1
|
Yamamura Y, Sabiu G, Zhao J, Jung S, Seelam AJ, Li X, Song Y, Shirkey MW, Li L, Piao W, Wu L, Zhang T, Ahn S, Kim P, Kasinath V, Azzi JR, Bromberg JS, Abdi R. CXCL12+ fibroblastic reticular cells in lymph nodes facilitate immune tolerance by regulating T cell-mediated alloimmunity. J Clin Invest 2025; 135:e182709. [PMID: 40309773 PMCID: PMC12043101 DOI: 10.1172/jci182709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 02/27/2025] [Indexed: 05/02/2025] Open
Abstract
Fibroblastic reticular cells (FRCs) are the master regulators of the lymph node (LN) microenvironment. However, the role of specific FRC subsets in controlling alloimmune responses remains to be studied. Single-cell RNA sequencing (scRNA-Seq) of naive and draining LNs (DLNs) of heart-transplanted mice and human LNs revealed a specific subset of CXCL12hi FRCs that expressed high levels of lymphotoxin-β receptor (LTβR) and are enriched in the expression of immunoregulatory genes. CXCL12hi FRCs had high expression of CCL19, CCL21, indoleamine 2,3-dioxygenase (IDO), IL-10, and TGF-β1. Adoptive transfer of ex vivo-expanded FRCs resulted in their homing to LNs and induced immunosuppressive environments in DLNs to promote heart allograft acceptance. Genetic deletion of LTβR and Cxcl12 in FRCs increased alloreactivity, abrogating the effect of costimulatory blockade in prolonging heart allograft survival. As compared with WT recipients, CXCL12+ FRC-deficient recipients exhibited increased differentiation of CD4+ T cells into Th1 cells. Nano delivery of CXCL12 to DLNs improved allograft survival in heart-transplanted mice. Our study highlights the importance of DLN CXCL12hi FRCs in promoting transplant tolerance.
Collapse
Affiliation(s)
- Yuta Yamamura
- Transplantation Research Center and
- Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Gianmarco Sabiu
- Transplantation Research Center and
- Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jing Zhao
- Transplantation Research Center and
- Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sungwook Jung
- Transplantation Research Center and
- Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Andy J. Seelam
- Transplantation Research Center and
- Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Xiaofei Li
- Transplantation Research Center and
- Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Yang Song
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Marina W. Shirkey
- Department of Surgery and
- Center of Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Lushen Li
- Department of Surgery and
- Center of Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Wenji Piao
- Department of Surgery and
- Center of Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | | | - Soyeon Ahn
- R&D Division, IVIM Technology, Seoul, South Korea
| | - Pilhan Kim
- Graduate School of Medical Science and Engineering
- Korea Advanced Institute of Science and Technology Institute for Health Science and Technology, and
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Vivek Kasinath
- Transplantation Research Center and
- Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jamil R. Azzi
- Transplantation Research Center and
- Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jonathan S. Bromberg
- Department of Surgery and
- Center of Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Reza Abdi
- Transplantation Research Center and
- Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Ma L, Fink J, Yao K, McDonald-Hyman C, Dougherty P, Koehn B, Blazar BR. Immunoregulatory iPSC-derived non-lymphoid progeny in autoimmunity and GVHD alloimmunity. Stem Cells 2025; 43:sxaf011. [PMID: 40103180 DOI: 10.1093/stmcls/sxaf011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 02/19/2025] [Indexed: 03/20/2025]
Abstract
Non-lymphoid immunoregulatory cells, including mesenchymal stem cells (MSCs), myeloid-derived suppressor cells (MDSCs), regulatory macrophages (Mregs), and tolerogenic dendritic cells (Tol-DCs), play critical roles in maintaining immune homeostasis. However, their therapeutic application in autoimmune diseases and graft-versus-host disease (GVHD) has received comparatively less attention. Induced pluripotent stem cells (iPSCs) offer a promising platform for cell engineering, enabling superior quality control, scalable production, and large-scale in vitro expansion of iPSC-derived non-lymphoid immunoregulatory cells. These advances pave the way for their broader application in autoimmune disease and GVHD therapy. Recent innovations in iPSC differentiation protocols have facilitated the generation of these cell types with functional characteristics akin to their primary counterparts. This review explores the unique features and generation processes of iPSC-derived non-lymphoid immunoregulatory cells, their therapeutic potential in GVHD and autoimmune disease, and their progress toward clinical translation. It emphasizes the phenotypic and functional diversity within each cell type and their distinct effects on disease modulation. Despite these advancements, challenges persist in optimizing differentiation efficiency, ensuring functional stability, and bridging the gap to clinical application. By synthesizing current methodologies, preclinical findings, and translational efforts, this review underscores the transformative potential of iPSC-derived non-lymphoid immunoregulatory cells in advancing cell-based therapies for alloimmune and autoimmune diseases.
