .05). However, ASX significantly decreased the BAX expression level (p < .05). Even though the level of total antioxidant capacity (TAC) of seminal fluid (SF) increased significantly in the treatment group (p < .05), the level of total oxidative stress (TOS) in SF did not differ substantially between treatment and control groups (p > .05). Based on inflammatory factors in SF, ASX led to a considerable reduction in levels of TNF-α, IL-1β, and IL-6 (p < .05). Our findings demonstrated that ASX treatment provides an important contribution to VCT outcomes by modulating antioxidant status and pro-inflammatory cytokines. Our results indicated that ASX may be beneficial as an adjuvant therapy for infertile men following VCT.
Collapse
Affiliation(s)
| | - Masoome Jabarpour
- Department of Anatomy, School of MedicineTehran University of Medical SciencesTehranIran
- Department of Infertility, Shariati HospitalTehran University of Medical SciencesTehranIran
| | - Mohammad Ali Sedighi Gilani
- Department of Infertility, Shariati HospitalTehran University of Medical SciencesTehranIran
- Department of Andrology, Reproductive Biomedicine Research CenterRoyan Institute for Reproductive Biomedicine, ACECRTehranIran
| | - Hesamoddin Sajadi
- Department of Andrology, Reproductive Biomedicine Research CenterRoyan Institute for Reproductive Biomedicine, ACECRTehranIran
| | | | - Maryam Shabani Nashtaei
- Department of Anatomy, School of MedicineTehran University of Medical SciencesTehranIran
- Department of Infertility, Shariati HospitalTehran University of Medical SciencesTehranIran
| | - Maryam Salem
- Department of Anatomy, School of MedicineTehran University of Medical SciencesTehranIran
| | - Fardin Amidi
- Department of Anatomy, School of MedicineTehran University of Medical SciencesTehranIran
- Department of Infertility, Shariati HospitalTehran University of Medical SciencesTehranIran
| |
Collapse
|
16
|
Fereidouni F, Kashani L, Amidi F, Khodarahmian M, Zhaeentan S, Ardehjani NA, Rastegar T. Astaxanthin treatment decreases pro-inflammatory cytokines and improves reproductive outcomes in patients with polycystic ovary syndrome undergoing assisted reproductive technology: A randomized clinical trial. Inflammopharmacology 2024; 32:2337-2347. [PMID: 38916710 DOI: 10.1007/s10787-024-01504-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 06/02/2024] [Indexed: 06/26/2024]
Abstract
RESEARCH QUESTION In a randomized, triple-blind, placebo-controlled clinical trial (RCT), we investigated the effect of astaxanthin (AST) on pro-inflammatory cytokines, oxidative stress (OS) markers, and assisted reproductive technology (ART) outcomes in 44 infertile Polycystic Ovary Syndrome (PCOS) patients. DESIGN Patients with PCOS were randomly divided into two groups. The intervention group received 6 mg AST, and the control group received placebo daily for 8 weeks. Blood samples were obtained from all patients before and after intervention and follicular fluid (FF) was collected during the ART procedure. Interleukin (IL) -6, IL-1β were evaluated from serum samples and FF and OS markers (malondialdehyde [MDA], catalase [CAT], superoxide dismutase [SOD], and reactive oxygen species [ROS]) were measured from FF. The groups were compared for ART outcomes as well. RESULTS A significant decrease in IL-6 and IL-1β concentrations (both, P = < 0.01) serum levels was found following AST treatment. FF cytokine levels and OS markers did not differ significantly between the groups. Reproductive outcomes, including the number of oocytes retrieved (P = 0.01), the MII oocyte count (P = 0.007), oocyte maturity rate (MII %) (P = 0.02) and number of frozen embryos (P = 0.03) significantly improved after intervention. No significant differences were found in chemical, clinical and multiple pregnancies between the groups. CONCLUSIONS AST pretreatment may modify inflammation and improve ART outcomes in PCOS infertile patients. Further investigations are recommended to verify these findings.
Collapse
Affiliation(s)
- Farzane Fereidouni
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ladan Kashani
- Department of infertility, Arash Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Fardin Amidi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahshad Khodarahmian
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of infertility, Arash Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahrzad Zhaeentan
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Negar Ajabi Ardehjani
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Tayebeh Rastegar
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
17
|
Laderian A, Ghasemi M, Mortazavi P, Mousavi Z, Ale-Ebrahim M. Hepatoprotective effect of astaxanthin against cholestasis liver fibrosis induced by bile duct ligation in adult Wistar rats. J Biochem Mol Toxicol 2024; 38:e23788. [PMID: 39087918 DOI: 10.1002/jbt.23788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 08/02/2024]
Abstract
In this study, we evaluated the hepatoprotective effects of astaxanthin, a natural carotenoid, against the cholestatic liver fibrosis induced by bile duct ligation (BDL). Toward this end, male rats were subjected to BDL and treated with astaxanthin for 35 days. Afterwards, their serum and liver biochemical factors were assessed. Also, histopathological and immunohistochemical analyses were performed to determine the fibrosis and the expression levels of alpha-smooth muscle actin (α-SMA) and transforming growth factor beta (TGF-ß1) in the liver tissue. Based on the results, BDL caused a significant increase in liver enzyme levels, blood lipids, and bilirubin, while decreasing the activity of superoxide dismutase(SOD), catalase (CAT), and glutathione (GSH) enzymes. Also, in the BDL rats, hepatocyte necrosis, infiltration of inflammatory lymphocytes, and hyperplasia of bile ducts were detected, along with a significant increase in α-SMA and TGF-ß1 expression. Astaxanthin, however, significantly prevented the BDL's detrimental effects. In all, 10 mg/kg of this drug maintained the bilirubin and cholesterol serum levels of BDL rats at normal levels. It also reduced the liver enzymes' activity and serum lipids, while increasing the SOD, CAT, and GSH activity in BDL rats. The expression of α-SMA and TGF-ß1 in the BDL rats treated with 10 mg/kg of astaxanthin was moderate (in 34%-66% of cells) and no considerable cholestatic fibrosis was observed in this group. However, administrating the 20 mg/kg of astaxanthin was not effective in this regard. These findings showed that astaxanthin could considerably protect the liver from cholestatic damage by improving the biochemical features and regulating the expression of related proteins.
Collapse
Affiliation(s)
- Azadeh Laderian
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences-Islamic Azad University, Tehran, Iran
| | - Maedeh Ghasemi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Pejman Mortazavi
- Department of Pathology, Faculty of Specialized Veterinary Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Zahra Mousavi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences-Islamic Azad University, Tehran, Iran
| | - Mahsa Ale-Ebrahim
- Department of Physiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
18
|
Mohammadi SG, Feizi A, Bagherniya M, Shafie D, Ahmadi AR, Kafeshani M. The effect of astaxanthin supplementation on inflammatory markers, oxidative stress indices, lipid profile, uric acid level, blood pressure, endothelial function, quality of life, and disease symptoms in heart failure subjects. Trials 2024; 25:518. [PMID: 39090754 PMCID: PMC11292897 DOI: 10.1186/s13063-024-08339-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/12/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Heart failure is a chronic and progressive disease where the heart muscle is unable to pump enough blood and oxygen to meet the body's needs. Oxidative stress and inflammation are key elements in the development and progression of heart failure. Astaxanthin, a carotenoid, has strong anti-inflammatory and antioxidant effects that may protect the cardiovascular system. A study will evaluate the effect of astaxanthin supplementation on inflammatory status, oxidative stress, lipid profile, uric acid levels, endothelial function, quality of life, and disease symptoms in people with heart failure. METHODS The current study is a double-blind controlled randomized clinical trial for 8 weeks, in which people with heart failure were randomly assigned to two groups: intervention (one capsule containing 20 mg of astaxanthin per day, n = 40) and placebo (one capsule containing 20 mg of maltodextrin per day, n = 40) will be divided. At the beginning and end of the intervention, uric acid, lipid profile, oxidative stress indices, inflammatory markers, blood pressure, nitric oxide, and anthropometric factors will be measured, and questionnaires measuring quality of life, fatigue intensity, shortness of breath, and appetite will be completed. SPSS version 22 software will be used for statistical analysis. DISCUSSION There is a growing global interest in natural and functional food products. This RCT contributes to the expanding body of research on the potential benefits of astaxanthin in heart failure patients, including its antioxidant, lipid-lowering, and anti-inflammatory effects. TRIAL REGISTRATION Iranian Registry of Clinical Trials IRCT20200429047235N3. Registered on 26 March 2024.
Collapse
Affiliation(s)
- Shirin Ghotbbodin Mohammadi
- Department of Clinical Nutrition, School of Nutrition & Food Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Awat Feizi
- Epidemiology and Biostatistics Department, Health School, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Bagherniya
- Department of Community Nutrition, Food Security Research Center, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Davood Shafie
- Heart Failure Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali-Reza Ahmadi
- Department of Biomedical Sciences, Women Research Center, Alzahra University, Tehran, Iran
| | - Marziyeh Kafeshani
- Nutrition and Food Security Research Centerand, Department of Clinical Nutrition, School of Nutrition and Food Science , Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
19
|
Dang Y, Li Z, Yu F. Recent Advances in Astaxanthin as an Antioxidant in Food Applications. Antioxidants (Basel) 2024; 13:879. [PMID: 39061947 PMCID: PMC11273418 DOI: 10.3390/antiox13070879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
In recent years, astaxanthin as a natural substance has received widespread attention for its potential to replace traditional synthetic antioxidants and because its antioxidant activity exceeds that of similar substances. Based on this, this review introduces the specific forms of astaxanthin currently used as an antioxidant in foods, both in its naturally occurring forms and in artificially added forms involving technologies such as emulsion, microcapsule, film, nano liposome and nano particle, aiming to improve its stability, dispersion and bioavailability in complex food systems. In addition, research progress on the application of astaxanthin in various food products, such as whole grains, seafood and poultry products, is summarized. In view of the characteristics of astaxanthin, such as insolubility in water and sensitivity to light, heat, oxygen and humidity, the main research trends of astaxanthin-loaded systems with high encapsulation efficiency, good stability, good taste masking effect and cost-effectiveness are also pointed out. Finally, the possible sensory effects of adding astaxanthin to food aresummarized, providing theoretical support for the development of astaxanthin-related food.
