1
|
Leung RWT, Zhang X, Chen Z, Liang Y, Huang S, Yang Z, Zong X, Jiang X, Lin R, Deng W, Hu Y, Qin J. CORN 2.0 - Condition Orientated Regulatory Networks 2.0. Comput Struct Biotechnol J 2025; 27:1518-1528. [PMID: 40270708 PMCID: PMC12017979 DOI: 10.1016/j.csbj.2025.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 03/26/2025] [Accepted: 04/02/2025] [Indexed: 04/25/2025] Open
Abstract
Gene regulation is a fundamental process that allows organisms to adapt to their environment and increase complexity through the action of nucleic acid-binding proteins (NBPs), such as transcription factors (TFs), which regulate specific sets of genes under distinct conditions. These regulatory interactions form transcriptional regulatory networks (TRNs), which can be further broken down into transcriptional regulatory sub-networks (TRSNs) centered around individual TFs. TRSNs are more stable and practical for analysis, making them ideal for studying gene regulation under specific conditions. Condition-Oriented Regulatory Networks (CORN, https://qinlab.sysu.edu.cn/corn/home) is a comprehensive library of condition-based TRSNs, including those induced by natural compounds, small molecules, drug treatments, and gene perturbations. CORN 2.0 represents a significant update, associating 7540 specific conditions with 71934 TRSNs across 52 human cell lines, involving 542 transcription factors (TFs). Notably, CORN 2.0 includes 1550 natural compound-triggered TRSNs, providing a valuable resource for studying the pharmacological effects of natural products. This study demonstrates the utility of CORN in three key areas: personalized medicine, induced pluripotency transitions, and natural compound-associated pharmacology. By linking specific conditions to their corresponding TRSNs, CORN enables researchers to explore how gene regulatory networks are altered under various conditions, offering insights into disease mechanisms and potential therapeutic interventions.
Collapse
Affiliation(s)
- Ricky Wai Tak Leung
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
- Division of Science, Engineering and Health Studies, College of Professional and Continuing Education, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Xinying Zhang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Zhuobin Chen
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Yuyun Liang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Simei Huang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Zixin Yang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Xueqing Zong
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Xiaosen Jiang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Runming Lin
- BGI-Shenzhen, Shenzhen, Guangdong 518103, China
| | - Wenbin Deng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Yaohua Hu
- School of Mathematical Sciences, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Jing Qin
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| |
Collapse
|
2
|
Malla S, Martinez-Gamero C, Kumari K, Achour C, Mermelekas G, Martinez-Delgado D, Coego A, Guallar D, Roman AC, Aguilo F. Cooperative role of LSD1 and CHD7 in regulating differentiation of mouse embryonic stem cells. Sci Rep 2024; 14:28495. [PMID: 39557885 PMCID: PMC11574112 DOI: 10.1038/s41598-024-78920-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/05/2024] [Indexed: 11/20/2024] Open
Abstract
Lysine-specific histone demethylase 1 (LSD1) is a histone demethylase that plays a critical role in epigenetic regulation by removing the methyl group from mono- and di-methylated lysine 4 on histone H3 (H3K4me1/2), acting as a repressor of gene expression. Recently, catalytically independent functions of LSD1, serving as a scaffold for assembling chromatin-regulator and transcription factor complexes, have been identified. Herein, we show for the first time that LSD1 interacts with chromodomain-helicase-DNA-binding protein 7 (CHD7) in mouse embryonic stem cells (ESCs). To further investigate the CHD7-LSD1 crosstalk, we engineered Chd7 and Chd7/Lsd1 knockout (KO) mouse ESCs. We show that CHD7 is dispensable for ESC self-renewal and survival, while Chd7 KO ESCs can differentiate towards embryoid bodies (EBs) with defective expression of ectodermal markers. Intriguingly, Chd7/Lsd1 double KO mouse ESCs exhibit proliferation defects similar to Lsd1 KO ESCs and have lost the capacity to differentiate properly. Furthermore, the increased co-occupancy of H3K4me1 and CHD7 on chromatin following Lsd1 deletion suggests that LSD1 is required for facilitating the proper binding of CHD7 to chromatin and regulating differentiation. Collectively, our results suggest that LSD1 and CHD7 work in concert to modulate gene expression and influence proper cell fate determination.
Collapse
Affiliation(s)
- Sandhya Malla
- Department of Molecular Biology, Umeå University, 901 85, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, 901 85, Umeå, Sweden
| | - Carlos Martinez-Gamero
- Department of Molecular Biology, Umeå University, 901 85, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, 901 85, Umeå, Sweden
| | - Kanchan Kumari
- Department of Molecular Biology, Umeå University, 901 85, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, 901 85, Umeå, Sweden
| | - Cyrinne Achour
- Department of Molecular Biology, Umeå University, 901 85, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, 901 85, Umeå, Sweden
| | - Georgios Mermelekas
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, 171 21, Solna, Sweden
| | - David Martinez-Delgado
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela (USC)-Health Research Institute (IDIS), Santiago de Compostela, Spain
| | - Alba Coego
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela (USC)-Health Research Institute (IDIS), Santiago de Compostela, Spain
| | - Diana Guallar
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela (USC)-Health Research Institute (IDIS), Santiago de Compostela, Spain
| | - Angel-Carlos Roman
- Department of Biochemistry, Molecular Biology and Genetics, University of Extremadura, Badajoz, Spain
| | - Francesca Aguilo
- Department of Molecular Biology, Umeå University, 901 85, Umeå, Sweden.
- Wallenberg Centre for Molecular Medicine, Umeå University, 901 85, Umeå, Sweden.
| |
Collapse
|
3
|
Phiboonchaiyanan PP, Harikarnpakdee S, Songsak T, Chowjarean V. In Vitro Evaluation of Wound Healing, Stemness Potentiation, Antioxidant Activity, and Phytochemical Profile of Cucurbita moschata Duchesne Fruit Pulp Ethanolic Extract. Adv Pharmacol Pharm Sci 2024; 2024:9288481. [PMID: 39502575 PMCID: PMC11535185 DOI: 10.1155/2024/9288481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/03/2024] [Accepted: 10/09/2024] [Indexed: 11/08/2024] Open
Abstract
Wound healing comprises an intricate process to repair damaged tissue. Research on plant extracts with properties to expedite wound healing has been of interest, particularly their ability to enhance the stemness of keratinocyte stem cells. Hence, the present study aims to determine the wound healing and stemness potentiation properties of an ethanolic extract derived from Cucurbita moschata fruit pulp (PKE). Human keratinocytes (HaCaT) and primary skin fibroblast cells were used in this study. The migration of the cells was examined by using a scratch wound healing assay, and spheroid behavior was determined by using a spheroid formation assay. The proteins related to migration and stemness were further measured by using Western blotting to explore the mechanism of action of PKE. The methods used to evaluate PKE's antioxidant properties were 2,2-diphenyl-2-picrylhydrazyl (DPPH) scavenging, ABTS radical scavenging activity, and superoxide anion radical scavenging (SOSA) assays. The phytochemistry of the PKE was investigated using phytochemical screening and high-performance liquid chromatography (HPLC) analysis. The results of this study indicate that nontoxic concentrations of PKE increase the rate of migration and spheroid formation. Mechanistically, PKE increased the expression of the migratory-related protein active FAK (phosphorylated FAK), and the subsequence increased the level of p-AKT. The expression of stem cell marker CD133, upstream protein signaling β-catenin, and self-renewal transcription factor Nanog was increased. The PKE also possessed scavenging properties against DPPH, ABTS, and SOSA. The phytochemistry analyses exhibited the presence of alkaloids, glycosides, xanthones, triterpenes, and steroids. Additionally, bioactive compounds such as ɑ-tocopherol, riboflavin, protocatechuic acid, β-carotene, and luteolin were detected. The presence of these chemicals in PKE may contribute to its antioxidant, stem cell potentiation, and wound-healing effects. The findings could be beneficial in the identification of valuable natural resources that possess the capacity to be used in the process of wound healing through the potentiation of stemness via a readily detectable molecular mechanism.
Collapse
Affiliation(s)
| | - Saraporn Harikarnpakdee
- Department of Industrial Pharmacy, College of Pharmacy, Rangsit University, Pathum Thani 12000, Thailand
| | - Thanapat Songsak
- Department of Pharmacognosy, College of Pharmacy, Rangsit University, Pathum Thani 12000, Thailand
| | - Verisa Chowjarean
- Department of Pharmaceutical Technology, College of Pharmacy, Rangsit University, Pathum Thani 12000, Thailand
| |
Collapse
|
4
|
Yu M, Wang F, Gang H, Liu C. Research progress of nanog gene in fish. Mol Genet Genomics 2024; 299:88. [PMID: 39313603 DOI: 10.1007/s00438-024-02182-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 09/07/2024] [Indexed: 09/25/2024]
Abstract
Nanog is a crucial regulatory factor in maintaining the self-renewal and pluripotency of embryonic stem cells. It is involved in various biological processes, such as early embryonic development, cell reprogramming, cell cycle regulation, the proliferation and migration of primordial germ cells. While research on this gene has primarily focused on mammals, there has been a growing interest in studying nanog in fish. However, there is a notable lack of comprehensive reviews regarding this gene in fish, which is essential for guiding future research. This review aims to provide a thorough summary of the gene's structure, expression patterns, functions and regulatory mechanisms in fish. The findings suggest that nanog probably has both conserved and divergent functions in regulating cell pluripotency, early embryonic development, and germ cell development in teleosts compared to other species, including mammals. These insights lay the foundation for future research and applications of the nanog gene, providing a new perspective for understanding the evolution and conserved charactristics of teleost nanog.
Collapse
Affiliation(s)
- Miao Yu
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Engineering Laboratory of Henan Province for Aquatic Animal Disease Control, Observation and Research Station On Water Ecosystem in Danjiangkou Reservoir of Henan Province, College of Fisheries, Henan Normal University, Xinxiang, 453007, China.
| | - Fangyuan Wang
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Engineering Laboratory of Henan Province for Aquatic Animal Disease Control, Observation and Research Station On Water Ecosystem in Danjiangkou Reservoir of Henan Province, College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Huihui Gang
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Engineering Laboratory of Henan Province for Aquatic Animal Disease Control, Observation and Research Station On Water Ecosystem in Danjiangkou Reservoir of Henan Province, College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Chuanhu Liu
- School of 3D Printing, Xinxiang University, Xinxiang, 453003, China.
| |
Collapse
|
5
|
Bosgana P, Nikou S, Dimitrakopoulos FI, Bravou V, Kalophonos C, Kourea E, Tzelepi V, Zolota V, Sampsonas F. Expression of Pluripotency Factors OCT4 and LIN28 Correlates with Survival Outcome in Lung Adenocarcinoma. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:870. [PMID: 38929487 PMCID: PMC11205930 DOI: 10.3390/medicina60060870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/15/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024]
Abstract
Background and Objectives: Lung adenocarcinoma is a leading cause of cancer-related mortality despite recent therapeutic advances. Cancer stem cells have gained increasing attention due to their ability to induce cancer cell proliferation through self-renewal and differentiation into multiple cell lineages. OCT4 and LIN28 (and their homologs A and B) have been identified as key regulators of pluripotency in mammalian embryonic (ES) and induced stem (IS) cells, and they are the crucial regulators of cancer progression. However, their exact role in lung adenocarcinoma has not yet been clarified. Materials and Methods: The aim of this study was to explore the role of the pluripotency factors OCT4 and LIN28 in a cohort of surgically resected human lung adenocarcinomas to reveal possible biomarkers for lung adenocarcinoma prognosis and potential therapeutic targets. The expressions of OCT4, LIN28A and LIN28B were analyzed in formalin-fixed, paraffin-embedded tissue samples from 96 patients with lung adenocarcinoma by immunohistochemistry. The results were analyzed with clinicopathologic parameters and were related to the prognosis of patients. Results: Higher OCT4 expression was related to an improved 5-year overall survival (OS) rate (p < 0.001). Nuclear LIN28B expression was lower in stage I and II tumors (p < 0.05) compared to advanced stage tumors. LIN28B cytoplasmic expression was associated with 5-year OS rates not only in univariate (p < 0.005), but also in multivariate analysis (where age, gender, histopathological subtype and stage were used as cofactors, p < 0.01 HR = 2.592). Patients with lower LIN28B expression showed improved 5-year OS rates compared to patients with increased LIN28B expression. Conclusions: Our findings indicate that OCT4 and LIN28B are implicated in lung adenocarcinoma progression and prognosis outcome; thus, they serve as promising prognostic biomarkers and putative therapeutic targets in lung adenocarcinomas.
Collapse
Affiliation(s)
- Pinelopi Bosgana
- Department of Pathology, Medical School, University of Patras, 26504 Rion, Greece; (P.B.); (E.K.); (V.T.); (V.Z.)
| | - Sophia Nikou
- Department of Anatomy, Embryology and Histology, Medical School, University of Patras, 26504 Rion, Greece; (S.N.); (V.B.)
| | | | - Vasiliki Bravou
- Department of Anatomy, Embryology and Histology, Medical School, University of Patras, 26504 Rion, Greece; (S.N.); (V.B.)
| | - Charalambos Kalophonos
- Division of Oncology, Department of Medicine, Medical School, University of Patras, 26504 Rion, Greece; (F.-I.D.); (C.K.)
| | - Eleni Kourea
- Department of Pathology, Medical School, University of Patras, 26504 Rion, Greece; (P.B.); (E.K.); (V.T.); (V.Z.)
| | - Vasiliki Tzelepi
- Department of Pathology, Medical School, University of Patras, 26504 Rion, Greece; (P.B.); (E.K.); (V.T.); (V.Z.)
| | - Vassiliki Zolota
- Department of Pathology, Medical School, University of Patras, 26504 Rion, Greece; (P.B.); (E.K.); (V.T.); (V.Z.)
| | - Fotios Sampsonas
- Department of Pulmonology, Medical School, University of Patras, 26504 Rion, Greece
| |
Collapse
|
6
|
Ju H, Sohn Y, Nam Y, Rim YA. Progresses in overcoming the limitations of in vitro erythropoiesis using human induced pluripotent stem cells. Stem Cell Res Ther 2024; 15:142. [PMID: 38750578 PMCID: PMC11094930 DOI: 10.1186/s13287-024-03754-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 05/04/2024] [Indexed: 05/19/2024] Open
Abstract
Researchers have attempted to generate transfusable oxygen carriers to mitigate RBC supply shortages. In vitro generation of RBCs using stem cells such as hematopoietic stem and progenitor cells (HSPCs), embryonic stem cells (ESCs), and induced pluripotent stem cells (iPSCs) has shown promise. Specifically, the limited supplies of HSPCs and ethical issues with ESCs make iPSCs the most promising candidate for in vitro RBC generation. However, researchers have encountered some major challenges when using iPSCs to produce transfusable RBC products, such as enucleation and RBC maturation. In addition, it has proven difficult to manufacture these products on a large scale. In this review, we provide a brief overview of erythropoiesis and examine endeavors to recapitulate erythropoiesis in vitro using various cell sources. Furthermore, we explore the current obstacles and potential solutions aimed at enabling the large-scale production of transfusable RBCs in vitro.
