1
|
Tian L, Wang Z, Chen S, Guo K, Hao Y, Ma L, Ma K, Chen J, Liu X, Li L, Fu X, Zhang C. Ellagic Acid-Loaded sEVs Encapsulated in GelMA Hydrogel Accelerate Diabetic Wound Healing by Activating EGFR on Skin Repair Cells. Cell Prolif 2025:e70064. [PMID: 40384373 DOI: 10.1111/cpr.70064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/25/2025] [Accepted: 05/06/2025] [Indexed: 05/20/2025] Open
Abstract
Delayed diabetic wound healing is partially attributed to the functional disorder of skin repair cells caused by high glucose (HG). Small extracellular vehicles (sEVs) loaded with small-molecule drugs represent a highly promising therapeutic strategy. This study aims to evaluate the therapeutic efficacy of ellagic acid-encapsulated small extracellular vesicles (EA-sEVs) in diabetic wound regeneration and to unravel related mechanisms. Cytotoxicity tests of ellagic acid (EA) as liposomal small molecules (LSMs) were performed with the CCK8 assay. EA was incorporated into sEVs obtained from chorionic plate-mesenchymal stem cells (CP-MSCs) to construct EA-engineered sEVs. The protective effects of EA-sEVs on human dermal fibroblasts (HDFs) and human epidermal keratinocytes (HEKs) induced by high glucose (HG) were assessed through the evaluation of their proliferative, migrative and differentiative capabilities. Furthermore, to illustrate the underlying mechanism, the specific biological targets of EA were predicted and confirmed. Finally, EA-sEVs were encapsulated in GelMA hydrogel for investigating the pro-healing effects on diabetic wounds. EA was harmless to cell viability, increasing the possibility and safety of drug development. EA-engineered sEVs were fabricated by loading EA in sEVs. In vitro, EA-sEVs promoted the proliferation, migration, and transdifferentiation of HG-HDFs and the proliferation and migration of HG-HEKs. Mechanism analysis elucidated that epidermal growth factor receptor (EGFR) was the specific biological target of EA. EA interacting with EGFR was responsible for the functional improvement of HG-HDFs and HG-HEKs. In vivo, EA-sEVs encapsulated in GelMA promoted the healing of diabetic wounds by improving re-epithelialisation, collagen formation and the expression of EGFR. Gel-EA-sEVs promoted diabetic wound healing by improving biological functions of HDFs and HEKs. EGFR was first identified as the specific biological target of EA and was responsible for the functional improvement of HG-HDFs and HG-HEKs by Gel-EA-sEVs. Hence, Gel-EA-sEVs can serve as a new promising active dressing for diabetic wound treatment.
Collapse
Affiliation(s)
- Lige Tian
- College of Graduate, Tianjin Medical University, Tianjin, China
- Medical Innovation Research Department, PLA General Hospital, Beijing, China
| | - Zihao Wang
- Medical Innovation Research Department, PLA General Hospital, Beijing, China
- Chinese PLA Medical School, Beijing, China
| | - Shengqiu Chen
- Medical Innovation Research Department, PLA General Hospital, Beijing, China
- Innovation Research Center for Diabetic Foot, West China Hospital, Sichuan University, Chengdu, China
| | - Kailu Guo
- College of Graduate, Tianjin Medical University, Tianjin, China
- Medical Innovation Research Department, PLA General Hospital, Beijing, China
| | - Yaying Hao
- Medical Innovation Research Department, PLA General Hospital, Beijing, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine, Beijing, China
| | - Liqian Ma
- Medical Innovation Research Department, PLA General Hospital, Beijing, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine, Beijing, China
| | - Kui Ma
- Medical Innovation Research Department, PLA General Hospital, Beijing, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine, Beijing, China
| | - Junli Chen
- Medical Innovation Research Department, PLA General Hospital, Beijing, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine, Beijing, China
| | - Xi Liu
- Medical Innovation Research Department, PLA General Hospital, Beijing, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine, Beijing, China
| | - Linlin Li
- Beijing Key Laboratory of Micro-Nano Energy and Sensor, Center for High-Entropy Energy and Systems, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, China
| | - Xiaobing Fu
- Medical Innovation Research Department, PLA General Hospital, Beijing, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine, Beijing, China
| | - Cuiping Zhang
- Medical Innovation Research Department, PLA General Hospital, Beijing, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine, Beijing, China
| |
Collapse
|
2
|
Krgović N, Stojković D, Ivanov M, Dimitrijević M, Menković N, Ilić M, Jovanović MS, Šavikin K, Živković J. Black raspberry seed oil - Chemical composition, antioxidant/antimicrobial activities and in vitro wound-healing potential. Fitoterapia 2025; 182:106477. [PMID: 40074183 DOI: 10.1016/j.fitote.2025.106477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 03/06/2025] [Accepted: 03/09/2025] [Indexed: 03/14/2025]
Abstract
This study aimed to perform chemical characterization of black raspberry seed oil (Rubus occidentalis L., Rosaceae) from Serbia in terms of fatty acids and tocols composition, total carotenoid content, as well as to investigate its antioxidant/antimicrobial activities and in vitro wound-healing potential. GC/MS analysis revealed that linoleic (39.30 %), α-linolenic (30.49 %) and oleic (18.94 %) acid were dominant fatty acids. HPLC analysis highlighted γ-tocopherol as the prevailing tocopherol isomer (166.80 mg/100 g). Spectrophotometric method determined a total carotenoid content of 1.20 mg/100 g. Appreciable antiradical activity (DPPH - IC50 3.02 mg/mL; ABTS - IC50 1.33 mg/mL) and a high level of reducing ability (FRAP value of 393.74 μmol Fe2+/100 g) were observed. Significant antibacterial activity against Salmonella Typhimurium, Escherichia coli and Bacillus cereus, in addition to antifungal activity against strains from Aspergillus and Trichoderma genera, was demonstrated. By cell viability assay, no cytotoxicity (IC50 > 401 μg/mL) was established on human keratinocytes (HaCaT cells). The wound-healing activity, evaluated by scratch assay, was found to be 2.41-fold higher in HaCaT cells treated with 100 μg/mL of black raspberry seed oil (41.77 %) than in non-treated cells (17.34 %). Taken together, black raspberry seed oil holds promising health potential.
Collapse
Affiliation(s)
- Nemanja Krgović
- Institute for Medicinal Plants Research "Dr. Josif Pančić", 11000 Belgrade, Serbia.
| | - Dejan Stojković
- University of Belgrade, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, 11000 Belgrade, Serbia
| | - Marija Ivanov
- University of Belgrade, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, 11000 Belgrade, Serbia
| | - Milena Dimitrijević
- University of Belgrade, Institute for Multidisciplinary Research, 11000 Belgrade, Serbia
| | - Nebojša Menković
- University Business Academy, Faculty of Pharmacy, 21000 Novi Sad, Serbia
| | - Milan Ilić
- University Business Academy, Faculty of Pharmacy, 21000 Novi Sad, Serbia
| | - Miloš S Jovanović
- University of Niš, Faculty of Medicine, Department of Pharmacy, 18000 Niš, Serbia
| | - Katarina Šavikin
- Institute for Medicinal Plants Research "Dr. Josif Pančić", 11000 Belgrade, Serbia
| | - Jelena Živković
- Institute for Medicinal Plants Research "Dr. Josif Pančić", 11000 Belgrade, Serbia
| |
Collapse
|
3
|
Jęśkowiak-Kossakowska I, Gębarowski T, Skórkowska-Telichowska K, Wiatrak B. In Vitro Studies of the Effect of Oil Emulsions from Transgenic Flax Varieties on the Treatment of Wound Healing and Care of Human Skin with the Tendency to Inflammation. Int J Mol Sci 2025; 26:2544. [PMID: 40141186 PMCID: PMC11941795 DOI: 10.3390/ijms26062544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/16/2025] [Accepted: 02/20/2025] [Indexed: 03/28/2025] Open
Abstract
Excessive amounts of free-oxygen radicals produced during inflammation induce oxidative stress and lead to cell damage, thus delaying the transition of inflammation into the proliferation in the wound healing process. Oxidative stress on skin cells also plays an important role in the pathogenesis of inflammatory skin diseases. The aim of the planned in vitro studies was to assess the mechanisms of regenerative action and protection of cells against oxidative stress of three oil emulsions from transgenic (GMO) flax varieties M, B, and MB and a linseed emulsion from traditional NIKE linseed oil. Antioxidant and gene-protective properties were identified for the tested oil emulsions in a healthy cell model and in an in vitro model of cells under oxidative stress. The wound-healing regenerative potential of these linseed emulsions was also assessed in the proliferation, cell cycle, migration, and apoptosis and necrosis assays. The conducted research presented that the tested transgenic oil emulsions are safe for human skin because they do not induce the proliferation of skin cancer cells and, at the same time, induce the migration processes of normal human skin cells. Additionally, their use increases the ability to eliminate damaged cells. Transgenic linseed oils provide a gene-protective effect and an increased antioxidant effect, resulting in increased protection of skin cells against oxidative stress, which plays an important role in the pathogenesis of atopic dermatitis and psoriasis. Linen emulsion B has the best regenerative and protective properties against human epidermis cancer, which is probably due to the presence of an increased amount of stigmasterol in its composition along with the appropriate content of polyphenol compounds, as well as an increased amount of oleic and linoleic acids.
Collapse
Affiliation(s)
- Izabela Jęśkowiak-Kossakowska
- Department of Pharmacology, Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland;
| | - Tomasz Gębarowski
- Department of Biostructure and Animal Physiology, The Wroclaw University of Environmental and Life Sciences, Kożuchowska 1/3, 51-631 Wroclaw, Poland;
| | - Katarzyna Skórkowska-Telichowska
- Department of Non-Surgical Clinical Sciences, Faculty of Medicine, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland;
- Department of Endocrinology, Jerzy Gromkowski Regional Specialist Hospital, Koszarowa 5, 51-149 Wroclaw, Poland
| | - Benita Wiatrak
- Department of Pharmacology, Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland;
| |
Collapse
|
4
|
Schoss K, Glavač NK. Supercritical CO 2 Extraction vs. Hexane Extraction and Cold Pressing: Comparative Analysis of Seed Oils from Six Plant Species. PLANTS (BASEL, SWITZERLAND) 2024; 13:3409. [PMID: 39683202 DOI: 10.3390/plants13233409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024]
Abstract
Supercritical fluid extraction using carbon dioxide (SFE-CO2) brings a convincing advance in the production of plant oils used in cosmetics, in fortified foods and dietary supplements, and in pharmaceuticals and medicine. The SFE-CO2-extracted, hexane-extracted, and cold-pressed plant oils of pumpkin (Cucurbita pepo L.), flax (Linum usitatissimum L.), linden (Tilia sp.), poppy (Papaver somniferum L.), apricot (Prunus armeniaca L.), and marigold (Calendula officinalis L.) seeds were investigated in terms of oil yield, fatty acid composition, unsaponifiable matter yield and composition, and the antioxidant activity of unsaponifiable matter. SFE-CO2 proved to be the preferred extraction method for four out of six plant materials, especially for seeds with lower oil content. However, for seeds with higher oil content, such as apricots, cold pressing is a viable alternative. A comparison of fatty acid composition did not reveal significant differences between extraction techniques. SFE-CO2 extraction improved the total phytosterol content of oils, especially pumpkin seed oil. A high variability in the antioxidant potential of the unsaponifiable matter studied was determined, with pumpkin seed oil showing the highest antioxidant activity. A correlation analysis was performed between unsaponifiable composition and antioxidant activity, and showed statistically significant correlations with squalene, cycloartenol, and an unidentified compound. This is the first comparison of the phytosterol compositions of linseed, apricot, linden, and marigold. Through continued optimization, SFE-CO2 has the potential to revolutionize the production of plant oils and provide a sustainable and efficient alternative.
Collapse
Affiliation(s)
- Katja Schoss
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Nina Kočevar Glavač
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
5
|
Elhabal SF, Al-Zuhairy SAS, El-Nabarawi M, Mohamed Elrefai MF, Shoela MS, Hababeh S, Nelson J, Abdel Khalek MA, Fady M, Elzohairy NA, Amin ME, Khamis GM, Rizk A, Ahmed SM, El-Rashedy AA, Mohany M, Al-Roujayee AS, Faheem AM, Amin A. Enhancing Photothermal Therapy for Antibiofilm Wound Healing: Insights from Graphene Oxide-Cranberry Nanosheet Loaded Hydrogel in vitro, in silico, and in vivo Evaluation. Int J Nanomedicine 2024; 19:12999-13027. [PMID: 39651355 PMCID: PMC11625196 DOI: 10.2147/ijn.s482836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/12/2024] [Indexed: 12/11/2024] Open
Abstract
Background Diabetic foot ulcers present a formidable challenge due to colonization by biofilm-forming microorganisms, heightened oxidative stress, and continuous wound maceration caused by excessive exudation. Methods To address these issues, we developed a robust, stretchable, electro-conductive, self-healing, antioxidant, and antibiofilm hydrogel. This hydrogel was synthesized through the crosslinking of polyvinyl alcohol (PVA) and chitosan (CH) with boric acid. To enhance its antimicrobial efficacy, graphene oxide (GO), produced via electrochemical exfoliation in a zinc ion-based electrolyte medium, was incorporated. For optimal antibiofilm performance, GO was functionalized with cranberry (CR) phenolic extracts, forming a graphene oxide-cranberry nanohybrid (GO-CR). Results The incorporation of GO-CR into the hydrogel significantly improved its stretchability (280% for PVA/CH/GO-CR compared to 200% for PVA/CH). Additionally, the hydrogel demonstrated efficient photothermal conversion under near-infrared (NIR) light, enabling dynamic exudate removal, which is expected to minimize retained exudate between the wound and the dressing, reducing the risk of wound maceration. The hydrogel effectively reduced levels of lipopolysaccharide (LPS)-induced skin inflammation markers, significantly lowering the expression of NLRP3, TNF-α, IL-6, and IL-1β by 39.2%, 31.9%, 41%, and 52.3%, respectively. Histopathological and immunohistochemical analyses further confirmed reduced inflammation and enhanced wound healing. Conclusion The PVA/CH/GO-CR hydrogel exhibits multifunctional properties that enhance wound healing ulcers. Its superior mechanical, antibacterial, and anti-inflammatory properties and ability to promote angiogenesis make it a promising candidate for effective wound management in diabetic patients.
