1
|
He C, Li B, Yang G, He S, Jiang S, Yang H, Han J, Li X, Wu F, Zhang Q. Progress of 0D Biomass-Derived Porous Carbon Materials Produced by Hydrothermal Assisted Synthesis for Advanced Supercapacitors. J Colloid Interface Sci 2025; 685:487-508. [PMID: 39953687 DOI: 10.1016/j.jcis.2025.01.163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/28/2024] [Accepted: 01/19/2025] [Indexed: 02/17/2025]
Abstract
Supercapacitors are garnering considerable interest owing to their high-power density, rapid charge-discharge capability, and long cycle life. Among the various materials explored, biomass-derived carbon nanomaterials stands out as a sustainable and cost-effective choice, thanks to its natural abundance and eco-friendly characteristics. This review delineates recent advances in the synthesis of zero-dimensional (0D) carbon nanomateirlas from various biomass precursors via hydrothermal assisted synthesis. It offers a comprehensive discussion on the factors affecting the synthesis of 0D carbon nanomaterials, including precursor type, concentration, reaction temperature, and time. Furthermore, the review underscores the impact of different activation methods on the morphology and electrochemical performance of 0D carbon nanomaterials. Finally, we outline the challenges and future prospects of utilizing biomass-derived carbon nanomaterials in supercapacitor applications, emphasizing the importance of optimizing synthesis parameters to attain the desired material properties.
Collapse
Affiliation(s)
- Chenweijia He
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037 China
| | - Bei Li
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037 China
| | - Guangjie Yang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037 China
| | - Shuijian He
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037 China.
| | - Shaohua Jiang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037 China
| | - Haoqi Yang
- College of Electrical, Energy and Power Engineering, Institute of Technology for Carbon Neutralization, Yangzhou University, Yangzhou, Jiangsu 225127, China.
| | - Jingquan Han
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037 China
| | - Xue Li
- National and Local Joint Engineering Laboratory for Lithium-Ion Batteries and Materials Fabrication Technology, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan, China.
| | - Fangdi Wu
- Fujian Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi University, Wuyishan 354300, China
| | - Qian Zhang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037 China; Fujian Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi University, Wuyishan 354300, China.
| |
Collapse
|
2
|
Kharb AS, Kumar K, Chawla AK, Mishra AK. Exploring the gas sensing performances of O-functionalized TiVC MXene: mechanistic insights from computations. Phys Chem Chem Phys 2025; 27:9041-9055. [PMID: 40223790 DOI: 10.1039/d5cp00296f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
The detection of toxic gases remains a critical challenge for environmental safety, and MXenes have rapidly emerged as innovative materials for sensor development. In this work, we break new ground by exploring the sensing capabilities of O-functionalized TiVC MXene, a material not yet studied for gas sensing applications. Ab initio molecular dynamics (AIMD) simulations confirm the monolayer's dynamical stability at 300 K. Using first-principles-based DFT calculations, we systematically analyze the interaction of H2, CO, NO, NO2, and SO2 gas analytes with the TiVCO2 surface. Our study highlights key parameters such as adsorption strength, charge transfer, change in work function, and gas desorption time, critical to sensitivity and selectivity-core elements of the 4-S principle (sensitivity, selectivity, stability, and speed). The robust interaction energies (≤-48 kJ mol-1), short interaction distances, and significant charge transfer suggest that NO adsorption on TiVCO2 is characterized by strong physisorption, governed by hybridization of the 3d-orbitals of titanium and vanadium with the p-orbital of nitrogen. Notably, the change in work function upon interaction comes out to be >0.1 eV and the calculated desorption time of NO at 300 K is 1.74 s, making this MXene a highly promising candidate for NO gas detection at room temperature. Other gases exhibited much weaker physisorption with nanosecond desorption times, reinforcing the selective nature of TiVCO2 for NO detection. These findings offer insights into the use of O-functionalized TiVC MXene for gas sensors, with the potential to revolutionize the design of high-performance sensing devices in environmental monitoring and industrial applications.
Collapse
Affiliation(s)
- Archana Singh Kharb
- Department of Physics, Applied Science Cluster, School of Advanced Engineering, UPES, Dehradun-248007, India.
| | - Kamal Kumar
- Department of Physics, Applied Science Cluster, School of Advanced Engineering, UPES, Dehradun-248007, India.
| | - Amit Kumar Chawla
- Department of Physics, Applied Science Cluster, School of Advanced Engineering, UPES, Dehradun-248007, India.
| | - Abhishek K Mishra
- Department of Physics, Applied Science Cluster, School of Advanced Engineering, UPES, Dehradun-248007, India.
| |
Collapse
|
3
|
Hu Y, Gao Z, Luo Z, An L. Next-Generation Image Sensors Based on Low-Dimensional Semiconductor Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2501123. [PMID: 40237125 DOI: 10.1002/adma.202501123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/19/2025] [Indexed: 04/18/2025]
Abstract
With the rapid advancement of technology of big data and artificial intelligence (AI), the exponential increase in visual information leads to heightened demands for the quality and analysis of imaging results, rendering traditional silicon-based image sensors inadequate. This review serves as a comprehensive overview of next-generation image sensors based on low-dimensional semiconductor materials encompassing 0D, 1D, 2D materials, and their hybrids. It offers an in-depth introduction to the distinctive properties exhibited by these materials and delves into the device structures tailored specifically for image sensor applications. The classification of novel image sensors based on low-dimensional materials, in particular for transition metal dichalcogenides (TMDs), covering the preparation methods and corresponding imaging characteristics, is explored. Furthermore, this review highlights the diverse applications of low-dimensional materials in next-generation image sensors, encompassing advanced imaging sensors, biomimetic vision sensors, and non-von Neumann imaging systems. Lastly, the challenges and opportunities encountered in the development of next-generation image sensors utilizing low-dimensional semiconductor materials, paving the way for further advancements in this rapidly evolving field, are proposed.
Collapse
Affiliation(s)
- Yunxia Hu
- Department of Chemical and Biological Engineering, William Mong Institute of Nano Science and Technology, and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Hong Kong, 999077, P. R. China
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hong Kong, 100872, P. R. China
| | - Zhaoli Gao
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Zhengtang Luo
- Department of Chemical and Biological Engineering, William Mong Institute of Nano Science and Technology, and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Hong Kong, 999077, P. R. China
| | - Liang An
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hong Kong, 100872, P. R. China
| |
Collapse
|
4
|
Ibrahim OO, Liu C, Zhou S, Jin B, He Z, Zhao W, Wang Q, Zhang S. Recent Advances in Nanomaterial-Based Self-Healing Electrodes Towards Sensing and Energy Storage Applications. SENSORS (BASEL, SWITZERLAND) 2025; 25:2248. [PMID: 40218759 PMCID: PMC11991356 DOI: 10.3390/s25072248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/22/2025] [Accepted: 03/28/2025] [Indexed: 04/14/2025]
Abstract
Nanomaterial-based self-healing electrodes have demonstrated significant potential in sensing and energy storage applications due to their ability to withstand electrical breakdowns at high electric fields. However, such electrodes often face mechanical challenges, such as cracking under stress, compromising stability and reliability. This review critically examines nanomaterial-based self-healing mechanisms, focusing on properties and applications in health monitoring, motion sensing, environmental monitoring, and energy storage. By comprehensively reviewing research conducted on dimension-based nanomaterials (OD, 1D, 2D, and 3D) for self-healing electrode applications, this paper aims to provide essential insights into design strategies and performance enhancements afforded by nanoscale dimensions. This review paper highlights the tremendous potential of harnessing dimensional nanomaterials to develop autonomously restoring electrodes for next-generation sensing and energy devices.
Collapse
Affiliation(s)
- Oresegun Olakunle Ibrahim
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China; (O.O.I.); (C.L.); (S.Z.); (Z.H.)
- School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China; (B.J.); (W.Z.)
| | - Chen Liu
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China; (O.O.I.); (C.L.); (S.Z.); (Z.H.)
- Faculty of Science and Engineering, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Shulan Zhou
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China; (O.O.I.); (C.L.); (S.Z.); (Z.H.)
- School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China; (B.J.); (W.Z.)
| | - Bo Jin
- School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China; (B.J.); (W.Z.)
| | - Zhaotao He
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China; (O.O.I.); (C.L.); (S.Z.); (Z.H.)
- School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China; (B.J.); (W.Z.)
| | - Wenjie Zhao
- School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China; (B.J.); (W.Z.)
| | - Qianqian Wang
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China; (O.O.I.); (C.L.); (S.Z.); (Z.H.)
- School of Mechanical and Energy Engineering, Ningbo Tech University, Ningbo 315100, China
| | - Sheng Zhang
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China; (O.O.I.); (C.L.); (S.Z.); (Z.H.)
- School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China; (B.J.); (W.Z.)
- Faculty of Science and Engineering, University of Nottingham Ningbo China, Ningbo 315100, China
- School of Mechanical and Energy Engineering, Ningbo Tech University, Ningbo 315100, China
| |
Collapse
|
5
|
Xu X, Zhou T, Yang A, Jiang H, Song Z, Wang X, Bing Y, Zhao L, Zhang T. Mixed-Matrix Membrane-Based Piezoelectric CO 2 Sensor with Self-Humidity Compensation. ACS Sens 2025; 10:1483-1492. [PMID: 39912207 DOI: 10.1021/acssensors.4c03535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
Monitoring the CO2 concentration is crucial for assessing respiratory illnesses in humans and safeguarding the environment. The ongoing difficulty lies in achieving highly sensitive detection while also eliminating the interference caused by humidity. There is an unmet need for portable sensors with both high sensitivity and good moisture resistance to monitor CO2 in real time. In this study, a novel sensor capable of capturing the piezoelectric signals induced by CO2 gas is developed. A quartz crystal microbalance (QCM) coated with a mixed- matrix membrane of metal-organic framework (MOF)/polyether block amide (Pebax) is designed as a transducer to detect CO2 at room temperature. The change in the concentration of CO2 can be detected by the frequency shift of the QCM sensor. The sensor shows an ultrahigh sensitivity of 371.8 Hz to 1000 ppm of CO2 because of the abundant polar group and nitrogen Lewis basic groups. Furthermore, the implementation of a self-humidity compensation algorithm significantly enhances the accuracy and reliability of CO2 concentration monitoring by effectively addressing the issue of humidity interference. Our research underscores the immense potential of MOF/Pebax QCM sensors with self-humidity compensation ability in the field of CO2 gas monitoring.
Collapse
Affiliation(s)
- Xiaoyi Xu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Tingting Zhou
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Ao Yang
- College of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hongtao Jiang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Zhao Song
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Xukun Wang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Yu Bing
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Liqiang Zhao
- College of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Tong Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| |
Collapse
|
6
|
Sun XQ, Li YF, Chen L, Li HB, Gao RH, Liu J, Yang TY, Guo Z. Universal Gas-Sensitive Detection of Various Lithium-Ion Battery Electrolyte Leakages via Ag@Ag 2O-Functionalized SnO 2 Nanoflowers with Abundant Oxygen Vacancies. Anal Chem 2025; 97:3589-3599. [PMID: 39915085 DOI: 10.1021/acs.analchem.4c05997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2025]
Abstract
Lithium-ion batteries (LIBs) provide many benefits, but trace electrolyte leakage can cause serious safety risks such as thermal runaway. Although gas sensors offer a potential solution, the complexity of electrolyte solvents in LIBs makes it challenging to develop sensing materials capable of universally detecting multiple solvent molecules. Here, Ag@Ag2O-functionalized SnO2 nanoflowers were synthesized using a self-template pyrolysis strategy for the sensitive detection of both common solvent molecules and widely used electrolytes. These sensors, enhanced by abundant oxygen vacancies introduced by Ag@Ag2O functionalization, exhibit excellent sensitivity, particularly to dimethyl carbonate, with a response of 106-100 ppm, a low detection limit of 11.76 ppb, and rapid response/recovery times (28/55 s) at an operating temperature of 200 °C. The sensor performance was validated by density functional theory calculations, which corroborated the effectiveness of the sensing material. In simulated LIB leakage scenarios, such as puncture and electrolyte injection, the sensors demonstrated quick responses to various common electrolyte compositions, indicating their potential for practical applications. This study highlights an effective method for fabricating composite sensing materials and emphasizes the practical significance of our universal detection approach for practical monitoring of electrolyte leakage in energy storage devices.
