1
|
Zhang TK, Yi ZQ, Huang YQ, Geng W, Yang XY. Natural biomolecules for cell-interface engineering. Chem Sci 2025; 16:3019-3044. [PMID: 39882561 PMCID: PMC11773181 DOI: 10.1039/d4sc08422e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 12/18/2024] [Indexed: 01/31/2025] Open
Abstract
Cell-interface engineering is a way to functionalize cells through direct or indirect self-assembly of functional materials around the cells, showing an enhancement to cell functions. Among the materials used in cell-interface engineering, natural biomolecules play pivotal roles in the study of biological interfaces, given that they have good advantages such as biocompatibility and rich functional groups. In this review, we summarize and overview the development of studies of natural biomolecules that have been used in cell-biointerface engineering and then review the five main types of biomolecules used in constructing biointerfaces, namely DNA polymers, amino acids, polyphenols, proteins and polysaccharides, to show their applications in green energy, biocatalysis, cell therapy and environmental protection and remediation. Lastly, the current prospects and challenges in this area are presented with potential solutions to solve these problems, which in turn benefits the design of next-generation cell engineering.
Collapse
Affiliation(s)
- Tong-Kai Zhang
- State Key Laboratory of Silicate Materials for Architectures & State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & School of Chemistry, Chemical Engineering and Life Sciences & Laoshan Laboratory & School of Materials Science and Engineering, Wuhan University of Technology Wuhan 430070 China
| | - Zi-Qian Yi
- State Key Laboratory of Silicate Materials for Architectures & State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & School of Chemistry, Chemical Engineering and Life Sciences & Laoshan Laboratory & School of Materials Science and Engineering, Wuhan University of Technology Wuhan 430070 China
| | - Yao-Qi Huang
- State Key Laboratory of Silicate Materials for Architectures & State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & School of Chemistry, Chemical Engineering and Life Sciences & Laoshan Laboratory & School of Materials Science and Engineering, Wuhan University of Technology Wuhan 430070 China
- School of Engineering and Applied Sciences, Harvard University MA-02138 USA
| | - Wei Geng
- State Key Laboratory of Silicate Materials for Architectures & State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & School of Chemistry, Chemical Engineering and Life Sciences & Laoshan Laboratory & School of Materials Science and Engineering, Wuhan University of Technology Wuhan 430070 China
| | - Xiao-Yu Yang
- State Key Laboratory of Silicate Materials for Architectures & State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & School of Chemistry, Chemical Engineering and Life Sciences & Laoshan Laboratory & School of Materials Science and Engineering, Wuhan University of Technology Wuhan 430070 China
- National Energy Key Laboratory for New Hydrogen-Ammonia Energy Technologies, Foshan Xianhu Laboratory Foshan 528200 P. R. China
| |
Collapse
|
2
|
Wang B, Hasturk O, Kumarasinghe U, Rudolph S, Staii C, Chen Y, Kaplan DL. Temporary Nanoencapsulation of Human Intestinal Organoids Using Silk Ionomers. Adv Healthc Mater 2025; 14:e2403176. [PMID: 39648539 DOI: 10.1002/adhm.202403176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/03/2024] [Indexed: 12/10/2024]
Abstract
Human intestinal organoids (HIOs) are vital for modeling intestinal development, disease, and therapeutic tissue regeneration. However, their susceptibility to stress, immunological attack, and environmental fluctuations limits their utility in research and therapeutic applications. This study evaluated the effectiveness of temporary silk protein-based layer-by-layer (LbL) nanoencapsulation technique to enhance the viability and functions of HIOs against common biomedical stressors, without compromising their native functions. Cell viability and differentiation capacity are assessed, finding that nanoencapsulation significantly improved HIO survival under the various environmental perturbations studied without compromising cellular functionality. Post-stress exposures, the encapsulated HIOs still successfully differentiated into essential intestinal cell types such as enterocytes, goblet cells, enteroendocrine cells, and Paneth cells. Moreover, the silk nanocoatings effectively protected against environmental stressors such as ultraviolet (UV) light exposure, protease degradation, antibody binding, and cytokine-induced inflammation. This nanoencapsulation technique shows promise for advancing HIO applications in disease modeling, drug testing, and potential transplantation therapies.
Collapse
Affiliation(s)
- Brooke Wang
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Onur Hasturk
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | | | - Sara Rudolph
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Cristian Staii
- Department of Physics and Astronomy, Tufts University, Medford, MA, USA
| | - Ying Chen
- Department of Physics and Astronomy, Tufts University, Medford, MA, USA
| | - David L Kaplan
- Department of Physics and Astronomy, Tufts University, Medford, MA, USA
| |
Collapse
|
3
|
Zia A, Khalid S, Rasool N, Mohsin N, Imran M, Toma SI, Misarca C, Andreescu O. Pd-, Cu-, and Ni-Catalyzed Reactions: A Comprehensive Review of the Efficient Approaches towards the Synthesis of Antibacterial Molecules. Pharmaceuticals (Basel) 2024; 17:1370. [PMID: 39459010 PMCID: PMC11509998 DOI: 10.3390/ph17101370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/06/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
A strong synthetic tool for many naturally occurring chemicals, polymers, and pharmaceutical substances is transition metal-catalyzed synthesis. A serious concern to human health is the emergence of bacterial resistance to a broad spectrum of antibacterial medications. The synthesis of chemical molecules that are potential antibacterial candidates is underway. The main contributions to medicine are found to be effective in transition metal catalysis and heterocyclic chemistry. This review underlines the use of heterocycles and certain effective transition metals (Pd, Cu, and Ni) as catalysts in chemical methods for the synthesis of antibacterial compounds. Pharmaceutical chemists might opt for clinical exploration of these techniques due to their potential.
Collapse
Affiliation(s)
- Almeera Zia
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan; (A.Z.); (S.K.); (N.M.)
| | - Shehla Khalid
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan; (A.Z.); (S.K.); (N.M.)
| | - Nasir Rasool
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan; (A.Z.); (S.K.); (N.M.)
| | - Nayab Mohsin
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan; (A.Z.); (S.K.); (N.M.)
| | - Muhammad Imran
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia;
- Chemistry Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Sebastian Ionut Toma
- Faculty of Medicine, Transilvania University of Brasov, 500036 Brasov, Romania; (C.M.); (O.A.)
| | - Catalin Misarca
- Faculty of Medicine, Transilvania University of Brasov, 500036 Brasov, Romania; (C.M.); (O.A.)
| | - Oana Andreescu
- Faculty of Medicine, Transilvania University of Brasov, 500036 Brasov, Romania; (C.M.); (O.A.)
| |
Collapse
|
4
|
Fu C, Wang Z, Zhou X, Hu B, Li C, Yang P. Protein-based bioactive coatings: from nanoarchitectonics to applications. Chem Soc Rev 2024; 53:1514-1551. [PMID: 38167899 DOI: 10.1039/d3cs00786c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Protein-based bioactive coatings have emerged as a versatile and promising strategy for enhancing the performance and biocompatibility of diverse biomedical materials and devices. Through surface modification, these coatings confer novel biofunctional attributes, rendering the material highly bioactive. Their widespread adoption across various domains in recent years underscores their importance. This review systematically elucidates the behavior of protein-based bioactive coatings in organisms and expounds on their underlying mechanisms. Furthermore, it highlights notable advancements in artificial synthesis methodologies and their functional applications in vitro. A focal point is the delineation of assembly strategies employed in crafting protein-based bioactive coatings, which provides a guide for their expansion and sustained implementation. Finally, the current trends, challenges, and future directions of protein-based bioactive coatings are discussed.
