1
|
Pan H, Wang N, Wang GW. Mechanochemically synthesized covalent organic frameworks as catalysts for the Suzuki-Miyaura coupling reaction. Chem Commun (Camb) 2025; 61:8184-8187. [PMID: 40336474 DOI: 10.1039/d5cc02179k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
In this study, we present a mechanochemically assisted rapid synthesis of highly crystalline covalent organic frameworks (COFs), specifically the MC-Tab-Dva COF and the MC-Tz-Dva COF, achieved in an exceptionally short time of 30 to 60 min. Additionally, the synthesized COFs were post-modified to incorporate Pd(II), resulting in Pd(II)-containing COFs that demonstrated excellent catalytic activity in Suzuki-Miyaura coupling reactions.
Collapse
Affiliation(s)
- Hong Pan
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| | - Nana Wang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| | - Guan-Wu Wang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, and School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| |
Collapse
|
2
|
Ding C, Du Y, Fischer T, Senker J, Agarwal S. Ultra-Low Density Covalent Organic Framework Sponges with Exceptional Compression and Functional Performance. Angew Chem Int Ed Engl 2025; 64:e202502513. [PMID: 40096703 DOI: 10.1002/anie.202502513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/26/2025] [Accepted: 03/17/2025] [Indexed: 03/19/2025]
Abstract
The emergence of covalent organic frameworks (COFs) macroscopic objects with hierarchical porous structures addresses the limitations of traditional COF powders, which are challenging to process, thus bringing them closer to practical applications. However, the brittleness of the parent COF powder results in poor mechanical stability of these COF macroscopic objects, presenting a significant challenge that must be overcome for their continued development. In this work, we successfully obtained a continuous, hierarchically porous, and interconnected open-cell COF structure made up of hollow sponge walls of thickness 100-250 nm through a template-assisted framework process. This unique structure endows the COF sponge with a high surface area (1655 m2 g-1), ultralow density (2.2 mg cm-3), and exceptional mechanical stability. Even after 300 000 compressions at a 50% compression rate, its stress and height decreased by only 7.9% and 7.1%, respectively. These properties grant the COF sponge excellent solvent absorption capacity, catalytic performance, and reusability. Therefore, this work broadens the development pathway for COF macroscopic objects and is expected to further unlock the potential of COFs in practical applications.
Collapse
Affiliation(s)
- Chenhui Ding
- Macromolecular Chemistry and Bavarian Polymer Institute, University of Bayreuth, Universitätsstrasse 30, Bayreuth, 95440, Germany
| | - Yingying Du
- Macromolecular Chemistry and Bavarian Polymer Institute, University of Bayreuth, Universitätsstrasse 30, Bayreuth, 95440, Germany
| | - Tamara Fischer
- Department of Chemistry, Inorganic Chemistry III, and Northern Bavarian NMR Centre, University of Bayreuth, Universitätsstrasse 30, Bayreuth, 95440, Germany
| | - Jürgen Senker
- Department of Chemistry, Inorganic Chemistry III, and Northern Bavarian NMR Centre, University of Bayreuth, Universitätsstrasse 30, Bayreuth, 95440, Germany
| | - Seema Agarwal
- Macromolecular Chemistry and Bavarian Polymer Institute, University of Bayreuth, Universitätsstrasse 30, Bayreuth, 95440, Germany
| |
Collapse
|
3
|
Pan R, Wang Z, Huang X, Xu J, Shi Z, Lin T. Pathway regulation of an on-surface stepwise reaction through a metal coordination template. Chem Commun (Camb) 2025. [PMID: 40364742 DOI: 10.1039/d5cc00740b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Herein, we have demonstrated a pathway regulation of a stepwise reaction on Cu(111), including both debrominative and dehydrogenative couplings, facilitated by a persistent template effect from the metal-organic coordination motif of Cu-N. Using scanning tunneling microscopy, in combination with density functional theory calculations, we revealed that the compound 2-bromo-1,8-naphthyridine on Cu(111) initially transformed into C-Cu organometallic dimeric intermediates via dehalogenation, and then into covalent tetramers and cyclic pentamers via dehydrogenation upon successive thermal annealing treatments. The cisoid species was predominant in all reaction steps, demonstrating the persistent template effect of Cu-N coordination. Our results present a new opportunity to precisely control stepwise on-surface reactions, potentially enabling the bottom-up engineering of functional organic nanostructures.
Collapse
Affiliation(s)
- Runrui Pan
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou, 215006, China.
| | - Zhiyu Wang
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, China.
| | - Xinxin Huang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou, 215006, China.
| | - Jin Xu
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou, 215006, China.
| | - Ziliang Shi
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou, 215006, China.
| | - Tao Lin
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, China.
| |
Collapse
|
4
|
Zhang Q, Huang Y, Dai Z, Li Y, Li Z, Lai R, Wei F, Shao F. Covalent Organic Framework Membranes: Synthesis Strategies and Separation Applications. ACS APPLIED MATERIALS & INTERFACES 2025; 17:27605-27628. [PMID: 40305289 DOI: 10.1021/acsami.5c02556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
Covalent organic frameworks (COFs) have emerged as highly promising materials for membrane separations due to their high porosity, tunable pore sizes, ordered crystalline structures, and exceptional chemical stability. With these features, COF membranes possess greater selectivity and permeability than conventional materials, making them the preferred choice in various fields, including membrane separations. Fascinating research endeavors have emerged encompassing fabrication strategies for COF-based membranes and their diverse separation applications. Hence, this review summarizes the latest advancements in COF synthesis, including COF powders and continuous COF-based membranes and their applications in separation membranes. Special consideration was given to regulation strategies for the performance optimization of COF membranes in separation applications, such as pore size, hydrophilicity/hydrophobicity, surface charge, crystallinity, and stability. Furthermore, applications of COF membranes in water treatment, metal ion separation, organic solvent nanofiltration, and gas separation are comprehensively reviewed. Finally, the research results and future prospects for the development of COF membranes are discussed. Future research may be focused on the following key directions: (1) single-crystal COF fabrication, (2) cost-effective membrane preparation, (3) subnanometer pore engineering, (4) advanced characterization techniques, and (5) AI-assisted development.
Collapse
Affiliation(s)
- Qingqing Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
- Suzhou Laboratory, Suzhou 215100, China
| | - Yu Huang
- Suzhou Laboratory, Suzhou 215100, China
| | - Zhendong Dai
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
- Suzhou Laboratory, Suzhou 215100, China
| | - Youqi Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
- Suzhou Laboratory, Suzhou 215100, China
| | | | | | - Facai Wei
- Suzhou Laboratory, Suzhou 215100, China
| | - Feng Shao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
- Suzhou Laboratory, Suzhou 215100, China
| |
Collapse
|
5
|
Zhou S, Chen W, Luo X, Guo W, Dong J, Liu Y, Zhang Y, Wang D, Li Z, Gu P. Harmonizing proton sponge and proton reservoir in conjugated microporous polymers for enhanced photocatalytic hydrogen peroxide production. Chem Sci 2025; 16:8577-8587. [PMID: 40242848 PMCID: PMC11998021 DOI: 10.1039/d4sc06603k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 04/01/2025] [Indexed: 04/18/2025] Open
Abstract
Photocatalytic technology is highly sought-after for H2O2 production; however, the low selectivity between the oxygen reduction reaction (ORR) and water oxidation reaction (WOR) pathways is the primary factor limiting photocatalytic performance. Herein, a strategy that simulates a proton sponge by integrating aliphatic tertiary amines into conjugated microporous polymers (CMPs) to synthesize PPDI-N is reported. This method uses a carboxylic acid contaminant (2,4-dichlorophenoxyacetic acid, 2,4-D) as the proton reservoir to synergistically expedite the photosynthesis of H2O2 via a selective one-step 2e- ORR. Importantly, with the aid of 2,4-D (acting as both a proton supplier and hole scavenger), the H2O2 production rate of PPDI-N is 4.4-fold higher than that in pure water, reaching 8.15 mmol g-1 within 4 h irradiation time, which is 58.2 times greater at the same pH value. By mimicking a photo Fenton-like process with the assistance of Fe2+, PPDI-N exhibits an unprecedented removal efficiency (>99%) for 300 ppm of 2,4-D within 60 min. As revealed by Kelvin probe force microscopy and electric surface potential calculations, an enhanced built-in electric field was established in PPDI-N. This work provides valuable guidance for advancing CMP photocatalysts and establishes an ideal scenario for enabling simultaneous photocatalytic mineralization of organic contaminants and H2O2 production.
Collapse
Affiliation(s)
- Shiyuan Zhou
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University Changzhou 213164 P. R. China
| | - Wenwen Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University Changzhou 213164 P. R. China
| | - Xiaobo Luo
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University Changzhou 213164 P. R. China
| | - Wenxiu Guo
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University Changzhou 213164 P. R. China
| | - Jingwen Dong
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University Changzhou 213164 P. R. China
| | - Yuxi Liu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University Changzhou 213164 P. R. China
| | - Yuzhe Zhang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University Changzhou 213164 P. R. China
| | - Danfeng Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University Changzhou 213164 P. R. China
| | - Zhongyu Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University Changzhou 213164 P. R. China
- School of Environmental Science and Engineering, Changzhou University Changzhou 213164 P. R. China
| | - Peiyang Gu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University Changzhou 213164 P. R. China
- Engineering Laboratory of Functional Nano- and Microstructured Materials in Petroleum and Chemical Industry, School of Petrochemical Engineering, Changzhou University Changzhou 213164 P. R. China
| |
Collapse
|
6
|
Cui HF, Yang F, Liu C, Zhu HW, Liu MY, Guo RT. Recent Progress of Covalent Organic Frameworks-Based Materials Used for CO 2 Electrocatalytic Reduction: A Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2502867. [PMID: 40103429 DOI: 10.1002/smll.202502867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 03/09/2025] [Indexed: 03/20/2025]
Abstract
The excessive CO2 emissions from human activities severely impact the natural environment and ecosystems. Among the various technologies available, electrocatalytic CO2 reduction is regarded as one of the most promising routes due to its exceptional environmental friendliness and sustainability. Covalent organic frameworks (COFs) are crystalline, porous organic networks that are formed through thermodynamically controlled reversible covalent polymerization of organic linkers via covalent bonding. These materials exhibit high porosity, large surface area, excellent chemical and thermal stability, sustainability, high electron transfer efficiency, and surface functionalization capabilities, making them particularly effective in electrocatalytic CO2 reduction. First, this review briefly introduces the fundamental principles of electrocatalysis and the mechanism of electrocatalytic CO2 reduction. Next, it discusses the composition, structure, and synthesis methods of COF-based materials, as well as their applications in electrocatalytic CO2 reduction. Furthermore, it reviews the research progress in this field from the perspective of different types of COF-based catalysts. Finally, in light of the current research status, the development prospects of COF-based catalysts are explored, providing a reference for the development of more efficient and stable COF electrocatalysts for CO2 reduction.
Collapse
Affiliation(s)
- Heng-Fei Cui
- College of Energy Source and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
| | - Feng Yang
- College of Energy Source and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
| | - Cong Liu
- College of Energy Source and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
| | - Hao-Wen Zhu
- College of Energy Source and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
| | - Ming-Yang Liu
- College of Energy Source and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
| | - Rui-Tang Guo
- College of Energy Source and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
- Shanghai Non-Carbon Energy Conversion and Utilization Institute, Shanghai, 200090, P. R. China
| |
Collapse
|
7
|
Wei S, Pan W, Liu J, Wu J, Xie Y, Wu X, Lu CZ. High-Performance Perovskite Solar Cells via 3D Covalent Organic Frameworks: Enhanced Efficiency Through Precision Interface Engineering. Angew Chem Int Ed Engl 2025:e202500163. [PMID: 40296802 DOI: 10.1002/anie.202500163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 04/26/2025] [Accepted: 04/29/2025] [Indexed: 04/30/2025]
Abstract
Covalent organic frameworks (COFs), a class of porous polymers with tunable 2D or 3D structures, have drawn significant attention for their exceptional versatility across various applications. Recently, the integration of COFs into perovskite solar cells (PSCs) has emerged as a promising strategy to address critical challenges, such as instability, interfacial recombination losses, and lead-associated environmental risks. Enhanced charge transport channels, passivation of defects, and customizable molecule architectures are some of the special benefits that COFs offer. In this study, we used Schiff base reactions to create two donor-acceptor (D-A) type COFs with an 8+2 connection motif, which were integrated into PSC self-assembled (SAM) layers. According to characterizations and theoretical calculations, COFs not only effectively optimize the energy level of the ITO/SAM substrate but also passivate perovskite defects and suppress defect-assisted recombination in PSC devices. These modifications significantly enhanced carrier transport and extraction, resulting in an increase in power conversion efficiency (PCE) from 22.57% to 25.20% (DP-BE) and 24.21% (DP-DBE). This work highlights the potential of COFs as multifunctional modifiers for interfacial engineering in PSCs, offering a promising route to improve device performance and stability.