Collapse
Affiliation(s)
- Xi-Qian Sun
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei 230601, P. R. China
| | - Yun-Feng Li
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei 230601, P. R. China
| | - Li Chen
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei 230601, P. R. China
| | - Hong-Bao Li
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei 230601, P. R. China
| | - Ren-Hui Gao
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei 230601, P. R. China
| | - Jie Liu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei 230601, P. R. China
| | - Tian-Yu Yang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei 230601, P. R. China
| | - Zheng Guo
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei 230601, P. R. China
| |
Collapse
|
7
|
Zhang J, Zhang Y, Tian F, Sun L, Zhang X, Fu A, Tian M. Selective sensing of NH 3 and NO 2 on WSe 2 monolayers based on defect concentration regulation. Phys Chem Chem Phys 2025; 27:3477-3485. [PMID: 39869080 DOI: 10.1039/d4cp04241g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Defect engineering is an important method to control material properties. In this paper, large-scale sampling density functional theory (DFT) was used to investigate the adsorption and sensing behavior of NH3 and NO2 on a WSe2 monolayer, with a focus on the effect of selenium vacancy concentration. The results demonstrate that selectivity is inhibited on a perfect monolayer due to the similar adsorption energy of the two gases, NH3 and NO2, while selectivity can be obtained for both of them under different selenium vacancy concentrations (NH3 about 2-5.6%, NO2 about >8.3%). It is believed that the good match between the unique surface structure of the double-color (double-charged) wave wheel disk-like structure of the WSe2 monolayer and the molecular structure of both of the two representative molecules, NH3 and NO2, contributes dominantly to the unusual performance. The results demonstrate that one kind of material-WSe2 monolayer-can perform selective sensing of both NH3 and NO2, respectively, using only defect adjustment. It is particularly important to acquire the selectivity to NH3 in the mixture of NO2 and NH3. It also provides opportunities for understanding materials and patterned catalyst design.
Collapse
Affiliation(s)
- Jinghao Zhang
- College of Chemistry and Chemical Engineering, College of Textiles and Clothing, Qingdao University, Qingdao, 266071, P. R. China.
| | - Yunfan Zhang
- College of Chemistry and Chemical Engineering, College of Textiles and Clothing, Qingdao University, Qingdao, 266071, P. R. China.
| | - FengHui Tian
- College of Chemistry and Chemical Engineering, College of Textiles and Clothing, Qingdao University, Qingdao, 266071, P. R. China.
| | - Luxiao Sun
- College of Chemistry and Chemical Engineering, College of Textiles and Clothing, Qingdao University, Qingdao, 266071, P. R. China.
| | - Xiaodong Zhang
- College of Chemistry and Chemical Engineering, College of Textiles and Clothing, Qingdao University, Qingdao, 266071, P. R. China.
| | - Aiping Fu
- College of Chemistry and Chemical Engineering, College of Textiles and Clothing, Qingdao University, Qingdao, 266071, P. R. China.
| | - Mingwei Tian
- College of Chemistry and Chemical Engineering, College of Textiles and Clothing, Qingdao University, Qingdao, 266071, P. R. China.
| |
Collapse
|
8
|
Argyrou A, Giappa RM, Gagaoudakis E, Binas V, Remediakis I, Brintakis K, Kostopoulou A, Stratakis E. Toward the Optimization of a Perovskite-Based Room Temperature Ozone Sensor: A Multifaceted Approach in Pursuit of Sensitivity, Stability, and Understanding of Mechanism. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2404430. [PMID: 39780645 DOI: 10.1002/smll.202404430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 11/29/2024] [Indexed: 01/11/2025]
Abstract
Metal halide perovskites (MHPs) have attracted significant attention owing to their simple manufacturing process and unique optoelectronic properties. Their reversible electrical or optical property changes in response to oxidizing or reducing environments make them prospective materials for gas detection technologies. Despite advancements in perovskite-based sensor research, the mechanisms behind perovskite-gas interactions, vital for sensor performance, are still inconclusive. This work presents the first evaluation of the sensing performance and long-term stability of MHPs, considering factors such as halide composition variation and Mn doping levels. The research reveals a clear correlation between halide composition and sensing behavior, with Br-rich sensors displaying a p-type response to O3 gas, while Cl-rich counterparts exhibit n-type sensing behavior. Notably, Mn-doping significantly enhances O3 sensing performance by facilitating the gas adsorption process, as supported by both atomistic simulations and experimental evidence. Long-term evaluation of the sensors provides valuable insights into evolving sensing behaviors, highlighting the impact of dynamic instabilities over time. Overall, this research offers insights into optimal halide combination and Mn-doping levels, representing a significant step forward in engineering room temperature perovskite-based gas sensors that are not only low-cost and high-performing but also durable, marking a new era in sensor technology.
Collapse
Affiliation(s)
- Aikaterini Argyrou
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, Vassilika Vouton, Heraklion, 70013, Greece
- Department of Chemistry, University of Crete, Vassilika Vouton, Heraklion, 70013, Greece
| | - Rafaela Maria Giappa
- Department of Materials Science and Engineering, University of Crete, Vassilika Vouton, Heraklion, 70013, Greece
| | - Emmanouil Gagaoudakis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, Vassilika Vouton, Heraklion, 70013, Greece
| | - Vassilios Binas
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, Vassilika Vouton, Heraklion, 70013, Greece
- Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, 54633, Greece
| | - Ioannis Remediakis
- Department of Materials Science and Engineering, University of Crete, Vassilika Vouton, Heraklion, 70013, Greece
| | - Konstantinos Brintakis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, Vassilika Vouton, Heraklion, 70013, Greece
| | - Athanasia Kostopoulou
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, Vassilika Vouton, Heraklion, 70013, Greece
| | - Emmanuel Stratakis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, Vassilika Vouton, Heraklion, 70013, Greece
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, Shandong, 266000, P. R. China
| |
Collapse
|
9
|
Hou L, Duan J, Xiong F, Carraro C, Shi T, Maboudian R, Long H. Low Power Gas Sensors: From Structure to Application. ACS Sens 2024; 9:6327-6357. [PMID: 39535966 DOI: 10.1021/acssensors.4c01642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Gas sensors are pivotal across industries, encompassing environmental monitoring, industrial safety, and healthcare. Recently, a surge in demand for low power gas sensors has emerged, driven by the huge need for applications in portable devices, wireless sensor networks, and the Internet of things (IoT). The practical realization of a densely interconnected sensor network demands gas sensors to have low power consumption for energy-efficient operation. This Perspective offers a comprehensive overview of the progress of low-power sensors for gas and volatile organic compound detection, with a keen focus on the interplay between sensing materials (including metal oxide semiconductors, metal-organic frameworks, and two-dimensional materials), sensor structures, and power consumption. The main gas sensing mechanisms are discussed, and we delve into the mechanisms for achieving low power consumption including material properties and sensor design. Furthermore, typical applications of low power gas sensors are also presented, including wearable technology, food safety, and environmental monitoring. The review will end by discussing some open questions and ongoing needs.
Collapse
Affiliation(s)
- Linlin Hou
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, Hubei Province 430074, China
| | - Jian Duan
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, Hubei Province 430074, China
| | - Feng Xiong
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, Hubei Province 430074, China
| | - Carlo Carraro
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Tielin Shi
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, Hubei Province 430074, China
| | - Roya Maboudian
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Hu Long
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, Hubei Province 430074, China
| |
Collapse
|
10
|
Rafiq K, Sadia I, Abid MZ, Waleed MZ, Rauf A, Hussain E. Scientific Insights into the Quantum Dots (QDs)-Based Electrochemical Sensors for State-of-the-Art Applications. ACS Biomater Sci Eng 2024; 10:7268-7313. [PMID: 39499739 DOI: 10.1021/acsbiomaterials.4c01256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Size-dependent optical and electronic properties are unique characteristics of quantum dots (QDs). A significant advantage is the quantum confinement effect that allows their precise tuning to achieve required characteristics and behavior for the targeted applications. Regarding the aforementioned factors, QDs-based sensors have exhibited dramatic potential for the diverse and advanced applications. For example, QDs-based devices have been potentially utilized for bioimaging, drug delivery, cancer therapy, and environmental remediation. In recent years, use of QDs-based electrochemical sensors have been further extended in other areas like gas sensing, metal ion detection, monitoring of organic pollutants, and detection of radioactive isotopes. Objective of this study is to rationalize the QDs-based electrochemical sensors for state-of-the-art applications. This review article comprehensively illustrates the importance of aforementioned devices along with sources from which QDs devices have been formulated and fabricated. Other distinct features of QDs devices are associated with their extremely high active surfaces, inherent ability of reproducibility, sensitivity, and selectivity for the targeted analyte detection. In this review, major categories of QD materials along with justification of their key roles in electrochemical devices have been demonstrated and discussed. All categories have been evaluated with special emphasis on the advantages and drawbacks/challenges associated with QD materials. However, in the interests of readers and researchers, recent improvements also have been included and discussed. On the evaluation, it has been concluded that despite significant challenges, QDs-based electrochemical sensors exhibit excellent performances for state-of-the-art and targeted applications.
Collapse
Affiliation(s)
- Khezina Rafiq
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Iqra Sadia
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Zeeshan Abid
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Zaryab Waleed
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Abdul Rauf
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Ejaz Hussain
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| |
Collapse
|
11
|
Mei H, Zhang F, Zhou T, Zhang T. Pulse-Driven MEMS NO 2 Sensors Based on Hierarchical In 2O 3 Nanostructures for Sensitive and Ultra-Low Power Detection. SENSORS (BASEL, SWITZERLAND) 2024; 24:7188. [PMID: 39598965 PMCID: PMC11598139 DOI: 10.3390/s24227188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/25/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024]
Abstract
As the mainstream type of gas sensors, metal oxide semiconductor (MOS) gas sensors have garnered widespread attention due to their high sensitivity, fast response time, broad detection spectrum, long lifetime, low cost, and simple structure. However, the high power consumption due to the high operating temperature limits its application in some application scenarios such as mobile and wearable devices. At the same time, highly sensitive and low-power gas sensors are becoming more necessary and indispensable in response to the growth of the environmental problems and development of miniaturized sensing technologies. In this work, hierarchical indium oxide (In2O3) sensing materials were designed and the pulse-driven microelectromechanical system (MEMS) gas sensors were also fabricated. The hierarchical In2O3 assembled with the mass of nanosheets possess abundant accessible active sites. In addition, compared with the traditional direct current (DC) heating mode, the pulse-driven MEMS sensor appears to have the higher sensitivity for the detection of low-concentrations of nitrogen dioxide (NO2). The limit of detection (LOD) is as low as 100 ppb. It is worth mentioning that the average power consumption of the sensor is as low as 0.075 mW which is one three-hundredth of that in the DC heating mode. The enhanced sensing performances are attributed to loose and porous structures and the reducing desorption of the target gas driven by pulse heating. The combination of morphology design and pulse-driven strategy makes the MEMS sensors highly attractive for portable equipment and wearable devices.
Collapse
Affiliation(s)
- Haixia Mei
- Key Lab Intelligent Rehabil & Barrier Free Disable (Ministry of Education), Changchun University, Changchun 130022, China;
| | - Fuyun Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China;
| | - Tingting Zhou
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China;
| | - Tong Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China;
| |
Collapse
|
12
|
Sansone F, Tonacci A. Non-Invasive Diagnostic Approaches for Kidney Disease: The Role of Electronic Nose Systems. SENSORS (BASEL, SWITZERLAND) 2024; 24:6475. [PMID: 39409515 PMCID: PMC11479338 DOI: 10.3390/s24196475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/03/2024] [Accepted: 10/05/2024] [Indexed: 10/20/2024]
Abstract
Kidney diseases are a group of conditions related to the functioning of kidneys, which are in turn unable to properly filter waste and excessive fluids from the blood, resulting in the presence of dangerous levels of electrolytes, fluids, and waste substances in the human body, possibly leading to significant health effects. At the same time, the toxins amassing in the organism can lead to significant changes in breath composition, resulting in halitosis with peculiar features like the popular ammonia breath. Starting from this evidence, scientists have started to work on systems that can detect the presence of kidney diseases using a minimally invasive approach, minimizing the burden to the individuals, albeit providing clinicians with useful information about the disease's presence or its main related features. The electronic nose (e-nose) is one of such tools, and its applications in this specific domain represent the core of the present review, performed on articles published in the last 20 years on humans to stay updated with the latest technological advancements, and conducted under the PRISMA guidelines. This review focuses not only on the chemical and physical principles of detection of such compounds (mainly ammonia), but also on the most popular data processing approaches adopted by the research community (mainly those relying on Machine Learning), to draw exhaustive conclusions about the state of the art and to figure out possible cues for future developments in the field.