Collapse
Affiliation(s)
- Sammar Fathy Elhabal
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Mokattam, Cairo, Egypt
| | | | - Mohamed El-Nabarawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mohamed Fathi Mohamed Elrefai
- Department of Anatomy, physiology and Biochemistry, Faculty of Medicine, the Hashemite University, Zarqa, Jordan
- Department of Anatomy and Embryology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Mai S Shoela
- Department of Clinical Pharmacology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Sandra Hababeh
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Jakline Nelson
- Department of Microbiology and Immunology, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
| | - Mohamed A Abdel Khalek
- Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Marwa Fady
- Zagazig University Hospitals, Infection Control Unit, Zagazig, 44519, Egypt
- Modern University for Technology & Information, Department of Microbiology and Immunology, Pharmacy College., Cairo Governorat, Egypt
| | - Nahla A Elzohairy
- Modern University for Technology & Information, Department of Microbiology and Immunology, Pharmacy College., Cairo Governorat, Egypt
- Air Force Specialized Hospital, Cairo, Egypt
| | - Mariam E Amin
- Microbiology and Immunology Department, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Gehad M Khamis
- Department of Clinical Pharmacology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Amira Rizk
- Food Science and technology, Department Faculty of Agricultural, Tanta University, Tanta, Egypt
| | - Sara Mohamed Ahmed
- Department of Pharmaceutics, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza, 12585, Egypt
| | - Ahmed A El-Rashedy
- Chemistry of Natural and Microbial Products Department, National Research Center (NRC), Giza, Egypt
| | - Mohamed Mohany
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdulaziz S Al-Roujayee
- Department of Dermatology and Venereology, College of Medicine, Al Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Ahmed Mohsen Faheem
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Amr Amin
- College of Medicine, Sharjah University, Sharjah, United Arab Emirates
| |
Collapse
|
6
|
Trindade GADM, Alves LA, Lazo REL, Dallabrida KG, Reolon JB, Bonini JS, Nunes KC, Garcia FP, Nakamura CV, Rego FGDM, Pontarolo R, Sari MHM, Ferreira LM. Polysaccharide-Stabilized Semisolid Emulsion with Vegetable Oils for Skin Wound Healing: Impact of Composition on Physicochemical and Biological Properties. Pharmaceutics 2024; 16:1426. [PMID: 39598549 PMCID: PMC11597777 DOI: 10.3390/pharmaceutics16111426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/02/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: The demand for natural-based formulations in chronic wound care has increased, driven by the need for biocompatible, safe, and effective treatments. Natural polysaccharide-based emulsions enriched with vegetable oils present promising benefits for skin repair, offering structural support and protective barriers suitable for sensitive wound environments. This study aimed to develop and evaluate semisolid polysaccharide-based emulsions for wound healing, incorporating avocado (Persea gratissima) and blackcurrant (Ribes nigrum) oils (AO and BO, respectively). Both gellan gum (GG) and kappa-carrageenan (KC) were used as stabilizers due to their biocompatibility and gel-forming abilities. Methods: Four formulations were prepared (F1-GG-AO; F2-KC-AO; F3-GG-BO; F4-KC-BO) and evaluated for physicochemical properties, spreadability, rheology, antioxidant activity, occlusive and bioadhesion potential, biocompatibility, and wound healing efficacy using an in vitro scratch assay. Results: The pH values (4.74-5.06) were suitable for skin application, and FTIR confirmed excipient compatibility. The formulations showed reduced occlusive potential, pseudoplastic behavior with thixotropy, and adequate spreadability (7.13-8.47 mm2/g). Lower bioadhesion indicated ease of application and removal, enhancing user comfort. Formulations stabilized with KC exhibited superior antioxidant activity (DPPH scavenging) and fibroblast biocompatibility (CC50% 390-589 µg/mL) and were non-hemolytic. Both F2-KC-AO and F4-KC-BO significantly improved in vitro wound healing by promoting cell migration compared to other formulations. Conclusions: These findings underscore the potential of these emulsions for effective wound treatment, providing a foundation for developing skin care products that harness the therapeutic properties of polysaccharides and plant oils in a natural approach to wound care.
Collapse
Affiliation(s)
- Giovanna Araujo de Morais Trindade
- Center for Studies in Biopharmacy, Pos-Graduate Program in Pharmaceutical Sciences, Department of Pharmacy, Federal University of Paraná, Curitiba 80210-170, PR, Brazil; (G.A.d.M.T.); (L.A.A.); (R.E.L.L.); (R.P.)
| | - Laiene Antunes Alves
- Center for Studies in Biopharmacy, Pos-Graduate Program in Pharmaceutical Sciences, Department of Pharmacy, Federal University of Paraná, Curitiba 80210-170, PR, Brazil; (G.A.d.M.T.); (L.A.A.); (R.E.L.L.); (R.P.)
| | - Raul Edison Luna Lazo
- Center for Studies in Biopharmacy, Pos-Graduate Program in Pharmaceutical Sciences, Department of Pharmacy, Federal University of Paraná, Curitiba 80210-170, PR, Brazil; (G.A.d.M.T.); (L.A.A.); (R.E.L.L.); (R.P.)
| | - Kamila Gabrieli Dallabrida
- Department of Pharmacy, Midwestern State University, Guarapuava 85040-167, PR, Brazil; (K.G.D.); (J.B.R.); (J.S.B.)
| | - Jéssica Brandão Reolon
- Department of Pharmacy, Midwestern State University, Guarapuava 85040-167, PR, Brazil; (K.G.D.); (J.B.R.); (J.S.B.)
| | - Juliana Sartori Bonini
- Department of Pharmacy, Midwestern State University, Guarapuava 85040-167, PR, Brazil; (K.G.D.); (J.B.R.); (J.S.B.)
| | - Karine Campos Nunes
- Laboratory of Technological Innovation in the Development of Pharmaceuticals and Cosmetics, Department of Basic Health Sciences, State University of Maringá, Maringá 87020-900, PR, Brazil; (K.C.N.); (F.P.G.); (C.V.N.)
| | - Francielle Pelegrin Garcia
- Laboratory of Technological Innovation in the Development of Pharmaceuticals and Cosmetics, Department of Basic Health Sciences, State University of Maringá, Maringá 87020-900, PR, Brazil; (K.C.N.); (F.P.G.); (C.V.N.)
| | - Celso Vataru Nakamura
- Laboratory of Technological Innovation in the Development of Pharmaceuticals and Cosmetics, Department of Basic Health Sciences, State University of Maringá, Maringá 87020-900, PR, Brazil; (K.C.N.); (F.P.G.); (C.V.N.)
| | | | - Roberto Pontarolo
- Center for Studies in Biopharmacy, Pos-Graduate Program in Pharmaceutical Sciences, Department of Pharmacy, Federal University of Paraná, Curitiba 80210-170, PR, Brazil; (G.A.d.M.T.); (L.A.A.); (R.E.L.L.); (R.P.)
| | | | - Luana Mota Ferreira
- Center for Studies in Biopharmacy, Pos-Graduate Program in Pharmaceutical Sciences, Department of Pharmacy, Federal University of Paraná, Curitiba 80210-170, PR, Brazil; (G.A.d.M.T.); (L.A.A.); (R.E.L.L.); (R.P.)
| |
Collapse
|
7
|
Hao Y, Ge X, Xu R, Zhao X, Zhai M. Transcriptome analysis of lipid biosynthesis during kernel development in two walnut (Juglans regia L.) varieties of 'Xilin 3' and 'Xiangling'. BMC PLANT BIOLOGY 2024; 24:828. [PMID: 39227757 PMCID: PMC11373280 DOI: 10.1186/s12870-024-05546-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 08/26/2024] [Indexed: 09/05/2024]
Abstract
BACKGROUND Walnut is an oilseed tree species and an ecologically important woody tree species that is rich in oil and nutrients. In light of differences in the lipid content, fatty acid composition and key genes expression patterns in different walnut varieties, the key gene regulatory networks for lipid biosynthesis in different varieties of walnuts were intensively investigated. RESULTS The kernels of two walnut varieties, 'Xilin 3' (X3) and 'Xiangling' (XL) were sampled at 60, 90, and 120 days post-anthesis (DPA) to construct 18 cDNA libraries, and the candidate genes related to oil synthesis were identified via sequencing and expression analysis. A total of 106 differentially expressed genes associated with fatty acid biosynthesis, fatty acid elongation, unsaturated fatty acid biosynthesis, triglyceride assembly, and oil body storage were selected from the transcriptomes. Weighted gene co-expression network analysis (WGCNA), correlation analysis and quantitative validation confirmed the key role of the FAD3 (109002248) gene in lipid synthesis in different varieties. CONCLUSIONS These results provide valuable resources for future investigations and new insights into genes related to oil accumulation and lipid metabolism in walnut seed kernels. The findings will also aid future molecular studies and ongoing efforts to genetically improve walnut.
Collapse
Affiliation(s)
- Yuanru Hao
- College of Forestry, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Xiangrui Ge
- College of Forestry, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Rui Xu
- College of Forestry, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Xiaona Zhao
- College of Forestry, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Meizhi Zhai
- College of Forestry, Northwest A & F University, Yangling, Shaanxi, 712100, China.
- Shaanxi Walnut Engineering Technology Research Center, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
8
|
Wei C, Zhang M, Cheng J, Tian J, Yang G, Jin Y. Plant-derived exosome-like nanoparticles - from Laboratory to factory, a landscape of application, challenges and prospects. Crit Rev Food Sci Nutr 2024:1-19. [PMID: 39127967 DOI: 10.1080/10408398.2024.2388888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
Recent decades have witnessed substantial interest in extracellular vesicles (EVs) due to their crucial role in intercellular communication across various biological processes. Among these, plant-derived exosome-like Nanoparticles (ELNs) have rapidly gained recognition as highly promising candidates. ELNs, characterized by diverse sources, cost-effective production, and straightforward isolation, present a viable option for preventing and treating numerous diseases. Furthermore, ELNs hold significant potential as carriers for natural or engineered drugs, enhancing their attractiveness and drawing considerable attention in science and medicine. However, translating ELNs into clinical applications poses several challenges. This study explores these challenges and offers critical insights into potential research directions. Additionally, it provides a forward-looking analysis of the industrial prospects for ELNs. With their broad applications and remarkable potential, ELNs stand at the forefront of biomedical innovation, poised to revolutionize disease management and drug delivery paradigms in the coming years.
Collapse
Affiliation(s)
- Chaozhi Wei
- Biomanufacturing Research Institute of Xianghu Laboratory, Hangzhou, China
| | - Mengyu Zhang
- Biomanufacturing Research Institute of Xianghu Laboratory, Hangzhou, China
| | - Jintao Cheng
- Biomanufacturing Research Institute of Xianghu Laboratory, Hangzhou, China
| | - Jinzhong Tian
- Biomanufacturing Research Institute of Xianghu Laboratory, Hangzhou, China
| | - Guiling Yang
- Biomanufacturing Research Institute of Xianghu Laboratory, Hangzhou, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yuanxiang Jin
- Biomanufacturing Research Institute of Xianghu Laboratory, Hangzhou, China
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
9
|
Maurizi L, Lasalvia A, Fabiano MG, D’Intino E, Del Cioppo F, Fraschetti C, Filippi A, Ammendolia MG, Conte AL, Forte J, Corinti D, Crestoni ME, Carafa M, Marianecci C, Rinaldi F, Longhi C. Lentisk ( Pistacia lentiscus) Oil Nanoemulsions Loaded with Levofloxacin: Phytochemical Profiles and Antibiofilm Activity against Staphylococcus spp. Pharmaceutics 2024; 16:927. [PMID: 39065624 PMCID: PMC11280327 DOI: 10.3390/pharmaceutics16070927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/08/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Most clinical isolates of both Staphylococcus aureus and Staphylococcus epidermidis show the capacity to adhere to abiotic surfaces and to develop biofilms resulting in a contribution to chronic human skin infections. Antibiotic resistance and poor biofilm penetration are the main causes of ineffective therapeutic treatment in killing bacteria within biofilms. A possible strategy could be represented by drug delivery systems, such as nanoemulsions (composed of bioactive oil, surfactant and water phase), which are useful for enhancing the drug permeation of a loaded drug inside the biofilm and its activity. Phytochemical characterization of Pistacia lentiscus oil (LO) by direct infusion Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS) allowed the identification of bioactive compounds with antimicrobial properties, including fatty acids and phenolic compounds. Several monoterpenes and sesquiterpenes have been also detected and confirmed by gas chromatography-mass spectrometric (GC-MS) analysis, together providing a complete metabolomic profiling of LO. In the present study, a nanoemulsion composed of LO has been employed for improving Levofloxacin water solubility. A deep physical-chemical characterization of the nanoemulsion including hydrodynamic diameter, ζ-potential, morphology, entrapment efficiency, stability release and permeation studies was performed. Additionally, the antimicrobial/antibiofilm activity of these preparations was evaluated against reference and clinical Staphylococcus spp. strains. In comparison to the free-form antibiotic, the loaded NE nanocarriers exhibited enhanced antimicrobial activity against the sessile forms of Staphylococcus spp. strains.