Collapse
Affiliation(s)
- Hyeonwoo Ju
- Department of Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Yeowon Sohn
- Department of Biohealth Regulatory Science, Sungkyunkwan University, Suwon, South Korea
| | - Yoojun Nam
- Department of Biohealth Regulatory Science, Sungkyunkwan University, Suwon, South Korea.
- YiPSCELL Inc., L2 Omnibus Park, Banpo-dearo 222, Seocho-gu, Seoul, 06591, Republic of Korea.
| | - Yeri Alice Rim
- YiPSCELL Inc., L2 Omnibus Park, Banpo-dearo 222, Seocho-gu, Seoul, 06591, Republic of Korea.
- CiSTEM laboratory, Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea.
| |
Collapse
|
7
|
Waisman A, Sevlever F, Saulnier D, Francia M, Blanco R, Amín G, Lombardi A, Biani C, Palma MB, Scarafía A, Smucler J, La Greca A, Moro L, Sevlever G, Guberman A, Miriuka S. The transcription factor OCT6 promotes the dissolution of the naïve pluripotent state by repressing Nanog and activating a formative state gene regulatory network. Sci Rep 2024; 14:10420. [PMID: 38710730 PMCID: PMC11074312 DOI: 10.1038/s41598-024-59247-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 04/08/2024] [Indexed: 05/08/2024] Open
Abstract
In the mouse embryo, the transition from the preimplantation to the postimplantation epiblast is governed by changes in the gene regulatory network (GRN) that lead to transcriptional, epigenetic, and functional changes. This transition can be faithfully recapitulated in vitro by the differentiation of mouse embryonic stem cells (mESCs) to epiblast-like cells (EpiLCs), that reside in naïve and formative states of pluripotency, respectively. However, the GRN that drives this conversion is not fully elucidated. Here we demonstrate that the transcription factor OCT6 is a key driver of this process. Firstly, we show that Oct6 is not expressed in mESCs but is rapidly induced as cells exit the naïve pluripotent state. By deleting Oct6 in mESCs, we find that knockout cells fail to acquire the typical morphological changes associated with the formative state when induced to differentiate. Additionally, the key naïve pluripotency TFs Nanog, Klf2, Nr5a2, Prdm14, and Esrrb were expressed at higher levels than in wild-type cells, indicating an incomplete dismantling of the naïve pluripotency GRN. Conversely, premature expression of Oct6 in naïve cells triggered a rapid morphological transformation mirroring differentiation, that was accompanied by the upregulation of the endogenous Oct6 as well as the formative genes Sox3, Zic2/3, Foxp1, Dnmt3A and FGF5. Strikingly, we found that OCT6 represses Nanog in a bistable manner and that this regulation is at the transcriptional level. Moreover, our findings also reveal that Oct6 is repressed by NANOG. Collectively, our results establish OCT6 as a key TF in the dissolution of the naïve pluripotent state and support a model where Oct6 and Nanog form a double negative feedback loop which could act as an important toggle mediating the transition to the formative state.
Collapse
Affiliation(s)
- Ariel Waisman
- Laboratorio de Investigación Aplicada a Neurociencias (LIAN), Fundación Para la Lucha Contra las Enfermedades Neurológicas de la Infancia (FLENI), Instituto de Neurociencias (INEU), CONICET, Buenos Aires, Argentina.
| | - Federico Sevlever
- Laboratorio de Investigación Aplicada a Neurociencias (LIAN), Fundación Para la Lucha Contra las Enfermedades Neurológicas de la Infancia (FLENI), Instituto de Neurociencias (INEU), CONICET, Buenos Aires, Argentina
| | - Denisse Saulnier
- Laboratorio de Investigación Aplicada a Neurociencias (LIAN), Fundación Para la Lucha Contra las Enfermedades Neurológicas de la Infancia (FLENI), Instituto de Neurociencias (INEU), CONICET, Buenos Aires, Argentina
| | - Marcos Francia
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Renata Blanco
- Laboratorio de Investigación Aplicada a Neurociencias (LIAN), Fundación Para la Lucha Contra las Enfermedades Neurológicas de la Infancia (FLENI), Instituto de Neurociencias (INEU), CONICET, Buenos Aires, Argentina
| | - Guadalupe Amín
- Laboratorio de Investigación Aplicada a Neurociencias (LIAN), Fundación Para la Lucha Contra las Enfermedades Neurológicas de la Infancia (FLENI), Instituto de Neurociencias (INEU), CONICET, Buenos Aires, Argentina
| | - Antonella Lombardi
- Laboratorio de Investigación Aplicada a Neurociencias (LIAN), Fundación Para la Lucha Contra las Enfermedades Neurológicas de la Infancia (FLENI), Instituto de Neurociencias (INEU), CONICET, Buenos Aires, Argentina
| | - Celeste Biani
- Laboratorio de Investigación Aplicada a Neurociencias (LIAN), Fundación Para la Lucha Contra las Enfermedades Neurológicas de la Infancia (FLENI), Instituto de Neurociencias (INEU), CONICET, Buenos Aires, Argentina
| | - María Belén Palma
- Laboratorio de Investigación Aplicada a Neurociencias (LIAN), Fundación Para la Lucha Contra las Enfermedades Neurológicas de la Infancia (FLENI), Instituto de Neurociencias (INEU), CONICET, Buenos Aires, Argentina
| | - Agustina Scarafía
- Laboratorio de Investigación Aplicada a Neurociencias (LIAN), Fundación Para la Lucha Contra las Enfermedades Neurológicas de la Infancia (FLENI), Instituto de Neurociencias (INEU), CONICET, Buenos Aires, Argentina
| | - Joaquín Smucler
- Laboratorio de Investigación Aplicada a Neurociencias (LIAN), Fundación Para la Lucha Contra las Enfermedades Neurológicas de la Infancia (FLENI), Instituto de Neurociencias (INEU), CONICET, Buenos Aires, Argentina
| | - Alejandro La Greca
- Laboratorio de Investigación Aplicada a Neurociencias (LIAN), Fundación Para la Lucha Contra las Enfermedades Neurológicas de la Infancia (FLENI), Instituto de Neurociencias (INEU), CONICET, Buenos Aires, Argentina
| | - Lucía Moro
- Laboratorio de Investigación Aplicada a Neurociencias (LIAN), Fundación Para la Lucha Contra las Enfermedades Neurológicas de la Infancia (FLENI), Instituto de Neurociencias (INEU), CONICET, Buenos Aires, Argentina
| | - Gustavo Sevlever
- Laboratorio de Investigación Aplicada a Neurociencias (LIAN), Fundación Para la Lucha Contra las Enfermedades Neurológicas de la Infancia (FLENI), Instituto de Neurociencias (INEU), CONICET, Buenos Aires, Argentina
| | - Alejandra Guberman
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Santiago Miriuka
- Laboratorio de Investigación Aplicada a Neurociencias (LIAN), Fundación Para la Lucha Contra las Enfermedades Neurológicas de la Infancia (FLENI), Instituto de Neurociencias (INEU), CONICET, Buenos Aires, Argentina.
| |
Collapse
|
8
|
Khan AQ, Hasan A, Mir SS, Rashid K, Uddin S, Steinhoff M. Exploiting transcription factors to target EMT and cancer stem cells for tumor modulation and therapy. Semin Cancer Biol 2024; 100:1-16. [PMID: 38503384 DOI: 10.1016/j.semcancer.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 03/21/2024]
Abstract
Transcription factors (TFs) are essential in controlling gene regulatory networks that determine cellular fate during embryogenesis and tumor development. TFs are the major players in promoting cancer stemness by regulating the function of cancer stem cells (CSCs). Understanding how TFs interact with their downstream targets for determining cell fate during embryogenesis and tumor development is a critical area of research. CSCs are increasingly recognized for their significance in tumorigenesis and patient prognosis, as they play a significant role in cancer initiation, progression, metastasis, and treatment resistance. However, traditional therapies have limited effectiveness in eliminating this subset of cells, allowing CSCs to persist and potentially form secondary tumors. Recent studies have revealed that cancer cells and tumors with CSC-like features also exhibit genes related to the epithelial-to-mesenchymal transition (EMT). EMT-associated transcription factors (EMT-TFs) like TWIST and Snail/Slug can upregulate EMT-related genes and reprogram cancer cells into a stem-like phenotype. Importantly, the regulation of EMT-TFs, particularly through post-translational modifications (PTMs), plays a significant role in cancer metastasis and the acquisition of stem cell-like features. PTMs, including phosphorylation, ubiquitination, and SUMOylation, can alter the stability, localization, and activity of EMT-TFs, thereby modulating their ability to drive EMT and stemness properties in cancer cells. Although targeting EMT-TFs holds potential in tackling CSCs, current pharmacological approaches to do so directly are unavailable. Therefore, this review aims to explore the role of EMT- and CSC-TFs, their connection and impact in cellular development and cancer, emphasizing the potential of TF networks as targets for therapeutic intervention.
Collapse
Affiliation(s)
- Abdul Q Khan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar.
| | - Adria Hasan
- Molecular Cell Biology Laboratory, Integral Information and Research Centre-4 (IIRC-4), Integral University, Kursi Road, Lucknow 226026, India; Department of Bioengineering, Faculty of Engineering, Integral University, Kursi Road, Lucknow 226026, India
| | - Snober S Mir
- Molecular Cell Biology Laboratory, Integral Information and Research Centre-4 (IIRC-4), Integral University, Kursi Road, Lucknow 226026, India; Department of Biosciences, Faculty of Science, Integral University, Kursi Road, Lucknow 226026, India
| | - Khalid Rashid
- Department of Urology,Feinberg School of Medicine, Northwestern University, 303 E Superior Street, Chicago, IL 60611, USA
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Department of Biosciences, Faculty of Science, Integral University, Kursi Road, Lucknow 226026, India; Laboratory Animal Research Center, Qatar University, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
| | - Martin Steinhoff
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar; Department of Medicine, Weill Cornell Medicine Qatar, Qatar Foundation-Education City, Doha 24144, Qatar; Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; College of Medicine, Qatar University, Doha 2713, Qatar
| |
Collapse
|
9
|
Yagi H, Xu X, Gabriel GC, Lo C. Molecular Pathways and Animal Models of Hypoplastic Left Heart Syndrome. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:947-961. [PMID: 38884763 DOI: 10.1007/978-3-031-44087-8_61] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Hypoplastic left heart syndrome (HLHS) is a severe congenital heart disease (CHD) with underdevelopment of left-sided heart structures. While previously uniformly fatal, surgical advances now provide highly effective palliation that allows most HLHS patients to survive their critical CHD. Nevertheless, there remains high morbidity and mortality with high risk of heart failure. As hemodynamic compromise from restricted aortic blood flow has been suggested to underlie the poor LV growth, this suggests the possibility of prenatal fetal intervention to recover LV growth. As such interventions have yielded ambiguous results, the optimization of therapy will require more mechanistic insights into the developmental etiology for HLHS. Clinical studies have shown high heritability for HLHS, with an oligogenic etiology indicated in conjunction with genetic heterogeneity. This is corroborated with the recent recovery of mutant mice with HLHS. With availability-induced pluripotent stem cell (iPSC)-derived cardiomyocytes from HLHS mice and patients, new insights have emerged into the cellular and molecular etiology for the LV hypoplasia in HLHS. Cell proliferation defects were observed in conjunction with metaphase arrest and the disturbance of Hippo-YAP signaling. The left-sided restriction of the ventricular hypoplasia may result from epigenetic perturbation of pathways regulating left-right patterning. These findings suggest new avenues for fetal interventions with therapies using existing drugs that target the Hippo-YAP pathway and/or modulate epigenetic regulation.
Collapse
Affiliation(s)
- Hisato Yagi
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Xinxiu Xu
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - George C Gabriel
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Cecilia Lo
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
10
|
Fatima N, Saif Ur Rahman M, Qasim M, Ali Ashfaq U, Ahmed U, Masoud MS. Transcriptional Factors Mediated Reprogramming to Pluripotency. Curr Stem Cell Res Ther 2024; 19:367-388. [PMID: 37073151 DOI: 10.2174/1574888x18666230417084518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 04/20/2023]
Abstract
A unique kind of pluripotent cell, i.e., Induced pluripotent stem cells (iPSCs), now being targeted for iPSC synthesis, are produced by reprogramming animal and human differentiated cells (with no change in genetic makeup for the sake of high efficacy iPSCs formation). The conversion of specific cells to iPSCs has revolutionized stem cell research by making pluripotent cells more controllable for regenerative therapy. For the past 15 years, somatic cell reprogramming to pluripotency with force expression of specified factors has been a fascinating field of biomedical study. For that technological primary viewpoint reprogramming method, a cocktail of four transcription factors (TF) has required: Kruppel-like factor 4 (KLF4), four-octamer binding protein 34 (OCT3/4), MYC and SOX2 (together referred to as OSKM) and host cells. IPS cells have great potential for future tissue replacement treatments because of their ability to self-renew and specialize in all adult cell types, although factor-mediated reprogramming mechanisms are still poorly understood medically. This technique has dramatically improved performance and efficiency, making it more useful in drug discovery, disease remodeling, and regenerative medicine. Moreover, in these four TF cocktails, more than 30 reprogramming combinations were proposed, but for reprogramming effectiveness, only a few numbers have been demonstrated for the somatic cells of humans and mice. Stoichiometry, a combination of reprogramming agents and chromatin remodeling compounds, impacts kinetics, quality, and efficiency in stem cell research.