Collapse
Affiliation(s)
| | - Alessandro Tonacci
- Institute of Clinical Physiology, National Research Council of Italy (IFC-CNR), 56124 Pisa, Italy;
| |
Collapse
|
13
|
Gao R, Chen L, Li Y, Wang Y, Yang T, Li X, Geng J, Guo Z. Polyoxometalate Cluster-Guided Dynamic Nucleation and Hierarchical Growth of Branched WO 3 Nanofibers with Ultrafine Pt Nanoparticles for Advanced Gas Sensing. Inorg Chem 2024; 63:18285-18295. [PMID: 39295540 DOI: 10.1021/acs.inorgchem.4c03209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
In the food industry, 2,3-butanedione is a significant volatile organic compound valued for its unique aroma and flavor. Real-time detection of its concentration during food preparation is crucial for ensuring optimal taste and food safety. However, accurately detecting low concentrations of 2,3-butanedione requires highly sensitive sensing materials. Herein, we present a novel synthesis of branched WO3 nanofibers decorated with ultrafine Pt nanoparticles (Pt NPs-WO3 NFs), templated by polyoxometalate (POM) clusters, through a combination of electrospinning and thermal oxidation strategies for advanced gas sensing applications. This Pt NPs-WO3 NFs-based sensor exhibits impressive sensitivity (Ra/Rg = 2.25 vs 500 ppb), a low detection limit of 10 ppb, high selectivity, excellent repeatability, and stable performance over a period of 25 days. Using POM clusters as templates offers significant advantages over the traditional WCl6 salt in synthesizing WO3 NFs with smooth surfaces. Specifically, the POM clusters guide the dynamic nucleation and hierarchical growth of branched NFs, enhancing the concentration of oxygen vacancies and increasing the number of active adsorption sites. Furthermore, the uniform dispersion of ultrafine Pt NPs (≈ 4 nm) within the WO3 NFs further enhances the catalytic activation of 2,3-butanedione, significantly improving the gas sensing performance. This study introduces an efficient method to synthesize Pt NPs-WO3 NFs with potential for manufacturing advanced nanostructured sensing materials using POM clusters as templates, paving the way for high-performance gas sensing technologies.
Collapse
Affiliation(s)
- Renhui Gao
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
- Ministry of Education, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Hefei 230601, P. R. China
| | - Li Chen
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
- Ministry of Education, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Hefei 230601, P. R. China
- Stony Brook Institute at Anhui University, Hefei 230039, P. R. China
| | - Yunfeng Li
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
- Ministry of Education, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Hefei 230601, P. R. China
| | - Yongxin Wang
- Stony Brook Institute at Anhui University, Hefei 230039, P. R. China
| | - Tianyu Yang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
- Ministry of Education, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Hefei 230601, P. R. China
| | - Xiao Li
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
- Ministry of Education, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Hefei 230601, P. R. China
| | - Jing Geng
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
- Ministry of Education, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Hefei 230601, P. R. China
| | - Zheng Guo
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
- Ministry of Education, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Hefei 230601, P. R. China
| |
Collapse
|
14
|
Cao J, Zhang Z, Wang S, Sun Z, Li J, Wang Y, Xu X, Ye Z, Zhang H. Magnetic Field Assisted Enhanced Sensitivity of Nonferromagnetic Materials Boosting the Carrier Transfer: Mechanistic Studies. ACS Sens 2024; 9:4777-4787. [PMID: 39254107 DOI: 10.1021/acssensors.4c01170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
The performance of semiconductor sensors is determined by reaction kinetics, conductivity, and electron mobility, which are undoubtedly closely related to the electron motion behavior. Therefore, the effective regulation of electronic states is crucial for improving gas sensing properties. Previous methods of enhancing the gas-sensing performance have induced complex material modifications, and the extent of performance improvement is usually very limited. Further optimization of the gas sensing performance requires continuous efforts to advance new technologies. Toward this issue, a novel magnetic field-induced strategy is adopted to boost the carrier transfer efficiency of nonferromagnetic semiconductors. The gas sensing investigation results manifest that the applied magnetic field can effectively enhance the sensitivity and reduce the baseline resistance. The In2O3 NC-2 (In2O3 nanocubes) with an applied magnetic field have a greatly enhanced response of 161.4 toward 100 ppm formaldehyde, which is 2.5 times higher than that without magnetic field. The enhanced gas sensing properties can be mainly attributed to magnetization of reactive materials, which makes the orientation of electronic magnetic moments consistent, thus greatly contributing to reactivity. This work introduces a practical approach to effectively improve gas sensing performance without further morphology optimization, noble metal catalysis, structural modification, and material cladding. The results of this study provide new insights for designing novel gas sensors to improve the gas sensing performance.
Collapse
Affiliation(s)
- Jing Cao
- School of Physical Science and Technology, Tiangong University, Tianjin 300387, People's Republic of China
| | - Zixuan Zhang
- School of Physical Science and Technology, Tiangong University, Tianjin 300387, People's Republic of China
| | - Shuangming Wang
- College of Physics & Materials Science, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Zhiying Sun
- School of Physical Science and Technology, Tiangong University, Tianjin 300387, People's Republic of China
| | - Jiahao Li
- School of Physical Science and Technology, Tiangong University, Tianjin 300387, People's Republic of China
| | - Yao Wang
- School of Physical Science and Technology, Tiangong University, Tianjin 300387, People's Republic of China
| | - Xiaoxue Xu
- School of Physical Science and Technology, Tiangong University, Tianjin 300387, People's Republic of China
| | - Zhixu Ye
- School of Physical Science and Technology, Tiangong University, Tianjin 300387, People's Republic of China
| | - Haiming Zhang
- School of Physical Science and Technology, Tiangong University, Tianjin 300387, People's Republic of China
| |
Collapse
|
15
|
Wang F, Zhao J, Hu X, Su X, Sun F. Robust Treble-Weaving Wearable Textiles for Pressure and Temperature Monitoring in Harsh Environments. ACS APPLIED MATERIALS & INTERFACES 2024; 16:48269-48279. [PMID: 39190542 DOI: 10.1021/acsami.4c09471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Wearable sensing textiles with continuous temperature monitoring, tactile feedback, and motion perception are highly desirable for personal safeguarding in extreme environments, such as fire scenes and extreme sports. However, it remains challenging for current wearable sensors to maintain reliable performance and provide point-of-care monitoring in harsh environments, such as high- and low-temperature or high-humidity conditions. Herein, a robust temperature and pressure sensing textile (TPST) with a hierarchical triple-weaving structure is developed using industrial weaving technology. The well-engineered interlacing configuration of the polyimide binding yarns in the triple-weaving structure tightly solidifies the carbon-based sensing yarns between two weaving layers, forming an integrated textile sensing array. The TPST not only exhibits excellent sensing sensitivity, reliability, and rapid response to pressure and temperature stimuli but also shows robust mechanical properties, flame resistance, and wearing comfort. Moreover, we demonstrate the application of the TPST for continuous temperature monitoring, human motion mapping, and vital sign monitoring. This technology offers significant potential for enhancing autonomous rescue operations and defense wearables.
Collapse
Affiliation(s)
- Fameng Wang
- MOE Key Laboratory of Special Protective Textiles, Jiangnan University, Wuxi 214122, China
| | - Jieyun Zhao
- MOE Key Laboratory of Special Protective Textiles, Jiangnan University, Wuxi 214122, China
| | - Xiaorui Hu
- MOE Key Laboratory of Special Protective Textiles, Jiangnan University, Wuxi 214122, China
| | - Xuzhong Su
- MOE Key Laboratory of Special Protective Textiles, Jiangnan University, Wuxi 214122, China
| | - Fengxin Sun
- MOE Key Laboratory of Special Protective Textiles, Jiangnan University, Wuxi 214122, China
- Laboratory of Soft Fibrous Materials and Physics, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
16
|
Zhang Y, Liu J, Rong C, Wang D, Li W, Gao Z, Chen Y. Current Advances of CO Sensing Based on Low Dimensional Materials. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:18821-18836. [PMID: 39196291 DOI: 10.1021/acs.langmuir.4c01861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Carbon monoxide (CO) is a harmful gas with significant impacts on human health and the environment. Its timely detection, especially in the event of thermal runaway in automotive lithium batteries, is crucial to prevent casualties. This paper reviews the progress in the development of efficient, sensitive, and reliable CO sensors, focusing on electrochemical, optical, and resistive sensing materials. Low-dimensional materials have a large specific surface area, providing an abundant number of active sites, which has drawn extensive attention from researchers. According to the different sensor signals, we categorized these sensors into electrical and optical signal sensors. We hope that by systematically introducing the sensing mechanism and sensing performance of these two kinds of sensors, appropriate CO sensors can be developed in different application scenarios so as to realize early warning and monitoring to the maximum extent, reduce industrial losses, and ensure the life and health of personnel.
Collapse
Affiliation(s)
- Yundi Zhang
- College of Automotive Engineering, Jilin University, Changchun 130025, China
| | - Jie Liu
- College of Automotive Engineering, Jilin University, Changchun 130025, China
| | - Changru Rong
- General Research and Development Institute, China FAW Corporation Limited, Changchun 130013, China
| | - Deping Wang
- General Research and Development Institute, China FAW Corporation Limited, Changchun 130013, China
| | - Weifeng Li
- National Key Laboratory of Automotive Chassis Integration and Bionics, Jilin University, Changchun 130025, China
| | - Zhenhai Gao
- College of Automotive Engineering, Jilin University, Changchun 130025, China
| | - Yupeng Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
| |
Collapse
|
17
|
Darwish MA, Abd-Elaziem W, Elsheikh A, Zayed AA. Advancements in nanomaterials for nanosensors: a comprehensive review. NANOSCALE ADVANCES 2024; 6:4015-4046. [PMID: 39114135 PMCID: PMC11304082 DOI: 10.1039/d4na00214h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/23/2024] [Indexed: 08/10/2024]
Abstract
Nanomaterials (NMs) exhibit unique properties that render them highly suitable for developing sensitive and selective nanosensors across various domains. This review aims to provide a comprehensive overview of nanomaterial-based nanosensors, highlighting their applications and the classification of frequently employed NMs to enhance sensitivity and selectivity. The review introduces various classifications of NMs commonly used in nanosensors, such as carbon-based NMs, metal-based NMs, and others, elucidating their exceptional properties, including high thermal and electrical conductivity, large surface area-to-volume ratio and good biocompatibility. A thorough examination of literature sources was conducted to gather information on NMs-based nanosensors' characteristics, properties, and fabrication methods and their application in diverse sectors such as healthcare, environmental monitoring, industrial processes, and security. Additionally, advanced applications incorporating machine learning techniques were analyzed to enhance the sensor's performance. This review advances the understanding and development of nanosensor technologies by providing insights into fabrication techniques, characterization methods, applications, and future outlook. Key challenges such as robustness, biocompatibility, and scalable manufacturing are also discussed, offering avenues for future research and development in this field.
Collapse
Affiliation(s)
- Moustafa A Darwish
- Physics Department, Faculty of Science, Tanta University Tanta 31527 Egypt
| | - Walaa Abd-Elaziem
- Department of Mechanical Design and Production Engineering, Faculty of Engineering, Zagazig University P.O. Box 44519 Egypt
- Department of Materials Science and Engineering, Northwestern University Evanston IL 60208 USA
| | - Ammar Elsheikh
- Production Engineering and Mechanical Design Department, Faculty of Engineering, Tanta University Tanta 31521 Egypt
- Department of Industrial and Mechanical Engineering, Lebanese American University P.O. Box 36 / S-12 Byblos Lebanon
| | - Abdelhameed A Zayed
- Production Engineering and Mechanical Design Department, Faculty of Engineering, Tanta University Tanta 31521 Egypt
| |
Collapse
|
18
|
Li P, Wang Z, Feng Y, Feng B, Cheng D, Wei J. Synergistic sensitization effects of single-atom gold and cerium dopants on mesoporous SnO 2 nanospheres for enhanced volatile sulfur compound sensing. MATERIALS HORIZONS 2024; 11:3038-3047. [PMID: 38847138 DOI: 10.1039/d4mh00507d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The real-time monitoring of volatile sulfur compounds is indispensable; however, it continues to pose a significant challenge due to issues such as limited performance towards parts-per-billion (ppb)-level gas. Herein, a concept of synergistic sensitization effects involving single-atom gold (Au) and cerium (Ce) dopants is proposed to boost the sensing performance of allyl mercaptan, a common volatile sulfur compound. As a proof-of-concept, a chemiresistive gas sensor based on mesoporous SnO2 nanospheres with single-atom Au decoration and Ce dopant (denoted Au/Ce-SnO2) is successfully synthesized. The synthesis of Au/Ce-SnO2 is achieved through the utilization of a self-template strategy, employing metal-phenolic hybrids as a precursor. The obtained materials exhibit high specific surface area (89.4 m2 g-1), and small particle size (∼86 nm). The gas sensor reveals unprecedented sensitivity (0.097 ppb-1) and ultra-low detection limit (0.74 ppb), surpassing all state-of-the-art allyl mercaptan gas sensors. Furthermore, a wireless gas sensor is constructed for highly selective and real-time monitoring of allyl mercaptan. The decoration of single-atom Au facilitates the adsorption and dissociation of oxygen and target gases. Simultaneously, the Ce dopant enhances the oxidation of allyl mercaptan. The sensing performance is boosted by the mesoporous framework of SnO2, as well as the synergistic sensitization effects resulting from single-atom Au decoration and Ce doping, thereby facilitating its potential application in environmental and health-related domains.
