1
|
Affiliation(s)
- Hinh Ly
- Department of Veterinary & Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Twin, MN, USA
| |
Collapse
|
2
|
Freppel W, Silva LA, Stapleford KA, Herrero LJ. Pathogenicity and virulence of chikungunya virus. Virulence 2024; 15:2396484. [PMID: 39193780 PMCID: PMC11370967 DOI: 10.1080/21505594.2024.2396484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024] Open
Abstract
Chikungunya virus (CHIKV) is a mosquito-transmitted, RNA virus that causes an often-severe musculoskeletal illness characterized by fever, joint pain, and a range of debilitating symptoms. The virus has re-emerged as a global health threat in recent decades, spreading from its origin in Africa across Asia and the Americas, leading to widespread outbreaks impacting millions of people. Despite more than 50 years of research into the pathogenesis of CHIKV, there is still no curative treatment available. Current management of CHIKV infections primarily involves providing supportive care to alleviate symptoms and improve the patient's quality of life. Given the ongoing threat of CHIKV, there is an urgent need to better understand its pathogenesis. This understanding is crucial for deciphering the mechanisms underlying the disease and for developing effective strategies for both prevention and management. This review aims to provide a comprehensive overview of CHIKV and its pathogenesis, shedding light on the complex interactions of viral genetics, host factors, immune responses, and vector-related factors. By exploring these intricate connections, the review seeks to contribute to the knowledge base surrounding CHIKV, offering insights that may ultimately lead to more effective prevention and management strategies for this re-emerging global health threat.
Collapse
Affiliation(s)
- Wesley Freppel
- Institute for Biomedicine and Glycomics, Gold Coast Campus, Griffith University, Southport, Australia
| | - Laurie A. Silva
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kenneth A. Stapleford
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Lara J. Herrero
- Institute for Biomedicine and Glycomics, Gold Coast Campus, Griffith University, Southport, Australia
| |
Collapse
|
3
|
Mahin A, Chikmagalur Ravindra S, Ramesh P, Naik P, Raju R, Keshava Prasad TS, Abhinand CS. Unveiling Actin Cytoskeleton Role in Mediating Chikungunya-Associated Arthritis: An Integrative Proteome-Metabolome Study. Vector Borne Zoonotic Dis 2024; 24:753-762. [PMID: 38717066 DOI: 10.1089/vbz.2024.0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024] Open
Abstract
Background: Chikungunya is a zoonotic disease caused by the Chikungunya virus (CHIKV), primarily transmitted to humans through infected Aedes mosquitoes. The infection is characterized by symptoms such as high fever, musculoskeletal pain, polyarthritis, and a rash, which can lead to severe complications such as encephalitis, meningitis, and even fatalities. While many disease manifestations resemble those of other viral infections, chronic arthritis caused by CHIKV is unique, and its molecular mechanisms remain ill-defined. Materials and Methods: Proteomics data from both cellular and patient levels of CHIKV infection were curated from PubMed and screened using inclusion and exclusion criteria. Patient serum proteomics data obtained from PRIDE underwent reanalysis using Proteome Discoverer 2.2. Enrichment and protein-protein interaction network analysis were conducted on differentially expressed proteins from both serum and cellular datasets. Metabolite data from CHIKV-infected patients were further retrieved, and their protein binding partners were identified using BindingDB. The protein-metabolite interaction pathway was further developed using MetaboAnalyst. Results: The proteomics data analysis revealed differential expression of proteins involved in critical host mechanisms, such as cholesterol metabolism and mRNA splicing, during CHIKV infection. Consistent upregulation of two actin cytoskeleton proteins, TAGLN2 and PFN1, was noted in both serum and cellular datasets, and their upregulations are associated with arthritis. Furthermore, alterations in purine metabolism were observed in the integrative proteome-metabolome analysis, correlating with cytoskeletal remodelling. Conclusion: Collectively, this integrative view sheds light on the involvement of actin cytoskeleton remodeling proteins and purine metabolic pathways in the development of arthritis during CHIKV infection.
Collapse
Affiliation(s)
- Althaf Mahin
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Center, Yenepoya (Deemed to Be University), Mangalore, India
| | - Sourav Chikmagalur Ravindra
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Center, Yenepoya (Deemed to Be University), Mangalore, India
- Department of Biosciences, Mangalore University, Mangalore, India
| | - Poornima Ramesh
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Center, Yenepoya (Deemed to Be University), Mangalore, India
| | - Prashantha Naik
- Department of Biosciences, Mangalore University, Mangalore, India
| | - Rajesh Raju
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to Be University), Mangalore, India
| | | | - Chandran S Abhinand
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Center, Yenepoya (Deemed to Be University), Mangalore, India
| |
Collapse
|
4
|
Irfan H, Ahmed A. Advancements in chikungunya virus management: FDA approval of ixchiq vaccine and global perspectives. Health Sci Rep 2024; 7:e2183. [PMID: 38912367 PMCID: PMC11192840 DOI: 10.1002/hsr2.2183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/03/2024] [Accepted: 05/17/2024] [Indexed: 06/25/2024] Open
Affiliation(s)
- Hamza Irfan
- Department of MedicineShaikh Khalifa Bin Zayed Al Nahyan Medical and Dental CollegeLahorePakistan
| | - Aliza Ahmed
- Department of MedicineJinnah Sindh Medical UniversityKarachiPakistan
| |
Collapse
|
5
|
Muslihati A, Septiani NLW, Gumilar G, Nugraha N, Wasisto HS, Yuliarto B. Peptide-Based Flavivirus Biosensors: From Cell Structure to Virological and Serological Detection Methods. ACS Biomater Sci Eng 2024; 10:2041-2061. [PMID: 38526408 DOI: 10.1021/acsbiomaterials.3c01965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
In tropical and developing countries, mosquito-borne diseases by flaviviruses pose a serious threat to public health. Early detection is critical for preventing their spread, but conventional methods are time-consuming and require skilled technicians. Biosensors have been developed to address this issue, but cross-reactivity with other flaviviruses remains a challenge. Peptides are essentially biomaterials used in diagnostics that allow virological and serological techniques to identify flavivirus selectively. This biomaterial originated as a small protein consisting of two to 50 amino acid chains. They offer flexibility in chemical modification and can be easily synthesized and applied to living cells in the engineering process. Peptides could potentially be developed as robust, low-cost, sensitive, and selective receptors for detecting flaviviruses. However, modification and selection of the receptor agents are crucial to determine the effectiveness of binding between the targets and the receptors. This paper addresses two potential peptide nucleic acids (PNAs) and affinity peptides that can detect flavivirus from another target-based biosensor as well as the potential peptide behaviors of flaviviruses. The PNAs detect flaviviruses based on the nucleotide base sequence of the target's virological profile via Watson-Crick base pairing, while the affinity peptides sense the epitope or immunological profile of the targets. Recent developments in the functionalization of peptides for flavivirus biosensors are explored in this Review by division into electrochemical, optical, and other detection methods.
Collapse
Affiliation(s)
- Atqiya Muslihati
- Doctoral Program of Engineering Physics, Faculty of Industrial Technology, Institut Teknologi Bandung, Ganesha 10, Bandung 40132, Indonesia
- Advanced Functional Material Laboratory, Faculty of Industrial Technology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 41032, Indonesia
- PT Biostark Analitika Inovasi, Bandung 40375, Indonesia
| | - Ni Luh Wulan Septiani
- Advanced Functional Material Laboratory, Faculty of Industrial Technology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 41032, Indonesia
- Research Center for Nanotechnology Systems, National Research and Innovation Agency (BRIN), Kawasan Puspiptek, South Tangerang 15134, Indonesia
| | - Gilang Gumilar
- Research Center for Electronics, National Research and Innovation Agency (BRIN), Bandung 40135, Indonesia
| | - Nugraha Nugraha
- Advanced Functional Material Laboratory, Faculty of Industrial Technology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 41032, Indonesia
- Research Center for Nanosciences and Nanotechnology (RCNN), Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 41032, Indonesia
| | | | - Brian Yuliarto
- Advanced Functional Material Laboratory, Faculty of Industrial Technology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 41032, Indonesia
- Research Center for Nanosciences and Nanotechnology (RCNN), Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 41032, Indonesia
| |
Collapse
|
6
|
Venkatesan A, Chouhan U, Suryawanshi SK, Choudhari JK. An in silico approach for prediction of B cell and T cell epitope candidates against Chikungunya virus. Immunol Med 2023; 46:163-174. [PMID: 37078425 DOI: 10.1080/25785826.2023.2202038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 04/08/2023] [Indexed: 04/21/2023] Open
Abstract
Several outbreaks of Chikungunya virus (CHIKV) had been reported since 1952 when mankind had his first encounter against the virus in Tanzania. Although these reports designate the CHIKV to be rarely fatal, cases of outbreaks in the last decade accompanied by severe complications and death poses a challenge to the development of effective treatment methods. Several attempts to vaccine development against CHIKV still remains unsuccessful. In this study, we aimed at the prediction of B-cell and T cell epitopes against CHIKV by using immunoinformatics. This, in turn, can contribute to development of an epitope based vaccine against CHIKV. Both linear and discontinuous B-cell epitopes, as well as Cytotoxic T-lymphocyte epitopes, were predicted for the CHIKV Envelope (E1 and E2) glycoproteins and (NS2). The antigenic CTL epitopes with highest binding affinities with type-1 MHC were selected and the peptides were docked to them. Docking followed by molecular dynamics simulations were performed to assess the stability of the docked complexes.
Collapse
Affiliation(s)
- Amrit Venkatesan
- Department of Mathematics, Bioinformatics & Computer Applications, Maulana Azad National Institute of Technology, Bhopal, Madhya Pradesh, India
| | - Usha Chouhan
- Department of Mathematics, Bioinformatics & Computer Applications, Maulana Azad National Institute of Technology, Bhopal, Madhya Pradesh, India
| | - Sunil Kumar Suryawanshi
- Department of Mathematics, Bioinformatics & Computer Applications, Maulana Azad National Institute of Technology, Bhopal, Madhya Pradesh, India
| | - Jyoti Kant Choudhari
- Department of Mathematics, Bioinformatics & Computer Applications, Maulana Azad National Institute of Technology, Bhopal, Madhya Pradesh, India
| |
Collapse
|
7
|
Li R, Sun K, Tuplin A, Harris M. A structural and functional analysis of opal stop codon translational readthrough during Chikungunya virus replication. J Gen Virol 2023; 104:10.1099/jgv.0.001909. [PMID: 37862073 PMCID: PMC7615711 DOI: 10.1099/jgv.0.001909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023] Open
Abstract
Chikungunya virus (CHIKV) is an alphavirus, transmitted by Aedes species mosquitoes. The CHIKV single-stranded positive-sense RNA genome contains two open reading frames, coding for the non-structural (nsP) and structural proteins of the virus. The non-structural polyprotein precursor is proteolytically cleaved to generate nsP1-4. Intriguingly, most isolates of CHIKV (and other alphaviruses) possess an opal stop codon close to the 3' end of the nsP3 coding sequence and translational readthrough is necessary to produce full-length nsP3 and the nsP4 RNA polymerase. Here we investigate the role of this stop codon by replacing the arginine codon with each of the three stop codons in the context of both a subgenomic replicon and infectious CHIKV. Both opal and amber stop codons were tolerated in mammalian cells, but the ochre was not. In mosquito cells all three stop codons were tolerated. Using SHAPE analysis we interrogated the structure of a putative stem loop 3' of the stop codon and used mutagenesis to probe the importance of a short base-paired region at the base of this structure. Our data reveal that this stem is not required for stop codon translational readthrough, and we conclude that other factors must facilitate this process to permit productive CHIKV replication.