Collapse
Affiliation(s)
- Shanyue Wei
- Engineering Research Center of Environment-Friendly Function Materials, Ministry of Education, College of Materials Science & Engineering, Huaqiao University, Xiamen, Fujian Province, 361021, China
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian Province, 350002, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen, Fujian Province, 361021, China
| | - Weichun Pan
- Engineering Research Center of Environment-Friendly Function Materials, Ministry of Education, College of Materials Science & Engineering, Huaqiao University, Xiamen, Fujian Province, 361021, China
| | - Jia Liu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian Province, 350002, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen, Fujian Province, 361021, China
| | - Jihuai Wu
- Engineering Research Center of Environment-Friendly Function Materials, Ministry of Education, College of Materials Science & Engineering, Huaqiao University, Xiamen, Fujian Province, 361021, China
| | - Yiming Xie
- Engineering Research Center of Environment-Friendly Function Materials, Ministry of Education, College of Materials Science & Engineering, Huaqiao University, Xiamen, Fujian Province, 361021, China
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian Province, 350002, China
| | - Xiaowei Wu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian Province, 350002, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen, Fujian Province, 361021, China
| | - Can-Zhong Lu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian Province, 350002, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen, Fujian Province, 361021, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
8
|
Xu K, Feng Y, Wen F, Xu X, Wang H, Shui QJ, Huang N. Topological Control Over Porphyrin-Based Covalent Organic Frameworks for Elucidating Electron Transfer Characteristics. Angew Chem Int Ed Engl 2025:e202506977. [PMID: 40263726 DOI: 10.1002/anie.202506977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 04/16/2025] [Accepted: 04/22/2025] [Indexed: 04/24/2025]
Abstract
Two-dimensional covalent organic frameworks (2D COFs) have emerged as promising functional materials due to their programmable architectures and tunable functionalities. Nevertheless, the structural diversity of porphyrin-based 2D COFs remains restricted by the prevalent use of sql topology, hindering comprehensive structure-property exploration. Herein, we systematically designed and synthesized porphyrinic 2D COFs featuring distinct sql and bex topological configurations. Comprehensive structural characterization confirmed precise control over lattice geometries, revealing monoporous structure in sql topology versus biporous architecture in bex topology. Electrochemical investigations uncovered topology-governed electron transport characteristics, with the unique coordination geometry of bex topology exhibiting enhanced electron transfer efficiency. Band structure analysis demonstrated that topological configuration and chemical composition collectively modulate electronic structures. Inspired by these findings, we developed nickel-incorporated bex-COFs for electrocatalytic oxygen evolution. The optimized Ni-BBFPP-TAPP-COF with bex topology demonstrated remarkable catalytic performance, achieving a low overpotential of 342 mV at 10 mA cm-2, which surpasses most reported porphyrin-based electrocatalysts. This study not only significantly expands the structural repertoire of porphyrinic COFs but also establishes explicit correlations between topological engineering and electrocatalytic performance, providing fundamental design principles for advanced energy conversion materials.
Collapse
Affiliation(s)
- Kai Xu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Yaoqian Feng
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Fuxiang Wen
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Xiaoyi Xu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Hanwen Wang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Qing-Jun Shui
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- Laboratory for Materials and Structures, Institute of Science Tokyo, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8503, Japan
| | - Ning Huang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
9
|
Chen Z, Liu ZR, Zhang J, Yang WT, Kan JL, Fan J, Li WY, Wang JC, Dong YB. Construction of C4-Spirocyclic Chiral Covalent Organic Frameworks Via Asymmetric Multicomponent Povarov Reaction for Enantioselective Sensing. J Am Chem Soc 2025; 147:11647-11653. [PMID: 40152223 DOI: 10.1021/jacs.4c18474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Although many chiral covalent organic frameworks (CCOFs) have been synthesized, the rapid development of this field has been severely restricted by the limitations of CCOFs synthesis methods and the scarcity of their chiral structural unit types. Herein we report, for the first time, the construction of C4-spirocyclic CCOFs via the asymmetric multicomponent Povarov reaction under ambient conditions. The obtained C4-spiro-(2S, 4R)-TMTT-COF can be as a novel chiral fluorescent sensor to discriminate D/L-PAL enantiomers. This finding will provide a simple and universal method for constructing CCOFs with novel chiral structural groups and might open new insights into the construction of the CCOFs featuring multiple distinct types of carbon chiral centers.
Collapse
Affiliation(s)
- Zhi Chen
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China
| | - Zi-Ran Liu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China
| | - Jun Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China
| | - Wen-Ting Yang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China
| | - Jing-Lan Kan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China
| | - Jianzhong Fan
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, P. R. China
| | - Wen-Yan Li
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, P. R. China
| | - Jian-Cheng Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China
| | - Yu-Bin Dong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China
| |
Collapse
|
10
|
Chen D, Jia X, Zuo J, Zheng X, Sun Q, Liu H, Zhao Y. Construction of Luminescent Three-Dimensional Covalent Organic Frameworks for Molecular Decoding of Wide Organic Compounds. Chem Asian J 2025; 20:e202401423. [PMID: 39815695 DOI: 10.1002/asia.202401423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/18/2025]
Abstract
Constructing highly conjugated three-dimensional covalent organic frameworks (3D COFs), particularly those with luminescent features, remains a significant challenge. In this work, we successfully synthesized a 3D COF, named 3D-Py-SP-COF, using a rigid and orthogonal spirobifluorene building block for the spatial 3D structure construction and planar pyrene as luminescent units. The incorporation of the pyrene and the unique rigid 3D network structure endow 3D-Py-SP-COF with fluorescent properties. The successful formation of this 3D COF was verified by FT-IR, solid-state 13C CP-MAS NMR. Structural simulations based on the experimental powder X-ray diffraction analysis revealed that 3D-Py-SP-COF adopted a two-fold interpenetrated pts topology. The highly conjugated porous framework and fluorescent nature allow precise detection and localization of more than two dozen volatile organic compounds (VOCs), including aromatics, alcohols, and other commonly encountered industrial VOCs.
Collapse
Affiliation(s)
- Dan Chen
- Qingdao University of Science and Technology, Qingdao, 266042), China
| | - Xu Jia
- Qingdao University of Science and Technology, Qingdao, 266042), China
| | - Jiarui Zuo
- Qingdao University of Science and Technology, Qingdao, 266042), China
| | - Xuhan Zheng
- Qingdao University of Science and Technology, Qingdao, 266042), China
| | - Qingzhu Sun
- Qingdao University of Science and Technology, Qingdao, 266042), China
| | - Hui Liu
- Qingdao University of Science and Technology, Qingdao, 266042), China
| | - Yingjie Zhao
- Qingdao University of Science and Technology, Qingdao, 266042), China
| |
Collapse
|
11
|
Zhou Z, Wang Z, Blenko AL, Li J, Lin W. Viologen Covalent Organic Framework Mediates Near-Infrared Light-Induced Electron Transfer for Catalytic Oxidative Coupling Reactions. J Am Chem Soc 2025; 147:10846-10852. [PMID: 40101153 DOI: 10.1021/jacs.5c00686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Near-infrared (NIR) light-driven photoreactions are advantageous over visible light-driven ones because NIR photons have lower energy and fewer side reactions, deeper penetration in reaction media, and high abundance in the solar spectrum. However, currently available covalent organic frameworks (COFs) absorb in the UV-vis region and catalyze photoreactions under blue or white light irradiation. Herein, we report a linker-to-linker charge transfer process in a viologen-linked porphyrin COF (Vio-COF), leading to a novel type of hyperporphyrin effect and extending the absorption into the NIR region with an absorption edge at 998 nm. Under NIR irradiation, photoinduced charge separation in Vio-COF generates a viologen radical that efficiently reduces oxygen to form superoxide radicals for catalytic oxidative coupling reactions. The proximity of porphyrin and viologen units within the framework significantly enhances the catalytic performance of Vio-COF, outperforming its homogeneous counterparts in aerobic oxidative amidation and amine coupling reactions. Vio-COF was readily recycled and used in six oxidative coupling reactions.
Collapse
Affiliation(s)
- Zhibei Zhou
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Zitong Wang
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Abigail L Blenko
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Jinhong Li
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Wenbin Lin
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
12
|
Wang XL, Tan LL, Liu Y, Liu JX, Li XA, Liang ZZ, Huang JF, Liu JM. Polymer Networks Assembled by Ruthenium Catalysts for Enhanced Water Splitting Performance in Calixarene Dye-Sensitized Photoelectrochemical Cells. CHEMSUSCHEM 2025; 18:e202402395. [PMID: 39569639 DOI: 10.1002/cssc.202402395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 11/21/2024] [Indexed: 11/22/2024]
Abstract
Metal-free photosensitizers for the construction of low-cost and eco-friendly dye-sensitized photoelectrochemical cells (DSPECs) have recently been greatly improved, but the optimization of water oxidation catalysts (WOCs) used in DSPECs based on metal-free dyes has received little attention. Herein, a series of polymer networks (RuTPA, RuCz, RuPr and RuTz) assembled by ruthenium WOCs (RuCHO) with various organic donors are constructed and combined with calixarene dyes to prepare DSPEC devices. The FTO|TiO2|C4BTP+RuTPA photoanode shows the best performance with 85 % Faraday efficiency for oxygen production and 477 μA cm-2 photocurrent density after 200 s chopping irradiation at 0 V vs. Ag/AgCl, one of the highest records among other reported dye-sensitized photoanodes. Compared to monomeric RuCHO, Ru-based polymers with lower Ru content have higher activity and stability due to their rapid electron transfer and anti-aggregation ability. Meanwhile, RuTPA loaded electrodes show better performance due to the lower overpotential of the water oxidation reaction caused by the higher electron donating ability of its donor. This pioneering work incorporates Ru polymer networks as WOCs into the calixarene-sensitized DSPEC system, which has significant potential as a highly efficient and stable photoelectrochemical water splitting device.
Collapse
Affiliation(s)
- Xiao-Lin Wang
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, School of Materials Science and Engineering, Sun Yet-sen University, Guangzhou, 510275, P. R. China
| | - Li-Lin Tan
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, P. R. China
| | - Yang Liu
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, School of Materials Science and Engineering, Sun Yet-sen University, Guangzhou, 510275, P. R. China
| | - Jia-Xin Liu
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, School of Materials Science and Engineering, Sun Yet-sen University, Guangzhou, 510275, P. R. China
| | - Xin-Ao Li
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, School of Materials Science and Engineering, Sun Yet-sen University, Guangzhou, 510275, P. R. China
| | - Zi-Zhan Liang
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, School of Materials Science and Engineering, Sun Yet-sen University, Guangzhou, 510275, P. R. China
| | - Jian-Feng Huang
- School of Materials and New Energy, South China Normal University, Guangzhou, 510631, P. R. China
| | - Jun-Min Liu
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, School of Materials Science and Engineering, Sun Yet-sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
13
|
Gu YH, Xu X, Yuan S. Protonation of Nitrogen-Containing Covalent Organic Frameworks for Enhanced Catalysis. Chemistry 2025; 31:e202500062. [PMID: 39907003 DOI: 10.1002/chem.202500062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 01/30/2025] [Accepted: 02/03/2025] [Indexed: 02/06/2025]
Abstract
Covalent organic frameworks (COFs) are a class of porous crystalline materials with ordered structures and tunable properties, which have been widely explored in catalysis, sensing, gas storage, and separation. Among various post-synthetic modifications, protonation emerges as a simple yet effective strategy to fine-tune the properties of nitrogen-containing COFs, thereby enhancing their catalytic performance. This concept article highlights the contribution of protonation on the mass transfer kinetics, charge distribution, photo-response, charge transfer, and other properties related to photocatalysis and electrocatalysis. The applications of protonated COFs are explored in catalytic processes including hydrogen evolution, CO2 reduction, H2O2 synthesis, and singlet oxygen generation. We also emphasize the necessity of considering the protonation process when nitrogen-containing COFs are applied in acidic environments to accurately reveal the structure-activity relationship. By analyzing recent advancements in protonated COFs, this article underscores the potential and challenges of protonation as a powerful tool for advancing COF-based catalytic systems.