Collapse
Affiliation(s)
- Yimeng Dang
- Haide College, Ocean University of China, Qingdao 266100, China; (Y.D.); (Z.L.)
| | - Zhixi Li
- Haide College, Ocean University of China, Qingdao 266100, China; (Y.D.); (Z.L.)
| | - Fanqianhui Yu
- Haide College, Ocean University of China, Qingdao 266100, China; (Y.D.); (Z.L.)
- Department of Computer Science and Technology, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
20
|
Waldman H. Astaxanthin Supplementation as a Potential Strategy for Enhancing Mitochondrial Adaptations in the Endurance Athlete: An Invited Review. Nutrients 2024; 16:1750. [PMID: 38892683 PMCID: PMC11175114 DOI: 10.3390/nu16111750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Astaxanthin, a potent antioxidant found in marine organisms such as microalgae and krill, may offer ergogenic benefits to endurance athletes. Originally used in fish feed, astaxanthin has shown a greater ability to mitigate various reactive oxygen species and maintain the structural integrity of mitochondria compared to other exogenous antioxidants. More recent work has shown that astaxanthin may improve: (1) cycling time trial performance, (2) cardiorespiratory measures such as submaximal heart rate during running or cycling, (3) recovery from delayed-onset muscle soreness, and (4) endogenous antioxidant capacity such as whole blood glutathione within trained populations. In this review, the history of astaxanthin and its chemical structure are first outlined before briefly describing the various adaptations (e.g., mitochondrial biogenesis, enhanced endogenous antioxidant capacity, etc.) which take place specifically at the mitochondrial level as a result of chronic endurance training. The review then concludes with the potential additive effects that astaxanthin may offer in conjunction with endurance training for the endurance athlete and offers some suggested practical recommendations for athletes and coaches interested in supplementing with astaxanthin.
Collapse
Affiliation(s)
- Hunter Waldman
- Department of Kinesiology, University of North Alabama, Florence, AL 35630, USA
| |
Collapse
|
21
|
Arefpour H, Rasaei N, Amini MR, Salavatizadeh M, Hashemi M, Makhtoomi M, Hajiaqaei M, Gholizadeh M, Askarpour M, Hekmatdoost A. The effects of astaxanthin supplementation on liver enzyme levels. INT J VITAM NUTR RES 2024; 94:434-442. [PMID: 38407143 DOI: 10.1024/0300-9831/a000804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
According to previous studies, astaxanthin exerts various biological effects due to its anti-inflammatory and antioxidant capabilities; however, its effects on liver enzymes have not yet been well elucidated. Therefore, we conducted a meta-analysis to assess astaxanthin's effects on liver enzymes. A systematic literature search was conducted using scientific databases including PubMed, Scopus, Web of Science, the Cochrane databases, and Google Scholar up to February 2023 to find relevant randomized controlled trials (RCTs) examining the effects of astaxanthin supplementation on alanine transaminase (ALT), aspartate transaminase (AST), gamma-glutamyl transferase (GGT), and alkaline phosphatase (ALP). A random-effects model was used for the estimation of the pooled weighted mean difference (WMD). Overall, we included five trials involving 196 subjects. The duration of the intervention was between 4 and 48 weeks, and the dose was between 6 and 12 mg/day. ALT levels increased in the intervention group compared to the control group following astaxanthin supplementation (WMD: 1.92 U/L, 95% CI: 0.16 to 3.68, P=0.03), whereas supplementation with astaxanthin had a non-significant effect on AST (WMD: 0.72 U/L, 95% CI: -0.85 to 2.29, P=0.36), GGT (WMD: 0.48 U/L, 95% CI: -2.71 to 3.67, P=0.76), and ALP levels (WMD: 2.85 U/L, 95% CI: -7.94 to 13.63, P=0.60) compared to the placebo group. Our data showed that astaxanthin supplementation increases ALT concentrations in adults without affecting the levels of other liver enzymes. Further long-term and well-designed RCTs are necessary to assess and confirm these findings.
Collapse
Affiliation(s)
- Hoda Arefpour
- Student Research Committee, Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition & Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Niloufar Rasaei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Iran
- Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mohammad Reza Amini
- Student Research Committee, Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition & Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Iran
| | - Marieh Salavatizadeh
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Mohtaram Hashemi
- Student Research Committee, Semnan University of Medical Sciences, Iran
| | - Maede Makhtoomi
- Student Research Committee, Shiraz University of Medical Science, Iran
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Science, Iran
| | - Mahdi Hajiaqaei
- Department of Physiology, Faculty of Medicine, Tehran University of Medical Sciences (TUMS), Iran
| | - Mohammad Gholizadeh
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Moein Askarpour
- Student Research Committee, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Iran
| | - Azita Hekmatdoost
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Science, Tehran, Iran
| |
Collapse
|
22
|
Cunha FFMD, Tonon AP, Machado F, Travassos LR, Grazzia N, Possatto JF, Sant'ana AKCD, Lopes RDM, Rodrigues T, Miguel DC, Gadelha FR, Arruda DC. Astaxanthin induces autophagy and apoptosis in murine melanoma B16F10-Nex2 cells and exhibits antitumor activity in vivo. J Chemother 2024; 36:222-237. [PMID: 37800867 DOI: 10.1080/1120009x.2023.2264585] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 09/22/2023] [Indexed: 10/07/2023]
Abstract
Countless efforts have been made to prevent and suppress the formation and spread of melanoma. Natural astaxanthin (AST; extracted from the alga Haematococcus pluvialis) showed an antitumor effect on various cancer cell lines due to its interaction with the cell membrane. This study aimed to characterize the antitumor effect of AST against B16F10-Nex2 murine melanoma cells using cell viability assay and evaluate its mechanism of action using electron microscopy, western blotting analysis, terminal deoxynucleotidyl transferase dUTP nick-end labelling (TUNEL) assay, and mitochondrial membrane potential determination. Astaxanthin exhibited a significant cytotoxic effect in murine melanoma cells with features of apoptosis and autophagy. Astaxanthin also decreased cell migration and invasion in vitro assays at subtoxic concentrations. In addition, assays were conducted in metastatic cancer models in mice where AST significantly decreased the development of pulmonary nodules. In conclusion, AST has cytotoxic effect in melanoma cells and inhibits cell migration and invasion, indicating a promising use in cancer treatment.
Collapse
Affiliation(s)
| | - Angela Pedroso Tonon
- Instituto de Física e Biotecnologia, Universidade de São Paulo, São Carlos, Brazil
- Institute of Environmental Science and Technology, Autonomous University of Barcelona, Barcelona, Spain
| | - Fabricio Machado
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Luis Rodolpho Travassos
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Nathalia Grazzia
- Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | | | | | - Rayssa de Mello Lopes
- Centro de Ciências Naturais e Humanas (CCNH), Universidade Federal do ABC, UFABC, Santo André, Brazil
| | - Tiago Rodrigues
- Centro de Ciências Naturais e Humanas (CCNH), Universidade Federal do ABC, UFABC, Santo André, Brazil
| | - Danilo Ciccone Miguel
- Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | | | - Denise Costa Arruda
- Núcleo Integrado de Biotecnologia (NIB), Universidade de Mogi das Cruzes, UMC, Mogi das Cruzes, Brazil
| |
Collapse
|
23
|
Moliné M, Libkind D, van Broock MR. Two at once: simultaneous increased production of astaxanthin and mycosporines in a single batch culture using a Phaffia rhodozyma mutant strain. World J Microbiol Biotechnol 2024; 40:87. [PMID: 38329645 DOI: 10.1007/s11274-024-03901-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/18/2024] [Indexed: 02/09/2024]
Abstract
Phaffia rhodozyma is a basidiomycetous yeast characterized by its production of the carotenoid pigment astaxanthin, which holds high commercial value for its significance in aquaculture, cosmetics and as nutraceutics, and the UV-B-absorbing compound mycosporine-glutaminol-glucoside (MGG), which is of great biotechnological relevance for its incorporation into natural sunscreens. However, the industrial exploitation has been limited to the production of astaxanthin in small quantities. On the other hand, the accumulation of MGG in P. rhodozyma was recently reported and could add value to the simultaneous production of both metabolites. In this work, we obtain a mutant strain that overproduces both compounds, furthermore we determined how the accumulation of each is affected by the carbon-to-nitrogen ratio and six biotic and abiotic factors. The mutant obtained produces 159% more astaxanthin (470.1 μg g-1) and 220% more MGG (57.9 mg g-1) than the parental strain (295.8 μg g-1 and 26.2 mg g-1 respectively). Furthermore, we establish that the carotenoids accumulate during the exponential growth phase while MGG accumulates during the stationary phase. The carbon-to-nitrogen ratio affects each metabolite differently, high ratios favoring carotenoid accumulation while low ratios favoring MGG accumulation. Finally, the accumulation of both metabolites is stimulated only by photosynthetically active radiation and low concentrations of hydrogen peroxide. The mutant strain obtained is the first hyper-productive mutant capable of accumulating high concentrations of MGG and astaxanthin described to date. The characterization of how both compounds accumulate during growth and the factors that stimulate their accumulation, are the first steps toward the future commercial exploitation of strains for the simultaneous production of two biotechnologically important metabolites.
