1
|
Bouothmany K, Bourhia M, Chebaibi M, Rhazzar Z, Addoum B, Khallouki F, Mzibri ME, Elouennass M, Ennibi K, Almaary KS, Qamar MU, Touil N, Benbacer L. Uncovering Antiviral Potential of Cistus Ladanifer Extracts Against Herpes Simplex Virus 1 and Severe Acute Respiratory Syndrome Coronavirus 2 by In Vitro and In Silico Analysis. Chem Biodivers 2025; 22:e202402661. [PMID: 39791951 DOI: 10.1002/cbdv.202402661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/06/2025] [Accepted: 01/08/2025] [Indexed: 01/12/2025]
Abstract
Infectious diseases remain a major global health concern, leading to widespread complications and fatalities worldwide. Exploring the bioavailability of therapeutic compounds in traditional healing medicinal plants presents a promising approach to preventing and treating infectious diseases. Cistus ladanifer, a plant commonly employed in Moroccan traditional medicine, has been identified as a potential antiviral candidate. This study aimed to evaluate the antiviral activity of C. ladanifer extracts in vitro and in silico against the herpes simplex virus 1 and the severe acute respiratory syndrome coronavirus 2 variants of concern the Delta and Omicron. Toxic prediction of the main compounds identified by gas chromatography-mass spectrometry from C.ladanifer was performed in silico via ProTox-II software. Molecular docking was subsequently performed via Maestro version 11.5 software from Schrödinger to gain a comprehensive understanding of their biological activity. The extracts were subjected to in vitro antiviral screening against the selected strains via real-time quantitative polymerase chain reaction. Our docking estimation supported the in vitro results, and a diverse array of compounds extracted from C. ladanifer demonstrated significant antiviral activity with a low toxicity profile. Accordingly, in vitro data revealed a dose-dependent effect of the studied extracts, with particular efficacy against the Omicron variant. With the antiviral evaluation and docking outcomes in hand, we suggest a plausible mechanism of action for these compounds through further investigation into the effectiveness of C. ladanifer against other respiratory viruses.
Collapse
Affiliation(s)
- Kaoutar Bouothmany
- Biology and Medical Research Unit, National Center for Energy Sciences and Nuclear Techniques CNESTEN, Rabat, Morocco
- Microbiology, Biomolecules and Biotechnology, Laboratory of Chemistry Physics and Biotechnologies of Biomolecules and Materials, FST Mohammedia, Hassan II University of Casablanca, Mohammedia, Morocco
| | - Mohammed Bourhia
- Laboratory of Biotechnology and Natural Resources Valorization, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Mohamed Chebaibi
- Ministry of Health and Social Protection, Higher Institute of Nursing Professions and Health Techniques, Fez, Morocco
| | - Zineb Rhazzar
- Cell Culture Unit, Center of Virology, Infectious and Tropical Diseases, Mohammed V Military Teaching Hospital, Rabat, Morocco
| | - Boutaina Addoum
- Biology and Medical Research Unit, National Center for Energy Sciences and Nuclear Techniques CNESTEN, Rabat, Morocco
| | - Farid Khallouki
- Department of Biology, Faculty of Sciences and Techniques Errachidia, Moulay Ismail University of Meknes, Errachidia, Morocco
| | - Mohamed El Mzibri
- Biology and Medical Research Unit, National Center for Energy Sciences and Nuclear Techniques CNESTEN, Rabat, Morocco
| | - Mosatafa Elouennass
- Department of Bacteriology, Mohammed V Military Teaching Hospital, Rabat, Morocco
| | - Khalid Ennibi
- Cell Culture Unit, Center of Virology, Infectious and Tropical Diseases, Mohammed V Military Teaching Hospital, Rabat, Morocco
| | - Khalid S Almaary
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Muhammad Usman Qamar
- Division of Infectious Diseases, Department of Medicine, Geneva University Hospitals and Medical School, Geneva, Switzerland
| | - Nadia Touil
- Mohammed VI Center for Research & Innovation (CM6RI), Rabat, Morocco
| | - Laila Benbacer
- Biology and Medical Research Unit, National Center for Energy Sciences and Nuclear Techniques CNESTEN, Rabat, Morocco
| |
Collapse
|
2
|
Alsahafi T, Bouback T, Albeshri A, Alnhhas S, Ali M, Moatasim Y, Kutkat O, Gaballah M, Alfasi F, Mater EH, Al-Sarraj F, Badierah R, Alotibi IA, Almulaiky YQ. Antiviral potential of Melissa officinalis extracts against influenza and emerging coronaviruses. Sci Rep 2025; 15:12118. [PMID: 40204903 PMCID: PMC11982357 DOI: 10.1038/s41598-025-96417-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 03/28/2025] [Indexed: 04/11/2025] Open
Abstract
Melissa officinalis is a perennial medicinal plant traditionally used for its diverse biological activities, including antiviral properties. This study investigates the antiviral efficacy of various extracts, including water, acetone, alkaloid, non-alkaloid, ethanol, and methanol extracts, against influenza A (H1N1), SARS-CoV-2, and MERS-CoV. The water extract demonstrated significant inhibitory effects on SARS-CoV-2 (IC50 = 421.9 µg/mL) and MERS-CoV (IC50 = 222.1 µg/mL) in Vero E6 cells (an African green monkey kidney cell line), with a CC50 of 4221 µg/mL, indicating a favorable selectivity index. Additionally, it exhibited strong activity against H1N1 in Madin-Darby canine kidney cell line (MDCK cells) (IC50 = 57.30 µg/mL, CC50 = 3073 µg/mL). Among all the extracts, the methanol extract showed the highest antiviral activity. It has IC50 = 2.549 µg/ml and selectivity index (SI) = 230 against H1N1.While it showed IC50 = 10.83 µg/ml against SARS-CoV-2 and 9.82 µg/ml against MERS-CoV with SI values of 54.2 and 59.77, respectively. Molecular docking studies revealed that 5-Methyl-5 H-naphtho[2,3-c]carbazole,7 H-Dibenzo[b, g]carbazole, 7-methyl, hesperidin, luteolin-7-glucoside-3'-glucuronide, Melitric acid A, and other compounds exhibited high binding affinities to the receptor-binding domains (RBDs) of SARS-CoV-2 and MERS-CoV spike glycoproteins, suggesting their potential to interfere with viral entry. Furthermore, GC-MS-identified bioactive compounds, including docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), paromomycin, and phenolic acids, demonstrated additional antiviral potential. These results underscore the potential of M. officinalis extracts as natural antiviral agents, offering a foundation for further in vitro and in vivo validation and potential therapeutic applications against respiratory viral infections, including coronaviruses and influenza viruses.
Collapse
Affiliation(s)
- Tasneem Alsahafi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Thamer Bouback
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.
- Princess Dr. Najla Bint Saud Al-Saud Center for Excellence Research in Biotechnology, King Abdul-Aziz University, Jeddah, 21589, Saudi Arabia.
| | - Abdulaziz Albeshri
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sara Alnhhas
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohamed Ali
- Center of Scientific Excellence for Influenza Viruses, Environmental Research Division, National Research Centre (NRC), Cairo, 12622, Egypt
| | - Yassmin Moatasim
- Center of Scientific Excellence for Influenza Viruses, Environmental Research Division, National Research Centre (NRC), Cairo, 12622, Egypt
| | - Omnia Kutkat
- Center of Scientific Excellence for Influenza Viruses, Environmental Research Division, National Research Centre (NRC), Cairo, 12622, Egypt
| | - Mohamed Gaballah
- Center of Scientific Excellence for Influenza Viruses, Environmental Research Division, National Research Centre (NRC), Cairo, 12622, Egypt
| | - Fahad Alfasi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ehab H Mater
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Faisal Al-Sarraj
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Raied Badierah
- Medical Laboratory, King Abdulaziz University Hospital, King Abdul-Aziz University, Jeddah, 21589, Saudi Arabia
| | - Ibrahim A Alotibi
- Medical Laboratory, King Abdulaziz University Hospital, King Abdul-Aziz University, Jeddah, 21589, Saudi Arabia
| | - Yaaser Q Almulaiky
- The Applied College, University of Jeddah, Jeddah, Saudi Arabia.
- Chemistry Department, Faculty of Applied Science, Taiz University, Taiz, Yemen.
| |
Collapse
|
3
|
Tomou EM, Engler O, Chrysargyris A, Tzortzakis N, Skaltsa H, Urmann C. Targeted Isolation of Coumarins From Sideritis Species Based on Antiviral Screening and Untargeted Metabolomics. PHYTOCHEMICAL ANALYSIS : PCA 2025. [PMID: 40186332 DOI: 10.1002/pca.3531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 04/07/2025]
Abstract
INTRODUCTION The SARS-CoV-2 pandemic has revealed a deficiency in antiviral agents. Plants, traditionally used for respiratory infections, are valuable sources of antiviral compounds. Such a plant is the Sideritis L. taxa (mountain tea), traditionally used against cold and cough. OBJECTIVES Accordingly, this study aimed to investigate the potential protective effects of dichloromethane extracts from Sideritis species against SARS-CoV-2. MATERIALS AND METHODS Eight Sideritis extracts were tested in an in vitro pretreatment assay to assess the protective effect against SARS-CoV-2. Therefore, infectious virus particles were pre-incubated with the extract, then incubated with Vero E6 cells to finally measure cell viability as a surrogate for virus infection. Untargeted analyses (GC-MS and LC-PDA-HRESIMS) were performed to determine metabolite profiles. RESULTS Using an orthogonal approach that combines untargeted metabolomics and biological data from a screening assay, we characterized the phytochemical profiles of the different extracts and prioritized samples for targeted isolation. The dichloromethane extract of Sideritis cypria exhibited a notable protective effect. Untargeted analysis revealed coumarins as key compounds, with varying amounts across Sideritis species. Accordingly, fractionation of extract resulted in the isolation of two coumarin derivatives. Structure elucidation was performed using one- and two-dimensional nuclear magnetic resonance experiments. The coumarin, more abundant in S. cypria, demonstrated a slight protective effect in the SARS-CoV-2 pretreatment assay. CONCLUSION This study highlights the antiviral effects of Sideritis taxa, although further investigations are necessary to clarify the full potential of the herb. Additionally, the methodology presented herein can serve as a valuable resource for future phytochemical investigations focused on coumarin content within Sideritis genus.
Collapse
Affiliation(s)
- Ekaterina-Michaela Tomou
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
- Organic-Analytical Chemistry, Weihenstephan-Triesdorf University of Applied Sciences, Straubing, Germany
| | - Olivier Engler
- Spiez Laboratory, Federal Office for Civil Protection, Spiez, Switzerland
| | - Antonios Chrysargyris
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol, Cyprus
| | - Nikolaos Tzortzakis
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol, Cyprus
| | - Helen Skaltsa
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Corinna Urmann
- Organic-Analytical Chemistry, Weihenstephan-Triesdorf University of Applied Sciences, Straubing, Germany
- TUM Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Straubing, Germany
| |
Collapse
|
4
|
Yadav JK, Ghanchi M, Dixit N, Sindhav G, Patel S, Rawal R. Phytonutrients as a Defensive Barrier Against G Ectodomain Fusion in Chandipura Virus Infection. Mol Biotechnol 2025:10.1007/s12033-025-01384-x. [PMID: 39998775 DOI: 10.1007/s12033-025-01384-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 01/14/2025] [Indexed: 02/27/2025]
Abstract
Viruses, microscopic menace that transcends time leaving its mark on every era have been silent predators since the dawn of civilization, evolving with us and shaping our history. Chandipura virus (CHPV), a potent member of the Rhabdoviridae family poses a significant threat in India with rapid neuroinvasive potential leading to fatal encephalitis, particularly in children. Given the scarcity of research, our study consolidates critical information regarding its lifecycle, fusion process, and reviewed the LRP1 and GRP78 as CHPV target receptors. With no FDA-approved drugs currently available for CHPV prevention, our research focuses on identifying potential molecules that can disrupt the virus at its most critical juncture, the fusion stage. The results derived from compounds screening indicated Silibinin, 3-(2,3-Dihydroxy-3-Methylbutyl)-6-Hydroxy-2-[(1E,5E)-3,4,10-Trihydroxyundeca-1,5-Dienyl] Benzaldehyde, Budmunchiamine L5, and L4 as a leading molecule may efficaciously inhibit G ectodomain fusion. By analyzing pharmacokinetic properties through radar graph, outcomes support the nomination of four compounds as potential inhibitory molecules and ensure they possess the optimal balance of drug-like characteristics. Working with the CHPV presents significant challenges, making the in silico parameters crucial in guiding future research. Our study sought to pioneer the discovery of therapeutic molecules against the CHPV, providing a foundational framework for developing effective antiviral strategies.
Collapse
Affiliation(s)
- Jyoti Kumari Yadav
- Department of Life Sciences, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Mohammadfesal Ghanchi
- Department of Zoology, BMT, HGC and WBC, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Nandan Dixit
- Department of Botany, Bioinformatics and Climate Change Impacts Management, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Gaurang Sindhav
- Department of Zoology, BMT, HGC and WBC, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Saumya Patel
- Department of Botany, Bioinformatics and Climate Change Impacts Management, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Rakesh Rawal
- Department of Life Sciences, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India.
- Department of Medical Biotechnology, Gujarat Biotechnology University, GIFT City, Gandhinagar, Gujarat, 382355, India.
| |
Collapse
|
5
|
El-Daly MM, Bajrai LH, Alandijany TA, Alsaady IM, Gattan HS, Alhamdan MM, Dwivedi VD, Azhar EI. Exploring Echinacea angustifolia for anti-viral compounds against Zika virus RNA-dependent RNA polymerase: a computational study. Sci Rep 2025; 15:4060. [PMID: 39900998 PMCID: PMC11790867 DOI: 10.1038/s41598-025-88481-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 01/28/2025] [Indexed: 02/05/2025] Open
Abstract
The Zika virus (ZIKV), a member of the Flaviviridae family, has caused multiple widespread outbreaks, posing significant challenges to global health. This study explores the potential of compounds from Echinacea angustifolia (E. angustifolia) to inhibit the activity of ZIKV's RNA-dependent RNA polymerase (RDRP), a key enzyme in the viral replication process and an ideal candidate for antiviral therapy. Utilizing computational techniques, we conducted a thorough virtual examination using the MTi-OpenScreen tool to identify potential RDRP inhibitors among E. angustifolia compounds. The top four compounds were further examined through re-docking procedures. To assess the robustness and effectiveness of these interactions, we performed molecular dynamics simulations along with calculations of the binding free energy and PCA analysis. This investigation highlighted four naturally occurring compounds, viz., Echinacoside, Rutin, Echinacin, and Cynaroside, demonstrating a notable affinity for binding to the allosteric site of ZIKV RDRP. These compounds showed strong hydrogen bond formation with crucial residues of the RDRP and presented favorable binding free energies. Our research sheds light on the viability of these E. angustifolia compounds as ZIKV RDRP inhibitors, laying a foundation for further experimental research in developing novel antiviral treatments against ZIKV infections.