Collapse
Affiliation(s)
- Chengyu Fu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
- Xi'an Key Laboratory of Polymeric Soft Matter, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
- International Joint Research Center on Functional Fiber and Soft Smart Textile, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Zhengge Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
- Xi'an Key Laboratory of Polymeric Soft Matter, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
- International Joint Research Center on Functional Fiber and Soft Smart Textile, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Xingyu Zhou
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
- Xi'an Key Laboratory of Polymeric Soft Matter, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
- International Joint Research Center on Functional Fiber and Soft Smart Textile, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Bowen Hu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
- Xi'an Key Laboratory of Polymeric Soft Matter, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
- International Joint Research Center on Functional Fiber and Soft Smart Textile, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Chen Li
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Eastern HuaLan Avenue, Xinxiang, Henan 453003, China
| | - Peng Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
- Xi'an Key Laboratory of Polymeric Soft Matter, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
- International Joint Research Center on Functional Fiber and Soft Smart Textile, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
5
|
Wang K, Zhao C, Ma Y, Yang W. Yolk-Shell Encapsulation of Cells by Biomimetic Mineralization and Visible Light-Induced Surface Graft Polymerization. Biomacromolecules 2023; 24:6032-6040. [PMID: 37967289 DOI: 10.1021/acs.biomac.3c01143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
The pursuit of low-cytotoxicity modification strategies represents a prominent avenue in cell coating research, holding immense significance for the advancement of practical living cell-related technologies. Here, we presented a novel method to fabricate encapsulated yeast cells with a yolk-shell structure by biomimetic mineralization and visible-light-induced surface graft polymerization. In this approach, an amorphous calcium carbonate (ACC) shell was first deposited on the surface of a yeast cell (cell@ACC) modified with 4 layers of self-assembled poly(diallyl dimethylammonium chloride) (PDADMAC)/poly(acrylic acid) (PAA) film using a biomimetic mineralization technique. Subsequently, polyethylenimine (PEI) was absorbed on the surface of cell@ACC by electrostatic interaction. Then, a cross-linked shell was introduced by surface-initiated graft polymerization of poly(ethylene glycol) diacrylate (PEGDA) on cell@ACC under irradiation of visible light using thioxanthone catechol-O,O'-diacetic acid as the photosensitizer. After the removal of the inner ACC shell, the yolk-shell-structured yeast cells (cell@PHS) were obtained. Due to the mild conditions of the strategy, the cell@PHS could retain 98.81% of its original viability. The introduction of the shell layer significantly prolonged the lag phase of yeast cells, which could be tuned between 5 and 25 h by regulating the thickness of the shell. Moreover, the cell@PHS showed improved resistance against lyticase due to the presence of a protective shell. After 30 days of storage, the viability of cell@PHS was 81.09%, which is significantly higher than the 19.89% viability of native yeast cells.
Collapse
Affiliation(s)
- Kanglei Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Changwen Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
- Key Laboratory of Biomedical Materials of Natural Macromolecules, Ministry of Education Beijing, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuhong Ma
- Key Laboratory of Carbon Fiber and Functional Polymers Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wantai Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
- Key Laboratory of Biomedical Materials of Natural Macromolecules, Ministry of Education Beijing, Beijing University of Chemical Technology, Beijing 100029, China
- Key Laboratory of Carbon Fiber and Functional Polymers Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
6
|
Park S, Kang SE, Kim SJ, Kim J. Graphene-encapsulated yeast cells in harsh conditions. Fungal Biol 2023; 127:1389-1396. [PMID: 37993250 DOI: 10.1016/j.funbio.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/10/2023] [Accepted: 10/18/2023] [Indexed: 11/24/2023]
Abstract
Yeast, as a versatile microorganism, holds significant importance in various industries and research fields due to its remarkable characteristics. In the pursuit of biotechnological applications, cell-surface engineering including encapsulation has been proposed as a new strategy to interface with individual living yeast cells. While previous researches of yeast encapsulation with materials have shown promise, it often involves complex processes and lacks confirmation of condition-dependent yeast viability under harsh conditions. To address these issues, we present a rational and facile design for graphene-encapsulated yeast cells. Through a straightforward blending technique, yeast cells are encapsulated with graphene layers, demonstrating the unique properties of yeast cells in structural and functional aspects with graphene. We show graphene layer-dependent functions of yeast cells under various conditions, including pH and temperature-dependent conditions. The layer of graphene can induce the delayed lag time without the transfer of graphene-layered membrane. Our findings highlight the high potential of graphene-encapsulated yeast cells for various industrial applications, offering new avenues for exploration in biotechnology.
Collapse
Affiliation(s)
- Sunho Park
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - So-Ee Kang
- Department of Food Science and Technology Graduate School, Chonnam National University, Gwangju, 61185, Republic of Korea
| | - Soo-Jung Kim
- Department of Food Science and Technology Graduate School, Chonnam National University, Gwangju, 61185, Republic of Korea; Research Center for Biological Cybernetics, Chonnam National University, Gwangju, 61185, Republic of Korea.
| | - Jangho Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
7
|
Hou X, Hu X. Self-Assembled Nanoscale Manganese Oxides Enhance Carbon Capture by Diatoms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:17215-17226. [PMID: 36375171 DOI: 10.1021/acs.est.2c04500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Continuous CO2 emissions from human activities increase atmospheric CO2 concentrations and affect global climate change. The carbon storage capacity of the ocean is 20-fold higher than that of the land, and diatoms contribute to approximately 40% of carbon capture in the ocean. Manganese (Mn) is a major driver of marine phytoplankton growth and the marine carbon pump. Here, we discovered self-assembled manganese oxides (MnOx) for CO2 fixation in a diatom-based biohybrid system. MnOx shared key features (e.g., di-μ-oxo-bridged Mn-Mn) with the Mn4CaO5 cluster of the biological catalyst in photosystem II and promoted photosynthesis and carbon capture by diatoms/MnOx. The CO2 capture capacity of diatoms/MnOx was 1.5-fold higher than that of diatoms alone. Diatoms/MnOx easily allocated carbon into proteins and lipids instead of carbohydrates. Metabolomics showed that the contents of several metabolites (e.g., lysine and inositol) were positively associated with increased CO2 capture. Diatoms/MnOx upregulated six genes encoding photosynthesis core proteins and a key rate-limiting enzyme (Rubisco, ribulose 1,5-bisphosphate carboxylase-oxygenase) in the Calvin-Benson-Bassham carbon assimilation cycle, revealing the link between MnOx and photosynthesis. These findings provide a route for offsetting anthropogenic CO2 emissions and inspiration for self-assembled biohybrid systems for carbon capture by marine phytoplankton.
Collapse
Affiliation(s)
- Xuan Hou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin300350, China
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin300350, China
| |
Collapse
|
8
|
Wang W, Wang S. Cell-based biocomposite engineering directed by polymers. LAB ON A CHIP 2022; 22:1042-1067. [PMID: 35244136 DOI: 10.1039/d2lc00067a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Biological cells such as bacterial, fungal, and mammalian cells always exploit sophisticated chemistries and exquisite micro- and nano-structures to execute life activities, providing numerous templates for engineering bioactive and biomorphic materials, devices, and systems. To transform biological cells into functional biocomposites, polymer-directed cell surface engineering and intracellular functionalization have been developed over the past two decades. Polymeric materials can be easily adopted by various cells through polymer grafting or in situ hydrogelation and can successfully bridge cells with other functional materials as interfacial layers, thus achieving the manufacture of advanced biocomposites through bioaugmentation of living cells and transformation of cells into templated materials. This review article summarizes the recent progress in the design and construction of cell-based biocomposites by polymer-directed strategies. Furthermore, the applications of cell-based biocomposites in broad fields such as cell research, biomedicine, and bioenergy are discussed. Last, we provide personal perspectives on challenges and future trends in this interdisciplinary area.