Collapse
Affiliation(s)
- M Moliné
- Centro de Referencia en Levaduras y Tecnología Cervecera (CRELTEC), Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales (IPATEC), CONICET - Universidad Nacional del Comahue, Quintral 1250, San Carlos de Bariloche, Río Negro, 8400, Argentina.
| | - D Libkind
- Centro de Referencia en Levaduras y Tecnología Cervecera (CRELTEC), Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales (IPATEC), CONICET - Universidad Nacional del Comahue, Quintral 1250, San Carlos de Bariloche, Río Negro, 8400, Argentina
| | - M R van Broock
- Centro de Referencia en Levaduras y Tecnología Cervecera (CRELTEC), Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales (IPATEC), CONICET - Universidad Nacional del Comahue, Quintral 1250, San Carlos de Bariloche, Río Negro, 8400, Argentina
| |
Collapse
|
24
|
Golestani A, Rahimi A, Najafzadeh M, Sayadi M, Sajjadi SM. "Combination treatments of imatinib with astaxanthin and crocin efficiently ameliorate antioxidant status, inflammation and cell death progression in imatinib-resistant chronic myeloid leukemia cells". Mol Biol Rep 2024; 51:108. [PMID: 38227060 DOI: 10.1007/s11033-023-09135-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/08/2023] [Indexed: 01/17/2024]
Abstract
BACKGROUND Imatinib resistance remains a major obstacle in the treatment of chronic myelogenous leukemia (CML). Crocin (CRC) and astaxanthin (ATX) are phytochemicals with anti-cancer properties. AIMS This study aimed to explore the effects of combination treatment of Imatinib with CRC and ATX on Imatinib-resistant K562 (IR-K562) cells. METHODS AND RESULTS After the establishment of IR-K562 cells, growth inhibitory activity was determined by the MTT assay. To test the regeneration potential, a colony formation assay was performed. Cell cycle analyses were examined by flow cytometry. Cell injury was evaluated by lactate dehydrogenase (LDH) leakage. Real-time PCR was applied to assess the expression of IL6, TNF-α, STAT3, BAD, CASP3, TP53, and Bcl-2 genes. Caspase-3 activity was determined by a colorimetric assay. Antioxidant activity was measured using a diphenylpicrylhydrazyl (DPPH) assay. After 48 h of treatment, ATX (IC50 = 30µM) and CRC (IC50 = 190µM) significantly inhibited cell proliferation and colony formation ability, induced G1 cell cycle arrest and cell injury, upregulated the expression of apoptosis-associated genes, and downregulated the expression of anti-apoptotic and inflammatory genes. The combination of IM with ATX and/or CRC synergistically reduced cell viability (combination index [CI] < 1). CONCLUSION Our data suggest that IM shows better therapeutic efficacy at lower doses when combined with ATX and/or CRC.
Collapse
Affiliation(s)
- Amin Golestani
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Atefeh Rahimi
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Mahsa Najafzadeh
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Mahtab Sayadi
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| | - Seyed Mehdi Sajjadi
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
25
|
Jabarpour M, Aleyasin A, Shabani Nashtaei M, Amidi F. Astaxanthin supplementation impact on insulin resistance, lipid profile, blood pressure, and oxidative stress in polycystic ovary syndrome patients: A triple-blind randomized clinical trial. Phytother Res 2024; 38:321-330. [PMID: 37874168 DOI: 10.1002/ptr.8037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/18/2023] [Accepted: 09/29/2023] [Indexed: 10/25/2023]
Abstract
Astaxanthin (ASX) is a natural carotenoid compound found in several of microorganisms and seafood. It may have numerous therapeutic benefits for polycystic ovarian syndrome (PCOS) patients. The aim of this study was to investigate the effect of ASX on lipid profile, insulin resistance (IR), blood pressure (BP), and oxidative stress (OS) levels in infertile PCOS patients. Overall, 58 infertile women with diagnosed PCOS participated in this triple-blind randomized clinical trial. They were randomly assigned to two groups, taking either a placebo or ASX (2 × 6 mg/day) for 8 weeks. Blood serum samples were collected from patients before and after the intervention. Fasting Insulin (FI), fasting blood glucose (FBS), OS markers (malondialdehyde [MDA], superoxide dismutase [SOD], and total antioxidant capacity [TAC]), and lipid profiles were evaluated in serum. Moreover, based on the relevant formula, several indices associated with IR were calculated. BP was also assessed at the start and end of the study. After 8 weeks of ASX consumption, a significant reduction was observed in fasting blood sugar, HOMA-IR, FI, MDA, low-density lipoprotein-cholesterol, and TC/HDL-C. Conversely, ASX significantly increased TAC, HDL-C, and QUICKI. After adjusting the analysis for the baseline values of age, body mass index, and biochemical parameters, non-significant values were obtained for QUICKI and FI, along with no changes in other findings. Overall, ASX appears to be an effective and safe supplement that alleviates insulin metabolism, lipid profile parameters, and OS in infertile PCOS patients.
Collapse
Affiliation(s)
- Masoome Jabarpour
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ashraf Aleyasin
- Department of Infertility, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Shabani Nashtaei
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Infertility, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Fardin Amidi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Infertility, Yas Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
Zhang Y, Gao C, Zhu M, Chen F, Sun Y, Jiang Y, Zhou Q, Gao X. Astaxanthin, Haematococcus pluvialis and Haematococcus pluvialis Residue Alleviate Liver Injury in D-Galactose-induced Aging Mice through Gut-liver Axis. J Oleo Sci 2024; 73:729-742. [PMID: 38692895 DOI: 10.5650/jos.ess24003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024] Open
Abstract
Astaxanthin is a keto-based carotenoid mainly obtained from marine organisms, like Haematococcus pluvialis (H. pluvialis). Previous studies indicated the protective effects of Astaxanthin and H. pluvialis on aging related oxidative injury in liver, while the potential mechanisms are largely unknown. In addition, H. pluvialis residue is a by-product after astaxanthin extraction, which is rarely studied and utilized. The present study aimed to compare the effects of astaxanthin, H. pluvialis and H. pluvialis residue on the oxidant injury of liver in D-galactose-induced aging mice and explore the potential mechanisms through gut-liver axis. The results showed that all the three supplements prevented D-galactose-induced tissue injury, oxidative stress and chronic inflammation in liver and improved liver function. Gut microbiota analysis indicated that astaxanthin notably increased fecal levels of Bacteroidetes, unclassified_f__ Lachnospiraceae, norank_f__Lachnospiraceae, norank_f__norank_o__Clostridia_UCG-014, Prevotellaceae_ UCG-001, unclassified_f__Prevotellaceae in D-galactose-fed mice (p < 0.05). Compared to aging mice, H. pluvialis group had higher fecal levels of norank_f__Lachnospiraceae and Lachnospiraceae_UCG-006 (p < 0.05). H. pluvialis residue group displayed higher relative levels of Bacteroidetes, Streptococcus, and Rikenellaceae_RC9_gut_group (p < 0.05). Moreover, the production of fecal microbial metabolites, like SCFAs and LPS was also differently restored by the three supplements. Overall, our results suggest astaxanthin, H. pluvialis and H. pluvialis residue could prevent aging related hepatic injury through gutliver axis and provide evidence for exploiting of H. pluvialis residue as a functional ingredient for the treatment of liver diseases. Future studies are needed to further clarify the effect and mechanism of dominant components of H. pluvialis residue on liver injury, which is expected to provide a reference for the high-value utilization of H. pluvialis resources.
Collapse
Affiliation(s)
| | - Chunhao Gao
- College of Life Sciences, Qingdao University
| | - Mengjia Zhu
- College of Life Sciences, Qingdao University
| | - Fangtian Chen
- Department of Marine Technology, Rizhao Polytechnic; Shandong Engineering and Technology Research Center for Marine Crustacean Resources Comprehensive Utilization; Shandong Engineering Laboratory of Efficient Utilization Technology of Marine Food Resources; Rizhao Key Laboratory of Efficient Utilization of Marine Food Resources
| | - Yongye Sun
- Institute of Nutrition and Health, College of Public Health, Qingdao University
| | - Yu Jiang
- Experimental Animal Platform, Biomedical Center of Qingdao University, Qingdao University
| | - Qingxin Zhou
- Department of Marine Technology, Rizhao Polytechnic; Shandong Engineering and Technology Research Center for Marine Crustacean Resources Comprehensive Utilization; Shandong Engineering Laboratory of Efficient Utilization Technology of Marine Food Resources; Rizhao Key Laboratory of Efficient Utilization of Marine Food Resources
| | - Xiang Gao
- College of Life Sciences, Qingdao University
- Shandong Hongzai Biotechnology Co., LTD
| |
Collapse
|
27
|
Medoro A, Davinelli S, Milella L, Willcox BJ, Allsopp RC, Scapagnini G, Willcox DC. Dietary Astaxanthin: A Promising Antioxidant and Anti-Inflammatory Agent for Brain Aging and Adult Neurogenesis. Mar Drugs 2023; 21:643. [PMID: 38132964 PMCID: PMC10744637 DOI: 10.3390/md21120643] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
Decreased adult neurogenesis, or the gradual depletion of neural stem cells in adult neurogenic niches, is considered a hallmark of brain aging. This review provides a comprehensive overview of the intricate relationship between aging, adult neurogenesis, and the potential neuroregenerative properties of astaxanthin, a carotenoid principally extracted from the microalga Haematococcus pluvialis. The unique chemical structure of astaxanthin enables it to cross the blood-brain barrier and easily reach the brain, where it may positively influence adult neurogenesis. Astaxanthin can affect molecular pathways involved in the homeostasis, through the activation of FOXO3-related genetic pathways, growth, and regeneration of adult brain neurons, enhancing cell proliferation and the potency of stem cells in neural progenitor cells. Furthermore, astaxanthin appears to modulate neuroinflammation by suppressing the NF-κB pathway, reducing the production of pro-inflammatory cytokines, and limiting neuroinflammation associated with aging and chronic microglial activation. By modulating these pathways, along with its potent antioxidant properties, astaxanthin may contribute to the restoration of a healthy neurogenic microenvironment, thereby preserving the activity of neurogenic niches during both normal and pathological aging.
Collapse
Affiliation(s)
- Alessandro Medoro
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy; (A.M.); (S.D.)
| | - Sergio Davinelli
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy; (A.M.); (S.D.)
| | - Luigi Milella
- Department of Science, University of Basilicata, V. le Ateneo Lucano 10, 85100 Potenza, Italy;
| | - Bradley J. Willcox
- Center of Biomedical Research Excellence for Translational Research on Aging, Kuakini Medical Center, Honolulu, HI 96817, USA; (B.J.W.); (R.C.A.); (D.C.W.)
- Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96822, USA
| | - Richard C. Allsopp
- Center of Biomedical Research Excellence for Translational Research on Aging, Kuakini Medical Center, Honolulu, HI 96817, USA; (B.J.W.); (R.C.A.); (D.C.W.)
- Institute for Biogenesis Research, University of Hawaii, Honolulu, HI 96822, USA
| | - Giovanni Scapagnini
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy; (A.M.); (S.D.)
| | - Donald Craig Willcox
- Center of Biomedical Research Excellence for Translational Research on Aging, Kuakini Medical Center, Honolulu, HI 96817, USA; (B.J.W.); (R.C.A.); (D.C.W.)
- Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96822, USA
- Department of Human Welfare, Okinawa International University, Ginowan 901-2211, Japan
| |
Collapse
|
28
|
Roy S, Deshmukh RK, Tripathi S, Gaikwad KK, Das SS, Sharma D. Recent Advances in the Carotenoids Added to Food Packaging Films: A Review. Foods 2023; 12:4011. [PMID: 37959130 PMCID: PMC10647467 DOI: 10.3390/foods12214011] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
Food spoilage is one of the key concerns in the food industry. One approach is the improvement of the shelf life of the food by introducing active packaging, and another is intelligent packaging. Detecting packed food spoilage in real-time is key to stopping outbreaks caused by food-borne diseases. Using active materials in packaging can improve shelf life, while the nonharmful color indicator can be useful to trace the quality of the food through simple color detection. Recently, bio-derived active and intelligent packaging has gained a lot of interest from researchers and consumers. For this, the biopolymers and the bioactive natural ingredient are used as indicators to fabricate active packaging material and color-changing sensors that can improve the shelf life and detect the freshness of food in real-time, respectively. Among natural bioactive components, carotenoids are known for their good antimicrobial, antioxidant, and pH-responsive color-indicating properties. Carotenoids are rich in fruits and vegetables and fat-soluble pigments. Including carotenoids in the packaging system improves the film's physical and functional performance. The recent progress on carotenoid pigment-based packaging (active and intelligent) is discussed in this review. The sources and biological activity of the carotenoids are briefly discussed, and then the fabrication and application of carotenoid-activated packaging film are reviewed. The carotenoids-based packaging film can enhance packaged food's shelf life and indicate the freshness of meat and vegetables in real-time. Therefore, incorporating carotenoid-based pigment into the polymer matrix could be promising for developing novel packaging materials.
Collapse
Affiliation(s)
- Swarup Roy
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Ram Kumar Deshmukh
- Department of Paper Technology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India; (R.K.D.); (S.T.); (K.K.G.)
| | - Shefali Tripathi
- Department of Paper Technology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India; (R.K.D.); (S.T.); (K.K.G.)
| | - Kirtiraj K. Gaikwad
- Department of Paper Technology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India; (R.K.D.); (S.T.); (K.K.G.)
| | - Sabya Sachi Das
- School of Pharmaceutical and Population Health Informatics, DIT University, Dehradun 248009, Uttarakhand, India;
| | - Devanshi Sharma
- Institute of Science, Nirma University, SG Highway, Ahmedabad 382481, Gujrat, India;
| |
Collapse
|
29
|
Su M, Bastiaens L, Verspreet J, Hayes M. Applications of Microalgae in Foods, Pharma and Feeds and Their Use as Fertilizers and Biostimulants: Legislation and Regulatory Aspects for Consideration. Foods 2023; 12:3878. [PMID: 37893770 PMCID: PMC10606004 DOI: 10.3390/foods12203878] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/24/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Microalgae are a rich resource of lipids, proteins, carbohydrates and pigments with nutritional and health benefits. They increasingly find use as ingredients in functional foods and feeds as well as in cosmetics and agricultural products including biostimulants. One of their distinct advantages is their ability to grow on wastewaters and other waste streams, and they are considered an environmentally friendly and cheap method to recover nutrients and remove pollutants from the environment. However, there are limits concerning their applications if grown on certain waste streams. Within, we collate an overview of existing algal applications and current market scenarios for microalgal products as foods and feeds along with relevant legislative requirements concerning their use in Europe and the United States. Microalgal compounds of interest and their extraction and processing methodologies are summarized, and the benefits and caveats of microalgae cultivated in various waste streams and their applications are discussed.
Collapse
Affiliation(s)
- Min Su
- The Food BioSciences Department Ashtown, Teagasc Food Research Centre, 15D05 Dublin, Ireland;
| | - Leen Bastiaens
- Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
| | - Joran Verspreet
- Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
| | - Maria Hayes
- The Food BioSciences Department Ashtown, Teagasc Food Research Centre, 15D05 Dublin, Ireland;
| |
Collapse
|
30
|
Zhou LY, Wu ZM, Chen XQ, Yu BB, Pan MX, Fang L, Li J, Cui XJ, Yao M, Lu X. Astaxanthin promotes locomotor function recovery and attenuates tissue damage in rats following spinal cord injury: a systematic review and trial sequential analysis. Front Neurosci 2023; 17:1255755. [PMID: 37881327 PMCID: PMC10595034 DOI: 10.3389/fnins.2023.1255755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 09/18/2023] [Indexed: 10/27/2023] Open
Abstract
Spinal cord injury (SCI) is a catastrophic condition with few therapeutic options. Astaxanthin (AST), a natural nutritional supplement with powerful antioxidant activities, is finding its new application in the field of SCI. Here, we performed a systematic review to assess the neurological roles of AST in rats following SCI, and assessed the potential for clinical translation. Searches were conducted on PubMed, Embase, Cochrane Library, the Web of Science, China National Knowledge Infrastructure, WanFang data, Vip Journal Integration Platform, and SinoMed databases. Animal studies that evaluated the neurobiological roles of AST in a rat model of SCI were included. A total of 10 articles were included; most of them had moderate-to-high methodological quality, while the overall quality of evidence was not high. Generally, the meta-analyses revealed that rats treated with AST exhibited an increased Basso, Beattie, and Bresnahan (BBB) score compared with the controls, and the weighted mean differences (WMDs) between those two groups showed a gradual upward trend from days 7 (six studies, n = 88, WMD = 2.85, 95% CI = 1.83 to 3.87, p < 0.00001) to days 28 (five studies, n = 76, WMD = 6.42, 95% CI = 4.29 to 8.55, p < 0.00001) after treatment. AST treatment was associated with improved outcomes in spared white matter area, motor neuron survival, and SOD and MDA levels. Subgroup analyses indicated there were differences in the improvement of BBB scores between distinct injury types. The trial sequential analysis then firmly proved that AST could facilitate the locomotor recovery of rats following SCI. In addition, this review suggested that AST could modulate oxidative stress, neuroinflammation, neuron loss, and autophagy via multiple signaling pathways for treating SCI. Collectively, with a protective effect, good safety, and a systematic action mechanism, AST is a promising candidate for future clinical trials of SCI. Nonetheless, in light of the limitations of the included studies, larger and high-quality studies are needed for verification.
Collapse
Affiliation(s)
- Long-yun Zhou
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zi-ming Wu
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xu-qing Chen
- Department of Otolaryngology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Bin-bin Yu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Meng-xiao Pan
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lu Fang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jian Li
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xue-jun Cui
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Min Yao
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiao Lu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
31
|
Tamel Selvan K, Goon JA, Makpol S, Tan JK. Therapeutic Potentials of Microalgae and Their Bioactive Compounds on Diabetes Mellitus. Mar Drugs 2023; 21:462. [PMID: 37755075 PMCID: PMC10532649 DOI: 10.3390/md21090462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/01/2023] [Accepted: 08/07/2023] [Indexed: 09/28/2023] Open
Abstract
Diabetes mellitus is a metabolic disorder characterized by hyperglycemia due to impaired insulin secretion, insulin resistance, or both. Oxidative stress and chronic low-grade inflammation play crucial roles in the pathophysiology of diabetes mellitus. There has been a growing interest in applying natural products to improve metabolic derangements without the side effects of anti-diabetic drugs. Microalgae biomass or extract and their bioactive compounds have been applied as nutraceuticals or additives in food products and health supplements. Several studies have demonstrated the therapeutic effects of microalgae and their bioactive compounds in improving insulin sensitivity attributed to their antioxidant, anti-inflammatory, and pancreatic β-cell protective properties. However, a review summarizing the progression in this topic is lacking despite the increasing number of studies reporting their anti-diabetic potential. In this review, we gathered the findings from in vitro, in vivo, and human studies to discuss the effects of microalgae and their bioactive compounds on diabetes mellitus and the mechanisms involved. Additionally, we discuss the limitations and future perspectives of developing microalgae-based compounds as a health supplement for diabetes mellitus. In conclusion, microalgae-based supplementation has the potential to improve diabetes mellitus and be applied in more clinical studies in the future.
Collapse
Affiliation(s)
| | | | | | - Jen Kit Tan
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), Jalan Ya’acob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
32
|
Cunha SA, Borges S, Baptista-Silva S, Ribeiro T, Oliveira-Silva P, Pintado M, Batista P. Astaxanthin impact on brain: health potential and market perspective. Crit Rev Food Sci Nutr 2023; 64:11067-11090. [PMID: 37417323 DOI: 10.1080/10408398.2023.2232866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Nowadays, there is an emergent interest in new trend-driven biomolecules to improve health and wellbeing, which has become an interesting and promising field, considering their high value and biological potential. Astaxanthin is one of these promising biomolecules, with impressive high market growth, especially in the pharmaceutical and food industries. This biomolecule, obtained from natural sources (i.e., microalgae), has been reported in the literature to have several beneficial health effects due to its biological properties. These benefits seem to be mainly associated with Astaxanthin's high antioxidant and anti-inflammatory properties, which may act on several brain issues, thus attenuating symptoms. In this sense, several studies have demonstrated the impact of astaxanthin on a wide range of diseases, namely on brain disorders (such as Alzheimer's disease, Parkinson, depression, brain stroke and autism). Therefore, this review highlights its application in mental health and illness. Furthermore, a S.W.O.T. analysis was performed to display an approach from the market/commercial perspective. However, to bring the molecule to the market, there is still a need for more studies to increase deep knowledge regarding the real impact and mechanisms in the human brain.HIGHLIGHTSAstaxanthin has been mainly extracted from the algae Haematococcus pluvialisAstaxanthin, bioactive molecule with high antioxidant and anti-inflammatory propertiesAstaxanthin has an important protective effect on brain disordersAstaxanthin is highly marketable, mainly for food and pharmaceutical industries.