Collapse
Affiliation(s)
- Mai M El-Daly
- Special Infectious Agents Unit - BSL3, King Fahd Medical Research Center, King Abdulaziz University, 21362, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, 21362, Jeddah, Saudi Arabia
| | - Leena H Bajrai
- Special Infectious Agents Unit - BSL3, King Fahd Medical Research Center, King Abdulaziz University, 21362, Jeddah, Saudi Arabia
- Biochemistry Department, Faculty of Sciences, King Abdulaziz University, 21362, Jeddah, Saudi Arabia
| | - Thamir A Alandijany
- Special Infectious Agents Unit - BSL3, King Fahd Medical Research Center, King Abdulaziz University, 21362, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, 21362, Jeddah, Saudi Arabia
| | - Isra M Alsaady
- Special Infectious Agents Unit - BSL3, King Fahd Medical Research Center, King Abdulaziz University, 21362, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, 21362, Jeddah, Saudi Arabia
| | - Hattan S Gattan
- Special Infectious Agents Unit - BSL3, King Fahd Medical Research Center, King Abdulaziz University, 21362, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, 21362, Jeddah, Saudi Arabia
| | - Meshari M Alhamdan
- Family Medicine Department, Faculty of Medicine, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Vivek Dhar Dwivedi
- Center for Global Health Research, Saveetha Institute of Medical and Technical Sciences, Saveetha Medical College and Hospitals, Saveetha University, Chennai, India.
- Bioinformatics Research Division, Quanta Calculus, Greater Noida, India.
| | - Esam I Azhar
- Special Infectious Agents Unit - BSL3, King Fahd Medical Research Center, King Abdulaziz University, 21362, Jeddah, Saudi Arabia.
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, 21362, Jeddah, Saudi Arabia.
| |
Collapse
|
6
|
Nasr A, Elshazly EH, Slima DF, Elnosary ME, Sadek AM, Khamis M, Gong Y, Tian Q, Gouda GA, Zhu GP. Bioactive Compounds from Vicia sativa L. and Vicia monantha Retz. with Unveiling Antiviral Potentials in Newly Green Synthesized CdO Nanoparticles. Curr Pharm Biotechnol 2025; 26:497-512. [PMID: 38757333 DOI: 10.2174/0113892010305452240427044346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/29/2024] [Accepted: 04/08/2024] [Indexed: 05/18/2024]
Abstract
BACKGROUND in the current study, a comparative phytochemical analysis was carried out to explore the phenolic and flavonoid contents in the aerial parts of Vicia sativa L and Vicia monantha Retz growing in cultivated, reclaimed, and desert habitats. METHODS High-performance liquid chromatography (HPLC) was used to detect Vicia methanolic extracts' individual phenolic and flavonoid constituents. The first-time synthesis of cadmium oxide nanoparticles (CdO NPs) using the aqueous extract of V. monantha has been developed using a green approach. Also, the cytotoxicity of V. monantha extract and CdO NPs was examined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay for unveiling them as anti-HAV and anti-AdV. RESULTS Our results indicated that in the case of desert habitat, the contents of total phenolics (76.37 mg/g) and total flavonoids (65.23 mg/g) of V. monantha were higher than those of V. sativa (67.35 mg/g and 47.34 mg/g, respectively) and the contents of these secondary metabolites were even increased in V. monantha collected from reclaimed land (phenolics: 119.77 mg/g, flavonoids: 88.61 mg/g). Also, V. monantha surpassed V. sativa in the contents of some individual HPLC constituents, and hence, V. monantha was used to synthesize the green CdO NPs and subsequent antiviral tests. The average size of CdO NPs was determined to be 24.28 nm, and the transmission electron microscopy (TEM) images of CdO NPs clearly showed their spherical form and varying particle sizes, with different diameters in the range of 19-29 nm. MTT assay was positive to the exposure of CdO NPs in the normal cell line, proposing that CdO NPs can reduce cell viability. V. monantha extract showed promising antiviral activity against Hepatitis A virus (HAV) and Adenovirus (AdV) with SI of 16.40 and 10.54. On the other hand, CdO NPs had poor antiviral activity against HAV with an SI of 4.74 and moderate antiviral activity against AdV with an SI of 10.54. CONCLUSION V. monantha is now considered a new, valuable natural resource for phenolics and flavonoids, especially when grown in reclaimed soil. The green CdO NPs based on V. monantha extract showed a promising antiviral effect against HAV and AdV.
Collapse
Affiliation(s)
- Alyaa Nasr
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China
- Botany and Microbiology Department, Faculty of Science, Menoufia University, Shebin Elkoom, 32511, Menoufia, Egypt
| | - Ezzat H Elshazly
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Assiut, 71524, Egypt
| | - Dalia F Slima
- Botany and Microbiology Department, Faculty of Science, Menoufia University, Shebin Elkoom, 32511, Menoufia, Egypt
| | - Mohamed E Elnosary
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City 11884, Cairo, Egypt
| | - Ahmed M Sadek
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City 11884, Cairo, Egypt
| | - Mona Khamis
- Department of Chemistry, Faculty of Science, Al-Azhar University, Assiut, 71524, Egypt
| | - Yu Gong
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China
| | - Qian Tian
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China
| | - Gamal A Gouda
- Department of Chemistry, Faculty of Science, Al-Azhar University, Assiut, 71524, Egypt
| | - Guo-Ping Zhu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China
| |
Collapse
|
7
|
Amri M, Jubinville É, Goulet-Beaulieu V, Fliss I, Jean J. Evaluation of inhibitory activity of essential oils and natural extracts on foodborne viruses. J Appl Microbiol 2024; 135:lxae221. [PMID: 39174457 DOI: 10.1093/jambio/lxae221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/09/2024] [Accepted: 08/21/2024] [Indexed: 08/24/2024]
Abstract
AIMS Enteric viruses are recognized as a major concern in health care and in the food sector in Canada. Novel clean-label strategies for controlling enteric viruses are sought in the food industry. In this study, we examined the antiviral potential of plant extracts and essential oils on murine norovirus 1 (MNV-1), hepatitis A virus (HAV), and herpes simplex virus 1 (HSV-1). METHODS AND RESULTS Inactivation of the viruses by grape seed, blueberry, green tea, and cranberry extracts and by rosemary and thyme essential oils was measured using plaque formation assay. Concentrations ranging from 50 to 200 000 ppm with a contact time of 90 min were tested. Grape seed extract at 10 000 ppm was the most effective (P < 0.05) at reducing MNV-1 and HAV infectious titers, respectively, by 2.85 ± 0.44 log10 and 1.94 ± 0.17 log10. HSV-1 titer was reduced by 3.81 ± 0.40 log10 at 1000 ppm grape seed extract. CONCLUSIONS Among the plant products tested, grape seed extract was found the most effective at reducing the infectious titers of MNV-1, HAV, and HSV.
Collapse
Affiliation(s)
- Mariem Amri
- Department of Food Sciences, Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, PQ, G1V 0A6, Canada
| | - Éric Jubinville
- Department of Food Sciences, Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, PQ, G1V 0A6, Canada
| | - Valérie Goulet-Beaulieu
- Department of Food Sciences, Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, PQ, G1V 0A6, Canada
| | - Ismail Fliss
- Department of Food Sciences, Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, PQ, G1V 0A6, Canada
| | - Julie Jean
- Department of Food Sciences, Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, PQ, G1V 0A6, Canada
| |
Collapse
|
8
|
Mehta SK, Pradhan RB. Phytochemicals in antiviral drug development against human respiratory viruses. Drug Discov Today 2024; 29:104107. [PMID: 39032810 DOI: 10.1016/j.drudis.2024.104107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 05/30/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
This review explores the potential antiviral properties of various plant-based compounds, including polyphenols, phytochemicals, and terpenoids. It emphasizes the diverse functionalities of compounds such as epigallocatechin-3-gallate (EGCG), quercetin, griffithsin (GRFT,) resveratrol, linalool, and carvacrol in the context of respiratory virus infections, including SARS-CoV-2. Emphasizing their effectiveness in modulating immune responses, disrupting viral envelopes, and influencing cellular signaling pathways, the review underlines the imperative for thorough research to establish safety and efficacy. Additionally, the review underscores the necessity of well-designed clinical trials to evaluate the efficacy and safety of these compounds as potential antiviral agents. This approach would establish a robust framework for future drug development efforts focused on bolstering host defense mechanisms against human respiratory viral infections.
Collapse
Affiliation(s)
- Surya Kant Mehta
- Laboratory of Algal Biology, Department of Botany, School of Life Sciences, Mizoram University, Aizawl, PIN 796004, Mizoram, India.
| | - Ran Bahadur Pradhan
- Laboratory of Algal Biology, Department of Botany, School of Life Sciences, Mizoram University, Aizawl, PIN 796004, Mizoram, India
| |
Collapse
|
9
|
Raczkiewicz I, Rivière C, Bouquet P, Desmarets L, Tarricone A, Camuzet C, François N, Lefèvre G, Silva Angulo F, Robil C, Trottein F, Sahpaz S, Dubuisson J, Belouzard S, Goffard A, Séron K. Hyperforin, the major metabolite of St. John's wort, exhibits pan-coronavirus antiviral activity. Front Microbiol 2024; 15:1443183. [PMID: 39176276 PMCID: PMC11339956 DOI: 10.3389/fmicb.2024.1443183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/29/2024] [Indexed: 08/24/2024] Open
Abstract
Introduction The COVID-19 pandemic caused by the SARS-CoV-2 virus has underscored the urgent necessity for the development of antiviral compounds that can effectively target coronaviruses. In this study, we present the first evidence of the antiviral efficacy of hyperforin, a major metabolite of St. John's wort, for which safety and bioavailability in humans have already been established. Methods Antiviral assays were conducted in cell culture with four human coronaviruses: three of high virulence, SARS-CoV-2, SARS-CoV, and MERS-CoV, and one causing mild symptoms, HCoV-229E. The antiviral activity was also evaluated in human primary airway epithelial cells. To ascertain the viral step inhibited by hyperforin, time-of-addition assays were conducted. Subsequently, a combination assay of hyperforin with remdesivir was performed. Results The results demonstrated that hyperforin exhibited notable antiviral activity against the four tested human coronaviruses, with IC50 values spanning from 0.24 to 2.55 µM. Kinetic studies indicated that the observed activity occur at a post-entry step, potentially during replication. The antiviral efficacy of hyperforin was additionally corroborated in human primary airway epithelial cells. The results demonstrated a reduction in both intracellular and extracellular SARS-CoV-2 viral RNA, confirming that hyperforin targeted the replication step. Finally, an additive antiviral effect on SARS-CoV-2 was observed when hyperforin was combined with remdesivir. Discussion In conclusion, hyperforin has been identified as a novel pan-coronavirus inhibitor with activity in human primary airway epithelial cells, a preclinical model for coronaviruses. These findings collectively suggest that hyperforin has potential as a candidate antiviral agent against current and future human coronaviruses.
Collapse
Affiliation(s)
- Imelda Raczkiewicz
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR9017 – Center for Infection and Immunity of Lille (CIIL), Lille, France
| | - Céline Rivière
- BioEcoAgro, Joint Research Unit 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, YNCREA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV – Institut Charles Viollette, Lille, France
| | - Peggy Bouquet
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR9017 – Center for Infection and Immunity of Lille (CIIL), Lille, France
| | - Lowiese Desmarets
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR9017 – Center for Infection and Immunity of Lille (CIIL), Lille, France
| | - Audrey Tarricone
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR9017 – Center for Infection and Immunity of Lille (CIIL), Lille, France
| | - Charline Camuzet
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR9017 – Center for Infection and Immunity of Lille (CIIL), Lille, France
| | - Nathan François
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR9017 – Center for Infection and Immunity of Lille (CIIL), Lille, France
| | - Gabriel Lefèvre
- BioEcoAgro, Joint Research Unit 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, YNCREA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV – Institut Charles Viollette, Lille, France
| | - Fabiola Silva Angulo
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR9017 – Center for Infection and Immunity of Lille (CIIL), Lille, France
| | - Cyril Robil
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR9017 – Center for Infection and Immunity of Lille (CIIL), Lille, France
| | - François Trottein
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR9017 – Center for Infection and Immunity of Lille (CIIL), Lille, France
| | - Sevser Sahpaz
- BioEcoAgro, Joint Research Unit 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, YNCREA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV – Institut Charles Viollette, Lille, France
| | - Jean Dubuisson
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR9017 – Center for Infection and Immunity of Lille (CIIL), Lille, France
| | - Sandrine Belouzard
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR9017 – Center for Infection and Immunity of Lille (CIIL), Lille, France
| | - Anne Goffard
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR9017 – Center for Infection and Immunity of Lille (CIIL), Lille, France
| | - Karin Séron
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR9017 – Center for Infection and Immunity of Lille (CIIL), Lille, France
| |
Collapse
|
10
|
Kocyigit A, Kanımdan E, Yenigun VB, Ozman Z, Balıbey FB, Durmuş E, Yasar O. Olive Leaf Extract Downregulates the Protein Expression of Key SARS-CoV-2 Entry Enzyme ACE-2, TMPRSS2, and Furin. Chem Biodivers 2024; 21:e202400717. [PMID: 38837886 DOI: 10.1002/cbdv.202400717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/07/2024]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses ongoing global health challenges due to its propensity for mutations, which can undermine vaccine efficacy. With no definitive treatment available, urgent research into affordable and biocompatible therapeutic agents is extremely urgent. Angiotensin converting enzyme-2 (ACE-2), transmembrane protease serine subtype 2 (TMPRSS2), and Furin enzymes, which allow the virus to enter cells, are particularly important as potential drug targets among scientists. Olive leaf extract (OLE) has garnered attention for its potential against Coronavirus Disease-9 (COVID-19), yet its mechanism remains understudied. In this study, we aimed to investigate the effects of OLE on ACE-2, TMPRSS2, and Furin protein expressions by cell culture study. Total phenol, flavonoid content, and antioxidant capacity were measured by photometric methods, and oleuropein levels were measured by liquid LC-HR-MS. Cell viability was analyzed by ATP levels using a luminometric method. ACE-2, TMPRSS2, and Furin expressions were analyzed by the Western Blotting method. ACE-2, TMPRSS2, and Furin protein expression levels were significantly lower in a dose dependent manner and the highest inhibition was seen at 100 μg/ml OLE. The results showed that OLE may be a promising treatment candidate for COVID-19 disease. However, further studies need to be conducted in cells co-infected with the virus.