Collapse
Affiliation(s)
- Ping Li
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China.
| | - Zizheng Wang
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China.
| | - Youyou Feng
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China.
| | - Bingxi Feng
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China.
| | - Dong Cheng
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China.
| | - Jing Wei
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China.
| |
Collapse
|
19
|
Galstyan V, D'Angelo P, Tarabella G, Vurro D, Djenizian T. High versatility of polyethylene terephthalate (PET) waste for the development of batteries, biosensing and gas sensing devices. CHEMOSPHERE 2024; 359:142314. [PMID: 38735489 DOI: 10.1016/j.chemosphere.2024.142314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 04/10/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
Continuously growing adoption of electronic devices in energy storage, human health and environmental monitoring systems increases demand for cost-effective, lightweight, comfortable, and highly efficient functional structures. In this regard, the recycling and reuse of polyethylene terephthalate (PET) waste in the aforementioned fields due to its excellent mechanical properties and chemical resistance is an effective solution to reduce plastic waste. Herein, we review recent advances in synthesis procedures and research studies on the integration of PET into energy storage (Li-ion batteries) and the detection of gaseous and biological species. The operating principles of such systems are described and the role of recycled PET for various types of architectures is discussed. Modifying the composition, crystallinity, surface porosity, and polar surface functional groups of PET are important factors for tuning its features as the active or substrate material in biological and gas sensors. The findings indicate that conceptually new pathways to the study are opened up for the effective application of recycled PET in the design of Li-ion batteries, as well as biochemical and catalytic detection systems. The current challenges in these fields are also presented with perspectives on the opportunities that may enable a circular economy in PET use.
Collapse
Affiliation(s)
- Vardan Galstyan
- Institute of Materials for Electronics and Magnetism, National Research Council (IMEM-CNR), Parco Area delle Scienze, 37/A, 43124, Parma, (PR), Italy; Department of Engineering "Enzo Ferrari", University of Modena and Reggio Emilia, Via Vivarelli 10, 41125, Modena, Italy.
| | - Pasquale D'Angelo
- Institute of Materials for Electronics and Magnetism, National Research Council (IMEM-CNR), Parco Area delle Scienze, 37/A, 43124, Parma, (PR), Italy
| | - Giuseppe Tarabella
- Institute of Materials for Electronics and Magnetism, National Research Council (IMEM-CNR), Parco Area delle Scienze, 37/A, 43124, Parma, (PR), Italy
| | - Davide Vurro
- Institute of Materials for Electronics and Magnetism, National Research Council (IMEM-CNR), Parco Area delle Scienze, 37/A, 43124, Parma, (PR), Italy
| | - Thierry Djenizian
- Mines Saint-Etienne, Center of Microelectronics in Provence, Department of Flexible Electronics, F-13541, Gardanne, France; Al-Farabi Kazakh National University, Center of Physical-Chemical Methods of Research and Analysis, Tole bi str., 96A, Almaty, Kazakhstan
| |
Collapse
|
20
|
Cao S, Song Z, Bing Y, Xu X, Zhou T, Zhang T. Metal-Organic-Framework Derived Co-Mo Multimetal Oxide Semiconductors: Selective Trace-Level Hydrogen Sulfide Detection. ACS Sens 2024; 9:2979-2988. [PMID: 38818754 DOI: 10.1021/acssensors.4c00144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
The development of a highly selective and trace-level gas sensing platform for detecting hydrogen sulfide (H2S) remains a formidable challenge. To solve this problem, Co-Mo multimetal oxide semiconductors are rationally tailored by employing metal organic frameworks (MOFs) as self-sacrificial templates. The MOF-derived Co3O4/β-CoMoO4 based gas sensors displays high sensitivity (Rg/Ra = 22) to 10 ppm of H2S and ultralow limit of detection (10 ppb H2S). The formation of p-p heterojunction and multivalence states of Mo play a crucial role in electron transfer and oxygen adsorption. A sensor array constructed from four Co3O4/β-CoMoO4 materials with different Co/Mo ratios demonstrates a superior selective discrimination of H2S from other VOCs and malodorous gases by principal component analysis (PCA). Besides, a H2S gas sensing and alarming platform was designed for monitoring the environment contaminated with H2S. This finding provides a feasible approach for the discovery of highly efficient gas sensors to monitor environmental H2S concentration.
Collapse
Affiliation(s)
- Shuang Cao
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, P.R. China
| | - Zhao Song
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, P.R. China
| | - Yu Bing
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, P.R. China
| | - Xiaoyi Xu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, P.R. China
| | - Tingting Zhou
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, P.R. China
| | - Tong Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, P.R. China
| |
Collapse
|
21
|
Lv J, Zhang C, Qu G, Pan K, Qin J, Wei K, Liang Y. Modification strategies for semiconductor metal oxide nanomaterials applied to chemiresistive NO x gas sensors: A review. Talanta 2024; 273:125853. [PMID: 38460422 DOI: 10.1016/j.talanta.2024.125853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 02/14/2024] [Accepted: 02/28/2024] [Indexed: 03/11/2024]
Abstract
Semiconductor metal oxides (SMOs) nanomaterials are a category of sensing materials that are widely applied to chemiresistive NOx gas sensors. However, there is much space to improve the sensing performance of SMOs nanomaterials. Therefore, how to improve the sensing performance of SMOs nanomaterials for NOx gases has always attracted the interest of researchers. Up to now, there are few reviews focus on the modification strategies of SMOs which applied to NOx gas sensors. In order to compensate for the limitation, this review summarizes the existing modification strategies of SMOs, hoping to provide researchers a view of the research progress in this filed as comprehensive as possible. This review focuses on the progress of the modification of SMOs nanomaterials for chemiresistive NOx (NO, NO2) gas sensors, including the morphology modulation of SMOs, compositing SMOs, loading noble metals, doping metal ions, compositing with carbon nanomaterials, compositing with biomass template, and compositing with MXene, MOFs, conducting polymers. The mechanism of each strategy to enhance the NOx sensing performance of SMOs-based nanomaterials is also discussed and summarized. In addition, the limitations of some of the modification strategies and ways to address them are discussed. Finally, future perspectives for SMOs-based NOx gas sensors are also discussed.
Collapse
Affiliation(s)
- Jiaxin Lv
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan, 650500, China; National Regional Engineering Research Center-NCW, Yunnan, 650500, China
| | - Chaoneng Zhang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan, 650500, China; National Regional Engineering Research Center-NCW, Yunnan, 650500, China
| | - Guangfei Qu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan, 650500, China; National Regional Engineering Research Center-NCW, Yunnan, 650500, China.
| | - Keheng Pan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan, 650500, China; National Regional Engineering Research Center-NCW, Yunnan, 650500, China
| | - Jin Qin
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan, 650500, China; National Regional Engineering Research Center-NCW, Yunnan, 650500, China
| | - Kunling Wei
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan, 650500, China; National Regional Engineering Research Center-NCW, Yunnan, 650500, China
| | - Yuqi Liang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan, 650500, China; National Regional Engineering Research Center-NCW, Yunnan, 650500, China
| |
Collapse
|
22
|
Cao Z, Sun Y, Dong F. Mechanism of Interfacial Molecular Interactions Reveals the Intrinsic Factors for the Highly Enhanced Sensing Performance of Ag-Loaded Co 3O 4. ACS Sens 2024; 9:2558-2566. [PMID: 38664913 DOI: 10.1021/acssensors.4c00277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
The noble metal-loaded strategy can effectively improve the gas-sensing performances of metal oxide sensors. However, the gas-solid interfacial interactions between noble metal-loaded sensing materials and gaseous species remain unclear, posing a significant challenge in correlating the physical and chemical processes during gas sensing. In this study, in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and in situ Raman spectroscopy were conducted to collaboratively investigate the interfacial interactions involved in the ethanol gas-sensing processes over Co3O4 and Ag-loaded Co3O4 sensors. In situ DRIFTS revealed differences in the compositions and quantities of sensing reaction products, as well as in the adsorption-desorption interactions of surface species, among Co3O4 and Ag-loaded Co3O4 materials. In parallel, in situ Raman spectroscopy demonstrated that the ethanol atmosphere can modulate the electron scattering of Ag-loaded Co3O4 materials but not of raw Co3O4. In situ experimental results revealed the intrinsic reason for the highly enhanced sensing performances of the Ag-loaded Co3O4 sensors toward ethanol gas, including a decreased optimal working temperature (from 250 to 150 °C), an improved gas response level (from 24 to 257), and accelerated gas recovery dynamics. This work provides an effective platform to investigate the interfacial interactions of sensing processes at the molecular level and further advances the development of high-performance gas sensors.
Collapse
Affiliation(s)
- Zhengmao Cao
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yanjuan Sun
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Fan Dong
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
23
|
Baig SM, Ishii S, Abe H. Sub-50 nm patterning of alloy thin films via nanophase separation for hydrogen gas sensing. NANOSCALE ADVANCES 2024; 6:2582-2585. [PMID: 38752141 PMCID: PMC11093267 DOI: 10.1039/d4na00071d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/10/2024] [Indexed: 05/18/2024]
Abstract
A novel patterning method achieves two-dimensional nano-patterning of metal nanofibers by depositing a platinum-cerium alloy film on a silicon wafer and inducing phase separation in an oxygen-carbon monoxide atmosphere. The resulting nano-patterned thin film, Pt#CeO2/Si, consists of platinum and cerium oxide with an average pattern width of 50 nm and exhibits potential as a hydrogen sensor with sensitive electrical responses to hydrogen ad/desorption. The patterning method introduced herein addresses the challenge of wavelength limitations in traditional optical lithography, offering a scalable approach for sub-50 nm patterns, which are crucial for advanced sensor and electronic applications.
Collapse
Affiliation(s)
- Sherjeel Mahmood Baig
- National Institute for Materials Science 1-1 Namiki 305-0044 Tsukuba Ibaraki Japan
- Graduate School of Science and Technology, Saitama University 255 Shimookubo Saitama 338-8570 Japan
| | - Satoshi Ishii
- National Institute for Materials Science 1-1 Namiki 305-0044 Tsukuba Ibaraki Japan
| | - Hideki Abe
- National Institute for Materials Science 1-1 Namiki 305-0044 Tsukuba Ibaraki Japan
- Graduate School of Science and Technology, Saitama University 255 Shimookubo Saitama 338-8570 Japan
| |
Collapse
|
24
|
Su PG, Yang JJ. Preparation and NH 3 gas-sensing properties of Ag/β-AgVO 3 nanorods. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024. [PMID: 38682943 DOI: 10.1039/d4ay00255e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
NH3 gas sensors operating at room temperature, consisting of Ag nanoparticles decorated β-AgVO3 nanorods (Ag/β-AgVO3 NRs), were fabricated via a facile hydrothermal method without the need for a template. The surface characteristics and compositions of Ag/β-AgVO3 NRs were analyzed using X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Ag nanoparticles, ranging in diameter from approximately 20 to 40 nm, were dispersed on the surface of monoclinic β-AgVO3 NRs with diameters ranging from 50 to 105 nm and lengths from 0.3 to 1.3 μm. The NH3 gas sensing properties of Ag/β-AgVO3 NRs were studied under both dry air and humid conditions at room temperature. Comparative analysis demonstrated that the Ag/β-AgVO3 NRs exhibited a strong response to NH3 gas under 70% relative humidity (RH) at room temperature compared to α-AgVO3 NRs. Specifically, the response of the Ag/β-AgVO3 NRs to 5 ppm NH3 increased by 2.25 times as the RH varied from 20% to 80% at room temperature. This enhanced response was attributed to the effects of formation of nanoheterojunctions, nano-metallic Ag activity and the conductivity of NH4+ and OH- ions induced by the presence of humidity. The room temperature NH3 gas sensors based on Ag/β-AgVO3 NRs demonstrated strong responses to low NH3 concentrations, high selectivity, good reproducibility, and long-term stability, and show promise for the development of low-power and cost-effective NH3 gas sensors for practical applications even under high humidity.