Collapse
Affiliation(s)
- Sara A Cunha
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Sandra Borges
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Sara Baptista-Silva
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Tânia Ribeiro
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Patrícia Oliveira-Silva
- Universidade Católica Portuguesa, Research Centre for Human Development, Human Neurobehavioral Laboratory, Porto, Portugal
| | - Manuela Pintado
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Patrícia Batista
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
- Universidade Católica Portuguesa, Research Centre for Human Development, Human Neurobehavioral Laboratory, Porto, Portugal
| |
Collapse
|
33
|
Ciaraldi TP, Boeder SC, Mudaliar SR, Giovannetti ER, Henry RR, Pettus JH. Astaxanthin, a natural antioxidant, lowers cholesterol and markers of cardiovascular risk in individuals with prediabetes and dyslipidaemia. Diabetes Obes Metab 2023; 25:1985-1994. [PMID: 36999233 PMCID: PMC10740106 DOI: 10.1111/dom.15070] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/01/2023]
Abstract
AIM To determine the effects of astaxanthin treatment on lipids, cardiovascular disease (CVD) markers, glucose tolerance, insulin action and inflammation in individuals with prediabetes and dyslipidaemia. MATERIALS AND METHODS Adult participants with dyslipidaemia and prediabetes (n = 34) underwent baseline blood draw, an oral glucose tolerance test and a one-step hyperinsulinaemic-euglycaemic clamp. They were then randomized (n = 22 treated, 12 placebo) to receive astaxanthin 12 mg daily or placebo for 24 weeks. Baseline studies were repeated after 12 and 24 weeks of therapy. RESULTS After 24 weeks, astaxanthin treatment significantly decreased low-density lipoprotein (-0.33 ± 0.11 mM) and total cholesterol (-0.30 ± 0.14 mM) (both P < .05). Astaxanthin also reduced levels of the CVD risk markers fibrinogen (-473 ± 210 ng/mL), L-selectin (-0.08 ± 0.03 ng/mL) and fetuin-A (-10.3 ± 3.6 ng/mL) (all P < .05). While the effects of astaxanthin treatment did not reach statistical significance, there were trends toward improvements in the primary outcome measure, insulin-stimulated, whole-body glucose disposal (+0.52 ± 0.37 mg/m2 /min, P = .078), as well as fasting [insulin] (-5.6 ± 8.4 pM, P = .097) and HOMA2-IR (-0.31 ± 0.16, P = .060), suggesting improved insulin action. No consistent significant differences from baseline were observed for any of these outcomes in the placebo group. Astaxanthin was safe and well tolerated with no clinically significant adverse events. CONCLUSIONS Although the primary endpoint did not meet the prespecified significance level, these data suggest that astaxanthin is a safe over-the-counter supplement that improves lipid profiles and markers of CVD risk in individuals with prediabetes and dyslipidaemia.
Collapse
Affiliation(s)
- Theodore P. Ciaraldi
- Department of Medicine, Division of Endocrinology & Metabolism, University of California, San Diego, La Jolla, CA
- Veterans Affairs San Diego Healthcare System, San Diego, CA
| | - Schafer C. Boeder
- Department of Medicine, Division of Endocrinology & Metabolism, University of California, San Diego, La Jolla, CA
| | - Sunder R. Mudaliar
- Department of Medicine, Division of Endocrinology & Metabolism, University of California, San Diego, La Jolla, CA
- Veterans Affairs San Diego Healthcare System, San Diego, CA
| | - Erin R. Giovannetti
- Department of Medicine, Division of Endocrinology & Metabolism, University of California, San Diego, La Jolla, CA
| | - Robert R. Henry
- Department of Medicine, Division of Endocrinology & Metabolism, University of California, San Diego, La Jolla, CA
- Veterans Affairs San Diego Healthcare System, San Diego, CA
| | - Jeremy H. Pettus
- Department of Medicine, Division of Endocrinology & Metabolism, University of California, San Diego, La Jolla, CA
| |
Collapse
|
34
|
Kahraman C, Kaya Bilecenoglu D, Sabuncuoglu S, Cankaya IT. Toxicology of pharmaceutical and nutritional longevity compounds. Expert Rev Mol Med 2023; 25:e28. [PMID: 37345424 PMCID: PMC10752229 DOI: 10.1017/erm.2023.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 05/22/2023] [Accepted: 06/01/2023] [Indexed: 06/23/2023]
Abstract
Aging is the most prominent risk factor for many diseases, which is considered to be a complicated biological process. The rate of aging depends on the effectiveness of important mechanisms such as the protection of DNA from free radicals, which protects the structural and functional integrity of cells and tissues. In any organism, not all organs may age at the same rate. Slowing down primary aging and reaching maximum lifespan is the most basic necessity. In this process, it may be possible to slow down or stabilise some diseases by using the compounds for both dietary and pharmacological purposes. Natural compounds with antioxidant and anti-inflammatory effects, mostly plant-based nutraceuticals, are preferred in the treatment of age-related chronic diseases and can also be used for other diseases. An increasing number of long-term studies on synthetic and natural compounds aim to elucidate preclinically and clinically the mechanisms underlying being healthy and prolongation of life. To delay age-related diseases and prolong the lifespan, it is necessary to take these compounds with diet or pharmaceuticals, along with detailed toxicological results. In this review, the most promising and utilised compounds will be highlighted and it will be discussed whether they have toxic effects in short/long-term use, although they are thought to be used safely.
Collapse
Affiliation(s)
- Cigdem Kahraman
- Department of Pharmacognosy, Hacettepe University Faculty of Pharmacy, Ankara, Turkey
| | | | - Suna Sabuncuoglu
- Department of Pharmaceutical Toxicology, Hacettepe University Faculty of Pharmacy, Ankara, Turkey
| | - Irem Tatli Cankaya
- Department of Pharmaceutical Botany, Hacettepe University Faculty of Pharmacy, Ankara, Turkey
| |
Collapse
|
35
|
Rostami S, Alyasin A, Saedi M, Nekoonam S, Khodarahmian M, Moeini A, Amidi F. Astaxanthin ameliorates inflammation, oxidative stress, and reproductive outcomes in endometriosis patients undergoing assisted reproduction: A randomized, triple-blind placebo-controlled clinical trial. Front Endocrinol (Lausanne) 2023; 14:1144323. [PMID: 37020589 PMCID: PMC10067663 DOI: 10.3389/fendo.2023.1144323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 03/08/2023] [Indexed: 03/22/2023] Open
Abstract
Purpose In a randomized, triple-blind, placebo-controlled clinical trial (RCT) including 50 infertile women with endometriosis candidate for assisted reproductive techniques (ART), we studied the effect of Astaxanthin (AST) on pro-inflammatory cytokines, oxidative stress (OS) markers, and early pregnancy outcomes. Methods Before and after 12 weeks of AST treatment (6 mg per day), blood serum and follicular fluid (FF) samples were collected from 50 infertile women with endometriosis stage III/IV undergoing ART. Pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α) and OS markers (malondialdehyde [MDA], superoxide dismutase [SOD], catalase [CAT], and total antioxidant capacity [TAC]) were measured in the serum and FF. ART outcomes were also compared between the groups. Results Increased serum levels of TAC (398.661 ± 57.686 vs. 364.746 ± 51.569; P = 0.004) and SOD (13.458 ± 7.276 vs. 9.040 ± 5.155; P = 0.010) were observed after AST therapy in the treatment group. Furthermore, serum MDA (14.619 ± 2.505 vs. 15.939 ± 1.512; P = 0.031) decreased significantly following antioxidant treatment. In addition, significantly lower serum levels of IL-1β (4.515 ± 0.907 vs. 6.8760 ± 0.8478; P = 0.000), IL-6 (5.516 ± 0.646 vs. 5.0543 ± 0.709; P = 0.024) and TNF-α (2.520 ± 0.525 vs. 2.968 ± 0.548; P = 0.038) were observed after AST treatment. In addition, AST supplementation led to an improved number of oocytes retrieved (14.60 ± 7.79 vs. 9.84 ± 6.44; P = 0.043), number of mature (MII) oocytes (10.48 ± 6.665 vs. 6.72 ± 4.3; P = 0.041), and high-quality embryos (4.52 ± 2.41 vs. 2.72 ± 2.40; P = 0.024). Conclusion AST pretreatment can modulate inflammation and OS in endometriosis-induced infertile patients. ART outcomes also improved after 12 weeks of AST therapy. Our results suggest that AST can be a potential therapeutic target for infertile patients with endometriosis undergoing ART.
Collapse
Affiliation(s)
- Sahar Rostami
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ashraf Alyasin
- Department of Infertility, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Department of Obstetrics and Gynecology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mojtaba Saedi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeid Nekoonam
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahshad Khodarahmian
- Department of Infertility, Arash Women’s Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Ashraf Moeini
- Department of Gynecology and Obstetrics, Arash Women’s Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, Academic Center for Education, Culture, and Research (ACECR), Tehran, Iran
| | - Fardin Amidi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
36
|
Genetic Improvement to Obtain Specialized Haematococcus pluvialis Genotypes for the Production of Carotenoids, with Particular Reference to Astaxanthin. INTERNATIONAL JOURNAL OF PLANT BIOLOGY 2023. [DOI: 10.3390/ijpb14010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
Nowadays, the search for natural substances with a high nutraceutical effect positively impact the world market. Among the most attractive macromolecules are antioxidants, capable of preventing the development of various pathologies. Astaxanthin (ASX) is antioxidant molecule produced by the microalga H. pluvialis as a response to different types of stress. Usually, astaxanthin production involves the first phase of accumulation of the biomass of H. pluvialis (green phase), which is then stressed to stimulate the biosynthesis and accumulation of ASX (red phase). In this study, the H. pluvialis wild-type strain was subjected to random mutagenesis by UV. Among the different mutant strains obtained, only two showed interesting bio-functional characteristics, such as a good growth rate. The results demonstrated that the HM1010 mutant not only has a higher growth trend than the WT mutant but accumulates and produces ASX even in the green phase. This innovative genotype would guarantee the continuous production of ASX, not linked to the two-step process and the uniqueness of the product obtained.