Collapse
Affiliation(s)
- Abdurrahim Kocyigit
- Bezmialem Vakıf University, Faculty of Medicine, Department of Medical Biochemistry, Istanbul, Turkey
- Bezmialem Vakif University, Traditional and Complementary Medicine Advanced Research Applications and Research Center, Istanbul, Turkey
| | - Ebru Kanımdan
- Bezmialem Vakıf University, Faculty of Medicine, Department of Medical Biochemistry, Istanbul, Turkey
- Bezmialem Vakif University, Vocational School of Health Services, Istanbul, Turkey
| | - Vildan Betul Yenigun
- Bezmialem Vakıf University, Faculty of Medicine, Department of Medical Biochemistry, Istanbul, Turkey
- Bezmialem Vakif University, Vocational School of Health Services, Istanbul, Turkey
| | - Zeynep Ozman
- Bezmialem Vakıf University, Faculty of Medicine, Department of Medical Biochemistry, Istanbul, Turkey
- Bezmialem Vakıf University, Institute of Health Sciences, Medical Biochemistry, Turkey
| | - Fatmanur Babalı Balıbey
- Bezmialem Vakıf University, Faculty of Medicine, Department of Medical Biochemistry, Istanbul, Turkey
| | - Ezgi Durmuş
- Bezmialem Vakıf University, Faculty of Medicine, Department of Medical Biochemistry, Istanbul, Turkey
- Bezmialem Vakıf University, Institute of Health Sciences, Medical Biochemistry, Turkey
| | - Oznur Yasar
- Bezmialem Vakıf University, Faculty of Medicine, Department of Medical Biochemistry, Istanbul, Turkey
| |
Collapse
|
11
|
Saehlee S, Seetaha S, Klankaew W, Srathong P, Choowongkomon K, Choengpanya K. Anti-Human Immunodeficiency Virus-1 Property of Thai Herbal Extract Kerra™. Pharmaceuticals (Basel) 2024; 17:917. [PMID: 39065767 PMCID: PMC11279832 DOI: 10.3390/ph17070917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/02/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024] Open
Abstract
Kerra™, a Thai traditional herbal medicine derived from the "Tak-Ka-Si-La Scripture" and composed of nine medicinal plants, has demonstrated potential antiviral properties against HIV. This study investigated the inhibitory effects of Kerra™ on HIV-1 reverse transcriptase (RT) and its ability to prevent pseudo-HIV viral infection in HEK293 cells. The results showed that Kerra™ extract achieved a 95.73 ± 4.24% relative inhibition of HIV-1 RT, with an IC50 value of 42.66 ± 8.74 µg/mL. Docking studies revealed that key phytochemicals in Kerra™, such as oleamide, formononetin, and biochanin A, interact with several residues in the RT non-nucleoside binding pocket, contributing to their inhibitory effects. Furthermore, Kerra™ was able to reduce pseudo-HIV infection in HEK293 cells at a concentration of 10 µg/mL, suggesting its potential as a supplementary treatment for HIV.
Collapse
Affiliation(s)
- Siriwan Saehlee
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (S.S.); (S.S.)
| | - Supaphorn Seetaha
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (S.S.); (S.S.)
| | - Wiwat Klankaew
- Interdisciplinary of Genetic Engineering and Bioinformatics, Graduate School, Kasetsart University, Bangkok 10900, Thailand;
| | - Pussadee Srathong
- Faculty of Nursing, Praboromarajchanok Institute, Nonthaburi 11000, Thailand;
| | - Kiattawee Choowongkomon
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (S.S.); (S.S.)
- Interdisciplinary of Genetic Engineering and Bioinformatics, Graduate School, Kasetsart University, Bangkok 10900, Thailand;
| | | |
Collapse
|
12
|
Mandal MK, Domb AJ. Antimicrobial Activities of Natural Bioactive Polyphenols. Pharmaceutics 2024; 16:718. [PMID: 38931842 PMCID: PMC11206801 DOI: 10.3390/pharmaceutics16060718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Secondary metabolites, polyphenols, are widespread in the entire kingdom of plants. They contain one or more hydroxyl groups that have a variety of biological functions in the natural environment. These uses include polyphenols in food, beauty products, dietary supplements, and medicinal products and have grown rapidly during the past 20 years. Antimicrobial polyphenols are described together with their sources, classes, and subclasses. Polyphenols are found in different sources, such as dark chocolate, olive oil, red wine, almonds, cashews, walnuts, berries, green tea, apples, artichokes, mushrooms, etc. Examples of benefits are antiallergic, antioxidant, anticancer agents, anti-inflammatory, antihypertensive, and antimicrobe properties. From these sources, different classes of polyphenols are helpful for the growth of internal functional systems of the human body, providing healthy fats, vitamins, and minerals, lowering the risk of cardiovascular diseases, improving brain health, and rebooting our cellular microbiome health by mitochondrial uncoupling. Among the various health benefits of polyphenols (curcumin, naringenin, quercetin, catechin, etc.) primarily different antimicrobial activities are discussed along with possible future applications. For polyphenols and antimicrobial agents to be proven safe, adverse health impacts must be substantiated by reliable scientific research as well as in vitro and in vivo clinical data. Future research may be influenced by this evaluation.
Collapse
Affiliation(s)
| | - Abraham J. Domb
- The Alex Grass Center for Drug Design & Synthesis and the Center for Cannabis Research, School of Pharmacy, Institute of Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel;
| |
Collapse
|
13
|
Trischitta P, Tamburello MP, Venuti A, Pennisi R. Pseudovirus-Based Systems for Screening Natural Antiviral Agents: A Comprehensive Review. Int J Mol Sci 2024; 25:5188. [PMID: 38791226 PMCID: PMC11121416 DOI: 10.3390/ijms25105188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Since the outbreak of COVID-19, researchers have been working tirelessly to discover effective ways to combat coronavirus infection. The use of computational drug repurposing methods and molecular docking has been instrumental in identifying compounds that have the potential to disrupt the binding between the spike glycoprotein of SARS-CoV-2 and human ACE2 (hACE2). Moreover, the pseudovirus approach has emerged as a robust technique for investigating the mechanism of virus attachment to cellular receptors and for screening targeted small molecule drugs. Pseudoviruses are viral particles containing envelope proteins, which mediate the virus's entry with the same efficiency as that of live viruses but lacking pathogenic genes. Therefore, they represent a safe alternative to screen potential drugs inhibiting viral entry, especially for highly pathogenic enveloped viruses. In this review, we have compiled a list of antiviral plant extracts and natural products that have been extensively studied against enveloped emerging and re-emerging viruses by pseudovirus technology. The review is organized into three parts: (1) construction of pseudoviruses based on different packaging systems and applications; (2) knowledge of emerging and re-emerging viruses; (3) natural products active against pseudovirus-mediated entry. One of the most crucial stages in the life cycle of a virus is its penetration into host cells. Therefore, the discovery of viral entry inhibitors represents a promising therapeutic option in fighting against emerging viruses.
Collapse
Affiliation(s)
- Paola Trischitta
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (P.T.); (M.P.T.)
- Department of Chemistry, Biology, and Biotechnology, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Maria Pia Tamburello
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (P.T.); (M.P.T.)
| | - Assunta Venuti
- International Agency for Research on Cancer (IARC), World Health Organization, 69366 Lyon, CEDEX 07, France;
| | - Rosamaria Pennisi
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (P.T.); (M.P.T.)
| |
Collapse
|
14
|
Alipour Z, Zarezadeh S, Ghotbi-Ravandi AA. The Potential of Anti-coronavirus Plant Secondary Metabolites in COVID-19 Drug Discovery as an Alternative to Repurposed Drugs: A Review. PLANTA MEDICA 2024; 90:172-203. [PMID: 37956978 DOI: 10.1055/a-2209-6357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
In early 2020, a global pandemic was announced due to the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), known to cause COVID-19. Despite worldwide efforts, there are only limited options regarding antiviral drug treatments for COVID-19. Although vaccines are now available, issues such as declining efficacy against different SARS-CoV-2 variants and the aging of vaccine-induced immunity highlight the importance of finding more antiviral drugs as a second line of defense against the disease. Drug repurposing has been used to rapidly find COVID-19 therapeutic options. Due to the lack of clinical evidence for the therapeutic benefits and certain serious side effects of repurposed antivirals, the search for an antiviral drug against SARS-CoV-2 with fewer side effects continues. In recent years, numerous studies have included antiviral chemicals from a variety of plant species. A better knowledge of the possible antiviral natural products and their mechanism against SARS-CoV-2 will help to develop stronger and more targeted direct-acting antiviral agents. The aim of the present study was to compile the current data on potential plant metabolites that can be investigated in COVID-19 drug discovery and development. This review represents a collection of plant secondary metabolites and their mode of action against SARS-CoV and SARS-CoV-2.
Collapse
Affiliation(s)
- Zahra Alipour
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Somayeh Zarezadeh
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Ali Akbar Ghotbi-Ravandi
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
15
|
Suleman M, Ahmad T, shah K, Albekairi NA, Alshammari A, Khan A, Wei DQ, Yassine HM, Crovella S. Exploring the natural products chemical space to abrogate the F3L-dsRNA interface of monkeypox virus to enhance the immune responses using molecular screening and free energy calculations. Front Pharmacol 2024; 14:1328308. [PMID: 38269277 PMCID: PMC10805857 DOI: 10.3389/fphar.2023.1328308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/19/2023] [Indexed: 01/26/2024] Open
Abstract
Amid the ongoing monkeypox outbreak, there is an urgent need for the rapid development of effective therapeutic interventions capable of countering the immune evasion mechanisms employed by the monkeypox virus (MPXV). The evasion strategy involves the binding of the F3L protein to dsRNA, resulting in diminished interferon (IFN) production. Consequently, our current research focuses on utilizing virtual drug screening techniques to target the RNA binding domain of the F3L protein. Out of the 954 compounds within the South African natural compound database, only four demonstrated notable docking scores: -6.55, -6.47, -6.37, and -6.35 kcal/mol. The dissociation constant (KD) analysis revealed a stronger binding affinity of the top hits 1-4 (-5.34, -5.32, -5.29, and -5.36 kcal/mol) with the F3L in the MPXV. All-atom simulations of the top-ranked hits 1 to 4 consistently exhibited stable dynamics, suggesting their potential to interact effectively with interface residues. This was further substantiated through analyses of parameters such as radius of gyration (Rg), Root Mean Square Fluctuation, and hydrogen bonding. Cumulative assessments of binding free energy confirmed the top-performing candidates among all the compounds, with values of -35.90, -52.74, -28.17, and -32.11 kcal/mol for top hits 1-4, respectively. These results indicate that compounds top hit 1-4 could hold significant promise for advancing innovative drug therapies, suggesting their suitability for both in vivo and in vitro experiments.
Collapse
Affiliation(s)
- Muhammad Suleman
- Laboratory of Animal Research Center (LARC), Qatar University, Doha, Qatar
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | - Tanveer Ahmad
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | - Khadim shah
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | - Norah A. Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abbas Khan
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- School of Medical and Life Sciences, Sunway University, Sunway City, Malaysia
| | - Dong-Qing Wei
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hadi M. Yassine
- Biomedical Research Center, Qatar University, Doha, Qatar
- College of Health Sciences-QU Health, Qatar University, Doha, Qatar
| | - Sergio Crovella
- Laboratory of Animal Research Center (LARC), Qatar University, Doha, Qatar
| |
Collapse
|
16
|
Al-darwesh MY, Ibrahim SS, Mohammed MA. A review on plant extract mediated green synthesis of zinc oxide nanoparticles and their biomedical applications. RESULTS IN CHEMISTRY 2024; 7:101368. [DOI: 10.1016/j.rechem.2024.101368] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
|
17
|
Ali SI, Salama A. Natural Immunomodulatory Agents as a Complementary Therapy for Poxviruses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1451:337-354. [PMID: 38801589 DOI: 10.1007/978-3-031-57165-7_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Poxviruses target innate immunity mediators such as tumor necrosis factors, interleukins, interferons, complement, and chemokines. It also targets adaptive immunity such as CD4+ T cells, CD4+ T cells, and B cells. Emerging of the recent epidemic of monkeypox virus (MPXV), a zoonotic disease native to Central and Western Africa, besides the lack of permitted treatments for poxviruses infections, encouraged researchers to identify effective inhibitors to help in preventing and treating poxviruses infections. Natural bioactive components, particularly polyphenolics, are promising for creating powerful antioxidants, anti-inflammatory, immune-stimulating, and antiviral agents. As a result, they are potentially effective therapies for preventing and treating viral diseases, such as infections caused by poxviruses including the recent pandemic MPXV. Polyphenolics: rosmarinic acid, caffeic acid, resveratrol, quercitrin, myricitrin, gingerol, gallotannin, and propolis-benzofuran A, as well as isoquinoline alkaloids: galanthamine and thalimonine represent prospective antiviral agents against MPXV, they can inhibit MPXV and other poxviruses via targeting different viral elements including DNA Topoisomerase I (TOP1), Thymidine Kinase (TK), serine/threonine protein kinase (Ser/Thr kinase), and protein A48R. The bioactive extracts of different traditional plants including Guiera senegalensis, Larrea tridentata, Sarracenia purpurea, Kalanchoe pinnata (Lam.) Pers., Zingiber officinale Roscoe, Quercus infectoria, Rhus chinensis, Prunella vulgaris L., Salvia rosmarinus, and Origanum vulgare also can inhibit the growth of different poxviruses including MPXV, vaccinia virus (VACV), variola virus, buffalopox virus, fowlpox virus, and cowpox virus. There is an urgent need for additional molecular studies to identify and confirm the anti-poxviruses properties of various natural bioactive components, especially those that showed potent antiviral activity against other viruses.