Collapse
Affiliation(s)
- Nazira Fatima
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
| | - Muhammad Saif Ur Rahman
- Institute of Advanced Studies, Shenzhen University, Shenzhen, 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Muhammad Qasim
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Uzair Ahmed
- EMBL Partnership Institute for Genome Editing Technologies, Vilnius University, Vilnius, 10257, Lithuania
| | - Muhammad Shareef Masoud
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| |
Collapse
|
11
|
Hao Y, Li X, Qin K, Shi Y, He Y, Zhang C, Cheng B, Zhang X, Hu G, Liang S, Tang Q, Chen X. Chemoproteomic and Transcriptomic Analysis Reveals that O-GlcNAc Regulates Mouse Embryonic Stem Cell Fate through the Pluripotency Network. Angew Chem Int Ed Engl 2023; 62:e202300500. [PMID: 36852467 DOI: 10.1002/anie.202300500] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/22/2023] [Accepted: 02/27/2023] [Indexed: 03/01/2023]
Abstract
Self-renewal and differentiation of embryonic stem cells (ESCs) are influenced by protein O-linked β-N-acetylglucosamine (O-GlcNAc) modification, but the underlying mechanism remains incompletely understood. Herein, we report the identification of 979 O-GlcNAcylated proteins and 1340 modification sites in mouse ESCs (mESCs) by using a chemoproteomics method. In addition to OCT4 and SOX2, the third core pluripotency transcription factor (PTF) NANOG was found to be modified and functionally regulated by O-GlcNAc. Upon differentiation along the neuronal lineage, the O-GlcNAc stoichiometry at 123 sites of 83 proteins-several of which were PTFs-was found to decline. Transcriptomic profiling reveals 2456 differentially expressed genes responsive to OGT inhibition during differentiation, of which 901 are target genes of core PTFs. By acting on the core PTF network, suppression of O-GlcNAcylation upregulates neuron-related genes, thus contributing to mESC fate determination.
Collapse
Affiliation(s)
- Yi Hao
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking-Tsinghua Center for Life Sciences, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, China
| | - Xiang Li
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking-Tsinghua Center for Life Sciences, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, China
| | - Ke Qin
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking-Tsinghua Center for Life Sciences, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, China
| | - Yujie Shi
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking-Tsinghua Center for Life Sciences, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, China
| | - Yanwen He
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking-Tsinghua Center for Life Sciences, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, China
| | - Che Zhang
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking-Tsinghua Center for Life Sciences, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, China
| | - Bo Cheng
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking-Tsinghua Center for Life Sciences, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, China
| | - Xiwen Zhang
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking-Tsinghua Center for Life Sciences, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, China
| | - Guangyu Hu
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking-Tsinghua Center for Life Sciences, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, China
| | - Shuyu Liang
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking-Tsinghua Center for Life Sciences, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, China
| | - Qi Tang
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking-Tsinghua Center for Life Sciences, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, China
| | - Xing Chen
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking-Tsinghua Center for Life Sciences, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, China
| |
Collapse
|
12
|
Wesley CC, Levy DL. Differentiation-dependent changes in lamin B1 dynamics and lamin B receptor localization. Mol Biol Cell 2023; 34:ar10. [PMID: 36598800 PMCID: PMC9930530 DOI: 10.1091/mbc.e22-04-0137] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The nuclear lamina serves important roles in chromatin organization and structural support, and lamina mutations can result in laminopathies. Less is known about how nuclear lamina structure changes during cellular differentiation-changes that may influence gene regulation. We examined the structure and dynamics of the nuclear lamina in human-induced pluripotent stem cells (iPSCs) and differentiated germ layer cells, focusing on lamin B1. We report that lamin B1 dynamics generally increase as iPSCs differentiate, especially in mesoderm and ectoderm, and that lamin B receptor (LBR) partially redistributes from the nucleus to cytoplasm in mesoderm. Knocking down LBR in iPSCs led to an increase in lamin B1 dynamics, a change that was not observed for ELYS, emerin, or lamin B2 knockdown. LBR knockdown also affected expression of differentiation markers. These data suggest that differentiation-dependent tethering of lamin B1 either directly by LBR or indirectly via LBR-chromatin associations impacts gene expression.
Collapse
Affiliation(s)
- Chase C. Wesley
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071
| | - Daniel L. Levy
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071,*Address correspondence to: Daniel L. Levy ()
| |
Collapse
|
13
|
Gattupalli M, Dey P, Poovizhi S, Patel RB, Mishra D, Banerjee S. The Prospects of RNAs and Common Significant Pathways in Cancer Therapy and Regenerative Medicine. Regen Med 2023. [DOI: 10.1007/978-981-19-6008-6_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
14
|
The Divergent and Conserved Expression Profile of Turtle Nanog Gene Comparing with Fish and Mammals. BIOLOGY 2022; 11:biology11091342. [PMID: 36138820 PMCID: PMC9495436 DOI: 10.3390/biology11091342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/19/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022]
Abstract
Nanog is a homeodomain-containing transcription factor, and it plays a vital role in maintaining the pluripotency of embryonic stem cells. Nanog’s function has been well studied in many species. However, there is lack of reporting on the Nanog gene in reptile. Here, we identified a 1032 bp cDNA sequence of a Nanog gene in Pelidiscus sinensis, known as PsNanog. PsNanog has a highly conserved HD domain and shares a high identity with that of Chelonia mydas and the lowest identity with Oryzias latipes. Similarly, PsNanog presented a tight cluster with C. mydas Nanog, but was far from those of teleosts. Additionally, we cloned a length of 1870 bp PsNanog promoter. Dual luciferase assay showed that the DNA fragment of −1560 to +1 exhibited a high promoter activity. The RT-PCR and RT-qPCR results showed that PsNanog was predominantly expressed in ovary, and then in testis. The in situ hybridization and immunohistochemical analysis showed that PsNanog was expressed in the early primary oocytes and the cytoplasm of the cortical region of stage VIII oocytes in ovary, and distributed in most stages of germ cells in testis. Collectively, the results imply that PsNanog probably has the conserved function in regulating germ cell development across phyla and is also a pluripotent cell gene and expressed in germ cells, which is similar to that in teleosts and mammals.
Collapse
|
15
|
Chen G, Yin S, Zeng H, Li H, Wan X. Regulation of Embryonic Stem Cell Self-Renewal. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081151. [PMID: 36013330 PMCID: PMC9410528 DOI: 10.3390/life12081151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/12/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022]
Abstract
Embryonic stem cells (ESCs) are a type of cells capable of self-renewal and multi-directional differentiation. The self-renewal of ESCs is regulated by factors including signaling pathway proteins, transcription factors, epigenetic regulators, cytokines, and small molecular compounds. Similarly, non-coding RNAs, small RNAs, and microRNAs (miRNAs) also play an important role in the process. Functionally, the core transcription factors interact with helper transcription factors to activate the expression of genes that contribute to maintaining pluripotency, while suppressing the expression of differentiation-related genes. Additionally, cytokines such as leukemia suppressor factor (LIF) stimulate downstream signaling pathways and promote self-renewal of ESCs. Particularly, LIF binds to its receptor (LIFR/gp130) to trigger the downstream Jak-Stat3 signaling pathway. BMP4 activates the downstream pathway and acts in combination with Jak-Stat3 to promote pluripotency of ESCs in the absence of serum. In addition, activation of the Wnt-FDZ signaling pathway has been observed to facilitate the self-renewal of ESCs. Small molecule modulator proteins of the pathway mentioned above are widely used in in vitro culture of stem cells. Multiple epigenetic regulators are involved in the maintenance of ESCs self-renewal, making the epigenetic status of ESCs a crucial factor in this process. Similarly, non-coding RNAs and cellular energetics have been described to promote the maintenance of the ESC's self-renewal. These factors regulate the self-renewal and differentiation of ESCs by forming signaling networks. This review focused on the role of major transcription factors, signaling pathways, small molecular compounds, epigenetic regulators, non-coding RNAs, and cellular energetics in ESC's self-renewal.
Collapse
Affiliation(s)
- Guofang Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China;
- Correspondence: (G.C.); (H.L.); (X.W.); Tel./Fax: +86-021-20261000 (ext. 1379) (G.C.)
| | - Shasha Yin
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China;
| | - Hongliang Zeng
- Institute of Chinese Materia Medica, Hunan Academy of Chinese Medicine, Changsha 410013, China;
| | - Haisen Li
- School of Medicine, Wayne State University, Detroit, MI 48201, USA
- Correspondence: (G.C.); (H.L.); (X.W.); Tel./Fax: +86-021-20261000 (ext. 1379) (G.C.)
| | - Xiaoping Wan
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China;
- Correspondence: (G.C.); (H.L.); (X.W.); Tel./Fax: +86-021-20261000 (ext. 1379) (G.C.)
| |
Collapse
|
16
|
Wakitani S. The FGF receptor inhibitor PD173074 modulates Lefty expression in human induced pluripotent stem cells differently depending on the culture conditions. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119260. [PMID: 35306104 DOI: 10.1016/j.bbamcr.2022.119260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/21/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Affiliation(s)
- Shoichi Wakitani
- Laboratory of Veterinary Anatomy, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan.
| |
Collapse
|
17
|
Vasefifar P, Motafakkerazad R, Maleki LA, Najafi S, Ghrobaninezhad F, Najafzadeh B, Alemohammad H, Amini M, Baghbanzadeh A, Baradaran B. Nanog, as a key cancer stem cell marker in tumor progression. Gene X 2022; 827:146448. [PMID: 35337852 DOI: 10.1016/j.gene.2022.146448] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 02/16/2022] [Accepted: 03/18/2022] [Indexed: 12/20/2022] Open
Abstract
Cancer stem cells (CSCs) are a small population of malignant cells that induce tumor onset and development. CSCs share similar features with normal stem cells in the case of self-renewal and differentiation. They also contribute to chemoresistance and metastasis of cancer cells, leading to therapeutic failure. To identify CSCs, multiple cell surface markers have been characterized, including Nanog, which is found at high levels in different cancers. Recent studies have revealed that Nanog upregulation has a substantial association with the advanced stages and poor prognosis of malignancies, playing a pivotal role through tumorigenesis of multiple human cancers, including leukemia, liver, colorectal, prostate, ovarian, lung, head and neck, brain, pancreatic, gastric and breast cancers. Nanog through different signaling pathways, like JAK/STAT and Wnt/β-catenin pathways, induces stemness, self-renewal, metastasis, invasiveness, and chemoresistance of cancer cells. Some of these signaling pathways are common in various types of cancers, but some have been found in one or two cancers. Therefore, this review aimed to focus on the function of Nanog in multiple cancers based on recent studies surveying the suitable approaches to target Nanog and inhibit CSCs residing in tumors to gain favorable results from cancer treatments.
Collapse
Affiliation(s)
- Parisa Vasefifar
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Souzan Najafi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Basira Najafzadeh
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Hajar Alemohammad
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Mohammad Amini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
18
|
Hishida T, Vazquez-Ferrer E, Hishida-Nozaki Y, Takemoto Y, Hatanaka F, Yoshida K, Prieto J, Sahu SK, Takahashi Y, Reddy P, O’Keefe DD, Rodriguez Esteban C, Knoepfler PS, Nuñez Delicado E, Castells A, Campistol JM, Kato R, Nakagawa H, Izpisua Belmonte JC. Myc Supports Self-Renewal of Basal Cells in the Esophageal Epithelium. Front Cell Dev Biol 2022; 10:786031. [PMID: 35309931 PMCID: PMC8931341 DOI: 10.3389/fcell.2022.786031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/04/2022] [Indexed: 11/17/2022] Open
Abstract
It is widely believed that cellular senescence plays a critical role in both aging and cancer, and that senescence is a fundamental, permanent growth arrest that somatic cells cannot avoid. Here we show that Myc plays an important role in self-renewal of esophageal epithelial cells, contributing to their resistance to cellular senescence. Myc is homogeneously expressed in basal cells of the esophageal epithelium and Myc positively regulates their self-renewal by maintaining their undifferentiated state. Indeed, Myc knockout induced a loss of the undifferentiated state of esophageal epithelial cells resulting in cellular senescence while forced MYC expression promoted oncogenic cell proliferation. A superoxide scavenger counteracted Myc knockout-induced senescence, therefore suggesting that a mitochondrial superoxide takes part in inducing senescence. Taken together, these analyses reveal extremely low levels of cellular senescence and senescence-associated phenotypes in the esophageal epithelium, as well as a critical role for Myc in self-renewal of basal cells in this organ. This provides new avenues for studying and understanding the links between stemness and resistance to cellular senescence.
Collapse
Affiliation(s)
- Tomoaki Hishida
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, United States
- Laboratory of Biological Chemistry, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama, Japan
| | - Eric Vazquez-Ferrer
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Yuriko Hishida-Nozaki
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Yuto Takemoto
- Department of Basic Medical Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Fumiyuki Hatanaka
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Kei Yoshida
- Department of Basic Medical Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Javier Prieto
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Sanjeeb Kumar Sahu
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Yuta Takahashi
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Pradeep Reddy
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, United States
| | - David D. O’Keefe
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, United States
| | | | - Paul S. Knoepfler
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA, United States
| | | | - Antoni Castells
- Gastroenterology Department, Hospital Clinic, CIBEREHD, IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Josep M. Campistol
- Gastroenterology Department, Hospital Clinic, CIBEREHD, IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Ryuji Kato
- Department of Basic Medical Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Hiroshi Nakagawa
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine, Philadelphia, PA, United States
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, United States
| | - Juan Carlos Izpisua Belmonte
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, United States
- *Correspondence: Juan Carlos Izpisua Belmonte,
| |
Collapse
|
19
|
Nagel S. The Role of NKL Homeobox Genes in T-Cell Malignancies. Biomedicines 2021; 9:biomedicines9111676. [PMID: 34829904 PMCID: PMC8615965 DOI: 10.3390/biomedicines9111676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 11/16/2022] Open
Abstract
Homeobox genes encode transcription factors controlling basic developmental processes. The homeodomain is encoded by the homeobox and mediates sequence-specific DNA binding and interaction with cofactors, thus operating as a basic regulatory platform. Similarities in their homeobox sequences serve to arrange these genes in classes and subclasses, including NKL homeobox genes. In accordance with their normal functions, deregulated homeobox genes contribute to carcinogenesis along with hematopoietic malignancies. We have recently described the physiological expression of eleven NKL homeobox genes in the course of hematopoiesis and termed this gene expression pattern NKL-code. Due to the developmental impact of NKL homeobox genes these data suggest a key role for their activity in the normal regulation of hematopoietic cell differentiation including T-cells. On the other hand, aberrant overexpression of NKL-code members or ectopical activation of non-code members has been frequently reported in lymphoid and myeloid leukemia/lymphoma, demonstrating their oncogenic impact in the hematopoietic compartment. Here, we provide an overview of the NKL-code in normal hematopoiesis and discuss the oncogenic role of deregulated NKL homeobox genes in T-cell malignancies.