Collapse
Affiliation(s)
- Raymond Li
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
| | | | - Andrew Tuplin
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
| | - Mark Harris
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
| |
Collapse
|
8
|
Soni S, Gill VJS, Anusheel, Singh J, Chhabra J, Gill GJS, Bakshi R. Dengue, Chikungunya, and Zika: The Causes and Threats of Emerging and Re-emerging Arboviral Diseases. Cureus 2023; 15:e41717. [PMID: 37575782 PMCID: PMC10422058 DOI: 10.7759/cureus.41717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2023] [Indexed: 08/15/2023] Open
Abstract
The recent emergence and re-emergence of viral infections transmitted by vectors, Zika, chikungunya, dengue, and others, is a cause for international concern. Here, we provide a summary of the current understanding of the transmission, clinical features, diagnosis, global burden, and the likelihood of future epidemics by these viruses. Arboviruses transmitted by mosquitoes are challenging to diagnose and can have surprising clinical complications. Dengue, chikungunya, and Zika are the most important diseases caused by arboviruses worldwide, especially in tropical and subtropical regions. These are transmitted to humans by day-biting Aedes aegypti and Aedes albopictus mosquitoes. In India, the increase in the incidence of dengue and chikungunya cases is primarily linked to the dissemination of Aedes aegypti. A rapid and accurate diagnosis is paramount for effectively controlling dengue outbreaks. As there is no vaccination or specific treatment available for these viruses, vector control is the only comprehensive solution available.
Collapse
Affiliation(s)
- Suha Soni
- Department of Public Health Sciences, University of Texas Health Science Center at Houston, Houston, USA
| | | | - Anusheel
- Department of Internal Medicine, Shanti Gopal Hospital, Ghaziabad, IND
| | - Jugraj Singh
- Department of Internal Medicine, Punjab Institute of Medical Sciences, Jalandhar, IND
| | - Jayksh Chhabra
- Department of Internal Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Gurparam Jeet Singh Gill
- Department of Otolaryngology, Head and Neck Surgery, Adesh Medical College and Hospital, Ambala, IND
| | - Rupinder Bakshi
- Department of Microbiology, Government Medical College, Patiala, IND
| |
Collapse
|
9
|
Kawonga F, Misinzo G, Pemba DF. Serological and molecular evidence of chikungunya virus infection among febrile outpatients seeking healthcare in Northern Malawi. Infect Ecol Epidemiol 2023; 13:2229573. [PMID: 37387776 PMCID: PMC10304438 DOI: 10.1080/20008686.2023.2229573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 06/21/2023] [Indexed: 07/01/2023] Open
Abstract
Introduction: Despite global evidence of chikungunya fever (CHIKF) in humans that is caused by chikungunya virus (CHIKV), little is known about the occurrence of CHIKF in Malawi. This study was conducted to determine the seroprevalence of CHIKF and to molecularly confirm the presence of CHIKV ribonucleic acid (RNA) among febrile outpatients seeking health care at Mzuzu Central Hospital in the Northern Region of Malawi. Methods: Enzyme-immunosorbent assay (ELISA) was used to detect the presence or absence of specific antibodies against CHIKV. Reversetranscription polymerase chain reaction (RT-PCR) was conducted on randomly selected anti-CHIKV IgM-positive samples to detect CHIKV RNA. Results: Out of 119 CHIKF suspected samples analyzed, 73 tested positive for anti-CHIKV IgM antibodies, with an overall seroprevalence of 61.3%. Most of the CHIKV infected individuals presented with joint pain, abdominal pain, vomiting and nose bleeding with seroprevalence of 45.2%, 41.1%, 16.4% and 12.3%, respectively. All the randomly selected samples that were positive for CHIKV anti-IgM by ELISAhad detectable CHIKV RNA by RT-PCR. Conclusion: The presence of anti-CHIKV IgM antibodies suggests the presence of recent CHIKV infection. We therefore recommend for the inclusion of CHIKF as the differential diagnosis in febrile ill patients in Mzuzu city, Malawi.
Collapse
Affiliation(s)
- Flywell Kawonga
- Department of Veterinary Microbiology, Parasitology and Biotechnology, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, Morogoro, Tanzania
- SACIDS African Centre of Excellence for Infectious Diseases of Humans and Animals, Sokoine University of Agriculture, Morogoro, Tanzania
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Gerald Misinzo
- Department of Veterinary Microbiology, Parasitology and Biotechnology, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, Morogoro, Tanzania
- SACIDS African Centre of Excellence for Infectious Diseases of Humans and Animals, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Dylo Foster Pemba
- Vector Borne Disease Laboratory, University of Malawi, Zomba, Malawi
| |
Collapse
|
10
|
Li FS, Carpentier KS, Hawman DW, Lucas CJ, Ander SE, Feldmann H, Morrison TE. Species-specific MARCO-alphavirus interactions dictate chikungunya virus viremia. Cell Rep 2023; 42:112418. [PMID: 37083332 DOI: 10.1016/j.celrep.2023.112418] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/23/2023] [Accepted: 04/04/2023] [Indexed: 04/22/2023] Open
Abstract
Arboviruses are public health threats that cause explosive outbreaks. Major determinants of arbovirus transmission, geographic spread, and pathogenesis are the magnitude and duration of viremia in vertebrate hosts. Previously, we determined that multiple alphaviruses are cleared efficiently from murine circulation by the scavenger receptor MARCO (Macrophage receptor with collagenous structure). Here, we define biochemical features on chikungunya (CHIKV), o'nyong 'nyong (ONNV), and Ross River (RRV) viruses required for MARCO-dependent clearance in vivo. In vitro, MARCO expression promotes binding and internalization of CHIKV, ONNV, and RRV via the scavenger receptor cysteine-rich (SRCR) domain. Furthermore, we observe species-specific effects of the MARCO SRCR domain on CHIKV internalization, where those from known amplification hosts fail to promote CHIKV internalization. Consistent with this observation, CHIKV is inefficiently cleared from the circulation of rhesus macaques in contrast with mice. These findings suggest a role for MARCO in determining whether a vertebrate serves as an amplification or dead-end host following CHIKV infection.
Collapse
Affiliation(s)
- Frances S Li
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Kathryn S Carpentier
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - David W Hawman
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT 59840, USA
| | - Cormac J Lucas
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Stephanie E Ander
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT 59840, USA
| | - Thomas E Morrison
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
11
|
Serological Positivity against Selected Flaviviruses and Alphaviruses in Free-Ranging Bats and Birds from Costa Rica Evidence Exposure to Arboviruses Seldom Reported Locally in Humans. Viruses 2022; 14:v14010093. [PMID: 35062297 PMCID: PMC8780000 DOI: 10.3390/v14010093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/06/2021] [Accepted: 12/28/2021] [Indexed: 12/21/2022] Open
Abstract
Arboviruses have two ecological transmission cycles: sylvatic and urban. For some, the sylvatic cycle has not been thoroughly described in America. To study the role of wildlife in a putative sylvatic cycle, we sampled free-ranging bats and birds in two arbovirus endemic locations and analyzed them using molecular, serological, and histological methods. No current infection was detected, and no significant arbovirus-associated histological changes were observed. Neutralizing antibodies were detected against selected arboviruses. In bats, positivity in 34.95% for DENV-1, 16.26% for DENV-2, 5.69% for DENV-3, 4.87% for DENV-4, 2.43% for WNV, 4.87% for SLEV, 0.81% for YFV, 7.31% for EEEV, and 0.81% for VEEV was found. Antibodies against ZIKV were not detected. In birds, PRNT results were positive against WNV in 0.80%, SLEV in 5.64%, EEEV in 8.4%, and VEEV in 5.63%. An additional retrospective PRNT analysis was performed using bat samples from three additional DENV endemic sites resulting in a 3.27% prevalence for WNV and 1.63% for SLEV. Interestingly, one sample resulted unequivocally WNV positive confirmed by serum titration. These results suggest that free-ranging bats and birds are exposed to not currently reported hyperendemic-human infecting Flavivirus and Alphavirus; however, their role as reservoirs or hosts is still undetermined.
Collapse
|
12
|
Muniz LS, da Rocha Pita SS. In silico studies revealed interaction mechanisms of benzylidene–acrylohydrazide derivatives and nsP2 CHIKV. NEW J CHEM 2022. [DOI: 10.1039/d1nj05593c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Here we studied benzylidene–acrylohydrazide derivatives via ADMET properties and docking analysis in the hope that they will be useful chemical moieties against the Chikungunya virus.
Collapse
Affiliation(s)
- Larissa Silva Muniz
- Laboratory of Bioinformatics and Molecular Modeling (LaBiMM), Pharmacy College, Federal University of Bahia (UFBA), Rua Barão de Jeremoabo, 147, Salvador, 40170-115, Bahia, Brazil
| | - Samuel Silva da Rocha Pita
- Laboratory of Bioinformatics and Molecular Modeling (LaBiMM), Pharmacy College, Federal University of Bahia (UFBA), Rua Barão de Jeremoabo, 147, Salvador, 40170-115, Bahia, Brazil
| |
Collapse
|
13
|
Mamidi P, Nayak TK, Kumar A, Kumar S, Chatterjee S, De S, Datey A, Ghosh S, Keshry SS, Singh S, Laha E, Ray A, Chattopadhyay S, Chattopadhyay S. MK2a inhibitor CMPD1 abrogates chikungunya virus infection by modulating actin remodeling pathway. PLoS Pathog 2021; 17:e1009667. [PMID: 34780576 PMCID: PMC8592423 DOI: 10.1371/journal.ppat.1009667] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 10/15/2021] [Indexed: 02/06/2023] Open
Abstract
Chikungunya virus (CHIKV) epidemics around the world have created public health concern with the unavailability of effective drugs and vaccines. This emphasizes the need for molecular understanding of host-virus interactions for developing effective targeted antivirals. Microarray analysis was carried out using CHIKV strain (Prototype and Indian) infected Vero cells and two host isozymes, MAPK activated protein kinase 2 (MK2) and MAPK activated protein kinase 3 (MK3) were selected for further analysis. The substrate spectrum of both enzymes is indistinguishable and covers proteins involved in cytokines production, endocytosis, reorganization of the cytoskeleton, cell migration, cell cycle control, chromatin remodeling and transcriptional regulation. Gene silencing and drug treatment were performed in vitro and in vivo to unravel the role of MK2/MK3 in CHIKV infection. Gene silencing of MK2 and MK3 abrogated around 58% CHIKV progeny release from the host cell and a MK2 activation inhibitor (CMPD1) treatment demonstrated 68% inhibition of viral infection suggesting a major role of MAPKAPKs during late CHIKV infection in vitro. Further, it was observed that the inhibition in viral infection is primarily due to the abrogation of lamellipodium formation through modulation of factors involved in the actin cytoskeleton remodeling pathway. Moreover, CHIKV-infected C57BL/6 mice demonstrated reduction in the viral copy number, lessened disease score and better survivability after CMPD1 treatment. In addition, reduction in expression of key pro-inflammatory mediators such as CXCL13, RAGE, FGF, MMP9 and increase in HGF (a CHIKV infection recovery marker) was observed indicating the effectiveness of the drug against CHIKV. Taken together it can be proposed that MK2 and MK3 are crucial host factors for CHIKV infection and can be considered as important target for developing effective anti-CHIKV strategies. Chikungunya virus has been a dreaded disease from the first time it occurred in 1952 Tanzania. Since then it has been affecting the different parts of the world at different time periods in large scale. It is typically transmitted to humans by bites of Aedes aegypti and Aedes albopictus mosquitoes. Although, studies have been undertaken to combat its prevalence still there are no effective strategies like vaccines or antivirals against it. Therefore it is essential to understand the virus and host interaction to overcome this hurdle. In this study two host factors MK2 and MK3 have been taken into consideration to see how they affect the multiplication of the virus. The in vitro and in vivo experiments conducted demonstrated that inhibition of MK2 and MK3 not only restricted viral release but also decreased the disease score and allowed better survivability. Therefore, MK2 and MK3 could be considered as the key targets in the anti CHIKV approach.