Collapse
Affiliation(s)
- Sami I Ali
- Plant Biochemistry Department, National Research Centre (NRC), 33 El Buhouth St. (Former El-Tahrir St.), Dokki, Cairo, 12622, Egypt.
| | - Abeer Salama
- Pharmacology Department, National Research Centre (NRC), 33 El Buhouth St. (Former El-Tahrir St.), Dokki, Cairo, 12622, Egypt
| |
Collapse
|
18
|
Klamrak A, Nabnueangsap J, Narkpuk J, Saengkun Y, Janpan P, Nopkuesuk N, Chaveerach A, Teeravechyan S, Rahman SS, Dobutr T, Sitthiwong P, Maraming P, Nualkaew N, Jangpromma N, Patramanon R, Daduang S, Daduang J. Unveiling the Potent Antiviral and Antioxidant Activities of an Aqueous Extract from Caesalpinia mimosoides Lamk: Cheminformatics and Molecular Docking Approaches. Foods 2023; 13:81. [PMID: 38201109 PMCID: PMC10778375 DOI: 10.3390/foods13010081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Our group previously demonstrated that Caesalpinia mimosoides Lamk exhibits many profound biological properties, including anticancer, antibacterial, and antioxidant activities. However, its antiviral activity has not yet been investigated. Here, the aqueous extract of C. mimosoides was prepared from the aerial parts (leaves, stalks, and trunks) to see whether it exerts anti-influenza (H1N1) effects and to reduce the organic solvents consumed during extraction, making it a desirable approach for the large-scale production for medical uses. Our plant extract was quantified to contain 7 g of gallic acid (GA) per 100 g of a dry sample, as determined using HPLC analysis. It also exerts potent antioxidant activities comparable to those of authentic GA. According to untargeted metabolomics (UPLC-ESI(-)-QTOF-MS/MS) with the aid of cheminformatics tools (MetFrag (version 2.1), SIRIUS (version 5.8.3), CSI:FingerID (version 4.8), and CANOPUS), the major metabolite was best annotated as "gallic acid", phenolics (e.g., quinic acid, shikimic acid, and protocatechuic acid), sugar derivatives, and dicarboxylic acids were deduced from this plant species for the first time. The aqueous plant extract efficiently inhibited an influenza A (H1N1) virus infection of MDCK cells with an IC50 of 5.14 µg/mL. Of equal importance, hemolytic activity was absent for this plant extract, signifying its applicability as a safe antiviral agent. Molecular docking suggested that GA interacts with conserved residues (e.g., Arg152 and Asp151) located in the catalytic inner shell of the viral neuraminidase (NA), sharing the same pocket as those of anti-neuraminidase drugs, such as laninamivir and oseltamivir. Additionally, other metabolites were also found to potentially interact with the active site and the hydrophobic 430-cavity of the viral surface protein, suggesting a possibly synergistic effect of various phytochemicals. Therefore, the C. mimosoides aqueous extract may be a good candidate for coping with increasing influenza virus resistance to existing antivirals.
Collapse
Affiliation(s)
- Anuwatchakij Klamrak
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (A.K.); (Y.S.); (P.J.); (N.N.); (S.S.R.); (T.D.); (N.N.)
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen 40000, Thailand; (P.M.); (N.J.); (R.P.)
| | - Jaran Nabnueangsap
- Salaya Central Instrument Facility RSPG, Research Management and Development Division, Office of the President, Mahidol University, Nakhon Pathom 73170, Thailand;
| | - Jaraspim Narkpuk
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand; (J.N.); (S.T.)
| | - Yutthakan Saengkun
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (A.K.); (Y.S.); (P.J.); (N.N.); (S.S.R.); (T.D.); (N.N.)
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen 40000, Thailand; (P.M.); (N.J.); (R.P.)
| | - Piyapon Janpan
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (A.K.); (Y.S.); (P.J.); (N.N.); (S.S.R.); (T.D.); (N.N.)
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen 40000, Thailand; (P.M.); (N.J.); (R.P.)
| | - Napapuch Nopkuesuk
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (A.K.); (Y.S.); (P.J.); (N.N.); (S.S.R.); (T.D.); (N.N.)
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen 40000, Thailand; (P.M.); (N.J.); (R.P.)
| | - Arunrat Chaveerach
- Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Samaporn Teeravechyan
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand; (J.N.); (S.T.)
| | - Shaikh Shahinur Rahman
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (A.K.); (Y.S.); (P.J.); (N.N.); (S.S.R.); (T.D.); (N.N.)
- Department of Applied Nutrition and Food Technology, Faculty of Biological Sciences, Islamic University, Kushtia 7000, Bangladesh
| | - Theerawat Dobutr
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (A.K.); (Y.S.); (P.J.); (N.N.); (S.S.R.); (T.D.); (N.N.)
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen 40000, Thailand; (P.M.); (N.J.); (R.P.)
| | - Poramet Sitthiwong
- Khaoyai Panorama Farm Co., Ltd., 297 M.6, Thanarat Rd., Nongnamdang, Pakchong, Nakhonratchasima 30130, Thailand;
| | - Pornsuda Maraming
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen 40000, Thailand; (P.M.); (N.J.); (R.P.)
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Natsajee Nualkaew
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (A.K.); (Y.S.); (P.J.); (N.N.); (S.S.R.); (T.D.); (N.N.)
| | - Nisachon Jangpromma
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen 40000, Thailand; (P.M.); (N.J.); (R.P.)
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40000, Thailand
| | - Rina Patramanon
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen 40000, Thailand; (P.M.); (N.J.); (R.P.)
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40000, Thailand
| | - Sakda Daduang
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (A.K.); (Y.S.); (P.J.); (N.N.); (S.S.R.); (T.D.); (N.N.)
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen 40000, Thailand; (P.M.); (N.J.); (R.P.)
| | - Jureerut Daduang
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen 40000, Thailand; (P.M.); (N.J.); (R.P.)
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
19
|
Gabbianelli R, Shahar E, de Simone G, Rucci C, Bordoni L, Feliziani G, Zhao F, Ferrati M, Maggi F, Spinozzi E, Mahajna J. Plant-Derived Epi-Nutraceuticals as Potential Broad-Spectrum Anti-Viral Agents. Nutrients 2023; 15:4719. [PMID: 38004113 PMCID: PMC10675658 DOI: 10.3390/nu15224719] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 10/29/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
Although the COVID-19 pandemic appears to be diminishing, the emergence of SARS-CoV-2 variants represents a threat to humans due to their inherent transmissibility, immunological evasion, virulence, and invulnerability to existing therapies. The COVID-19 pandemic affected more than 500 million people and caused over 6 million deaths. Vaccines are essential, but in circumstances in which vaccination is not accessible or in individuals with compromised immune systems, drugs can provide additional protection. Targeting host signaling pathways is recommended due to their genomic stability and resistance barriers. Moreover, targeting host factors allows us to develop compounds that are effective against different viral variants as well as against newly emerging virus strains. In recent years, the globe has experienced climate change, which may contribute to the emergence and spread of infectious diseases through a variety of factors. Warmer temperatures and changing precipitation patterns can increase the geographic range of disease-carrying vectors, increasing the risk of diseases spreading to new areas. Climate change may also affect vector behavior, leading to a longer breeding season and more breeding sites for disease vectors. Climate change may also disrupt ecosystems, bringing humans closer to wildlife that transmits zoonotic diseases. All the above factors may accelerate the emergence of new viral epidemics. Plant-derived products, which have been used in traditional medicine for treating pathological conditions, offer structurally novel therapeutic compounds, including those with anti-viral activity. In addition, plant-derived bioactive substances might serve as the ideal basis for developing sustainable/efficient/cost-effective anti-viral alternatives. Interest in herbal antiviral products has increased. More than 50% of approved drugs originate from herbal sources. Plant-derived compounds offer diverse structures and bioactive molecules that are candidates for new drug development. Combining these therapies with conventional drugs could improve patient outcomes. Epigenetics modifications in the genome can affect gene expression without altering DNA sequences. Host cells can use epigenetic gene regulation as a mechanism to silence incoming viral DNA molecules, while viruses recruit cellular epitranscriptomic (covalent modifications of RNAs) modifiers to increase the translational efficiency and transcript stability of viral transcripts to enhance viral gene expression and replication. Moreover, viruses manipulate host cells' epigenetic machinery to ensure productive viral infections. Environmental factors, such as natural products, may influence epigenetic modifications. In this review, we explore the potential of plant-derived substances as epigenetic modifiers for broad-spectrum anti-viral activity, reviewing their modulation processes and anti-viral effects on DNA and RNA viruses, as well as addressing future research objectives in this rapidly emerging field.
Collapse
Affiliation(s)
- Rosita Gabbianelli
- Unit of Molecular Biology and Nutrigenomics, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (R.G.); (G.d.S.); (L.B.); (G.F.); (F.Z.)
| | - Ehud Shahar
- Department of Nutrition and Natural Products, Migal—Galilee Research Institute, Kiryat Shmona 11016, Israel;
- Department of Biotechnology, Tel-Hai College, Kiryat Shmona 1220800, Israel
| | - Gaia de Simone
- Unit of Molecular Biology and Nutrigenomics, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (R.G.); (G.d.S.); (L.B.); (G.F.); (F.Z.)
| | - Chiara Rucci
- Unit of Molecular Biology and Nutrigenomics, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (R.G.); (G.d.S.); (L.B.); (G.F.); (F.Z.)
| | - Laura Bordoni
- Unit of Molecular Biology and Nutrigenomics, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (R.G.); (G.d.S.); (L.B.); (G.F.); (F.Z.)
| | - Giulia Feliziani
- Unit of Molecular Biology and Nutrigenomics, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (R.G.); (G.d.S.); (L.B.); (G.F.); (F.Z.)
| | - Fanrui Zhao
- Unit of Molecular Biology and Nutrigenomics, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (R.G.); (G.d.S.); (L.B.); (G.F.); (F.Z.)
| | - Marta Ferrati
- Chemistry Interdisciplinary Project (ChIP) Research Centre, School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (M.F.); (F.M.); (E.S.)
| | - Filippo Maggi
- Chemistry Interdisciplinary Project (ChIP) Research Centre, School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (M.F.); (F.M.); (E.S.)
| | - Eleonora Spinozzi
- Chemistry Interdisciplinary Project (ChIP) Research Centre, School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (M.F.); (F.M.); (E.S.)
| | - Jamal Mahajna
- Department of Nutrition and Natural Products, Migal—Galilee Research Institute, Kiryat Shmona 11016, Israel;
- Department of Biotechnology, Tel-Hai College, Kiryat Shmona 1220800, Israel
| |
Collapse
|
20
|
Zhang J, Netzel ME, Pengelly A, Sivakumar D, Sultanbawa Y. A Review of Phytochemicals and Bioactive Properties in the Proteaceae Family: A Promising Source of Functional Food. Antioxidants (Basel) 2023; 12:1952. [PMID: 38001805 PMCID: PMC10669417 DOI: 10.3390/antiox12111952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
In recent decades, natural plant-based foods have been increasingly used to improve human health due to unhealthy modern dietary patterns, such as the consumption of foods high in sugar and fat. Many indigenous species have been used by Aboriginal peoples for their food and therapeutic properties. Thus, it is important to understand the health-enhancing bioactive profile of Australian indigenous species. The Proteaceae family, such as the genera of Protea, Macadamia, and Grevillea, have been commercially used in the horticulture and food industries. Researchers have reported some findings about Persoonia species, one of the genera in the Proteaceae family. The aim of this review was to provide an overview of the family Proteaceae and the genus Persoonia, including distribution, traditional and commercial uses, phytochemicals, bioactive properties, potential opportunities, and challenges. In this review, bioactive compounds and their properties related to the health benefits of the Proteaceae family, particularly the Persoonia genus, were reviewed for potential applications in the food industry.
Collapse
Affiliation(s)
- Jiale Zhang
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Indooroopilly, QLD 4068, Australia; (J.Z.); (M.E.N.); (D.S.)
| | - Michael E. Netzel
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Indooroopilly, QLD 4068, Australia; (J.Z.); (M.E.N.); (D.S.)
| | - Andrew Pengelly
- Indigenous Plants for Health Association, 196 Bridge St, Muswellbrook, NSW 2333, Australia;
| | - Dharini Sivakumar
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Indooroopilly, QLD 4068, Australia; (J.Z.); (M.E.N.); (D.S.)
- Phytochemical Food Network, Department of Crop Sciences, Tshwane University of Technology, Pretoria 0001, South Africa
| | - Yasmina Sultanbawa
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Indooroopilly, QLD 4068, Australia; (J.Z.); (M.E.N.); (D.S.)
| |
Collapse
|
21
|
Zhou Y, Qiu TX, Wang H, Hu L, Liu L, Chen J. Application of rhein as an immunostimulant controls spring viremia of carp virus infection. FISH & SHELLFISH IMMUNOLOGY 2023; 142:109128. [PMID: 37777100 DOI: 10.1016/j.fsi.2023.109128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/02/2023]
Abstract
In recent years, the exploration of natural compounds possessing both immunostimulatory and antiviral activities has attracted growing attention in aquaculture research. Consequently, the pursuit of identifying natural products exhibiting anti-SVCV potential as immunostimulants holds significant promise, offering a pathway to mitigate the economic ramifications inflicted by SVCV outbreaks in aquaculture settings. Among them, rhein emerges as a particularly compelling contender. Boasting a widespread distribution, well-established extraction methods, and multiple biological activities, it has exhibited the capacity to enhance the antiviral activity of host cells in vitro by blocking the viral internalization process, with a peak inhibition rate of 44.0%. Based on this intervention, rhein inhibited apoptosis and mitochondrial damage triggered by SVCV infection, ultimately producing a significant antiviral effect. Moving beyond the laboratory setting, rhein's efficacy translates effectively into in vivo scenarios. It has demonstrated substantial antiviral potency by increasing the expression of antiviral-related genes, most notably, retinoic acid-inducible gene I (RIG-I), interferon-φ (IFN-φ) and IFN-stimulated gene product 15 (ISG15). In concert with this genetic modulation, rhein efficiently reduces the viral load, precipitating a consequential enhancement in the survival rate of SVCV-infected fish, elevating it to an encouraging 16%. In conclusion, the outcomes of our investigation offer a compelling testament to rhein's potential as a valuable immunomodulator in the battle against SVCV infections in aquaculture, and the remarkable attributes exhibited by rhein underscore its viability for future commercial deployment.
Collapse
Affiliation(s)
- Yan Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, 315832, China
| | - Tian-Xiu Qiu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, 315832, China
| | - Huan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, 315832, China
| | - Ling Hu
- Ningbo Academy of Inspection and Quarantine, Ningbo, 315000, China
| | - Lei Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, 315832, China.