Collapse
Affiliation(s)
- Yu-Hao Gu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Xinyu Xu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Shuai Yuan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
14
|
Chen J, Tang Z, Zhu D, Sheng L, Yang K, Zhang Z, Wang J, Tang Y, He X, Xu H. Stabilizing Li-Metal Electrode via Anion-Induced Desolvation in a Covalent Organic Framework Separator. ACS NANO 2025; 19:9232-9240. [PMID: 40013772 DOI: 10.1021/acsnano.5c00165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Although Li-metal batteries have been widely used as high-capacity batteries, they are highly susceptible to electrolytes that lead to dendritic or dead Li growth, which significantly reduces the stability of Li-metal electrodes. Herein, we report an anionic covalent organic framework (sulfonate COF: Bd-COF) as a Li+-solvate dissociator that strips solvent molecules from encapsulated Li+ to stabilize Li-metal electrodes. The homogeneous and dense ionic COF separator was prepared using a template-assisted interface in-suit polymerization engineering. Notably, the well-developed anionic groups within the COF channels could as counter-charge ligands to Li+, that adsorb Li+-solvates and induce their partial desolvation. Meanwhile, the ordered anionic groups on the surface of COF pores provide continuous ion channels for Li+ migration, facilitating the removal of solvent molecules from Li+-solvated species. Combined with the dense nanoporous feature, the COF membrane was found to be effective in suppressing Li-dendrites and parasitic reactions. The Bd-COF/Celgard membrane realizes uniform Li deposition on Li-metal electrodes, exhibiting excellent cycling performance in Li-symmetric batteries and high-voltage Li-metal batteries with LiNi0.6Mn0.2Co0.2O2 cathodes, showcasing the application prospects of ion-conductive covalent organic frameworks in lithium battery separators.
Collapse
Affiliation(s)
- Jia Chen
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Zhuozhuo Tang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Da Zhu
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Li Sheng
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Kai Yang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Zhiguo Zhang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Jianlong Wang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Yaping Tang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Xiangming He
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Hong Xu
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
15
|
Shao M, Jiang X, Wang A, Tan G, Wang L. The Feasibility of Using Electrostatic Interactions for Immobilizing Ru-bda Catalysts in Covalent Organic Framework: A Proof-of-Concept. CHEMSUSCHEM 2025; 18:e202401903. [PMID: 39412039 DOI: 10.1002/cssc.202401903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/14/2024] [Indexed: 11/16/2024]
Abstract
Heterogenization of molecular catalysts effectively resolves the separation issues of homogeneous catalysts and expands their application scenarios. In recent years, more and more studies have been using non-covalent interactions to achieve the heterogenization of molecular catalysts. Herein, electrostatic attraction was used to immobilize molecular catalysts, Ru-bda small molecular catalysts in COF materials, where the charged Ru-bda catalysts were immobilized in the oppositely charged COF with a high [Ru] loading content of ~0.2 mmol [Ru] g-1 COF. The leakage experiment verified that the immobilization of Ru-bda catalysts in COF by electrostatic interactions is stable in 0.1 M HClO4 and less than 5 % of molecular Ru-bda catalysts were leached into the solution in 2 hours. The chemical water oxidation experiment was conducted as a model catalysis reaction to verify the feasibility of using electrostatic interactions for immobilizing Ru-bda catalysts in COFs. The prepared Ru(bda)@COFs demonstrate a high catalytic activity of 268 μmol L-1 s-1 O2 for chemical water oxidation, illustrating the electrostatic attractions between COF and small molecules that can be used to immobilize homogeneous catalysts in heterogeneous materials. However, the robustness of COF material itself under catalytic conditions should be considered in practical applications.
Collapse
Affiliation(s)
- Mengjiao Shao
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Xuesong Jiang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Aodi Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Guang Tan
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Lei Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| |
Collapse
|
16
|
Yan Z, Fang M, Wang L, Gao H, Ying Y, Yang J, Wang J, Liu Y, Tang Z. Linkage Engineering of Semiconductive Covalent-Organic Frameworks toward Room-Temperature Ppb-Level Selective Ammonia Sensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407436. [PMID: 39955759 DOI: 10.1002/smll.202407436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 02/01/2025] [Indexed: 02/17/2025]
Abstract
Rational design of molecular architectures is crucial for developing advanced materials such as covalent-organic frameworks (COFs) with excellent sensing performance. In this work, two isostructural COFs (β-keto-AnCOF and imine-AnCOF) with the same conjugated linkers but distinct linkages are constructed. Although both COFs have porous structure and semiconductor behavior conferred by the identical conjugated backbones, β-keto-AnCOF with ─C═O side groups exhibits superior room-temperature ammonia (NH3) sensing performance than imine-AnCOF and even the state-of-the-art dynamic and commercial NH3 sensors, i.e., high sensitivity up to 18.94% ppm-1, ultralow experimental detection limit of 1 ppb, outstanding selectivity, and remarkable response stability and reproducibility after 180 days. In situ spectroscopy and theoretical calculation reveal that the additional charge transfer between NH3 and ─C═O sites in β-keto-AnCOF effectively increases the distance between Fermi level and the valence band, enabling highly-sensitive NH3 detection at ppb levels. This work provides novel molecular architectures for next-generation high-performance sensors.
Collapse
Affiliation(s)
- Zhuang Yan
- CAS Key Laboratory for Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Munan Fang
- CAS Key Laboratory for Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Longfei Wang
- CAS Key Laboratory for Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Huiwen Gao
- CAS Key Laboratory for Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yue Ying
- CAS Key Laboratory for Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jinlei Yang
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jiahua Wang
- CAS Key Laboratory for Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Yaling Liu
- CAS Key Laboratory for Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhiyong Tang
- CAS Key Laboratory for Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
17
|
Hassan A, Kumar A, Wahed SA, Mondal S, Kumar A, Das N. Simultaneous pore confinement and sidewall modification of an N-rich COF with Pd(II): an efficient and sustainable heterogeneous catalyst for cross-coupling reactions. NANOSCALE 2025; 17:4765-4775. [PMID: 39868579 DOI: 10.1039/d4nr03796k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Covalent organic frameworks (COFs) are crystalline porous materials bearing well-ordered two- or three-dimensional molecular tectons in their polymeric skeletal framework. COFs are structurally robust as well as physiochemically stable. Currently, these are being developed for their use as "heterogeneous catalysts" for various organic transformations. In particular, research on the use of COFs for catalysis for different C-C cross-coupling reactions is in its infancy. To date, COF catalysts reported for such reactions bear Pd(II) bound in an exclusive coordination environment and have been explored for a particular organic reaction. Herein, we report, for the first time, a COF (Pd@COF-TFP_TzPy) that can anchor Pd(II) units in the polymeric framework in two different coordination environments. Thus, Pd@COF-TFP_TzPy is a porous material with a dual confinement environment for Pd(II) units. The precursor COF (COF-TFP_TzPy) was easily synthesized and it features a two-dimensional hexagonal sheet structure for facile incorporation of Pd(II) ions. The loading of Pd(II) into Pd@COF-TFP_TzPy was low (4.85 wt% Pd), yet the material exhibited excellent catalytic activity in diverse C-C cross-coupling reactions with a broad substrate scope. Furthermore, Pd@COF-TFP_TzPy is highly stable and recyclable, thereby ensuring sustainable utilization of expensive Pd metal. We anticipate that our approach will stimulate further research into designing and utilizing functional COF materials for catalysis.
Collapse
Affiliation(s)
- Atikur Hassan
- Department of Chemistry, Indian Institute of Technology Patna, Patna 801106, Bihar, India.
| | - Ayush Kumar
- Department of Chemistry, Indian Institute of Technology Patna, Patna 801106, Bihar, India.
| | - Sk Abdul Wahed
- Department of Chemistry, Indian Institute of Technology Patna, Patna 801106, Bihar, India.
| | - Subhadip Mondal
- Department of Chemistry, Indian Institute of Technology Patna, Patna 801106, Bihar, India.
| | - Amit Kumar
- Department of Chemistry, Indian Institute of Technology Patna, Patna 801106, Bihar, India.
| | - Neeladri Das
- Department of Chemistry, Indian Institute of Technology Patna, Patna 801106, Bihar, India.
| |
Collapse
|
18
|
Guan L, Li Z, Wang K, Gong L, Fang Y, Yu G, Zhu M, Jin S. Bottom-up Synthesis of Piezoelectric Covalent Triazine-based Nanotube for Hydrogen Peroxide Production from Water and Air. Angew Chem Int Ed Engl 2025; 64:e202419867. [PMID: 39581880 DOI: 10.1002/anie.202419867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 11/26/2024]
Abstract
Carbon nanotubes (CNTs) are nanoscale tubular materials with superior mechanical strength and electronic properties. However, the conventional CNTs are inherently non-piezoelectric, mainly due to the lack of polar structures with pure carbon elements. The direct synthesis of fully conjugated and polarized organic nanotubes with desired piezoelectric properties remains a challenge. Herein, we report the bottom-up synthesis of a new type of covalent triazine-based nanotube (CTN-1) as a novel piezoelectric material. The CTN-1 comprises of high surface area, nitrogen-rich and fully conjugated structure, which provides a series of merits for piezoelectric catalytic processes. These structural features combined with one-dimensional tubular morphology endow CTN-1 with excellent mechanical stimuli response and thus displaying prominent piezoelectric properties via pronounced nanocurvature effect. We further show that the CTN-1 enables the efficient synthesis of H2O2 from water in the air via mechanical energy conversion, with an excellent piezocatalytic H2O2 evolution rate of 4115 μmol g-1 h-1, which exceeds other reported piezoelectric materials. The piezocatalysis by the CTN-1 can be practically integrated into a self-Fenton system, which exhibits excellent pollutant degradation capability. This work demonstrates the enormous potential of a new type of piezoelectric synthetic nanotube from organic frameworks for the in situ synthesis valuable chemicals.
Collapse
Affiliation(s)
- Lijiang Guan
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhi Li
- Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou, 511443, China
| | - Kai Wang
- School of Physics Science and Information Technology, Liaocheng University, Liaocheng, 252000, China
| | - Li Gong
- Instrumental Analysis and Research Center, Sun Yat-Sen University, Guang zhou, 510275, China
| | - Yuanyuan Fang
- School of Physics Science and Information Technology, Liaocheng University, Liaocheng, 252000, China
| | - Guipeng Yu
- College of Chemistry and Chemical Engineering, Hunan Key Laboratory of Micro & Nano Materials Interface Science, Central South University, Changsha, 410083, China
| | - Mingshan Zhu
- Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou, 511443, China
| | - Shangbin Jin
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
19
|
Guo H, He J, Guo Y, Chang Y, Ju H, Li Y. Electron Push-Pull Effect of Benzotrithiophene-Based Covalent Organic Frameworks on the Photocatalytic Degradation of Pharmaceuticals and Personal Care Products. Molecules 2025; 30:336. [PMID: 39860205 PMCID: PMC11767667 DOI: 10.3390/molecules30020336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/09/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
A covalent organic framework (COF) has emerged as a promising photocatalyst for the removal of pharmaceutical and personal care product (PPCP) contaminants; however, high-performance COF photocatalysts are still scarce. In this study, three COF photocatalysts were successfully synthesized by the condensation of benzo[1,2-b:3,4-b':5,6-b'']trithiophene-2,5,8-tricarbaldehyde (BTT) with 4,4',4''-(1,3,5-triazine-2,4,6-triyl)trianiline (TAPT), 1,3,5-Tris(4-aminophenyl)benzene (TAPB), and 4,4',4''-nitrilotris(benzenamine) (TAPA), namely, BTT-TAPA, BTT-TAPB, and BTT-TAPT, respectively. The surface areas of BTT-TAPA, BTT-TAPB, and BTT-TAPT were found to be 800.46, 1203.60, and 1413.58 cm2∙g-1, respectively, providing abundant active sites for photocatalytic reactions. Under visible-light irradiation, BTT-TAPT exhibited the highest removal rate of tetracycline (TC), reaching 82.7% after 240 min. The superior photocatalytic performance of BTT-TAPT was attributed to its large specific surface area and the strong electron-acceptor properties of the triazine group. Electron paramagnetic resonance capture experiments and liquid chromatograph mass spectrometer analysis confirmed that superoxide radicals played a pivotal role in the degradation of TC and ciprofloxacin. Moreover, BTT-TAPT exhibited high stability and reproducibility during the photocatalytic degradation process. This study confirms that BTT-based COFs are a class of promising photocatalysts for the degradation of PPCPs in water, and their performance can be further optimized by tuning the structure and composition of the frameworks.