Collapse
Affiliation(s)
- Linda Maurizi
- Dipartimento di Sanità Pubblica e Malattie Infettive, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Roma, Italy; (L.M.); (A.L.C.); (C.L.)
| | - Alba Lasalvia
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Roma, Italy; (A.L.); (M.G.F.); (E.D.); (F.D.C.); (C.F.); (A.F.); (D.C.); (M.E.C.); (M.C.); (C.M.); (F.R.)
| | - Maria Gioia Fabiano
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Roma, Italy; (A.L.); (M.G.F.); (E.D.); (F.D.C.); (C.F.); (A.F.); (D.C.); (M.E.C.); (M.C.); (C.M.); (F.R.)
| | - Eleonora D’Intino
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Roma, Italy; (A.L.); (M.G.F.); (E.D.); (F.D.C.); (C.F.); (A.F.); (D.C.); (M.E.C.); (M.C.); (C.M.); (F.R.)
| | - Francesca Del Cioppo
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Roma, Italy; (A.L.); (M.G.F.); (E.D.); (F.D.C.); (C.F.); (A.F.); (D.C.); (M.E.C.); (M.C.); (C.M.); (F.R.)
| | - Caterina Fraschetti
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Roma, Italy; (A.L.); (M.G.F.); (E.D.); (F.D.C.); (C.F.); (A.F.); (D.C.); (M.E.C.); (M.C.); (C.M.); (F.R.)
| | - Antonello Filippi
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Roma, Italy; (A.L.); (M.G.F.); (E.D.); (F.D.C.); (C.F.); (A.F.); (D.C.); (M.E.C.); (M.C.); (C.M.); (F.R.)
| | - Maria Grazia Ammendolia
- Centro Nazionale Tecnologie Innovative in Sanità Pubblica, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Roma, Italy;
| | - Antonietta Lucia Conte
- Dipartimento di Sanità Pubblica e Malattie Infettive, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Roma, Italy; (L.M.); (A.L.C.); (C.L.)
| | - Jacopo Forte
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Roma, Italy; (A.L.); (M.G.F.); (E.D.); (F.D.C.); (C.F.); (A.F.); (D.C.); (M.E.C.); (M.C.); (C.M.); (F.R.)
| | - Davide Corinti
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Roma, Italy; (A.L.); (M.G.F.); (E.D.); (F.D.C.); (C.F.); (A.F.); (D.C.); (M.E.C.); (M.C.); (C.M.); (F.R.)
| | - Maria Elisa Crestoni
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Roma, Italy; (A.L.); (M.G.F.); (E.D.); (F.D.C.); (C.F.); (A.F.); (D.C.); (M.E.C.); (M.C.); (C.M.); (F.R.)
| | - Maria Carafa
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Roma, Italy; (A.L.); (M.G.F.); (E.D.); (F.D.C.); (C.F.); (A.F.); (D.C.); (M.E.C.); (M.C.); (C.M.); (F.R.)
| | - Carlotta Marianecci
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Roma, Italy; (A.L.); (M.G.F.); (E.D.); (F.D.C.); (C.F.); (A.F.); (D.C.); (M.E.C.); (M.C.); (C.M.); (F.R.)
| | - Federica Rinaldi
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Roma, Italy; (A.L.); (M.G.F.); (E.D.); (F.D.C.); (C.F.); (A.F.); (D.C.); (M.E.C.); (M.C.); (C.M.); (F.R.)
| | - Catia Longhi
- Dipartimento di Sanità Pubblica e Malattie Infettive, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Roma, Italy; (L.M.); (A.L.C.); (C.L.)
| |
Collapse
|
10
|
Raspe D, Silva IDA, Silva EDA, Saldaña M, Silva CDA, Cardozo-Filho L. Valorization of Carapa guianensis Aubl. seeds treated by compressed n-propane. AN ACAD BRAS CIENC 2024; 96:e20230435. [PMID: 38985028 DOI: 10.1590/0001-3765202420230435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 10/11/2023] [Indexed: 07/11/2024] Open
Abstract
This study evaluated the oil content obtained from andiroba seeds by pressurized n-propane at different conditions of temperature (25, 35, and 45 °C) and pressure (40, 60, and 80 bar), and conventional extraction technique using n-hexane as the solvent. Kinetic extraction curves were fitted using Sovová's mathematical model. The chemical characterization of the oil was reported as well as the protein content in the extraction by-product. Pressurized extractions conducted at 25 °C provided the highest oil recovery (~45 wt%) from the seeds. The increase in pressure at 25 ºC favored obtaining oil with higher Stigmasterol contents, however, the Squalene content was higher in the oil obtained at 40 bar. The oils with the highest concentration phenolic compounds and antioxidant activity were obtained at 80 bar. Extraction with n-propane provided oils with higher levels of phenolic compounds, however, with antioxidant activity similar to conventional extraction. For all evaluated extractions, the product showed a predominance of oleic and palmitic acids, with similar values of oxidative stability. The extraction of the by-product with the highest soluble protein content was obtained under mild processing conditions (25 °C and 40 bar) with n-propane.
Collapse
Affiliation(s)
- Djéssica Raspe
- Programa de Pós-Graduação em Agronomia, Universidade Estadual de Maringá, Departamento de Ciências Agrárias, Av. Colombo, 5790, 87020-900 Maringá, PR, Brazil
| | - Inaldo DA Silva
- Universidade Federal do Pará, Departamento de Engenharia Química, Rua Augusto Correa, s/n, 66075-910 Belém, PA, Brazil
| | - Edson DA Silva
- Universidade Estadual do Oeste do Paraná, Departamento de Engenharia Química, Rua da Faculdade, 645, 85903-000 Toledo, PR, Brazil
| | - Marleny Saldaña
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - Camila DA Silva
- Universidade Estadual de Maringá, Centro de Tecnologia, Departamento de Tecnologia, Av. Ângelo Moreira da Fonseca, 1800, 87506-370 Umuarama, PR, Brazil
| | - Lúcio Cardozo-Filho
- Programa de Pós-Graduação em Agronomia, Universidade Estadual de Maringá, Departamento de Ciências Agrárias, Av. Colombo, 5790, 87020-900 Maringá, PR, Brazil
| |
Collapse
|
11
|
Nadeem Butt E, Ali S, Summer M, Siddiqua Khan A, Noor S. Exploring the mechanistic role of silk sericin biological and chemical conjugates for effective acute and chronic wound repair and related complications. Drug Dev Ind Pharm 2024; 50:577-592. [PMID: 39087808 DOI: 10.1080/03639045.2024.2387814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
OBJECTIVE The current review is designed to elaborate and reveal the underlying mechanism of sericin and its conjugates of drug delivery during wounds and wound-related issues. SIGNIFICANCE Wound healing is a combination of different humoral, molecular, and cellular mechanisms. Various natural products exhibit potential in wound healing but among them, sericin, catches much attention of researchers due to its bio-functional properties such as being biodegradable, biocompatible, anti-oxidant, anti-bacterial, photo-protector, anti-inflammatory and moisturizing agent. METHODS AND RESULTS Sericin triggers the activity of anti-inflammatory cytokines which decrease cell adhesion and promote epithelial cell formation. Moreover, sericin enhances the anti-oxidant enzymes in the wounded area which scavenge the toxic consequences of reactive species (ROS). CONCLUSIONS This article highlights the mechanisms of how topical administration of sericin formulations along with 4-hexylresorcinol,\Chitosan\Ag@MOF-GO, polyvinyl alcohol (PVA), platelet lysate and UV photo cross-linked hydrogel sericin methacrylate which recruits a large number of cytokines on wounded area that stimulate fibroblasts and keratinocyte production as well as collagen deposition that led to early wound contraction. It also reviews the different sericin-based nanoparticles that play a significant role in rapid wound healing.
Collapse
Affiliation(s)
- Esham Nadeem Butt
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Shaukat Ali
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Muhammad Summer
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Ayesha Siddiqua Khan
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Shehzeen Noor
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| |
Collapse
|
12
|
Emad AM, Mahrous EA, Rasheed DM, Gomaa FAM, Hamdan AME, Selim HMRM, Yousef EM, Abo-Zalam HB, El-Gazar AA, Ragab GM. Wound Healing Efficacy of Cucurbitaceae Seed Oils in Rats: Comprehensive Phytochemical, Pharmacological, and Histological Studies Tackling AGE/RAGE and Nrf2/Ho-1 Cue. Pharmaceuticals (Basel) 2024; 17:733. [PMID: 38931399 PMCID: PMC11206300 DOI: 10.3390/ph17060733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
The Cucurbitaceae family includes several edible species that are consumed globally as fruits and vegetables. These species produce high volumes of seeds that are often discarded as waste. In this study, we investigate the chemical composition and biological activity of three seed oils from Cucurbitaceae plants, namely, cantaloupe, honeydew, and zucchini, in comparison to the widely used pumpkin seed oil for their ability to enhance and accelerate wound healing in rats. Our results showed that honeydew seed oil (HSO) was effective in accelerating wound closure and enhancing tissue repair, as indicated by macroscopic, histological, and biochemical analyses, as compared with pumpkin seed oil (PSO). This effect was mediated by down-regulation of the advanced glycation end products (AGE) and its receptor (RAGE) cue, activating the cytoprotective enzymes nuclear factor erythroid 2 (Nrf2) and heme oxygenase-1 (HO-1), suppressing the inflammatory mediators tumor necrosis factor (TNF)-α, nuclear factor kappa B (NF-κB), and nod-like receptor protein 3 (NLRP3), and reducing the levels of the skin integral signaling protein connexin (CX)-43. Furthermore, immunohistochemical staining for epidermal growth factor (EGF) showed the lowest expression in the skin after treatment with HSO, indicating a well-organized and complete healing process. Other seed oils from cantaloupe and zucchini exhibited favorable activity when compared with untreated rats; however, their efficacy was comparatively lower than that of PSO and HSO. Gas chromatographic analysis of the derivatized oils warranted the superior activity of HSO to its high nutraceutical content of linoleic acid, which represented 65.9% of the fatty acid content. This study's findings validate the use of honeydew seeds as a wound-healing fixed oil and encourage further investigation into the potential of Cucurbitaceae seeds as sources of medicinally valuable plant oils.
Collapse
Affiliation(s)
- Ayat M. Emad
- Pharmacognosy Department, Faculty of Pharmacy, October 6 University, Sixth of October City 12585, Egypt; (A.M.E.); (D.M.R.)
| | - Engy A. Mahrous
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo 11562, Egypt;
| | - Dalia M. Rasheed
- Pharmacognosy Department, Faculty of Pharmacy, October 6 University, Sixth of October City 12585, Egypt; (A.M.E.); (D.M.R.)
| | - Fatma Alzahraa M. Gomaa
- Microbiology and Immunology, Faculty of Pharmacy, Al-Baha University, Al Baha 65511, Saudi Arabia;
- Microbiology and Immunology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 35527, Egypt
| | | | - Heba Mohammed Refat M. Selim
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Diriyah, Riyadh 11597, Saudi Arabia;
| | - Einas M. Yousef
- Histology and Cell Biology Department, Faculty of Medicine, Menoufia University, Shebin Elkom 3251, Egypt;
| | - Hagar B. Abo-Zalam
- Pharmacology and Toxicology Department, Faculty of Pharmacy, October 6 University, Sixth of October City 12585, Egypt;
| | - Amira A. El-Gazar
- Pharmacology and Toxicology Department, Faculty of Pharmacy, October 6 University, Sixth of October City 12585, Egypt;
| | - Ghada M. Ragab
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Misr University for Science & Technology (MUST), Sixth of October City 12585, Egypt;
| |
Collapse
|
13
|
Vitek M, Matjaž MG. Clinical application of hempseed or flaxseed oil-based lyotropic liquid crystals: Evaluation of their impact on skin barrier function. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2024; 74:301-313. [PMID: 38815204 DOI: 10.2478/acph-2024-0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/04/2024] [Indexed: 06/01/2024]
Abstract
The principal function of skin is to form an effective barrier between the human body and its environment. Impaired barrier function represents a precondition for the development of skin diseases such as atopic dermatitis (AD), which is the most common inflammatory skin disease characterized by skin barrier dysfunction. AD significantly affects patients' quality of life, thus, there is a growing interest in the development of novel delivery systems that would improve therapeutic outcomes. Herein, eight novel lyotropic liquid crystals (LCCs) were investigated for the first time in a double-blind, interventional, before-after, single-group trial with healthy adult subjects and a twice-daily application regimen. LCCs consisted of constituents with skin regenerative properties and exhibited lamellar micro-structure, especially suitable for dermal application. The short- and long-term effects of LCCs on TEWL, SC hydration, erythema index, melanin index, and tolerability were determined and compared with baseline. LCCs with the highest oil content and lecithin/Tween 80 mixture stood out by providing a remarkable 2-fold reduction in TEWL values and showing the most distinctive decrease in skin erythema levels in both the short- and long-term exposure. Therefore, they exhibit great potential for clinical use as novel delivery systems for AD treatment, capable of repairing skin barrier function.