Collapse
Affiliation(s)
- Wenshuo Wang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
| | - Shutao Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, CAS Center for Excellence in Nanoscience, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Jiao C, Zhao C, Ma Y, Yang W. A Versatile Strategy to Coat Individual Cell with Fully/Partially Covered Shell for Preparation of Self-Propelling Living Cells. ACS NANO 2021; 15:15920-15929. [PMID: 34591443 DOI: 10.1021/acsnano.1c03896] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Coating living cells with a functional shell has been regarded as an effective way to protect them against environmental stress, regulate their biological behaviors, or extend their functionalities. Here, we reported a facile method to prepare fully or partially coated shells on an individual yeast cell surface by visible light-induced graft polymerization. In this strategy, yeast cells that were surface-absorbed with polyethylenimine (PEI) were deposited on the negatively charged glass slide to form a single layer by electrostatic interaction. Then, surface-initiated graft polymerization of poly(ethylene glycol) diacrylate (PEGDA) on yeast cells under visible light irradiation was carried out to generate cross-linked shells on the cells. The process of surface modification had negligible influence on the viability of yeast cells due to the mild reaction condition. Additionally, compared to the native yeast cells, a 17.5 h of delay in division was observed when the graft polymerization was performed under 15 mW/cm2 irradiation for 30 min. Introducing artificial shell endowed yeast cells with significant resistance against lyticase, and the protection can be enhanced by increasing the thickness of shell. Moreover, the partially coated yeast cells would be prepared by simply adjusting the reaction condition such as irradiation density and time. By immobilizing urease on the functional patch, the asymmetrically modified yeast cells exhibited self-propelling capability, and the speed of directional movement reached 4 μm/s in the presence of 200 mM urea. This tunable coating individual cell strategy with varying functionality has great potential applications in fields of cell-based drug delivery, cell therapy, biocatalysis, and tissue engineering.
Collapse
Affiliation(s)
- Chong Jiao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Changwen Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
- Key Laboratory of Biomedical Materials of Natural Macromolecules, Ministry of Education Beijing, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yuhong Ma
- Key Laboratory of Carbon Fiber and Functional Polymers Ministry of Education, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Wantai Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
- Key Laboratory of Biomedical Materials of Natural Macromolecules, Ministry of Education Beijing, Beijing University of Chemical Technology, Beijing, 100029, China
- Key Laboratory of Carbon Fiber and Functional Polymers Ministry of Education, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
10
|
Hou W, Li J, Cao Z, Lin S, Pan C, Pang Y, Liu J. Decorating Bacteria with a Therapeutic Nanocoating for Synergistically Enhanced Biotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101810. [PMID: 34365713 DOI: 10.1002/smll.202101810] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/09/2021] [Indexed: 06/13/2023]
Abstract
Disorders in the gut microbiota have been implicated in various diseases, such as inflammatory bowel diseases, diabetes, and cancers. Oral microecologics are of great importance due to their ability to directly intervene the gut microbiome as well as their noninvasiveness and low side effects, while have suffered from low bioavailability and a single therapeutic effect. Here, probiotics are coated with a therapeutic nanocoating for synergistically enhanced biotherapy, a method inspired by the robust protective and therapeutic effectiveness of silkworm cocoon. With its transition from a random coil to β-sheet conformation, silk fibroin can self-assemble onto the surface of bacteria. By a simple layer-by-layer procedure, an entire nanocoating can be formed along with a near quantitative coating ratio and almost uninfluenced bacterial viability. Thanks to its protective barrier role and innate pharmaceutical activity, silk fibroin nanocoating endows the coated bacteria with a markedly improved survival against gastric insults and a synergistically enhanced therapeutic effect in a murine model of intestinal mucositis. This work demonstrates how therapeutic elements can be combined with probiotics via a simple coating strategy and proposes an alternative to enhance bioavailability and treatment efficacy of oral microecologics.
Collapse
Affiliation(s)
- Weiliang Hou
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Juanjuan Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Zhenping Cao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Sisi Lin
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Chao Pan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yan Pang
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Department of Ophthalmology, Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200011, China
| | - Jinyao Liu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| |
Collapse
|
11
|
Biomaterials for Cell-Surface Engineering and Their Efficacy. J Funct Biomater 2021; 12:jfb12030041. [PMID: 34287337 PMCID: PMC8293134 DOI: 10.3390/jfb12030041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 12/30/2022] Open
Abstract
Literature in the field of stem cell therapy indicates that, when stem cells in a state of single-cell suspension are injected systemically, they show poor in vivo survival, while such cells show robust cell survival and regeneration activity when transplanted in the state of being attached on a biomaterial surface. Although an attachment-deprived state induces anoikis, when cell-surface engineering technology was adopted for stem cells in a single-cell suspension state, cell survival and regenerative activity dramatically improved. The biochemical signal coming from ECM (extracellular matrix) molecules activates the cell survival signal transduction pathway and prevents anoikis. According to the target disease, various therapeutic cells can be engineered to improve their survival and regenerative activity, and there are several types of biomaterials available for cell-surface engineering. In this review, biomaterial types and application strategies for cell-surface engineering are presented along with their expected efficacy.
Collapse
|
12
|
Li H, Kang A, An B, Chou LY, Shieh FK, Tsung CK, Zhong C. Encapsulation of bacterial cells in cytoprotective ZIF-90 crystals as living composites. Mater Today Bio 2021; 10:100097. [PMID: 33733083 PMCID: PMC7937694 DOI: 10.1016/j.mtbio.2021.100097] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/19/2022] Open
Abstract
Exploiting metal-organic frameworks (MOFs) as selectively permeable shelters for encapsulating engineered cells to form hybrid living materials has attracted increasing attention in recent years. Optimizing the synthesis process to improve encapsulation efficiency (EE) is critical for further technological development and applications. Here, using ZIF-90 and genetically engineered Escherichia coli (E. coli) as a demo, we fabricated E. coli@ZIF-90 living composites in which E. coli cells were encapsulated in ZIF-90 crystals. We illustrated that ZIF-90 could serve as a protective porous cage for cells to shield against toxic bactericides including benzaldehyde, cinnamaldehyde, and kanamycin. Notably, the E. coli cells remained alive and could self-reproduce after removing the ZIF-90 crystal cages in ethylenediaminetetraacetic acid, suggesting a feasible route for protecting and prolonging the lifespan of bacterial cells. Moreover, an aqueous multiple-step deposition approach was developed to improve EE of the E. coli@ZIF-90 composites: the EE increased to 61.9 ± 5.2%, in contrast with the efficiency of the traditional method (21.3 ± 4.4%) prepared with PBS buffer. In short, we develop a simple yet viable strategy to manufacture MOF-based living hybrid materials that promise new applications across diverse fields.