Collapse
|
37
|
Jabarpour M, Aleyasin A, Nashtaei MS, Lotfi S, Amidi F. Astaxanthin treatment ameliorates ER stress in polycystic ovary syndrome patients: a randomized clinical trial. Sci Rep 2023; 13:3376. [PMID: 36854788 PMCID: PMC9974957 DOI: 10.1038/s41598-023-28956-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 01/27/2023] [Indexed: 03/02/2023] Open
Abstract
Astaxanthin (ASX), as a natural carotenoid compound, exists in various types of seafood and microorganisms. It has several possible beneficial therapeutic effects for patients with polycystic ovary syndrome (PCOS). Patients with PCOS also suffer from endoplasmic reticulum (ER) stress. In the present work, it was hypothesized that ER stress could be improved by ASX in PCOS patients. Granulosa cells (GCs) were obtained from 58 PCOS patients. The patients were classified into ASX treatment (receiving 12 mg/day for 60 days) and placebo groups. The expression levels of ER stress pathway genes and proteins were explored using Western blotting and quantitative polymerase chain reaction. To assess oxidative stress markers, follicular fluid (FF) was gained from all patients. The Student's t test was used to perform statistical analysis. After the intervention, ASX led to a considerable reduction in the expression levels of 78-kDa glucose-regulated protein (GRP78), CCAAT/enhancer-binding protein homologous protein (CHOP), and X-box-binding protein 1 compared to the placebo group, though the reduction in the messenger RNA (mRNA) expression level of activating transcription factor 6 was not statistically significant. However, ASX significantly increased the ATF4 expression level. GRP78 and CHOP protein levels represented a considerable decrease in the treatment group after the intervention. In addition, a statistically significant increase was found in the FF level of total antioxidant capacity in the treatment group. Based on clinical outcomes, no significant differences were found between the groups in terms of the oocyte number, fertilization rate, and fertility rate, but the ASX group had higher rates of high-quality oocytes, high-quality embryo, and oocyte maturity compared to the placebo group. Our findings demonstrated that ER stress in the GCs of PCOS patients could be modulated by ASX by changing the expression of genes and proteins included in the unfolding protein response.Trial registration This study was retrospectively registered on the Iranian Registry of Clinical Trials website ( www.irct.ir ; IRCT-ID: IRCT20201029049183N, 2020-11-27).
Collapse
Affiliation(s)
- Masoome Jabarpour
- grid.411705.60000 0001 0166 0922Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Pour Sina St, Tehran, 1416753955 Iran
| | - Ashraf Aleyasin
- grid.415646.40000 0004 0612 6034Department of Infertility, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Shabani Nashtaei
- grid.411705.60000 0001 0166 0922Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Pour Sina St, Tehran, 1416753955 Iran ,grid.415646.40000 0004 0612 6034Department of Infertility, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Lotfi
- grid.411705.60000 0001 0166 0922Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Pour Sina St, Tehran, 1416753955 Iran
| | - Fardin Amidi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Pour Sina St, Tehran, 1416753955, Iran. .,Department of Infertility, Yas Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
38
|
Gherabli A, Grimi N, Lemaire J, Vorobiev E, Lebovka N. Extraction of Valuable Biomolecules from the Microalga Haematococcus pluvialis Assisted by Electrotechnologies. Molecules 2023; 28:2089. [PMID: 36903334 PMCID: PMC10004699 DOI: 10.3390/molecules28052089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
The freshwater microalga Haematococcus pluvialis is well known as the cell factory for natural astaxanthin, which composes up to 4-7% of its total dry weight. The bioaccumulation of astaxanthin in H. pluvialis cysts seems to be a very complex process that depends on different stress conditions during its cultivation. The red cysts of H. pluvialis develop thick and rigid cell walls under stress growing conditions. Thus, the biomolecule extraction requires general cell disruption technologies to reach a high recovery rate. This short review provides an analysis of the different steps in H. pluvialis's up and downstream processing including cultivation and harvesting of biomass, cell disruption, extraction and purification techniques. Useful information on the structure of H. pluvialis's cells, biomolecular composition and properties and the bioactivity of astaxanthin is collected. Special emphasis is given to the recent progress in application of different electrotechnologies during the growth stages and for assistance of the recovery of different biomolecules from H. pluvialis.
Collapse
Affiliation(s)
- Adila Gherabli
- Université de technologie de Compiègne, UTC/ESCOM, TIMR (Transformations Intégrées de la Matière Renouvelable), 60200 Compiègne, France
- CentraleSupélec, Laboratoire de Génie des Procédés et Matériaux, Centre Européen de Biotechnologie et de Bioéconomie (CEBB), Université Paris-Saclay, 3 Rue des Rouges Terres, 51110 Pomacle, France
| | - Nabil Grimi
- Université de technologie de Compiègne, UTC/ESCOM, TIMR (Transformations Intégrées de la Matière Renouvelable), 60200 Compiègne, France
| | - Julien Lemaire
- CentraleSupélec, Laboratoire de Génie des Procédés et Matériaux, Centre Européen de Biotechnologie et de Bioéconomie (CEBB), Université Paris-Saclay, 3 Rue des Rouges Terres, 51110 Pomacle, France
| | - Eugène Vorobiev
- Université de technologie de Compiègne, UTC/ESCOM, TIMR (Transformations Intégrées de la Matière Renouvelable), 60200 Compiègne, France
| | - Nikolai Lebovka
- Université de technologie de Compiègne, UTC/ESCOM, TIMR (Transformations Intégrées de la Matière Renouvelable), 60200 Compiègne, France
- Laboratory of Physical Chemistry of Disperse Minerals, F. D. Ovcharenko Institute of Biocolloidal Chemistry, NAS of Ukraine, 03142 Kyiv, Ukraine
| |
Collapse
|
39
|
Polyethylenimine linked with chitosan improves astaxanthin production in Haematococcus pluvialis. Appl Microbiol Biotechnol 2023; 107:569-580. [PMID: 36517544 DOI: 10.1007/s00253-022-12275-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 10/26/2022] [Accepted: 11/02/2022] [Indexed: 12/23/2022]
Abstract
Astaxanthin is receiving increasing interest as an antioxidant and high value-added secondary metabolite. Haematococcus pluvialis is the main source for astaxanthin production, and many studies are being conducted to increase the production of astaxanthin. In this study, we linked polyethylenimine (PEI) with chitosan to maintain astaxanthin-inducing ability while securing the recyclability of the inducer. Astaxanthin accumulation in H. pluvialis was induced to 86.4 pg cell-1 with the PEI-chitosan fiber (PCF) treatment prepared by cross-linking of 10 μM PEI and low molecular weight (MW) chitosan via epichlorohydrin. PEI concentration affected the astaxanthin accumulation, whereas the MW of chitosan did not. In addition, the PCF treatment in H. pluvialis increased the reactive oxygen species (ROS) content in cells, thereby upregulating the transcription of enzymes involved in astaxanthin biosynthesis. PCF can be reused multiple times with the maintenance of over 90% of the astaxanthin production efficiency. This study offers a reusable PCF stimulation strategy for enhancing natural astaxanthin content, and PCF treatment will easily increase the production scale or reduce production costs by using recyclability that is not available in current methods. KEY POINTS: • Polyethylenimine-chitosan fiber (PCF) was applied to Haematococcus pluvialis • PCF promotes astaxanthin accumulation by enhancing oxidative stress in H. pluvialis • PCF can be reused multiple times with maintaining over 90% production efficiency.
Collapse
|
40
|
Takahashi T, Suzuki N, Ishii R, Toyoda S, Shibata M, Azuma Y, Kurose Y. Egg laying performance and egg quality with Paracoccus carotinifaciens supplementation containing high astaxanthin levels. Br Poult Sci 2023; 64:47-55. [PMID: 36129068 DOI: 10.1080/00071668.2022.2126933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
1. This study assessed 1) the effects of Paracoccus carotinifaciens supplementation containing high astaxanthin levels on egg production performance and quality, 2) dynamics of carotenoids levels in the egg yolk and 3) taste of astaxanthin-rich egg yolk.2. Laying hens were fed diets containing different levels of P. carotinifaciens-derived astaxanthin (ASX; 0, 2, 4, 8, or 16 ppm) for 28 d (experiment 1) or a diet containing 16 ppm astaxanthin for 28 d followed by a 0 ppm astaxanthin diet for 28 days (experiment 2).3. Production performance, egg quality and egg yolk carotenoid levels were examined in experiment 1 (Ex1) and the dynamics of egg yolk carotenoid levels and egg yolk taste in experiment 2 (Ex2).4. ASX supplementation did not affect production performance or egg quality. ASX levels in the egg yolk became saturated after seven days of 16 ppm supplementation and decreased to less than one-tenth of the saturated levels seven days after supplementation cessation. Supplementation with 16 ppm ASX for 28 d did not affect egg yolk taste.5. Supplementation resulted in the production of ASX-rich eggs for a brief period without affecting production performance, egg quality or taste. Understanding the time taken for the incorporation of ASX into egg yolks is beneficial for value-added egg production and may help in minimising supplementation costs.
Collapse
Affiliation(s)
- T Takahashi
- Laboratory of Animal Metabolism and Function, School of Veterinary Medicine, Kitasato University, Towada, Aomori, Japan
| | - N Suzuki
- Research and Development Department, Kanematsu Agritech Co. Ltd, Koshigaya, Saitama, Japan
| | - R Ishii
- Laboratory of Animal Metabolism and Function, School of Veterinary Medicine, Kitasato University, Towada, Aomori, Japan
| | - S Toyoda
- Laboratory of Animal Metabolism and Function, School of Veterinary Medicine, Kitasato University, Towada, Aomori, Japan
| | - M Shibata
- Laboratory of Animal Metabolism and Function, School of Veterinary Medicine, Kitasato University, Towada, Aomori, Japan
| | - Y Azuma
- Laboratory of Animal and Human Nutritional Physiology, School of Veterinary Medicine, Kitasato University, Towada, Aomori, Japan
| | - Y Kurose
- Laboratory of Animal Metabolism and Function, School of Veterinary Medicine, Kitasato University, Towada, Aomori, Japan
| |
Collapse
|
41
|
Fullam T, Armon C, Barkhaus P, Barnes B, Beauchamp M, Benatar M, Bertorini T, Bowser R, Bromberg M, Mascias Cadavid J, Carter GT, Dimachkie M, Ennist D, Feldman EL, Heiman-Patterson T, Jhooty S, Lund I, Mcdermott C, Pattee G, Ratner D, Wicks P, Bedlack R. ALSUntangled # 69: astaxanthin. Amyotroph Lateral Scler Frontotemporal Degener 2023:1-5. [PMID: 36694292 DOI: 10.1080/21678421.2023.2171302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
ALSUntangled reviews alternative and off-label treatments for people living with amyotrophic lateral sclerosis (PALS). Here we review astaxanthin which has plausible mechanisms for slowing ALS progression including antioxidant, anti-inflammatory, and anti-apoptotic effects. While there are no ALS-specific pre-clinical studies, one verified "ALS reversal" occurred in a person using a combination of alternative therapies which included astaxanthin. There have been no trials of astaxanthin in people living with ALS. Natural astaxanthin appears to be safe and inexpensive. Based on the above information, we support further pre-clinical and/or clinical trials of astaxanthin in disease models and PALS, respectively, to further elucidate efficacy.