Collapse
Affiliation(s)
- Stefan Nagel
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ, 38124 Braunschweig, Germany
| |
Collapse
|
20
|
Schmidt J, Oppermann E, Blaheta RA, Schreckenbach T, Lunger I, Rieger MA, Bechstein WO, Holzer K, Malkomes P. Carbonic-anhydrase IX expression is increased in thyroid cancer tissue and represents a potential therapeutic target to eradicate thyroid tumor-initiating cells. Mol Cell Endocrinol 2021; 535:111382. [PMID: 34216643 DOI: 10.1016/j.mce.2021.111382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 06/23/2021] [Accepted: 06/29/2021] [Indexed: 10/21/2022]
Abstract
The expression of Carbonic-anhydrase IX (CAIX) in thyroid cancer (TC) subtypes was determined and its role in cancer cell growth and tumor-initiating cells (TICs) investigated. Immunohistochemistry in 114 TC patients revealed that CAIX expression was increased in tumor specimens of papillary, follicular and anaplastic TCs compared to normal thyroid tissue. Clinicopathological data indicated that lymph node metastases were more frequent in patients with high CAIX expression. The Cancer Genome Atlas database analysis demonstrated that a strong CAIX-mRNA expression was associated with advanced tumor stages and poor survival in TCs. In TC cell lines, CAIX expression was elevated in tumorspheres compared to monolayer cultures and was associated with an increased expression of stemness markers. Genetic knockdown or pharmacological inhibition of CAIX suppressed cell proliferation and the TIC ability to form tumorspheres by an induction of apoptosis and cell-cycle arrest. These findings suggest CAIX as a potential prognostic marker and a therapeutic target for thyroid cancer.
Collapse
Affiliation(s)
- Jennifer Schmidt
- Hospital of the Goethe University Frankfurt, Department of General, Visceral and Transplant Surgery, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Elsie Oppermann
- Hospital of the Goethe University Frankfurt, Department of General, Visceral and Transplant Surgery, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Roman A Blaheta
- Hospital of the Goethe University Frankfurt, Department of Urology, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Teresa Schreckenbach
- Hospital of the Goethe University Frankfurt, Department of General, Visceral and Transplant Surgery, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Ilaria Lunger
- Hospital of the Goethe University Frankfurt, Department of General, Visceral and Transplant Surgery, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany; Hospital of the Goethe University Frankfurt, Department of Inner Medicine, Hematology/Oncology, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Michael A Rieger
- Hospital of the Goethe University Frankfurt, Department of Inner Medicine, Hematology/Oncology, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany; German Cancer Consortium and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany; Frankfurt Cancer Institute, Paul-Ehrlich-Straße 42-44, 60596, Frankfurt am Main, Germany
| | - Wolf Otto Bechstein
- Hospital of the Goethe University Frankfurt, Department of General, Visceral and Transplant Surgery, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Katharina Holzer
- Hospital of the Goethe University Frankfurt, Department of General, Visceral and Transplant Surgery, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany; Philipps University Hospital of Marburg, Section of Endocrine Surgery, Department of Visceral-, Thoracic- and Vascular Surgery, Baldingerstraße, 35043, Marburg, Germany
| | - Patrizia Malkomes
- Hospital of the Goethe University Frankfurt, Department of General, Visceral and Transplant Surgery, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany.
| |
Collapse
|
21
|
Francia M, Stortz M, Echegaray CV, Oses C, Verneri P, Petrone MV, Toro A, Waisman A, Miriuka S, Cosentino MS, Levi V, Guberman A. SUMO conjugation susceptibility of Akt/protein kinase B affects the expression of the pluripotency transcription factor Nanog in embryonic stem cells. PLoS One 2021; 16:e0254447. [PMID: 34242346 PMCID: PMC8270172 DOI: 10.1371/journal.pone.0254447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/27/2021] [Indexed: 12/24/2022] Open
Abstract
Akt/PKB is a kinase involved in the regulation of a wide variety of cell processes. Its activity is modulated by diverse post-translational modifications (PTMs). Particularly, conjugation of the small ubiquitin-related modifier (SUMO) to this kinase impacts on multiple cellular functions, such as proliferation and splicing. In embryonic stem (ES) cells, this kinase is key for pluripotency maintenance. Among other functions, Akt is known to promote the expression of Nanog, a central pluripotency transcription factor (TF). However, the relevance of this specific PTM of Akt has not been previously analyzed in this context. In this work, we study the effect of Akt1 variants with differential SUMOylation susceptibility on the expression of Nanog. Our results demonstrate that both, the Akt1 capability of being modified by SUMO conjugation and a functional SUMO conjugase activity are required to induce Nanog gene expression. Likewise, we found that the common oncogenic E17K Akt1 mutant affected Nanog expression in ES cells also in a SUMOylatability dependent manner. Interestingly, this outcome takes places in ES cells but not in a non-pluripotent heterologous system, suggesting the presence of a crucial factor for this induction in ES cells. Remarkably, the two major candidate factors to mediate this induction, GSK3-β and Tbx3, are non-essential players of this effect, suggesting a complex mechanism probably involving non-canonical pathways. Furthermore, we found that Akt1 subcellular distribution does not depend on its SUMOylatability, indicating that Akt localization has no influence on the effect on Nanog, and that besides the membrane localization of E17K Akt mutant, SUMOylation is also required for its hyperactivity. Our results highlight the impact of SUMO conjugation in the function of a kinase relevant for a plethora of cellular processes, including the control of a key pluripotency TF.
Collapse
Affiliation(s)
- Marcos Francia
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN, CONICET-UBA), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Martin Stortz
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN, CONICET-UBA), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Camila Vazquez Echegaray
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN, CONICET-UBA), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Camila Oses
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN, CONICET-UBA), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Paula Verneri
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN, CONICET-UBA), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - María Victoria Petrone
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN, CONICET-UBA), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Ayelen Toro
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN, CONICET-UBA), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Ariel Waisman
- Laboratorio de Investigación Aplicada a las Neurociencias Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (LIAN, FLENI-CONICET), Escobar, Provincia de Buenos Aires, Argentina
| | - Santiago Miriuka
- Laboratorio de Investigación Aplicada a las Neurociencias Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (LIAN, FLENI-CONICET), Escobar, Provincia de Buenos Aires, Argentina
| | - María Soledad Cosentino
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN, CONICET-UBA), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Valeria Levi
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN, CONICET-UBA), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Alejandra Guberman
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN, CONICET-UBA), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
- Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
22
|
Li B, Qiao C, Jin X, Chan HM. Characterizing the Low-Dose Effects of Methylmercury on the Early Stages of Embryo Development Using Cultured Human Embryonic Stem Cells. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:77007. [PMID: 34328791 PMCID: PMC8323991 DOI: 10.1289/ehp7349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/18/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Global concerns of methylmercury (MeHg) exposure have been raised, especially on its effects on pregnant women. Recent epidemiological studies have revealed associations between maternal blood/hair MeHg concentrations, adverse pregnancy outcomes, and developmental deficits. However, the underlying mechanisms remain unclear. OBJECTIVES In this study, we characterized the effects of MeHg exposure on undifferentiated human embryonic stem cells (hESCs) and extrapolated the effects to human embryonic development. METHODS hESCs were exposed to 0, 1, 5, 10, 50, 100 or 200nM MeHg for 24 h or 6 d. Cell adherence and colony formation and expansion were examined under the microscope. Cell attachment, viability/proliferation, apoptosis, stress response, cell cycle, autophagy, and expression of cell lineage marker genes and proteins were measured at the end of exposures. RESULTS Our results indicated that exposure to nanomolar concentrations of MeHg was associated with a) higher levels of reactive oxygen species (ROS) and hemeoxygenase-1 (HO-1), suggesting increased stress and adaptive responses; b) lower cellular adhesion, viability/proliferation, and colony formation and expansion; c) higher levels of apoptosis, reflected by higher cleaved caspase-3 expression and Annexin V binding; d) higher levels of cytoskeleton protein α-tubulin expression; e) higher rates of G1/S phase cell cycle arrest; and f) autophagy inhibition, as shown by a lower LC3BII/LC3BI ratio and accumulation of SQSTM1 (p62). These outcomes were accompanied by higher expressions of self-renewal genes or proteins or both, including OCT4, SOX2, NANOG, and cytokine receptor IL6ST, as well as pluripotency and the cell fate regulator cyclin D1. DISCUSSION These results revealed that under the selection pressure of exposure to low doses of MeHg, some hESCs underwent apoptosis, whereas others adapted and survived with enhanced self-renewal gene expression and specific morphological phenotypes. Findings from the present study provide in vitro evidence that low doses of MeHg adversely affect hESCs when exposed during a period of time that models embryonic pre-, during, and early postimplantation stages. https://doi.org/10.1289/EHP7349.
Collapse
Affiliation(s)
- Bai Li
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Cunye Qiao
- Biostatistics and Modeling Division, Bureau of Food Surveillance and Science Integration, Food Directorate, Health Products and Food Branch (HPFB), Health Canada, Ottawa, Ontario, Canada
| | - Xiaolei Jin
- Regulatory Toxicology Research Division, Bureau of Chemical Safety, Food Directorate, HPFB, Health Canada, Ottawa, Ontario, Canada
| | - Hing Man Chan
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
23
|
Islam Z, Ali AM, Naik A, Eldaw M, Decock J, Kolatkar PR. Transcription Factors: The Fulcrum Between Cell Development and Carcinogenesis. Front Oncol 2021; 11:681377. [PMID: 34195082 PMCID: PMC8236851 DOI: 10.3389/fonc.2021.681377] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/26/2021] [Indexed: 12/15/2022] Open
Abstract
Higher eukaryotic development is a complex and tightly regulated process, whereby transcription factors (TFs) play a key role in controlling the gene regulatory networks. Dysregulation of these regulatory networks has also been associated with carcinogenesis. Transcription factors are key enablers of cancer stemness, which support the maintenance and function of cancer stem cells that are believed to act as seeds for cancer initiation, progression and metastasis, and treatment resistance. One key area of research is to understand how these factors interact and collaborate to define cellular fate during embryogenesis as well as during tumor development. This review focuses on understanding the role of TFs in cell development and cancer. The molecular mechanisms of cell fate decision are of key importance in efforts towards developing better protocols for directed differentiation of cells in research and medicine. We also discuss the dysregulation of TFs and their role in cancer progression and metastasis, exploring TF networks as direct or indirect targets for therapeutic intervention, as well as specific TFs' potential as biomarkers for predicting and monitoring treatment responses.
Collapse
Affiliation(s)
- Zeyaul Islam
- Diabetes Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Ameena Mohamed Ali
- Diabetes Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Adviti Naik
- Translational Cancer and Immunity Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Mohamed Eldaw
- Diabetes Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Julie Decock
- Translational Cancer and Immunity Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Prasanna R. Kolatkar
- Diabetes Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| |
Collapse
|
24
|
Nagel S, Pommerenke C, Meyer C, Drexler HG. NKL Homeobox Gene VENTX Is Part of a Regulatory Network in Human Conventional Dendritic Cells. Int J Mol Sci 2021; 22:ijms22115902. [PMID: 34072771 PMCID: PMC8198381 DOI: 10.3390/ijms22115902] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/10/2021] [Accepted: 05/27/2021] [Indexed: 01/09/2023] Open
Abstract
Recently, we documented a hematopoietic NKL-code mapping physiological expression patterns of NKL homeobox genes in human myelopoiesis including monocytes and their derived dendritic cells (DCs). Here, we enlarge this map to include normal NKL homeobox gene expressions in progenitor-derived DCs. Analysis of public gene expression profiling and RNA-seq datasets containing plasmacytoid and conventional dendritic cells (pDC and cDC) demonstrated HHEX activity in both entities while cDCs additionally expressed VENTX. The consequent aim of our study was to examine regulation and function of VENTX in DCs. We compared profiling data of VENTX-positive cDC and monocytes with VENTX-negative pDC and common myeloid progenitor entities and revealed several differentially expressed genes encoding transcription factors and pathway components, representing potential VENTX regulators. Screening of RNA-seq data for 100 leukemia/lymphoma cell lines identified prominent VENTX expression in an acute myelomonocytic leukemia cell line, MUTZ-3 containing inv(3)(q21q26) and t(12;22)(p13;q11) and representing a model for DC differentiation studies. Furthermore, extended gene analyses indicated that MUTZ-3 is associated with the subtype cDC2. In addition to analysis of public chromatin immune-precipitation data, subsequent knockdown experiments and modulations of signaling pathways in MUTZ-3 and control cell lines confirmed identified candidate transcription factors CEBPB, ETV6, EVI1, GATA2, IRF2, MN1, SPIB, and SPI1 and the CSF-, NOTCH-, and TNFa-pathways as VENTX regulators. Live-cell imaging analyses of MUTZ-3 cells treated for VENTX knockdown excluded impacts on apoptosis or induced alteration of differentiation-associated cell morphology. In contrast, target gene analysis performed by expression profiling of knockdown-treated MUTZ-3 cells revealed VENTX-mediated activation of several cDC-specific genes including CSFR1, EGR2, and MIR10A and inhibition of pDC-specific genes like RUNX2. Taken together, we added NKL homeobox gene activities for progenitor-derived DCs to the NKL-code, showing that VENTX is expressed in cDCs but not in pDCs and forms part of a cDC-specific gene regulatory network operating in DC differentiation and function.
Collapse
|
25
|
Jimenez-García MP, Lucena-Cacace A, Otero-Albiol D, Carnero A. Regulation of sarcomagenesis by the empty spiracles homeobox genes EMX1 and EMX2. Cell Death Dis 2021; 12:515. [PMID: 34016958 PMCID: PMC8137939 DOI: 10.1038/s41419-021-03801-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/03/2021] [Accepted: 05/03/2021] [Indexed: 02/07/2023]
Abstract
The EMX (Empty Spiracles Homeobox) genes EMX1 and EMX2 are two homeodomain gene members of the EMX family of transcription factors involved in the regulation of various biological processes, such as cell proliferation, migration, and differentiation, during brain development and neural crest migration. They play a role in the specification of positional identity, the proliferation of neural stem cells, and the differentiation of certain neuronal cell phenotypes. In general, they act as transcription factors in early embryogenesis and neuroembryogenesis from metazoans to higher vertebrates. The EMX1 and EMX2's potential as tumor suppressor genes has been suggested in some cancers. Our work showed that EMX1/EMX2 act as tumor suppressors in sarcomas by repressing the activity of stem cell regulatory genes (OCT4, SOX2, KLF4, MYC, NANOG, NES, and PROM1). EMX protein downregulation, therefore, induced the malignance and stemness of cells both in vitro and in vivo. In murine knockout (KO) models lacking Emx genes, 3MC-induced sarcomas were more aggressive and infiltrative, had a greater capacity for tumor self-renewal, and had higher stem cell gene expression and nestin expression than those in wild-type models. These results showing that EMX genes acted as stemness regulators were reproduced in different subtypes of sarcoma. Therefore, it is possible that the EMX genes could have a generalized behavior regulating proliferation of neural crest-derived progenitors. Together, these results indicate that the EMX1 and EMX2 genes negatively regulate these tumor-altering populations or cancer stem cells, acting as tumor suppressors in sarcoma.