Collapse
Affiliation(s)
| | - Tapas Kumar Nayak
- National Institute of Science Education and Research, Bhubaneswar, India
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Abhishek Kumar
- Institute of Life Sciences, Bhubaneswar, India
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, United States of America
| | - Sameer Kumar
- Institute of Life Sciences, Bhubaneswar, India
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Sanchari Chatterjee
- Institute of Life Sciences, Bhubaneswar, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Saikat De
- Institute of Life Sciences, Bhubaneswar, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Ankita Datey
- Institute of Life Sciences, Bhubaneswar, India
- KIIT school of Biotechnology, Bhubaneswar, India
| | - Soumyajit Ghosh
- Institute of Life Sciences, Bhubaneswar, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Supriya Suman Keshry
- Institute of Life Sciences, Bhubaneswar, India
- KIIT school of Biotechnology, Bhubaneswar, India
| | - Sharad Singh
- Institute of Life Sciences, Bhubaneswar, India
- KIIT school of Biotechnology, Bhubaneswar, India
| | - Eshna Laha
- Institute of Life Sciences, Bhubaneswar, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Amrita Ray
- Institute of Life Sciences, Bhubaneswar, India
- Regional Centre for Biotechnology, Faridabad, India
| | | | | |
Collapse
|
14
|
Manzoor KN, Javed F, Ejaz M, Ali M, Mujaddadi N, Khan AA, Khattak AA, Zaib A, Ahmad I, Saeed WK, Manzoor S. The global emergence of Chikungunya infection: An integrated view. Rev Med Virol 2021; 32:e2287. [PMID: 34428335 DOI: 10.1002/rmv.2287] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/08/2021] [Accepted: 08/09/2021] [Indexed: 11/08/2022]
Abstract
Chikungunya virus (CHIKV) is one of the emerging viruses around the globe. It belongs to the family Togaviridae and genus Alphavirus and is an arthropod borne virus that transmits by the bite of an infected mosquito, mainly through Aedes aegypti and Aedes albopcitus. It is a spherical, enveloped virus with positive single stranded RNA genome. It was first discovered during 1952-53 in Tanganyika, after which outbreaks were documented in many regions of the world. CHIKV has two transmission cycles; an enzootic sylvatic cycle and an urban cycle. CHIKV genome contains 11,900 nucleotides and two open reading frames and shows great sequence variability. Molecular mechanisms of virus host-cell interactions and the pathogenesis of disease are not fully understood. The disease involves three phases; acute, post-acute and chronic with symptoms including high-grade fever, arthralgia, macupapular rashes and headache. There is no licensed vaccine or specific treatment for CHIKV infection. This lack of specific interventions combined with difficulties in making a precise diagnosis together make the disease difficult to manage. In this review we aim to present the current knowledge of global epidemiology, transmission, structure, various aspects of diagnosis as well as highlight potential antiviral drugs and vaccines against CHIKV.
Collapse
Affiliation(s)
| | - Farakh Javed
- Department of Biomedical Sciences, Pak-Autria Fachhochschule: Institute of Applied Sciences & Technology, Haripur, Pakistan
| | - Muhammad Ejaz
- Department of Microbiology, The University of Haripur, Haripur, Pakistan
| | - Mubashar Ali
- Department of Microbiology, The University of Haripur, Haripur, Pakistan
| | - Neelam Mujaddadi
- Department of Microbiology, The University of Haripur, Haripur, Pakistan
| | - Abid Ali Khan
- Institute of Precision Medicine, Hochschule Furtwangen University, Furtwangen im Schwarzwald, Germany
| | - Aamer Ali Khattak
- Department of Medical Lab Technology, The University of Haripur, Haripur, Pakistan
| | - Assad Zaib
- Department of Medical Lab Technology, The University of Haripur, Haripur, Pakistan
| | - Ibrar Ahmad
- Center for Human Genetics, Hazara University, Mansehra, Pakistan
| | - Waqar Khalid Saeed
- Department of Biomedical Sciences, Pak-Autria Fachhochschule: Institute of Applied Sciences & Technology, Haripur, Pakistan
| | - Sobia Manzoor
- Atta-ur-Rehman school of applied biosciences, National University of science and Technology, Islamabad, Pakistan
| |
Collapse
|
15
|
Hanafi-Bojd AA, Motazakker M, Vatandoost H, Dabiri F, Chavshin AR. Sindbis virus infection of mosquito species in the wetlands of northwestern Iran and modeling the probable ecological niches of SINV vectors in the country. Acta Trop 2021; 220:105952. [PMID: 33979644 DOI: 10.1016/j.actatropica.2021.105952] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/17/2021] [Accepted: 04/30/2021] [Indexed: 10/21/2022]
Abstract
Sindbis virus (SINV) and Chikungunya virus (CHIKV) are among the most widely spread mosquito-borne viruses worldwide. Due to the key role of mosquitoes in the transmission cycle of vector-borne diseases, models such as Maximum Entropy (MaxEnt) have been used in recent years to predict the environmental suitability and ecological niches of mosquito vectors. Infection of three mosquito species (Anopheles maculipennis s.l., Culex tritaeniorhynchus, and Culiseta longiareolata) with CHIKV has recently been reported in Iran. However, given the importance of vector-borne diseases in the country, there is a need for extensive studies on the infection of mosquitoes with CHIKV and SINV in different areas of the country. Accordingly, the current research was conducted to investigate the infection of mosquitoes with the two aforementioned viruses in the northwestern part of Iran and also to model the ecological niches of the vectors of these mosquito-borne viruses in the country. In the current study, 4639 mosquito specimens, consisting of 2515 adults and 2124 larvae, were collected from the wetlands of West Azerbaijan Province and identified. Ten species belonging to four genera were identified in this study. The specimens were allocated to 149 pools for the determination of infection with CHIKV and SINV. The amplification pattern of five pools comprising two mosquito species (Culex pipiens complex and Cx. Theileri) corresponded to the reference strain of SINV, and the isolates were sequenced to confirm the presence of SINV genome. No cases of CHIKV infection were found among the 149 examined mosquito pools. Data on the distribution of Cx. Pipiens complex and Cx. Theileri were mapped using ArcMap 10.5. Prediction maps of the presence probability for these species revealed that they are most likely to be found in and spread to the north, northwest, south, and southeastern areas of the country and in areas with abundant water resources. For the first time in Iran, our study investigated the presence probability of SINV vectors using ecological niche modeling. Ecological niche profiling showed that the most suitable habitats for Cx. pipiens are mainly concentrated in the north and northwestern parts of the country, whereas Cx. theileri is mostly located in the northwest and western regions. However, there were some other areas of low suitability for these two species in the country. Further studies in a broader geographical area with more species of mosquitos and the determination of infection with other mosquito-borne viruses can provide a clear understanding of the potential spread of mosquito-borne diseases in various regions of Iran.
Collapse
|
16
|
Ivanova L, Rausalu K, Ošeka M, Kananovich DG, Žusinaite E, Tammiku-Taul J, Lopp M, Merits A, Karelson M. Novel Analogues of the Chikungunya Virus Protease Inhibitor: Molecular Design, Synthesis, and Biological Evaluation. ACS OMEGA 2021; 6:10884-10896. [PMID: 34056242 PMCID: PMC8153904 DOI: 10.1021/acsomega.1c00625] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/02/2021] [Indexed: 05/10/2023]
Abstract
The Chikungunya virus (CHIKV) is an arbovirus belonging to the genus Alphavirus of the Togaviridae family. CHIKV is transmitted by the mosquitoes and causes Chikungunya fever. CHIKV outbreaks have occurred in Africa, Asia, Europe, and the countries of Indian and Pacific Oceans. In 2013, CHIKV cases were registered for the first time in the Americas on the Caribbean islands. There is currently no vaccine to prevent or medicines to treat CHIKV infection. The CHIKV nonstructural protease (nsP2) is a promising potential target for the development of drugs against CHIKV infection because this protein is one of the key components of the viral replication complex and is involved in multiple steps of virus infection. In this work, novel analogues of the potential CHIKV nsP2 protease inhibitor, first reported by Das et al. in 2016, were identified using molecular modeling methods, synthesized, and evaluated in vitro. The optimization of the structure of the inhibitor allowed to increase the antiviral activity of the compound 2-10 times. The possible mechanism of action of the identified potential inhibitors of the CHIKV nsP2 protease was studied in detail using molecular dynamics (MD) simulations. According to the MD results, the most probable mechanism of action is the blocking of conformational changes in the nsP2 protease required for substrate recognition and binding.
Collapse
Affiliation(s)
- Larisa Ivanova
- Institute
of Chemistry, University of Tartu, Ravila 14A, 50411 Tartu, Estonia
| | - Kai Rausalu
- Institute
of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| | - Maksim Ošeka
- Department
of Chemistry and Biotechnology, Tallinn
University of Technology, Akadeemia Tee 15, 12618 Tallinn, Estonia
| | - Dzmitry G. Kananovich
- Department
of Chemistry and Biotechnology, Tallinn
University of Technology, Akadeemia Tee 15, 12618 Tallinn, Estonia
| | - Eva Žusinaite
- Institute
of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| | - Jaana Tammiku-Taul
- Institute
of Chemistry, University of Tartu, Ravila 14A, 50411 Tartu, Estonia
| | - Margus Lopp
- Department
of Chemistry and Biotechnology, Tallinn
University of Technology, Akadeemia Tee 15, 12618 Tallinn, Estonia
| | - Andres Merits
- Institute
of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| | - Mati Karelson
- Institute
of Chemistry, University of Tartu, Ravila 14A, 50411 Tartu, Estonia
| |
Collapse
|
17
|
Kumar N, Sarma H, Sastry GN. Repurposing of approved drug molecules for viral infectious diseases: a molecular modelling approach. J Biomol Struct Dyn 2021; 40:8056-8072. [PMID: 33810775 DOI: 10.1080/07391102.2021.1905558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The identification of new viral drugs has become a task of paramount significance due to the frequent occurrence of viral infections and especially during the current pandemic. Despite the recent advancements, the development of antiviral drugs has not made parallel progress. Reduction of time frame and cost of the drug development process is the major advantage of drug repurposing. Therefore, in this study, a drug repurposing strategy using molecular modelling techniques, i.e. biological activity prediction, virtual screening, and molecular dynamics simulation was employed to find promising repurposing candidates for viral infectious diseases. The biological activities of non-redundant (4171) drug molecules were predicted using PASS analysis, and 1401 drug molecules were selected which showed antiviral activities in the analysis. These drug molecules were subjected to virtual screening against the selected non-structural viral proteins. A series of filters, i.e. top 10 drug molecules based on binding affinity, mean value of binding affinity, visual inspection of protein-drug complexes, and number of H-bond between protein and drug molecules were used to narrow down the drug molecules. Molecular dynamics simulation analysis was carried out to validate the intrinsic atomic interactions and binding conformations of protein-drug complexes. The binding free energies of drug molecules were assessed by employing MMPBSA analysis. Finally, nine drug molecules were prioritized, as promising repurposing candidates with the potential to inhibit the selected non-structural viral proteins.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Nandan Kumar
- Centre for Molecular Modelling, CSIR-Indian Institute of Chemical Technology, Hyderabad, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Himakshi Sarma
- Advanced Computation and Data Sciences Division, CSIR-North East Institute of Science and Technology, Jorhat, India
| | - G Narahari Sastry
- Centre for Molecular Modelling, CSIR-Indian Institute of Chemical Technology, Hyderabad, India.,Advanced Computation and Data Sciences Division, CSIR-North East Institute of Science and Technology, Jorhat, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
18
|
Kumar D, Kumari K, Chandra R, Jain P, Vodwal L, Gambhir G, Singh P. A review targeting the infection by CHIKV using computational and experimental approaches. J Biomol Struct Dyn 2021; 40:8127-8141. [PMID: 33783313 DOI: 10.1080/07391102.2021.1904004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The rise of normal body temperature of 98.6 °F beyond 100.4 °F in humans indicates fever due to some illness or infection. Viral infections caused by different viruses are one of the major causes of fever. One of such viruses is, Chikungunya virus (CHIKV) is known to cause Chikungunya fever (CHIKF) which is transmitted to humans through the mosquitoes, which actually become the primary source of transmission of the virus. The genomic structure of the CHIKV consists of the two open reading frames (ORFs). The first one is a 5' end ORF and it encodes the nonstructural protein (nsP1-nsP4). The second is a 3' end ORF and it encodes the structural proteins, which is consisted of capsid, envelope (E), accessory peptides, E3 and 6 K. Till date, there is no effective vaccine or medicine available for early detection of the CHIKV infection and appropriate diagnosis to cure the patients from the infection. NSP3 of CHIKV is the prime target of the researchers as it is responsible for the catalytic activity. This review has updates of literature on CHIKV; pathogenesis of CHIKV; inhibition of CHIKV using theoretical and experimental approaches.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Durgesh Kumar
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, New Delhi, India.,Department of Chemistry, University of Delhi, Delhi, India
| | - Kamlesh Kumari
- Department of Zoology, Deen Dayal Upadhyaya College, University of Delhi, New Delhi, India
| | - Ramesh Chandra
- Department of Chemistry, University of Delhi, Delhi, India
| | - Pallavi Jain
- Faculty of Engineering and Technology, Department of Chemistry, SRM Institute of Science and Technology, Delhi-NCR Campus, Modinagar, Ghaziabad, Uttar Pradesh, India