Collapse
Affiliation(s)
- Lie Ma
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota Cancer Center, Minneapolis, MN, United States
| | - Jordan Fink
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota Cancer Center, Minneapolis, MN, United States
| | - Ke Yao
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota Cancer Center, Minneapolis, MN, United States
| | - Cameron McDonald-Hyman
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, United States
| | - Phillip Dougherty
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota Cancer Center, Minneapolis, MN, United States
| | - Brent Koehn
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota Cancer Center, Minneapolis, MN, United States
| | - Bruce R Blazar
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota Cancer Center, Minneapolis, MN, United States
| |
Collapse
|
3
|
Upadhyay S, Kumar S, Singh VK, Tiwari R, Kumar A, Sundar S, Kumar R. Chemokines Signature and T Cell Dynamics in Leishmaniasis: Molecular insight and therapeutic application. Expert Rev Mol Med 2024; 27:1-55. [PMID: 39587036 PMCID: PMC11707835 DOI: 10.1017/erm.2024.36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 09/04/2024] [Accepted: 10/28/2024] [Indexed: 11/27/2024]
Abstract
Leishmaniasis, caused by obligate intracellular Leishmania parasites, poses a significant global health burden. The control of Leishmania infection relies on an effective T cell-dependent immune response; however, various factors impede the host’s ability to mount a successful defence. Alterations in the chemokine profile, responsible for cell trafficking to the infection site, can disrupt optimal immune responses and influence the outcome of pathogenesis by facilitating parasite persistence. This review aims to emphasize the significance of the chemokine system in T cell responses and to summarize the current knowledge on the dysregulation of chemokines and their receptors associated with different subsets of T lymphocytes during Leishmaniasis. A comprehensive understanding of the dynamic nature of the chemokine system during Leishmaniasis is crucial for the development of successful immunotherapeutic approaches.
Collapse
Affiliation(s)
- Shreya Upadhyay
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Shashi Kumar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Vishal Kumar Singh
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Rahul Tiwari
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Awnish Kumar
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Shyam Sundar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Rajiv Kumar
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
4
|
Dadfar S, Yazdanpanah E, Pazoki A, Nemati MH, Eslami M, Haghmorad D, Oksenych V. The Role of Mesenchymal Stem Cells in Modulating Adaptive Immune Responses in Multiple Sclerosis. Cells 2024; 13:1556. [PMID: 39329740 PMCID: PMC11430382 DOI: 10.3390/cells13181556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/12/2024] [Accepted: 09/14/2024] [Indexed: 09/28/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system, leading to significant disability through neurodegeneration. Despite advances in the understanding of MS pathophysiology, effective treatments remain limited. Mesenchymal stem cells (MSCs) have gained attention as a potential therapeutic option due to their immunomodulatory and regenerative properties. This review examines MS pathogenesis, emphasizing the role of immune cells, particularly T cells, in disease progression, and explores MSCs' therapeutic potential. Although preclinical studies in animal models show MSC efficacy, challenges such as donor variability, culture conditions, migratory capacity, and immunological compatibility hinder widespread clinical adoption. Strategies like genetic modification, optimized delivery methods, and advanced manufacturing are critical to overcoming these obstacles. Further research is needed to validate MSCs' clinical application in MS therapy.