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, 315832, China.
| |
Collapse
|
22
|
Huang Q, Wang M, Wang M, Lu Y, Wang X, Chen X, Yang X, Guo H, He R, Luo Z. Scutellaria baicalensis: a promising natural source of antiviral compounds for the treatment of viral diseases. Chin J Nat Med 2023; 21:563-575. [PMID: 37611975 DOI: 10.1016/s1875-5364(23)60401-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Indexed: 08/25/2023]
Abstract
Viruses, the smallest microorganisms, continue to present an escalating threat to human health, being the leading cause of mortality worldwide. Over the decades, although significant progress has been made in the development of therapies and vaccines against viral diseases, the need for effective antiviral interventions remains urgent. This urgency stems from the lack of effective vaccines, the severe side effects associated with current drugs, and the emergence of drug-resistant viral strains. Natural plants, particularly traditionally-used herbs, are often considered an excellent source of medicinal drugs with potent antiviral efficacy, as well as a substantial safety profile. Scutellaria baicalensis, a traditional Chinese medicine, has garnered considerable attention due to its extensive investigation across diverse therapeutic areas and its demonstrated efficacy in both preclinical and clinical trials. In this review, we mainly focused on the potential antiviral activities of ingredients in Scutellaria baicalensis, shedding light on their underlying mechanisms of action and therapeutic applications in the treatment of viral infections.
Collapse
Affiliation(s)
- Qiuju Huang
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, College of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - Muyang Wang
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, College of Pharmacy, Guangxi Medical University, Nanning 530021, China; Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, Guangxi Medical University, Nanning 530021, China
| | - Min Wang
- Hainan Affiliated Hospital of Hainan Medical University, Department of Pharmacy, Haikou 570311, China
| | - Yuhui Lu
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, College of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - Xiaohua Wang
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, College of Pharmacy, Jinan University, Guangzhou 612505, China
| | - Xin Chen
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, College of Pharmacy, Guangxi Medical University, Nanning 530021, China; Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, Guangxi Medical University, Nanning 530021, China
| | - Xin Yang
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, College of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - Hongwei Guo
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, College of Pharmacy, Guangxi Medical University, Nanning 530021, China; Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, Guangxi Medical University, Nanning 530021, China.
| | - Rongrong He
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, College of Pharmacy, Jinan University, Guangzhou 612505, China.
| | - Zhuo Luo
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, College of Pharmacy, Guangxi Medical University, Nanning 530021, China.
| |
Collapse
|
23
|
Chianese A, Gravina C, Morone MV, Ambrosino A, Formato M, Palma F, Foglia F, Nastri BM, Zannella C, Esposito A, De Filippis A, Piccolella S, Galdiero M, Pacifico S. Lavandula austroapennina: Assessment of the Antiviral Activity of Lipophilic Extracts from Its Organs. Viruses 2023; 15:1648. [PMID: 37631991 PMCID: PMC10457779 DOI: 10.3390/v15081648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/23/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
In a framework aimed at the recovery and enhancement of medicinal plants endemic to the territory of the Cilento and Vallo di Diano National Park, Lavandula austroapennina N.G. Passal., Tundis and Upson has aroused interest. An insight into the chemical composition of the corolla, calyx, leaf, stem, and root organs was carried out following ultrasound-assisted maceration in n-hexane. The obtained lipophilic extracts were explored using ultra-high-performance chromatography coupled to high-resolution mass spectrometry (UHPLC-ESI-QqTOF-MS/MS). The extracts from the different organs varied in their relative content of fatty acids, ursanes, and oleanane-type triterpenes. In particular, the oleanolic acid content appeared to increase in the order of corolla < leaf < stem. An MTT assay was performed to verify the possible cytotoxicity of the organ extracts of L. austroapennina at a concentration ranging from 12.5 to 400 µg/mL on the Vero CCL-81 cell line. Antiviral activity against herpes simplex virus type 1 (HSV-1), alpha human coronavirus 229E (HCoV-229E), and poliovirus type 1 (PV-1) was evaluated via a plaque reduction assay in the same cellular model. All the extracts did not show cytotoxic effects after 2 and 24 h exposure times, and the antiviral efficacy was particularly important for the stem extract, capable of completely inhibiting the tested viruses at low doses. The antiviral activity in a non-enveloped virus PV-1 allowed the assertion that the extracts from the organs of L. austroapennina, and especially the stem extract, interfered directly with the viral envelope. This study underlines how much knowledge of a territory's medicinal plant heritage is a harbinger of promising discoveries in the health field.
Collapse
Affiliation(s)
- Annalisa Chianese
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.C.); (M.V.M.); (A.A.); (F.P.); (F.F.); (B.M.N.); (C.Z.); (A.D.F.)
| | - Claudia Gravina
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (C.G.); (M.F.); (A.E.); (S.P.)
| | - Maria Vittoria Morone
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.C.); (M.V.M.); (A.A.); (F.P.); (F.F.); (B.M.N.); (C.Z.); (A.D.F.)
| | - Annalisa Ambrosino
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.C.); (M.V.M.); (A.A.); (F.P.); (F.F.); (B.M.N.); (C.Z.); (A.D.F.)
| | - Marialuisa Formato
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (C.G.); (M.F.); (A.E.); (S.P.)
| | - Francesca Palma
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.C.); (M.V.M.); (A.A.); (F.P.); (F.F.); (B.M.N.); (C.Z.); (A.D.F.)
| | - Francesco Foglia
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.C.); (M.V.M.); (A.A.); (F.P.); (F.F.); (B.M.N.); (C.Z.); (A.D.F.)
| | - Bianca Maria Nastri
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.C.); (M.V.M.); (A.A.); (F.P.); (F.F.); (B.M.N.); (C.Z.); (A.D.F.)
| | - Carla Zannella
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.C.); (M.V.M.); (A.A.); (F.P.); (F.F.); (B.M.N.); (C.Z.); (A.D.F.)
| | - Assunta Esposito
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (C.G.); (M.F.); (A.E.); (S.P.)
| | - Anna De Filippis
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.C.); (M.V.M.); (A.A.); (F.P.); (F.F.); (B.M.N.); (C.Z.); (A.D.F.)
| | - Simona Piccolella
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (C.G.); (M.F.); (A.E.); (S.P.)
| | - Massimiliano Galdiero
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.C.); (M.V.M.); (A.A.); (F.P.); (F.F.); (B.M.N.); (C.Z.); (A.D.F.)
| | - Severina Pacifico
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (C.G.); (M.F.); (A.E.); (S.P.)
| |
Collapse
|
24
|
Varbanov M, Philippot S, González-Cardenete MA. Anticoronavirus Evaluation of Antimicrobial Diterpenoids: Application of New Ferruginol Analogues. Viruses 2023; 15:1342. [PMID: 37376641 DOI: 10.3390/v15061342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
The abietane diterpene (+)-ferruginol (1), like other natural and semisynthetic abietanes, is distinguished for its interesting pharmacological properties such as antimicrobial activity, including antiviral. In this study, selected C18-functionalized semisynthetic abietanes prepared from the commercially available (+)-dehydroabietylamine or methyl dehydroabietate were tested in vitro against human coronavirus 229E (HCoV-229E). As a result, a new ferruginol analogue caused a relevant reduction in virus titer as well as the inhibition of a cytopathic effect. A toxicity prediction based on in silico analysis was also performed as well as an estimation of bioavailability. This work demonstrates the antimicrobial and specifically antiviral activity of two tested compounds, making these molecules interesting for the development of new antivirals.
Collapse
Affiliation(s)
- Mihayl Varbanov
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France
- Laboratoire de Virologie, CHRU de Nancy Brabois, 54500 Vandoeuvre-lès-Nancy, France
| | | | - Miguel A González-Cardenete
- Instituto de Tecnologia Química (UPV-CSIC), Universitat Politècnica de Valencia-Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, 46022 Valencia, Spain
| |
Collapse
|
25
|
Murata T, Jamsransuren D, Matsuda S, Ogawa H, Takeda Y. Rapid Virucidal Activity of Japanese Saxifraga Species-Derived Condensed Tannins against SARS-CoV-2, Influenza A Virus, and Human Norovirus Surrogate Viruses. Appl Environ Microbiol 2023:e0023723. [PMID: 37184410 DOI: 10.1128/aem.00237-23] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), influenza A virus (IAV), and norovirus are global threats to human health. The application of effective virucidal agents, which contribute to the inactivation of viruses on hands and environmental surfaces, is important to facilitate robust virus infection control measures. Naturally derived virucidal disinfectants have attracted attention owing to their safety and eco-friendly properties. In this study, we showed that multiple Japanese Saxifraga species-derived fractions demonstrated rapid, potent virucidal activity against the SARS-CoV-2 ancestral strain and multiple variant strains, IAV, and two human norovirus surrogates: feline calicivirus (FCV) and murine norovirus (MNV). Condensed tannins were identified as active chemical constituents that play a central role in the virucidal activities of these fractions. At a concentration of 25 μg/mL, the purified condensed tannin fraction Sst-2R induced significant reductions in the viral titers of the SARS-CoV-2 ancestral strain, IAV, and FCV (reductions of ≥3.13, ≥3.00, and 2.50 log10 50% tissue culture infective doses [TCID50]/mL, respectively) within 10 s of reaction time. Furthermore, at a concentration of 100 μg/mL, Sst-2R induced a reduction of 1.75 log10 TCID50/mL in the viral titers of MNV within 1 min. Western blotting and transmission electron microscopy analyses revealed that Sst-2R produced structural abnormalities in viral structural proteins and envelopes, resulting in the destruction of viral particles. Furthermore, Saxifraga species-derived fraction-containing cream showed virucidal activity against multiple viruses within 10 min. Our findings indicate that Saxifraga species-derived fractions containing condensed tannins can be used as disinfectants against multiple viruses on hands and environmental surfaces. IMPORTANCE SARS-CoV-2, IAV, and norovirus are highly contagious pathogens. The use of naturally derived components as novel virucidal/antiviral agents is currently attracting attention. We showed that fractions from extracts of Saxifraga species, in the form of a solution as well as a cream, exerted potent, rapid virucidal activities against SARS-CoV-2, IAV, and surrogates of human norovirus. Condensed tannins were found to play a central role in this activity. The in vitro cytotoxicity of the purified condensed tannin fraction at a concentration that exhibited some extent of virucidal activity was lower than that of 70% ethanol or 2,000 ppm sodium hypochlorite solution, which are popular virucidal disinfectants. Our study suggests that Saxifraga species-derived fractions containing condensed tannins can be used on hands and environmental surfaces as safe virucidal agents against multiple viruses.
Collapse
Affiliation(s)
- Toshihiro Murata
- Division of Pharmacognosy, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Dulamjav Jamsransuren
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Sachiko Matsuda
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Haruko Ogawa
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Yohei Takeda
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
- Research Center for Global Agromedicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| |
Collapse
|
26
|
Sharma A, Gupta AK, Devi B. Current trends in management of bacterial pathogens infecting plants. Antonie Van Leeuwenhoek 2023; 116:303-326. [PMID: 36683073 DOI: 10.1007/s10482-023-01809-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 01/08/2023] [Indexed: 01/24/2023]
Abstract
Plants are continuously challenged by different pathogenic microbes that reduce the quality and quantity of produce and therefore pose a serious threat to food security. Among them bacterial pathogens are known to cause disease outbreaks with devastating economic losses in temperate, tropical and subtropical regions throughout the world. Bacteria are structurally simple prokaryotic microorganisms and are diverse from a metabolic standpoint. Bacterial infection process mainly involves successful attachment or penetration by using extracellular enzymes, type secretion systems, toxins, growth regulators and by exploiting different molecules that modulate plant defence resulting in successful colonization. Theses bacterial pathogens are extremely difficult to control as they develop resistance to antibiotics. Therefore, attempts are made to search for innovative methods of disease management by the targeting bacterial virulence and manipulating the genes in host plants by exploiting genome editing methods. Here, we review the recent developments in bacterial disease management including the bioactive antimicrobial compounds, bacteriophage therapy, quorum-quenching mediated control, nanoparticles and CRISPR/Cas based genome editing techniques for bacterial disease management. Future research should focus on implementation of smart delivery systems and consumer acceptance of these innovative methods for sustainable disease management.
Collapse
Affiliation(s)
- Aditi Sharma
- College of Horticulture and Forestry, Thunag- Mandi, Dr. Y. S. Parmar University of Horticulture and Forestry, Nauni, Solan, Himachal Pradesh, 173 230, India.
| | - A K Gupta
- Department of Plant Pathology, Dr. Y.S. Parmar University of Horticulture and Forestry, Nauni, Solan, Himachal Pradesh, 173 230, India
| | - Banita Devi
- Department of Plant Pathology, Dr. Y.S. Parmar University of Horticulture and Forestry, Nauni, Solan, Himachal Pradesh, 173 230, India
| |
Collapse
|
27
|
Sadeer NB, El Kalamouni C, Khalid A, Abdalla AN, Zengin G, Khoa Bao LV, Mahomoodally MF. Secondary metabolites as potential drug candidates against Zika virus, an emerging looming human threat: Current landscape, molecular mechanism and challenges ahead. J Infect Public Health 2023; 16:754-770. [PMID: 36958171 DOI: 10.1016/j.jiph.2023.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/12/2023] [Accepted: 03/07/2023] [Indexed: 03/17/2023] Open
Abstract
Nature has given us yet another wild card in the form of Zika virus (ZIKV). It was found in 1947, but has only recently become an important public health risk, predominantly to pregnant women and their unborn offspring. Currently, no specific therapeutic agent exists for ZIKV and treatment is mainly supportive. Natural products (NPs) can serve as a major source of potent antiviral drugs. To create this review, a comprehensive search was conducted from different databases (PubMed, ScienceDirect, Google scholar). A statistical analysis on the number of publications related to NPs and ZIKV was conducted to analyse the trend in research covering the period 1980-2020. From the data collated in this review, a number of NPs have been found to be inhibitive towards different stages of the ZIKV lifecycle in in vitro studies. For instance, baicalin, (-)-epigallocatechin gallate, curcumin, nanchangmycin, gossypol, cephaeline, emetine, resveratrol, berberine, amongst others, can prevent viral entry by attacking ZIKV E protein. Compounds luteolin, myricetin, astragalin, rutin, (-)-epigallocatechin gallate, carnosine, pedalitin, amongst others, inhibited NS2B-NS3 protease activity which consequently hamper replication. Interestingly, a few NPs had the ability to arrest both viral entry and replication, namely baicalin, (-)-epigallocatechin gallate, curcumin, cephaeline, emetine, and resveratrol. To the best of our knowledge, we obtained only one in vivo study conducted on emetine and results showed that it decreased the levels of circulating ZIKV by approximately 10-fold. Our understanding on NPs exhibiting anti-ZIKV effects in in vivo testing as well as clinical trials is limited. Our trend analysis showed that interest in searching for a cure or prevention against Zika in NPs is negligible and there are no publications yet covering the clinical evaluation. NPs with anti-ZIKV property can a winning strategy in controlling the bio-burden of an epidemic or pandemic. We therefore opine that in the future, more research should be devoted to ZIKV. This review attempts to provide baseline data and roadmap to pursuit detailed investigations for developing potent and novel therapeutic agents to prevent and cure ZIKV infection.