| | - Lata Vodwal
- Department of Chemistry, Maitreyi College, University of Delhi, New Delhi, India
| | - Geetu Gambhir
- Department of Chemistry, Acharya Narendra Dev College, University of Delhi, New Delhi, India
| | - Prashant Singh
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, New Delhi, India
| |
Collapse
|
19
|
Meena MK, Kumar D, Kumari K, Kaushik NK, Kumar RV, Bahadur I, Vodwal L, Singh P. Promising inhibitors of nsp2 of CHIKV using molecular docking and temperature-dependent molecular dynamics simulations. J Biomol Struct Dyn 2021; 40:5827-5835. [PMID: 33472563 DOI: 10.1080/07391102.2021.1873863] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Infection due to the Chikungunya virus (CHIKV) has taken the life of lots of people; and researchers are working to find the vaccine or promisng drug candidates against this viral infection. In this work, the authors have designed one component reaction based on the thia-/oxa-azolidineone and created a library of 2000 molecules based on the product obtained. Further, the compounds were screened through the docking using iGemdock against the non-structural protein 2 (nsp2) of CHIKV. Molecular docking gives the binding energy (BE) or energy for the formation of the complex between the designed compound and nsp2 of CHIKV; and CMPD222 gave the lowest energy. This is based on the energy obtained from van der Waal's interaction, hydrogen bonding and electrostatic instructions. Further, molecular dynamics simulations (MDS) of nsp2 of CHIKV with and without screened compound (222) were performed to validate the docking results and the change in free energy for the formation of the complex is -10.8327 kcal/mol. To explore the potential of CMPD222, the MDS of the CMPD222-nsp2 of CHIKV were performed at different temperatures (325, 350, 375 and 400 K) to understand the inhibition of the protease. MM-GBSA calculations were performed to determined change in entropy, change in enthalpy and change in free energy to understand the inhibition. Maximum inhibition of nsp2 of CHIKV with CMPD222 is observed at 375 K with a change in free energy of -19.3754 kcal/mol.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mahendera Kumar Meena
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India.,Department of Chemistry, Shivaji College, University of Delhi, Delhi, India.,Department of Chemistry, University of Delhi, Delhi, India
| | - Durgesh Kumar
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India
| | - Kamlesh Kumari
- Department of Zoology, Deen Dayal Upadhyaya College, University of Delhi, Delhi, India
| | - Nagendra Kumar Kaushik
- Deptartment of Electrical & Biological Physics, Plasma Bioscience Research Center, Kwangwoon University, Seoul, South Korea
| | | | - Indra Bahadur
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, North-West University, South Africa
| | - Lata Vodwal
- Department of Chemistry, Maitreyi College, University of Delhi, Delhi, India
| | - Prashant Singh
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India
| |
Collapse
|
20
|
Passos GFS, Gomes MGM, de Aquino TM, de Araújo-Júnior JX, de Souza SJM, Cavalcante JPM, dos Santos EC, Bassi ÊJ, da Silva-Júnior EF. Computer-Aided Design, Synthesis, and Antiviral Evaluation of Novel Acrylamides as Potential Inhibitors of E3-E2-E1 Glycoproteins Complex from Chikungunya Virus. Pharmaceuticals (Basel) 2020; 13:E141. [PMID: 32629969 PMCID: PMC7407227 DOI: 10.3390/ph13070141] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 02/07/2023] Open
Abstract
Chikungunya virus (CHIKV) causes an infectious disease characterized by inflammation and pain of the musculoskeletal tissues accompanied by swelling in the joints and cartilage damage. Currently, there are no licensed vaccines or chemotherapeutic agents to prevent or treat CHIKV infections. In this context, our research aimed to explore the potential in vitro anti-CHIKV activity of acrylamide derivatives. In silico methods were applied to 132 Michael's acceptors toward the six most important biological targets from CHIKV. Subsequently, the ten most promising acrylamides were selected and synthesized. From the cytotoxicity MTT assay, we verified that LQM330, 334, and 336 demonstrate high cell viability at 40 µM. Moreover, these derivatives exhibited anti-CHIKV activities, highlighting the compound LQM334 which exhibited an inhibition value of 81%. Thus, docking simulations were performed to suggest a potential CHIKV-target for LQM334. It was observed that the LQM334 has a high affinity towards the E3-E2-E1 glycoproteins complex. Moreover, LQM334 reduced the percentage of CHIKV-positive cells from 74.07 to 0.88%, 48h post-treatment on intracellular flow cytometry staining. In conclusion, all virtual simulations corroborated with experimental results, and LQM334 could be used as a promising anti-CHIKV scaffold for designing new drugs in the future.
Collapse
Affiliation(s)
- Gabriel Felipe Silva Passos
- Laboratory of Medicinal Chemistry, Pharmaceutical Sciences Institute, Federal University of Alagoas, Maceió 57072-970, Brazil; (G.F.S.P.); (M.G.M.G.); (J.X.d.A.-J.)
| | - Matheus Gabriel Moura Gomes
- Laboratory of Medicinal Chemistry, Pharmaceutical Sciences Institute, Federal University of Alagoas, Maceió 57072-970, Brazil; (G.F.S.P.); (M.G.M.G.); (J.X.d.A.-J.)
| | - Thiago Mendonça de Aquino
- Center of Analysis and Research in Nuclear Magnetic Resonance, Chemistry and Biotechnology Institute, Federal University of Alagoas, Maceió 57072-970, Brazil;
| | - João Xavier de Araújo-Júnior
- Laboratory of Medicinal Chemistry, Pharmaceutical Sciences Institute, Federal University of Alagoas, Maceió 57072-970, Brazil; (G.F.S.P.); (M.G.M.G.); (J.X.d.A.-J.)
| | - Stephannie Janaina Maia de Souza
- Immunoregulation Research Group, Laboratory of Research in Virology and Immunology, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió 57072-970, Brazil; (S.J.M.d.S.); (J.P.M.C.); (E.C.d.S.); (Ê.J.B.)
| | - João Pedro Monteiro Cavalcante
- Immunoregulation Research Group, Laboratory of Research in Virology and Immunology, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió 57072-970, Brazil; (S.J.M.d.S.); (J.P.M.C.); (E.C.d.S.); (Ê.J.B.)
| | - Elane Conceição dos Santos
- Immunoregulation Research Group, Laboratory of Research in Virology and Immunology, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió 57072-970, Brazil; (S.J.M.d.S.); (J.P.M.C.); (E.C.d.S.); (Ê.J.B.)
| | - Ênio José Bassi
- Immunoregulation Research Group, Laboratory of Research in Virology and Immunology, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió 57072-970, Brazil; (S.J.M.d.S.); (J.P.M.C.); (E.C.d.S.); (Ê.J.B.)
| | - Edeildo Ferreira da Silva-Júnior
- Laboratory of Medicinal Chemistry, Pharmaceutical Sciences Institute, Federal University of Alagoas, Maceió 57072-970, Brazil; (G.F.S.P.); (M.G.M.G.); (J.X.d.A.-J.)
- Center of Analysis and Research in Nuclear Magnetic Resonance, Chemistry and Biotechnology Institute, Federal University of Alagoas, Maceió 57072-970, Brazil;
| |
Collapse
|
21
|
Sukkaew A, Suksatu A, Roytrakul S, Smith DR, Ubol S. Proteomic analysis of CHIKV-infected human fibroblast-like synoviocytes: Identification of host factors potentially associated with CHIKV replication and cellular pathogenesis. Microbiol Immunol 2020; 64:445-457. [PMID: 32246487 DOI: 10.1111/1348-0421.12793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 03/21/2020] [Accepted: 03/26/2020] [Indexed: 01/02/2023]
Abstract
Chikungunya virus (CHIKV) is a mosquito-borne virus that causes arthralgic fever. Fibroblast-like synoviocytes play a key role in joint damage in inflammatory arthritides and can additionally serve as target cells for CHIKV infection. To gain a better understanding of CHIKV-induced arthralgia, the interaction between CHIKV and synoviocytes was investigated at the protein level. A gel-enhanced liquid chromatography-mass spectrometry (GeLC-MS/MS) approach was used to examine protein expression from primary human fibroblast-like synoviocytes (HFLS) infected with clinical isolates of CHIKV at 12 and 24 hr post infection. Our analysis identified 259 and 241 proteins of known function that were differentially expressed (>1.5 or <-1.5 fold change) following CHIKV infection at 12 and 24 hpi, respectively. These proteins are involved in cellular homeostasis, including cellular trafficking, cytoskeletal organization, immune response, metabolic process, and protein modification. Some of these proteins have previously been reported to participate in arthralgia/arthritis and the death of infected cells. Our results provide information on the CHIKV-induced modulation of cellular proteins of HFLS at an early stage of infection, as well as highlighting biological processes associated with CHIKV infection in the main target cells of the joint.
Collapse
Affiliation(s)
- Apamas Sukkaew
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Ampa Suksatu
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Sittiruk Roytrakul
- Proteomics Research Laboratory, Genome Institute, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Duncan R Smith
- Center for Emerging and Neglected Infectious Diseases, Mahidol University, Bangkok, Thailand.,Institute of Molecular Bioscience, Mahidol University Salaya Campus, Nakorn Pathom, Thailand
| | - Sukathida Ubol
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand.,Center for Emerging and Neglected Infectious Diseases, Mahidol University, Bangkok, Thailand
| |
Collapse
|
22
|
Bappy SS, Sultana S, Adhikari J, Mahmud S, Khan MA, Kibria KMK, Rahman MM, Shibly AZ. Extensive immunoinformatics study for the prediction of novel peptide-based epitope vaccine with docking confirmation against envelope protein of Chikungunya virus: a computational biology approach. J Biomol Struct Dyn 2020; 39:1139-1154. [PMID: 32037968 DOI: 10.1080/07391102.2020.1726815] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chikungunya virus (CHIKV) instigating Chikungunya fever is a global infective menace resulting in high fever, weakened joint-muscle pain, and brain inflammation. Inaccessibility and unavailability of effective drugs have led us to an uncertain arena when it comes to providing proper medical treatment to the affected people. In this study, authentic encroachment has been made concerning the peptide-based epitope vaccine designing against CHIKV. A Proteome-wide search was performed to locate a conserved portion among the accessible viral outer membrane proteins which showcase a remarkable immune response using specific immunoinformatics and docking simulation tools. Primarily, the most probable immunogenic envelope glycoproteins E1 and E2 were identified from the UniProt database depending on their antigenicity scores. Subsequently, we selected two distinctive sequences "SEDVYANTQLVLQRP" and "IMLLYPDHPTLLSYR" in both E1 and E2 glycoproteins respectively. These two sequences identified as the most potent T and B cell epitope-based peptides as they interacted with 6 and 7 HLA-I and 5 HLA-II molecules with an extremely low IC50 score that was verified by molecular docking. Moreover, the sequences possess no allergenicity and are certainly located outside the transmembrane region. In addition, the sequences exhibited 88.46% and 100.00% Conservancy, covering high population coverage of 89.49% to 94.74% and 60.51% to 88.87% respectively in endemic countries. The identified peptide SEDVYANTQLVLQRP and IMLLYPDHPTLLSYR can be utilized next for the development of peptide-based epitope vaccine contrary to CHIKV, so further documentations and experimentations like Antigen testing, Antigen production, Clinical trials are needed to prove the validity of it. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Syed Shahariar Bappy
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Sorna Sultana
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Juthi Adhikari
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Shafi Mahmud
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| | - Md Arif Khan
- Department of Biotechnology and Genetic Engineering, University of Development Alternative, Dhaka, Bangladesh.,Bio-Bio-1 Research Foundation, Sangskriti Bikash Kendra Bhaban, Dhaka, Bangladesh
| | - K M Kaderi Kibria
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Md Masuder Rahman
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Abu Zaffar Shibly
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| |
Collapse
|
23
|
Ninla-Aesong P, Mitarnun W, Noipha K. Long-Term Persistence of Chikungunya Virus-Associated Manifestations and Anti-Chikungunya Virus Antibody in Southern Thailand: 5 Years After an Outbreak in 2008-2009. Viral Immunol 2020; 33:86-93. [PMID: 31976828 DOI: 10.1089/vim.2019.0168] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Chikungunya fever, a disease caused by chikungunya virus (CHIKV), reemerged and affected over 52,000 people in southern Thailand in 2008 and 2009. The CHIKV strain involved in this outbreak was the East Central South African (ECSA) strain with the E1-A226V mutation. The prevalence of CHIKV-associated chronic discomfort varied by virus lineage. This retrospective cohort study aims to describe the CHIKV-related symptoms persisting in CHIKV-affected patients, related factors, and the presence of anti-CHIKV immunoglobulin G (IgG) antibodies 5 years after the onset of disease. From 5,344 of the study population screened, a total of 89 affected patients reported persistent arthralgia 5 years after the disease onset (nonrecovery rate = 1.7%). Of the 141 affected patients enrolled, 122 cases (86.5%; 77 cases with persistent arthralgia and 45 cases of fully recovered) still had detectable levels of anti-CHIKV IgG antibodies. Long-term persistence of chronic joint symptoms is associated with the severity of the disease during the initial phase of the infection, but not gender, age, or comorbidities. The common manifestations were arthralgia (75.3%), morning joint stiffness (39.0%), muscle pain (19.5%), and occasional joint swelling (16.9%). Chronic joint symptoms could occur in either a fluctuating or a persistent manner and usually caused moderate pain. The joints affected were mainly fingers (71.4%), wrists (51.9%), and knees (50.6%). Most patients had polyarthralgia with symmetrical joint involvement. In some cases with persistent arthralgia, atypical manifestations, including severe depression with suicide attempts, severe weight loss, and severe hair loss, were found, and some patients still experienced severe joint pain.