Collapse
Affiliation(s)
- Hongguang Guo
- School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China; (H.G.); (Y.C.)
| | - Jiaqin He
- College of Physics Science and Technology, Kunming University, Kunming 650214, China; (J.H.); (Y.G.)
| | - Yixi Guo
- College of Physics Science and Technology, Kunming University, Kunming 650214, China; (J.H.); (Y.G.)
| | - Yunxi Chang
- School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China; (H.G.); (Y.C.)
| | - Haidong Ju
- Yunnan Engineering Technology Research Center for Plastic Films, Kunming University, Kunming 650214, China
| | - Yizhou Li
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, Kunming University, Kunming 650214, China
| |
Collapse
|
20
|
Wang JC, Pan R, Yang WT, Chen Z, Du JQ, Kan JL, Dong YB. Pyridine oxide-decorated covalent organic framework for catalytic allylation of aromatic aldehydes with allyl(trichloro)silane. Chem Commun (Camb) 2025; 61:1168-1171. [PMID: 39692521 DOI: 10.1039/d4cc04977b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
A covalent organic framework Py-O-COF, which was directly synthesized from a monomer containing pyridine oxide with its partner via imine condensation, could significantly promote the allylation of aromatic aldehydes with allyl(trichloro)silane in a heterogeneous manner.
Collapse
Affiliation(s)
- Jian-Cheng Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China.
| | - Ru Pan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China.
| | - Wen-Ting Yang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China.
| | - Zhi Chen
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China.
| | - Jia-Qi Du
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China.
| | - Jing-Lan Kan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China.
| | - Yu-Bin Dong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China.
| |
Collapse
|
21
|
Wang L, Zhang Y. Impact of Interfaces on the Performance of Covalent Organic Frameworks for Photocatalytic Hydrogen Production. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408395. [PMID: 39558696 DOI: 10.1002/smll.202408395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/07/2024] [Indexed: 11/20/2024]
Abstract
The rise in global temperatures and environmental contamination resulting from traditional fossil fuel usage has prompted a search for alternative energy sources. Utilizing solar energy to drive the direct splitting of water for hydrogen production has emerged as a promising solution to these challenges. Covalent organic frameworks (COFs) are ordered, crystalline materials made up of organic molecules linked by covalent bonds, featuring permanent porosity and a wide range of structural topologies. COFs serve as suitable platforms for solar-driven water splitting to produce hydrogen, as their building blocks can be tailored to possess adjustable band gaps, charge separation capabilities, porosity, wettability, and chemical stability. Here, the impact of the interface in the context of the photocatalytic reaction is focused and propose strategies to enhance the hydrogen production performance of COFs photocatalysis. In particular, how hybrid photocatalytic interfaces affect photocatalytic performance is focused.
Collapse
Affiliation(s)
- Lin Wang
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Yong Zhang
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China
| |
Collapse
|
22
|
Wu Y, Wang R, Kim Y. Single-Atom Catalysts on Covalent Organic Frameworks for Energy Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:66874-66899. [PMID: 38329718 DOI: 10.1021/acsami.3c17662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Single-atom catalysts (SACs) have been investigated and applied to energy conversion devices. However, issues of metal agglomeration, low metal loading, and substrate stability have hindered realization of the SACs' full potential. Recently, covalent organic framework (COF)-based SACs have emerged as promising materials to enable highly efficient catalytic reactions. Here, we summarize the representative COF-based SACs and their wide application in clean energy devices and conversion reactions, such as hydrogen evolution reaction, carbon dioxide reduction reaction, nitrogen reduction reaction, oxygen reduction reaction, and oxygen evolution reaction. Based on their catalysis conditions, these reactions are categorized into photocatalyzed and electrocatalyzed reactions. We also summarize their design strategies, including heteroatom inclusion, donor-acceptor pairs, pore engineering, interface engineering, etc. Although COF-based SACs are promising, more efforts, such as linkage engineering, functional groups, ionization, multifunctional sites for cocatalyzed systems, etc., could improve them to be the ideal SAC materials. At the end, we provide our perspectives on where the field will proceed in the next 5 years.
Collapse
Affiliation(s)
- Yurong Wu
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, SAR, China
| | - Rui Wang
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, SAR, China
| | - Yoonseob Kim
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, SAR, China
| |
Collapse
|
23
|
Chowdhury S, Hasnat A, Rathi P, Kumar M, Saha S, Randhawa JK, Siril PF. Electrospun Nanofiber Supported Nano/Mesoscale Covalent Organic Frameworks Boost Iodine Sorption. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2409495. [PMID: 39648529 DOI: 10.1002/smll.202409495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Indexed: 12/10/2024]
Abstract
Covalent Organic Frameworks (COFs) are benchmark materials for iodine sorption, but their use has largely been confined to crystalline bulk forms. In this state, COFs face diffusion limitations leading to slow sorption kinetics. To address this, a series of [2 + 3] imine-linked COFs with varying particle sizes and morphologies (mesospheres, nanoflowers, and bulk) is synthesized. Reducing particle size (from 826 ± 48 to 412 ± 22 nm) and adding surface protrusions in COF mesospheres improved iodine adsorption capacity (7.6 to 8.5 g g⁻¹), kinetics (K80%, 0.61 to 0.76 g g⁻¹ h⁻¹), and chemisorption efficiency. Notably, solvothermally synthesized (120 °C, 5 d) crystalline bulk COF with accessible porous surfaces exhibited faster kinetics (K80%, 1.13 g g⁻¹ h⁻¹) than nano/mesoCOFs.This implies nano- and mesoCOFs exhibit surface aggregation that passivates their external binding sites and hinders iodine diffusion and mass transfer. To prevent this, morphologically controlled COF particles are immobilized onto electrospun polyacrylonitrile nanofibrous membranes via in situ growth strategy, creating a hierarchical structure that improved iodine diffusion pathways. This modification increased iodine sorption kinetics by 98%-153% and strengthened the charge-transfer process compared to COF powders.
Collapse
Affiliation(s)
- Sumanta Chowdhury
- School of Chemical Sciences and Advanced Materials Research Centre, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, 175005, India
| | - Abul Hasnat
- School of Chemical Sciences and Advanced Materials Research Centre, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, 175005, India
| | - Preeti Rathi
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, 175005, India
| | - Manish Kumar
- School of Mechanical & Materials Engineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, 175005, India
| | - Santanu Saha
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, 175005, India
| | - Jaspreet Kaur Randhawa
- School of Mechanical & Materials Engineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, 175005, India
| | - Prem Felix Siril
- School of Chemical Sciences and Advanced Materials Research Centre, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, 175005, India
| |
Collapse
|
24
|
Li W, Hao Z, Cao S, Chen S, Wang X, Yin H, Tao X, Dai Y, Cong Y, Ju J. Unraveling the Mechanism of Covalent Organic Frameworks-Based Functional Separators in High-Energy Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405396. [PMID: 39136423 DOI: 10.1002/smll.202405396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/07/2024] [Indexed: 11/21/2024]
Abstract
Covalent organic frameworks (COFs) are promising porous materials due to their high specific surface area, adjustable structure, highly ordered nanochannels, and abundant functional groups, which brings about wide applications in the field of gas adsorption, hydrogen storage, optics, and so forth. In recent years, COFs have attracted considerable attention in electrochemical energy storage and conversion. Specifically, COF-based functional separators are ideal candidates for addressing the ionic transport-related issues in high-energy batteries, such as dendritic formation and shuttle effect. Therefore, it is necessary to make a comprehensive understanding of the mechanism of COFs in functional separators. In this review, the advantages, applications as well as synthesis of COFs are firstly presented. Then, the mechanism of COFs in functional separators for high-energy batteries is summarized in detail, including pore channels regulating ionic transport, functional groups regulating ionic transport, adsorption effect, and catalytic effect. Finally, the application prospect of COFs-based separators in high-energy batteries is proposed. This review may provide new insights into the design of functional separators for advanced electrochemical energy storage and conversion systems.
Collapse
Affiliation(s)
- Wenjie Li
- School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing, 211167, P. R. China
| | - Zhendong Hao
- School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing, 211167, P. R. China
| | - Shihai Cao
- College of Environmental Engineering, Nanjing Institute of Technology, Nanjing, 211167, China
| | - Silin Chen
- School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing, 211167, P. R. China
| | - Xue Wang
- School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing, 211167, P. R. China
| | - Huimin Yin
- School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing, 211167, P. R. China
| | - Xuewei Tao
- School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing, 211167, P. R. China
| | - Yuming Dai
- School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing, 211167, P. R. China
| | - Yuan Cong
- School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing, 211167, P. R. China
| | - Jia Ju
- School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing, 211167, P. R. China
| |
Collapse
|
25
|
Guo Y, Di W, Qin C, Liu R, Cao H, Gao X. Covalent Organic Framework-Involved Sensors for Efficient Enrichment and Monitoring of Food Hazards: A Systematic Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23053-23081. [PMID: 39382449 DOI: 10.1021/acs.jafc.4c06755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
The food safety issues caused by environmental pollution have posed great risks to human health that cannot be ignored. Hence, the precise monitoring of hazard factors in food has emerged as a critical concern for the food safety sector. As a novel porous material, covalent organic frameworks (COFs) have garnered significant attention due to their large specific surface area, excellent thermal and chemical stability, modifiability, and abundant recognition sites. This makes it a potential solution for food safety issues. In this research, the synthesis and regulation strategies of COFs were reviewed. The roles of COFs in enriching and detecting food hazards were discussed comprehensively and extensively. Taking representative hazard factors in food as the research object, the expression forms and participation approaches of COFs were explored, along with the effectiveness of corresponding detection methods. Finally, the development directions of COFs in the future as well as the problems existing in practical applications were discussed, which was beneficial to promote the application of COFs in food safety and beyond.
Collapse
Affiliation(s)
- Yuanyuan Guo
- School of Public Health, Shandong University, Jinan, Shandong Province 250000, China
| | - Wenli Di
- School of Public Health, Shandong University, Jinan, Shandong Province 250000, China
| | - Chuan Qin
- School of Public Health, Shandong University, Jinan, Shandong Province 250000, China
| | - Rui Liu
- School of Public Health, Shandong University, Jinan, Shandong Province 250000, China
| | - Hongqian Cao
- School of Public Health, Shandong University, Jinan, Shandong Province 250000, China
| | - Xibao Gao
- School of Public Health, Shandong University, Jinan, Shandong Province 250000, China
| |
Collapse
|
26
|
Teli P, Soni S, Teli S, Agarwal S. Unveiling the catalytic potency of a novel hydrazone-linked covalent organic framework for the highly efficient one-pot synthesis of 1,2,4-triazolidine-3-thiones. NANOSCALE ADVANCES 2024:d4na00650j. [PMID: 39478999 PMCID: PMC11514329 DOI: 10.1039/d4na00650j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/19/2024] [Indexed: 11/02/2024]
Abstract
A novel hydrazone-linked covalent organic framework (TRIPOD-DHTH COF) was synthesized through the ultrasonic treatment of 2,5-dihydroxyterephthalohydrazide (DHTH) and 4,4',4''-[1,3,5-triazine-2,4,6-triyltris(oxy)]tris-benzaldehyde (TRIPOD). The COF was extensively analyzed using FT-IR, PXRD, SEM, TEM, BET, XPS, TGA, and DTA techniques. The characterization studies revealed the presence of mesoporous properties and high thermal stability, with a surface area measuring 2.78 m2 g-1 and an average pore size of 8.88 nm. The developed COF demonstrated exceptional catalytic activity in synthesizing 1,2,4-triazolidine-3-thiones from thiosemicarbazide and various ketones and aldehydes using a water : ethanol (1 : 2) medium at room temperature. A significant yield (80-98%) of 1,2,4-triazolidine-3-thiones was obtained in a low reaction time (4-20 min). The role of TRIPOD as a precursor in the synthesis of the COF and as a reactant in the synthesis of 1,2,4-triazolidine-3-thione (3l) was found to be fascinating. The synthesized COF maintained its catalytic activity over eight runs, underscoring its efficiency and reusability, highlighting its potential for sustainable chemical syntheses.