Collapse
Affiliation(s)
| | - Carmel Armon
- Department of Neurology, Loma Linda University, Loma Linda, CA, USA
| | - Paul Barkhaus
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Benjamin Barnes
- Department of Neurology, Medical College of Georgia, Augusta, GA, USA
| | | | - Michael Benatar
- Department of Neurology, University of Miami, Miami, FL, USA
| | - Tulio Bertorini
- Neurology Department, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Robert Bowser
- Department of Neurology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Mark Bromberg
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
| | | | - Gregory T Carter
- Department of Rehabilitation, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, USA
| | - Mazen Dimachkie
- Department of Neurology, University of Kansas, Kansas City, KS, USA
| | | | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | | | - Sartaj Jhooty
- University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | | | - Gary Pattee
- Department of Neurology, University of Nebraska Medical Center, Omaha, NE, USA
| | | | - Paul Wicks
- Independent Consultant, Lichfield, UK, and
| | | |
Collapse
|
42
|
Lee J, Kim MH, Kim H. Anti-Oxidant and Anti-Inflammatory Effects of Astaxanthin on Gastrointestinal Diseases. Int J Mol Sci 2022; 23:ijms232415471. [PMID: 36555112 PMCID: PMC9779521 DOI: 10.3390/ijms232415471] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
A moderate amount of reactive oxygen species (ROS) is produced under normal conditions, where they play an important role in cell signaling and are involved in many aspects of the immune response to pathogens. On the other hand, the excessive production of ROS destructs macromolecules, cell membranes, and DNA, and activates pro-inflammatory signaling pathways, which may lead to various pathologic conditions. Gastrointestinal (GI) mucosa is constantly exposed to ROS due to the presence of bacteria and other infectious pathogens in food, as well as alcohol consumption, smoking, and the use of non-steroidal anti-inflammatory drugs (NSAID). Prolonged excessive oxidative stress and inflammation are two major risk factors for GI disorders such as ulcers and cancers. Bioactive food compounds with potent anti-oxidant and anti-inflammatory activity have been tested in experimental GI disease models to evaluate their therapeutic potential. Astaxanthin (AST) is a fat-soluble xanthophyll carotenoid that is naturally present in algae, yeast, salmon, shrimp, and krill. It has been shown that AST exhibits protective effects against GI diseases via multiple mechanisms. Residing at the surface and inside of cell membranes, AST directly neutralizes ROS and lipid peroxyl radicals, enhances the activity of anti-oxidant enzymes, and suppresses pro-inflammatory transcription factors and cytokines. In addition, AST has been shown to inhibit cancer cell growth and metastasis via modulating cell proliferation-related pathways, apoptosis, and autophagy. Considering the potential benefits of AST in GI diseases, this review paper aims to summarize recent advances in AST research, focusing on its anti-oxidant and anti-inflammatory effects against gastric and intestinal ulcers and cancers.
Collapse
Affiliation(s)
- Jaeeun Lee
- Department of Food and Nutrition, BK21 FOUR, College of Human Ecology, Yonsei University, Seoul 03722, Republic of Korea
| | - Min-Hyun Kim
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA
- Correspondence: (M.-H.K.); (H.K.); Tel.: +1-602-496-4163 (M.-H.K.); +82-2-2123-3125 (H.K.)
| | - Hyeyoung Kim
- Department of Food and Nutrition, BK21 FOUR, College of Human Ecology, Yonsei University, Seoul 03722, Republic of Korea
- Correspondence: (M.-H.K.); (H.K.); Tel.: +1-602-496-4163 (M.-H.K.); +82-2-2123-3125 (H.K.)
| |
Collapse
|
43
|
Koopmann IK, Kramer A, Labes A. Development and validation of reliable astaxanthin quantification from natural sources. PLoS One 2022; 17:e0278504. [PMID: 36459522 PMCID: PMC9718415 DOI: 10.1371/journal.pone.0278504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 11/09/2022] [Indexed: 12/04/2022] Open
Abstract
Astaxanthin derived from natural sources occurs in the form of various esters and stereomers, which complicates its quantitative and qualitative analysis. To simplify and standardize astaxanthin measurement with high precision, an enzymolysis-based astaxanthin quantification method was developed to hydrolyze astaxanthin esters and determine free astaxanthin in all its diastereomeric forms. Astaxanthin standards and differently processed Haematococcus pluvialis biomass were investigated. Linear correlation of standards of all-E-astaxanthin was observed in a measurement range between extract concentrations of 1.0 μg/mL and 11.2 μg/mL with a coefficient of variation below 5%. The diastereomers 9Z-, and 13Z-astaxanthin, and two di-Z-forms were detected. In contrast to the measurement of standards, the observed measurement range was extended to 30 μg/mL in extracts from H. pluvialis. The nature of the sample had to be taken into account for measurement, as cell, respectively, sample composition altered the optimal concentration for astaxanthin determination. The measurement precision of all-E-astaxanthin quantification in dried H. pluvialis biomass (1.2-1.8 mg dried biomass per sample) was calculated with a coefficient of variation of maximum 1.1%, whereas it was below 10% regarding the diastereomers. Complete enzymolysis was performed with 1.0 to 2.0 units of cholesterol esterase in the presence of various solvents with up to 2.0 mg biomass (dry weight). The method was compared with other astaxanthin determination approaches in which astaxanthin is converted to acetone in a further step before measurement. The developed method resulted in a higher total astaxanthin recovery but lower selectivity of the diastereomers. The reliability of photometric astaxanthin estimations was assessed by comparing them with the developed chromatographic method. At later stages in the cell cycle of H. pluvialis, all methods yielded similar results (down to 0.1% deviation), but photometry lost precision at earlier stages (up to 31.5% deviation). To optimize sample storage, the shelf life of astaxanthin-containing samples was investigated. Temperatures below -20°C, excluding oxygen, and storing intact H. pluvialis cells instead of dried or disrupted biomass reduced astaxanthin degradation.
Collapse
Affiliation(s)
- Inga K. Koopmann
- ZAiT, Center for Analytics in Technology Transfer of Bio and Food Technology Innovations, Flensburg University of Applied Sciences, Flensburg, Schleswig-Holstein, Germany
| | - Annemarie Kramer
- ZAiT, Center for Analytics in Technology Transfer of Bio and Food Technology Innovations, Flensburg University of Applied Sciences, Flensburg, Schleswig-Holstein, Germany
| | - Antje Labes
- ZAiT, Center for Analytics in Technology Transfer of Bio and Food Technology Innovations, Flensburg University of Applied Sciences, Flensburg, Schleswig-Holstein, Germany
- * E-mail:
| |
Collapse
|
44
|
Natural Astaxanthin Is a Green Antioxidant Able to Counteract Lipid Peroxidation and Ferroptotic Cell Death. Int J Mol Sci 2022; 23:ijms232315137. [PMID: 36499464 PMCID: PMC9737268 DOI: 10.3390/ijms232315137] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 12/04/2022] Open
Abstract
Astaxanthin is a red orange xanthophyll carotenoid produced mainly by microalgae but which can also be chemically synthesized. As demonstrated by several studies, this lipophilic molecule is endowed with potent antioxidant properties and is able to modulate biological functions. Unlike synthetic astaxanthin, natural astaxanthin (NAst) is considered safe for human nutrition, and its production is considered eco-friendly. The antioxidant activity of astaxanthin depends on its bioavailability, which, in turn, is related to its hydrophobicity. In this study, we analyzed the water-solubility of NAst and assessed its protective effect against oxidative stress by means of different approaches using a neuroblastoma cell model. Moreover, due to its highly lipophilic nature, astaxanthin is particularly protective against lipid peroxidation; therefore, the role of NAst in counteracting ferroptosis was investigated. This recently discovered process of programmed cell death is indeed characterized by iron-dependent lipid peroxidation and seems to be linked to the onset and development of oxidative-stress-related diseases. The promising results of this study, together with the "green sources" from which astaxanthin could derive, suggest a potential role for NAst in the prevention and co-treatment of chronic degenerative diseases by means of a sustainable approach.
Collapse
|
45
|
Nakanishi R, Kanazashi M, Tanaka M, Tanaka M, Fujino H. Impacts of Astaxanthin Supplementation on Walking Capacity by Reducing Oxidative Stress in Nursing Home Residents. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13492. [PMID: 36294075 PMCID: PMC9603106 DOI: 10.3390/ijerph192013492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/15/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
Oxidative stress is associated with deterioration of endurance and muscle strength, which are mostly accompanied by aging. Astaxanthin supplement has excellent antioxidant activity without any pro-oxidative properties. In this study, we investigated how astaxanthin supplementation affects walking endurance and muscle strength in nursing home residents. Healthy elderly individuals (age: 67 to 94) were divided into two groups: 13 subjects received a daily dose of 24 mg of astaxanthin for 16 weeks (astaxanthin group) and 11 subjects received a placebo (placebo group). These subjects were compared using body component measurements, serum d-ROM levels, the distance of 6-min walking, blood lactate levels after the 6-min walking test, and muscle strength. After supplementation, the levels of d-ROMs and blood lactate after the 6-min walking test in the astaxanthin group significantly decreased compared with the placebo group (p < 0.05). Additionally, the walking distance was significantly higher in the astaxanthin group than in the placebo group (p < 0.05), despite a significant reduction in lactate levels after 6-MWT (p < 0.05). However, no significant intergroup differences were observed in muscle mass and strength. Astaxanthin supplement for 16 weeks is effective to increase the endurance capacity of the elderly. Astaxanthin supplement suppresses d-ROMs at rest and lactic acid production after the 6-min walk test. In contrast, astaxanthin supplement did not show significant intergroup differences in the muscle mass and strength. Therefore, the effect was most likely accompanied by an increase in endurance instead of an increase in muscle strength.