Collapse
Affiliation(s)
| | - Winyou Mitarnun
- Department of Pathology, Faculty of Medicine, Prince of Songkla University, Hatyai, Thailand
| | - Kusumarn Noipha
- Faculty of Health and Sports Science, Thaksin University, Paphayom, Thailand
| |
Collapse
|
24
|
Kumar P, Kumar D, Giri R. Targeting the nsp2 Cysteine Protease of Chikungunya Virus Using FDA Approved Library and Selected Cysteine Protease Inhibitors. Pathogens 2019; 8:E128. [PMID: 31443266 PMCID: PMC6789655 DOI: 10.3390/pathogens8030128] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 08/09/2019] [Accepted: 08/13/2019] [Indexed: 02/06/2023] Open
Abstract
Chikungunya virus (CHIKV) infection is one of the major public health concerns, leading thousands of cases every year in rural as well as urban regions of several countries worldwide, few to mention are India, Philippines, Indonesia, and also in American countries. The structural and non-structural proteins of CHIKV are structurally and functionally similar to other alphaviruses such as Sindbis virus, Venezuelan Equine Encephalitis virus. The precursor protein of non-structural proteins is cleaved by proteolytic activity of non-structural protein (nsp2). This multifunctional nsp2 carry out nucleoside-triphosphatase (NTPase) and RNA helicase activity at its N-terminal and protease activity at C-terminal that makes it primarily a drug target to inhibit CHIKV replication. Until the current date, no suitable treatment for chikungunya infection is available. The introduction of a new drug into the market is a lengthy process, therefore, drug repurposing is now familiar approach that cut off the time and cost of drug discovery. In this study, we have implemented this approach with Food and Drug Administration (FDA) approved drugs and known cysteine protease inhibitors against CHIKV nsp2 protease using structure-based drug discovery. Our extensive docking and molecular dynamics simulations studies leads to two best interacting compounds, Ribostamycin sulfate and E-64, with utmost stable complexes at active site of nsp2 protease. Therefore, these compounds could be suitable for inhibiting CHIKV protease activity, and ultimately the viral replication.
Collapse
Affiliation(s)
- Prateek Kumar
- Indian Institute of Technology Mandi, School of Basic Sciences, VPO Kamand, Himachal Pradesh 175005, India
| | - Deepak Kumar
- Indian Institute of Technology Mandi, School of Basic Sciences, VPO Kamand, Himachal Pradesh 175005, India
| | - Rajanish Giri
- Indian Institute of Technology Mandi, School of Basic Sciences, VPO Kamand, Himachal Pradesh 175005, India.
- BioX Centre, Indian Institute of Technology Mandi, Himachal Pradesh 175005, India.
| |
Collapse
|
25
|
Remy S, Litaudon M. Macrocyclic Diterpenoids from Euphorbiaceae as A Source of Potent and Selective Inhibitors of Chikungunya Virus Replication. Molecules 2019; 24:molecules24122336. [PMID: 31242603 PMCID: PMC6631467 DOI: 10.3390/molecules24122336] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 11/16/2022] Open
Abstract
Macrocyclic diterpenoids produced by plants of the Euphorbiaceae family are of considerable interest due to their high structural diversity; and their therapeutically relevant biological properties. Over the last decade many studies have reported the ability of macrocyclic diterpenoids to inhibit in cellulo the cytopathic effect induced by the chikungunya virus. This review; which covers the years 2011 to 2019; lists all macrocyclic diterpenoids that have been evaluated for their ability to inhibit viral replication. The structure-activity relationships and the probable involvement of protein kinase C in their mechanism of action are also detailed.
Collapse
Affiliation(s)
- Simon Remy
- Institut de Chimie des Substances Naturelles, CNRS ICSN, UPR 2301, Université Paris Saclay, 91198 Gif-sur-Yvette, France.
| | - Marc Litaudon
- Institut de Chimie des Substances Naturelles, CNRS ICSN, UPR 2301, Université Paris Saclay, 91198 Gif-sur-Yvette, France.
| |
Collapse
|
26
|
de Godoy AS, Sachetto Fernandes R, Campos Aguiar AC, Vieira Bueno R, de Moraes Roso Mesquita NC, Carvalho Guido RV, Oliva G. Structural and mechanistic insight from antiviral and antiparasitic enzyme drug targets for tropical infectious diseases. Curr Opin Struct Biol 2019; 59:65-72. [PMID: 30954758 DOI: 10.1016/j.sbi.2019.02.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 02/23/2019] [Accepted: 02/28/2019] [Indexed: 12/28/2022]
Abstract
With almost half of the world population living at risk, tropical infectious diseases cause millions of deaths every year in developing countries. Considering the lack of economic prospects for investment in this field, approaches aiming the rational design of compounds, such as structure-based drug discovery (SBDD), fragment screening, target-based drug discovery, and drug repurposing are of special interest. Herein, we focused in the advances on the field of SBDD targeting arboviruses such as dengue, yellow fever, zika and chikungunya enzymes of the RNA replication complex (RC) and enzymes involved in a variety of pathways essential to ensure parasitic survival in the host, for malaria, Chagas e leishmaniasis diseases. We also highlighted successful examples such as promising new inhibitors and molecules already in preclinical/clinical phase tests, major gaps in the field and perspectives for the future of drug design for tropical diseases.
Collapse
Affiliation(s)
- Andre Schutzer de Godoy
- Institute of Physics of São Carlos, University of São Paulo, Av. Joao Dagnone, 1100 - Jardim Santa Angelina, São Carlos 13563-120, Brazil
| | - Rafaela Sachetto Fernandes
- Institute of Physics of São Carlos, University of São Paulo, Av. Joao Dagnone, 1100 - Jardim Santa Angelina, São Carlos 13563-120, Brazil
| | - Anna Caroline Campos Aguiar
- Institute of Physics of São Carlos, University of São Paulo, Av. Joao Dagnone, 1100 - Jardim Santa Angelina, São Carlos 13563-120, Brazil
| | - Renata Vieira Bueno
- Institute of Physics of São Carlos, University of São Paulo, Av. Joao Dagnone, 1100 - Jardim Santa Angelina, São Carlos 13563-120, Brazil
| | | | - Rafael Victorio Carvalho Guido
- Institute of Physics of São Carlos, University of São Paulo, Av. Joao Dagnone, 1100 - Jardim Santa Angelina, São Carlos 13563-120, Brazil
| | - Glaucius Oliva
- Institute of Physics of São Carlos, University of São Paulo, Av. Joao Dagnone, 1100 - Jardim Santa Angelina, São Carlos 13563-120, Brazil.
| |
Collapse
|
27
|
Immunomodulatory drug methotrexate used to treat patients with chronic inflammatory rheumatisms post-chikungunya does not impair the synovial antiviral and bone repair responses. PLoS Negl Trop Dis 2018; 12:e0006634. [PMID: 30074983 PMCID: PMC6093699 DOI: 10.1371/journal.pntd.0006634] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/15/2018] [Accepted: 06/22/2018] [Indexed: 02/08/2023] Open
Abstract
Chikungunya virus (CHIKV) is a mosquito-transmitted RNA alphavirus causing major outbreaks of infectious chronic inflammatory rheumatisms (CIR). Recently, methotrexate (MTX), a disease modifying anti-rheumatic drug has been used successfully to treat patients suffering from rheumatoid-like arthritis post-CHIK but its immunomodulatory activity in the context of viral persistence has been a matter of concerns. We herein used a model of primary human synovial fibroblasts (HSF) and the synthetic molecule polyriboinosinic:polyribocytidylic acid (PIC) to mimic chronic infectious settings in the joints of CHIKV infected patients. The innate antiviral immune and inflammatory responses were investigated in response to MTX used at the therapeutic concentration of 1 μM. We found that MTX did not affect cellular viability as indicated by the LDH release assay. By quantitative RT-PCR, we observed that HSF responded robustly to PIC by increasing ISG15 and IFNβ mRNA levels. Furthermore, PIC upregulated the mRNA expression of two of the major pattern recognition receptors, RIG-I and MDA5 involved in the innate immune detection of viral RNA. MTX did not impact the antiviral response of PIC on ISG15, IFNβ, RIG-I and MDA5 mRNA expressions. MTX alone or combined with PIC did not affect the expression of proinflammatory CCL2 and CXCL8 chemokines. PIC strongly upregulated the mRNA and protein expression of osteoclastogenic factors (IL-6, GM-CSF but not RANKL). Critically, MTX treatment alone or combined with PIC did not affect the expression of all three tested osteoclastogenic cytokines. We found that MTX alone did not increase the capacity of CHIKV to infect and replicate in HSF. In conclusion, our study argues for a beneficial effect of MTX to treat CIR post-CHIKV given that it does not critically impact the antiviral, the proinflammatory and the bone tissue remodeling responses of synovial cells. Chikungunya is a mosquito-borne virus (CHIKV) and has been incriminated in the development of arthralgia (pain of the joint) and arthritis particularly in elderly patients. Methotrexate (MTX) has been used widely to effectively treat these chronic rheumatic symptoms. Using a model of primary human joint fibroblasts (HSF), we investigated the capacity of the MTX immunosuppressive drug to affect the immune antiviral and inflammatory responses essential to clear the virus while allowing bone tissue repair. This study is important given that CHIKV and its RNA were shown to persist in the joint for months to years post infection and leading to injuries through ill-characterized mechanisms. The molecule PIC was used to mimic the effect of viral RNA. Interestingly, we found that MTX did not affect the expression of several proinflammatory and bone repair factors by HSF. Remarkably, MTX did not also impair the antiviral response of synovial fibroblasts. Our study revealed for the first time that MTX treatment should be considered as safe even in the context of viral persistence associated with chronic inflammation. MTX will not affect the capacity of the synovial tissue to maintain antiviral mechanism, to control inflammation and to promote bone tissue repair.