Collapse
Affiliation(s)
- Mercedes Vitek
- 1University of Ljubljana Faculty of Pharmacy, Department of Pharmaceutical Technology, 1000 Ljubljana Slovenia
| | - Mirjam Gosenca Matjaž
- 1University of Ljubljana Faculty of Pharmacy, Department of Pharmaceutical Technology, 1000 Ljubljana Slovenia
| |
Collapse
|
14
|
Xia J, He X, Yang W, Song H, Yang J, Zhang G, Yang Z, Chen H, Liang Z, Kollie L, Abozeid A, Zhang X, Li Z, Yang D. Unveiling the distribution of chemical constituents at different body parts and maturity stages of Ganoderma lingzhi by combining metabolomics with desorption electrospray ionization mass spectrometry imaging (DESI). Food Chem 2024; 436:137737. [PMID: 37857205 DOI: 10.1016/j.foodchem.2023.137737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/24/2023] [Accepted: 10/10/2023] [Indexed: 10/21/2023]
Abstract
Ganoderma lingzhi is an important medicinal fungus, which is widely used as dietary supplement and for pharmaceutical industries. However, the spatial distribution and dynamic accumulation pattern of active components such as ganoderic acids (GAs) among different parts of G. lingzhi fruiting body are still unclear. In this study, desorption electrospray ionization mass spectrometry imaging (DESI-MSI) with untargeted metabolomics analysis was applied to investigate the metabolites distribution within G. lingzhi fruiting body at four different maturity stages (squaring, opening, maturation and harvesting stage). A total of 132 metabolites were characterized from G. lingzhi, including 115 triterpenoids, 11 fatty acids and other component. Most of the GAs content in the cap was significantly higher than that in the stipe, with six components such as ganoderic acid B being extremely significant. GAs in the cap was mainly present in the bottom edge of the mediostratum layer, such as ganoderic A-I and ganoderic GS-1, while in the stipe, they were mainly distributed in the shell layer and the context layer, such as ganoderic A-F. Most ganoderic acids content in both the stipe and the cap of G. lingzhi was gradually decreased with the development of G. lingzhi. The GAs in the stipe was gradually transferred from the shell layer to the content layer, while the distribution of GAs among different tissues of the cap was not significantly changed. In addition, linoleic acid, 9-HODE, 9-KODE and other fatty acids were mainly accumulated in the opening and maturing stage of the caps. This study further clarifies the spatial dynamic distribution of GAs in G. lingzhi fruiting body at four different maturity stages (squaring, opening, maturation and harvesting stage), which provides a basis for the rational utilization of the medicinal parts of G. lingzhi. Furthermore, mass spectrometry imaging combined with non-target metabolome analysis provides a powerful tool for the spatial distribution of active substances in the different regions of the medicinal edible fungi.
Collapse
Affiliation(s)
- Jie Xia
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xinyu He
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
| | - Wan Yang
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
| | - Hongyan Song
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
| | - Jihong Yang
- Zhejiang Shouxiangu Botanical Drug Institute Co., Ltd, Hangzhou, China
| | - Guoliang Zhang
- Zhejiang Shouxiangu Botanical Drug Institute Co., Ltd, Hangzhou, China
| | - Zongqi Yang
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
| | - Haimin Chen
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
| | - Zongsuo Liang
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China; Shaoxing Academy of Biomedicne Co., Ltd of Zhejiang Sci-Tech University, Zhejiang Engineering Research Center for the Development Technology of Medicinal and Edible Health Food, Shaoxing, China
| | - Larwubah Kollie
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
| | - Ann Abozeid
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China; Botany and Microbiology Department, Faculty of Science, Menoufia University, Shebin Elkoom, Egypt
| | - Xiaodan Zhang
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China.
| | - Zhenhao Li
- Zhejiang Shouxiangu Botanical Drug Institute Co., Ltd, Hangzhou, China.
| | - Dongfeng Yang
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China; Shaoxing Academy of Biomedicne Co., Ltd of Zhejiang Sci-Tech University, Zhejiang Engineering Research Center for the Development Technology of Medicinal and Edible Health Food, Shaoxing, China.
| |
Collapse
|
15
|
Wolosik K, Chalecka M, Palka J, Mitera B, Surazynski A. Amaranthus cruentus L. Seed Oil Counteracts UVA-Radiation-Induced Inhibition of Collagen Biosynthesis and Wound Healing in Human Skin Fibroblasts. Int J Mol Sci 2024; 25:925. [PMID: 38256000 PMCID: PMC10815470 DOI: 10.3390/ijms25020925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/04/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
The effect of Amaranthus cruentus L. seed oil (AmO) on collagen biosynthesis and wound healing was studied in cultured human dermal fibroblasts exposed to UVA radiation. It was found that UVA radiation inhibited collagen biosynthesis, prolidase activity, and expression of the β1-integrin receptor, and phosphorylated ERK1/2 and TGF-β, while increasing the expression of p38 kinase. The AmO at 0.05-0.15% counteracted the above effects induced by UVA radiation in fibroblasts. UVA radiation also induced the expression and nuclear translocation of the pro-inflammatory NF-κB factor and enhanced the COX-2 expression. AmO effectively suppressed the expression of these pro-inflammatory factors induced by UVA radiation. Expressions of β1 integrin and IGF-I receptors were decreased in the fibroblasts exposed to UVA radiation, while AmO counteracted the effects. Furthermore, AmO stimulated the fibroblast's migration in a wound healing model, thus facilitating the repair process following exposure of fibroblasts to UVA radiation. These data suggest the potential of AmO to counteract UVA-induced skin damage.
Collapse
Affiliation(s)
- Katarzyna Wolosik
- Department of Cosmetology, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland;
| | - Magda Chalecka
- Department of Medicinal Chemistry, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland; (M.C.); (J.P.); (B.M.)
| | - Jerzy Palka
- Department of Medicinal Chemistry, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland; (M.C.); (J.P.); (B.M.)
| | - Blanka Mitera
- Department of Medicinal Chemistry, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland; (M.C.); (J.P.); (B.M.)
| | - Arkadiusz Surazynski
- Department of Medicinal Chemistry, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland; (M.C.); (J.P.); (B.M.)
| |
Collapse
|
16
|
Ma Y, Yao J, Zhou L, Zhao M, Wang W, Liu J, Marchioni E. Comprehensive untargeted lipidomic analysis of sea buckthorn using UHPLC-HR-AM/MS/MS combined with principal component analysis. Food Chem 2024; 430:136964. [PMID: 37531917 DOI: 10.1016/j.foodchem.2023.136964] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 08/04/2023]
Abstract
Sea buckthorn is an important ecological and economic plant which has multiple bioactivities. The fruits and seeds of sea buckthorn are rich in oil. However, there are few studies on the differences of lipid profiles of sea buckthorn varieties. Herein, the lipidomic fingerprints of sea buckthorn was established. First, a mixture solvent of methanol and chloroform (2:1, v/v) was selected to extract the lipid of the flesh and seed of sea buckthorn. Then, global lipidomic analysis of different varieties of sea buckthorn was conducted. A total of 16 lipid classes and 112 lipid molecular species were determined. Several molecular species, such as PE (phosphatidylethanolamine) 18:1/18:3, PE18:0/18:1, PE18:0/18:2, etc. were selected as the potential biomarkers to classify the samples. Our study provides a scientific basis for quality control of sea buckthorn and promotes the development of sea buckthorn oil.
Collapse
Affiliation(s)
- Yue Ma
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan 430074, PR China
| | - Jiaxu Yao
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan 430074, PR China
| | - Li Zhou
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan 430074, PR China.
| | - Minjie Zhao
- Equipe de Chimie Analytique des Molécules Bioactives et Pharmacognoise, Institut Pluridisciplinaire Hubert Curien (UMR 7178, CNRS/UDS), 74 route du Rhin, 67400 Illkirch, France
| | - Wei Wang
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi 830052, PR China
| | - Jikai Liu
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan 430074, PR China.
| | - Eric Marchioni
- Equipe de Chimie Analytique des Molécules Bioactives et Pharmacognoise, Institut Pluridisciplinaire Hubert Curien (UMR 7178, CNRS/UDS), 74 route du Rhin, 67400 Illkirch, France
| |
Collapse
|
17
|
Gao H, Wang X, Wu H, Zhang Y, Zhang W, Wang Z, Liu X, Li X, Li H. Freeze-Dried Camelina Lipid Droplets Loaded with Human Basic Fibroblast Growth Factor-2 Formulation for Transdermal Delivery: Breaking through the Cuticle Barrier to Accelerate Deep Second-Degree Burn Healing. Pharmaceuticals (Basel) 2023; 16:1492. [PMID: 37895963 PMCID: PMC10610516 DOI: 10.3390/ph16101492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 10/29/2023] Open
Abstract
Transdermal administration of chemo therapeutics into burn healing may be an effective treatment to reduce toxic side effects and improve patient compliance for burns. As a transdermal delivery system, Camelina lipid droplets (CLDs) have received great attention due to their biocompatibility, high drug payload, and rapid absorption. However, the absorbed-related mechanisms of Camelina lipid droplets have not yet been reported. Thus, this paper not only demonstrated that CLD can accelerate skin burn healing through promoting hFGF2 absorption, but also elucidated the mechanism between the skin tissue and keratinocytes using Franz, HE staining, DSC, FTIR spectroscopy, and atomic force microscopy with the presence of CLD-hFGF2 freeze-dried powder. We found that the cumulative release rate of CLD-hFGF2 freeze-dried powder was significantly higher than that of free hFGF2 freeze-dried powder into the skin. At the same time, CLD can change the structure and content of lipids and keratin to increase the permeability of hFGF2 freeze-dried powder in skin tissue. Unlike the free state of hFGF2, the biophysical properties of single cells, including height and adhesion force, were changed under CLD-hFGF2 freeze-dried powder treatment. Meanwhile, CLD-hFGF2 freeze-dried powder was more easily taken up through keratinocytes without damaging cell integrity, which provided a new viewpoint for understanding the absorption mechanism with the CLD system for cellular physiology characteristics. Overall, our findings demonstrated that CLD could break through the stratum corneum (SC) barrier and elucidated the transport mechanism of lipid droplets in skin tissue, which provides a crucial guideline in drug delivery applications for future engineering.
Collapse
Affiliation(s)
- Hongtao Gao
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China
- College of Tropical Crops, Hainan University, Haikou 570288, China
| | - Xue Wang
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Science, Jilin Agricultural University, Changchun 130118, China
| | - Hao Wu
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China (W.Z.)
| | - Yuan Zhang
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Science, Jilin Agricultural University, Changchun 130118, China
| | - Wenxiao Zhang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China (W.Z.)
| | - Zuobin Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China (W.Z.)
| | - Xin Liu
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Science, Jilin Agricultural University, Changchun 130118, China
| | - Xiaokun Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Haiyan Li
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China
- College of Tropical Crops, Hainan University, Haikou 570288, China
| |
Collapse
|
18
|
Narzary I, Swarnakar A, Kalita M, Middha SK, Usha T, Babu D, Mochahary B, Brahma S, Basumatary J, Goyal AK. Acknowledging the use of botanicals to treat diabetic foot ulcer during the 21 st century: A systematic review. World J Clin Cases 2023; 11:4035-4059. [PMID: 37388781 PMCID: PMC10303622 DOI: 10.12998/wjcc.v11.i17.4035] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/24/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND Diabetic foot ulcer (DFU) is a serious health issue of diabetes mellitus that affects innumerable people worldwide. Management and treatment of this complication are challenging, especially for those whose immune system is weak. AIM To discuss the plants and their parts used to heal DFU, along with the mode of their administration in diabetic patients. METHODS The original articles on "the plants for the treatment of DFU" studied in clinical cases only were obtained from various bibliographic databases using different keywords. RESULTS The search resulted in 22 clinical cases records with 20 medicinal plants belonging to 17 families on 1553 subjects. The fruits and leaves were the most preferentially used parts for DFU treatment, regardless of whether they were being administered orally or applied topically. Of the 20 medicinal plants, 19 reported their effectiveness in increasing angiogenesis, epithelialization, and granulation, thus hastening the wound-healing process. The efficacy of these botanicals might be attributed to their major bioactive compounds, such as actinidin and ascorbic acid (in Actinidia deliciosa), 7-O-(β-D-glucopyranosyl)-galactin (in Ageratina pichinchensis), omega-3-fatty acid (in Linum usitatissimum), isoquercetin (in Melilotus officinalis), anthocyanins (in Myrtus communis), and plantamajoside (in Plantago major). CONCLUSION The validation of mechanisms of action underlying these phytocompounds contributing to the management of DFU can aid in our better understanding of creating efficient treatment options for DFU and its associated problems.