Collapse
Affiliation(s)
- H. Li
- Materials and Physical Biology Division, School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - A. Kang
- Materials and Physical Biology Division, School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - B. An
- Materials and Physical Biology Division, School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - L.-Y. Chou
- Materials and Physical Biology Division, School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - F.-K. Shieh
- Department of Chemistry, National Central University, Taoyuan 32001, Taiwan
| | - C.-K. Tsung
- Boston College Chemistry Department, Merkert Chemistry Center, 2609 Beacon St, Chestnut Hill, MA 02467, USA
| | - C. Zhong
- Materials and Physical Biology Division, School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
13
|
Qi R, Zhao H, Zhou X, Liu J, Dai N, Zeng Y, Zhang E, Lv F, Huang Y, Liu L, Wang Y, Wang S. In Situ Synthesis of Photoactive Polymers on a Living Cell Surface via Bio‐Palladium Catalysis for Modulating Biological Functions. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015247] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ruilian Qi
- Key Laboratory of Organic Solids Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Hao Zhao
- Key Laboratory of Organic Solids Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Xin Zhou
- Key Laboratory of Organic Solids Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Jian Liu
- Key Laboratory of Organic Solids Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Nan Dai
- Key Laboratory of Organic Solids Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Yue Zeng
- Key Laboratory of Organic Solids Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Endong Zhang
- Key Laboratory of Organic Solids Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Fengting Lv
- Key Laboratory of Organic Solids Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Yiming Huang
- Key Laboratory of Organic Solids Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Libing Liu
- Key Laboratory of Organic Solids Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- College of Chemistry University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yilin Wang
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- College of Chemistry University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Shu Wang
- Key Laboratory of Organic Solids Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- College of Chemistry University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
14
|
Qi R, Zhao H, Zhou X, Liu J, Dai N, Zeng Y, Zhang E, Lv F, Huang Y, Liu L, Wang Y, Wang S. In Situ Synthesis of Photoactive Polymers on a Living Cell Surface via Bio‐Palladium Catalysis for Modulating Biological Functions. Angew Chem Int Ed Engl 2021; 60:5759-5765. [DOI: 10.1002/anie.202015247] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Indexed: 01/24/2023]
Affiliation(s)
- Ruilian Qi
- Key Laboratory of Organic Solids Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Hao Zhao
- Key Laboratory of Organic Solids Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Xin Zhou
- Key Laboratory of Organic Solids Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Jian Liu
- Key Laboratory of Organic Solids Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Nan Dai
- Key Laboratory of Organic Solids Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Yue Zeng
- Key Laboratory of Organic Solids Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Endong Zhang
- Key Laboratory of Organic Solids Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Fengting Lv
- Key Laboratory of Organic Solids Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Yiming Huang
- Key Laboratory of Organic Solids Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Libing Liu
- Key Laboratory of Organic Solids Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- College of Chemistry University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yilin Wang
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- College of Chemistry University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Shu Wang
- Key Laboratory of Organic Solids Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- College of Chemistry University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
15
|
Cui Y, Li B, Wang X, Tang R. Organism–Materials Integration: A Promising Strategy for Biomedical Applications. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202000044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Yihao Cui
- Center for Biomaterials and Biopathways Department of Chemistry Zhejiang University No. 38 Zheda Road Hangzhou Zhejiang 310027 China
| | - Benke Li
- Center for Biomaterials and Biopathways Department of Chemistry Zhejiang University No. 38 Zheda Road Hangzhou Zhejiang 310027 China
| | - Xiaoyu Wang
- Qiushi Academy for Advanced Studies Zhejiang University No. 38 Zheda Road Hangzhou Zhejiang 310027 China
| | - Ruikang Tang
- Center for Biomaterials and Biopathways Department of Chemistry Zhejiang University No. 38 Zheda Road Hangzhou Zhejiang 310027 China
- Qiushi Academy for Advanced Studies Zhejiang University No. 38 Zheda Road Hangzhou Zhejiang 310027 China
| |
Collapse
|
16
|
Hui Chong LS, Zhang J, Bhat KS, Yong D, Song J. Bioinspired cell-in-shell systems in biomedical engineering and beyond: Comparative overview and prospects. Biomaterials 2020; 266:120473. [PMID: 33120202 DOI: 10.1016/j.biomaterials.2020.120473] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 10/07/2020] [Accepted: 10/18/2020] [Indexed: 12/28/2022]
Abstract
With the development in tissue engineering, cell transplantation, and genetic technologies, living cells have become an important therapeutic tool in clinical medical care. For various cell-based technologies including cell therapy and cell-based sensors in addition to fundamental studies on single-cell biology, the cytoprotection of individual living cells is a prerequisite to extend cell storage life or deliver cells from one place to another, resisting various external stresses. Nature has evolved a biological defense mechanism to preserve their species under unfavorable conditions by forming a hard and protective armor. Particularly, plant seeds covered with seed coat turn into a dormant state against stressful environments, due to mechanical and water/gas constraints imposed by hard seed coat. However, when the environmental conditions become hospitable to seeds, seed coat is ruptured, initiating seed germination. This seed dormancy and germination mechanism has inspired various approaches that artificially induce cell sporulation via chemically encapsulating individual living cells within a thin but tough shell forming a 3D "cell-in-shell" structure. Herein, the recent advance of cell encapsulation strategies along with the potential advantages of the 3D "cell-in-shell" system is reviewed. Diverse coating materials including polymeric shells and hybrid shells on different types of cells ranging from microbes to mammalian cells will be discussed in terms of enhanced cytoprotective ability, control of division, chemical functionalization, and on-demand shell degradation. Finally, current and potential applications of "cell-in-shell" systems for cell-based technologies with remaining challenges will be explored.
Collapse
Affiliation(s)
- Lydia Shi Hui Chong
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore; Singapore Institute of Manufacturing Technology, Agency for Science, Technology and Research, 2 Fusionopolis Way, 168384, Singapore
| | - Jingyi Zhang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore; Singapore Institute of Manufacturing Technology, Agency for Science, Technology and Research, 2 Fusionopolis Way, 168384, Singapore
| | - Kiesar Sideeq Bhat
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore
| | - Derrick Yong
- Singapore Institute of Manufacturing Technology, Agency for Science, Technology and Research, 2 Fusionopolis Way, 168384, Singapore
| | - Juha Song
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore.
| |
Collapse
|
17
|
Youn W, Kim JY, Park J, Kim N, Choi H, Cho H, Choi IS. Single-Cell Nanoencapsulation: From Passive to Active Shells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1907001. [PMID: 32255241 DOI: 10.1002/adma.201907001] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/09/2019] [Accepted: 12/23/2019] [Indexed: 06/11/2023]
Abstract
Single-cell nanoencapsulation is an emerging field in cell-surface engineering, emphasizing the protection of living cells against external harmful stresses in vitro and in vivo. Inspired by the cryptobiotic state found in nature, cell-in-shell structures are formed, which are called artificial spores and which show suppression or retardation in cell growth and division and enhanced cell survival under harsh conditions. The property requirements of the shells suggested for realization of artificial spores, such as durability, permselectivity, degradability, and functionalizability, are demonstrated with various cytocompatible materials and processes. The first-generation shells in single-cell nanoencapsulation are passive in the operation mode, and do not biochemically regulate the cellular metabolism or activities. Recent advances indicate that the field has shifted further toward the formation of active shells. Such shells are intimately involved in the regulation and manipulation of biological processes. Not only endowing the cells with new properties that they do not possess in their native forms, active shells also regulate cellular metabolism and/or rewire biological pathways. Recent developments in shell formation for microbial and mammalian cells are discussed and an outlook on the field is given.