Collapse
Affiliation(s)
- Pi-Guey Su
- Department of Chemistry, Chinese Culture University, Taipei 111, Taiwan.
| | - Jia-Jie Yang
- Department of Chemistry, Chinese Culture University, Taipei 111, Taiwan.
| |
Collapse
|
25
|
Abideen ZU, Arifeen WU, Tricoli A. Advances in flame synthesis of nano-scale architectures for chemical, biomolecular, plasmonic, and light sensing. NANOSCALE 2024; 16:7752-7785. [PMID: 38563193 DOI: 10.1039/d4nr00321g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Flame spray pyrolysis (FSP), a key technique under the broader category of flame aerosol synthesis, is being increasingly explored for the design of advanced miniaturized sensor architectures with applications including chemical, biomolecular, plasmonic, and light sensing. This review provides an overview of the advantages of FSP for the fabrication of nanostructured materials for sensing, delving into synthesis strategies and material structures that meet the increasing demands for miniaturized sensor devices. We focus on the fundamentals of FSP, discussing reactor configurations and how process parameters such as precursor compositions, flow rates, and temperature influence nanoparticle characteristics and their sensing performance. A detailed analysis of nanostructures, compositions, and morphologies made by FSP and their applications in chemical, chemiresistive, plasmonic, biosensing, and light sensing is presented. This review identifies the challenges and opportunities of FSP, exploring current limitations and potential improvements for industrial translation. We conclude by highlighting future research directions aiming to establish guidelines for the flame-based design of nano-scale sensing architectures.
Collapse
Affiliation(s)
- Zain Ul Abideen
- Nanotechnology Research Laboratory, Research School of Chemistry, College of Science, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Waqas Ul Arifeen
- School of Mechanical Engineering, Yeungnam University, Daehak-ro, Gyeongsan-si, Gyeongbuk-do, 38541, South Korea
| | - Antonio Tricoli
- Nanotechnology Research Laboratory, Research School of Chemistry, College of Science, Australian National University, Canberra, Australian Capital Territory 2601, Australia
- Nanotechnology Research Laboratory, Faculty of Engineering, University of Sydney, Sydney, New South Wales 2006, Australia.
| |
Collapse
|
26
|
Ouyang X, Du K, Zeng Y, Song Q, Xiao S. Nanostructure-based orbital angular momentum encryption and multiplexing. NANOSCALE 2024. [PMID: 38616650 DOI: 10.1039/d4nr00547c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
The orthogonality among the OAM modes provides a new degree of freedom for optical multiplexing communications. So far, traditional Dammann gratings and spatial light modulators (SLMs) have been widely used to generate OAM beams by modulating electromagnetic waves at each pixel. However, such architectures suffer from limitations in terms of having a resolution of only a few microns and the bulkiness of the entire optical system. With the rapid development of the electromagnetic theory and advanced nanofabrication methods, artificial nanostructures, especially optical metasurfaces, have been introduced which greatly shrink the size of OAM multiplexing devices while increasing the level of integration. This review focuses on the study of encryption, multiplexing and demultiplexing of OAM beams based on nanostructure platforms. After introducing the focusing characteristics of OAM beams, the interaction mechanism between OAM beams and nanostructures is discussed. The physical phenomena of helical dichroism response and spatial separation of OAM beams achieved through nanostructures, setting the stage for OAM encryption and multiplexing, are reviewed. Afterward, the further advancements and potential applications of nanophotonics-based OAM multiplexing are deliberated. Finally, the challenges of conventional design methods and dynamic tunable techniques for nanostructure-based OAM multiplexing technology are addressed.
Collapse
Affiliation(s)
- Xu Ouyang
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, Harbin Institute of Technology, Shenzhen 518055, P. R. China.
| | - Kang Du
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, Harbin Institute of Technology, Shenzhen 518055, P. R. China.
| | - Yixuan Zeng
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, Harbin Institute of Technology, Shenzhen 518055, P. R. China.
| | - Qinghai Song
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, Harbin Institute of Technology, Shenzhen 518055, P. R. China.
- Pengcheng Laboratory, Shenzhen 518055, P. R. China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, Shanxi, P. R. China
| | - Shumin Xiao
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, Harbin Institute of Technology, Shenzhen 518055, P. R. China.
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, P. R. China
- Pengcheng Laboratory, Shenzhen 518055, P. R. China
| |
Collapse
|
27
|
Zhou S, Zhao Y, Xun Y, Wei Z, Yang Y, Yan W, Ding J. Programmable and Modularized Gas Sensor Integrated by 3D Printing. Chem Rev 2024; 124:3608-3643. [PMID: 38498933 DOI: 10.1021/acs.chemrev.3c00853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
The rapid advancement of intelligent manufacturing technology has enabled electronic equipment to achieve synergistic design and programmable optimization through computer-aided engineering. Three-dimensional (3D) printing, with the unique characteristics of near-net-shape forming and mold-free fabrication, serves as an effective medium for the materialization of digital designs into usable devices. This methodology is particularly applicable to gas sensors, where performance can be collaboratively optimized by the tailored design of each internal module including composition, microstructure, and architecture. Meanwhile, diverse 3D printing technologies can realize modularized fabrication according to the application requirements. The integration of artificial intelligence software systems further facilitates the output of precise and dependable signals. Simultaneously, the self-learning capabilities of the system also promote programmable optimization for the hardware, fostering continuous improvement of gas sensors for dynamic environments. This review investigates the latest studies on 3D-printed gas sensor devices and relevant components, elucidating the technical features and advantages of different 3D printing processes. A general testing framework for the performance evaluation of customized gas sensors is proposed. Additionally, it highlights the superiority and challenges of programmable and modularized gas sensors, providing a comprehensive reference for material adjustments, structure design, and process modifications for advanced gas sensor devices.
Collapse
Affiliation(s)
- Shixiang Zhou
- Department of Materials Science and Engineering, National University of Singapore, 117575, Singapore
| | - Yijing Zhao
- Department of Mechanical Engineering, National University of Singapore, 117575, Singapore
| | - Yanran Xun
- Department of Materials Science and Engineering, National University of Singapore, 117575, Singapore
| | - Zhicheng Wei
- Department of Materials Science and Engineering, National University of Singapore, 117575, Singapore
| | - Yong Yang
- Temasek Laboratories, National University of Singapore, 5A Engineering Drive 1, 117411, Singapore
| | - Wentao Yan
- Department of Mechanical Engineering, National University of Singapore, 117575, Singapore
| | - Jun Ding
- Department of Materials Science and Engineering, National University of Singapore, 117575, Singapore
| |
Collapse
|
28
|
Sui N, Song Z, Xu X, Cao S, Xu Y, Zhou T, Zhang T. Effect of heterogenous dopant and high temperature pulse excitation on ozone sensing behavior of In 2O 3 nanostructures and an image recognition method coupled to ozone sensing array. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133379. [PMID: 38160555 DOI: 10.1016/j.jhazmat.2023.133379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/24/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
Ground-level ozone (O3) is a primary air pollutant with potential adverse impacts on human health and ecosystems. Aiming to detect O3 concentration and develop efficient O3 sensing materials, sensing behavior of heterogenous cation (Fe3+, Sn4+ and Sb5+) doped In2O3 nanostructures was investigated. The incorporation of these cations modulated the electronic structure of semiconductor oxides, affecting the density of chemisorbed oxygen species and reactive sites. From O3 sensing results, Fe3+ doped In2O3 based sensors featuring saturated resistance curves in O3 gas, demonstrated fast sensing speed and qualified detection threshold (20 ppb). In contrast, Sn4+ and Sb5+ doped counterparts exhibited non-saturated sensing curves, resulting in slower response/recovery speed. As a proof-of-concept, these optimized sensors were integrated as the sensor array. Coupled to the image recognition technique, this sensor array could successfully discriminate O3 and NOx. That is, through the tailored combination of material modulation and sensor array, this study paves a novel approach for highly sensitive and selective O3 detection.
Collapse
Affiliation(s)
- Ning Sui
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, PR China
| | - Zijie Song
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, PR China
| | - Xiaoyi Xu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, PR China
| | - Shuang Cao
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, PR China
| | - Yifeng Xu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, PR China
| | - Tingting Zhou
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, PR China.
| | - Tong Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, PR China.
| |
Collapse
|
29
|
Kumar D, Kumar R, Chaurasiya R. Janus HfSSe monolayer: a promising candidate for SO 2and COCl 2gas sensing. NANOTECHNOLOGY 2024; 35:195501. [PMID: 38286014 DOI: 10.1088/1361-6528/ad2383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/29/2024] [Indexed: 01/31/2024]
Abstract
Janus monolayers based on transition metal dichalcogenides have garnered significant interest as potential materials for nano electronic device applications due to their exceptional physical and electronic properties. In this study, we investigate the stability of the Janus HfSSe monolayer usingab initiomolecular dynamics simulations and analyze the electronic properties in its pristine state. We then examine the impact of adsorbing toxic gas molecules (AsH3, COCl2, NH3, NO2, and SO2) on the monolayer's structure and electronic properties, testing their adsorption on different active sites on top of hafnium, selenium, and sulfur. The sensitivity of the gas molecules is quantified in terms of their adsorption energy, with the highest and lowest energies being observed for SO2(-0.278 eV) and NO2(-0.095 eV), respectively. Additionally, we calculate other properties such as recovery time, adsorption height, Bader charge, and charge difference density to determine the sensitivity and selectivity of the toxic gas molecules. Our findings suggest that the Janus HfSSe monolayer has the potential to function as SO2and COCl2gas sensor due to its high sensitivity for these two gases.
Collapse
Affiliation(s)
- Dalip Kumar
- Department of Chemical Engineering, National Taiwan University, Taiwan ROC
| | - Rajesh Kumar
- Department of Electrical Engineering and Computer Science, University of Arkansas, Fayetteville, AR 72701, United States of America
| | - Rajneesh Chaurasiya
- Department of Electronics and Communication Engineering, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Chennai 601103, India
| |
Collapse
|
30
|
Li Y, Castillo HD, Dobscha JR, Morgan AR, Tait SL, Flood AH. Breaking Radial Dipole Symmetry in Planar Macrocycles Modulates Edge-to-Edge Packing and Disrupts Cofacial Stacking. Chemistry 2024; 30:e202302946. [PMID: 37950681 DOI: 10.1002/chem.202302946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/13/2023]
Abstract
Dipolar interactions are ever-present in supramolecular architectures, though their impact is typically revealed by making dipoles stronger. While it is also possible to assess the role of dipoles by altering their orientations by using synthetic design, doing so without altering the molecular shape is not straightforward. We have now done this by flipping one triazole unit in a rigid macrocycle, tricarb. The macrocycle is composed of three carbazoles (2 Debye) and three triazoles (5 Debye) defining an array of dipoles aligned radially but organized alternately in and out. These dipoles are believed to dictate edge-to-edge tiling and face-to-face stacking. We modified our synthesis to prepare isosteric macrocycles with the orientation of one triazole dipole rotated 40°. The new dipole orientation guides edge-to-edge contacts to reorder the stability of two surface-bound 2D polymorphs. The impact on dipole-enhanced π stacking, however, was unexpected. Our stacking model identified an unchanged set of short-range (3.4 Å) anti-parallel dipole contacts. Despite this situation, the reduction in self-association was attributed to long-range (~6.4 Å) dipolar repulsions between π-stacked macrocycles. This work highlights our ability to control the build-up and symmetry of macrocyclic skeletons by synthetic design, and the work needed to further our understanding of how dipoles control self-assembly.
Collapse
Affiliation(s)
- Yan Li
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, IN, 47405, USA
| | - Henry D Castillo
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, IN, 47405, USA
| | - James R Dobscha
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, IN, 47405, USA
| | - Amanda R Morgan
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, IN, 47405, USA
| | - Steven L Tait
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, IN, 47405, USA
| | - Amar H Flood
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, IN, 47405, USA
| |
Collapse
|
31
|
Yang H, Du Z, Yang Y, Wu Q, Ma C, Su H, Wang X, Zeng D. Ce-Ag Active Bimetallic Pairs in Two-Dimensional SnS 2 for Enhancing NO 2 Sensing. ACS Sens 2024; 9:283-291. [PMID: 38215040 DOI: 10.1021/acssensors.3c01924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
Developing gas sensors capable of efficiently detecting harmful gases is urgent to protect the human environment. Here, an active Ce-Ag bimetallic pair was innovatively introduced into SnS2, which successfully exhibited excellent NO2 gas sensing performance. 0.8% Ce-SnS2-Ag showed a gas sensing response of 5.18 to 1 ppm of NO2 at a low temperature of 80 °C, with a lower limit of detection as low as 100 ppb. DFT calculations revealed that Ce atoms are substituted into the main lattice of SnS2, which opens up the interlayer spacing and serves as an anchor point to fix the Ag atoms in the interlayer. The Ce-Ag bimetallic pairs successfully modulate the electronic structure of SnS2, which promotes the adsorption and charge transfer between NO2 and Ce-SnS2-Ag and thus achieves such an outstanding gas sensing performance. This work opens an avenue for the rational functional modification of SnS2 with an optimized electronic structure and enhanced gas sensing.