Collapse
Affiliation(s)
- Pankaj Teli
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, Mohanlal Sukhadia University Udaipur Rajasthan India
| | - Shivani Soni
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, Mohanlal Sukhadia University Udaipur Rajasthan India
| | - Sunita Teli
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, Mohanlal Sukhadia University Udaipur Rajasthan India
| | - Shikha Agarwal
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, Mohanlal Sukhadia University Udaipur Rajasthan India
| |
Collapse
|
27
|
Wang JC, Sun T, Zhang J, Chen Z, Du JQ, Kan JL, Dong YB. Construction of covalent organic frameworks via the Mannich reaction at room temperature for light-driven oxidative hydroxylation of arylboronic acids. Chem Sci 2024:d4sc04358h. [PMID: 39464613 PMCID: PMC11499953 DOI: 10.1039/d4sc04358h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/16/2024] [Indexed: 10/29/2024] Open
Abstract
An increasing variety of organic reactions have been developed for the synthesis of more structurally stable and multifunctional COFs. Here, we report a class of β-ketamine linked covalent organic frameworks that were constructed through the CeCl3-catalyzed multi-component Mannich reaction at room temperature. And the TAD-COF obtained based on this method could significantly promote the light-driven oxidative hydroxylation of arylboronic acids.
Collapse
Affiliation(s)
- Jian-Cheng Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative, Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University Jinan 250014 P. R. China
| | - Ting Sun
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative, Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University Jinan 250014 P. R. China
| | - Jun Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative, Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University Jinan 250014 P. R. China
| | - Zhi Chen
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative, Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University Jinan 250014 P. R. China
| | - Jia-Qi Du
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative, Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University Jinan 250014 P. R. China
| | - Jing-Lan Kan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative, Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University Jinan 250014 P. R. China
| | - Yu-Bin Dong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative, Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University Jinan 250014 P. R. China
| |
Collapse
|
28
|
Wang W, Meng F, Bai Y, Lu Y, Yang Q, Feng J, Su Q, Ren H, Wu Q. Triazine-Carbazole-Based Covalent Organic Frameworks as Efficient Heterogeneous Photocatalysts for the Oxidation of N-aryltetrahydroisoquinolines. CHEMSUSCHEM 2024; 17:e202301916. [PMID: 38651217 DOI: 10.1002/cssc.202301916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/08/2024] [Accepted: 04/22/2024] [Indexed: 04/25/2024]
Abstract
Covalent organic frameworks (COFs) have attracted growing interests as new material platform for a range of applications. In this study, a triazine-carbazole-based covalent organic framework (COF-TCZ) was designed as highly porous material with conjugated donor-acceptor networks, and feasibly synthesized by the Schiff condensation of 4,4',4''-(1,3,5-triazine-2,4,6-triyl)tr ianiline (TAPB) and 9-(4-formylphenyl)-9H-carbazole-3,6-dicarbaldehyde (CZTA) under the solvothermal condition. Considering the effect of linkage, the imine-linked COF-TCZ was further oxidized to obtain an amide-linked covalent organic framework (COF-TCZ-O). The as-synthesized COFs show high crystallinity, good thermal and chemical stability, and excellent photoactive properties. Two π-conjugated triazine-carbazole-based COFs with tunable linkages are beneficial for light-harvesting capacity and charge separation efficiency, which are empolyed as photocatalysts for the oxidation reaction of N-aryltetrahydroisoquinoline. The COFs catalyst systems exhibit the outstanding photocatalytic performance with high conversion, photostability and recyclability. Photoelectrochemical tests were employed to examine the behavior of photogenerated charge carriers in photo-illumination system. The control experiments provide further insights into the nature of photocatalysis. In addition, the current research also provided a valuable approach for developing photofunctional COFs to meet challenge in achieving the great potential of COFs materials in organic conversion.
Collapse
Affiliation(s)
- Wen Wang
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Fanyu Meng
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Yuhongxu Bai
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Yongchao Lu
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Qingru Yang
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Jing Feng
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Qing Su
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Hao Ren
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Qiaolin Wu
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| |
Collapse
|
29
|
Yang J, Chen Z, Zhang L, Zhang Q. Covalent Organic Frameworks for Photocatalytic Reduction of Carbon Dioxide: A Review. ACS NANO 2024; 18:21804-21835. [PMID: 39116003 DOI: 10.1021/acsnano.4c06783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Covalent organic frameworks (COFs) are crystalline networks with extended backbones cross-linked by covalent bonds. Due to the semiconductive properties and variable metal coordinating sites, along with the rapid development in linkage chemistry, the utilization of COFs in photocatalytic CO2RR has attracted many scientists' interests. In this Review, we summarize the latest research progress on variable COFs for photocatalytic CO2 reduction. In the first part, we present the development of COF linkages that have been used in CO2RR, and we discuss four mechanisms including COFs as intrinsic photocatalysts, COFs with photosensitive motifs as photocatalysts, metalated COF photocatalysts, and COFs with semiconductors as heterojunction photocatalysts. Then, we summarize the principles of structural designs including functional building units and stacking mode exchange. Finally, the outlook and challenges have been provided. This Review is intended to give some guidance on the design and synthesis of diverse COFs with different linkages, various structures, and divergent stacking modes for the efficient photoreduction of CO2.
Collapse
Affiliation(s)
- Jinglun Yang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, China
| | - Zihao Chen
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, China
| | - Lei Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, China
| | - Qichun Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, China
- Department of Chemistry, Center of Super-Diamond and Advanced Films (COSDAF) & Hong Kong Institute of Clean Energy (HKICE), City University of Hong Kong, Hong Kong, SAR 999077, China
| |
Collapse
|
30
|
Jia C, Li F, Li A, Li Q, Huang L. Study of the Enantioselectivity and Recognition Mechanism of Allyl-β-CD Modified Organic Polymer Monolithic Capillary Column. Chirality 2024; 36:e23697. [PMID: 38982739 DOI: 10.1002/chir.23697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/16/2024] [Accepted: 06/07/2024] [Indexed: 07/11/2024]
Abstract
Allyl-β-CD was synthesized and used as the chiral functional monomer to prepare chiral organic polymer monolithic columns in capillary HPLC. First, the enantioselectivity of the prepared allyl-β-CD modified organic polymer monolithic capillary columns was investigated. Then, the influences of enantioseparation conditions of chiral drugs were further explored. Finally, the recognition mechanism was studied by molecular docking with AutoDock. Complete enantioseparations of four chiral drugs as well as partial enantioseparations of eight chiral drugs have been achieved. Results showed that the RSD values for run-to-run, day-to-day, and column-to-column variations ranged from 1.2% to 4.6%, 1.4% to 4.7%, and 2.0% to 6.1%, respectively. The enantioselectivity factor rather than resolution is correlated with the binding free energy difference between enantiomers with allyl-β-CD. Furthermore, the abundant ether bonds, hydroxyl groups, and hydrophobic cavities in cyclodextrin are responsible for the enantioseparation ability of the chiral monolithic capillary columns.
Collapse
Affiliation(s)
- Chaoheng Jia
- College of Chemical Engineering, Fuzhou University, Fuzhou, China
- College of Materials and Chemical Engineering, Fujian Provincial University Engineering Research Center of Green Materials and Chemical Engineering, Minjiang University, Fuzhou, China
| | - Futao Li
- College of Materials and Chemical Engineering, Fujian Provincial University Engineering Research Center of Green Materials and Chemical Engineering, Minjiang University, Fuzhou, China
| | - Anqi Li
- College of Materials and Chemical Engineering, Fujian Provincial University Engineering Research Center of Green Materials and Chemical Engineering, Minjiang University, Fuzhou, China
| | - Qiwen Li
- College of Materials and Chemical Engineering, Fujian Provincial University Engineering Research Center of Green Materials and Chemical Engineering, Minjiang University, Fuzhou, China
| | - Lu Huang
- College of Materials and Chemical Engineering, Fujian Provincial University Engineering Research Center of Green Materials and Chemical Engineering, Minjiang University, Fuzhou, China
| |
Collapse
|
31
|
Lei Z, Chen H, Huang S, Wayment LJ, Xu Q, Zhang W. New Advances in Covalent Network Polymers via Dynamic Covalent Chemistry. Chem Rev 2024; 124:7829-7906. [PMID: 38829268 DOI: 10.1021/acs.chemrev.3c00926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Covalent network polymers, as materials composed of atoms interconnected by covalent bonds in a continuous network, are known for their thermal and chemical stability. Over the past two decades, these materials have undergone significant transformations, gaining properties such as malleability, environmental responsiveness, recyclability, crystallinity, and customizable porosity, enabled by the development and integration of dynamic covalent chemistry (DCvC). In this review, we explore the innovative realm of covalent network polymers by focusing on the recent advances achieved through the application of DCvC. We start by examining the history and fundamental principles of DCvC, detailing its inception and core concepts and noting its key role in reversible covalent bond formation. Then the reprocessability of covalent network polymers enabled by DCvC is thoroughly discussed, starting from the significant milestones that marked the evolution of these polymers and progressing to their current trends and applications. The influence of DCvC on the crystallinity of covalent network polymers is then reviewed, covering their bond diversity, synthesis techniques, and functionalities. In the concluding section, we address the current challenges faced in the field of covalent network polymers and speculates on potential future directions.
Collapse
Affiliation(s)
- Zepeng Lei
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Hongxuan Chen
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Shaofeng Huang
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Lacey J Wayment
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Qiucheng Xu
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Wei Zhang
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
32
|
Liu LZ, Zhou R, Li YL, Pang YH, Shen XF, Liu J. Covalent organic framework-sodium alginate-Ca 2+-polyacrylic acid composite beads for convenient dispersive solid-phase extraction of neonicotinoid insecticides in fruit and vegetables. Food Chem 2024; 441:138357. [PMID: 38199109 DOI: 10.1016/j.foodchem.2024.138357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/23/2023] [Accepted: 01/01/2024] [Indexed: 01/12/2024]
Abstract
Neonicotinoids, the fastest-growing class of insecticides, have posed a multi-media residue problem with adverse effects on environment, biodiversity and human health. Herein, covalent organic framework-sodium alginate-Ca2+-polyacrylic acid composite beads (CACPs), facilely prepared at room temperature, were used in convenient dispersive solid-phase extraction (dSPE) and combined with high-performance liquid chromatography (HPLC) for the detection of five neonicotinoid insecticides (thiamethoxam, acetamiprid, dinotefuran, clothianidin, imidacloprid). CACPs can be completely separated within 1 min without centrifugation. After seven adsorption/desorption cycles, it maintained high extraction efficiencies (>90%). The developed method exhibited a wide linear range (0.01 ∼ 10 μg mL-1), low limits of detection (LODs, 0.0028 ∼ 0.0031 mg kg-1), and good repeatability (RSD ≤ 8.11%, n = 3). Moreover, it was applied to the determination of five neonicotinoids in fruit and vegetables (peach, pear, lettuce, cucumber, tomato), and recoveries ranged from 73.6% to 116.2%.