Collapse
Affiliation(s)
- Wongu Youn
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon, 34141, South Korea
| | - Ji Yup Kim
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon, 34141, South Korea
| | - Joohyouck Park
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon, 34141, South Korea
| | - Nayoung Kim
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon, 34141, South Korea
| | - Hyunwoo Choi
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon, 34141, South Korea
| | - Hyeoncheol Cho
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon, 34141, South Korea
| | - Insung S Choi
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon, 34141, South Korea
| |
Collapse
|
18
|
Kaushik S, Thungon PD, Goswami P. Silk Fibroin: An Emerging Biocompatible Material for Application of Enzymes and Whole Cells in Bioelectronics and Bioanalytical Sciences. ACS Biomater Sci Eng 2020; 6:4337-4355. [PMID: 33455178 DOI: 10.1021/acsbiomaterials.9b01971] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Enzymes and whole cells serve as the active biological entities in a myriad of applications including bioprocesses, bioanalytics, and bioelectronics. Conserving the natural activity of these functional biological entities during their prolonged use is one of the major goals for validating their practical applications. Silk fibroin (SF) has emerged as a biocompatible material to interface with enzymes as well as whole cells. These biomaterials can be tailored both physically and chemically to create excellent scaffolds of different forms such as fibers, films, and powder for immobilization and stabilization of enzymes. The secondary structures of the SF-protein can be attuned to generate hydrophobic/hydrophilic pockets suitable to create the biocompatible microenvironments. The fibrous nature of the SF protein with a dominant hydrophobic property may also serve as an excellent support for promoting cellular adhesion and growth. This review compiles and discusses the recent literature on the application of SF as a biocompatible material at the interface of enzymes and cells in various fields, including the emerging area of bioelectronics and bioanalytical sciences.
Collapse
Affiliation(s)
- Sharbani Kaushik
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43201, United States
| | - Phurpa Dema Thungon
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Pranab Goswami
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
19
|
He L, Chang Y, Zhu J, Bi Y, An W, Dong Y, Liu JH, Wang S. A cytoprotective graphene oxide-polyelectrolytes nanoshell for single-cell encapsulation. Front Chem Sci Eng 2020. [DOI: 10.1007/s11705-020-1950-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
20
|
Moon HC, Han S, Borges J, Pesqueira T, Choi H, Han SY, Cho H, Park JH, Mano JF, Choi IS. Enzymatically degradable, starch-based layer-by-layer films: application to cytocompatible single-cell nanoencapsulation. SOFT MATTER 2020; 16:6063-6071. [PMID: 32510086 DOI: 10.1039/d0sm00876a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The build-up and degradation of cytocompatible nanofilms in a controlled fashion have great potential in biomedical and nanomedicinal fields, including single-cell nanoencapsulation (SCNE). Herein, we report the fabrication of biodegradable films of cationic starch (c-ST) and anionic alginate (ALG) by electrostatically driven layer-by-layer (LbL) assembly technology and its application to the SCNE. The [c-ST/ALG] multilayer nanofilms, assembled either on individual Saccharomyces cerevisiae or on the 2D flat gold surface, degrade on demand, in a cytocompatible fashion, via treatment with α-amylase. Their degradation profiles are investigated, while systematically changing the α-amylase concentration, by several surface characterization techniques, including quartz crystal microbalance with dissipation monitoring (QCM-D) and ellipsometry. DNA incorporation in the LbL nanofilms and its controlled release, upon exposure of the nanofilms to an aqueous α-amylase solution, are demonstrated. The highly cytocompatible nature of the film-forming and -degrading conditions is assessed in the c-ST/ALG-shell formation and degradation of S. cerevisiae. We envisage that the cytocompatible, enzymatic degradation of c-ST-based nanofilms paves the way for developing advanced biomedical devices with programmed dissolution in vivo.
Collapse
Affiliation(s)
- Hee Chul Moon
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon 34141, Korea.
| | - Sol Han
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon 34141, Korea.
| | - João Borges
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Tamagno Pesqueira
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Hyunwoo Choi
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon 34141, Korea.
| | - Sang Yeong Han
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon 34141, Korea.
| | - Hyeoncheol Cho
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon 34141, Korea.
| | - Ji Hun Park
- Department of Science Education, Ewha Womans University, Seoul 03760, Korea
| | - João F Mano
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Insung S Choi
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon 34141, Korea.
| |
Collapse
|
21
|
Novel silica forming peptide, RSGH, from Equus caballus: Its unique biosilica formation under acidic conditions. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2019.107389] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
22
|
Su D, Qi J, Liu X, Wang L, Zhang H, Xie H, Huang X. Enzyme‐Modulated Anaerobic Encapsulation of
Chlorella
Cells Allows Switching from O
2
to H
2
Production. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201900255] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Dongyue Su
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and StorageSchool of Chemistry and Chemical EngineeringHarbin Institute of Technology Harbin 150001 China
| | - Jiarui Qi
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and StorageSchool of Chemistry and Chemical EngineeringHarbin Institute of Technology Harbin 150001 China
| | - Xiaoman Liu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and StorageSchool of Chemistry and Chemical EngineeringHarbin Institute of Technology Harbin 150001 China
| | - Lei Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and StorageSchool of Chemistry and Chemical EngineeringHarbin Institute of Technology Harbin 150001 China
| | - Hao Zhang
- State Key Laboratory of Robotics and SystemsHarbin Institute of Technology Harbin 150001 China
| | - Hui Xie
- State Key Laboratory of Robotics and SystemsHarbin Institute of Technology Harbin 150001 China
| | - Xin Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and StorageSchool of Chemistry and Chemical EngineeringHarbin Institute of Technology Harbin 150001 China
| |
Collapse
|
23
|
Su D, Qi J, Liu X, Wang L, Zhang H, Xie H, Huang X. Enzyme-Modulated Anaerobic Encapsulation of Chlorella Cells Allows Switching from O 2 to H 2 Production. Angew Chem Int Ed Engl 2019; 58:3992-3995. [PMID: 30653806 DOI: 10.1002/anie.201900255] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Indexed: 12/17/2022]
Abstract
Single-cell encapsulation has become an effective strategy in cell surface engineering; however, the construction of cell wall-like layers that allow the switching of the inherent functionality of the engineered cell is still rare. In this study, we show a universal way to create an enzyme-modulated oxygen-consuming sandwich-like layer by using polydopamine, laccase, and tannic acid as building blocks, which then could generate an anaerobic microenvironment around the cell. This layer protected the encapsulated C. pyrenoidosa cell against external stresses and enabled it to switch from normal photosynthetic O2 production to photobiological H2 production. The layer showed an smaller effect on the PSII activity, which contributed a significant enhancement on the rate (0.32 μmol H2 h-1 (mg chlorophyll)-1 ) and the duration (7 d) of H2 production. This strategy is expected to provide a pathway for modulating the functionality of cells and for breakthroughs in the development of green energy alternatives.