Collapse
Affiliation(s)
- Illora Narzary
- Department of Biotechnology, Bodoland University, Kokrajhar 783370, Assam, India
- Department of Zoology, Baosi Banikanta Kakati College, Barpeta 781311, Assam, India
| | - Amit Swarnakar
- Medical Unit, Bodoland University, Kokrajhar 783370, Assam, India
| | - Mrinal Kalita
- Department of Biotechnology, Bodoland University, Kokrajhar 783370, Assam, India
| | - Sushil Kumar Middha
- Department of Biotechnology, Maharani Lakshmi Ammanni College for Women, Bengaluru 560012, Karnataka, India
| | - Talambedu Usha
- Department of Biochemistry, Maharani Lakshmi Ammanni College for Women, Bengaluru 560012, Karnataka, India
| | - Dinesh Babu
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Banjai Mochahary
- Department of Biotechnology, Bodoland University, Kokrajhar 783370, Assam, India
| | - Sudem Brahma
- Department of Biotechnology, Bodoland University, Kokrajhar 783370, Assam, India
| | - Jangila Basumatary
- Department of Biotechnology, Bodoland University, Kokrajhar 783370, Assam, India
| | - Arvind Kumar Goyal
- Department of Biotechnology, Bodoland University, Kokrajhar 783370, Assam, India
| |
Collapse
|
19
|
Barna AS, Maxim C, Trifan A, Blaga AC, Cimpoesu R, Turcov D, Suteu D. Preliminary Approaches to Cosmeceuticals Emulsions Based on N-ProlylPalmitoyl Tripeptide-56 Acetat-Bakuchiol Complex Intended to Combat Skin Oxidative Stress. Int J Mol Sci 2023; 24:ijms24087004. [PMID: 37108165 PMCID: PMC10138778 DOI: 10.3390/ijms24087004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
This study focuses on the development of a performant formulation for O/W dermato-cosmetic emulsions, which can be incorporated into novel dermato-cosmetic products or used as such. The O/W dermato-cosmetic emulsions contain an active complex based on a plant-derived monoterpene phenol, bakuchiol (BAK) and a signaling peptide named n-prolyl palmitoyl tripeptide-56 acetate (TPA). As a dispersed phase, we used a mix of vegetable oils, and as a continuous phase, Rosa damascena hydrosol was employed. Three emulsions containing different concentrations of the active complex were formulated (0.5% BAK + 0.5% TPA = E.1.1., 1% BAK + 1%TPA = E.1.2., 1% BAK + 2% TPA = E.1.3.). Stability testing was performed through sensory analysis, stability after centrifugation, conductivity and optical microscopy. A preliminary in vitro study regarding the diffusion ability of antioxidants through chicken skin was also undertaken. DPPH and ABTS assays were used to highlight the optimal concentration and combination in the formulation in terms of antioxidant properties and safety level of the active complex (BAK/TPA). Our results showed that the active complex used for preparing emulsions with BAK and TPA showed good antioxidant activity and is suitable for obtaining topical products with potential antiaging effects.
Collapse
Affiliation(s)
- Ana Simona Barna
- Department of Organic, Biochemical and Food Engineering, Faculty of Chemical Engineering and Environmental Protection "Cristofor Simionescu", "Gheorghe Asachi" Technical University of Iasi, D. Mangeron Blvd., No. 73A, 700050 Iasi, Romania
| | - Claudia Maxim
- Department of Organic, Biochemical and Food Engineering, Faculty of Chemical Engineering and Environmental Protection "Cristofor Simionescu", "Gheorghe Asachi" Technical University of Iasi, D. Mangeron Blvd., No. 73A, 700050 Iasi, Romania
| | - Adriana Trifan
- Department of Pharmacognosy-Phytotherapy, Faculty of Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy, Universitatii Street, No. 16, 700115 Iasi, Romania
| | - Alexandra Cristina Blaga
- Department of Organic, Biochemical and Food Engineering, Faculty of Chemical Engineering and Environmental Protection "Cristofor Simionescu", "Gheorghe Asachi" Technical University of Iasi, D. Mangeron Blvd., No. 73A, 700050 Iasi, Romania
| | - Ramona Cimpoesu
- Department of Materials Science, Faculty of Materials Science and Engineering, "Gheorghe Asachi" Technical University of Iasi, D. Mangeron Blvd., No. 41, 700259 Iasi, Romania
| | - Delia Turcov
- Department of Organic, Biochemical and Food Engineering, Faculty of Chemical Engineering and Environmental Protection "Cristofor Simionescu", "Gheorghe Asachi" Technical University of Iasi, D. Mangeron Blvd., No. 73A, 700050 Iasi, Romania
| | - Daniela Suteu
- Department of Organic, Biochemical and Food Engineering, Faculty of Chemical Engineering and Environmental Protection "Cristofor Simionescu", "Gheorghe Asachi" Technical University of Iasi, D. Mangeron Blvd., No. 73A, 700050 Iasi, Romania
| |
Collapse
|
20
|
Sklenarova R, Allaw M, Perra M, Castangia I, Frankova J, Luis Pedraz J, Letizia Manca M, Manconi M. Co-delivering of oleuropein and lentisk oil in phospholipid vesicles as an effective approach to modulate oxidative stress, cytokine secretion and promote skin regeneration. Eur J Pharm Biopharm 2023; 185:126-136. [PMID: 36871904 DOI: 10.1016/j.ejpb.2023.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 02/18/2023] [Accepted: 02/28/2023] [Indexed: 03/07/2023]
Abstract
In this work oleuropein and lentisk oil have been co-loaded in different phospholipid vesicles (i.e., liposomes, transfersomes, hyalurosomes and hyalutransfersomes), to obtain a formulation capable of both inhibiting the production of different markers connected with inflammation and oxidative stress and promoting the skin repair. Liposomes were prepared using a mixture of phospholipids, oleuropein and lentisk oil. Tween 80, sodium hyaluronate or their combination have been added to the mixture to obtain transfersomes, hyalurosomes and hyalutransfersomes. Size, polydispersity index, surface charge and stability on storage was evaluated. The biocompatibility, anti-inflammatory activity and wound healing effect were tested using normal human dermal fibroblasts. Vesicles were small (mean diameter ∼ 130 nm) and homogeneously dispersed (polydispersity index ∼ 0.14), highly negatively charged (zeta potential 02053-64 mV) and capable of loading 20 mg/mL of oleuropein and 75 mg/mL of lentisk oil. The freeze-drying of dispersions with a cryoprotectant permitted to improve their stability on storage. The co-loading of oleuropein and lentisk oil in vesicles inhibited the overproduction of inflammatory markers, especially MMP-1 and IL-6, counteracted the oxidative stress induced in cells using hydrogen peroxide, and promoted the healing of a wounded area performed in vitro in a cell monolayer of fibroblasts. The proposed co-loading of oleuropein and lentisk oil in natural-based phospholipid vesicles may hold promising therapeutic value especially for the treatment of a wide variety of skin disorders.
Collapse
Affiliation(s)
- Renata Sklenarova
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czech Republic
| | - Mohamad Allaw
- Dept. Scienze della Vita e dell'Ambiente, University of Cagliari, 09124 Cagliari, Italy
| | - Matteo Perra
- Dept. Scienze della Vita e dell'Ambiente, University of Cagliari, 09124 Cagliari, Italy
| | - Ines Castangia
- Dept. Scienze della Vita e dell'Ambiente, University of Cagliari, 09124 Cagliari, Italy
| | - Jana Frankova
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czech Republic
| | - Josè Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain
| | - Maria Letizia Manca
- Dept. Scienze della Vita e dell'Ambiente, University of Cagliari, 09124 Cagliari, Italy.
| | - Maria Manconi
- Dept. Scienze della Vita e dell'Ambiente, University of Cagliari, 09124 Cagliari, Italy
| |
Collapse
|
21
|
DOS SANTOS GS, PERPÉTUO AA, DİAS SOUZA MV. Susceptibility of bacterial species isolated from mares to ozonated sunflower oil. INTERNATIONAL JOURNAL OF SECONDARY METABOLITE 2023. [DOI: 10.21448/ijsm.1167867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023] Open
Abstract
Sunflower oil is known for its therapeutic properties and culinary use. It is an important alimentary source of tocopherol and unsaturated fatty acids, and is used especially for wound healing. Studies on its antimicrobial potential, however, are lacking. The ozonation of oils of vegetable sources has been explored to enhance their therapeutic properties; however, studies that provide evidence of such benefits are still lacking. In the field of veterinary medicine, such data are even more scarce. In this study, the antimicrobial activity of ozonated sunflower oil was compared to that of non-ozonated oil, in an in vitro system, against strains of Staphylococcus aureus and Escherichia coli, isolated from intrauterine lavages of mares with endometritis. Tests were conducted using the minimum inhibitory concentration method. The ozonated oil was effective against S. aureus, whereas it was not against E. coli isolates. Our data open doors for discussion on the use of sunflower oil, with or without ozone treatment, for therapeutic purposes in veterinary medicine.
Collapse
|
22
|
Wang Z, Xie X, Wang M, Ding M, Gu S, Xing X, Sun X. Analysis of common and characteristic actions of Panax ginseng and Panax notoginseng in wound healing based on network pharmacology and meta-analysis. J Ginseng Res 2023. [DOI: 10.1016/j.jgr.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
|
23
|
Chhoud R, Said Bagga M, Ali Lassoued M, Jlizi S, Nabili A, Sfar S, Ben Jannet H, Majdoub H. Chemical Profile of the Pits Oil from the Tunisian 'Alig' Cultivar of Phoenix dactylifera L.: In Vivo Wound Healing Potential Evaluation of a Cream Formulated from the Extracted Oil and Insights from Molecular Docking and SAR Analysis. Chem Biodivers 2023; 20:e202200533. [PMID: 36325999 DOI: 10.1002/cbdv.202200533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 11/02/2022] [Accepted: 11/02/2022] [Indexed: 11/05/2022]
Abstract
Since ancient times the oil from date palm pits (Phoenix dactylifera L.) has been used to heal wounds. In order to prove this traditional usage of the pits, this oil was extracted from the pits of the Tunisian cultivar 'Alig' and its physico-chemical properties and the chemical composition were evaluated. The fatty acid profile, evidenced by GC, allowed to classify this oil as an oleic-myristic acid oil with a clear abundance of oleic acid (53.66 %). 1 H and 13 C-NMR as well as FT-IR analyses confirmed the presence of fatty acids in triglyceride forms. Furthermore, in vivo wound healing activity of a cream formulated from the extracted oil was performed, for the first time, using a rat model and was compared to placebo cream and a commercial formulation, MEBO®. This study showed that the test cream promoted the healing of pressure ulcers better than the placebo cream and the MEBO® ointment. The results showed that this vegetable oil is able to improve the healing of infected wounds in rats, thus supporting its traditional use. The contribution of the main oleic, linoleic and myristic acids that can be derived from enzymatic hydrolysis to the healing activity of the whole pits oil was predicted by in silico study and the calculated pharmacokinetics parameters.