Collapse
Affiliation(s)
- Nabeelah Bibi Sadeer
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Réduit, Mauritius
| | - Chaker El Kalamouni
- Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, 94791 Sainte Clotilde, La Réunion, France.
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, P.O. Box: 114, Jazan 45142, Saudi Arabia; Medicinal and Aromatic Plants and Traditional Medicine Research Institute, National Center for Research, P. O. Box 2404, Khartoum, the Republic of the Sudan
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk University, Campus, 42250 Konya, Turkey
| | - Le Van Khoa Bao
- Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam; School of Engineering & Technology, Duy Tan University, Da Nang, Viet Nam.
| | - Mohamad Fawzi Mahomoodally
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Réduit, Mauritius; Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa; Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Chennai 600077, India
| |
Collapse
|
28
|
Kakhar Umar A, Zothantluanga JH, Luckanagul JA, Limpikirati P, Sriwidodo S. Structure-based computational screening of 470 natural quercetin derivatives for identification of SARS-CoV-2 M pro inhibitor. PeerJ 2023; 11:e14915. [PMID: 36935912 PMCID: PMC10022500 DOI: 10.7717/peerj.14915] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 01/26/2023] [Indexed: 03/16/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a global pandemic infecting the respiratory system through a notorious virus known as the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Due to viral mutations and the risk of drug resistance, it is crucial to identify new molecules having potential prophylactic or therapeutic effect against SARS-CoV-2 infection. In the present study, we aimed to identify a potential inhibitor of SARS-CoV-2 through virtual screening of a compound library of 470 quercetin derivatives by targeting the main protease-Mpro (PDB ID: 6LU7). The study was carried out with computational techniques such as molecular docking simulation studies (MDSS), molecular dynamics (MD) simulations, and molecular mechanics generalized Born surface area (MMGBSA) techniques. Among the natural derivatives, compound 382 (PubChem CID 65604) showed the best binding affinity to Mpro (-11.1 kcal/mol). Compound 382 interacted with LYS5, TYR126, GLN127, LYS137, ASP289, PHE291, ARG131, SER139, GLU288, and GLU290 of the Mpro protein. The SARS-CoV-2 Mpro-382 complex showed acceptable stability during the 100 ns MD simulations. The SARS-CoV-2 Mpro-382 complex also showed an MM-GBSA binding free energy value of -54.0 kcal/mol. The binding affinity, stability, and free energy results for 382 and Mpro were better than those of the native ligand and the standard inhibitors ledipasvir and cobicistat. The conclusion of our study was that compound 382 has the potential to inhibit SARS-Cov-2 Mpro. However, further investigations such as in-vitro assays are recommended to confirm its in-silico potency.
Collapse
Affiliation(s)
- Abd. Kakhar Umar
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Padjadjaran University, Sumedang, Jawa barat, Indonesia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Chulalongkorn University, Bangkok, Thailand
| | - James H. Zothantluanga
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Dibrugarh University, Assam, India
| | - Jittima Amie Luckanagul
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Chulalongkorn University, Bangkok, Thailand
| | - Patanachai Limpikirati
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmacy, Chulalongkorn University, Bangkok, Thailand
| | - Sriwidodo Sriwidodo
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Padjadjaran University, Sumedang, Jawa barat, Indonesia
| |
Collapse
|
29
|
Ajala A, Uzairu A, Shallangwa GA, Abechi SE. Virtual screening, molecular docking simulation and ADMET prediction of some selected natural products as potential inhibitors of NLRP3 inflammasomes as drug candidates for Alzheimer disease. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2023. [DOI: 10.1016/j.bcab.2023.102615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
30
|
Khan M, Altamish M, Samal M, Srivastav V, Insaf A, Parveen R, Akhtar J, Krishnan A, Ahmad S. Antiviral Potential of Traditional Unani Medicine with Special Emphasis on Dengue: A Review. Curr Drug Targets 2023; 24:1317-1334. [PMID: 38037908 DOI: 10.2174/0113894501257577231103044735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/20/2023] [Accepted: 09/07/2023] [Indexed: 12/02/2023]
Abstract
Dengue fever has become a major public health concern. It is usually related to intravascular leaking, bleeding disorders, and thrombocytopenia and is recognized as a potent threat to humans. The scarcity of anti-dengue medication or vaccine for such a serious disease leads to an upsurge in the usage of traditional medicines for its proper management. India has diverse biodiversity and a long history of using plant-based remedies. Several medicinal plant extracts have been studied for producing anti-dengue viral activity. AYUSH traditional systems provide a plethora of plants that have been reported to be useful in the treatment of fever. Single and compound plant- based formulations in natural form have been used in Unani holistic approaches. This review serves as a new approach to illustrate the most recent evidence regarding the antiviral activity of various plants by providing scientific proof and also to validate the traditional formulations as effective treatments in dengue fever for global acceptance.
Collapse
Affiliation(s)
- Muzayyana Khan
- Centre of Excellence in Unani Medicine, Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Mohammad Altamish
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Monalisha Samal
- Centre of Excellence in Unani Medicine, Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
- Department of Pharmacognosy and phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Varsha Srivastav
- Centre of Excellence in Unani Medicine, Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
- Department of Pharmacognosy and phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Areeba Insaf
- Centre of Excellence in Unani Medicine, Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Rabea Parveen
- Centre of Excellence in Unani Medicine, Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Jamal Akhtar
- Central Council for Research in Unani Medicine, Ministry of AYUSH, Government of India, New Delhi, 110058, India
| | - Anuja Krishnan
- Department of Molecular Medicine, School of Interdisciplinary Sciences and Technology, Jamia Hamdard, New Delhi, 110062, India
| | - Sayeed Ahmad
- Centre of Excellence in Unani Medicine, Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
- Department of Pharmacognosy and phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
31
|
Plant Molecular Pharming and Plant-Derived Compounds towards Generation of Vaccines and Therapeutics against Coronaviruses. Vaccines (Basel) 2022; 10:vaccines10111805. [DOI: 10.3390/vaccines10111805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/14/2022] [Accepted: 10/19/2022] [Indexed: 11/17/2022] Open
Abstract
The current century has witnessed infections of pandemic proportions caused by Coronaviruses (CoV) including severe acute respiratory syndrome-related CoV (SARS-CoV), Middle East respiratory syndrome-related CoV (MERS-CoV) and the recently identified SARS-CoV2. Significantly, the SARS-CoV2 outbreak, declared a pandemic in early 2020, has wreaked devastation and imposed intense pressure on medical establishments world-wide in a short time period by spreading at a rapid pace, resulting in high morbidity and mortality. Therefore, there is a compelling need to combat and contain the CoV infections. The current review addresses the unique features of the molecular virology of major Coronaviruses that may be tractable towards antiviral targeting and design of novel preventative and therapeutic intervention strategies. Plant-derived vaccines, in particular oral vaccines, afford safer, effectual and low-cost avenues to develop antivirals and fast response vaccines, requiring minimal infrastructure and trained personnel for vaccine administration in developing countries. This review article discusses recent developments in the generation of plant-based vaccines, therapeutic/drug molecules, monoclonal antibodies and phytochemicals to preclude and combat infections caused by SARS-CoV, MERS-CoV and SARS-CoV-2 viruses. Efficacious plant-derived antivirals could contribute significantly to combating emerging and re-emerging pathogenic CoV infections and help stem the tide of any future pandemics.
Collapse
|
32
|
Nasim N, Sandeep IS, Mohanty S. Plant-derived natural products for drug discovery: current approaches and prospects. THE NUCLEUS 2022; 65:399-411. [PMID: 36276225 PMCID: PMC9579558 DOI: 10.1007/s13237-022-00405-3] [Citation(s) in RCA: 120] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 09/29/2022] [Indexed: 11/19/2022] Open
Abstract
Nature has abundant source of drugs that need to be identified/purified for use as essential biologics, either individually or in combination in the modern medical field. These drugs are divided into small bio-molecules, plant-made biologics, and a recently introduced third category known as phytopharmaceutical drugs. The development of phytopharmaceutical medicines is based on the ethnopharmacological approach, which relies on the traditional medicine system. The concept of ‘one-disease one-target drug’ is becoming less popular, and the use of plant extracts, fractions, and molecules is the new paradigm that holds promising scope to formulate appropriate drugs. This led to discovering a new concept known as polypharmacology, where natural products from varying sources can engage with multiple human physiology targets. This article summarizes different approaches for phytopharmaceutical drug development and discusses the progress in systems biology and computational tools for identifying drug targets. We review the existing drug delivery methods to facilitate the efficient delivery of drugs to the targets. In addition, we describe different analytical techniques for the authentication and fingerprinting of plant materials. Finally, we highlight the role of biopharming in developing plant-based biologics.
Collapse
Affiliation(s)
- Noohi Nasim
- grid.412612.20000 0004 1760 9349Centre for Biotechnology, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar, Odisha 751003 India
| | - Inavolu Sriram Sandeep
- grid.412612.20000 0004 1760 9349Centre for Biotechnology, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar, Odisha 751003 India
| | - Sujata Mohanty
- grid.506052.40000 0004 4911 8595Department of Biotechnology, Rama Devi Women’s University, Vidya Vihar, Bhubaneswar, Odisha 751022 India
| |
Collapse
|
33
|
Palani V, Chinnaraj S, Shanmugasundaram M, Malaisamy A, Maluventhen V, Arumugam VA, Rengasamy KRR, Balasubramanian B, Liu WC, Arumugam M. Derivation, Functionalization of (S)-Goniothalamin from Goniothalamus wightii and Their Derivative Targets SARS-CoV-2 M Pro, S Pro, and RdRp: A Pharmacological Perspective. Molecules 2022; 27:6962. [PMID: 36296552 PMCID: PMC9612040 DOI: 10.3390/molecules27206962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/17/2022] Open
Abstract
The tracing of an alternative drug, Phytochemicals is a promising approach to the viral threats that have emerged over the past two years. Across the world, herbal medicine is a better solution against anti-viral diseases during pandemic periods. Goniothalamus wightii is an herbal plant, which has diverse bioactive compounds with anticancer, antioxidant, and anti-viral properties. The aim of the study was to isolate the compound by chromatography studies and functionalization by FT-IR, LC-MS, and NMR (C-NMR, H-NMR). As a result, the current work focuses on whether (S)-Goniathalamin and its analogue could act as natural anti-viral molecules for multiple target proteins viz., MPro, RdRp, and SPro, which are required for SARS-CoV-2 infection. Overall, 954 compounds were examined and the molecular-docking studies were performed on the maestro platform of Schrodinger software. Molecular-dynamics simulation studies were performed on two complex major compounds to confirm their affinity across 150 simulations. This research suggests that plant-based drugs have high levels of antiviral properties against coronavirus. However, more research is needed to verify its antiviral properties.
Collapse
Affiliation(s)
- Vino Palani
- Department of Botany, Periyar University, Salem 636011, India
| | | | | | - Arunkumar Malaisamy
- Integrative Biology Division, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi 110067, India
| | - Viji Maluventhen
- Department of Botany, Thiagarajar College, Madurai 625009, India
| | - Vijaya Anand Arumugam
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641046, India
| | - Kannan R. R. Rengasamy
- Laboratory of Natural Products and Medicinal Chemistry (LNPMC), Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 600077, India
| | | | - Wen-Chao Liu
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | | |
Collapse
|
34
|
Ali N, Naz I, Ahmed S, Mohsin SA, Kanwal N, Fatima H, Hussain S. Polarity-guided phytochemical extraction, polyphenolic characterization, and multimode biological evaluation of Seriphidium kurramense (Qazilb.) Y. R. Ling. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
35
|
de Padua RM, Kratz JM, Munkert J, Bertol JW, Rigotto C, Schuster D, Maltarollo VG, Kreis W, Simões CMO, Braga F. Effects of Lipophilicity and Structural Features on the Antiherpes Activity of Digitalis Cardenolides and Derivatives. Chem Biodivers 2022; 19:e202200411. [DOI: 10.1002/cbdv.202200411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 09/06/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Rodrigo Maia de Padua
- UFMG: Universidade Federal de Minas Gerais Pharmaceutical Products Av. Antônio Carlos 6627 Belo Horizonte BRAZIL
| | - Jadel Müller Kratz
- UFSC: Universidade Federal de Santa Catarina Pharmaceutical Sciences R. Delfino Conti, S/N Florianópolis BRAZIL
| | - Jennifer Munkert
- University of Erlangen-Nuernberg: Friedrich-Alexander-Universitat Erlangen-Nurnberg Division of Pharmaceutical Biology Staudtstraße 5 Erlangen GERMANY
| | - Jéssica Wildgrube Bertol
- UFSC: Universidade Federal de Santa Catarina Pharmaceutical Sciences R. Delfino Conti, S/N Florianópolis BRAZIL
| | - Caroline Rigotto
- UFSC: Universidade Federal de Santa Catarina Pharmaceutical Sciences R. Delfino Conti, S/N Florianópolis BRAZIL
| | - Daniela Schuster
- Paracelsus Medical University Salzburg: Paracelsus Medizinische Privatuniversitat Department of Pharmaceutical and Medicinal Chemistry Strubergasse 21 Salzburg AUSTRIA
| | | | - Wolfgang Kreis
- University of Erlangen-Nuernberg: Friedrich-Alexander-Universitat Erlangen-Nurnberg Division of Pharmaceutical Biology Staudtstraße 5 Erlangen GERMANY
| | | | - Fernão Braga
- Universidade Federal de Minas Gerais Pharmaceutical Sciences Av. Antônio Carlos 6627 31270901 Belo Horizonte BRAZIL
| |
Collapse
|
36
|
Rahman MM, Islam MR, Akash S, Mim SA, Rahaman MS, Emran TB, Akkol EK, Sharma R, Alhumaydhi FA, Sweilam SH, Hossain ME, Ray TK, Sultana S, Ahmed M, Sobarzo-Sánchez E, Wilairatana P. In silico investigation and potential therapeutic approaches of natural products for COVID-19: Computer-aided drug design perspective. Front Cell Infect Microbiol 2022; 12:929430. [PMID: 36072227 PMCID: PMC9441699 DOI: 10.3389/fcimb.2022.929430] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/03/2022] [Indexed: 12/07/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a substantial number of deaths around the world, making it a serious and pressing public health hazard. Phytochemicals could thus provide a rich source of potent and safer anti-SARS-CoV-2 drugs. The absence of approved treatments or vaccinations continues to be an issue, forcing the creation of new medicines. Computer-aided drug design has helped to speed up the drug research and development process by decreasing costs and time. Natural compounds like terpenoids, alkaloids, polyphenols, and flavonoid derivatives have a perfect impact against viral replication and facilitate future studies in novel drug discovery. This would be more effective if collaboration took place between governments, researchers, clinicians, and traditional medicine practitioners' safe and effective therapeutic research. Through a computational approach, this study aims to contribute to the development of effective treatment methods by examining the mechanisms relating to the binding and subsequent inhibition of SARS-CoV-2 ribonucleic acid (RNA)-dependent RNA polymerase (RdRp). The in silico method has also been employed to determine the most effective drug among the mentioned compound and their aquatic, nonaquatic, and pharmacokinetics' data have been analyzed. The highest binding energy has been reported -11.4 kcal/mol against SARS-CoV-2 main protease (7MBG) in L05. Besides, all the ligands are non-carcinogenic, excluding L04, and have good water solubility and no AMES toxicity. The discovery of preclinical drug candidate molecules and the structural elucidation of pharmacological therapeutic targets have expedited both structure-based and ligand-based drug design. This review article will assist physicians and researchers in realizing the enormous potential of computer-aided drug design in the design and discovery of therapeutic molecules, and hence in the treatment of deadly diseases.