Collapse
Affiliation(s)
- Dongyue Su
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Jiarui Qi
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Xiaoman Liu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Lei Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Hao Zhang
- State Key Laboratory of Robotics and Systems, Harbin Institute of Technology, Harbin, 150001, China
| | - Hui Xie
- State Key Laboratory of Robotics and Systems, Harbin Institute of Technology, Harbin, 150001, China
| | - Xin Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| |
Collapse
|
24
|
|
25
|
Dai B, Wang L, Wang Y, Yu G, Huang X. Single-Cell Nanometric Coating Towards Whole-Cell-Based Biodevices and Biosensors. ChemistrySelect 2018. [DOI: 10.1002/slct.201800963] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Bing Dai
- School of Technology; Harbin University; Harbin 150086 China
| | - Lei Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage; School of Chemistry and Chemical Engineering; Harbin Institute of Technology; Harbin 150001 China
| | - Yan Wang
- Departament de Química Inorgànica; Facultat de Química; Universitat de Barcelona, C/Martí i Franquès 1-11; Barcelona 08028 Spain
| | - Guangbin Yu
- School of Mechanical and Power Engineering; Harbin University of Science and Technology; Harbin 150080 China
| | - Xin Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage; School of Chemistry and Chemical Engineering; Harbin Institute of Technology; Harbin 150001 China
| |
Collapse
|
26
|
Popov AL, Popova NR, Tarakina NV, Ivanova OS, Ermakov AM, Ivanov VK, Sukhorukov GB. Intracellular Delivery of Antioxidant CeO2 Nanoparticles via Polyelectrolyte Microcapsules. ACS Biomater Sci Eng 2018; 4:2453-2462. [DOI: 10.1021/acsbiomaterials.8b00489] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Anton L. Popov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Moscow Region, Pushchino 142290, Russia
| | - Nelli R. Popova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Moscow Region, Pushchino 142290, Russia
| | - Nadezda V. Tarakina
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Olga S. Ivanova
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow 117901, Russia
| | - Artem M. Ermakov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Moscow Region, Pushchino 142290, Russia
| | - Vladimir K. Ivanov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow 117901, Russia
- National Research Tomsk State University, Tomsk 634050, Russia
| | - Gleb B. Sukhorukov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Moscow Region, Pushchino 142290, Russia
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, United Kingdom
| |
Collapse
|
27
|
Kim BJ, Cho H, Park JH, Mano JF, Choi IS. Strategic Advances in Formation of Cell-in-Shell Structures: From Syntheses to Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1706063. [PMID: 29441678 DOI: 10.1002/adma.201706063] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/12/2017] [Indexed: 05/24/2023]
Abstract
Single-cell nanoencapsulation, forming cell-in-shell structures, provides chemical tools for endowing living cells, in a programmed fashion, with exogenous properties that are neither innate nor naturally achievable, such as cascade organic-catalysis, UV filtration, immunogenic shielding, and enhanced tolerance in vitro against lethal factors in real-life settings. Recent advances in the field make it possible to further fine-tune the physicochemical properties of the artificial shells encasing individual living cells, including on-demand degradability and reconfigurability. Many different materials, other than polyelectrolytes, have been utilized as a cell-coating material with proper choice of synthetic strategies to broaden the potential applications of cell-in-shell structures to whole-cell catalysis and sensors, cell therapy, tissue engineering, probiotics packaging, and others. In addition to the conventional "one-time-only" chemical formation of cytoprotective, durable shells, an approach of autonomous, dynamic shellation has also recently been attempted to mimic the naturally occurring sporulation process and to make the artificial shell actively responsive and dynamic. Here, the recent development of synthetic strategies for formation of cell-in-shell structures along with the advanced shell properties acquired is reviewed. Demonstrated applications, such as whole-cell biocatalysis and cell therapy, are discussed, followed by perspectives on the field of single-cell nanoencapsulation.
Collapse
Affiliation(s)
- Beom Jin Kim
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon, 34141, Korea
| | - Hyeoncheol Cho
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon, 34141, Korea
| | - Ji Hun Park
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon, 34141, Korea
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Insung S Choi
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon, 34141, Korea
| |
Collapse
|
28
|
Andriukonis E, Stirke A, Garbaras A, Mikoliunaite L, Ramanaviciene A, Remeikis V, Thornton B, Ramanavicius A. Yeast-assisted synthesis of polypyrrole: Quantification and influence on the mechanical properties of the cell wall. Colloids Surf B Biointerfaces 2018; 164:224-231. [DOI: 10.1016/j.colsurfb.2018.01.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 01/17/2018] [Accepted: 01/19/2018] [Indexed: 01/01/2023]
|
29
|
Geng W, Wang L, Jiang N, Cao J, Xiao YX, Wei H, Yetisen AK, Yang XY, Su BL. Single cells in nanoshells for the functionalization of living cells. NANOSCALE 2018; 10:3112-3129. [PMID: 29393952 DOI: 10.1039/c7nr08556g] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Inspired by the characteristics of cells in live organisms, new types of hybrids have been designed comprising live cells and abiotic materials having a variety of structures and functionalities. The major goal of these studies is to uncover hybridization approaches that promote cell stabilization and enable the introduction of new functions into living cells. Single-cells in nanoshells have great potential in a large number of applications including bioelectronics, cell protection, cell therapy, and biocatalysis. In this review, we discuss the results of investigations that have focused on the synthesis, structuration, functionalization, and applications of these single-cells in nanoshells. We describe synthesis methods to control the structural and functional features of single-cells in nanoshells, and further develop their applications in sustainable energy, environmental remediation, green biocatalysis, and smart cell therapy. Perceived limitations of single-cells in nanoshells have been also identified.
Collapse
Affiliation(s)
- Wei Geng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122, Luoshi Road, Wuhan, 430070, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Drachuk I, Harbaugh S, Geryak R, Kaplan DL, Tsukruk VV, Kelley-Loughnane N. Immobilization of Recombinant E. coli Cells in a Bacterial Cellulose–Silk Composite Matrix To Preserve Biological Function. ACS Biomater Sci Eng 2017; 3:2278-2292. [DOI: 10.1021/acsbiomaterials.7b00367] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Irina Drachuk
- UES Inc., 4401 Dayton-Xenia
Road, Dayton, Ohio 45432, United States
- Air Force Research Laboratory, 711th Human Performance Wing, Airmen Systems Directorate, 2510 Fifth Street, Wright-Patterson AFB, Dayton, Ohio 45433, United States
| | - Svetlana Harbaugh
- The Henry M. Jackson Foundation, 6720A Rockledge Drive, Bethesda, Maryland 20817, United States
- Air Force Research Laboratory, 711th Human Performance Wing, Airmen Systems Directorate, 2510 Fifth Street, Wright-Patterson AFB, Dayton, Ohio 45433, United States
| | - Ren Geryak
- School
of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Drive NW, Atlanta, Georgia 30332, United States
| | - David L. Kaplan
- Department
of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Vladimir V. Tsukruk
- School
of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Drive NW, Atlanta, Georgia 30332, United States
| | - Nancy Kelley-Loughnane
- Air Force Research Laboratory, 711th Human Performance Wing, Airmen Systems Directorate, 2510 Fifth Street, Wright-Patterson AFB, Dayton, Ohio 45433, United States
| |
Collapse
|
31
|
Yao S, Jin B, Liu Z, Shao C, Zhao R, Wang X, Tang R. Biomineralization: From Material Tactics to Biological Strategy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1605903. [PMID: 28229486 DOI: 10.1002/adma.201605903] [Citation(s) in RCA: 182] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/31/2017] [Indexed: 05/23/2023]
Abstract
Biomineralization is an important tactic by which biological organisms produce hierarchically structured minerals with marvellous functions. Biomineralization studies typically focus on the mediation function of organic matrices on inorganic minerals, which helps scientists to design and synthesize bioinspired functional materials. However, the presence of inorganic minerals may also alter the native behaviours of organic matrices and even biological organisms. This progress report discusses the latest achievements relating to biomineralization mechanisms, the manufacturing of biomimetic materials and relevant applications in biological and biomedical fields. In particular, biomineralized vaccines and algae with improved thermostability and photosynthesis, respectively, demonstrate that biomineralization is a strategy for organism evolution via the rational design of organism-material complexes. The successful modification of biological systems using materials is based on the regulatory effect of inorganic materials on organic organisms, which is another aspect of biomineralization control. Unlike previous studies, this study integrates materials and biological science to achieve a more comprehensive view of the mechanisms and applications of biomineralization.