Collapse
Affiliation(s)
- Manuel Pedro Jimenez-García
- grid.411109.c0000 0000 9542 1158Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Sevilla, Spain ,CIBER de Cancer, IS Carlos III, Madrid, Spain
| | - Antonio Lucena-Cacace
- grid.258799.80000 0004 0372 2033Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Daniel Otero-Albiol
- grid.411109.c0000 0000 9542 1158Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Sevilla, Spain ,CIBER de Cancer, IS Carlos III, Madrid, Spain
| | - Amancio Carnero
- grid.411109.c0000 0000 9542 1158Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Sevilla, Spain ,CIBER de Cancer, IS Carlos III, Madrid, Spain
| |
Collapse
|
26
|
Ye Y, Chen X, Zhang W. Mammalian SWI/SNF Chromatin Remodeling Complexes in Embryonic Stem Cells: Regulating the Balance Between Pluripotency and Differentiation. Front Cell Dev Biol 2021; 8:626383. [PMID: 33537314 PMCID: PMC7848206 DOI: 10.3389/fcell.2020.626383] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 11/30/2020] [Indexed: 12/04/2022] Open
Abstract
The unique capability of embryonic stem cells (ESCs) to maintain and adjust the equilibrium between self-renewal and multi-lineage cellular differentiation contributes indispensably to the integrity of all developmental processes, leading to the advent of an organism in its adult form. The ESC fate decision to favor self-renewal or differentiation into specific cellular lineages largely depends on transcriptome modulations through gene expression regulations. Chromatin remodeling complexes play instrumental roles to promote chromatin structural changes resulting in gene expression changes that are key to the ESC fate choices governing the equilibrium between pluripotency and differentiation. BAF (Brg/Brahma-associated factors) or mammalian SWI/SNF complexes employ energy generated by ATP hydrolysis to change chromatin states, thereby governing the accessibility of transcriptional regulators that ultimately affect transcriptome and cell fate. Interestingly, the requirement of BAF complex in self-renewal and differentiation of ESCs has been recently shown by genetic studies through gene expression modulations of various BAF components in ESCs, although the precise molecular mechanisms by which BAF complex influences ESC fate choice remain largely underexplored. This review surveys these recent progresses of BAF complex on ESC functions, with a focus on its role of conditioning the pluripotency and differentiation balance of ESCs. A discussion of the mechanistic bases underlying the genetic requirements for BAF in ESC biology as well as the outcomes of its interplays with key transcription factors or other chromatin remodelers in ESCs will be highlighted.
Collapse
Affiliation(s)
- Ying Ye
- Cam-Su Genomic Resource Center, Medical College of Soochow University, Suzhou, China
| | - Xi Chen
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Wensheng Zhang
- Cam-Su Genomic Resource Center, Medical College of Soochow University, Suzhou, China
| |
Collapse
|
27
|
Park HJ, Yun JI, Kim M, Choi K, Lee E, Lee ST. Screening of Integrin Heterodimers Expressed Functionally on the Undifferentiated Spermatogonial Stem Cells in the Outbred ICR Mice. Int J Stem Cells 2020; 13:353-363. [PMID: 32840227 PMCID: PMC7691863 DOI: 10.15283/ijsc20061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 06/09/2020] [Accepted: 07/15/2020] [Indexed: 12/03/2022] Open
Abstract
Background and Objectives Outbred mice are widely used in toxicology, pharmacology, and fundamental biomedical research. However, there have been no reports of in vitro culture systems for spermatogonial stem cells (SSCs) derived from these mice. Methods As a step towards constructing a non-cellular niche supporting the in vitro maintenance of outbred mouse SSC self-renewal, we systematically investigated the types of integrin heterodimers that are expressed transcriptionally, translationally, and functionally in SSCs derived from Imprinting Control Region (ICR) mice. Results Among the genes encoding 25 integrin subunits, integrin α1, α5, α6, α9, αV, and αE, and integrin β1 and β5 had significantly higher transcriptional levels than the other subunits. Furthermore, at the translational level, integrin α5, α6, α9, αV, αE, and β1 were localized on the surface of SSCs, but integrin α1 and β5 not. Moreover, significantly stronger translational expression than integrin α9 and αE was observed in integrin α5, α6, αV, and β1. SSCs showed significantly increased adhesion to fibronectin, laminin, tenascin C and vitronectin, and functional blocking of integrin α5β1, α6β1, α9β1 or αVβ1 significantly inhibited adhesion to these molecules. Conclusions We confirmed that integrin α5β1, α6β1, α9β1 and αVβ1 actively function on the surface of undifferentiated SSCs derived from outbred ICR mice.
Collapse
Affiliation(s)
- Hye Jin Park
- Department of Animal Life Science, Kangwon National University, Chuncheon, Korea
| | | | - Minseok Kim
- Department of Animal Science, Chonnam National University, Gwangju, Korea
| | | | - Eunsong Lee
- College of Veterinary Medicine, Kangwon National University, Chuncheon, Korea
| | - Seung Tae Lee
- Department of Animal Life Science, Kangwon National University, Chuncheon, Korea.,KustoGen Inc., Chuncheon, Korea.,Department of Applied Animal Science, Kangwon National University, Chuncheon, Korea
| |
Collapse
|
28
|
Differentiation Potential of Early- and Late-Passage Adipose-Derived Mesenchymal Stem Cells Cultured under Hypoxia and Normoxia. Stem Cells Int 2020; 2020:8898221. [PMID: 33014073 PMCID: PMC7519987 DOI: 10.1155/2020/8898221] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/25/2020] [Accepted: 08/28/2020] [Indexed: 02/07/2023] Open
Abstract
With an increasing focus on the large-scale expansion of mesenchymal stem cells (MSCs) required for clinical applications for the treatment of joint and bone diseases such as osteoarthritis, the optimisation of conditions for in vitro MSC expansion requires careful consideration to maintain native MSC characteristics. Physiological parameters such as oxygen concentration, media constituents, and passage numbers influence the properties of MSCs and may have major impact on their therapeutic potential. Cells grown under hypoxic conditions have been widely documented in clinical use. Culturing MSCs on large scale requires bioreactor culture; however, it is challenging to maintain low oxygen and other physiological parameters over several passages in large bioreactor vessels. The necessity to scale up the production of cells in vitro under normoxia may affect important attributes of MSCs. For these reasons, our study investigated the effects of normoxic and hypoxic culture condition on early- and late-passage adipose-derived MSCs. We examined effect of each condition on the expression of key stem cell marker genes POU5F1, NANOG, and KLF4, as well as differentiation genes RUNX2, COL1A1, SOX9, COL2A1, and PPARG. We found that expression levels of stem cell marker genes and osteogenic and chondrogenic genes were higher in normoxia compared to hypoxia. Furthermore, expression of these genes reduced with passage number, with the exception of PPARG, an adipose differentiation marker, possibly due to the adipose origin of the MSCs. We confirmed by flow cytometry the presence of cell surface markers CD105, CD73, and CD90 and lack of expression of CD45, CD34, CD14, and CD19 across all conditions. Furthermore, in vitro differentiation confirmed that both early- and late-passage adipose-derived MSCs grown in hypoxia or normoxia could differentiate into chondrogenic and osteogenic cell types. Our results demonstrate that the minimal standard criteria to define MSCs as suitable for laboratory-based and preclinical studies can be maintained in early- or late-passage MSCs cultured in hypoxia or normoxia. Therefore, any of these culture conditions could be used when scaling up MSCs in bioreactors for allogeneic clinical applications or tissue engineering for the treatment of joint and bone diseases such as osteoarthritis.
Collapse
|
29
|
Yu Z, Dmitrieva NI, Walts AD, Jin H, Liu Y, Ping X, Ferrante EA, Qiu L, Holland SM, Freeman AF, Chen G, Boehm M. STAT3 modulates reprogramming efficiency of human somatic cells; insights from autosomal dominant Hyper IgE syndrome caused by STAT3 mutations. Biol Open 2020; 9:bio052662. [PMID: 32580970 PMCID: PMC7502598 DOI: 10.1242/bio.052662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/15/2020] [Indexed: 12/20/2022] Open
Abstract
Human induced pluripotent stem cell (iPSC) technology has opened exciting opportunities for stem-cell-based therapy. However, its wide adoption is precluded by several challenges including low reprogramming efficiency and potential for malignant transformation. Better understanding of the molecular mechanisms of the changes that cells undergo during reprograming is needed to improve iPSCs generation efficiency and to increase confidence for their clinical use safety. Here, we find that dominant negative mutations in STAT3 in patients with autosomal-dominant hyper IgE (Job's) syndrome (AD-HIES) result in greatly reduced reprograming efficiency of primary skin fibroblasts derived from skin biopsies. Analysis of normal skin fibroblasts revealed upregulation and phosphorylation of endogenous signal transducer and activator of transcription 3 (STAT3) and its binding to the NANOG promoter following transduction with OKSM factors. This coincided with upregulation of NANOG and appearance of cells expressing pluripotency markers. Upregulation of NANOG and number of pluripotent cells were greatly reduced throughout the reprograming process of AD-HIES fibroblasts that was restored by over-expression of functional STAT3. NANOGP8, the human-specific NANOG retrogene that is often expressed in human cancers, was also induced during reprogramming, to very low but detectable levels, in a STAT3-dependent manner. Our study revealed the critical role of endogenous STAT3 in facilitating reprogramming of human somatic cells.
Collapse
Affiliation(s)
- Zhen Yu
- Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Natalia I Dmitrieva
- Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Avram D Walts
- Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hui Jin
- Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yangtengyu Liu
- Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xianfeng Ping
- Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Elisa A Ferrante
- Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Steven M Holland
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Alexandra F Freeman
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Guibin Chen
- Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Manfred Boehm
- Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
30
|
Babaie A, Lumicisi J, Thissen H, Wang PY, Sumer H, Kingshott P. Binary Colloidal Crystal (BCC) Substrates for Controlling the Fate of Mouse Embryonic Stem Cells. Colloids Surf B Biointerfaces 2020; 194:111133. [PMID: 32554259 DOI: 10.1016/j.colsurfb.2020.111133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 04/20/2020] [Accepted: 05/11/2020] [Indexed: 11/28/2022]
Abstract
Understanding the interactions of stem cells with surface topography can give us an invaluable tool in controlling stemness and fate of stem cells for further use in biomedical applications. In this study, we have fabricated topographical features using a class of cell culture substrates called binary colloidal crystals (BCCs), that are made by self-assembly of mixtures of spherical micron sized silica (Si) and nanometer sized polystyrene (PS) or poly (methyl methacrylate) (PMMA) particles. The substrates formed are arrays of ordered, hexagonally packed large Si particles inter-dispersed with the PS particles that are stabilized by gentle heating, which melts the PS or PMMA forming substrates suitable for cell culture. BCC substrates were used for culture of mouse embryonic stem cells (mESCs). Compared to tissue culture plates, COM1 (Si5-PMMA0.4), COM2 (Si5-PS0.4) and COM4 (Si2-PSC0.22) have shown to provide a better support for mESC proliferation in the presence of the cytokine leukemia inhibitory factor (LIF). The behavior of mESCs with the BCCs in presence and absence of LIF, was further explored and it was found that interaction of mESCs with the culture substrate can be controlled by tuning surface topography and roughness, which is determined by the size and type of particles used in making BCCs. Furthermore, it was shown that limiting cell-surface interactions and controlling colony shape can promote stemness maintenance on COM1 and COM2 substrates as indicated by better proliferation and higher expression of pluripotency genes including Nanog both in presence and in absence of LIF. Together with higher expression of GATA6 gene, it can be stated that these surfaces can be used for endodermic priming of mESCs. Therefore, we believe that these surfaces, especially COM1 and COM2 surfaces can be beneficial as stem cell culture systems for further use in biomedical research.
Collapse
Affiliation(s)
- Ali Babaie
- Department of Chemistry and Biotechnology, School of Science, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia; CSIRO Manufacturing, Research Way, Clayton, Victoria 3168, Australia
| | - James Lumicisi
- Department of Chemistry and Biotechnology, School of Science, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Helmut Thissen
- CSIRO Manufacturing, Research Way, Clayton, Victoria 3168, Australia
| | - Peng-Yuan Wang
- Department of Chemistry and Biotechnology, School of Science, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia; Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Huseyin Sumer
- Department of Chemistry and Biotechnology, School of Science, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia.
| | - Peter Kingshott
- Department of Chemistry and Biotechnology, School of Science, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| |
Collapse
|
31
|
War AR, Dang K, Jiang S, Xiao Z, Miao Z, Yang T, Li Y, Qian A. Role of cancer stem cells in the development of giant cell tumor of bone. Cancer Cell Int 2020; 20:135. [PMID: 32351329 PMCID: PMC7183664 DOI: 10.1186/s12935-020-01218-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 04/17/2020] [Indexed: 02/06/2023] Open
Abstract
The primary bone tumor is usually observed in adolescence age group which has been shown to be part of nearly 20% of the sarcomas known today. Giant cell tumor of bone (GCTB) can be benign as well as malignant tumor which exhibits localized dynamism and is usually associated with the end point of a long bone. Giant cell tumor (GCT) involves mononuclear stromal cells which proliferate at a high rate, multinucleated giant cells and stromal cells are equally present in this type of tumor. Cancer stem cells (CSCs) have been confirmed to play a potential role in the development of GCT. Cancer stem cell-based microRNAs have been shown to contribute to a greater extent in giant cell tumor of bone. CSCs and microRNAs present in the tumors specifically are a great concern today which need in-depth knowledge as well as advanced techniques to treat the bone cancer effectively. In this review, we attempted to summarize the role played by cancer stem cells involving certain important molecules/factors such as; Mesenchymal Stem Cells (MSCs), miRNAs and signaling mechanism such as; mTOR/PI3K-AKT, towards the formation of giant cell tumor of bone, in order to get an insight regarding various effective strategies and research advancements to obtain adequate knowledge related to CSCs which may help to focus on highly effective treatment procedures for bone tumors.