Collapse
Affiliation(s)
- Md. Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Md. Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Shopnil Akash
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Sadia Afsana Mim
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Md. Saidur Rahaman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
| | - Esra Küpeli Akkol
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Rohit Sharma
- Department of Rasashastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Badr City, Egypt
| | - Md. Emon Hossain
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Tanmay Kumar Ray
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Sharifa Sultana
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Muniruddin Ahmed
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Eduardo Sobarzo-Sánchez
- Instituto de Investigación y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago, Chile
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
37
|
The anti-HIV activity of biogenic silver nanoparticles synthesized from Centella asiatica extracts. J Herb Med 2022. [DOI: 10.1016/j.hermed.2022.100592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
38
|
Halophytes as Medicinal Plants against Human Infectious Diseases. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12157493] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Halophytes have long been used for medicinal purposes. However, for many decades, their use was entirely empirical, with virtually no knowledge of the bioactive compounds underlying the different applications. In recent decades, the growing problem of antibiotic resistance triggered the research on alternative antimicrobial approaches, and halophytes, along with other medicinal plants, regained attention as an underexplored pharmacological vein. Furthermore, the high nutritional/nutraceutical/pharmacological value of some halophytic species may represent added value to the emerging activity of saline agriculture and targeted modification of the rhizosphere, with plant-growth-promoting bacteria being attempted to be used as a tool to modulate the plant metabolome and enhance the expression of interesting metabolites. The objective of this review is to highlight the potential of halophytes as a valuable, and still unexplored, source of antimicrobial compounds for clinical applications. For that, we provide a critical perspective on the empirical use of halophytes in traditional medicine and a state-or-the-art overview of the most relevant plant species and metabolites related with antiviral, antifungal and antibacterial activities.
Collapse
|
39
|
Bio-Guided Isolation of SARS-CoV-2 Main Protease Inhibitors from Medicinal Plants: In Vitro Assay and Molecular Dynamics. PLANTS 2022; 11:plants11151914. [PMID: 35893619 PMCID: PMC9332707 DOI: 10.3390/plants11151914] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 12/24/2022]
Abstract
Since the emergence of the pandemic of the coronavirus disease (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the discovery of antiviral phytoconstituents from medicinal plants against SARS-CoV-2 has been comprehensively researched. In this study, thirty-three plants belonging to seventeen different families used traditionally in Saudi Arabia were tested in vitro for their ability to inhibit the SARS-CoV-2 main protease (MPRO). Major constituents of the bio-active extracts were isolated and tested for their inhibition potential against this enzyme; in addition, their antiviral activity against the SARS-CoV-2 Egyptian strain was assessed. Further, the thermodynamic stability of the best active compounds was studied through focused comparative insights for the active metabolites regarding ligand–target binding characteristics at the molecular level. Additionally, the obtained computational findings provided useful directions for future drug optimization and development. The results revealed that Psiadia punctulata, Aframomum melegueta, and Nigella sativa extracts showed a high percentage of inhibition of 66.4, 58.7, and 31.5%, against SARS-CoV-2 MPRO, respectively. The major isolated constituents of these plants were identified as gardenins A and B (from P. punctulata), 6-gingerol and 6-paradol (from A. melegueta), and thymoquinone (from N. sativa). These compounds are the first to be tested invitro against SARS-CoV-2 MPRO. Among the isolated compounds, only thymoquinone (THY), gardenin A (GDA), 6-gingerol (GNG), and 6-paradol (PAD) inhibited the SARS-CoV-2 MPRO enzyme with inhibition percentages of 63.21, 73.80, 65.2, and 71.8%, respectively. In vitro assessment of SARS-CoV-2 (hCoV-19/Egypt/NRC-03/2020 (accession number on GSAID: EPI_ISL_430820) revealed a strong-to-low antiviral activity of the isolated compounds. THY showed relatively high cytotoxicity and was anti-SARS-CoV-2, while PAD demonstrated a cytotoxic effect on the tested VERO cells with a selectivity index of CC50/IC50 = 1.33 and CC50/IC50 = 0.6, respectively. Moreover, GNG had moderate activity at non-cytotoxic concentrations in vitro with a selectivity index of CC50/IC50 = 101.3/43.45 = 2.3. Meanwhile, GDA showed weak activity with a selectivity index of CC50/IC50 = 246.5/83.77 = 2.9. The thermodynamic stability of top-active compounds revealed preferential stability and SARS-CoV-2 MPRO binding affinity for PAD through molecular-docking-coupled molecular dynamics simulation. The obtained results suggest the treating potential of these plants and/or their active metabolites for COVID-19. However, further in-vivo and clinical investigations are required to establish the potential preventive and treatment effectiveness of these plants and/or their bio-active compounds in COVID-19.
Collapse
|
40
|
The Main Protease of SARS-CoV-2 as a Target for Phytochemicals against Coronavirus. PLANTS 2022; 11:plants11141862. [PMID: 35890496 PMCID: PMC9319234 DOI: 10.3390/plants11141862] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/12/2022] [Accepted: 07/15/2022] [Indexed: 11/23/2022]
Abstract
In late December 2019, the first cases of COVID-19 emerged as an outbreak in Wuhan, China that later spread vastly around the world, evolving into a pandemic and one of the worst global health crises in modern history. The causative agent was identified as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Although several vaccines were authorized for emergency use, constantly emerging new viral mutants and limited treatment options for COVID-19 drastically highlighted the need for developing an efficient treatment for this disease. One of the most important viral components to target for this purpose is the main protease of the coronavirus (Mpro). This enzyme is an excellent target for a potential drug, as it is essential for viral replication and has no closely related homologues in humans, making its inhibitors unlikely to be toxic. Our review describes a variety of approaches that could be applied in search of potential inhibitors among plant-derived compounds, including virtual in silico screening (a data-driven approach), which could be structure-based or fragment-guided, the classical approach of high-throughput screening, and antiviral activity cell-based assays. We will focus on several classes of compounds reported to be potential inhibitors of Mpro, including phenols and polyphenols, alkaloids, and terpenoids.
Collapse
|
41
|
Nath M, Debnath P. Therapeutic role of traditionally used Indian medicinal plants and spices in combating COVID-19 pandemic situation. J Biomol Struct Dyn 2022:1-20. [PMID: 35773779 DOI: 10.1080/07391102.2022.2093793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The coronavirus disease (COVID-19) caused by SARS-CoV-2 is a big challenge and burning issue to the scientific community and doctors worldwide. Globally, COVID-19 has created a health disaster and adversely affects the economic growth. Although some vaccines have already emerged, no therapeutic medication has yet been approved by FDA for the treatment of COVID-19 patients. Traditionally, we have been using different medicinal plants like neem, tulsi, tea, and many spices like garlic, ginger, turmeric, black seed, onion, etc. for the treatment of flu-like diseases. In this paper, we are highlighting the recent research progress in the identification of natural products from the Indian medicinal plants and spices that have potential inhibition properties against SARS-CoV-2. This study will provide an initiative to stimulate further research by providing useful guidance to the medicinal chemists for designing new protease inhibitors effective against SARS-CoV-2 in future.
Collapse
Affiliation(s)
- Moumita Nath
- Department of Botany, Tripura University, Suryamaninagar, Tripura, India
| | - Pradip Debnath
- Department of Chemistry, Maharaja Bir Bikram College, Agartala, Tripura, India
| |
Collapse
|
42
|
Mollel JT, Said JS, Masalu RJ, Hannoun C, Mbunde MVN, Nondo RSO, Bergström T, Trybala E. Anti-respiratory syncytial virus and anti-herpes simplex virus activity of six Tanzanian medicinal plants with extended studies of Erythrina abyssinica stem bark. JOURNAL OF ETHNOPHARMACOLOGY 2022; 292:115204. [PMID: 35304278 DOI: 10.1016/j.jep.2022.115204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/26/2022] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Except for few highly pathogenic viruses, no antiviral drug has been approved for treatment of viral infections in humans. Plant extracts, selected based on their ethno-medical use, represent an important source of compounds for the development of novel candidate antiviral drugs. This especially concerns plants with ethnomedical records on their use in treatment of viral infections. AIM OF THE STUDY To identify and document medicinal plants used by traditional health practitioners (THPs) for treatment of respiratory infections and muco-cutaneous lesions in order to study their antiviral activity including identification of active components and elucidation of mode of antiviral activity. MATERIALS AND METHODS The ethno-medical survey was performed in the Kagera region of Tanzania. The THPs were asked for plants used for treatment of signs and symptoms of respiratory infections and watery muco-cutaneous blisters in oral and genital regions. The plants identified were successively extracted with n-hexane, ethyl acetate and water, and the extracts assayed for anti-respiratory syncytial virus (RSV), anti-herpes simplex virus 2 (HSV-2), and anti-human parainfluenza virus 2 (HPIV-2) activity in cultured cells. Antiviral components were separated by ethanol precipitation and CL-6B chromatography, and the mode of antiviral activity elucidated by the time-of-addition assay and selection for the virus variants resistant to antiviral plant extract. RESULTS THPs identified fifteen plants used for treatment of respiratory infections and muco-cutaneous blisters. The water extract, but not n-hexane or ethyl acetate extracts, of six of these plants including Erythrina abyssinica stem bark, inhibited infectivity of two glycosaminoglycan-binding viruses i.e., RSV and HSV-2 but not the sialic acid binding HPIV-2. An activity-guided separation revealed that antiviral component(s) of water extract of E. abyssinica could be precipitated with ethanol. This sample potently and selectively inhibited RSV and HSV-2 infectivity in cultured cells with IC50 values of 2.1 μg/ml (selectivity index >476) and 0.14 μg/ml (selectivity index >7143) respectively. The sample exhibited inhibitory effect on the virus attachment to and entry into the cells by directly targeting the viral particles. Indeed, 10 consecutive virus passages in HEp-2 cells in the presence of this extract selected for a resistant RSV variant lacking the attachment, viral membrane-associated, G protein due to a stop codon at amino acid residue 33 (Leu33stop). Fractionation of the E. abyssinica extract on a CL-6B column revealed that anti-RSV and HSV-2 activity correlated with carbohydrate content. The most pronounced antiviral activity was associated with a carbohydrate containing ingredient of molecular mass of <5 kDa, which may polymerize to antiviral composites of up to 410 kDa. CONCLUSIONS Altogether, the water extract of six medicinal plants showed anti-RSV and anti-HSV-2 activities. Extended studies of the stem bark of E. abyssinica identified antiviral components that potently and selectively inhibited infectivity of free RSV and HSV-2 particles, a feature of importance in topical treatment of these infections. This observation confirms ethno-medical information concerning the use of E. abyssinica extract for treatment of respiratory infections and herpetic lesions.
Collapse
Affiliation(s)
- Jackson T Mollel
- Department of Infectious Diseases, Section for Clinical Virology, Institute of Biomedicine, University of Gothenburg, Guldhedsgatan 10 B, SE-413 46, Göteborg, Sweden; Department of Molecular Biology and Biotechnology, University of Dar es Salaam, P. O. Box 35179, Dar es Salaam, Tanzania; Institute of Traditional Medicine, Muhimbili University of Health and Allied Sciences, P.O. Box 65001, Dar es Salaam, Tanzania.
| | - Joanna S Said
- Department of Infectious Diseases, Section for Clinical Virology, Institute of Biomedicine, University of Gothenburg, Guldhedsgatan 10 B, SE-413 46, Göteborg, Sweden.
| | - Rose J Masalu
- Department of Molecular Biology and Biotechnology, University of Dar es Salaam, P. O. Box 35179, Dar es Salaam, Tanzania.
| | - Charles Hannoun
- Department of Infectious Diseases, Section for Clinical Virology, Institute of Biomedicine, University of Gothenburg, Guldhedsgatan 10 B, SE-413 46, Göteborg, Sweden.
| | - Mourice V N Mbunde
- Institute of Traditional Medicine, Muhimbili University of Health and Allied Sciences, P.O. Box 65001, Dar es Salaam, Tanzania.
| | - Ramadhani S O Nondo
- Institute of Traditional Medicine, Muhimbili University of Health and Allied Sciences, P.O. Box 65001, Dar es Salaam, Tanzania.
| | - Tomas Bergström
- Department of Infectious Diseases, Section for Clinical Virology, Institute of Biomedicine, University of Gothenburg, Guldhedsgatan 10 B, SE-413 46, Göteborg, Sweden.
| | - Edward Trybala
- Department of Infectious Diseases, Section for Clinical Virology, Institute of Biomedicine, University of Gothenburg, Guldhedsgatan 10 B, SE-413 46, Göteborg, Sweden.
| |
Collapse
|
43
|
Ahmad Bhat S, Islam Siddiqui Z, Ahmad Parray Z, Sultan A, Afroz M, Ali Azam S, Rahman Farooqui S, Naqui Kazim S. Naturally occurring HMGB1 inhibitor delineating the anti-hepatitis B virus mechanism of glycyrrhizin via in vitro and in silico studies. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
44
|
Tingirikari JMR, Musini A. Bioactive Compounds from Plants and their Immune Potential against
Corona Virus. CURRENT NUTRITION & FOOD SCIENCE 2022. [DOI: 10.2174/1573401318666220308155721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Corona virus is a contagious single-strand RNA virus affecting majorly
the lungs causing severe acute respiratory disease. The viral pandemic has affected the world
economy and posed new challenges to the scientific community. Due to high mutation rate, a lot of
variants are occurring and persons who are vaccinated are also getting affected. In addition, vaccination
trials for children aged below 18 are still going on. Moreover, the cost, shelf-life, success
rate, no booster dose required, and the long-term complications associated with the vaccine are yet
to be studied. Preservation and transportation of vaccines are another big challenge.