Collapse
Affiliation(s)
- Shasha Yao
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Biao Jin
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Zhaoming Liu
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Changyu Shao
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Ruibo Zhao
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Xiaoyu Wang
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Ruikang Tang
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, China
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| |
Collapse
|
32
|
Kim JY, Lee H, Park T, Park J, Kim MH, Cho H, Youn W, Kang SM, Choi IS. Artificial Spores: Cytocompatible Coating of Living Cells with Plant-Derived Pyrogallol. Chem Asian J 2016; 11:3183-3187. [DOI: 10.1002/asia.201601237] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Ji Yup Kim
- Center for Cell-Encapsulation Research; Department of Chemistry; KAIST; Daejeon 34141 Korea
| | - Hojae Lee
- Center for Cell-Encapsulation Research; Department of Chemistry; KAIST; Daejeon 34141 Korea
| | - Taegyun Park
- Center for Cell-Encapsulation Research; Department of Chemistry; KAIST; Daejeon 34141 Korea
| | - Joonhong Park
- Department of Laboratory Medicine; College of Medicine; The Catholic University of Korea, St. Mary's Hospital; Seoul 06591 Korea
| | - Mi-Hee Kim
- Center for Cell-Encapsulation Research; Department of Chemistry; KAIST; Daejeon 34141 Korea
| | - Hyeoncheol Cho
- Center for Cell-Encapsulation Research; Department of Chemistry; KAIST; Daejeon 34141 Korea
| | - Wongu Youn
- Center for Cell-Encapsulation Research; Department of Chemistry; KAIST; Daejeon 34141 Korea
| | - Sung Min Kang
- Department of Chemistry; Chungbuk National University; Cheongju 28644 Korea
| | - Insung S. Choi
- Center for Cell-Encapsulation Research; Department of Chemistry; KAIST; Daejeon 34141 Korea
| |
Collapse
|
33
|
Nguyen TD, Guyot S, Lherminier J, Wache Y, Saurel R, Husson F. Protection of living yeast cells by micro-organized shells of natural polyelectrolytes. Process Biochem 2015. [DOI: 10.1016/j.procbio.2015.06.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
34
|
DeSimone E, Schacht K, Jungst T, Groll J, Scheibel T. Biofabrication of 3D constructs: fabrication technologies and spider silk proteins as bioinks. PURE APPL CHEM 2015. [DOI: 10.1515/pac-2015-0106] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractDespite significant investment in tissue engineering over the past 20 years, few tissue engineered products have made it to market. One of the reasons is the poor control over the 3D arrangement of the scaffold’s components. Biofabrication is a new field of research that exploits 3D printing technologies with high spatial resolution for the simultaneous processing of cells and biomaterials into 3D constructs suitable for tissue engineering. Cell-encapsulating biomaterials used in 3D bioprinting are referred to as bioinks. This review consists of: (1) an introduction of biofabrication, (2) an introduction of 3D bioprinting, (3) the requirements of bioinks, (4) existing bioinks, and (5) a specific example of a recombinant spider silk bioink. The recombinant spider silk bioink will be used as an example because its unmodified hydrogel format fits the basic requirements of bioinks: to be printable and at the same time cytocompatible. The bioink exhibited both cytocompatible (self-assembly, high cell viability) and printable (injectable, shear-thinning, high shape fidelity) qualities. Although improvements can be made, it is clear from this system that, with the appropriate bioink, many of the existing faults in tissue-like structures produced by 3D bioprinting can be minimized.
Collapse
Affiliation(s)
- Elise DeSimone
- 1Lehrstuhl Biomaterialien, Universität Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Kristin Schacht
- 1Lehrstuhl Biomaterialien, Universität Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Tomasz Jungst
- 2Lehrstuhl für Funktionswerkstoffe der Medizin und der Zahnheilkunde, Universität Würzburg, Pleicherwall 2, 97070 Würzburg, Germany
| | - Jürgen Groll
- 2Lehrstuhl für Funktionswerkstoffe der Medizin und der Zahnheilkunde, Universität Würzburg, Pleicherwall 2, 97070 Würzburg, Germany
| | | |
Collapse
|
35
|
Jiang N, Yang XY, Deng Z, Wang L, Hu ZY, Tian G, Ying GL, Shen L, Zhang MX, Su BL. A stable, reusable, and highly active photosynthetic bioreactor by bio-interfacing an individual cyanobacterium with a mesoporous bilayer nanoshell. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:2003-2010. [PMID: 25641812 DOI: 10.1002/smll.201402381] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Revised: 11/03/2014] [Indexed: 06/04/2023]
Abstract
An individual cyanobacterium cell is interfaced with a nanoporous biohybrid layer within a mesoporous silica layer. The bio-interface acts as an egg membrane for cell protection and growth of outer shell. The resulting bilayer shell provides efficient functions to create a single cell photosynthetic bioreactor with high stability, reusability, and activity.
Collapse
Affiliation(s)
- Nan Jiang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing and School of Materials Science and Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Drachuk I, Suntivich R, Calabrese R, Harbaugh S, Kelley-Loughnane N, Kaplan DL, Stone M, Tsukruk VV. Printed Dual Cell Arrays for Multiplexed Sensing. ACS Biomater Sci Eng 2015; 1:287-294. [DOI: 10.1021/ab500085k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Irina Drachuk
- School
of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Rattanon Suntivich
- School
of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Rossella Calabrese
- Department
of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Svetlana Harbaugh
- Air
Force Research Laboratory, Directorate of Human Effectiveness, Wright-Patterson Air Force Base, Dayton, Ohio 45433, United States
| | - Nancy Kelley-Loughnane
- Air
Force Research Laboratory, Directorate of Human Effectiveness, Wright-Patterson Air Force Base, Dayton, Ohio 45433, United States
| | - David L. Kaplan
- Department
of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Morley Stone
- Air
Force Research Laboratory, Directorate of Human Effectiveness, Wright-Patterson Air Force Base, Dayton, Ohio 45433, United States
| | - Vladimir V. Tsukruk
- School
of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
37
|
Abstract
Antheraea pernyi silk fibroin has favorable biocompatibility, good bioactivity and controllable biodegradability, meeting the basic requirements of controlled drug release carriers. Enhancing the negative charge of silk fibroin could further increase the encapsulation and loading efficiency of positively charged drugs. In this study, Antheraea pernyi silk fibroin was chemically modified by methylglyoxal in aqueous solution. The electric charge properties of Antheraea pernyi silk fibroin were examined to characterize the modification, the results indicated that the isoelectric point of Antheraea pernyi silk fibroin decreased from 4.5 to 3.9, and the zeta potential reduced from-11.7 mV to-12.8 mV. Amino acid analysis and 1H-NMR spectra showed that arginine residue of Antheraea pernyi silk fibroin side chain was modified by methylglyoxal for enhancing negative charge of silk fibroin. These results suggested that methylglyoxal-modified Antheraea pernyi silk fibroin could be considered as a potential starting material in loading positively charged drugs.