Collapse
Affiliation(s)
- Abdul Rouf War
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, 710072 Shaanxi China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an, 710072 Shaanxi China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an, 710072 Shaanxi China
| | - Kai Dang
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, 710072 Shaanxi China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an, 710072 Shaanxi China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an, 710072 Shaanxi China
| | - Shanfen Jiang
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, 710072 Shaanxi China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an, 710072 Shaanxi China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an, 710072 Shaanxi China
| | - Zhongwei Xiao
- Department of Neurology, Shanghai Pudong Hospital, Fudan University, Shanghai, 201399 People’s Republic of China
| | - Zhiping Miao
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, 710072 Shaanxi China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an, 710072 Shaanxi China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an, 710072 Shaanxi China
| | - Tuanmin Yang
- Honghui Hospital, Xi’an, Jiaotong University College of Medicine, Xi’an, Shaanxi China
| | - Yu Li
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, 710072 Shaanxi China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an, 710072 Shaanxi China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an, 710072 Shaanxi China
| | - Airong Qian
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, 710072 Shaanxi China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an, 710072 Shaanxi China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an, 710072 Shaanxi China
| |
Collapse
|
32
|
Khan SF, Damerell V, Omar R, Du Toit M, Khan M, Maranyane HM, Mlaza M, Bleloch J, Bellis C, Sahm BDB, Peres J, ArulJothi KN, Prince S. The roles and regulation of TBX3 in development and disease. Gene 2020; 726:144223. [PMID: 31669645 PMCID: PMC7108957 DOI: 10.1016/j.gene.2019.144223] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 10/18/2019] [Accepted: 10/22/2019] [Indexed: 12/18/2022]
Abstract
TBX3, a member of the ancient and evolutionary conserved T-box transcription factor family, is a critical developmental regulator of several structures including the heart, mammary glands, limbs and lungs. Indeed, mutations in the human TBX3 lead to ulnar mammary syndrome which is characterized by several clinical malformations including hypoplasia of the mammary and apocrine glands, defects of the upper limb, areola, dental structures, heart and genitalia. In contrast, TBX3 has no known function in adult tissues but is frequently overexpressed in a wide range of epithelial and mesenchymal derived cancers. This overexpression greatly impacts several hallmarks of cancer including bypass of senescence, apoptosis and anoikis, promotion of proliferation, tumour formation, angiogenesis, invasion and metastatic capabilities as well as cancer stem cell expansion. The debilitating consequences of having too little or too much TBX3 suggest that its expression levels need to be tightly regulated. While we have a reasonable understanding of the mutations that result in low levels of functional TBX3 during development, very little is known about the factors responsible for the overexpression of TBX3 in cancer. Furthermore, given the plethora of oncogenic processes that TBX3 impacts, it must be regulating several target genes but to date only a few have been identified and characterised. Interestingly, while there is compelling evidence to support oncogenic roles for TBX3, a few studies have indicated that it may also have tumour suppressor functions in certain contexts. Together, the diverse functional elasticity of TBX3 in development and cancer is thought to involve, in part, the protein partners that it interacts with and this area of research has recently received some attention. This review provides an insight into the significance of TBX3 in development and cancer and identifies research gaps that need to be explored to shed more light on this transcription factor.
Collapse
Affiliation(s)
- Saif F Khan
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - Victoria Damerell
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - Rehana Omar
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - Michelle Du Toit
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - Mohsin Khan
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - Hapiloe Mabaruti Maranyane
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - Mihlali Mlaza
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - Jenna Bleloch
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - Claire Bellis
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - Bianca D B Sahm
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa; Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, SP 11030-400, Brazil
| | - Jade Peres
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - K N ArulJothi
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - Sharon Prince
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa.
| |
Collapse
|
33
|
Nagel S, Scherr M, MacLeod RAF, Pommerenke C, Koeppel M, Meyer C, Kaufmann M, Dallmann I, Drexler HG. NKL homeobox gene activities in normal and malignant myeloid cells. PLoS One 2019; 14:e0226212. [PMID: 31825998 PMCID: PMC6905564 DOI: 10.1371/journal.pone.0226212] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 11/21/2019] [Indexed: 12/30/2022] Open
Abstract
Recently, we have documented a hematopoietic NKL-code mapping physiological expression patterns of NKL homeobox genes in early hematopoiesis and in lymphopoiesis, which spotlights genes deregulated in lymphoid malignancies. Here, we enlarge this map to include normal NKL homeobox gene expressions in myelopoiesis by analyzing public expression profiling data and primary samples from developing and mature myeloid cells. We thus uncovered differential activities of six NKL homeobox genes, namely DLX2, HHEX, HLX, HMX1, NKX3-1 and VENTX. We further examined public expression profiling data of 251 acute myeloid leukemia (AML) and 183 myelodysplastic syndrome (MDS) patients, thereby identifying 24 deregulated genes. These results revealed frequent deregulation of NKL homeobox genes in myeloid malignancies. For detailed analysis we focused on NKL homeobox gene NANOG, which acts as a stem cell factor and is correspondingly expressed alone in hematopoietic progenitor cells. We detected aberrant expression of NANOG in a small subset of AML patients and in AML cell line NOMO-1, which served as a model. Karyotyping and genomic profiling discounted rearrangements of the NANOG locus at 12p13. But gene expression analyses of AML patients and AML cell lines after knockdown and overexpression of NANOG revealed regulators and target genes. Accordingly, NKL homeobox genes HHEX, DLX5 and DLX6, stem cell factors STAT3 and TET2, and the NOTCH-pathway were located upstream of NANOG while NKL homeobox genes HLX and VENTX, transcription factors KLF4 and MYB, and anti-apoptosis-factor MIR17HG represented target genes. In conclusion, we have extended the NKL-code to the myeloid lineage and thus identified several NKL homeobox genes deregulated in AML and MDS. These data indicate a common oncogenic role of NKL homeobox genes in both lymphoid and myeloid malignancies. For misexpressed NANOG we identified an aberrant regulatory network, which contributes to the understanding of the oncogenic activity of NKL homeobox genes.
Collapse
Affiliation(s)
- Stefan Nagel
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ–German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
- * E-mail:
| | - Michaela Scherr
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Roderick A. F. MacLeod
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ–German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Claudia Pommerenke
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ–German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Max Koeppel
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ–German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Corinna Meyer
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ–German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Maren Kaufmann
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ–German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Iris Dallmann
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Hans G. Drexler
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ–German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| |
Collapse
|
34
|
David BG, Fujita H, Yasuda K, Okamoto K, Panina Y, Ichinose J, Sato O, Horie M, Ichimura T, Okada Y, Watanabe TM. Linking substrate and nucleus via actin cytoskeleton in pluripotency maintenance of mouse embryonic stem cells. Stem Cell Res 2019; 41:101614. [DOI: 10.1016/j.scr.2019.101614] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 09/13/2019] [Accepted: 10/08/2019] [Indexed: 12/19/2022] Open
|
35
|
Petrie JL, Swan C, Ingram RM, Frame FM, Collins AT, Dumay-Odelot H, Teichmann M, Maitland NJ, White RJ. Effects on prostate cancer cells of targeting RNA polymerase III. Nucleic Acids Res 2019; 47:3937-3956. [PMID: 30820548 PMCID: PMC6486637 DOI: 10.1093/nar/gkz128] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/13/2019] [Accepted: 02/19/2019] [Indexed: 12/12/2022] Open
Abstract
RNA polymerase (pol) III occurs in two forms, containing either the POLR3G subunit or the related paralogue POLR3GL. Whereas POLR3GL is ubiquitous, POLR3G is enriched in undifferentiated cells. Depletion of POLR3G selectively triggers proliferative arrest and differentiation of prostate cancer cells, responses not elicited when POLR3GL is depleted. A small molecule pol III inhibitor can cause POLR3G depletion, induce similar differentiation and suppress proliferation and viability of cancer cells. This response involves control of the fate-determining factor NANOG by small RNAs derived from Alu short interspersed nuclear elements. Tumour initiating activity in vivo can be reduced by transient exposure to the pol III inhibitor. Untransformed prostate cells appear less sensitive than cancer cells to pol III depletion or inhibition, raising the possibility of a therapeutic window.
Collapse
Affiliation(s)
- John L Petrie
- Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Caroline Swan
- Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Richard M Ingram
- Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Fiona M Frame
- Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Anne T Collins
- Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Hélène Dumay-Odelot
- Université de Bordeaux, ARNA Laboratory, F-33076 Bordeaux, France INSERM, U1212 - CNRS UMR 5320, ARNA Laboratory, F-33000 Bordeaux, France
| | - Martin Teichmann
- Université de Bordeaux, ARNA Laboratory, F-33076 Bordeaux, France INSERM, U1212 - CNRS UMR 5320, ARNA Laboratory, F-33000 Bordeaux, France
| | - Norman J Maitland
- Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Robert J White
- Department of Biology, University of York, Heslington, York YO10 5DD, UK
| |
Collapse
|
36
|
Kusuyama J, Seong C, Makarewicz NS, Ohnishi T, Shima K, Semba I, Bandow K, Matsuguchi T. Low intensity pulsed ultrasound (LIPUS) maintains osteogenic potency by the increased expression and stability of Nanog through spleen tyrosine kinase (Syk) activation. Cell Signal 2019; 62:109345. [PMID: 31228531 DOI: 10.1016/j.cellsig.2019.109345] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/22/2019] [Accepted: 06/18/2019] [Indexed: 12/18/2022]
Abstract
Mesenchymal stem cells (MSCs) are a powerful tool for cell-based, clinical therapies like bone regeneration. Therapeutic use of cell transplantation requires many cells, however, the expansion process needed to produce large quantities of cells reduces the differentiation potential of MSCs. Here, we examined the protective effects of low intensity pulsed ultrasound (LIPUS) on the maintenance of osteogenic potency. Primary osteoblastic cells were serially passaged between 2 and 12 times with daily LIPUS treatment. We found that LIPUS stimulation maintains osteogenic differentiation capacity in serially passaged cells, as characterized by improved matrix mineralization and Osteocalcin mRNA expression. Decreased expression of Nanog, Sox2, and Msx2, and increased expression of Pparg2 from serial passaging was recovered in LIPUS-stimulated cells. We found that LIPUS stimulation not only increased but also sustained expression of Nanog in primary osteoblasts and ST2 cells, a mouse mesenchymal stromal cell line. Nanog overexpression in serially passaged cells mimicked the recuperative effects of LIPUS on osteogenic potency, highlighting the important role of Nanog in LIPUS stimulation. Additionally, we found that spleen tyrosine kinase (Syk) is an important signaling molecule to induce Nanog expression in LIPUS-stimulated cells. Syk activation was regulated by both Rho-associated kinase 1 (ROCK1) and extracellular ATP in a paracrine manner. Interestingly, the LIPUS-induced increase in Nanog mRNA expression was regulated by ATP-P2X4-Syk Y323 activation, while the improvement of Nanog protein stability was controlled by the ROCK1-Syk Y525/526 pathway. Taken together, these results indicate that LIPUS stimulation recovers and maintains the osteogenic potency of serially passaged cells through a Syk-Nanog axis.
Collapse
Affiliation(s)
- Joji Kusuyama
- Department of Oral Biochemistry, Field of Developmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan; Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Department of Medicine, Harvard Medical School, One Joslin Place, Boston, MA 02215, USA.
| | - Changhwan Seong
- Department of Oral Biochemistry, Field of Developmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan; Department of Oral and Maxillofacial Surgery, Field of Oral and Maxillofacial Rehabilitation, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Nathan S Makarewicz
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Department of Medicine, Harvard Medical School, One Joslin Place, Boston, MA 02215, USA
| | - Tomokazu Ohnishi
- Department of Oral Biochemistry, Field of Developmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Kaori Shima
- Department of Oral Pathology, Field of Oncology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Ichiro Semba
- Department of Oral Pathology, Field of Oncology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Kenjiro Bandow
- Department of Oral Biology and Tissue Engineering, Meikai University School of Dentistry, 1-1 Keyakidai, Sakato 350-0283, Saitama, Japan
| | - Tetsuya Matsuguchi
- Department of Oral Biochemistry, Field of Developmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| |
Collapse
|
37
|
Role of OCT4 in cancer stem-like cells and chemotherapy resistance. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165432. [PMID: 30904611 DOI: 10.1016/j.bbadis.2019.03.005] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/07/2019] [Accepted: 03/17/2019] [Indexed: 02/06/2023]
Abstract
Cancer stem-like cells (CSCs) contribute to the tumorigenicity, progression, and chemoresistance of cancers. It is not known whether CSCs arise from normal stem cells or if they arise from differentiated cancer cells by acquiring self-renewal features. These CSCs share stem cell markers that normal stem cells express. There is a rising interest in octamer-binding transcription factor 4 (OCT4), one of the stem cell factors that are essential in embryogenesis and pluripotency. OCT4 is also overexpressed in CSCs of various cancers. Although the majority of the studies in CSCs reported a positive association between the expression of OCT4 and chemoresistance and an inverse correlation between OCT4 and clinical prognosis, there are studies rebuking these findings, possibly due to the sparsity of stem cells within tumors and the heterogeneity of tumors. In addition, post-translational modification of OCT4 affects its activity and warrants further investigation for its association with chemoresistance and prognosis.
Collapse
|
38
|
Katsura Y, Ohara T, Noma K, Ninomiya T, Kashima H, Kato T, Sato H, Komoto S, Narusaka T, Tomono Y, Xing B, Chen Y, Tazawa H, Kagawa S, Shirakawa Y, Kasai T, Seno M, Matsukawa A, Fujiwara T. A Novel Combination Cancer Therapy with Iron Chelator Targeting Cancer Stem Cells via Suppressing Stemness. Cancers (Basel) 2019; 11:cancers11020177. [PMID: 30717462 PMCID: PMC6406536 DOI: 10.3390/cancers11020177] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 01/28/2019] [Accepted: 01/31/2019] [Indexed: 02/07/2023] Open
Abstract
Excess iron causes cancer and is thought to be related to carcinogenesis and cancer progression including stemness, but the details remain unclear. Here, we hypothesized that stemness in cancer is related to iron metabolism and that regulating iron metabolism in cancer stem cells (CSCs) may be a novel therapy. In this study, we used murine induced pluripotent stem cells that expressed specific stem cell genes such as Nanog, Oct3/4, Sox2, Klf4, and c-Myc, and two human cancer cell lines with similar stem cell gene expression. Deferasirox, an orally available iron chelator, suppressed expression of stemness markers and spherogenesis of cells with high stemness status in vitro. Combination therapy had a marked antitumor effect compared with deferasirox or cisplatin alone. Iron metabolism appears important for maintenance of stemness in CSCs. An iron chelator combined with chemotherapy may be a novel approach via suppressing stemness for CSC targeted therapy.
Collapse
Affiliation(s)
- Yuki Katsura
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan (Y.K.).
| | - Toshiaki Ohara
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan (Y.K.).