Collapse
Affiliation(s)
- Huimin Yang
- The State Key Laboratory of Materials and Processing Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Zhenming Du
- The State Key Laboratory of Materials and Processing Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Yazhou Yang
- The State Key Laboratory of Materials and Processing Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Qirui Wu
- The State Key Laboratory of Materials and Processing Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Chaofan Ma
- The State Key Laboratory of Materials and Processing Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Huiyu Su
- The State Key Laboratory of Materials and Processing Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Xiaoxia Wang
- The State Key Laboratory of Materials and Processing Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Dawen Zeng
- The State Key Laboratory of Materials and Processing Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| |
Collapse
|
32
|
Wang C, Zhang N, Liu C, Ma B, Zhang K, Li R, Wang Q, Zhang S. New Advances in Antenna Design toward Wearable Devices Based on Nanomaterials. BIOSENSORS 2024; 14:35. [PMID: 38248412 PMCID: PMC10813296 DOI: 10.3390/bios14010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/08/2024] [Accepted: 01/08/2024] [Indexed: 01/23/2024]
Abstract
Wearable antennas have recently garnered significant attention due to their attractive properties and potential for creating lightweight, compact, low-cost, and multifunctional wireless communication systems. With the breakthrough progress in nanomaterial research, the use of lightweight materials has paved the way for the widespread application of wearable antennas. Compared with traditional metallic materials like copper, aluminum, and nickel, nanoscale entities including zero-dimensional (0-D) nanoparticles, one-dimensional (1-D) nanofibers or nanotubes, and two-dimensional (2-D) nanosheets exhibit superior physical, electrochemical, and performance characteristics. These properties significantly enhance the potential for constructing durable electronic composites. Furthermore, the antenna exhibits compact size and high deformation stability, accompanied by greater portability and wear resistance, owing to the high surface-to-volume ratio and flexibility of nanomaterials. This paper systematically discusses the latest advancements in wearable antennas based on 0-D, 1-D, and 2-D nanomaterials, providing a comprehensive overview of their development and future prospects in the field.
Collapse
Affiliation(s)
- Chunge Wang
- School of Mechanical and Energy Engineering, NingboTech University, Ningbo 315100, China; (C.W.); (N.Z.); (K.Z.)
| | - Ning Zhang
- School of Mechanical and Energy Engineering, NingboTech University, Ningbo 315100, China; (C.W.); (N.Z.); (K.Z.)
- Key Laboratory of Advanced Forging & Stamping Technology and Science, Yanshan University, Ministry of Education of China, Qinhuangdao 066004, China
| | - Chen Liu
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China;
- Faculty of Science and Engineering, University of Nottingham Ningbo, Ningbo 315100, China
| | - Bangbang Ma
- Ningbo L.K. Technology Co., Ltd., Ningbo 315100, China;
| | - Keke Zhang
- School of Mechanical and Energy Engineering, NingboTech University, Ningbo 315100, China; (C.W.); (N.Z.); (K.Z.)
- Key Laboratory of Advanced Forging & Stamping Technology and Science, Yanshan University, Ministry of Education of China, Qinhuangdao 066004, China
| | - Rongzhi Li
- Beijing Advanced Innovation Center of Materials Genome Engineering, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China;
| | - Qianqian Wang
- School of Mechanical and Energy Engineering, NingboTech University, Ningbo 315100, China; (C.W.); (N.Z.); (K.Z.)
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China;
| | - Sheng Zhang
- School of Mechanical and Energy Engineering, NingboTech University, Ningbo 315100, China; (C.W.); (N.Z.); (K.Z.)
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China;
- Faculty of Science and Engineering, University of Nottingham Ningbo, Ningbo 315100, China
| |
Collapse
|
33
|
Yun Q, Ge Y, Shi Z, Liu J, Wang X, Zhang A, Huang B, Yao Y, Luo Q, Zhai L, Ge J, Peng Y, Gong C, Zhao M, Qin Y, Ma C, Wang G, Wa Q, Zhou X, Li Z, Li S, Zhai W, Yang H, Ren Y, Wang Y, Li L, Ruan X, Wu Y, Chen B, Lu Q, Lai Z, He Q, Huang X, Chen Y, Zhang H. Recent Progress on Phase Engineering of Nanomaterials. Chem Rev 2023. [PMID: 37962496 DOI: 10.1021/acs.chemrev.3c00459] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
As a key structural parameter, phase depicts the arrangement of atoms in materials. Normally, a nanomaterial exists in its thermodynamically stable crystal phase. With the development of nanotechnology, nanomaterials with unconventional crystal phases, which rarely exist in their bulk counterparts, or amorphous phase have been prepared using carefully controlled reaction conditions. Together these methods are beginning to enable phase engineering of nanomaterials (PEN), i.e., the synthesis of nanomaterials with unconventional phases and the transformation between different phases, to obtain desired properties and functions. This Review summarizes the research progress in the field of PEN. First, we present representative strategies for the direct synthesis of unconventional phases and modulation of phase transformation in diverse kinds of nanomaterials. We cover the synthesis of nanomaterials ranging from metal nanostructures such as Au, Ag, Cu, Pd, and Ru, and their alloys; metal oxides, borides, and carbides; to transition metal dichalcogenides (TMDs) and 2D layered materials. We review synthesis and growth methods ranging from wet-chemical reduction and seed-mediated epitaxial growth to chemical vapor deposition (CVD), high pressure phase transformation, and electron and ion-beam irradiation. After that, we summarize the significant influence of phase on the various properties of unconventional-phase nanomaterials. We also discuss the potential applications of the developed unconventional-phase nanomaterials in different areas including catalysis, electrochemical energy storage (batteries and supercapacitors), solar cells, optoelectronics, and sensing. Finally, we discuss existing challenges and future research directions in PEN.
Collapse
Affiliation(s)
- Qinbai Yun
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Department of Chemical and Biological Engineering & Energy Institute, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yiyao Ge
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Zhenyu Shi
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Jiawei Liu
- Institute of Sustainability for Chemicals, Energy and Environment, Agency for Science, Technology and Research (A*STAR), Singapore, 627833, Singapore
| | - Xixi Wang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - An Zhang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Biao Huang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
| | - Yao Yao
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Qinxin Luo
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Li Zhai
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
| | - Jingjie Ge
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR
| | - Yongwu Peng
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Chengtao Gong
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Meiting Zhao
- Institute of Molecular Aggregation Science, Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, China
| | - Yutian Qin
- Institute of Molecular Aggregation Science, Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, China
| | - Chen Ma
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Gang Wang
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Qingbo Wa
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Xichen Zhou
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Zijian Li
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Siyuan Li
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Wei Zhai
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Hua Yang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Yi Ren
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Yongji Wang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Lujing Li
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Xinyang Ruan
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Yuxuan Wu
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Bo Chen
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Qipeng Lu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhuangchai Lai
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Qiyuan He
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Xiao Huang
- Institute of Advanced Materials (IAM), School of Flexible Electronics (SoFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Ye Chen
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Hua Zhang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
34
|
Baharfar M, Lin J, Kilani M, Zhao L, Zhang Q, Mao G. Gas nanosensors for health and safety applications in mining. NANOSCALE ADVANCES 2023; 5:5997-6016. [PMID: 37941945 PMCID: PMC10629029 DOI: 10.1039/d3na00507k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/06/2023] [Indexed: 11/10/2023]
Abstract
The ever-increasing demand for accurate, miniaturized, and cost-effective gas sensing systems has eclipsed basic research across many disciplines. Along with the rapid progress in nanotechnology, the latest development in gas sensing technology is dominated by the incorporation of nanomaterials with different properties and structures. Such nanomaterials provide a variety of sensing interfaces operating on different principles ranging from chemiresistive and electrochemical to optical modules. Compared to thick film and bulk structures currently used for gas sensing, nanomaterials are advantageous in terms of surface-to-volume ratio, response time, and power consumption. However, designing nanostructured gas sensors for the marketplace requires understanding of key mechanisms in detecting certain gaseous analytes. Herein, we provide an overview of different sensing modules and nanomaterials under development for sensing critical gases in the mining industry, specifically for health and safety monitoring of mining workers. The interactions between target gas molecules and the sensing interface and strategies to tailor the gas sensing interfacial properties are highlighted throughout the review. Finally, challenges of existing nanomaterial-based sensing systems, directions for future studies, and conclusions are discussed.
Collapse
Affiliation(s)
- Mahroo Baharfar
- School of Chemical Engineering, University of New South Wales (UNSW Sydney) Sydney New South Wales 2052 Australia
| | - Jiancheng Lin
- School of Chemical Engineering, University of New South Wales (UNSW Sydney) Sydney New South Wales 2052 Australia
| | - Mohamed Kilani
- School of Chemical Engineering, University of New South Wales (UNSW Sydney) Sydney New South Wales 2052 Australia
| | - Liang Zhao
- Azure Mining Technology Pty Ltd Sydney New South Wales 2067 Australia
| | - Qing Zhang
- CCTEG Changzhou Research Institute Changzhou 213015 China
| | - Guangzhao Mao
- School of Chemical Engineering, University of New South Wales (UNSW Sydney) Sydney New South Wales 2052 Australia
| |
Collapse
|
35
|
Chen Z, Liu W, Si X, Guo J, Huo J, Zhang Z, Cheng G, Du Z. In situ assembly of one-dimensional Pt@ZnO nanofibers driven by a ZIF-8 framework for achieving a high-performance acetone sensor. NANOSCALE 2023; 15:17206-17215. [PMID: 37855215 DOI: 10.1039/d3nr04040b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
To obtain a high-performance gas sensor, it is essential to ingeniously design sensing materials containing the features of high catalytic performance, abundant oxygen vacancies, and splendid grain dispersibility through a simple method. Inspired by the fact that ZIF-8 contains semiconductor metal atoms, well-arranged ZnO nanoparticle (NP)-in situ assembled one-dimensional nanofibers (NFs) are obtained by one-step electrospinning. By incorporating Pt NPs into the cavity of ZIF-8 NPs, well-dispersed Pt@ZnO NPs driven by Pt@ZIF-8 composites are obtained after annealing. The well-arranged Pt@ZnO NP-assembled NFs not only exhibit abundant oxygen vacancies but also avoid the self-aggregation of ZnO and Pt NPs. Meanwhile, the small Pt NPs could improve the catalytic effect in return. Therefore, the gas sensor fabricated based on the above materials exhibits an acetone sensitivity of 6.1 at 370 °C, compared with pristine ZnO NFs (1.6, 5 ppm). Moreover, the well-arranged Pt@ZnO NP-assembled NFs show exceptional sensitivity to acetone with a 70.2 ppb-level detection limit in theory. The synergistic advantages of the designed sensing material open up new possibilities for non-invasive disease diagnosis.
Collapse
Affiliation(s)
- Zaiping Chen
- Key Lab for Special Functional Materials, Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China.
| | - Wei Liu
- Key Lab for Special Functional Materials, Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China.
| | - Xiaohui Si
- Key Lab for Special Functional Materials, Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China.
| | - Junmeng Guo
- Key Lab for Special Functional Materials, Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China.
| | - Jiahang Huo
- Key Lab for Special Functional Materials, Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China.
| | - Zhiheng Zhang
- Key Lab for Special Functional Materials, Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China.
| | - Gang Cheng
- Key Lab for Special Functional Materials, Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China.
| | - Zuliang Du
- Key Lab for Special Functional Materials, Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China.
| |
Collapse
|
36
|
Li P, Feng B, Feng Y, Song G, Cheng X, Deng Y, Wei J. Synthesis of Mesoporous Lanthanum-Doped SnO 2 Spheres for Sensitive and Selective Detection of the Glutaraldehyde Disinfectant. ACS Sens 2023; 8:3723-3732. [PMID: 37610721 DOI: 10.1021/acssensors.3c00953] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Glutaraldehyde disinfectant has been widely applied in aquaculture, farming, and medical treatment. Excessive concentrations of glutaraldehyde in the environment can lead to serious health hazards. Therefore, it is extremely important to develop high-performance glutaraldehyde sensors with low cost, high sensitivity, rapid response, fabulous selectivity, and low limit of detection. Herein, mesoporous lanthanum (La) doped SnO2 spheres with high specific surface area (52-59 m2 g-1), uniform mesopores (with a pore size concentrated at 5.7 nm), and highly crystalline frameworks are designed to fabricate highly sensitive gas sensors toward gaseous glutaraldehyde. The mesoporous lanthanum-doped SnO2 spheres exhibit excellent glutaraldehyde-sensing performance, including high response (13.5@10 ppm), rapid response time (28 s), and extremely low detection limit of 0.16 ppm. The excellent sensing performance is ascribed to the high specific surface area, high contents of chemisorbed oxygen species, and lanthanum doping. DFT calculations suggest that lanthanum doping in the SnO2 lattice can effectively improve the adsorption energy toward glutaraldehyde compared to pure SnO2 materials. Moreover, the fabricated gas sensors can effectively detect commercial glutaraldehyde disinfectants, indicating a potential application in aquaculture, farming, and medical treatment.