Collapse
|
28
|
Moizéis RNC, Fernandes TAADM, Guedes PMDM, Pereira HWB, Lanza DCF, de Azevedo JWV, Galvão JMDA, Fernandes JV. Chikungunya fever: a threat to global public health. Pathog Glob Health 2018; 112:182-194. [PMID: 29806537 PMCID: PMC6147074 DOI: 10.1080/20477724.2018.1478777] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Chikungunya fever is an emerging arbovirus infection, representing a serious public health problem. Its etiological agent is the Chikungunya virus (CHIKV). Transmission of this virus is mainly vector by mosquitoes of the genus Aedes, although transmission by blood transfusions and vertical transmission has also been reported. The disease presents high morbidity caused mainly by the arthralgia and arthritis generated. Cardiovascular and neurological manifestations have also been reported. The severity of the infection seems to be directly associated with the action of the virus, but also with the decompensation of preexisting comorbidities. Currently, there are no therapeutic products neither vaccines licensed to the infection CHIKV control, although several vaccine candidates are being evaluated and human polyvalent immunoglobulins anti-CHIKV had been tested. Antibodies can protect against the infection, but in sub-neutralizing concentrations can augment virus infection and exacerbate disease severity. So, the prevention still depends on the use of personal protection measures and vector control, which are only minimally effective.
Collapse
Affiliation(s)
- Raíza Nara Cunha Moizéis
- Programa de Pós-Graduação em Biologia Parasitária, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | | | - Paulo Marcos da Matta Guedes
- Programa de Pós-Graduação em Biologia Parasitária, Universidade Federal do Rio Grande do Norte, Natal, Brazil
- Departamento de Microbiologia e Parasitologia, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | | | | | | | - Josélio Maria de Araújo Galvão
- Programa de Pós-Graduação em Biologia Parasitária, Universidade Federal do Rio Grande do Norte, Natal, Brazil
- Departamento de Microbiologia e Parasitologia, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - José Veríssimo Fernandes
- Programa de Pós-Graduação em Biologia Parasitária, Universidade Federal do Rio Grande do Norte, Natal, Brazil
- Departamento de Microbiologia e Parasitologia, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
29
|
Sukkaew A, Thanagith M, Thongsakulprasert T, Mutso M, Mahalingam S, Smith DR, Ubol S. Heterogeneity of clinical isolates of chikungunya virus and its impact on the responses of primary human fibroblast-like synoviocytes. J Gen Virol 2018. [PMID: 29517478 DOI: 10.1099/jgv.0.001039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Low-passage clinical isolates of chikungunya virus (CHIKV) were found to be a mixture of large- and small-plaque viruses, with small-plaque viruses being the predominant species. To investigate the contribution of plaque variants to the pathology of the joint, primary human fibroblast-like synoviocytes (HFLS) were used. Large- and small-plaque viruses were purified from two clinical isolates, CHIKV-031C and CHIKV-033C, and were designated CHIKV-031L and CHIKV-031S and CHIKV-033L and CHIKV-033S, respectively. The replication efficiencies of these viruses in HFLSs were compared and it was found that CHIKV-031S and CHIKV-033S replicated with the highest efficiency, while the parental clinical isolates had the lowest efficiency. Interestingly, the cytopathic effects (CPE) induced by these viruses correlated with neither the efficiency of replication nor the plaque size. The small-plaque viruses and the clinical isolates induced cell death rapidly, while large-plaque viruses induced slow CPE in which only 50 % of the cells in infected cultures were rounded up and detached on day 5 of infection. The production of proinflammatory cytokines and chemokines from infected HFLSs was evaluated. The results showed that the large-plaque viruses and the clinical isolates, but not small-plaque variants, were potent inducers of IL-6, IL-8 and MCP-1, and were able to migrate monocytes/macrophages efficiently. Sequencing data revealed a number of differences in amino acid sequences between the small- and large-plaque viruses. The results suggest that it is common for clinical isolates of CHIKV to be heterogeneous, while the variants may have distinct roles in the pathology of the joint.
Collapse
Affiliation(s)
- Apamas Sukkaew
- Department of Microbiology, Faculty of Science, Mahidol University, Rama 6 Rd., Ratchatewi, Bangkok 10400, Thailand
| | | | | | - Margit Mutso
- Institute for Glycomics, Griffith University, Southport, Gold Coast, QLD, Australia
| | - Suresh Mahalingam
- Institute for Glycomics, Griffith University, Southport, Gold Coast, QLD, Australia
| | - Duncan R Smith
- Center for Emerging and Neglected Infectious Diseases, Mahidol University, Salaya Campus, Nakornpathom, Thailand.,Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakornpathom, Thailand
| | - Sukathida Ubol
- Center for Emerging and Neglected Infectious Diseases, Mahidol University, Salaya Campus, Nakornpathom, Thailand.,Department of Microbiology, Faculty of Science, Mahidol University, Rama 6 Rd., Ratchatewi, Bangkok 10400, Thailand
| |
Collapse
|
30
|
Ganesan VK, Duan B, Reid SP. Chikungunya Virus: Pathophysiology, Mechanism, and Modeling. Viruses 2017; 9:v9120368. [PMID: 29194359 PMCID: PMC5744143 DOI: 10.3390/v9120368] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 11/21/2017] [Accepted: 11/23/2017] [Indexed: 12/15/2022] Open
Abstract
Chikungunya virus (CHIKV), a mosquito-transmitted alphavirus, is recurring in epidemic waves. In the past decade and a half, the disease has resurged in several countries around the globe, with outbreaks becoming increasingly severe. Though CHIKV was first isolated in 1952, there remain significant gaps in knowledge of CHIKV biology, pathogenesis, transmission, and mechanism. Diagnosis is largely simplified and based on symptoms, while treatment is supportive rather than curative. Here we present an overview of the disease, the challenges that lie ahead for future research, and what directions current studies are headed towards, with emphasis on improvement of current animal models and potential use of 3D models.
Collapse
Affiliation(s)
- Vaishnavi K Ganesan
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Bin Duan
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA.
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA.
- Department of Surgery, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - St Patrick Reid
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
31
|
Abdelnabi R, Jochmans D, Verbeken E, Neyts J, Delang L. Antiviral treatment efficiently inhibits chikungunya virus infection in the joints of mice during the acute but not during the chronic phase of the infection. Antiviral Res 2017; 149:113-117. [PMID: 28958920 DOI: 10.1016/j.antiviral.2017.09.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/18/2017] [Accepted: 09/24/2017] [Indexed: 11/26/2022]
Abstract
Favipiravir (T-705) is a broad spectrum antiviral which has been approved in Japan for the treatment of severe influenza virus infections. We reported earlier that favipiravir inhibits the in vitro replication of CHIKV and protects against disease progression in CHIKV-infected immunodeficient mice. We here explored whether favipiravir is also able to inhibit CHIKV replication in the joints of mice either when treatment is initiated during the acute or during the chronic phase of the infection. To this end, C57BL/6J mice were infected with CHIKV in the left hind footpad and treatment with favipiravir (300 mg/kg/day, orally) was either given from day 0 to day 3 post-infection (p.i.) or from day 49 to day 55 p.i. In the untreated mice, viral RNA was still detectable in the joints up to 98 days p.i., yet no infectious viral particles were observed in these tissues. The 4 days treatment during the acute phase of the infection resulted in complete inhibition of systemic viral spread. As a consequence, no viral RNA was detected in the non-inoculated feet in contrast to the situation in the untreated control mice. When treatment was initiated at day 49 p.i., no significant reduction in viral RNA levels in joints were noted as compared to the untreated control. Interestingly, when attempting to amplify by RT-PCR material corresponding to virus genome from the chronic phase samples, some parts of the genome, such as the viral polymerase gene could not be amplified. Collectively, these results suggest that the viral RNA detected in the joints during the chronic phase is likely defective, which also explains the lack of effect of a viral replication inhibitor.
Collapse
Affiliation(s)
- Rana Abdelnabi
- University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000 Leuven, Belgium
| | - Dirk Jochmans
- University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000 Leuven, Belgium
| | - Erik Verbeken
- University of Leuven and Leuven University Hospitals, Department of Pathology, B-3000 Leuven, Belgium
| | - Johan Neyts
- University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000 Leuven, Belgium.
| | - Leen Delang
- University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000 Leuven, Belgium
| |
Collapse
|
32
|
da Silva-Júnior EF, Leoncini GO, Rodrigues ÉES, Aquino TM, Araújo-Júnior JX. The medicinal chemistry of Chikungunya virus. Bioorg Med Chem 2017; 25:4219-4244. [PMID: 28689975 PMCID: PMC7126832 DOI: 10.1016/j.bmc.2017.06.049] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 06/28/2017] [Indexed: 02/06/2023]
Abstract
Arthropod-borne viruses (arboviruses) are an important threat to human and animal health globally. Among these, zoonotic diseases account for billions of cases of human illness and millions of deaths every year, representing an increasing public health problem. Chikungunya virus belongs to the genus Alphavirus of the family Togariridae, and is transmitted mainly by the bite of female mosquitoes of the Aedes aegypti and/or A. albopictus species. The focus of this review will be on the medicinal chemistry of Chikungunya virus, including synthetic and natural products, as well as rationally designed compounds.
Collapse
Affiliation(s)
- Edeildo F da Silva-Júnior
- Laboratory of Medicinal Chemistry, Nursing and Pharmacy School, Federal University of Alagoas, Lourival Melo Motta Avenue, Tabuleiro dos Martins, 57072-900 Maceió, Brazil; Chemistry and Biotechnology Institute, Federal University of Alagoas, Lourival Melo Motta Avenue, Tabuleiro dos Martins, 57072-900 Maceió, Brazil.
| | - Giovanni O Leoncini
- Laboratory of Medicinal Chemistry, Nursing and Pharmacy School, Federal University of Alagoas, Lourival Melo Motta Avenue, Tabuleiro dos Martins, 57072-900 Maceió, Brazil; Chemistry and Biotechnology Institute, Federal University of Alagoas, Lourival Melo Motta Avenue, Tabuleiro dos Martins, 57072-900 Maceió, Brazil
| | - Érica E S Rodrigues
- Laboratory of Medicinal Chemistry, Nursing and Pharmacy School, Federal University of Alagoas, Lourival Melo Motta Avenue, Tabuleiro dos Martins, 57072-900 Maceió, Brazil
| | - Thiago M Aquino
- Chemistry and Biotechnology Institute, Federal University of Alagoas, Lourival Melo Motta Avenue, Tabuleiro dos Martins, 57072-900 Maceió, Brazil
| | - João X Araújo-Júnior
- Laboratory of Medicinal Chemistry, Nursing and Pharmacy School, Federal University of Alagoas, Lourival Melo Motta Avenue, Tabuleiro dos Martins, 57072-900 Maceió, Brazil; Chemistry and Biotechnology Institute, Federal University of Alagoas, Lourival Melo Motta Avenue, Tabuleiro dos Martins, 57072-900 Maceió, Brazil.
| |
Collapse
|
33
|
Abdelnabi R, Amrun SN, Ng LFP, Leyssen P, Neyts J, Delang L. Protein kinases C as potential host targets for the inhibition of chikungunya virus replication. Antiviral Res 2016; 139:79-87. [PMID: 28039020 DOI: 10.1016/j.antiviral.2016.12.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 12/10/2016] [Accepted: 12/26/2016] [Indexed: 02/07/2023]
Abstract
We have shown previously that prostratin, a non-tumor promoting phorbol ester, inhibits chikungunya virus (CHIKV)-induced cytopathic effects in vitro. Prostratin is a potent activator of protein kinases C (PKC), a family of related serine/threonine kinases that regulate many cellular processes such as proliferation and apoptosis. The objective of this study was to explore the mechanism of the anti-CHIKV activity of prostratin. Prostratin reduced the production of infectious virus particles and viral protein accumulation in a dose-dependent manner at a post-entry step during virus replication. The antiviral effect of the compound was cell-dependent, with potent antiviral activity observed in human skin fibroblasts cells, the primary target cells of CHIKV infection. The antiviral activity of prostratin was markedly reduced in the presence of PKC inhibitors, therefore confirming that the antiviral effect results from an activation of PKCs. Together these results showed that PKCs are potential host targets for the inhibition of CHIKV replication.