Collapse
Affiliation(s)
- Ling-Zhi Liu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Rui Zhou
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Yong-Li Li
- Technology Center of Chengdu Customs, Chengdu 610041, China
| | - Yue-Hong Pang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Xiao-Fang Shen
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.
| | - Jun Liu
- Technology Center of Chengdu Customs, Chengdu 610041, China.
| |
Collapse
|
33
|
Ma M, Zhang Y, Huang F, Xu Y. Chiral hydroxyl-controlled covalent organic framework-modified stationary phase for chromatographic enantioseparation. Mikrochim Acta 2024; 191:203. [PMID: 38492084 DOI: 10.1007/s00604-024-06289-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 02/27/2024] [Indexed: 03/18/2024]
Abstract
Chiral covalent organic frameworks (CCOFs) possess a superior chiral recognition environment, abundant pore configuration, and favorable physicochemical stability. In the post-synthetic chiral modification of COFs, research usually focused on increasing the density of chiral sites as much as possible, and little attention has been paid to the influence of the density of chiral sites on the spatial structure and chiral separation performance of CCOFs. In this article, 1,3,5-tris(4-aminophenyl) benzene (TPB), 2,5-dihydroxyterephthalaldehyde (DHTP), and 2,5-dimethoxyterephthalaldehyde (DMTP) served as the platform molecules to directly establish hydroxyl-controlled COFs through Schiff base condensation reactions. Then the novel chiral selectors 6-deoxy-6-[1-(2-aminoethyl)-3-(4-(4-isocyanatobenzyl)phenyl)urea]-β-cyclodextrin (UB-β-CD) were pended into the micropore structures of COFs via covalent bond for further construction the [UB-β-CD]x-TPB-DMTP COFs (x represents the density of chiral sites). The chiral sites density on [UB-β-CD]x-TPB-DMTP COFs was regulated by changing the construction proportion of DHTP to obtain a satisfactory CCOFs and significantly improve the ability of chiral separation. [UB-β-CD]x-TPB-DMTP COFs were coated on the inner wall of a capillary via a covalently bonding strategy. The prepared open tubular capillary exhibited strong and broad enantioselectivity toward a variety of chiral analytes, including sixteen racemic amino acids and six model chiral drugs. By comparing the outcomes of chromatographic separation, we observed that the density of chiral sites in CCOFs was not positively correlated with their enantiomeric separation performance. The mechanism of chiral recognition [UB-β-CD]x-TPB-DMTP COFs were further demonstrated by molecular docking simulation. This study not only introduces a new high-efficiency member of the COFs-based CSPs family but also demonstrates the enantioseparation potential of CCOFs constructed with traditional post-synthetic modification (PSM) strategy by utilizing the inherent characteristics of porous organic frameworks.
Collapse
Affiliation(s)
- Mingxuan Ma
- Department of Pharmacy, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu Province, 225000, People's Republic of China
| | - Yanli Zhang
- Department of Pharmacy, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu Province, 225000, People's Republic of China
| | - Fuhong Huang
- Department of Pharmacy, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu Province, 225000, People's Republic of China
| | - Yuan Xu
- Department of Pharmacy, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu Province, 225000, People's Republic of China.
| |
Collapse
|
34
|
Song D, Xu W, He W, Li C, Yang J, Li J, Wang N. Selective Integrating Molecular Catalytic Units into Bipyridine-Based Covalent Organic Frameworks for Specific Photocatalytic Fuel Production. Inorg Chem 2024; 63:3444-3451. [PMID: 38331715 DOI: 10.1021/acs.inorgchem.3c04158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Molecular metal compounds have demonstrated excellent catalytic activity and product selectivity in the H2 evolution reaction (HER) and the CO2 reduction reaction (CO2RR). The heterogenization of molecular catalysts is regarded as an effective approach to improve their applicability. In this work, the molecular catalytic units [Cp*Ir(Bpy)Cl]+ and [Ru(Bpy)(CO)2Cl2] are constructed in situ on the bipyridine sites of the covalent organic framework for photocatalytic HER and CO2RR, respectively. Inheriting the impressive performance of molecular catalysts, the functionalized TpBpy-M exhibits excellent catalytic activity and product selectivity. Under visible light irradiation, the H2 production rate of TpBpy-Ir is about 760 μmol g-1 h-1, which is 6.7 times higher than that of TpBpy without built-in catalytic sites. Also, the HCOOH production rate of TpBpy-Ru is 271 μmol g-1 h-1, with an impressive selectivity of 88%. Control experiments validated that this improvement is attributed to the incorporation of molecular catalytic units into the framework. Photoluminescence spectroscopy measurements and theoretical calculation consistently demonstrate that, under illumination, the photosensitizer [Ru(Bpy)3]Cl2 is excited and transfers electrons to the catalytic sites in TpBpy-M, which then catalyzes the reduction of H+ and CO2.
Collapse
Affiliation(s)
- Dengmeng Song
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, China
| | - Wenhua Xu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, China
| | - Wei He
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, China
| | - Chengbo Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, China
| | - Jing Yang
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, China
| | - Jun Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, China
| | - Ning Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, China
- Shaanxi Key Laboratory for Carbon Neutral Technology, Northwest University, Xi'an 710127, China
| |
Collapse
|
35
|
Zhou LL, Guan Q, Dong YB. Covalent Organic Frameworks: Opportunities for Rational Materials Design in Cancer Therapy. Angew Chem Int Ed Engl 2024; 63:e202314763. [PMID: 37983842 DOI: 10.1002/anie.202314763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 11/22/2023]
Abstract
Nanomedicines are extensively used in cancer therapy. Covalent organic frameworks (COFs) are crystalline organic porous materials with several benefits for cancer therapy, including porosity, design flexibility, functionalizability, and biocompatibility. This review examines the use of COFs in cancer therapy from the perspective of reticular chemistry and function-oriented materials design. First, the modification sites and functionalization methods of COFs are discussed, followed by their potential as multifunctional nanoplatforms for tumor targeting, imaging, and therapy by integrating functional components. Finally, some challenges in the clinical translation of COFs are presented with the hope of promoting the development of COF-based anticancer nanomedicines and bringing COFs closer to clinical trials.
Collapse
Affiliation(s)
- Le-Le Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, China
| | - Qun Guan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau Taipa, Macau SAR, 999078, China
| | - Yu-Bin Dong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, China
| |
Collapse
|
36
|
Wang Y, Qiu S, Wang L, Ji P, Guo Y, Yao H, Wei C, Huo M, Shi J. Catechol-Isolated Atomically Dispersed Nanocatalysts for Self-Motivated Cocatalytic Tumor Therapy. Angew Chem Int Ed Engl 2024; 63:e202316858. [PMID: 38095801 DOI: 10.1002/anie.202316858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Indexed: 12/30/2023]
Abstract
Nanocatalytic tumor therapy based on Fenton nanocatalysts has attracted considerable attention because of its therapeutic specificity, enhanced outcomes, and high biocompatibility. Nevertheless, the rate-determining step in Fenton chemistry, which involves the transition of a high-valence metallic center (FeIII ) to a Fenton-active low-valence metallic center (FeII ), has hindered advances in nanocatalyst-based therapeutics. In this study, we constructed mesoporous single iron atomic nanocatalysts (mSAFe NCs) by employing catechols from dopamine to coordinate and isolate single iron atoms. The catechols also serve as reductive ligands, generating a field-effect-based cocatalytic system that instantly reduces FeIII species to FeII species within the mSAFe NCs. This self-motivated cocatalytic strategy enabled by mSAFe NCs accelerates the kinetics of the Fenton catalytic reaction, resulting in remarkable performance for nanocatalytic tumor therapy both in vitro and in vivo.
Collapse
Affiliation(s)
- Yuemei Wang
- Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Shanghai Institute of Ceramics, Chinese Academy of Medical Sciences (2021RU012), Shanghai, 200050, P. R. China
- Centre of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200072, P. R. China
| | - Shuwen Qiu
- Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200072, P. R. China
| | - Liping Wang
- Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Shanghai Institute of Ceramics, Chinese Academy of Medical Sciences (2021RU012), Shanghai, 200050, P. R. China
- Centre of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Penghao Ji
- Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200072, P. R. China
| | - Yuedong Guo
- Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200072, P. R. China
| | - Heliang Yao
- Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Shanghai Institute of Ceramics, Chinese Academy of Medical Sciences (2021RU012), Shanghai, 200050, P. R. China
| | - Chenyang Wei
- Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Shanghai Institute of Ceramics, Chinese Academy of Medical Sciences (2021RU012), Shanghai, 200050, P. R. China
| | - Minfeng Huo
- Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200072, P. R. China
| | - Jianlin Shi
- Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Shanghai Institute of Ceramics, Chinese Academy of Medical Sciences (2021RU012), Shanghai, 200050, P. R. China
- Centre of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200072, P. R. China
| |
Collapse
|
37
|
Zarei N, Yarie M, Torabi M, Zolfigol MA. Urea-rich porous organic polymer as a hydrogen bond catalyst for Knoevenagel condensation reaction and synthesis of 2,3-dihydroquinazolin-4(1 H)-ones. RSC Adv 2024; 14:1094-1105. [PMID: 38174287 PMCID: PMC10759279 DOI: 10.1039/d3ra08354c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
In this research, a new urea-rich porous organic polymer (urea-rich POP) as a hydrogen bond catalyst was synthesized via a solvothermal method. The physiochemical properties of the synthesized urea-rich POP were investigated by using different analyses like Fourier transform infrared (FT-IR) spectroscopy, field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), derivative thermogravimetry (DTG), energy-dispersive X-ray spectroscopy (EDS), elemental mapping analysis, X-ray diffraction analysis (XRD) and Brunauer-Emmett-Teller (BET) techniques. The preparation of urea-rich POP provides an efficacious platform for designing unique hydrogen bond catalytic systems. Accordingly, urea-rich POP, due to the existence of several urea moieties as hydrogen bond sites, has excellent performance as a catalyst for the Knoevenagel condensation reaction and multi-component synthesis of 2,3-dihydroquinazolin-4(1H)-ones.
Collapse
Affiliation(s)
- Narges Zarei
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University Hamedan Iran
| | - Meysam Yarie
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University Hamedan Iran
| | - Morteza Torabi
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University Hamedan Iran
| | - Mohammad Ali Zolfigol
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University Hamedan Iran
| |
Collapse
|
38
|
Liu J, Zhao J, Li C, Liu Y, Li D, Li H, Valtchev V, Qiu S, Wang Y, Fang Q. Precise Modulation of Carbon Activity Sites in Metal-Free Covalent Organic Frameworks for Enhanced Oxygen Reduction Electrocatalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305759. [PMID: 37700638 DOI: 10.1002/smll.202305759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/25/2023] [Indexed: 09/14/2023]
Abstract
Metal-free carbon-based materials have gained recognition as potential electrocatalysts for the oxygen reduction reaction (ORR) in new environmentally-friendly electrochemical energy conversion technologies. The presence of effective active centers is crucial for achieving productive ORR. In this study, we present the synthesis of two metal-free dibenzo[a,c]phenazine-based covalent organic frameworks (DBP-COFs), specifically JUC-650 and JUC-651, which serve as ORR electrocatalysts. Among them, JUC-650 demonstrates exceptional catalytic performance for ORR in alkaline electrolytes, exhibiting an onset potential of 0.90 V versus RHE and a half-wave potential of 0.72 V versus RHE. Consequently, JUC-650 stands out as one of the most outstanding metal-free COF-based ORR electrocatalysts report to date. Experimental investigations and density functional theory calculations confirm that modulation of the frameworks' electronic configuration allows for the reduction of adsorption energy at the Schiff-base carbon active sites, leading to more efficient ORR processes. Moreover, the DBP-COFs can be assembled as excellent air cathode catalysts for zinc-air batteries (ZAB), rivaling the performance of commercial Pt/C. This study provides valuable insights for the development of efficient metal-free organoelectrocatalysts through precise regulation of active site strategies.