Collapse
Affiliation(s)
- Ping Li
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P.R. China
| | - Bingxi Feng
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P.R. China
| | - Youyou Feng
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P.R. China
| | - Guoxin Song
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, iChEM, Fudan University, Shanghai 200433, P.R. China
| | - Xiaoli Cheng
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P.R. China
| | - Yonghui Deng
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, iChEM, Fudan University, Shanghai 200433, P.R. China
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, P.R. China
| | - Jing Wei
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P.R. China
| |
Collapse
|
37
|
Park C, Baek JW, Shin E, Kim ID. Two-Dimensional Electrically Conductive Metal-Organic Frameworks as Chemiresistive Sensors. ACS NANOSCIENCE AU 2023; 3:353-374. [PMID: 37868223 PMCID: PMC10588438 DOI: 10.1021/acsnanoscienceau.3c00024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/24/2023] [Accepted: 07/24/2023] [Indexed: 10/24/2023]
Abstract
Metal-organic frameworks (MOFs) have emerged as attractive chemical sensing materials due to their exceptionally high porosity and chemical diversity. Nevertheless, the utilization of MOFs in chemiresistive type sensors has been hindered by their inherent limitation in electrical conductivity. The recent emergence of two-dimensional conductive MOFs (2D c-MOFs) has addressed this limitation by offering enhanced electrical conductivity, while still retaining the advantageous properties of MOFs. In particular, c-MOFs have shown promising advantages for the fabrication of sensors capable of operating at room temperature. Thus, active research on gas sensors utilizing c-MOFs is currently underway, focusing on enhancing sensitivity and selectivity. To comprehend the potential of MOFs as chemiresistive sensors for future applications, it is crucial to understand not only the fundamental properties of conductive MOFs but also the state-of-the-art works that contribute to improving their performance. This comprehensive review delves into the distinctive characteristics of 2D c-MOFs as a new class of chemiresistors, providing in-depth insights into their unique sensing properties. Furthermore, we discuss the proposed sensing mechanisms associated with 2D c-MOFs and provide a concise summary of the strategies employed to enhance the sensing performance of 2D c-MOFs. These strategies encompass a range of approaches, including the design of metal nodes and linkers, morphology control, and the synergistic use of composite materials. In addition, the review thoroughly explores the prospects of 2D c-MOFs as chemiresistors and elucidates their remarkable potential for further advancements. The insights presented in this review shed light on future directions and offer valuable opportunities in the chemical sensing research field.
Collapse
Affiliation(s)
- Chungseong Park
- Department of Materials Science and
Engineering, Korea Advanced Institute of
Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jong Won Baek
- Department of Materials Science and
Engineering, Korea Advanced Institute of
Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Euichul Shin
- Department of Materials Science and
Engineering, Korea Advanced Institute of
Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Il-Doo Kim
- Department of Materials Science and
Engineering, Korea Advanced Institute of
Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
38
|
Je Y, Chee SS. Controlling the Morphology of Tellurene for a High-Performance H 2S Chemiresistive Room-Temperature Gas Sensor. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2707. [PMID: 37836349 PMCID: PMC10574203 DOI: 10.3390/nano13192707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 09/27/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023]
Abstract
A two-dimensional (2D) van der Waals material composed only of tellurium (Te) atoms-tellurene-is drawing attention because of its high intrinsic electrical conductivity and strong interaction with gas molecules, which could allow the development of high-performance chemiresistive sensors. However, the correlation between the morphologies and gas detection properties of tellurene has not yet been studied in depth, and few reports exist on tellurene-based hydrogen sulfide (H2S) chemiresistive sensors in spite of their strong interaction with H2S molecules. Here, we investigate the morphology-dependent H2S gas detection properties of tellurene synthesized using a hydrothermal method. To tailor the morphologies of tellurene, the molecular weight of the surfactant was controlled, revealing that a 1D or 2D form was synthesized and also accompanied with the high crystallinity. The 1D tellurene-based chemiresistive sensor presented superior H2S detection properties compared to the 2D form, achieving a gas response (Rg/Ra) of ~38, even at room temperature. This outstanding performance was attributed to the high intrinsic electrical conductivity and high specific surface area of the resultant 1D tellurene.
Collapse
Affiliation(s)
- Yeonjin Je
- Nano Convergence Materials Center, Korea Institute of Ceramic Engineering and Technology (KICET), Jinju 52851, Republic of Korea;
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Sang-Soo Chee
- Nano Convergence Materials Center, Korea Institute of Ceramic Engineering and Technology (KICET), Jinju 52851, Republic of Korea;
| |
Collapse
|
39
|
Su PG, Chen YH. Fabrication of conifer-like TiSnO 2 nanorods for sensing H 2S gas at room temperature. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:3975-3983. [PMID: 37534712 DOI: 10.1039/d3ay00963g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Conifer-like TiSnO2 nanorods mixed metal oxide was synthesized via the one-pot polyol method utilizing ethylene glycol (EG), poly(diallyldimethylammonium chloride) (PDDA), tin(II) chloride dihydrate (SnCl2·2H2O), and titanium(IV)-ethylhexanoate (TE) as precursor materials, aimed at room temperature H2S gas sensing. The effects of polyol duration time and capping agent concentration (PDDA) were examined to explore the morphological, structural, and gas-sensing characteristics, as well as to propose potential growth mechanisms of conifer-like TiSnO2 nanorods mixed metal oxide. The morphology and composition of the synthesized TiSnO2 mixed metal oxide were carried out employing scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray diffractometry (XRD). The experimental findings demonstrated a significant influence of polyol duration time and PDDA concentration on the morphological evolution of the synthesized TiSnO2 mixed metal oxide structures. Comparative gas-sensing analysis indicated that the conifer-like TiSnO2 nanorods mixed metal oxide exhibited the highest response (2.45%) towards H2S gas at a concentration of 1 ppm, along with a low detection limit (0.20 ppm) and good linearity (R2 = 0.9865) within the range of 1-15 ppm of H2S gas at room temperature.
Collapse
Affiliation(s)
- Pi-Guey Su
- Department of Chemistry, Chinese Culture University, Taipei 111, Taiwan.
| | - Yan-Han Chen
- Department of Chemistry, Chinese Culture University, Taipei 111, Taiwan.
| |
Collapse
|
40
|
Wang Z, Wu H, Wu Q, Zhao YM, Shen L. Magnetic ε-Phosphorene for Sensing Greenhouse Gas Molecules. Molecules 2023; 28:5402. [PMID: 37513274 PMCID: PMC10384796 DOI: 10.3390/molecules28145402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/08/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
It is critical for gas sensors that sense greenhouse gas molecules to have both good sensitivity and selectivity for water molecules in the ambient environment. Here, we study the charge transfer, IV curves, and electric field tuning of vanadium-doped monolayer ϵ-phosphorene as a sensor for NO, NO2, and H2O gas molecules via first-principle and transport calculations. We find that the paramagnetic toxic molecules of NO and NO2 have a high adsorption energy on V-ϵ-phosphorene, which originates from a large amount of charge transfer driven by the hybridisation of the localised spin states of the host with the molecular frontier orbital. Using the non-equilibrium Green's function, we investigate the IV responses with respect to the adsorption of different molecules to study the performance of gas molecule sensors. Our IV curves show a larger amount of changes in resistance of the paramagnetic NO and NO2 than nonmagnetic H2O gas molecules, suggesting both sensitivity and selectivity. Moreover, our calculations show that an applied external electric field (gate voltage) can effectively tune the amount of charge transfer. More charge transfer makes the sensor more sensitive to the molecule, while less charge transfer can reduce the adsorption energy and remove the adsorbed molecules, allowing for the repeated use of the sensor.
Collapse
Affiliation(s)
- Zengyao Wang
- Engineering Science Programme, Faculty of Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Hao Wu
- Department of Mechanical Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Qingyun Wu
- Science, Mathematics and Technology, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore
| | - Yi-Ming Zhao
- Department of Mechanical Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Lei Shen
- Engineering Science Programme, Faculty of Engineering, National University of Singapore, Singapore 117575, Singapore
- Department of Mechanical Engineering, National University of Singapore, Singapore 117575, Singapore
| |
Collapse
|
41
|
Cao S, Zhou T, Xu X, Bing Y, Sui N, Wang J, Li J, Zhang T. Metal-organic frameworks derived inverse/normal bimetallic spinel oxides toward the selective VOCs and H 2S sensing. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131734. [PMID: 37290357 DOI: 10.1016/j.jhazmat.2023.131734] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/18/2023] [Accepted: 05/28/2023] [Indexed: 06/10/2023]
Abstract
As the typical toxic and hazardous gases, volatile organic compounds (VOCs) and hydrogen sulfide (H2S) pose a threat to the environment and human health. The demand for real-time detection of VOCs and H2S gases is growing in many application to protect human health and air quality. Therefore, it is essential to develop advance sensing materials for the construction of effective and reliable gas sensors. Herein, bimetallic spinel ferrites with different metal ions (MFe2O4, M = Co, Ni, Cu and Zn) were designed by using metal-organic frameworks as templates. The evaluation of cation substitution on crystal structures (inverse/normal spinel structure) and electrical properties (n/p type and band gap) is systematically discussed. The results indicate that p-type NiFe2O4 and n-type CuFe2O4 nanocubes with inverse spinel structure exhibit high response and great selectivity towards acetone (C3H6O) and H2S, respectively. Moreover, the two sensors also display the detection limits as low as 1 ppm (C3H6O) and 0.5 ppm (H2S), which are far below the threshold values of 750 ppm to acetone and 10 ppm to H2S for 8 h exposure set by American Conference of Governmental Industrial Hygienists (ACGIH). The finding provides new possibilities for the design of high-performance chemical sensors, which display tremendous potential for practical applications.
Collapse
Affiliation(s)
- Shuang Cao
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, PR China
| | - Tingting Zhou
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, PR China.
| | - Xiaoyi Xu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, PR China
| | - Yu Bing
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, PR China
| | - Ning Sui
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, PR China
| | - Juan Wang
- School of Public Health, Jilin University, Changchun 130012, PR China
| | - Juan Li
- School of Public Health, Jilin University, Changchun 130012, PR China.
| | - Tong Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, PR China.
| |
Collapse
|
42
|
Zhu C, Zhou T, Xia H, Zhang T. Flexible Room-Temperature Ammonia Gas Sensors Based on PANI-MWCNTs/PDMS Film for Breathing Analysis and Food Safety. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1158. [PMID: 37049261 PMCID: PMC10097228 DOI: 10.3390/nano13071158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
Gas sensors have played a critical role in healthcare, atmospheric environmental monitoring, military applications and so on. In particular, flexible sensing devices are of great interest, benefitting from flexibility and wearability. However, developing flexible gas sensors with a high sensitivity, great stability and workability is still challenging. In this work, multi-walled carbon nanotubes (MWCNTs) were grown on polydimethylsiloxane (PDMS) films, which were further modified with polyaniline (PANI) using a simple chemical oxidation synthesis. The superior flexibility of the PANI-MWCNTs/PDMS film enabled a stable initial resistance value, even under bending conditions. The flexible sensor showed excellent NH3 sensing performances, including a high response (11.8 ± 0.2 for 40 ppm of NH3) and a low limit of detection (10 ppb) at room temperature. Moreover, the effect of a humid environment on the NH3 sensing performances was investigated. The results show that the response of the sensor is enhanced under high humidity conditions because water molecules can promote the adsorption of NH3 on the PANI-MWCNTs/PDMS films. In addition, the PANI-MWCNTs/PDMS film sensor had the abilities of detecting NH3 in the simulated breath of patients with kidney disease and the freshness of shrimp. These above results reveal the potential application of the PANI-MWCNTs/PDMS sensor for monitoring NH3 in human breath and food.