Collapse
|
38
|
Chang B, Zhang M, Qing G, Sun T. Dynamic biointerfaces: from recognition to function. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:1097-1112. [PMID: 25354445 DOI: 10.1002/smll.201402038] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 08/28/2014] [Indexed: 06/04/2023]
Abstract
The transformation of recognition signals into regulating macroscopic behaviors of biological entities (e.g., biomolecules and cells) is an extraordinarily challenging task in engineering interfacial properties of artificial materials. Recently, there has been extensive research for dynamic biointerfaces driven by biomimetic techniques. Weak interactions and chirality are two crucial routes that nature uses to achieve its functions, including protein folding, the DNA double helix, phospholipid membranes, photosystems, and shell and tooth growths. Learning from nature inspires us to design dynamic biointerfaces, which usually take advantage of highly selective weak interactions (e.g., synergetic chiral H-bonding interactions) to tailor their molecular assemblies on external stimuli. Biomolecules can induce the conformational transitions of dynamic biointerfaces, then drive a switching of surface characteristics (topographic structure, wettability, etc.), and eventually achieve macroscopic functions. The emerging progresses of dynamic biointerfaces are reviewed and its role from molecular recognitions to biological functions highlighted. Finally, a discussion is presented of the integration of dynamic biointerfaces with the basic biochemical processes, possibly solving the big challenges in life science.
Collapse
Affiliation(s)
- Baisong Chang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, PR China
| | | | | | | |
Collapse
|
39
|
Drachuk I, Calabrese R, Harbaugh S, Kelley-Loughnane N, Kaplan DL, Stone M, Tsukruk VV. Silk macromolecules with amino acid-poly(ethylene glycol) grafts for controlling layer-by-layer encapsulation and aggregation of recombinant bacterial cells. ACS NANO 2015; 9:1219-35. [PMID: 25588116 DOI: 10.1021/nn504890z] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
This study introduces double-brush designs of functionalized silk polyelectrolytes based upon regenerated silk fibroin (SF), which is modified with poly-L-lysine (SF-PLL), poly-L-glutamic acid (SF-PGA), and poly(ethylene glycol) (PEG) side chains with different grafting architecture and variable amino acid-PEG graft composition for cell encapsulation. The molecular weight of poly amino acids (length of side chains), molecular weight and degree of PEG grafting (D) were varied in order to assess the formation of cytocompatible and robust layer-by-layer (LbL) shells on two types of bacterial cells (Gram-negative and Gram-positive bacteria). We observed that shells assembled with charged polycationic amino acids adversely effected the properties of microbial cells while promoting the formation of large cell aggregates. In contrast, hydrogen-bonded shells with high PEG grafting density were the most cytocompatible, while promoting formation of stable colloidal suspensions of individual cell encapsulates. The stability to degradation of silk shells (under standard cell incubation procedure) was related to the intrinsic properties of thermodynamic bonding forces, with shells based on electrostatic interactions having stronger resistance to deterioration compared to pure hydrogen-bonded silk shells. By optimizing the charge density of silk polyelectrolytes brushes, as well as the length and the degree of PEG side grafts, robust and cytocompatible cell coatings were engineered that can control aggregation of cells for biosensor devices and other potential biomedical applications.
Collapse
Affiliation(s)
- Irina Drachuk
- School of Materials Science and Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | | | | | | | | | | | | |
Collapse
|
40
|
Konnova SA, Danilushkina AA, Fakhrullina GI, Akhatova FS, Badrutdinov AR, Fakhrullin RF. Silver nanoparticle-coated “cyborg” microorganisms: rapid assembly of polymer-stabilised nanoparticles on microbial cells. RSC Adv 2015. [DOI: 10.1039/c4ra15857a] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Silver nanoparticles-coated “cyborg” cells.
Collapse
Affiliation(s)
- S. A. Konnova
- Bionanotechnology Lab
- Institute of Fundamental Medicine and Biology
- Kazan Federal University
- Kazan
- Russian Federation
| | - A. A. Danilushkina
- Bionanotechnology Lab
- Institute of Fundamental Medicine and Biology
- Kazan Federal University
- Kazan
- Russian Federation
| | - G. I. Fakhrullina
- Bionanotechnology Lab
- Institute of Fundamental Medicine and Biology
- Kazan Federal University
- Kazan
- Russian Federation
| | - F. S. Akhatova
- Bionanotechnology Lab
- Institute of Fundamental Medicine and Biology
- Kazan Federal University
- Kazan
- Russian Federation
| | - A. R. Badrutdinov
- Bionanotechnology Lab
- Institute of Fundamental Medicine and Biology
- Kazan Federal University
- Kazan
- Russian Federation
| | - R. F. Fakhrullin
- Bionanotechnology Lab
- Institute of Fundamental Medicine and Biology
- Kazan Federal University
- Kazan
- Russian Federation
| |
Collapse
|
41
|
Lee H, Hong D, Choi JY, Kim JY, Lee SH, Kim HM, Yang SH, Choi IS. Layer-by-Layer-Based Silica Encapsulation of Individual Yeast with Thickness Control. Chem Asian J 2014; 10:129-32. [DOI: 10.1002/asia.201402993] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Indexed: 01/28/2023]
|
42
|
Suntivich R, Drachuk I, Calabrese R, Kaplan DL, Tsukruk VV. Inkjet Printing of Silk Nest Arrays for Cell Hosting. Biomacromolecules 2014; 15:1428-35. [DOI: 10.1021/bm500027c] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Rattanon Suntivich
- School
of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| | - Irina Drachuk
- School
of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| | - Rossella Calabrese
- Department
of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - David L. Kaplan
- Department
of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | | |
Collapse
|
43
|
Jiang N, Ying GL, Liu SY, Shen L, Hu J, Dai LJ, Yang XY, Tian G, Su BL. Amino acid-based biohybrids for nano-shellization of individual desulfurizing bacteria. Chem Commun (Camb) 2014; 50:15407-10. [DOI: 10.1039/c4cc06323f] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Amino acid-based biohybrid nanoshells endow individual desulfurizing bacteria with reusability and post-functionalization such as enhanced desulfurizing activity and magnetic separation.
Collapse
Affiliation(s)
- Nan Jiang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- and School of Materials Science and Engineering
- Wuhan University of Technology
- Wuhan, China
| | - Guo-Liang Ying
- School of Material Science and Engineering
- Wuhan Institute of Technology
- Wuhan, China
| | - Shao-Yin Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- and School of Materials Science and Engineering
- Wuhan University of Technology
- Wuhan, China
| | - Ling Shen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- and School of Materials Science and Engineering
- Wuhan University of Technology
- Wuhan, China
| | - Jie Hu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- and School of Materials Science and Engineering
- Wuhan University of Technology
- Wuhan, China
| | - Ling-Jun Dai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- and School of Materials Science and Engineering
- Wuhan University of Technology
- Wuhan, China
| | - Xiao-Yu Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- and School of Materials Science and Engineering
- Wuhan University of Technology
- Wuhan, China
| | - Ge Tian
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- and School of Materials Science and Engineering
- Wuhan University of Technology
- Wuhan, China
| | - Bao-Lian Su
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- and School of Materials Science and Engineering
- Wuhan University of Technology
- Wuhan, China
- Laboratory of Inorganic Materials Chemistry
| |
Collapse
|