- Department of Pathology and Experimental Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan.
| | - Kazuhiro Noma
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan (Y.K.).
| | - Takayuki Ninomiya
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan (Y.K.).
| | - Hajime Kashima
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan (Y.K.).
| | - Takuya Kato
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan (Y.K.).
| | - Hiroaki Sato
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan (Y.K.).
| | - Satoshi Komoto
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan (Y.K.).
| | - Toru Narusaka
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan (Y.K.).
| | - Yasuko Tomono
- Shigei Medical Research Institute, Okayama 701-0202, Japan.
| | - Boyi Xing
- Department of Pathology and Experimental Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan.
| | - Yuehua Chen
- Department of Pathology and Experimental Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan.
| | - Hiroshi Tazawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan (Y.K.).
- Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama 700-8558, Japan.
| | - Shunsuke Kagawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan (Y.K.).
| | - Yasuhiro Shirakawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan (Y.K.).
| | - Tomonari Kasai
- School of Bioscience and Biotechnology, Tokyo University of Technology, Tokyo 192-0914, Japan.
| | - Masaharu Seno
- Laboratory of Nano-Biotechnology, Okayama University Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama 700-8530, Japan.
| | - Akihiro Matsukawa
- Department of Pathology and Experimental Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan.
| | - Toshiyoshi Fujiwara
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan (Y.K.).
| |
Collapse
|
39
|
Feigelman J, Ganscha S, Hastreiter S, Schwarzfischer M, Filipczyk A, Schroeder T, Theis FJ, Marr C, Claassen M. Analysis of Cell Lineage Trees by Exact Bayesian Inference Identifies Negative Autoregulation of Nanog in Mouse Embryonic Stem Cells. Cell Syst 2019; 3:480-490.e13. [PMID: 27883891 DOI: 10.1016/j.cels.2016.11.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/25/2016] [Accepted: 10/31/2016] [Indexed: 11/28/2022]
Abstract
Many cellular effectors of pluripotency are dynamically regulated. In principle, regulatory mechanisms can be inferred from single-cell observations of effector activity across time. However, rigorous inference techniques suitable for noisy, incomplete, and heterogeneous data are lacking. Here, we introduce stochastic inference on lineage trees (STILT), an algorithm capable of identifying stochastic models that accurately describe the quantitative behavior of cell fate markers observed using time-lapse microscopy data collected from proliferating cell populations. STILT performs exact Bayesian parameter inference and stochastic model selection using a particle-filter-based algorithm. We use STILT to investigate the autoregulation of Nanog, a heterogeneously expressed core pluripotency factor, in mouse embryonic stem cells. STILT rejects the possibility of positive Nanog autoregulation with high confidence; instead, model predictions indicate weak negative feedback. We use STILT for rational experimental design and validate model predictions using novel experimental data. STILT is available for download as an open source framework from http://www.imsb.ethz.ch/research/claassen/Software/stilt---stochastic-inference-on-lineage-trees.html.
Collapse
Affiliation(s)
- Justin Feigelman
- Institute of Computational Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, 85764 Neuherberg, Germany; Institute of Molecular Systems Biology, ETH Zürich, 8093 Zürich, Switzerland; Department of Mathematics, Technische Universität München, 85748 Garching, Germany
| | - Stefan Ganscha
- Institute of Molecular Systems Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Simon Hastreiter
- Department of Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland
| | - Michael Schwarzfischer
- Institute of Computational Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Adam Filipczyk
- Department of Microbiology, Oslo University Hospital, 0450 Oslo, Norway
| | - Timm Schroeder
- Department of Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland
| | - Fabian J Theis
- Institute of Computational Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, 85764 Neuherberg, Germany; Department of Mathematics, Technische Universität München, 85748 Garching, Germany
| | - Carsten Marr
- Institute of Computational Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, 85764 Neuherberg, Germany.
| | - Manfred Claassen
- Institute of Molecular Systems Biology, ETH Zürich, 8093 Zürich, Switzerland.
| |
Collapse
|
40
|
Agrahari G, Sah SK, Kim TY. Superoxide dismutase 3 protects mesenchymal stem cells through enhanced autophagy and regulation of FoxO3a trafficking. BMB Rep 2018; 51:344-349. [PMID: 29921412 PMCID: PMC6089869 DOI: 10.5483/bmbrep.2018.51.7.078] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Indexed: 01/08/2023] Open
Abstract
Therapeutic applications of mesenchymal stem cells (MSCs) are limited due to their early death within the first few days of transplantation. Therefore, to improve the efficacy of cellbased therapies, it is necessary to manipulate MSCs so that they can resist various stresses imposed by the microenvironment. Moreover, the role of superoxide dismutase 3 (SOD3) in regulating such survival under different stress conditions remain elusive. In this study, we overexpressed SOD3 in MSCs (SOD3-MSCs) and evaluated its effect under serum starvation conditions. Nutritional limitation can decrease the survival rate of transplanted MSCs and thus can reduce their efficacy during therapy. Interestingly, we found that SOD3-MSCs exhibited reduced reactive oxygen species levels and greater survival rates than normal MSCs under serum-deprived conditions. In addition, overexpression of SOD3 attenuated starvationinduced apoptosis with increased autophagy in MSCs. Moreover, we have demonstrated that SOD3 protects MSCs against the negative effects of serum deprivation via modulation of AMP-activated protein kinase/sirtulin 1, extracellular signalregulated kinase activation, and promoted Forkhead box O3a trafficking to the nucleus. Taken together, these results demonstrate that SOD3 promotes MSCs survival and add further evidence to the concept that SOD3-MSCs may be a potential therapeutic agent with better outcomes than normal MSCs for various diseases involving oxidative stress and compromised MSCs survival during therapy. [BMB Reports 2018; 51(7): 344-349].
Collapse
Affiliation(s)
- Gaurav Agrahari
- Laboratory of Dermato-Immunology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Shyam Kishor Sah
- Laboratory of Dermato-Immunology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Tae-Yoon Kim
- Laboratory of Dermato-Immunology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| |
Collapse
|
41
|
Patra SK, Vemulawada C, Soren MM, Sundaray JK, Panda MK, Barman HK. Molecular characterization and expression patterns of Nanog gene validating its involvement in the embryonic development and maintenance of spermatogonial stem cells of farmed carp, Labeo rohita. J Anim Sci Biotechnol 2018; 9:45. [PMID: 29992021 PMCID: PMC5994655 DOI: 10.1186/s40104-018-0260-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 04/25/2018] [Indexed: 12/24/2022] Open
Abstract
Background The homeobox containing transcription factor Nanog plays crucial roles in embryonic development/proliferation and/or maintenance of spermatogonial stem cells (SSCs) via interacting with transcription factors such as Oct4 and Sox2 in mammals. However, knowledge of its exact mechanistic pathways remains unexploited. Very little is known about teleost Nanog. Information on the Nanog gene of farmed rohu carp (Labeo rohita) is lacking. We cloned and characterized the Nanog gene of rohu carp to understand the expression pattern in early developmental stages and also deduced the genomic organization including promoter elements. Results Rohu Nanog (LrNanog) cDNA comprised an open reading frame of 1,161 nucleotides bearing a structural homeodomain; whereas, the genomic structure contained four exons and three introns suggesting that it is homologous to mammalian counterparts. Phylogenetically, it was closely related to freshwater counterparts. Protein sequence (386 AA of 42.65 kDa) comparison revealed its low similarity with other vertebrate counterparts except that of the conserved homeodomain. Tissue distribution analysis revealed the existence of LrNanog transcripts only in adult gonads. The heightened abundances in the ovary and proliferating spermatogonia suggested its participations in maternal inheritance and male germ cell development. The potentiating abundances from fertilized egg onwards peaking at blastula stage vis- à-vis decreasing levels from gastrula stage onwards demonstrated its role in embryonic stem cell development. We also provided evidence of its presence in SSCs by western blotting analysis. Further, the promoter region was characterized, predicting a basal core promoter and other consensus elements. Conclusion The molecular characterization of LrNanog and its documented expression profiling at transcript and protein levels are indicative of its functional linkage with embryonic/spermatogonial stem cell maintenance. This is the first report of LrNanog genomic organization including its promoter sequence information with predicted regulatory elements of a large-bodied carp species. This will be useful for elucidating its mechanism expression in future. Nanog could be used as a potential biomarker for proliferating carp SSCs.
Collapse
Affiliation(s)
- Swagat K Patra
- 1Fish Genetics and Biotechnology Division, ICAR - Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, Odisha 751002 India
| | - Chakrpani Vemulawada
- 1Fish Genetics and Biotechnology Division, ICAR - Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, Odisha 751002 India
| | - Meenati M Soren
- 1Fish Genetics and Biotechnology Division, ICAR - Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, Odisha 751002 India
| | - Jitendra K Sundaray
- 1Fish Genetics and Biotechnology Division, ICAR - Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, Odisha 751002 India
| | - Manoj K Panda
- 2Center of Biotechnology, Siksha 'O' Anusandhan University, Bhubaneswar, India
| | - Hirak K Barman
- 1Fish Genetics and Biotechnology Division, ICAR - Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, Odisha 751002 India
| |
Collapse
|
42
|
Tamura S, Isobe T, Ariyama H, Nakano M, Kikushige Y, Takaishi S, Kusaba H, Takenaka K, Ueki T, Nakamura M, Akashi K, Baba E. E‑cadherin regulates proliferation of colorectal cancer stem cells through NANOG. Oncol Rep 2018; 40:693-703. [PMID: 29845283 PMCID: PMC6072297 DOI: 10.3892/or.2018.6464] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 05/17/2018] [Indexed: 12/30/2022] Open
Abstract
Cancer stem cells (CSCs) possess a self-renewal ability and display tumorigenic potential in immunodeficient mice. Colorectal CSCs are thought to be a uniform population and no functionally distinct subpopulations have been identified. Because E-cadherin is an essential molecule for self-renewal of embryonic stem cells, we examined E-cadherin expression, which may play a role in maintaining the properties of CSCs, in EpCAMhigh/CD44+ colorectal CSCs from human primary colorectal cancers. We obtained 18 surgical specimens of human primary colorectal cancer. CD44, EpCAM, and E-cadherin expression were analyzed by fluorescence-activated cell sorting. Sorted EpCAMhigh/CD44+ colorectal CSCs were injected into immunodeficient mice to estimate the tumorigenic potential. Genetic profiles were analyzed by cDNA microarray. Notably, colorectal CSCs could be divided into two populations based on the E-cadherin expression status, and they exhibited different pathological characteristics. Compared to E-cadherin-negative colorectal CSCs, E-cadherin-positive (EC+) colorectal CSCs demonstrated higher tumor growth potential in vivo. EC+ colorectal CSCs revealed a higher expression of the pluripotency factor NANOG, which contributed to the higher tumor growth potential of EC+ colorectal CSCs through control of cyclin D1 expression. These findings are the first demonstration of functionally distinct subpopulations of colorectal CSCs in human clinical samples.
Collapse
Affiliation(s)
- Shingo Tamura
- Department of Medicine, Kyushu University, Fukuoka 812‑8582, Japan
| | - Taichi Isobe
- Department of Medicine, Kyushu University, Fukuoka 812‑8582, Japan
| | - Hiroshi Ariyama
- Department of Medicine, Kyushu University, Fukuoka 812‑8582, Japan
| | - Michitaka Nakano
- Department of Medicine, Kyushu University, Fukuoka 812‑8582, Japan
| | | | - Shigeo Takaishi
- Department of Medicine, Kyushu University, Fukuoka 812‑8582, Japan
| | - Hitoshi Kusaba
- Department of Comprehensive Clinical Oncology, Faculty of Medical Sciences, Kyushu University, Fukuoka 812‑8582, Japan
| | - Katsuto Takenaka
- Department of Medicine, Kyushu University, Fukuoka 812‑8582, Japan
| | - Takashi Ueki
- Department of Surgery and Oncology, Kyushu University, Fukuoka 812‑8582, Japan
| | - Masafumi Nakamura
- Department of Surgery and Oncology, Kyushu University, Fukuoka 812‑8582, Japan
| | - Koichi Akashi
- Department of Medicine, Kyushu University, Fukuoka 812‑8582, Japan
| | - Eishi Baba
- Department of Comprehensive Clinical Oncology, Faculty of Medical Sciences, Kyushu University, Fukuoka 812‑8582, Japan
| |
Collapse
|
43
|
Cencioni C, Spallotta F, Savoia M, Kuenne C, Guenther S, Re A, Wingert S, Rehage M, Sürün D, Siragusa M, Smith JG, Schnütgen F, von Melchner H, Rieger MA, Martelli F, Riccio A, Fleming I, Braun T, Zeiher AM, Farsetti A, Gaetano C. Zeb1-Hdac2-eNOS circuitry identifies early cardiovascular precursors in naive mouse embryonic stem cells. Nat Commun 2018; 9:1281. [PMID: 29599503 PMCID: PMC5876398 DOI: 10.1038/s41467-018-03668-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 03/02/2018] [Indexed: 01/04/2023] Open
Abstract
Nitric oxide (NO) synthesis is a late event during differentiation of mouse embryonic stem cells (mESC) and occurs after release from serum and leukemia inhibitory factor (LIF). Here we show that after release from pluripotency, a subpopulation of mESC, kept in the naive state by 2i/LIF, expresses endothelial nitric oxide synthase (eNOS) and endogenously synthesizes NO. This eNOS/NO-positive subpopulation (ESNO+) expresses mesendodermal markers and is more efficient in the generation of cardiovascular precursors than eNOS/NO-negative cells. Mechanistically, production of endogenous NO triggers rapid Hdac2 S-nitrosylation, which reduces association of Hdac2 with the transcriptional repression factor Zeb1, allowing mesendodermal gene expression. In conclusion, our results suggest that the interaction between Zeb1, Hdac2, and eNOS is required for early mesendodermal differentiation of naive mESC.