Collapse
Affiliation(s)
- Rana Abdelnabi
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Siti Naqiah Amrun
- Laboratory of Microbial Immunity, Singapore Immunology Network, Agency for Science, Technology, and Research, Singapore
| | - Lisa F P Ng
- Laboratory of Microbial Immunity, Singapore Immunology Network, Agency for Science, Technology, and Research, Singapore
| | - Pieter Leyssen
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Johan Neyts
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven, Belgium.
| | - Leen Delang
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| |
Collapse
|
34
|
Goupil BA, Mores CN. A Review of Chikungunya Virus-induced Arthralgia: Clinical Manifestations, Therapeutics, and Pathogenesis. Open Rheumatol J 2016; 10:129-140. [PMID: 28077980 PMCID: PMC5204064 DOI: 10.2174/1874312901610010129] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 11/08/2016] [Accepted: 11/09/2016] [Indexed: 11/22/2022] Open
Abstract
Background: Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that circulates predominantly in tropical and subtropical regions, potentially affecting over 1 billion people. Recently, an outbreak began in the western hemisphere and has resulted in over 1.8 million reported suspected cases. Infection often results in severe fever, rash and debilitating polyarthralgia lasting weeks to months. Additionally, the current literature reports that CHIKV can result in a severe chronic arthralgia and/or arthritis that can last months to years following the initial infection. Objective: The purpose of this review is to evaluate the literature and summarize the current state of knowledge regarding CHIKV-associated disease, including clinical presentation, diagnosis, risk factors for development of severe disease, treatment, and pathogenesis in human patients. Additionally, recommendations are presented regarding avenues for clinical research to help further elucidate the pathogenesis of joint disease associated with CHIKV infection. Conclusion: While there is an association between initial CHIKV infection and acute disease, a causal relationship with development of chronic arthralgia has not been established at this time. Potential causes of chronic CHIKV-induced arthritis have been postulated, including viral persistence, induction of autoimmune disease, and exacerbation of pre-existing joint disease. While there are numerous reports of chronic CHIKV-associated arthralgia and/or arthritis, there is currently no evidence of a definitive link between initial infection and development of chronic disease. Additional, prospective clinical research on CHIKV-associated disease is necessary to further determine the potential role of virus and development of chronic joint disease.
Collapse
Affiliation(s)
- Brad A Goupil
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Skip Bertman Drive, Baton Rouge, Louisiana, United States of America
| | - Christopher N Mores
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Skip Bertman Drive, Baton Rouge, Louisiana, United States of America; Virology and Emerging Infections, US Naval Medical Research Unit No. 6, Lima Pampa, Peru
| |
Collapse
|
35
|
Evaluation of Silver Nanoparticle Toxicity of Coleus aromaticus Leaf Extracts and its Larvicidal Toxicity against Dengue and Filariasis Vectors. BIONANOSCIENCE 2016. [DOI: 10.1007/s12668-016-0374-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
36
|
Baudin M, Jumaa AM, Jomma HJE, Karsany MS, Bucht G, Näslund J, Ahlm C, Evander M, Mohamed N. Association of Rift Valley fever virus infection with miscarriage in Sudanese women: a cross-sectional study. LANCET GLOBAL HEALTH 2016; 4:e864-e871. [PMID: 27692776 DOI: 10.1016/s2214-109x(16)30176-0] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 06/27/2016] [Accepted: 07/14/2016] [Indexed: 12/14/2022]
Abstract
BACKGROUND Rift Valley fever virus is an emerging mosquito-borne virus that causes infections in animals and human beings in Africa and the Arabian Peninsula. Outbreaks of Rift Valley fever lead to mass abortions in livestock, but such abortions have not been identified in human beings. Our aim was to investigate the cause of miscarriages in febrile pregnant women in an area endemic for Rift Valley fever. METHODS Pregnant women with fever of unknown origin who attended the governmental hospital of Port Sudan, Sudan, between June 30, 2011, and Nov 17, 2012, were sampled at admission and included in this cross-sectional study. Medical records were retrieved and haematological tests were done on patient samples. Presence of viral RNA as well as antibodies against a variety of viruses were analysed. Any association of viral infections, symptoms, and laboratory parameters to pregnancy outcome was investigated using Pearson's χ2 test. FINDINGS Of 130 pregnant women with febrile disease, 28 were infected with Rift Valley fever virus and 31 with chikungunya virus, with typical clinical and laboratory findings for the infection in question. 15 (54%) of 28 women with an acute Rift Valley fever virus infection had miscarriages compared with 12 (12%) of 102 women negative for Rift Valley fever virus (p<0·0001). In a multiple logistic regression analysis, adjusting for age, haemorrhagic disease, and chikungunya virus infection, an acute Rift Valley fever virus infection was an independent predictor of having a miscarriage (odds ratio 7·4, 95% CI 2·7-20·1; p<0·0001). INTERPRETATION This study is the first to show an association between infection with Rift Valley fever virus and miscarriage in pregnant women. Further studies are warranted to investigate the possible mechanisms. Our findings have implications for implementation of preventive measures, and evidence-based information to the public in endemic countries should be strongly recommended during Rift Valley fever outbreaks. FUNDING Schlumberger Faculty for the Future, CRDF Global (31141), the Swedish International Development Cooperation Agency, the County Council of Västerbotten, and the Faculty of Medicine, Umeå University.
Collapse
Affiliation(s)
- Maria Baudin
- Department of Clinical Microbiology, Virology, Umeå University, Umeå, Sweden
| | - Ammar M Jumaa
- Department of Obstetrics and Gynaecology, Red Sea University, Port Sudan, Sudan
| | - Huda J E Jomma
- Department of Parasitology and Medical Entomology, Port Sudan Ahlia College, Port Sudan, Sudan
| | - Mubarak S Karsany
- Faculty of Medical Laboratory Sciences, Karary University, Khartoum, Sudan
| | - Göran Bucht
- Swedish Defence Research Agency, CBRN Defence and Security, Umeå, Sweden
| | - Jonas Näslund
- Swedish Defence Research Agency, CBRN Defence and Security, Umeå, Sweden
| | - Clas Ahlm
- Department of Clinical Microbiology, Infectious Diseases, Umeå University, Umeå, Sweden
| | - Magnus Evander
- Department of Clinical Microbiology, Virology, Umeå University, Umeå, Sweden.
| | - Nahla Mohamed
- Department of Clinical Microbiology, Virology, Umeå University, Umeå, Sweden
| |
Collapse
|
37
|
The viral capping enzyme nsP1: a novel target for the inhibition of chikungunya virus infection. Sci Rep 2016; 6:31819. [PMID: 27545976 PMCID: PMC4992889 DOI: 10.1038/srep31819] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 07/18/2016] [Indexed: 11/26/2022] Open
Abstract
The chikungunya virus (CHIKV) has become a substantial global health threat due to its massive re-emergence, the considerable disease burden and the lack of vaccines or therapeutics. We discovered a novel class of small molecules ([1,2,3]triazolo[4,5-d]pyrimidin-7(6H)-ones) with potent in vitro activity against CHIKV isolates from different geographical regions. Drug-resistant variants were selected and these carried a P34S substitution in non-structural protein 1 (nsP1), the main enzyme involved in alphavirus RNA capping. Biochemical assays using nsP1 of the related Venezuelan equine encephalitis virus revealed that the compounds specifically inhibit the guanylylation of nsP1. This is, to the best of our knowledge, the first report demonstrating that the alphavirus capping machinery is an excellent antiviral drug target. Considering the lack of options to treat CHIKV infections, this series of compounds with their unique (alphavirus-specific) target offers promise for the development of therapy for CHIKV infections.
Collapse
|
38
|
Full length and protease domain activity of chikungunya virus nsP2 differ from other alphavirus nsP2 proteases in recognition of small peptide substrates. Biosci Rep 2015; 35:BSR20150086. [PMID: 26182358 PMCID: PMC4445351 DOI: 10.1042/bsr20150086] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 04/13/2015] [Indexed: 02/06/2023] Open
Abstract
Alphavirus nsP2 proteins are multifunctional and essential for viral replication. The protease role of nsP2 is critical for virus replication as only the virus protease activity is used for processing of the viral non-structural polypeptide. Chikungunya virus is an emerging disease problem that is becoming a world-wide health issue. We have generated purified recombinant chikungunya virus nsP2 proteins, both full length and a truncated protease domain from the C-terminus of the nsP2 protein. Enzyme characterization shows that the protease domain alone has different properties compared with the full length nsP2 protease. We also show chikungunya nsP2 protease possesses different substrate specificity to the canonical alphavirus nsP2 polyprotein cleavage specificity. Moreover, the chikungunya nsP2 also appears to differ from other alphavirus nsP2 in its distinctive ability to recognize small peptide substrates. The protease role of alphavirus nsP2 is critical for virus replication as only the virus protease processes the viral non-structural polypeptide. We show chikungunya nsP2 protease possesses different substrate specificity to the canonical alphavirus nsP2 polyprotein cleavage specificity.
Collapse
|
39
|
|
40
|
Nguyen PTV, Yu H, Keller PA. Identification of chikungunya virus nsP2 protease inhibitors using structure-base approaches. J Mol Graph Model 2015; 57:1-8. [PMID: 25622129 DOI: 10.1016/j.jmgm.2015.01.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 01/02/2015] [Indexed: 12/11/2022]
Abstract
The nsP2 protease of chikungunya virus (CHIKV) is one of the essential components of viral replication and it plays a crucial role in the cleavage of polyprotein precursors for the viral replication process. Therefore, it is gaining attention as a potential drug design target against CHIKV. Based on the recently determined crystal structure of the nsP2 protease of CHIKV, this study identified potential inhibitors of the virus using structure-based approaches with a combination of molecular docking, virtual screening and molecular dynamics (MD) simulations. The top hit compounds from database searching, using the NCI Diversity Set II, with targeting at five potential binding sites of the nsP2 protease, were identified by blind dockings and focused dockings. These complexes were then subjected to MD simulations to investigate the stability and flexibility of the complexes and to gain a more detailed insight into the interactions between the compounds and the enzyme. The hydrogen bonds and hydrophobic contacts were characterized for the complexes. Through structural alignment, the catalytic residues Cys1013 and His1083 were identified in the N-terminal region of the nsP2 protease. The absolute binding free energies were estimated by the linear interaction energy approach and compared with the binding affinities predicted with docking. The results provide valuable information for the development of inhibitors for CHIKV.
Collapse
Affiliation(s)
| | - Haibo Yu
- School of Chemistry, University of Wollongong, 2522, Australia.
| | - Paul A Keller
- School of Chemistry, University of Wollongong, 2522, Australia.
| |
Collapse
|
41
|
Chikungunya virus glycoproteins pseudotype with lentiviral vectors and reveal a broad spectrum of cellular tropism. PLoS One 2014; 9:e110893. [PMID: 25333782 PMCID: PMC4205015 DOI: 10.1371/journal.pone.0110893] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 07/10/2014] [Indexed: 11/19/2022] Open
Abstract
Background Outbreaks of the Chikungunya virus (CHIKV) infection has been documented in over 40 countries, resulting in clinical symptoms characterized by fever and joint pain. Diagnosing CHIKV in a clinical lab setting is often omitted because of the high lab safety requirement. An infection system that mimics CHIKV infection will permit clinical evaluation of the production of neutralizing antibody for both disease diagnostics and treatment. Methodology/Principal Findings We generated a CHIKV construct expressing CHIKV structural proteins. This construct permits the production of CHIKV pseudo-viral particles with a luciferase reporter. The pseudo-virus was able to infect a wide range of cell lines. The pseudovirus could be neutralized by the addition of neutralizing antibodies from patients. Conclusions Taken together, we have developed a powerful system that can be handled at biosafety level 2 laboratories for evaluation of existence of CHIKV neutralizing antibodies.