Collapse
Affiliation(s)
- Rihab Chhoud
- University of Monastir, Faculty of Sciences of Monastir, Laboratory of Interfaces and Advanced Materials (LIMA), Bd. of the Environment, 5019, Monastir, Tunisia
| | - Mohamed Said Bagga
- Laboratory of Pharmaceutical, Chemical and Pharmacological Drug Development LR12ES09, Faculty of Pharmacy, University of Monastir, Monastir, 5000, Tunisia
| | - Mohamed Ali Lassoued
- Laboratory of Pharmaceutical, Chemical and Pharmacological Drug Development LR12ES09, Faculty of Pharmacy, University of Monastir, Monastir, 5000, Tunisia
| | - Salma Jlizi
- University of Monastir, Faculty of Sciences of Monastir, Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity (LR11ES39), Team: Medicinal Chemistry and Natural Products, Bd. of the Environment, 5019, Monastir, Tunisia
| | - Abdelkader Nabili
- University of Monastir, Faculty of Sciences of Monastir, Laboratory of Interfaces and Advanced Materials (LIMA), Bd. of the Environment, 5019, Monastir, Tunisia
| | - Souad Sfar
- Laboratory of Pharmaceutical, Chemical and Pharmacological Drug Development LR12ES09, Faculty of Pharmacy, University of Monastir, Monastir, 5000, Tunisia
| | - Hichem Ben Jannet
- University of Monastir, Faculty of Sciences of Monastir, Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity (LR11ES39), Team: Medicinal Chemistry and Natural Products, Bd. of the Environment, 5019, Monastir, Tunisia
| | - Hatem Majdoub
- University of Monastir, Faculty of Sciences of Monastir, Laboratory of Interfaces and Advanced Materials (LIMA), Bd. of the Environment, 5019, Monastir, Tunisia
| |
Collapse
|
24
|
Aly SH, El-Hassab MA, Elhady SS, Gad HA. Comparative Metabolic Study of Tamarindus indica L.'s Various Organs Based on GC/MS Analysis, In Silico and In Vitro Anti-Inflammatory and Wound Healing Activities. PLANTS (BASEL, SWITZERLAND) 2022; 12:87. [PMID: 36616217 PMCID: PMC9824397 DOI: 10.3390/plants12010087] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/17/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
The chemical composition of the n-hexane extract of Tamarindus indica's various organs-bark, leaves, seeds, and fruits (TIB, TIL, TIS, TIF)-was investigated using gas chromatography-mass spectrometry (GC/MS) analysis. A total of 113 metabolites were identified, accounting for 93.07, 83.17, 84.05, and 85.08 % of the total identified components in TIB, TIL, TIS, and TIF, respectively. Lupeol was the most predominant component in TIB and TIL, accounting for 23.61 and 22.78%, respectively. However, n-Docosanoic acid (10.49%) and methyl tricosanoate (7.09%) were present in a high percentage in TIS. However, α-terpinyl acetate (7.36%) and α-muurolene (7.52%) were the major components of TIF n-hexane extract. By applying a principal component analysis (PCA) and hierarchal cluster analysis (HCA) to GC/MS-based metabolites, a clear differentiation of Tamarindus indica organs was achieved. The anti-inflammatory activity was evaluated in vitro on lipopolysaccharide (LPS)-induced RAW 264.7 macrophages. In addition, the wound healing potential for the n-hexane extract of various plant organs was assessed using the in-vitro wound scratch assay using Human Skin Fibroblast cells. The tested extracts showed considerable anti-inflammatory and wound-healing activities. At a concentration of 10 µg/mL, TIL showed the highest nitric oxide (NO) inhibition by 53.97 ± 5.89%. Regarding the wound healing potential, after 24 h, TIB, TIL, TIS, and TIF n-hexane extracts at 10 g/mL reduced the wound width to 1.09 ± 0.04, 1.12 ± 0.18, 1.09 ± 0.28, and 1.41 ± 0.35 mm, respectively, as compared to the control cells (1.37 ± 0.15 mm). These findings showed that the n-hexane extract of T. indica enhanced wound healing by promoting fibroblast migration. Additionally, a docking study was conducted to assess the major identified phytoconstituents' affinity for binding to glycogen synthase kinase 3-β (GSK3-β), matrix metalloproteinases-8 (MMP-8), and nitric oxide synthase (iNOS). Lupeol showed the most favourable binding affinity to GSK3-β and iNOS, equal to -12.5 and -13.7 Kcal/mol, respectively, while methyl tricosanoate showed the highest binding affinity with MMP-8 equal to -13.1 Kcal/mol. Accordingly, the n-hexane extract of T. indica's various organs can be considered a good candidate for the management of wound healing and inflammatory conditions.
Collapse
Affiliation(s)
- Shaza H. Aly
- Department of Pharmacognosy, Faculty of Pharmacy, Badr University in Cairo, Cairo 11829, Egypt
| | - Mahmoud A. El-Hassab
- Department of Medicinal Chemistry, Faculty of Pharmacy, King Salman International University (KSIU), South Sinai 46612, Egypt
| | - Sameh S. Elhady
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Haidy A. Gad
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, King Salman International University (KSIU), South Sinai 46612, Egypt
| |
Collapse
|
25
|
Máté M, Selimaj G, Simon G, Szalóki-Dorkó L, Ficzek G. Assessment of Berries of Some Sea Buckthorn Genotypes by Physicochemical Properties and Fatty Acid Content of the Seed. PLANTS (BASEL, SWITZERLAND) 2022; 11:3412. [PMID: 36559525 PMCID: PMC9782847 DOI: 10.3390/plants11243412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/30/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Sea buckthorn (Hippophae rhamnoides L.) is consumed mainly in its processed form. Therefore, the investigation of the physicochemical properties of its berries is a current task in the aspect of food processing. The aim of this study was to determine the physicochemical parameters (soluble solid content, total titratable acidity, sugar/acid ratio), color characteristics (L*, a*, b*) and fatty acid profile of five varieties ('Askola', 'Clara', 'Habego', 'Leikora', 'Mara') and one Hungarian candidate, R-01, to establish a basis for experiments on the processability of the whole berries (e.g., drying). The weight of the berry of 'Leikora' (0.64 g) was significantly higher than the other investigated fruits. The differences between the values of soluble solid content (6.3-10.84 °Brix) and titratable acid (1.4-3.7%) content of berries were significant. 'Mara' had the highest sugar/acid ratio. Regarding the fatty acid profile, the amount of unsaturated fatty acids was measured between 72.6-83.4%, including polyunsaturated fatty acids, which were between 32.3-58.1%. The seeds of the tested samples contained high concentrations of linoleic acid (17.0-33.2%) and linolenic acid (15.3-24.9%), mainly in the case of the 'Mara', 'Clara' and 'Askola' varieties. Candidate R-01 could be used as a raw material for functional foods due to its significant content of palmitoleic acid and a favourable omega-6/omega-3 ratio.
Collapse
Affiliation(s)
- Mónika Máté
- Department of Fruit and Vegetable Processing Technology, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, 1118 Budapest, Hungary
| | - Granit Selimaj
- Department of Fruit and Vegetable Processing Technology, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, 1118 Budapest, Hungary
- Department of Fruit Growing, Institute of Horticulture, Hungarian University of Agriculture and Life Sciences, 1118 Budapest, Hungary
| | - Gergely Simon
- Department of Fruit Growing, Institute of Horticulture, Hungarian University of Agriculture and Life Sciences, 1118 Budapest, Hungary
| | - Lilla Szalóki-Dorkó
- Department of Fruit and Vegetable Processing Technology, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, 1118 Budapest, Hungary
| | - Gitta Ficzek
- Department of Fruit Growing, Institute of Horticulture, Hungarian University of Agriculture and Life Sciences, 1118 Budapest, Hungary
| |
Collapse
|
26
|
Yukuyama MN, Ferreira Guimaraes LM, Segovia RS, Lameu C, de Araujo GLB, Löbenberg R, de Souza A, Bazán Henostroza MA, Folchini BR, Peroni CM, Saito Miyagi MY, Oliveira IF, Rinaldi Alvarenga JF, Fiamoncini J, Bou-Chacra NA. Malignant wound – The influence of oil components in flubendazole-loaded nanoemulsions in A549 lung cancer xenograft-bearing mice. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
27
|
Kokalj Ladan M, Kočevar Glavač N. Statistical FT-IR Spectroscopy for the Characterization of 17 Vegetable Oils. Molecules 2022; 27:3190. [PMID: 35630666 PMCID: PMC9147165 DOI: 10.3390/molecules27103190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/09/2022] [Accepted: 05/13/2022] [Indexed: 11/16/2022] Open
Abstract
Vegetable oils have been utilized for centuries in the food, cosmetic, and pharmaceutical industries, and they contribute beneficially to overall human health, to active skincare, and to effective treatments. Monitoring of the vegetable oils is carried out by the methods described in the European Pharmacopeia, which is time-consuming, has poor repeatability, and involves the use of toxic organic chemicals and expensive laboratory equipment. Many successful studies using IR spectroscopy have been carried out for the detection of geographical origin and adulteration as well as quantification of oxidation parameters. The aim of our research was to explore FT-IR spectroscopy for assessing the quality parameters and fatty acid composition of cranberry, elderberry, borage, blackcurrant, raspberry, black mustard, walnut, sea buckthorn, evening primrose, rosehip, chia, perilla, black cumin, sacha inchi, kiwi, hemp, and linseed oil. Very good models were obtained for the α-linolenic acid and linoleic acid contents, with R2 = 1.00; Rv2 values of 0.98, 0.92, 0.89, and 0.84 were obtained for iodine value prediction, stearic acid content, palmitic acid content, and unsaponifiable matter content, respectively. However, we were not able to obtain good models for all parameters, and the use of the same process for variable selection was found to be not suitable for all cases.
Collapse
Affiliation(s)
- Meta Kokalj Ladan
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | | |
Collapse
|
28
|
Poljšak N, Kočevar Glavač N. Vegetable Butters and Oils as Therapeutically and Cosmetically Active Ingredients for Dermal Use: A Review of Clinical Studies. Front Pharmacol 2022; 13:868461. [PMID: 35548366 PMCID: PMC9083541 DOI: 10.3389/fphar.2022.868461] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
While the chemical composition of vegetable butters and oils has been studied in detail, there is limited knowledge about their mechanisms of action after application on the skin. To understand their dermal effects better, 27 clinical studies evaluating 17 vegetable oils (almond, argan, avocado, borage, coconut, evening primrose, kukui, marula, mustard, neem, olive, rapeseed, sacha inchi, safflower, shea butter, soybean and sunflower oils) were reviewed in this research. The reviewed studies focused on non-affected skin, infant skin, psoriasis, xerosis, UVB-induced erythema, atopic dermatitis, molluscum contagiosum, tungiasis, scars, striae and striae gravidarum. We conclude that in inflammation-affected skin, vegetable oils with a high content of oleic acid, together with the lack of or a low linoleic acid content, may cause additional structural damage of the stratum corneum, while oils high in linoleic acid and saturated fatty acids may express positive effects. Non-affected skin, in contrast, may not react negatively to oils high in oleic acid. However, the frequency and duration of an oil's use must be considered an important factor that may accelerate or enhance the negative effects on the skin's structural integrity.
Collapse
Affiliation(s)
- Nina Poljšak
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Nina Kočevar Glavač
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
29
|
Olive Oil Traceability Studies Using Inorganic and Isotopic Signatures: A Review. Molecules 2022; 27:molecules27062014. [PMID: 35335378 PMCID: PMC8949907 DOI: 10.3390/molecules27062014] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 03/18/2022] [Accepted: 03/20/2022] [Indexed: 01/18/2023] Open
Abstract
The olive oil industry is subject to significant fraudulent practices that can lead to serious economic implications and even affect consumer health. Therefore, many analytical strategies have been developed for olive oil’s geographic authentication, including multi-elemental and isotopic analyses. In the first part of this review, the range of multi-elemental concentrations recorded in olive oil from the main olive oil-producing countries is discussed. The compiled data from the literature indicates that the concentrations of elements are in comparable ranges overall. They can be classified into three categories, with (1) Rb and Pb well below 1 µg kg−1; (2) elements such as As, B, Mn, Ni, and Sr ranging on average between 10 and 100 µg kg−1; and (3) elements including Cr, Fe, and Ca ranging between 100 to 10,000 µg kg−1. Various sample preparations, detection techniques, and statistical data treatments were reviewed and discussed. Results obtained through the selected analytical approaches have demonstrated a strong correlation between the multi-elemental composition of the oil and that of the soil in which the plant grew. The review next focused on the limits of olive oil authentication using the multi-elemental composition method. Finally, different methods based on isotopic signatures were compiled and critically assessed. Stable isotopes of light elements have provided acceptable segregation of oils from different origins for years already. More recently, the determination of stable isotopes of strontium has proven to be a reliable tool in determining the geographical origin of food products. The ratio 87Sr/86Sr is stable over time and directly related to soil geology; it merits further study and is likely to become part of the standard tool kit for olive oil origin determination, along with a combination of different isotopic approaches and multi-elemental composition.
Collapse
|
30
|
Latrach R, Ben Chehida N, Allous A, Redid H, Rejeb A, Abdelmelek H. Effects of sub-acute co-exposure to WIFI (2.45 GHz) and Pistacia lentiscus oil treatment on wound healing by primary intention in male rabbits. Vet Med Sci 2022; 8:1085-1095. [PMID: 35120283 PMCID: PMC9122460 DOI: 10.1002/vms3.753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Background The bioeffects of WIFI on cutaneous wound healing remains unexplored. In addition, several medicinal plant products including lentisk oil have been shown to interfere with wound healing process. Since the use of this oil is increasing, the co‐exposure (WIFI‐Lentisk oil) assessment is of paramount importance. Objectives We aimed in the present study to investigate the effects of WIFI exposure as well as the application of Pistacia lentiscus oil on sutured wounds (SW). Methods New Zealand male rabbits (n = 24) were used and randomly divided into four groups of six animals each: a control group (SW) and three experimental groups (i) a first group exposed to WIFI (2.45 GHz, 6 h/day) during 16 days (SWW); (ii) a second group exposed to WIFI (2.45 GHz, 6 h/day) during 16 days and treated with lentisk oil (SWWL) and (iii) a third group not exposed to WIFI but treated with lentisk oil (SWL). The wound healing was evaluated by monitoring clinical parameters (temperature, food intake, relative weight variation, and macroscopic aspect) and histology. Results The mean food intake was higher in the SWWL group compared to the three other groups (p < 0.001) and higher in the SWL group compared to the SW group (p = 0.014). The exposition to WIFI (SWW group) or lentisk oil application (SWL group) can promote the collagen deposition and ameliorate the general aspect of wounds. By contrast, the co‐exposure to WIFI and lentisk oil (SWWL) results in antagonist effects and extends the inflammatory phase of wound healing. Conclusions Wounds treated topically with Pistacia lentiscus oil should not be exposed to WIFI.