Collapse
Affiliation(s)
- Chiara Cencioni
- Division of Cardiovascular Epigenetics, Department of Cardiology, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany. .,National Research Council, Institute of Cell Biology and Neurobiology (IBCN), Via del Fosso di Fiorano 64, 00143, Rome, Italy.
| | - Francesco Spallotta
- Division of Cardiovascular Epigenetics, Department of Cardiology, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Matteo Savoia
- Division of Cardiovascular Epigenetics, Department of Cardiology, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany.,Institute of Medical Pathology, Università Cattolica di Roma, Largo Francesco Vito 1, 00168, Rome, Italy
| | - Carsten Kuenne
- ECCPS Bioinformatics and deep sequencing platform, Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, 61231, Bad Nauheim, Germany
| | - Stefan Guenther
- ECCPS Bioinformatics and deep sequencing platform, Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, 61231, Bad Nauheim, Germany
| | - Agnese Re
- National Research Council, Institute of Cell Biology and Neurobiology (IBCN), Via del Fosso di Fiorano 64, 00143, Rome, Italy
| | - Susanne Wingert
- LOEWE Center for Cell and Gene Therapy and Department of Medicine, Hematology/Oncology, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Maike Rehage
- LOEWE Center for Cell and Gene Therapy and Department of Medicine, Hematology/Oncology, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Duran Sürün
- LOEWE Center for Cell and Gene Therapy and Department of Medicine, Hematology/Oncology, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Mauro Siragusa
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Jacob G Smith
- MRC Laboratory for Molecular Cell Biology, University College London, Gower St, Kings Cross, London, WC1E 6BT, UK
| | - Frank Schnütgen
- LOEWE Center for Cell and Gene Therapy and Department of Medicine, Hematology/Oncology, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Harald von Melchner
- LOEWE Center for Cell and Gene Therapy and Department of Medicine, Hematology/Oncology, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Michael A Rieger
- LOEWE Center for Cell and Gene Therapy and Department of Medicine, Hematology/Oncology, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Fabio Martelli
- Molecular Cardiology Laboratory, IRCCS-Policlinico San Donato, Via Morandi 30 San Donato Milanese, 20097, Milan, Italy
| | - Antonella Riccio
- MRC Laboratory for Molecular Cell Biology, University College London, Gower St, Kings Cross, London, WC1E 6BT, UK
| | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Thomas Braun
- Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Ludwigstrasse 43, 61231, Bad Nauheim, Germany
| | - Andreas M Zeiher
- Internal Medicine Clinic III, Department of Cardiology, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Antonella Farsetti
- National Research Council, Institute of Cell Biology and Neurobiology (IBCN), Via del Fosso di Fiorano 64, 00143, Rome, Italy. .,Internal Medicine Clinic III, Department of Cardiology, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany.
| | - Carlo Gaetano
- Division of Cardiovascular Epigenetics, Department of Cardiology, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany. .,Laboratorio di Epigenetica, Istituti Clinici Scientifici Maugeri, Via Maugeri 4, 27100, Pavia, Italy.
| |
Collapse
|
44
|
Zhang H, Li ZL, Su XZ, Ding L, Li J, Zhu H. Subchondral bone derived mesenchymal stem cells display enhanced osteo-chondrogenic differentiation, self-renewal and proliferation potentials. Exp Anim 2018. [PMID: 29515059 PMCID: PMC6083032 DOI: 10.1538/expanim.17-0137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Rabbit mesenchymal stem cells (MSCs) are important seed cells in regenerative medicine research, particularly in translational research. In the current study, we showed that rabbit subchondral bone is a reliable source of MSCs. First, we harvested subchondral bone (SCB) from the rabbit knee-joint and initiated the MSC culture by cultivating enzyme-treated SCB. Adherent fibroblast-like cells that outgrew from SCB fulfill the common immuno-phenotypic criteria for defining MSCs, but with low contamination of CD45+ hematopoietic cells. Interestingly, differentiated SCB-MSCs expressed osteogenic and chondrogenic markers at significantly higher levels than those in bone marrow cell suspension-derived MSCs (BMS-MSCs) (P<0.05). No differences in the expression of adipogenic markers between SCB-MSC and BMS-MSC (P>0.05) were observed. Moreover, the results of the colony forming unit-fibroblast assay and sphere formation assay demonstrated that the SCB-MSCs had increased self-renewal potential. SCB-MSCs expressed higher levels of the stemness markers Nanog, OCT4, and Sox-2 compared to in BMS-MSCs (P<0.05). Furthermore, the results of both the CCK-8-based assay and CFSE dilution assay showed that SCB-MSCs exhibited enhanced proliferative capacity. In addition, SCB-MSCs exhibited higher phosphorylation of extracellular signal-related kinase/mitogen-activated protein kinase signaling, which is closely related to MSC proliferation. In conclusion, we identified SCB-MSCs as a novel stem cell population that met the requirements of MSCs; the unique properties of SCB-MSC are important for the potential treatment of tissue damage resulting from disease and trauma.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Orthopedics, Sports Medicine Center, People's Liberation Army General Hospital, No. 28 Fu Xing Road, Haidian District, Beijing 100853, P.R. China.,Department of Cell Biology, Institute of Basic Medical Sciences, No. 27 Tai Ping Road, Haidian District, Beijing 100850, P.R. China
| | - Zhong-Li Li
- Department of Orthopedics, Sports Medicine Center, People's Liberation Army General Hospital, No. 28 Fu Xing Road, Haidian District, Beijing 100853, P.R. China
| | - Xiang-Zheng Su
- Department of Orthopedics, Sports Medicine Center, People's Liberation Army General Hospital, No. 28 Fu Xing Road, Haidian District, Beijing 100853, P.R. China
| | - Li Ding
- Department of Hematology, General Hospital of Air Forces, PLA, No. 30 Fu Cheng Road, Haidian District, Beijing 100142, P.R. China
| | - Ji Li
- Department of Orthopedics, Sports Medicine Center, People's Liberation Army General Hospital, No. 28 Fu Xing Road, Haidian District, Beijing 100853, P.R. China
| | - Heng Zhu
- Department of Cell Biology, Institute of Basic Medical Sciences, No. 27 Tai Ping Road, Haidian District, Beijing 100850, P.R. China
| |
Collapse
|
45
|
Cellular prion protein controls stem cell-like properties of human glioblastoma tumor-initiating cells. Oncotarget 2018; 7:38638-38657. [PMID: 27229535 PMCID: PMC5122417 DOI: 10.18632/oncotarget.9575] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 05/04/2016] [Indexed: 12/17/2022] Open
Abstract
Prion protein (PrPC) is a cell surface glycoprotein whose misfolding is responsible for prion diseases. Although its physiological role is not completely defined, several lines of evidence propose that PrPC is involved in self-renewal, pluripotency gene expression, proliferation and differentiation of neural stem cells. Moreover, PrPC regulates different biological functions in human tumors, including glioblastoma (GBM). We analyzed the role of PrPC in GBM cell pathogenicity focusing on tumor-initiating cells (TICs, or cancer stem cells, CSCs), the subpopulation responsible for development, progression and recurrence of most malignancies. Analyzing four GBM CSC-enriched cultures, we show that PrPC expression is directly correlated with the proliferation rate of the cells. To better define its role in CSC biology, we knocked-down PrPC expression in two of these GBM-derived CSC cultures by specific lentiviral-delivered shRNAs. We provide evidence that CSC proliferation rate, spherogenesis and in vivo tumorigenicity are significantly inhibited in PrPC down-regulated cells. Moreover, PrPC down-regulation caused loss of expression of the stemness and self-renewal markers (NANOG, Sox2) and the activation of differentiation pathways (i.e. increased GFAP expression). Our results suggest that PrPC controls the stemness properties of human GBM CSCs and that its down-regulation induces the acquisition of a more differentiated and less oncogenic phenotype.
Collapse
|
46
|
Hu H, Tao B, Chen J, Zhu Z, Hu W. Fam60al as a novel factor involved in reprogramming of somatic cell nuclear transfer in zebrafish ( Danio rerio). Int J Biol Sci 2018; 14:78-86. [PMID: 29483827 PMCID: PMC5821051 DOI: 10.7150/ijbs.22426] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 12/22/2017] [Indexed: 12/12/2022] Open
Abstract
The main reason for abnormal development of cloned animals or embryos, and inefficient animal cloning, is a poor understanding of the reprogramming mechanism. To better comprehend reprogramming and subsequent generation of pluripotent stem cells, we must investigate factors related to reprogramming of somatic cells as nuclear donors. As we know, fam60al (family with sequence similarity 60, member A, like) is a coding gene only found in zebrafish and frog (Xenopus laevis) among vertebrates. However, until now, its functions have remained unknown. Here, we generated a zebrafish fam60al-/- mutant line using transcription activator-like effector nucleases (TALENs), and found that both nanog and klf4b expression significantly decreased while myca expression significantly increased in fam60al-/- mutant embryos. Concurrently, we also uncovered that in developmentally arrested embryos of somatic cell nuclear transfer, nanog, klf4b and myca expression was down-regulated, accompanying a decrease of fam60al expression. Interestingly, we identified a long noncoding RNA (lncRNA) of fam60al, named fam60al-AS, which negatively regulated fam60al by forming double-stranded RNA (dsRNA). RNase protection assay and real-time PCR confirmed these findings. Taken together, these results suggest that fam60al is a novel factor related to the reprogramming of somatic cell nuclear transfer in zebrafish, which is regulated by its reverse lncRNA.
Collapse
Affiliation(s)
- Hongling Hu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.,University of Chinese Academy of Science, Beijing 100049, China
| | - Binbin Tao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.,University of Chinese Academy of Science, Beijing 100049, China
| | - Ji Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zuoyan Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Wei Hu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.,Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| |
Collapse
|
47
|
Choi HJ, Kim I, Lee HJ, Park YH, Suh J, Han JY. Chicken NANOG self‐associates
via
a novel folding‐upon‐binding mechanism. FASEB J 2018; 32:2563-2573. [PMID: 29295863 DOI: 10.1096/fj.201700924rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Hee Jung Choi
- Department of Agricultural Biotechnology Research Institute of Agriculture and Life Sciences College of Agriculture and Life Sciences Seoul National University Seoul South Korea
| | - Iktae Kim
- Department of Agricultural Biotechnology Research Institute of Agriculture and Life Sciences College of Agriculture and Life Sciences Seoul National University Seoul South Korea
| | - Hong Jo Lee
- Department of Agricultural Biotechnology Research Institute of Agriculture and Life Sciences College of Agriculture and Life Sciences Seoul National University Seoul South Korea
| | - Young Hyun Park
- Department of Agricultural Biotechnology Research Institute of Agriculture and Life Sciences College of Agriculture and Life Sciences Seoul National University Seoul South Korea
| | - Jeong‐Yong Suh
- Department of Agricultural Biotechnology Research Institute of Agriculture and Life Sciences College of Agriculture and Life Sciences Seoul National University Seoul South Korea
- Institute for Biomedical Sciences Shinshu University Minamiminowa Japan
| | - Jae Yong Han
- Department of Agricultural Biotechnology Research Institute of Agriculture and Life Sciences College of Agriculture and Life Sciences Seoul National University Seoul South Korea
- Institute for Biomedical Sciences Shinshu University Minamiminowa Japan
| |
Collapse
|
48
|
Deubiquitylating Nanog: novel role of USP21 in embryonic stem cell maintenance. Signal Transduct Target Ther 2017; 2:17014. [PMID: 29263917 PMCID: PMC5661622 DOI: 10.1038/sigtrans.2017.14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 03/01/2017] [Accepted: 03/02/2017] [Indexed: 12/20/2022] Open
Abstract
Recently, three groups independently identified ubiquitin-specific peptidase 21 (USP21) as an efficient deubiquitylase that reverses Nanog polyubiquitylation and stabilizes Nanog protein. In this preview, I have summarized the work of these three groups.
Collapse
|
49
|
Saunders A, Huang X, Fidalgo M, Reimer MH, Faiola F, Ding J, Sánchez-Priego C, Guallar D, Sáenz C, Li D, Wang J. The SIN3A/HDAC Corepressor Complex Functionally Cooperates with NANOG to Promote Pluripotency. Cell Rep 2017; 18:1713-1726. [PMID: 28199843 DOI: 10.1016/j.celrep.2017.01.055] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 05/24/2016] [Accepted: 01/22/2017] [Indexed: 12/31/2022] Open
Abstract
Although SIN3A is required for the survival of early embryos and embryonic stem cells (ESCs), the role of SIN3A in the maintenance and establishment of pluripotency remains unclear. Here, we find that the SIN3A/HDAC corepressor complex maintains ESC pluripotency and promotes the generation of induced pluripotent stem cells (iPSCs). Members of the SIN3A/HDAC corepressor complex are enriched in an extended NANOG interactome and function in transcriptional coactivation in ESCs. We also identified a critical role for SIN3A and HDAC2 in efficient reprogramming of somatic cells. Mechanistically, NANOG and SIN3A co-occupy transcriptionally active pluripotency genes in ESCs and also co-localize extensively at their genome-wide targets in pre-iPSCs. Additionally, both factors are required to directly induce a synergistic transcriptional program wherein pluripotency genes are activated and reprogramming barrier genes are repressed. Our findings indicate a transcriptional regulatory role for a major HDAC-containing complex in promoting pluripotency.
Collapse
Affiliation(s)
- Arven Saunders
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Xin Huang
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Miguel Fidalgo
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Michael H Reimer
- Department of Cell Biology, Neurobiology, and Anatomy, Blood Research Institute, Blood Center of Wisconsin, Milwaukee, WI 53233, USA; Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Francesco Faiola
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Junjun Ding
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Carlos Sánchez-Priego
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Diana Guallar
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Carmen Sáenz
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Dan Li
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jianlong Wang
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
50
|
Topalovic V, Krstic A, Schwirtlich M, Dolfini D, Mantovani R, Stevanovic M, Mojsin M. Epigenetic regulation of human SOX3 gene expression during early phases of neural differentiation of NT2/D1 cells. PLoS One 2017; 12:e0184099. [PMID: 28886103 PMCID: PMC5590877 DOI: 10.1371/journal.pone.0184099] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 08/17/2017] [Indexed: 01/09/2023] Open
Abstract
Sox3/SOX3 is one of the earliest neural markers in vertebrates. Together with the Sox1/SOX1 and Sox2/SOX2 genes it is implicated in the regulation of stem cell identity. In the present study, we performed the first analysis of epigenetic mechanisms (DNA methylation and histone marks) involved in the regulation of the human SOX3 gene expression during RA-induced neural differentiation of NT2/D1 cells. We show that the promoter of the human SOX3 gene is extremely hypomethylated both in undifferentiated NT2/D1 cells and during the early phases of RA-induced neural differentiation. By employing chromatin immunoprecipitation, we analyze several histone modifications across different regions of the SOX3 gene and their dynamics following initiation of differentiation. In the same timeframe we investigate profiles of selected histone marks on the promoters of human SOX1 and SOX2 genes. We demonstrate differences in histone signatures of SOX1, SOX2 and SOX3 genes. Considering the importance of SOXB1 genes in the process of neural differentiation, the present study contributes to a better understanding of epigenetic mechanisms implicated in the regulation of pluripotency maintenance and commitment towards the neural lineage.
Collapse
Affiliation(s)
- Vladanka Topalovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | | | - Marija Schwirtlich
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Diletta Dolfini
- Department of Biosciences, University of Milan, Milan, Italy
| | | | - Milena Stevanovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
- Faculty of Biology, University of Belgrade, Belgrade, Serbia
- Serbian Academy of Sciences and Arts, Belgrade, Serbia
| | - Marija Mojsin
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
- * E-mail:
| |
Collapse
|