Collapse
Affiliation(s)
- Ryosuke Nakanishi
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe 654-0142, Japan
- Department of Physical Therapy, Kobe International University, Kobe 658-0032, Japan
| | - Miho Kanazashi
- Department of Physical Therapy, Prefectural University of Hiroshima, Hiroshima 723-0053, Japan
| | - Masayuki Tanaka
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe 654-0142, Japan
- Department of Physical Therapy, Okayama Healthcare Professional University, Okayama 700-0913, Japan
| | - Minoru Tanaka
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe 654-0142, Japan
- Department of Rehabilitation Science, Osaka Health Science University, Osaka 530-0043, Japan
| | - Hidemi Fujino
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe 654-0142, Japan
| |
Collapse
|
46
|
Khaligh SF, Asoodeh A. Recent advances in the bio-application of microalgae-derived biochemical metabolites and development trends of photobioreactor-based culture systems. 3 Biotech 2022; 12:260. [PMID: 36072963 PMCID: PMC9441132 DOI: 10.1007/s13205-022-03327-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 08/24/2022] [Indexed: 11/28/2022] Open
Abstract
Microalgae are microscopic algae in sizes ranging from a few micrometers to several hundred micrometers. On average, half of the oxygen in the atmosphere is produced by the photosynthetic process of microalgae, so the role of these microorganisms in the life cycle of the planet is very significant. Pharmaceutical products derived from microalgae and commercial developments of a variety of supplements extracted from them originate from a variety of their specific secondary metabolites. Many of these microalgae are a reservoir of unique biological compounds including carotenoids, antioxidants, fatty acids, polysaccharides, enzymes, polymers, peptides, pigments, toxins and sterols with antimicrobial, antiviral, antifungal, antiparasitic, anticoagulant, and anticancer properties. The present work begins with an introduction of the importance of microalgae in renewable fuels and biodiesel production, the development of healthy food industry, and the creation of optimal conditions for efficient biomass yield. This paper provides the latest research related to microalgae-derived substances in the field of improving drug delivery, immunomodulatory, and anticancer attributes. Also, the latest advances in algal biocompounds to combat the COVID-19 pandemic are presented. In the subject of cultivation and growth of microalgae, the characteristics of different types of photobioreactors, especially their latest forms, are fully discussed along with their advantages and obstacles. Finally, the potential of microalgae biomass in biotechnological applications, biofuel production, as well as various biomass harvesting methods are described.
Collapse
Affiliation(s)
| | - Ahmad Asoodeh
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
- Cellular and Molecular Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
47
|
Patil AD, Kasabe PJ, Dandge PB. Pharmaceutical and nutraceutical potential of natural bioactive pigment: astaxanthin. NATURAL PRODUCTS AND BIOPROSPECTING 2022; 12:25. [PMID: 35794254 PMCID: PMC9259778 DOI: 10.1007/s13659-022-00347-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 05/09/2022] [Indexed: 05/31/2023]
Abstract
Astaxanthin (3,3'-dihydroxy-β,β-carotene-4,4'-dione) is an orange-red, lipophilic keto-carotenoid pigment. It is majorly found in marine ecosystems particularly in aquatic animals such as salmon, shrimp, trout, krill, crayfish, and so on. It is also synthesized in microalgae Heamatococcus pluvialis, Chlorococcum, Chlorella zofingiensis, red yeast Phaffia rhodozyma and bacterium Paracoccus carotinifaciens. Some aquatic and terrestrial creatures regarded as a primary and secondary sources of the astaxanthin producing and accumulating it through their metabolic pathways. Astaxanthin is the powerful antioxidant, nutritional supplement as well as promising therapeutic compound, observed to have activities against different ravaging diseases and disorders. Researchers have reported remarkable bioactivities of astaxanthin against major non-communicable chronic diseases such as cardiovascular diseases, cancer, diabetes, neurodegenerative, and immune disorders. The current review discusses some structural aspects of astaxanthin. It further elaborates its multiple potencies such as antioxidant, anti-inflammatory, anti-proliferative, anti-cancer, anti-obese, anti-diabetic, anti-ageing, anti-TB, anti-viral, anti-COVID 19, neuro-protective, nephro-protective, and fertility-enhancing properties. These potencies make it a more precious entity in the preventions as well as treatments of prevalent systematic diseases and/or disorders. Also, the review is acknowledging and documenting its powerful bioactivities in relation with the pharmaceutical as well as nutraceutical applicability.
Collapse
Affiliation(s)
- Apurva D. Patil
- Department of Biochemistry, Shivaji University, Kolhapur, 416004 Maharashtra India
| | - Pramod J. Kasabe
- School of Nanoscience and Biotechnology, Shivaji University, Kolhapur, Maharashtra India
| | - Padma B. Dandge
- Department of Biochemistry, Shivaji University, Kolhapur, 416004 Maharashtra India
| |
Collapse
|
48
|
Oral Supplementation with Z-Isomer-Rich Astaxanthin Inhibits Ultraviolet Light-Induced Skin Damage in Guinea Pigs. Mar Drugs 2022; 20:md20070414. [PMID: 35877706 PMCID: PMC9315510 DOI: 10.3390/md20070414] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/18/2022] [Accepted: 06/23/2022] [Indexed: 02/05/2023] Open
Abstract
The effect of oral supplementation with astaxanthin of different Z-isomer ratios on ultraviolet (UV) light-induced skin damage in guinea pigs was investigated. Astaxanthin with a high Z-isomer content was prepared from the all-E-isomer via thermal isomerization. Intact (all-E)-astaxanthin and the prepared Z-isomer-rich astaxanthin were suspended in soybean oil and fed to guinea pigs for three weeks. The UV-light irradiation was applied to the dorsal skin on the seventh day after the start of the test diet supplementation, and skin parameters, such as elasticity, transepidermal water loss (TEWL), and pigmentation (melanin and erythema values), were evaluated. The accumulation of astaxanthin in the dorsal skin was almost the same after consumption of the all-E-isomer-rich astaxanthin diet (E-AST-D; total Z-isomer ratio = 3.2%) and the Z-isomer-rich astaxanthin diet (Z-AST-D; total Z-isomer ratio = 84.4%); however, the total Z-isomer ratio of astaxanthin in the skin was higher in the case of the Z-AST-D supplementation. Both diets inhibited UV light-induced skin-damaging effects, such as the reduction in elasticity and the increase in TEWL level. Between E-AST-D and Z-AST-D, Z-AST-D showed better skin-protective ability against UV-light exposure than E-AST-D, which might be because of the greater UV-light-shielding ability of astaxanthin Z-isomers than the all-E-isomer. Furthermore, supplementation with Z-AST-D resulted in a greater reduction in skin pigmentation caused by astaxanthin accumulation compared to that of E-AST-D. This study indicates that dietary astaxanthin accumulates in the skin and appears to prevent UV light-induced skin damage, and the Z-isomers are more potent oral sunscreen agents than the all-E-isomer.
Collapse
|
49
|
Leung LYL, Chan SMN, Tam HL, Wong ESW. Astaxanthin Influence on Health Outcomes of Adults at Risk of Metabolic Syndrome: A Systematic Review and Meta-Analysis. Nutrients 2022; 14:2050. [PMID: 35631193 PMCID: PMC9148008 DOI: 10.3390/nu14102050] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 02/01/2023] Open
Abstract
The use of medication is effective in managing metabolic syndrome (MetS), but side effects have led to increased attention on using nutraceuticals and supplements. Astaxanthin shows positive effects in reducing the risk of MetS, but results from individual studies are inconclusive. This systematic review summarizes the latest evidence of astaxanthin in adults with risk factors of MetS. A systematic search of English and Chinese randomized controlled trials in 14 electronic databases from inception to 30 June 2021 was performed. Two reviewers independently screened the titles and abstracts, and conducted full-text review, quality appraisal, and extraction of data. Risk of bias was assessed by PEDro. A total of 7 studies met the inclusion criteria with 321 participants. Six studies were rated to have excellent methodological quality, while the remaining one was rated at good. Results show marginal effects of astaxanthin on reduction in total cholesterol and systolic blood pressure, and a significant attenuating effect on low-density lipoprotein cholesterol. Further robust evidence is needed to examine the effects of astaxanthin in adults at risk of MetS.
Collapse
Affiliation(s)
- Leona Yuen-Ling Leung
- The Ronin Institute, Montclair, NJ 07043, USA;
- Hong Kong Food Science and Technology Association, Hong Kong, China
- Canadian Academy of Independent Scholars, Vancouver, BC V6B 5K3, Canada
| | - Sidney Man-Ngai Chan
- School of Science and Technology, Hong Kong Metropolitan University, Hong Kong, China;
| | - Hon-Lon Tam
- Education Department, Kiang Wu Nursing College of Macau, Macau 999078, China
- School of Nursing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Emily Sze-Wan Wong
- School of Science and Technology, Hong Kong Metropolitan University, Hong Kong, China;
| |
Collapse
|
50
|
Liu JK. Antiaging agents: safe interventions to slow aging and healthy life span extension. NATURAL PRODUCTS AND BIOPROSPECTING 2022; 12:18. [PMID: 35534591 PMCID: PMC9086005 DOI: 10.1007/s13659-022-00339-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 03/29/2022] [Indexed: 05/02/2023]
Abstract
Human longevity has increased dramatically during the past century. More than 20% of the 9 billion population of the world will exceed the age of 60 in 2050. Since the last three decades, some interventions and many preclinical studies have been found to show slowing aging and increasing the healthy lifespan of organisms from yeast, flies, rodents to nonhuman primates. The interventions are classified into two groups: lifestyle modifications and pharmacological/genetic manipulations. Some genetic pathways have been characterized to have a specific role in controlling aging and lifespan. Thus, all genes in the pathways are potential antiaging targets. Currently, many antiaging compounds target the calorie-restriction mimetic, autophagy induction, and putative enhancement of cell regeneration, epigenetic modulation of gene activity such as inhibition of histone deacetylases and DNA methyltransferases, are under development. It appears evident that the exploration of new targets for these antiaging agents based on biogerontological research provides an incredible opportunity for the healthcare and pharmaceutical industries. The present review focus on the properties of slow aging and healthy life span extension of natural products from various biological resources, endogenous substances, drugs, and synthetic compounds, as well as the mechanisms of targets for antiaging evaluation. These bioactive compounds that could benefit healthy aging and the potential role of life span extension are discussed.
Collapse
Affiliation(s)
- Ji-Kai Liu
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074, People's Republic of China.
| |
Collapse
|