Collapse
Affiliation(s)
- R Latrach
- Surgery Service, Clinical Department, National School of Veterinary Medicine of Sidi Thabet, Sidi Thabet, Tunisia
| | - N Ben Chehida
- Surgery Service, Clinical Department, National School of Veterinary Medicine of Sidi Thabet, Sidi Thabet, Tunisia
| | - A Allous
- Surgery Service, Clinical Department, National School of Veterinary Medicine of Sidi Thabet, Sidi Thabet, Tunisia
| | - H Redid
- Surgery Service, Clinical Department, National School of Veterinary Medicine of Sidi Thabet, Sidi Thabet, Tunisia
| | - A Rejeb
- Pathological Anatomy Service, Clinical Department, National School of Veterinary Medicine of Sidi Thabet, Sidi Thabet, Tunisia
| | - H Abdelmelek
- Laboratory of Integrated Physiology, Faculty of Sciences of Bizerte, University of Carthage, Tunis, Tunisia
| |
Collapse
|
31
|
García-Villegas A, Rojas-García A, Villegas-Aguilar MDC, Fernández-Moreno P, Fernández-Ochoa Á, Cádiz-Gurrea MDLL, Arráez-Román D, Segura-Carretero A. Cosmeceutical Potential of Major Tropical and Subtropical Fruit By-Products for a Sustainable Revalorization. Antioxidants (Basel) 2022; 11:203. [PMID: 35204085 PMCID: PMC8868306 DOI: 10.3390/antiox11020203] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/11/2022] [Accepted: 01/18/2022] [Indexed: 12/10/2022] Open
Abstract
The increasing production of tropical fruits followed by their processing results in tons of waste, such as skins or seeds. However, these by-products have been reported to be rich in bioactive compounds (BACs) with excellent properties of interest in the cosmeceutical industry: antioxidant, anti-aging, anti-inflammatory, antimicrobial and photoprotective properties. This review summarizes the tropical fruits most produced worldwide, their bioactive composition and the most important and studied therapeutic properties that their by-products can contribute to skin health, as well as the different approaches for obtaining these compounds using techniques by conventional (Soxhlet, liquid-liquid extraction or maceration) and non-conventional extractions (supercritical fluid extraction (SFE), ultrasound-assisted extraction (UAE), microwave-assisted extraction (MAE), pressurized liquid extraction (PLE) and two-phase aqueous system), followed by their identification by HPLC-MS or GC-MS analysis. Moreover, this work encompasses several studies that may prove the effects of seeds and skins from tropical fruits against oxidative stress, hyperpigmentation, acne, aging or UV radiation. Therefore, the investigation of functional components present in tropical fruit by-products under a circular bioeconomy model could be of great interest for the cosmeceutical industry and a very promising option for obtaining new cosmeceutical formulations.
Collapse
Affiliation(s)
- Abigail García-Villegas
- Department of Analytical Chemistry, University of Granada, 18071 Granada, Spain; (A.G.-V.); (A.R.-G.); (M.d.C.V.-A.); (P.F.-M.); (D.A.-R.); (A.S.-C.)
| | - Alejandro Rojas-García
- Department of Analytical Chemistry, University of Granada, 18071 Granada, Spain; (A.G.-V.); (A.R.-G.); (M.d.C.V.-A.); (P.F.-M.); (D.A.-R.); (A.S.-C.)
| | - María del Carmen Villegas-Aguilar
- Department of Analytical Chemistry, University of Granada, 18071 Granada, Spain; (A.G.-V.); (A.R.-G.); (M.d.C.V.-A.); (P.F.-M.); (D.A.-R.); (A.S.-C.)
| | - Patricia Fernández-Moreno
- Department of Analytical Chemistry, University of Granada, 18071 Granada, Spain; (A.G.-V.); (A.R.-G.); (M.d.C.V.-A.); (P.F.-M.); (D.A.-R.); (A.S.-C.)
| | - Álvaro Fernández-Ochoa
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany;
- Berlin Institute of Health Metabolomics Platform, 13125 Berlin, Germany
| | - María de la Luz Cádiz-Gurrea
- Department of Analytical Chemistry, University of Granada, 18071 Granada, Spain; (A.G.-V.); (A.R.-G.); (M.d.C.V.-A.); (P.F.-M.); (D.A.-R.); (A.S.-C.)
| | - David Arráez-Román
- Department of Analytical Chemistry, University of Granada, 18071 Granada, Spain; (A.G.-V.); (A.R.-G.); (M.d.C.V.-A.); (P.F.-M.); (D.A.-R.); (A.S.-C.)
| | - Antonio Segura-Carretero
- Department of Analytical Chemistry, University of Granada, 18071 Granada, Spain; (A.G.-V.); (A.R.-G.); (M.d.C.V.-A.); (P.F.-M.); (D.A.-R.); (A.S.-C.)
| |
Collapse
|
32
|
Allaw M, Manconi M, Caboni P, Bacchetta G, Escribano-Ferrer E, Peris JE, Nacher A, Diez-Sales O, Manca ML. Formulation of liposomes loading lentisk oil to ameliorate topical delivery, attenuate oxidative stress damage and improve cell migration in scratch assay. Biomed Pharmacother 2021; 144:112351. [PMID: 34794231 DOI: 10.1016/j.biopha.2021.112351] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/17/2021] [Accepted: 10/19/2021] [Indexed: 10/20/2022] Open
Abstract
Pistacia lentiscus L. is a sclerophyllous shrub capable of growing under harsh climatic conditions especially in the Mediterranean Basin. Different products can be obtained from this plant, such as essential oil, mastic gum or even fixed oil. The last is well known for its flavor which is mainly exploited in the food industry. Additionally, it has been traditionally used in the treatment of skin diseases, but, at the moment, any suitable formulation for skin delivery has been formulated and its biological effects was not deeply confirmed. Given that, in the present study, the lentisk oil has been formulated in liposomes at different concentrations (10, 20, 30 mg/ml) and their physicochemical, technological and main biological properties have been evaluated. Vesicles were prepared by using natural soy lecithin and a green and organic solvent free method, thus obtaining spherical, small (~ 118 nm), homogeneously dispersed (0.27) and highly negatively charged (~ -62 mV) vesicles. The used amount of oil loaded in liposomes (10, 20, 30 mg/ml) modulated the penetration ability of vesicles in the skin, favoring the deposition of the payload in the deeper strata. The loading in the vesicles potentiated the ability of oil to counteract the damaging effects caused by hydrogen peroxide in keratinocytes and fibroblasts and facilitate their migration in a cell monolayer lesion. Overall findings suggested that the incorporation of lentisk oil in liposomes made from soy lecithin can be an alternative and natural approach to exploit it in pharmaceutical ad cosmetical applications and manufacturing natural products suitable for the treatment of skin lesions.
Collapse
Affiliation(s)
- Mohamad Allaw
- Department Scienze della Vita e dell'Ambiente, University of Cagliari, 09124 Cagliari, Italy
| | - Maria Manconi
- Department Scienze della Vita e dell'Ambiente, University of Cagliari, 09124 Cagliari, Italy.
| | - Pierluigi Caboni
- Department Scienze della Vita e dell'Ambiente, University of Cagliari, 09124 Cagliari, Italy
| | - Gianluigi Bacchetta
- Department Scienze della Vita e dell'Ambiente, University of Cagliari, 09124 Cagliari, Italy
| | - Elvira Escribano-Ferrer
- Biopharmaceutics and Pharmacokinetics Unit, Institute for Nanoscience and Nanotechnology, University of Barcelona, Barcelona, Spain
| | - Josè Esteban Peris
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Burjassot, Valencia 46100, Spain
| | - Amparo Nacher
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Burjassot, Valencia 46100, Spain; Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain
| | - Octavio Diez-Sales
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Burjassot, Valencia 46100, Spain; Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain
| | - Maria Letizia Manca
- Department Scienze della Vita e dell'Ambiente, University of Cagliari, 09124 Cagliari, Italy
| |
Collapse
|
33
|
Scappaticci RAF, Berretta AA, Torres EC, Buszinski AFM, Fernandes GL, dos Reis TF, de Souza-Neto FN, Gorup LF, de Camargo ER, Barbosa DB. Green and Chemical Silver Nanoparticles and Pomegranate Formulations to Heal Infected Wounds in Diabetic Rats. Antibiotics (Basel) 2021; 10:1343. [PMID: 34827281 PMCID: PMC8614779 DOI: 10.3390/antibiotics10111343] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/08/2021] [Accepted: 10/13/2021] [Indexed: 11/18/2022] Open
Abstract
Infected cutaneous ulcers from diabetic rats with Candida albicans and Streptococcus aureus were treated with spray formulations containing green silver nanoparticles (GS), chemical silver nanoparticles (CS), or pomegranate peel extract (PS). After wound development and infection, the treatments were performed twice per day for 14 days. The wound healing was analyzed on days 2, 7, and 14 through the determination of CFUs, inflammatory infiltrate, angiogenesis, fibroplasia, myeloperoxidase, and collagen determination. Expressive improvement in wound healing was noted using both silver nanoparticles for 7 days. All the treatments were superior to controls and promoted significant S. aureus reduction after 14 days. CS presented better anti-inflammatory results, and GS and CS the highest number of fibroblasts. Despite the techniques' limitations, GS and CS demonstrated considerable potential for managing infected wounds, especially considering no early strategies prior to the drugs, such as the debridement of these wounds, were included.
Collapse
Affiliation(s)
- Renan Aparecido Fernandes Scappaticci
- Department of Dental Materials and Prosthodontics, School of Dentistry, São Paulo State University (UNESP), Araçatuba 16015-050, SP, Brazil; (R.A.F.S.); (G.L.F.); (T.F.d.R.)
| | - Andresa Aparecida Berretta
- Laboratory of Research, Development & Innovation, Apis Flora Industrial e Comercial Ltda., Ribeirão Preto 14020-670, SP, Brazil; (A.A.B.); (E.C.T.); (A.F.M.B.)
| | - Elina Cassia Torres
- Laboratory of Research, Development & Innovation, Apis Flora Industrial e Comercial Ltda., Ribeirão Preto 14020-670, SP, Brazil; (A.A.B.); (E.C.T.); (A.F.M.B.)
| | - Andrei Felipe Moreira Buszinski
- Laboratory of Research, Development & Innovation, Apis Flora Industrial e Comercial Ltda., Ribeirão Preto 14020-670, SP, Brazil; (A.A.B.); (E.C.T.); (A.F.M.B.)
| | - Gabriela Lopes Fernandes
- Department of Dental Materials and Prosthodontics, School of Dentistry, São Paulo State University (UNESP), Araçatuba 16015-050, SP, Brazil; (R.A.F.S.); (G.L.F.); (T.F.d.R.)
| | - Thaila Fernanda dos Reis
- Department of Dental Materials and Prosthodontics, School of Dentistry, São Paulo State University (UNESP), Araçatuba 16015-050, SP, Brazil; (R.A.F.S.); (G.L.F.); (T.F.d.R.)
| | - Francisco Nunes de Souza-Neto
- Department of Chemistry, Federal University of São Carlos, São Carlos 13565-905, SP, Brazil; (F.N.d.S.-N.); (L.F.G.); (E.R.d.C.)
| | - Luiz Fernando Gorup
- Department of Chemistry, Federal University of São Carlos, São Carlos 13565-905, SP, Brazil; (F.N.d.S.-N.); (L.F.G.); (E.R.d.C.)
| | - Emerson Rodrigues de Camargo
- Department of Chemistry, Federal University of São Carlos, São Carlos 13565-905, SP, Brazil; (F.N.d.S.-N.); (L.F.G.); (E.R.d.C.)
| | - Debora Barros Barbosa
- Department of Dental Materials and Prosthodontics, School of Dentistry, São Paulo State University (UNESP), Araçatuba 16015-050, SP, Brazil; (R.A.F.S.); (G.L.F.); (T.F.d.R.)
| |
Collapse
|
34
|
Yang C, Shang K, Lin C, Wang C, Shi X, Wang H, Li H. Processing technologies, phytochemical constituents, and biological activities of grape seed oil (GSO): A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.09.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
35
|
Wound-Healing Potential of Cucurbita moschata Duchesne Fruit Peel Extract in a Rat Model of Excision Wound Repair. Adv Pharmacol Pharm Sci 2021; 2021:6697174. [PMID: 34568828 PMCID: PMC8457976 DOI: 10.1155/2021/6697174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 08/04/2021] [Accepted: 08/31/2021] [Indexed: 12/21/2022] Open
Abstract
Materials and Methods Hydroalcoholic extractions of pumpkin fruit peel were obtained and used to prepare two different cold cream-based formulations, namely, 10% and 20% pumpkin peel extracts (PPEs). These formulations, phenytoin cream, and cold cream were topically used once daily for 14 days to compare their wound-healing effects in a rat model of excision wound repair. Wound sizes were monitored at different intervals. Skin tissue samples were subject to H&E staining for histopathological analysis. Blood samples were also taken on day 14 to measure serum levels of nitrite. Results Both 10% and 20% PPE formulations resulted in a significant reduction of wound sizes compared to positive and negative controls. Wound closure rate was estimated to be higher in 20% PPE-treated rats. According to histopathological analysis, treatment with 20% PPE improved parameters associated with efficient wound repair, including better regeneration of epidemic layer, higher density of dermis collagen fibers, and lower presence of inflammatory cells. Also, both formulations lowered serum concentrations of nitrite. Conclusion Given the obtained data from our study, the hydroalcoholic extract of Cucurbita moschata Duchesne fruit peel is proposed to be effective in accelerating the process of excision wound repair partly due to its antioxidant effect in terms of decreasing nitrite concentration.