Objective:
Despite vaccination, the best alternative is to boost our immune system by administration
of bioactive compounds which are safe and effective. Bioactive compounds have been found
to be effective against several viral infections.
Methods:
Literature review has been performed using recently published research and review articles
pertaining to the role of plant-derived bioactive compounds in regulating COVID-19 infection.
Result:
The current review will describe the role and mechanism of bioactive compounds derived
from natural sources in disease management and boosting the immune system against COVID-19.
Conclusion:
In addition to vaccination, the administration of plant-derived bioactive compounds
will help in regulating viral infection and boosting the immune response during COVID-19 infection.
Collapse
Affiliation(s)
| | - Anjaneyulu Musini
- Centre for Biotechnology, Institute of Science and Technology, Jawaharlal Nehru Technological University,
Hyderabad, Telanagana-500085, India
| |
Collapse
|
45
|
Ochnik M, Franz D, Sobczyński M, Naporowski P, Banach M, Orzechowska B, Sochocka M. Inhibition of Human Respiratory Influenza A Virus and Human Betacoronavirus-1 by the Blend of Double-Standardized Extracts of Aronia melanocarpa (Michx.) Elliot and Sambucus nigra L. Pharmaceuticals (Basel) 2022; 15:ph15050619. [PMID: 35631445 PMCID: PMC9143272 DOI: 10.3390/ph15050619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/11/2022] [Accepted: 05/14/2022] [Indexed: 02/05/2023] Open
Abstract
Viral and bacterial diseases are among the greatest concerns of humankind since ancient times. Despite tremendous pharmacological progress, there is still a need to search for new drugs that could treat or support the healing processes. A rich source of bioactive compounds with antiviral potency include plants such as black chokeberry and elderberry. The aim of this study was to assess the in vitro antiviral ability of an originally designed double-standardized blend of extracts from Aronia melanocarpa (Michx.) Elliot and Sambucus nigra L. (EAM-ESN) or separated extracts of A. melanocarpa (EAM) or S. nigra (ESN) against four human respiratory tract viruses: influenza A virus (A/H1N1), betacoronavirus-1 (HCoV-OC43) belonging to the same β-coronaviruses as the current pandemic SARS-CoV-2, human herpesvirus type 1 (HHV-1), and human adenovirus type 5 (HAdV-5). Antiviral assays (AVAs) were used to evaluate the antiviral activity of the plant extracts in a cell-present environment with extracts tested before, simultaneously, or after viral infection. The virus replication was assessed using the CPE scale or luminescent assay. The EAM-ESN blend strongly inhibited A/H1N1 replication as well as HCoV-OC43, while having a limited effect against HHV-1 and HAdV-5. This activity likely depends mostly on the presence of the extract of S. nigra. However, the EAM-ESN blend possesses more effective inhibitory activity toward virus replication than its constituent extracts. A post-infection mechanism of action of the EAM-ESN make this blend the most relevant for potential drugs and supportive treatments; thus, the EAM-ESN blend might be considered as a natural remedy in mild, seasonal respiratory viral infections.
Collapse
Affiliation(s)
- Michał Ochnik
- Laboratory of Virology, Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (M.O.); (D.F.); (B.O.)
| | - Dominika Franz
- Laboratory of Virology, Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (M.O.); (D.F.); (B.O.)
| | - Maciej Sobczyński
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, 02-093 Warsaw, Poland;
| | - Piotr Naporowski
- Laboratory of Medical Microbiology, Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland;
| | - Mariusz Banach
- Department of Physical Chemistry and Polymer Physical Chemistry, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland;
| | - Beata Orzechowska
- Laboratory of Virology, Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (M.O.); (D.F.); (B.O.)
| | - Marta Sochocka
- Laboratory of Virology, Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (M.O.); (D.F.); (B.O.)
- Correspondence: ; Tel.: +48-713-709-924
| |
Collapse
|
46
|
Dagur P, Rakshit G, Sheikh M, Biswas A, Jha P, Al-Khafaji K, Ghosh M. Target prediction, computational identification, and network-based pharmacology of most potential phytoconstituent in medicinal leaves of Justicia adhatoda against SARS-CoV-2. J Biomol Struct Dyn 2022; 41:3926-3942. [PMID: 35412437 DOI: 10.1080/07391102.2022.2059010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The current global epidemic of the novel coronavirus (SARS-CoV-2) has been labeled a global public health emergency since it is causing substantial morbidity and mortality on daily basis. We need to identify an effective medication against SARS-CoV-2 because of its fast dissemination and re-emergence. This research is being carried out as part of a larger strategy to identify the most promising therapeutic targets using protein-protein interactions analysis. Mpro has been identified as one of the most important therapeutic targets. In this study, we did in-silico investigations to identify the target and further molecular docking, ADME, and toxicity prediction were done to assess the potential phyto-active antiviral compounds from Justicia adhatoda as powerful inhibitors of the Mpro of SARS-COV-2. We also investigated the capacity of these molecules to create stable interactions with the Mpro using 100 ns molecular dynamics simulation. The highest scoring compounds (taraxerol, friedelanol, anisotine, and adhatodine) were also found to exhibit excellent solubility and pharmacodynamic characteristics. We employed MMPBSA simulations to assess the stability of docked molecules in the Mpro binding site, revealing that the above compounds form the most stable complex with the Mpro. Network-based Pharmacology suggested that the selected compounds have various modes of action against SARS-CoV-2 that include immunoreaction enrichment, inflammatory reaction suppression, and more. These findings point to a promising class of drugs that should be investigated further in biochemical and cell-based studies to see their effectiveness against nCOVID-19.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Pankaj Dagur
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Ranchi, Ranchi, India
| | - Gourav Rakshit
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Ranchi, Ranchi, India
| | - Murtuja Sheikh
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Ranchi, Ranchi, India
| | - Abanish Biswas
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Ranchi, Ranchi, India
| | - Parineeta Jha
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Ranchi, Ranchi, India
| | - Khattab Al-Khafaji
- Department of Medical Laboratory Technology, Al-Nisour University College, Baghdad, Iraq
| | - Manik Ghosh
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Ranchi, Ranchi, India
| |
Collapse
|
47
|
Mocanu ML, Amariei S. Elderberries—A Source of Bioactive Compounds with Antiviral Action. PLANTS 2022; 11:plants11060740. [PMID: 35336621 PMCID: PMC8948669 DOI: 10.3390/plants11060740] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/07/2022] [Accepted: 03/07/2022] [Indexed: 11/25/2022]
Abstract
In the current context, when more and more unknown pathogens appear, healthy eating and supplementing it with natural products play an increasingly important role in maintaining the health of the body. The European black elder (Sambucus nigra), found in abundance in the spontaneous flora, can provide us, as a raw material, elderberries, which have been known for thousands of years as having nutritional and healing properties. The phytotherapeutic principles found in elderberry fruits give them antiviral, antibacterial and antidiabetic properties, antitumor potential, antioxidant, antidepressant and immune boosting properties, as well as a certain impacts on obesity and metabolic dysfunctions. Polyphenols and lectins give elderberry fruits the ability to inhibit coronaviruses, which is a topic of great interest in our times. This article summarizes the existing data regarding the chemical composition, active principles and biopharmaceutical properties of elderberries, as well as their use.
Collapse
|
48
|
Todorova N, Rangelov M, Dincheva I, Badjakov I, Enchev V, Markova N. Potential of hydroxybenzoic acids from Graptopetalum paraguayense for inhibiting of herpes simplex virus DNA polymerase – metabolome profiling, molecular docking and quantum-chemical analysis. PHARMACIA 2022. [DOI: 10.3897/pharmacia.69.e79467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
According to our previous investigation the total methanol extract from Graptopetalum paraguayense E. Walther demonstrates a significant inhibitory effect on herpes simplex virus type 1 (HSV-1). To clarify what causes this inhibitory activity on HSV-1, a metabolic profile of the plant was performed. Three main fractions: non-polar substances, polar metabolites and phenolic compounds were obtained and gas chromatography–mass spectrometry (GC-MS) analysis was carried out. Since it is well known that phenolic compounds show a significant anti-herpes effect and that viral DNA polymerase (DNApol) appears to play a key role in HSV virus replication, we present a docking and quantum-chemical analysis of the binding of these compounds to viral DNApol amino acids. Fourteen different phenolic acids found by GC-MS analyses, were used in molecular docking simulations. According to the interaction energies of all fourteen ligands in the DNApol pockets based on docking results, density functional theory (DFT) calculations were performed on the five optimally interacting with the receptor acids. It was found that hydroxybenzoic acids from phenolic fraction of Graptopetalum paraguayense E. Walther show a good binding affinity to the amino acids from the active site of the HSV DNApol, but significantly lower than that of acyclovir. The mode of action on virus replication of acyclovir (by DNApol) is different from that of the plant phenolic acids one, probably.
Collapse
|
49
|
Aloke C, Uche Emelike C, Ajuka Obasi N, Nkemjika Ogbu P, Oswald Edeogu C, Godwin Uzomba C, Ekakitie O, Adewale Iyaniwura A, Okoro CC, Peter Okey B, Ginikachukwu Aninjoku G, Charles Ushahemba B. HPLC profiling and studies on Copaifera salikounda methanol leaf extract on phenylhydrazine-induced hematotoxicity and oxidative stress in rats. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
50
|
Islam F, Bibi S, Meem AFK, Islam MM, Rahaman MS, Bepary S, Rahman MM, Rahman MM, Elzaki A, Kajoak S, Osman H, ElSamani M, Khandaker MU, Idris AM, Emran TB. Natural Bioactive Molecules: An Alternative Approach to the Treatment and Control of COVID-19. Int J Mol Sci 2021; 22:12638. [PMID: 34884440 PMCID: PMC8658031 DOI: 10.3390/ijms222312638] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/11/2021] [Accepted: 11/19/2021] [Indexed: 02/07/2023] Open
Abstract
Several coronaviruses (CoVs) have been associated with serious health hazards in recent decades, resulting in the deaths of thousands around the globe. The recent coronavirus pandemic has emphasized the importance of discovering novel and effective antiviral medicines as quickly as possible to prevent more loss of human lives. Positive-sense RNA viruses with group spikes protruding from their surfaces and an abnormally large RNA genome enclose CoVs. CoVs have already been related to a range of respiratory infectious diseases possibly fatal to humans, such as MERS, SARS, and the current COVID-19 outbreak. As a result, effective prevention, treatment, and medications against human coronavirus (HCoV) is urgently needed. In recent years, many natural substances have been discovered with a variety of biological significance, including antiviral properties. Throughout this work, we reviewed a wide range of natural substances that interrupt the life cycles for MERS and SARS, as well as their potential application in the treatment of COVID-19.
Collapse
Affiliation(s)
- Fahadul Islam
- Department of Pharmacy, Daffodil International University, Dhaka 1207, Bangladesh; (F.I.); (A.F.K.M.); (M.M.I.); (M.S.R.); (S.B.); (M.M.R.); (M.M.R.)
| | - Shabana Bibi
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, China;
- International Joint Research Center for Sustainable Utilization of Cordyceps Bioresources in China and Southeast Asia, Yunnan University, Kunming 650091, China
| | - Atkia Farzana Khan Meem
- Department of Pharmacy, Daffodil International University, Dhaka 1207, Bangladesh; (F.I.); (A.F.K.M.); (M.M.I.); (M.S.R.); (S.B.); (M.M.R.); (M.M.R.)
| | - Md. Mohaimenul Islam
- Department of Pharmacy, Daffodil International University, Dhaka 1207, Bangladesh; (F.I.); (A.F.K.M.); (M.M.I.); (M.S.R.); (S.B.); (M.M.R.); (M.M.R.)
| | - Md. Saidur Rahaman
- Department of Pharmacy, Daffodil International University, Dhaka 1207, Bangladesh; (F.I.); (A.F.K.M.); (M.M.I.); (M.S.R.); (S.B.); (M.M.R.); (M.M.R.)
| | - Sristy Bepary
- Department of Pharmacy, Daffodil International University, Dhaka 1207, Bangladesh; (F.I.); (A.F.K.M.); (M.M.I.); (M.S.R.); (S.B.); (M.M.R.); (M.M.R.)
| | - Md. Mizanur Rahman
- Department of Pharmacy, Daffodil International University, Dhaka 1207, Bangladesh; (F.I.); (A.F.K.M.); (M.M.I.); (M.S.R.); (S.B.); (M.M.R.); (M.M.R.)
| | - Md. Mominur Rahman
- Department of Pharmacy, Daffodil International University, Dhaka 1207, Bangladesh; (F.I.); (A.F.K.M.); (M.M.I.); (M.S.R.); (S.B.); (M.M.R.); (M.M.R.)
| | - Amin Elzaki
- Department of Radiological Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia; (A.E.); (S.K.); (H.O.); (M.E.)
| | - Samih Kajoak
- Department of Radiological Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia; (A.E.); (S.K.); (H.O.); (M.E.)
| | - Hamid Osman
- Department of Radiological Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia; (A.E.); (S.K.); (H.O.); (M.E.)
| | - Mohamed ElSamani
- Department of Radiological Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia; (A.E.); (S.K.); (H.O.); (M.E.)
| | - Mayeen Uddin Khandaker
- Centre for Applied Physics and Radiation Technologies, School of Engineering and Technology, Sunway University, Bandar Sunway 47500, Selangor, Malaysia;
| | - Abubakr M. Idris
- Department of Chemistry, College of Science, King Khalid University, Abha 62529, Saudi Arabia;
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 62529, Saudi Arabia
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| |
Collapse
|