Collapse
|
43
|
Candy-like heterojunction nanocomposite of WO 3/Fe 2O 3-based semiconductor gas sensor for the detection of triethylamine. Mikrochim Acta 2023; 190:139. [PMID: 36930336 DOI: 10.1007/s00604-023-05699-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/23/2023] [Indexed: 03/18/2023]
Abstract
A highly efficient gas sensor for the detection of triethylamine based on candy-like WO3/Fe2O3 nanocomposite was prepared. The control of morphology and sensing performance of n-n heterojunction WO3/Fe2O3 nanocomposites were successfully achieved by the modulation of Fe element content. When the ratio of Fe to W is 0.4, the candy-like nanocomposite of WO3/Fe2O3 with great performance is obtained. It is interesting that the candy-like nanocomposite of WO3/Fe2O3 with a large specific surface area exhibits better selectivity and sensitivity for sensing TEA gases at a lower operating temperature (260 °C) compared with the gas sensor prepared by using WO3 alone. To verify the feasibility, the sensing mechanism was investigated and real sample tests were conducted and discussed. Finally, a TEA gas sensor with low limit of detection, short response/recovery time (15/162 s), and high sensitivity was developed. In addition, the prepared gas sensor has satisfactory stability and selectivity and has practical application value.
Collapse
|
44
|
Pi W, Chen X, Humayun M, Yuan Y, Dong W, Zhang G, Chen B, Fu Q, Lu Z, Li H, Tang Z, Luo W. Highly Sensitive Chemiresistive H 2S Detection at Subzero Temperature over the Sb-Doped SnO 2@g-C 3N 4 Heterojunctions under UV Illumination. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 36894512 DOI: 10.1021/acsami.3c00213] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
NASA has detected H2S in the persistently shadowed region of the lunar South Pole through NIR and UV/vis spectroscopy remotely, but in situ detection is generally considered to be more accurate and convincing. However, subzero temperatures in space drastically reduce chemisorbed oxygen ions for gas sensing reactions, making gas sensing at subzero temperature something that has rarely been attempted. Herein, we report an in situ semiconductor H2S gas sensor assisted by UV illumination at subzero temperature. We constructed a g-C3N4 network to wrap the porous Sb doped SnO2 microspheres to form type II heterojunctions, which facilitate the separation and transport of photoinduced charge carriers under UV irradiation. This UV-driven technique affords the gas sensor a fast response time of 14 s and a response value of 20.1 toward 2 ppm H2S at -20 °C, realizing the sensitive response of the semiconductor gas sensor at subzero temperature for the first time. Both the experimental observations and theoretical calculation results provide evidence that UV irradiation and the formation of type II heterojunctions together promote the performance at subzero temperature. This work fills the gap of semiconductor gas sensors working at subzero temperature and suggests a feasible method for deep space gas detection.
Collapse
Affiliation(s)
- Wenbo Pi
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Xi Chen
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Muhammad Humayun
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Yang Yuan
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Wen Dong
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Guangzu Zhang
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Bingbing Chen
- Department of Energy Science and Engineering, Nanjing Tech University, Nanjing 210000, P. R. China
| | - Qiuyun Fu
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Zixiao Lu
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Honglang Li
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Zaiqi Tang
- Sysmo Technologies Co., LTD, Beijing 100020, P. R. China
| | - Wei Luo
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
- Research Institute of Huazhong University of Science and Technology in Shenzhen, Shenzhen 518000, P. R. China
| |
Collapse
|
45
|
Liu H, Zhao Y, Liu Y, Liang T, Tian Y, Sakthivel T, Peng S, Kim SY, Dai Z. Macroporous SnO 2/MoS 2 inverse opal hierarchitecture for highly efficient trace NO 2 gas sensing. Chem Commun (Camb) 2023; 59:2931-2934. [PMID: 36799233 DOI: 10.1039/d2cc06656d] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
The innovation of NO2 gas sensors is highly desirable in environmental monitoring and human safety. Herein, a macroporous SnO2/MoS2 inverse opal hierarchitecture has been constructed with substantial interface charge transfer, which realizes the efficient and stable detection of NO2 with an enhanced response, fast kinetics, and high selectivity at low temperatures.
Collapse
Affiliation(s)
- Hang Liu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China. .,Xi'an Jiaotong University Suzhou Institute, Suzhou 215123, China
| | - Ying Zhao
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Yaoda Liu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Tingting Liang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Yahui Tian
- Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, China.
| | - Thangavel Sakthivel
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Shengjie Peng
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Soo Young Kim
- Department of Materials Science and Engineering, Institute of Green Manufacturing Technology, Korea University, Seoul 02841, Republic of Korea
| | - Zhengfei Dai
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
46
|
Synergistic coupling of 0D–2D heterostructure from ZnO and Ti3C2T MXene-derived TiO2 for boosted NO2 detection at room temperature. NANO MATERIALS SCIENCE 2023. [DOI: 10.1016/j.nanoms.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
47
|
Li Y, Yu J, Wei Y, Wang Y, Feng Z, Cheng L, Huo Z, Lei Y, Sun Q. Recent Progress in Self-Powered Wireless Sensors and Systems Based on TENG. SENSORS (BASEL, SWITZERLAND) 2023; 23:1329. [PMID: 36772369 PMCID: PMC9921943 DOI: 10.3390/s23031329] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 06/12/2023]
Abstract
With the development of 5G, artificial intelligence, and the Internet of Things, diversified sensors (such as the signal acquisition module) have become more and more important in people's daily life. According to the extensive use of various distributed wireless sensors, powering them has become a big problem. Among all the powering methods, the self-powered sensor system based on triboelectric nanogenerators (TENGs) has shown its superiority. This review focuses on four major application areas of wireless sensors based on TENG, including environmental monitoring, human monitoring, industrial production, and daily life. The perspectives and outlook of the future development of self-powered wireless sensors are discussed.
Collapse
Affiliation(s)
- Yonghai Li
- Center on Nanoenergy Research, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Jinran Yu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yichen Wei
- Center on Nanoenergy Research, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Yifei Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenyu Feng
- Center on Nanoenergy Research, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Liuqi Cheng
- Center on Nanoenergy Research, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Ziwei Huo
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanqiang Lei
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qijun Sun
- Center on Nanoenergy Research, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
48
|
Chaudhary V, Khanna V, Ahmed Awan HT, Singh K, Khalid M, Mishra YK, Bhansali S, Li CZ, Kaushik A. Towards hospital-on-chip supported by 2D MXenes-based 5 th generation intelligent biosensors. Biosens Bioelectron 2023; 220:114847. [PMID: 36335709 PMCID: PMC9605918 DOI: 10.1016/j.bios.2022.114847] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/19/2022] [Accepted: 10/20/2022] [Indexed: 12/12/2022]
Abstract
Existing public health emergencies due to fatal/infectious diseases such as coronavirus disease (COVID-19) and monkeypox have raised the paradigm of 5th generation portable intelligent and multifunctional biosensors embedded on a single chip. The state-of-the-art 5th generation biosensors are concerned with integrating advanced functional materials with controllable physicochemical attributes and optimal machine processability. In this direction, 2D metal carbides and nitrides (MXenes), owing to their enhanced effective surface area, tunable physicochemical properties, and rich surface functionalities, have shown promising performances in biosensing flatlands. Moreover, their hybridization with diversified nanomaterials caters to their associated challenges for the commercialization of stability due to restacking and oxidation. MXenes and its hybrid biosensors have demonstrated intelligent and lab-on-chip prospects for determining diverse biomarkers/pathogens related to fatal and infectious diseases. Recently, on-site detection has been clubbed with solution-on-chip MXenes by interfacing biosensors with modern-age technologies, including 5G communication, internet-of-medical-things (IoMT), artificial intelligence (AI), and data clouding to progress toward hospital-on-chip (HOC) modules. This review comprehensively summarizes the state-of-the-art MXene fabrication, advancements in physicochemical properties to architect biosensors, and the progress of MXene-based lab-on-chip biosensors toward HOC solutions. Besides, it discusses sustainable aspects, practical challenges and alternative solutions associated with these modules to develop personalized and remote healthcare solutions for every individual in the world.
Collapse
Affiliation(s)
- Vishal Chaudhary
- Research Cell & Department of Physics, Bhagini Nivedita College, University of Delhi, Delhi, 110043, India; SUMAN Laboratory (SUstainable Materials & Advanced Nanotechnology Lab), New Delhi 110072, India.
| | - Virat Khanna
- Department of Mechanical Engineering, MAIT, Maharaja Agrasen University, HP, 174103, India
| | - Hafiz Taimoor Ahmed Awan
- Graphene & Advanced 2D Materials Research Group (GAMRG), School of Engineering and Technology, Sunway University, No. 5, Jalan University, Bandar Sunway, 47500, Petaling Jaya, Selangor, Malaysia
| | - Kamaljit Singh
- Department of Mechanical Engineering, MAIT, Maharaja Agrasen University, HP, 174103, India
| | - Mohammad Khalid
- Graphene & Advanced 2D Materials Research Group (GAMRG), School of Engineering and Technology, Sunway University, No. 5, Jalan University, Bandar Sunway, 47500, Petaling Jaya, Selangor, Malaysia; Sunway Materials Smart Science & Engineering (SMS2E) Research Cluster, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, 47500, Petaling Jaya, Selangor, Malaysia
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alison 2, Sønderborg, 6400, Denmark
| | - Shekhar Bhansali
- Department of Electrical and Computing Engineering, Florida International University, Miami, FL, 33174, USA
| | - Chen-Zhong Li
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA, 70112, USA; Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA, 70112, USA.
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, FL, 33805, USA; School of Engineering, University of Petroleum and Energy Studies (UPES), Dehradun, Uttarakhand, India.
| |
Collapse
|
49
|
Duan C, Zhang L, Wu Z, Wang X, Meng M, Zhang M. Study on the Deterioration Mechanism of Pb on TiO 2 Oxygen Sensor. MICROMACHINES 2023; 14:156. [PMID: 36677216 PMCID: PMC9865191 DOI: 10.3390/mi14010156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/30/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Previous studies have shown that the pollutants in exhaust gas can cause performance deterioration in air-fuel oxygen sensors. Although the content of Pb in fuel oil is as low as 5 mg/L, the effect of long-term Pb accumulation on TiO2 oxygen sensors is still unclear. In this paper, the influence mechanism of Pb-containing additives in automobile exhaust gas on the response characteristics of TiO2 oxygen sensors was simulated and studied by depositing Pb-containing pollutants on the surface of a TiO2 sensitive film. It was found that the accumulation of Pb changed the surface gas adsorption state and reduced the activation energy of TiO2, thus affecting the steady-state response voltage and response speed of the TiO2-based oxygen sensor.
Collapse
Affiliation(s)
- Chao Duan
- China Aerospace Components Engineering Center, China Academy of Space Technology, Beijing 100081, China
| | - Lejun Zhang
- School of Advanced Materials and Nanotechnology, Xidian University, Xi’an 710071, China
| | - Zhaoxi Wu
- China Aerospace Components Engineering Center, China Academy of Space Technology, Beijing 100081, China
| | - Xu Wang
- China Aerospace Components Engineering Center, China Academy of Space Technology, Beijing 100081, China
| | - Meng Meng
- China Aerospace Components Engineering Center, China Academy of Space Technology, Beijing 100081, China
| | - Maolin Zhang
- School of Advanced Materials and Nanotechnology, Xidian University, Xi’an 710071, China
| |
Collapse
|
50
|
Korotcenkov G, Tolstoy VP. Current Trends in Nanomaterials for Metal Oxide-Based Conductometric Gas Sensors: Advantages and Limitations-Part 2: Porous 2D Nanomaterials. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:237. [PMID: 36677992 PMCID: PMC9867534 DOI: 10.3390/nano13020237] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/01/2023] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
This article discusses the features of the synthesis and application of porous two-dimensional nanomaterials in developing conductometric gas sensors based on metal oxides. It is concluded that using porous 2D nanomaterials and 3D structures based on them is a promising approach to improving the parameters of gas sensors, such as sensitivity and the rate of response. The limitations that may arise when using 2D structures in gas sensors intended for the sensor market are considered.
Collapse
Affiliation(s)
- Ghenadii Korotcenkov
- Department of Physics and Engineering, Moldova State University, 2009 Chisinau, Moldova
| | - Valeri P. Tolstoy
- Institute of Chemistry, Saint Petersburg State University, Saint Petersburg 198504, Russia
| |
Collapse
|