Collapse
|
36
|
Khattabi L, Raghay K, Dakkach M, Allouch M. Complete healing and short-term treatment by Argania honey dressing in a venous leg ulcer: case report. CURRENT TRADITIONAL MEDICINE 2021. [DOI: 10.2174/2215083807666210913105216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Recent advances in care aware that inadequate management of the healing process in wounds and the development of bacterial infections leads to increase morbidity. Health professionals have progressively recognized the value of choosing suitable dressings to manage wounds particularly in developing countries. Honey has been used for thousands of years as a wound dressing and considered as biologic treatment due to its multiple bioactivities related to healing process.
Objective:
The aim of this case report is to demonstrate that Argania Honey dressing improve the healing process in a venous leg ulcer.
Method:
Pure raw Argania honey (Argania spinosa, endemic tree in southwestern of Morocco) with no additives, pasteurization, or manipulation was used and provided from local beekeepers. A mechanical debridement process was achieved previously to the application of honey dressings to a venous leg ulcer of a 67-year-old woman affected by type II diabetes for 11 years.
Results :
The Argania honey dressing accompanied by mechanical debridement process demonstrated a rapid recovery and complete healing of the wound for 12 weeks approximately (79 days).
Conclusion:
This Moroccan honey (Argania) experienced for the first time in venous leg ulcer management may represent a good alternative to treat other types of wounds. Further investigations by using Argania honey dressing are required to explain its effect and the mechanisms involved in the improvement of healing process.
Collapse
Affiliation(s)
- Leila Khattabi
- Nurse and schoolteacher at High institute of Nursing professions and Technical healthcare (ISPITS), Tetouan, Morocco
| | - Kawtar Raghay
- Nurse and schoolteacher at High institute of Nursing professions and Technical healthcare (ISPITS), Tetouan, Morocco
| | - Mohamed Dakkach
- Nurse and schoolteacher at High institute of Nursing professions and Technical healthcare (ISPITS), Tetouan, Morocco
| | - Mohamed Allouch
- Laboratory of Chemical Engineering and Resource Valorization (GCVR), Department of chemistry, Faculty of sciences and techniques, University Abdelmalek Essaadi, Tangier, Morocco
| |
Collapse
|
37
|
Tilia sp. Seed Oil—Composition, Antioxidant Activity and Potential Use. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11114932] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Research on new, untapped seed oil sources is receiving increased attention. In this study, 18 different seed samples of Tilia cordata and Tilia platyphyllos from various locations in Slovenia were collected and oil was extracted. The compositions of triglyceride fatty acids and unsaponifiable compounds were determined using GC-MS, while antioxidant activity was evaluated using the DPPH method. The oil content in the seeds varied significantly, from 9.1% to 21.7%. Linoleic acid (50–60%) was found to be the predominant fatty acid, followed by oleic acid (18–22%) and palmitic acid (8–9%). Characteristic cyclopropene fatty acids (sterculic, dihydrosterculic and malvalic acids) were present in the average range of 4–8.4%. Antioxidant activity ranged from 8.9% to 65.5%, and was higher, on average, for T. platyphyllos. Higher antioxidant activity was closely correlated with higher γ-tocopherol contents. Statistically significant correlations were confirmed between antioxidant activity and γ-tocopherol, between Δ-tocopherol and phytol, between stigmasterol and β-sitosterol and between squalene and malvalic acid. Tilia oil may be of great interest for cosmetic and dermal preparations. It is, however, not considered a good source of dietary fatty acids due to the undesired, significant content of omega-6 fatty acids.
Collapse
|
38
|
Ayanlowo O, -Adeife OC, Ilomuanya M, Ebie C, Adegbulu A, Ezeanyache O, Odiase O, Ikebudu V, Akanbi B. African oils in dermatology. Dermatol Ther 2021; 35:e14968. [PMID: 33928725 DOI: 10.1111/dth.14968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 03/15/2021] [Accepted: 04/21/2021] [Indexed: 02/02/2023]
Abstract
Plant and seed oils have been used for centuries and possibly millennia in Nigeria and Africa for the maintenance of healthy skin and the traditional treatment of skin disorders. In recent times, some of these oils have regained popularity due to their availability and affordability coupled with concerns about the side effects of commercially processed skin care products. This is to assess the chemical properties, current knowledge, source of procurement, indications for topical use, benefits, and possible adverse effects of six plant oils and one animal fat commonly used in Nigeria. This is a literature review and interview with traditional healers and alternative health practitioners to document the traditional, medical, cosmetics, and other usage of oils for skin and scalp care in the African context. Literature review was done on the biochemical and pharmacological properties of each of the seven oils. Searches were made from PubMed, African Journal online, Medline, and Google scholar. Medical subject heading terms used in the search include shea butter, coconut oil, palm kernel oil, palm oil, soy oil, Baobab oil, and python oil. Plant and seed oils used locally in Nigeria and other African countries for skin care and treatment have several benefits due to the constituents of the plant oils (free fatty acids, triglycerides, ceramides, phospholipids, vitamins and antioxidants) which have been shown to promote healthy skin barrier function, wound healing and have anti-inflammatory and antimicrobial effects. They are however not without adverse effects, which may be mainly due to processing and storage hygiene. Further studies are required on these oils in view of their potential in the development of novel skincare products and dermatological therapies.
Collapse
Affiliation(s)
- Olusola Ayanlowo
- Dermatology Unit, Department of Medicine, Faculty of Clinical Sciences, College of Medicine, University of Lagos, Akoka, Nigeria.,Dermatology Unit, Department of Medicine, Lagos University Teaching Hospital, Surulere, Lagos, Nigeria
| | - Olufolakemi Cole -Adeife
- Dermatology Unit, Department of Medicine, Lagos State University Teaching Hospital, Lagos, Nigeria
| | - Margaret Ilomuanya
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, University of Lagos, Akoka, Nigeria
| | - Cynthia Ebie
- Dermatology Unit, Department of Medicine, Lagos University Teaching Hospital, Surulere, Lagos, Nigeria
| | - Abigail Adegbulu
- Dermatology Unit, Department of Medicine, Faculty of Clinical Sciences, College of Medicine, University of Lagos, Akoka, Nigeria
| | - Obumneke Ezeanyache
- Dermatology Unit, Department of Medicine, Lagos University Teaching Hospital, Surulere, Lagos, Nigeria
| | - Oghogho Odiase
- Dermatology Unit, Department of Medicine, Lagos University Teaching Hospital, Surulere, Lagos, Nigeria
| | - Viola Ikebudu
- Dermatology Unit, Department of Medicine, Lagos University Teaching Hospital, Surulere, Lagos, Nigeria
| | - Basirat Akanbi
- Dermatology Unit, Department of Medicine, Lagos University Teaching Hospital, Surulere, Lagos, Nigeria
| |
Collapse
|
39
|
Abate M, Citro M, Pisanti S, Caputo M, Martinelli R. Keratinocytes Migration Promotion, Proliferation Induction, and Free Radical Injury Prevention by 3-Hydroxytirosol. Int J Mol Sci 2021; 22:ijms22052438. [PMID: 33670966 PMCID: PMC7957601 DOI: 10.3390/ijms22052438] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 12/11/2022] Open
Abstract
3-hydroxytyrosol (HT) is the main phenolic compound found in olive oil with known antioxidant, anti-inflammatory, and antimicrobial properties in several dermatological conditions, both when taken in the form of olive oil or pure in cosmeceutical formulations. To date, its direct effect on the wound healing process and the molecular mechanisms involved have not yet been elucidated. Thus, in the present study, we aimed to explore its effects in vitro in epidermal keratinocyte cultures focusing on the molecular mechanism implied. HT was able to induce keratinocyte proliferation in the low micromolar range, increasing the expression of cyclin dependent kinases fundamental for cell cycle progression such as CDK2 and CDK6. Furthermore, it increased cell migration through the activation of tissue remodeling factors such as matrix metalloproteinase-9 (MMP-9) protein. Then, we evaluated whether HT also showed antioxidant activity at this concentration range, protecting from H2O2-induced cytotoxicity. The HT prevented the activation of ATM serine/threonine kinase (ATM), Checkpoint kinase 1 (Chk1), Checkpoint kinase 2 (Chk2), and p53, reducing the number of apoptotic cells. Our study highlighted novel pharmacological properties of HT, providing the first evidence of its capability to induce keratinocyte migration and proliferation required for healing processes and re-epithelialization.
Collapse
|
40
|
Gupta M, Bhargava S. Home remedies in different pediatric dermatoses: An observational study. Dermatol Ther 2020; 33:e14141. [PMID: 32761779 DOI: 10.1111/dth.14141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 11/28/2022]
Abstract
Traditional medicinal systems are widely practiced in the Indian subcontinent for a wide variety of diseases. We aimed to identify the various home remedies used by people to treat numerous pediatric dermatoses. It was an observational study carried out over 18 months in which 150 children attending our clinics were recruited. A detailed history regarding the various indigenous preparations used was taken from caregivers and noted in a proforma. A total of 150 children (M:F-89:61) aged between 4 months to 18 years were included. Atopic dermatitis and eczema (n = 28) were the most common dermatoses whereas the most common home remedies used for these either solo or in combination were coconut oil (13), olive oil (11), mustard oil (7), aloevera gel (6), ghee (6), curd (4), and honey (2). Acne was the second most common dermatoses (n = 22), products used for acne were Fuller's earth, aloevera gel, turmeric, gram flour, mustard oil, lime and sandalwood paste. Other dermatoses treated by indigenous products included impetigo and other bacterial infections, seborrheic dermatitis, dermatophytoses, verruca, molluscum, hypopigmentary disorders, etc. In Indian setup, home remedies are commonly used by the caregivers before visiting a dermatologist to treat various pediatric dermatoses.
Collapse
Affiliation(s)
| | - Shashank Bhargava
- Department of Dermatology, R. D. Gardi Medical College, Ujjain, India
| |
Collapse
|
41
|
Ciesarová Z, Murkovic M, Cejpek K, Kreps F, Tobolková B, Koplík R, Belajová E, Kukurová K, Daško Ľ, Panovská Z, Revenco D, Burčová Z. Why is sea buckthorn (Hippophae rhamnoides L.) so exceptional? A review. Food Res Int 2020; 133:109170. [PMID: 32466930 DOI: 10.1016/j.foodres.2020.109170] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 03/09/2020] [Accepted: 03/15/2020] [Indexed: 01/23/2023]
Abstract
Sea buckthorn (Hippophae L.) is a valuable, multipurpose plant extensively grown in Asia, Europe and Canada. In order to use it in the best way for products of human nutrition, it is necessary to recognize its positive aspects and to eliminate the negative ones. The exceptional value of sea buckthorn can be seen in the presence of both lipophilic antioxidants (mainly carotenoids and tocopherols) and hydrophilic antioxidants (flavonoids, tannins, phenolic acids, ascorbic acid) in remarkably high quantities. Some of the main nutrients, especially lipids of advantageous fatty acid composition, contribute to nutritional benefits of sea buckthorn products for a consumer as well. This review article focuses, besides the above mentioned compounds and vitamins, also on other important components, such as sugars, sugar derivatives, fibre, organic acids, proteins, amino acids and mineral elements. The article also deals with the effects of sea buckthorn components on the course of non-enzymatic browning of food and in vivo glycation. In addition, sensory perception of sea buckthorn and its constituents from the consumers point of view is discussed.
Collapse
Affiliation(s)
- Zuzana Ciesarová
- NPPC National Agricultural and Food Centre, Food Research Institute, Priemyselná 4, 824 75 Bratislava, the Slovak Republic.
| | - Michael Murkovic
- Graz University of Technology, Faculty of Technical Chemistry, Chemical and Process Engineering and Biotechnology, Institute of Biochemistry, Petersgasse 12/II, 8010 Graz, Austria
| | - Karel Cejpek
- University of Chemistry and Technology, Prague, Faculty of Food and Biochemical Technology, Technická 5, 166 28 Praha 6, the Czech Republic
| | - František Kreps
- Slovak University of Technology in Bratislava, Faculty of Chemical and Food Technology, Radlinského 9, 812 37 Bratislava, the Slovak Republic
| | - Blanka Tobolková
- NPPC National Agricultural and Food Centre, Food Research Institute, Priemyselná 4, 824 75 Bratislava, the Slovak Republic
| | - Richard Koplík
- University of Chemistry and Technology, Prague, Faculty of Food and Biochemical Technology, Technická 5, 166 28 Praha 6, the Czech Republic
| | - Elena Belajová
- NPPC National Agricultural and Food Centre, Food Research Institute, Priemyselná 4, 824 75 Bratislava, the Slovak Republic
| | - Kristína Kukurová
- NPPC National Agricultural and Food Centre, Food Research Institute, Priemyselná 4, 824 75 Bratislava, the Slovak Republic
| | - Ľubomír Daško
- NPPC National Agricultural and Food Centre, Food Research Institute, Priemyselná 4, 824 75 Bratislava, the Slovak Republic
| | - Zdenka Panovská
- University of Chemistry and Technology, Prague, Faculty of Food and Biochemical Technology, Technická 5, 166 28 Praha 6, the Czech Republic
| | - Diomid Revenco
- University of Chemistry and Technology, Prague, Faculty of Food and Biochemical Technology, Technická 5, 166 28 Praha 6, the Czech Republic
| | - Zuzana Burčová
- Slovak University of Technology in Bratislava, Faculty of Chemical and Food Technology, Radlinského 9, 812 37 Bratislava, the Slovak Republic
| |
Collapse
|