Collapse
Affiliation(s)
- Jianchuan Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Jie Zhao
- SINOPEC Research Institute of Petroleum Processing, Beijing, 100083, P. R. China
| | - Cuiyan Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Yaozu Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Daohao Li
- State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Hui Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Valentin Valtchev
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Laoshan District, Qingdao, Shandong, 266101, P. R. China
- Normandie Univ, ENSICAEN, UNICAEN, CNRS, Laboratoire Catalyse et Spectrochimie, 6 Marechal Juin, Caen, 14050, France
| | - Shilun Qiu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Yujie Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Qianrong Fang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
39
|
Zheng HL, Zhao JQ, Sun YY, Zhang AA, Cheng YJ, He L, Bu X, Zhang J, Lin Q. Multilevel-Regulated Metal-Organic Framework Platform Integrating Pore Space Partition and Open-Metal Sites for Enhanced CO 2 Photoreduction to CO with Nearly 100% Selectivity. J Am Chem Soc 2023; 145:27728-27739. [PMID: 38055725 PMCID: PMC10739999 DOI: 10.1021/jacs.3c10090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 12/08/2023]
Abstract
Rational design and regulation of atomically precise photocatalysts are essential for constructing efficient photocatalytic systems tunable at both the atomic and molecular levels. Herein, we propose a platform-based strategy capable of integrating both pore space partition (PSP) and open-metal sites (OMSs) as foundational features for constructing high-performance photocatalysts. We demonstrate the first structural prototype obtained from this strategy: pore-partitioned NiTCPE-pstp (TCPE = 1,1,2,2-tetra(4-carboxylphenyl)ethylene, pstp = partitioned stp topology). Nonpartitioned NiTCPE-stp is constructed from six-connected [Ni3(μ3-OH)(COO)6] trimer and TCPE linker to form 1D hexagonal channels with six coplanar OMSs directed at channel centers. After introducing triangular pore-partitioning ligands, half of the OMSs were retained, while the other half were used for PSP, leading to unprecedented microenvironment regulation of the pore structure. The resulting material integrates multiple advanced properties, including robustness, wider absorption range, enhanced electronic conductivity, and high CO2 adsorption, all of which are highly desirable for photocatalytic applications. Remarkably, NiTCPE-pstp exhibits excellent CO2 photoreduction activity with a high CO generation rate of 3353.6 μmol g-1 h-1 and nearly 100% selectivity. Theoretical and experimental studies show that the introduction of partitioning ligands not only optimizes the electronic structure to promote the separation and transfer of photogenerated carriers but also reduces the energy barrier for the formation of *COOH intermediates while promoting CO2 activation and CO desorption. This work is believed to be the first example to integrate PSP strategies and OMSs within metal-organic framework (MOF) photocatalysts, which provides new insight as well as new structural prototype for the design and performance optimization of MOF-based photocatalysts.
Collapse
Affiliation(s)
- Hui-Li Zheng
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese
Academy of Sciences, Fuzhou 350002, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian-Qiang Zhao
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese
Academy of Sciences, Fuzhou 350002, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Ya-Yong Sun
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese
Academy of Sciences, Fuzhou 350002, China
| | - An-An Zhang
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese
Academy of Sciences, Fuzhou 350002, China
| | - Yu-Jia Cheng
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese
Academy of Sciences, Fuzhou 350002, China
| | - Liang He
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese
Academy of Sciences, Fuzhou 350002, China
| | - Xianhui Bu
- Department
of Chemistry and Biochemistry, California
State University, Long Beach, California 90840, United States
| | - Jian Zhang
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese
Academy of Sciences, Fuzhou 350002, China
| | - Qipu Lin
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese
Academy of Sciences, Fuzhou 350002, China
| |
Collapse
|
40
|
Zhang L, Zhang X, Han D, Zhai L, Mi L. Recent Progress in Design Principles of Covalent Organic Frameworks for Rechargeable Metal-Ion Batteries. SMALL METHODS 2023; 7:e2300687. [PMID: 37568245 DOI: 10.1002/smtd.202300687] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/25/2023] [Indexed: 08/13/2023]
Abstract
Covalent organic frameworks (COFs) are acknowledged as a new generation of crystalline organic materials and have garnered tremendous attention owing to their unique advantages of structural tunability, frameworks diversity, functional versatility, and diverse applications in drug delivery, adsorption/separation, catalysis, optoelectronics, and sensing, etc. Recently, COFs is proven to be promising candidates for electrochemical energy storage materials. Their chemical compositions and structures can be precisely tuned and functionalized at the molecular level, allowing a comprehensive understanding of COFs that helps to make full use of their features and addresses the inherent drawback based on the components and functions of the devices. In this review, the working mechanisms and the distinguishing advantages of COFs as electrodes for rechargeable Li-ion batteries are discussed in detail. Especially, principles and strategies for the rational design of COFs as advanced electrode materials in Li-ion batteries are systematically summarized. Finally, this review is structured to cover recent explorations and applications of COF electrode materials in other rechargeable metal-ion batteries.
Collapse
Affiliation(s)
- Lin Zhang
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, P. R. China
| | - Xiaofei Zhang
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, P. R. China
| | - Diandian Han
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, P. R. China
| | - Lipeng Zhai
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, P. R. China
| | - Liwei Mi
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, P. R. China
| |
Collapse
|
41
|
Sun X, Di M, Liu J, Gao L, Yan X, He G. Continuous Covalent Organic Frameworks Membranes: From Preparation Strategies to Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303757. [PMID: 37381640 DOI: 10.1002/smll.202303757] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/30/2023] [Indexed: 06/30/2023]
Abstract
Covalent organic frameworks (COFs) are porous crystalline polymeric materials formed by the covalent bonding of organic units. The abundant organic units library gives the COFs species diversity, easily tuned pore channels, and pore sizes. In addition, the periodic arrangement of organic units endows COFs regular and highly connected pore channels, which has led to the rapid development of COFs in membrane separations. Continuous defect-free and high crystallinity of COF membranes is the key to their application in separations, which is the most important issue to be addressed in the research. This review article describes the linkage types of covalent bonds, synthesis methods, and pore size regulation strategies of COFs materials. Further, the preparation strategies of continuous COFs membranes are highlighted, including layer-by-layer (LBL) stacking, in situ growth, interfacial polymerization (IP), and solvent casting. The applications in separation fields of continuous COFs membranes are also discussed, including gas separation, water treatment, organic solvent nanofiltration, ion conduction, and energy battery membranes. Finally, the research results are summarized and the future prospect for the development of COFs membranes are outlined. More attention may be paid to the large-scale preparation of COFs membranes and the development of conductive COFs membranes in future research.
Collapse
Affiliation(s)
- Xiaojun Sun
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116023, China
| | - Mengting Di
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116023, China
| | - Jie Liu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116023, China
| | - Li Gao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116023, China
| | - Xiaoming Yan
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116023, China
| | - Gaohong He
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116023, China
| |
Collapse
|
42
|
Wang T, Zhang Y, Wang Z, Chen Y, Cheng P, Zhang Z. Olefin-linked covalent organic frameworks: synthesis and applications. Dalton Trans 2023; 52:15178-15192. [PMID: 37461388 DOI: 10.1039/d3dt01684f] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Covalent organic frameworks (COFs) with high specific porosity, easy functionalization, and tailored structure are an emerging class of crystalline porous polymers that have been extensively exploited as ideal materials in various fields. Among them, sp2-carbon linked COFs with high chemical stability, porous backbone, and unique π-electron conjugated architectures structure have raised widespread attention. Specifically, the porous channels of olefin-linked COFs could be packed with active sites for catalysis and guest molecules, while π-π stacking interactions and conjugation systems pave the way for electron transfer. In recent years, many efforts have been devoted to the development of sp2-carbon linked COFs for applications in catalysis, energy storage, gas adsorption, and separation. In this review, we highlight the design principles, synthesis strategies, and impactful applications of olefin-linked COFs. We are looking forward to this review to deepen the understanding of the synthesis of olefin-linked COFs and motivate the further development of these novel conjugated organic materials with distinctive physicochemical properties, as well as their applications in a variety of fields.
Collapse
Affiliation(s)
- Ting Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China.
| | - Yushu Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China.
| | - Zhifang Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China.
- Key Laboratory of Advanced Energy Materials Chemistry, Ministry of Education, Nankai University, Tianjin, 300071, P. R. China
| | - Yao Chen
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China.
- College of Pharmacy, Nankai University, Tianjin, 300071, P. R. China
| | - Peng Cheng
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China.
- Key Laboratory of Advanced Energy Materials Chemistry, Ministry of Education, Nankai University, Tianjin, 300071, P. R. China
- Frontiers Science Center for New Organic Matter, Renewable Energy Conversion and Storage Cente, Nankai University, Tianjin, 300071, P. R. China
| | - Zhenjie Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China.
- Key Laboratory of Advanced Energy Materials Chemistry, Ministry of Education, Nankai University, Tianjin, 300071, P. R. China
- Frontiers Science Center for New Organic Matter, Renewable Energy Conversion and Storage Cente, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
43
|
Zhang J, Cheng C, Guan L, Jiang HL, Jin S. Rapid Synthesis of Covalent Organic Frameworks with a Controlled Morphology: An Emulsion Polymerization Approach via the Phase Transfer Catalysis Mechanism. J Am Chem Soc 2023; 145:21974-21982. [PMID: 37779433 DOI: 10.1021/jacs.3c06764] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Covalent organic frameworks (COFs) with a periodic network of permanent porosity and ordered structures have witnessed enormous potential in many applications. However, the synthesis of COFs with controllable morphologies under mild conditions remains a critical issue. Herein, we report a novel strategy to synthesize β-ketoenamine-linked COFs by emulsion polymerization via phase transfer catalysis for the first time. This new approach employs commercially available pyridinium surfactants as emulsifiers for emulsion polymerization, which function as both catalysts and morphological regulators. By controlling the interfacial interaction in the emulsion, the TpPa-COF can be prepared into different morphologies, i.e., spheres, bowls, and fibers. Furthermore, the COF emulsion can be directly used to prepare a film by applying an electric field, providing a new route to prepare COF films. This phase transfer catalysis method also allows the synthesis of the TpPa-COF on a gram scale. The strategy is fast, facile, and effective in improving the morphology and particle size, providing a prospective route for the green preparation of functional COFs.
Collapse
Affiliation(s)
- Jin Zhang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Cheng Cheng
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Lijiang Guan
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hai-Long Jiang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Shangbin Jin
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
44
|
Wang YX, Wang Y, Li J, Yu Y, Huang SL, Yang GY. Ru(N^N) 3-docked cationic covalent organic frameworks for enhanced sulfide and amine photooxidation. Dalton Trans 2023; 52:14100-14109. [PMID: 37743792 DOI: 10.1039/d3dt02345a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Covalent organic frameworks (COFs) have emerged as significant candidates for visible-light photocatalysis due to their ability to regulate performance which is achieved through the careful selection of building modules, framework conjugation, and post-modification. This report focused on the efficient transformation of an imine-linked I-COF into a π-conjugated quinoline-based Q-COF, which enhanced both the chemical stability and conjugation of the network. By methylating the pyridyl groups in the Q-COF, an N+-COF was obtained. Subsequently, the Ru(N^N)3-photosensitizer ([Ru(dcbpy)3]4-) was incorporated into the channels of the cationic N+-COF through electrostatic interactions, resulting in the formation of [Ru(dcbpy)3]4-⊂N+-COF. This composite exhibited exceptional photocatalytic activity, demonstrating high yields and selectivity in the oxidation of sulfides or amines to their respective products.
Collapse
Affiliation(s)
- Yan-Xia Wang
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Ying Wang
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Jing Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yang Yu
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Sheng-Li Huang
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Guo-Yu Yang
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
45
|
Keypour H, Kouhdareh J, Karimi-Nami R, Karakaya I, Abdollahi-Moghadam M, Rabiei K, Alavinia S. Facile synthesis of a new covalent organic nanosheet (CON-KEY1) based on polyamide links as an effective heterogeneous catalyst in C-C cross coupling reactions. RSC Adv 2023; 13:28686-28702. [PMID: 37790095 PMCID: PMC10542850 DOI: 10.1039/d3ra05664c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 09/23/2023] [Indexed: 10/05/2023] Open
Abstract
C-C coupling reactions represent a fundamental synthetic methodology widely employed in academic and industrial settings. Herein, we present a report on developing and synthesizing a heterogeneous catalyst that is environmentally compatible and has recycling capabilities. Furthermore, the utilization of this catalyst for C-C coupling reactions was explored. A novel amide-based CON was prepared via the reaction of a novel [2,2'-bipyridine]-5,5'-diamine (BDA) and 1,3,5-tris(4-carboxyphenyl) (TCB). TCB was activated with carbonyl diimidazole (CDI) and then reacted with BDA to synthesize favorable CON (i.e., CON-KEY1). Finally, the CON synthesized was reacted with palladium chloride ions, and the palladium-containing organocatalytic complex was decorated with the abbreviated Pd/CON-KEY1. This new heterogeneous complex was fully characterized through the required techniques, including FT-IR, EDX, XRD, TEM, SEM, ICP, TGA-DTA, N2 isotherms, and elemental mapping analysis. Computer simulation results include a multi-sheet 2D framework proposed by CON-KEY1. As a result, palladium ions were found to be arranged between the layers and on the CON surface. This heterogeneous complex functioned as a catalyst precursor in both the Suzuki-Miyaura coupling reaction of aryl boronic acids with aryl halides and the Heck reaction of aryl halides with acrylate derivatives or styrene. The desired coupling products with various functional groups were successfully attained with excellent yields of up to 98%. Simple set-up, improved yields, short reaction times, non-toxic solvents, catalyst durability, and high turnover frequency are among the distinct advantages of this synthetic method. Some other outstanding features of this catalytic system include convenient separation of catalysts and products, high yields, almost complete conversion, high selectivity, and good turnover frequency (TOF). The results show that the highest product efficiency in the reaction was achieved in the shortest possible time using Pd/CON-KEY1. Theoretical studies demonstrated the precedence of the palladium complexation with nitrogen atoms of CON-KEY1 rather than oxygen ones. Natural Bond Orbital (NBO) analysis affirmed that the system with Pd-N bonds (Eg = 0.089 eV) is more reactive with high electron conductivity compared to the Pd-O system (Eg = 0.120 eV).