Collapse
|
42
|
Chikungunya virus exploits miR-146a to regulate NF-κB pathway in human synovial fibroblasts. PLoS One 2014; 9:e103624. [PMID: 25083878 PMCID: PMC4118904 DOI: 10.1371/journal.pone.0103624] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 07/03/2014] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVES Chikungunya virus causes chronic infection with manifestations of joint pain. Human synovial fibroblasts get infected with CHIKV and could lead to pro-inflammatory responses. MicroRNAs have potentials to regulate the gene expression of various anti-viral and pro-inflammatory genes. The study aims to investigate the role of miR-146a in modulation of inflammatory responses of human synovial fibroblasts by Chikungunya virus. METHODS To study the role of miR-146a in CHIKV pathogenesis in human synovial cells and underlying inflammatory manifestations, we performed CHIKV infection in primary human synovial fibroblasts. Western blotting, real-time PCR, luciferase reporter assay, overexpression and knockdown of cellular miR-146a strategies have been employed to validate the role of miR-146a in regulation of pro-inflammatory NF-κB pathway. RESULTS CHIKV infection induced the expression of cellular miR-146a, which resulted into down-regulation of TRAF6, IRAK1, IRAK2 and increased replication of CHIKV in human synovial fibroblasts. Exogenous expression of miR-146a in human synovial fibroblasts led to decreased expression of TRAF6, IRAK1, IRAK2 and decreased replication of CHIKV. Inhibition of cellular miR-146a by anti-miR-146a restored the expression levels of TRAF6, IRAK1 and IRAK2. Downregulation of TRAF6, IRAK1 and IRAK2 led to downstream decreased NF-κB activation through negative feedback loop. CONCLUSION This study demonstrated the mechanism of exploitation of cellular miR-146a by CHIKV in modulating the host antiviral immune response in primary human synovial fibroblasts.
Collapse
|
43
|
Antiviral perspectives for chikungunya virus. BIOMED RESEARCH INTERNATIONAL 2014; 2014:631642. [PMID: 24955364 PMCID: PMC4052087 DOI: 10.1155/2014/631642] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 04/22/2014] [Accepted: 04/30/2014] [Indexed: 12/17/2022]
Abstract
Chikungunya virus (CHIKV) is a mosquito-borne pathogen that has a major health impact in humans and causes acute febrile illness in humans accompanied by joint pains and, in many cases, persistent arthralgia lasting for weeks to years. CHIKV reemerged in 2005-2006 in several parts of the Indian Ocean islands and India after a gap of 32 years, causing millions of cases. The re-emergence of CHIKV has also resulted in numerous outbreaks in several countries in the eastern hemisphere, with a threat to further expand in the near future. However, there is no vaccine against CHIKV infection licensed for human use, and therapy for CHIKV infection is still mainly limited to supportive care as antiviral agents are yet in different stages of testing or development. In this review we explore the different perspectives for chikungunya treatment and the effectiveness of these treatment regimens and discuss the scope for future directions.
Collapse
|
44
|
Gigante A, Canela MD, Delang L, Priego EM, Camarasa MJ, Querat G, Neyts J, Leyssen P, Pérez-Pérez MJ. Identification of [1,2,3]Triazolo[4,5-d]pyrimidin-7(6H)-ones as Novel Inhibitors of Chikungunya Virus Replication. J Med Chem 2014; 57:4000-8. [DOI: 10.1021/jm401844c] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Alba Gigante
- Instituto de Química
Médica (CSIC), Juan de la Cierva
3, Madrid E-28006, Spain
| | | | - Leen Delang
- Rega
Institute for Medical Research, KU Leuven, Leuven B-3000, Belgium
| | - Eva-María Priego
- Instituto de Química
Médica (CSIC), Juan de la Cierva
3, Madrid E-28006, Spain
| | - María-José Camarasa
- Instituto de Química
Médica (CSIC), Juan de la Cierva
3, Madrid E-28006, Spain
| | - Gilles Querat
- UMR190, Emergence
des Pathologies Virales, Aix-Marseille Univ. IRD French Institute
of Research for Development, EHESP French School of Public Health, 27 Bd Jean Moulin, Marseille 13005, France
| | - Johan Neyts
- Rega
Institute for Medical Research, KU Leuven, Leuven B-3000, Belgium
| | - Pieter Leyssen
- Rega
Institute for Medical Research, KU Leuven, Leuven B-3000, Belgium
| | | |
Collapse
|
45
|
Discovery of in silico hits targeting the nsP3 macro domain of chikungunya virus. J Mol Model 2014; 20:2216. [PMID: 24756552 PMCID: PMC7088235 DOI: 10.1007/s00894-014-2216-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 03/16/2014] [Indexed: 12/24/2022]
Abstract
The recent emergence and re-emergence of alphaviruses, in particular the chikungunya virus (CHIKV), in numerous countries has invoked a worldwide threat to human health, while simultaneously generating an economic burden on affected countries. There are currently no vaccines or effective drugs available for the treatment of the CHIKV, and with few lead compounds reported, the vital medicinal chemistry is significantly more challenging. This study reports on the discovery of potential inhibitors for the nsP3 macro domain of CHIKV using molecular docking, virtual screening, and molecular dynamics simulations, as well as work done to evaluate and confirm the active site of nsP3. Virtual screening was carried out based on blind docking as well as focused docking, using the database of 1541 compounds from NCI Diversity Set II, to identify hit compounds for nsP3. The top hit compounds were further subjected to molecular dynamic simulations, yielding a greater understanding of the dynamic behavior of nsP3 and its complexes with various ligands, concurrently confirming the outcomes of docking, and establishing in silico lead compounds which target the CHIKV nsP3 enzyme. Virtual screening identifies novel inhibitors targeting the nsP3 macro domain of chikungunya virus ![]()
Collapse
|
46
|
Waldock J, Chandra NL, Lelieveld J, Proestos Y, Michael E, Christophides G, Parham PE. The role of environmental variables on Aedes albopictus biology and chikungunya epidemiology. Pathog Glob Health 2014; 107:224-41. [PMID: 23916332 DOI: 10.1179/2047773213y.0000000100] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aedes albopictus is a vector of dengue and chikungunya viruses in the field, along with around 24 additional arboviruses under laboratory conditions. As an invasive mosquito species, Ae. albopictus has been expanding in geographical range over the past 20 years, although the poleward extent of mosquito populations is limited by winter temperatures. Nonetheless, population densities depend on environmental conditions and since global climate change projections indicate increasing temperatures and altered patterns of rainfall, geographic distributions of previously tropical mosquito species may change. Although mathematical models can provide explanatory insight into observed patterns of disease prevalence in terms of epidemiological and entomological processes, understanding how environmental variables affect transmission is possible only with reliable model parameterisation, which, in turn, is obtained only through a thorough understanding of the relationship between mosquito biology and environmental variables. Thus, in order to assess the impact of climate change on mosquito population distribution and regions threatened by vector-borne disease, a detailed understanding (through a synthesis of current knowledge) of the relationship between climate, mosquito biology, and disease transmission is required, but this process has not yet been undertaken for Ae. albopictus. In this review, the impact of temperature, rainfall, and relative humidity on Ae. albopictus development and survival are considered. Existing Ae. albopictus populations across Europe are mapped with current climatic conditions, considering whether estimates of climatic cutoffs for Ae. albopictus are accurate, and suggesting that environmental thresholds must be calibrated according to the scale and resolution of climate model outputs and mosquito presence data.
Collapse
|
47
|
Rashad AA, Mahalingam S, Keller PA. Chikungunya virus: emerging targets and new opportunities for medicinal chemistry. J Med Chem 2013; 57:1147-66. [PMID: 24079775 DOI: 10.1021/jm400460d] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chikungunya virus is an emerging arbovirus that is widespread in tropical regions and is spreading quickly to temperate climates with recent epidemics in Africa and Asia and documented outbreaks in Europe and the Americas. It is having an increasingly major impact on humankind, with potentially life-threatening and debilitating arthritis. There is no treatment available, and only in the past 24 months have lead compounds for development as potential therapeutics been reported. This Perspective discusses the chikungunya virus as a significant, new emerging topic for medicinal chemistry, highlighting the key viral target proteins and their molecular functions that can be used in drug design, as well as the most important ongoing developments for anti-chikungunya virus research. It represents a complete picture of the current medicinal chemistry of chikungunya, supporting the development of chemotherapeutics through drug discovery and design targeting this virus.
Collapse
Affiliation(s)
- Adel A Rashad
- Centre for Medicinal Chemistry, School of Chemistry, University of Wollongong , Wollongong, 2522, Australia
| | | | | |
Collapse
|
48
|
Rashad AA, Keller PA. Structure based design towards the identification of novel binding sites and inhibitors for the chikungunya virus envelope proteins. J Mol Graph Model 2013; 44:241-52. [PMID: 23911992 DOI: 10.1016/j.jmgm.2013.07.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 07/02/2013] [Accepted: 07/03/2013] [Indexed: 01/22/2023]
Abstract
Chikungunya virus is an emerging arbovirus that is widespread in tropical regions and is spreading quickly to temperate climates with recent epidemics in Africa, Asia, Europe and the Americas. It is having an increasingly major impact on humans with potentially life-threatening and debilitating arthritis. Thus far, neither vaccines nor medications are available to treat or control the virus and therefore, the development of medicinal chemistry is a vital and immediate issue that needs to be addressed. The viral envelope proteins play a major role during infection through mediation of binding and fusion with the infected cell surfaces. The possible binding target sites of the chikungunya virus envelope proteins have not previously been investigated; we describe here for the first time the identification of novel sites for potential binding on the chikungunya glycoprotein complexes and the identification of possible antagonists for these sites through virtual screening using two successive docking scores; FRED docking for fast precise screening, with the top hits then subjected to a ranking scoring using the AUTODOCK algorithm. Both the immature and the mature forms of the chikungunya envelope proteins were included in the study to increase the probability of finding positive and reliable hits. Some small molecules have been identified as good in silico chikungunya virus envelope proteins inhibitors and these could be good templates for drug design targeting this virus.
Collapse
Affiliation(s)
- Adel A Rashad
- Centre for Medicinal Chemistry, School of Chemistry, University of Wollongong, Wollongong 2522, Australia
| | | |
Collapse
|
49
|
Thiberville SD, Moyen N, Dupuis-Maguiraga L, Nougairede A, Gould EA, Roques P, de Lamballerie X. Chikungunya fever: epidemiology, clinical syndrome, pathogenesis and therapy. Antiviral Res 2013; 99:345-70. [PMID: 23811281 PMCID: PMC7114207 DOI: 10.1016/j.antiviral.2013.06.009] [Citation(s) in RCA: 333] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Revised: 05/21/2013] [Accepted: 06/18/2013] [Indexed: 12/11/2022]
Abstract
Chikungunya fever is caused by a mosquito-borne alphavirus originating in East Africa. During the past 7 years, the disease has spread to islands of the Indian Ocean, Asia and Europe. Its spread has been facilitated by a mutation favouring replication in the mosquito Ae. albopictus. No vaccines or antiviral drugs are available to prevent or treat chikungunya fever. This paper provides an extensive review of the virus and disease, including Supplementary Tables.
Chikungunya virus (CHIKV) is the aetiological agent of the mosquito-borne disease chikungunya fever, a debilitating arthritic disease that, during the past 7 years, has caused immeasurable morbidity and some mortality in humans, including newborn babies, following its emergence and dispersal out of Africa to the Indian Ocean islands and Asia. Since the first reports of its existence in Africa in the 1950s, more than 1500 scientific publications on the different aspects of the disease and its causative agent have been produced. Analysis of these publications shows that, following a number of studies in the 1960s and 1970s, and in the absence of autochthonous cases in developed countries, the interest of the scientific community remained low. However, in 2005 chikungunya fever unexpectedly re-emerged in the form of devastating epidemics in and around the Indian Ocean. These outbreaks were associated with mutations in the viral genome that facilitated the replication of the virus in Aedes albopictus mosquitoes. Since then, nearly 1000 publications on chikungunya fever have been referenced in the PubMed database. This article provides a comprehensive review of chikungunya fever and CHIKV, including clinical data, epidemiological reports, therapeutic aspects and data relating to animal models for in vivo laboratory studies. It includes Supplementary Tables of all WHO outbreak bulletins, ProMED Mail alerts, viral sequences available on GenBank, and PubMed reports of clinical cases and seroprevalence studies.
Collapse
Affiliation(s)
- Simon-Djamel Thiberville
- UMR_D 190 "Emergence des Pathologies Virales" (Aix-Marseille Univ. IRD French Institute of Research for Development EHESP French School of Public Health), Marseille, France; University Hospital Institute for Infectious Disease and Tropical Medicine, Marseille, France.
| | | | | | | | | | | | | |
Collapse
|
50
|
Two disciplines, one priority: the seamless integration of human and veterinary microbiology is urgent. Emerg Microbes Infect 2012; 1:e10. [PMID: 26038422 PMCID: PMC3634132 DOI: 10.1038/emi.2012.14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|