Collapse
Affiliation(s)
- Hassan Keypour
- Faculty of Chemistry, Bu-Ali Sina University Hamedan 65174 Iran
| | - Jamal Kouhdareh
- Faculty of Chemistry, Bu-Ali Sina University Hamedan 65174 Iran
| | - Rahman Karimi-Nami
- Department of Chemistry, Faculty of Science, University of Maragheh Maragheh Iran
| | - Idris Karakaya
- Department of Chemistry, College of Basic Sciences, Gebze Technical University 41400 Gebze Turkey
| | | | - Khadijeh Rabiei
- Department of Chemistry, Faculty of Science, Qom University of Technology Qom Iran
| | | |
Collapse
|
46
|
Shrivastav V, Mansi, Gupta B, Dubey P, Deep A, Nogala W, Shrivastav V, Sundriyal S. Recent advances on surface mounted metal-organic frameworks for energy storage and conversion applications: Trends, challenges, and opportunities. Adv Colloid Interface Sci 2023; 318:102967. [PMID: 37523999 DOI: 10.1016/j.cis.2023.102967] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/30/2023] [Accepted: 07/21/2023] [Indexed: 08/02/2023]
Abstract
Establishing green and reliable energy resources is very important to counteract the carbon footprints and negative impact of non-renewable energy resources. Metal-organic frameworks (MOFs) are a class of porous material finding numerous applications due to their exceptional qualities, such as high surface area, low density, superior structural flexibility, and stability. Recently, increased attention has been paid to surface mounted MOFs (SURMOFs), which is nothing but thin film of MOF, as a new category in nanotechnology having unique properties compared to bulk MOFs. With the advancement of material growth and synthesis technologies, the fine tunability of film thickness, consistency, size, and geometry with a wide range of MOF complexes is possible. In this review, we recapitulate various synthesis approaches of SURMOFs including epitaxial synthesis approach, direct solvothermal method, Langmuir-Blodgett LBL deposition, Inkjet printing technique and others and then correlated the synthesis-structure-property relationship in terms of energy storage and conversion applications. Further the critical assessment and current problems of SURMOFs have been briefly discussed to explore the future opportunities in SURMOFs for energy storage and conversion applications.
Collapse
Affiliation(s)
| | - Mansi
- CSIR-Central Scientific Instrument Organisation (CSIR-CSIO), Chandigarh 160030, India
| | - Bhavana Gupta
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Prashant Dubey
- Advanced Carbon Products and Metrology Department, CSIR-National Physical Laboratory (CSIR-NPL), New Delhi 110012, India
| | - Akash Deep
- Institute of Nano Science and Technology, Sector-81, Mohali 140306, Punjab, India
| | - Wojciech Nogala
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Vishal Shrivastav
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Shashank Sundriyal
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland; Regional Center of Advanced Technologies and Materials, The Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, 779 00 Olomouc, Czech Republic,.
| |
Collapse
|
47
|
Vardhan H, Rummer G, Deng A, Ma S. Large-Scale Synthesis of Covalent Organic Frameworks: Challenges and Opportunities. MEMBRANES 2023; 13:696. [PMID: 37623757 PMCID: PMC10456518 DOI: 10.3390/membranes13080696] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023]
Abstract
Connecting organic building blocks by covalent bonds to design porous crystalline networks has led to covalent organic frameworks (COFs), consequently transferring the flexibility of dynamic linkages from discrete architectures to extended structures. By virtue of the library of organic building blocks and the diversity of dynamic linkages and topologies, COFs have emerged as a novel field of organic materials that propose a platform for tailor-made complex structural design. Progress over the past two decades in the design, synthesis, and functional exploration of COFs in diverse applications successively established these frameworks in materials chemistry. The large-scale synthesis of COFs with uniform structures and properties is of profound importance for commercialization and industrial applications; however, this is in its infancy at present. An innovative designing and synthetic approaches have paved novel ways to address future hurdles. This review article highlights the fundamental of COFs, including designing principles, coupling reactions, topologies, structural diversity, synthetic strategies, characterization, growth mechanism, and activation aspects of COFs. Finally, the major challenges and future trends for large-scale COF fabrication are outlined.
Collapse
Affiliation(s)
- Harsh Vardhan
- Department of Chemistry and Fermentation Sciences, Appalachian State University, 525 Rivers Street, Boone, NC 28608, USA
| | - Grace Rummer
- Department of Chemistry and Fermentation Sciences, Appalachian State University, 525 Rivers Street, Boone, NC 28608, USA
| | - Angela Deng
- Department of Chemistry and Fermentation Sciences, Appalachian State University, 525 Rivers Street, Boone, NC 28608, USA
| | - Shengqian Ma
- Department of Chemistry, University of North Texas, Denton, TX 76203, USA
| |
Collapse
|
48
|
Yang H, Hao M, Xie Y, Liu X, Liu Y, Chen Z, Wang X, Waterhouse GIN, Ma S. Tuning Local Charge Distribution in Multicomponent Covalent Organic Frameworks for Dramatically Enhanced Photocatalytic Uranium Extraction. Angew Chem Int Ed Engl 2023; 135. [DOI: doi.org/10.1002/ange.202303129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Indexed: 06/25/2023]
Abstract
AbstractOptimizing the electronic structure of covalent organic framework (COF) photocatalysts is essential for maximizing photocatalytic activity. Herein, we report an isoreticular family of multivariate COFs containing chromenoquinoline rings in the COF structure and electron‐donating or withdrawing groups in the pores. Intramolecular donor‐acceptor (D‐A) interactions in the COFs allowed tuning of local charge distributions and charge carrier separation under visible light irradiation, resulting in enhanced photocatalytic performance. By optimizing the optoelectronic properties of the COFs, a photocatalytic uranium extraction efficiency of 8.02 mg/g/day was achieved using a nitro‐functionalized multicomponent COF in natural seawater, exceeding the performance of all COFs reported to date. Results demonstrate an effective design strategy towards high‐activity COF photocatalysts with intramolecular D‐A structures not easily accessible using traditional synthetic approaches.
Collapse
Affiliation(s)
- Hui Yang
- College of Environmental Science and Engineering North China Electric Power University Beijing 102206 P.R. China
| | - Mengjie Hao
- College of Environmental Science and Engineering North China Electric Power University Beijing 102206 P.R. China
| | - Yinghui Xie
- College of Environmental Science and Engineering North China Electric Power University Beijing 102206 P.R. China
| | - Xiaolu Liu
- College of Environmental Science and Engineering North China Electric Power University Beijing 102206 P.R. China
| | - Yanfang Liu
- College of Environmental Science and Engineering North China Electric Power University Beijing 102206 P.R. China
| | - Zhongshan Chen
- College of Environmental Science and Engineering North China Electric Power University Beijing 102206 P.R. China
| | - Xiangke Wang
- College of Environmental Science and Engineering North China Electric Power University Beijing 102206 P.R. China
| | | | - Shengqian Ma
- Department of Chemistry University of North Texas Denton TX-76201 USA
| |
Collapse
|
49
|
López-Magano A, Daliran S, Oveisi AR, Mas-Ballesté R, Dhakshinamoorthy A, Alemán J, Garcia H, Luque R. Recent Advances in the Use of Covalent Organic Frameworks as Heterogenous Photocatalysts in Organic Synthesis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209475. [PMID: 36563668 DOI: 10.1002/adma.202209475] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/30/2022] [Indexed: 06/16/2023]
Abstract
Organic photochemistry is intensely developed in the 1980s, in which the nature of excited electronic states and the energy and electron transfer processes are thoroughly studied and finally well-understood. This knowledge from molecular organic photochemistry can be transferred to the design of covalent organic frameworks (COFs) as active visible-light photocatalysts. COFs constitute a new class of crystalline porous materials with substantial application potentials. Featured with outstanding structural tunability, large porosity, high surface area, excellent stability, and unique photoelectronic properties, COFs are studied as potential candidates in various research areas (e.g., photocatalysis). This review aims to provide the state-of-the-art insights into the design of COF photocatalysts (pristine, functionalized, and hybrid COFs) for organic transformations. The catalytic reaction mechanism of COF-based photocatalysts and the influence of dimensionality and crystallinity on heterogenous photocatalysis performance are also discussed, followed by perspectives and prospects on the main challenges and opportunities in future research of COFs and COF-based photocatalysts.
Collapse
Affiliation(s)
- Alberto López-Magano
- Inorganic Chemistry Department, Módulo 7, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Saba Daliran
- Department of Chemistry, Faculty of Sciences, University of Zabol, Zabol, 98615-538, Iran
| | - Ali Reza Oveisi
- Department of Chemistry, Faculty of Sciences, University of Zabol, Zabol, 98615-538, Iran
| | - Rubén Mas-Ballesté
- Inorganic Chemistry Department, Módulo 7, Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Amarajothi Dhakshinamoorthy
- School of Chemistry, Madurai Kamaraj University, Madurai, Tamil Nadu, 625021, India
- Organic Chemistry Department, Módulo 1, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - José Alemán
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Instituto de Tecnología Química CSIC-UPV, Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas, Av. de los Naranjos s/n, Valencia, 46022, Spain
| | - Hermenegildo Garcia
- Organic Chemistry Department, Módulo 1, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Rafael Luque
- Department of Organic Chemistry, University of Cordoba, Campus de Rabanales, Edificio Marie Curie (C-3), Ctra Nnal IV-A, Km 396, Cordoba, E14014, Spain
- Department of Chemistry, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya str., Moscow, 117198, Russian Federation
| |
Collapse
|
50
|
Chen J, Wang Y, Yu Y, Wang J, Liu J, Ihara H, Qiu H. Composite materials based on covalent organic frameworks for multiple advanced applications. EXPLORATION (BEIJING, CHINA) 2023; 3:20220144. [PMID: 37933382 PMCID: PMC10624394 DOI: 10.1002/exp.20220144] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 03/10/2023] [Indexed: 11/08/2023]
Abstract
Covalent organic frameworks (COFs) stand for a class of emerging crystalline porous organic materials, which are ingeniously constructed with organic units through strong covalent bonds. Their excellent design capabilities, and uniform and tunable pore structure make them potential materials for various applications. With the continuous development of synthesis technique and nanoscience, COFs have been successfully combined with a variety of functional materials to form COFs-based composites with superior performance than individual components. This paper offers an overview of the development of different types of COFs-based composites reported so far, with particular focus on the applications of COFs-based composites. Moreover, the challenges and future development prospects of COFs-based composites are presented. We anticipate that the review will provide some inspiration for the further development of COFs-based composites.
Collapse
Affiliation(s)
- Jia Chen
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical PhysicsChinese Academy of SciencesLanzhouChina
| | - Yuting Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of SciencesNortheastern UniversityShenyangChina
| | - Yongliang Yu
- Research Center for Analytical Sciences, Department of Chemistry, College of SciencesNortheastern UniversityShenyangChina
| | - Jianhua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of SciencesNortheastern UniversityShenyangChina
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for NanotechnologyUniversity of WaterlooWaterlooOntarioCanada
| | - Hirotaka Ihara
- Department of Applied Chemistry and BiochemistryKumamoto UniversityChuo‐kuKumamotoJapan
| | - Hongdeng Qiu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical PhysicsChinese Academy of SciencesLanzhouChina
| |
Collapse
|