Collapse
Affiliation(s)
- Sepehr Dadfar
- Student Research Committee, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | - Esmaeil Yazdanpanah
- Student Research Committee, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | - Alireza Pazoki
- Student Research Committee, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | - Mohammad Hossein Nemati
- Student Research Committee, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | - Majid Eslami
- Cancer Research Center, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
- Department of Bacteriology and Virology, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | - Dariush Haghmorad
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
- Cancer Research Center, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | - Valentyn Oksenych
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
| |
Collapse
|
5
|
Shan Y, Zhang M, Tao E, Wang J, Wei N, Lu Y, Liu Q, Hao K, Zhou F, Wang G. Pharmacokinetic characteristics of mesenchymal stem cells in translational challenges. Signal Transduct Target Ther 2024; 9:242. [PMID: 39271680 PMCID: PMC11399464 DOI: 10.1038/s41392-024-01936-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 07/04/2024] [Accepted: 07/23/2024] [Indexed: 09/15/2024] Open
Abstract
Over the past two decades, mesenchymal stem/stromal cell (MSC) therapy has made substantial strides, transitioning from experimental clinical applications to commercial products. MSC therapies hold considerable promise for treating refractory and critical conditions such as acute graft-versus-host disease, amyotrophic lateral sclerosis, and acute respiratory distress syndrome. Despite recent successes in clinical and commercial applications, MSC therapy still faces challenges when used as a commercial product. Current detection methods have limitations, leaving the dynamic biodistribution, persistence in injured tissues, and ultimate fate of MSCs in patients unclear. Clarifying the relationship between the pharmacokinetic characteristics of MSCs and their therapeutic effects is crucial for patient stratification and the formulation of precise therapeutic regimens. Moreover, the development of advanced imaging and tracking technologies is essential to address these clinical challenges. This review provides a comprehensive analysis of the kinetic properties, key regulatory molecules, different fates, and detection methods relevant to MSCs and discusses concerns in evaluating MSC druggability from the perspective of integrating pharmacokinetics and efficacy. A better understanding of these challenges could improve MSC clinical efficacy and speed up the introduction of MSC therapy products to the market.
Collapse
Affiliation(s)
- Yunlong Shan
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
| | - Mengying Zhang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Enxiang Tao
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Jing Wang
- Jiangsu Renocell Biotech Co. Ltd., Nanjing, China
| | - Ning Wei
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Jiangsu Renocell Biotech Co. Ltd., Nanjing, China
| | - Yi Lu
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Qing Liu
- Jiangsu Renocell Biotech Co. Ltd., Nanjing, China
| | - Kun Hao
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
| | - Fang Zhou
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
| | - Guangji Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
6
|
Ni Q, Zhen L, Zeng Z, Yang J, Wang Y, Xu H, Zhang Q, Zhu Y, Tao Y, Wang J, Liu Q, Yi K, Chen Y, Chen Q, Wang G, Zhou F, Shan Y. Mesenchymal stromal cells restrain the Th17 cell response via L-amino-acid oxidase within lymph nodes. Cell Death Dis 2024; 15:640. [PMID: 39251573 PMCID: PMC11383963 DOI: 10.1038/s41419-024-07024-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/11/2024]
Abstract
Mesenchymal stromal/stem cells (MSC) have emerged as a promising therapeutic avenue for treating autoimmune diseases, eliciting considerable interest and discussion regarding their underlying mechanisms. This study revealed the distinctive ability of human umbilical cord MSC to aggregate within the lymph nodes of mice afflicted with autoimmune diseases, but this phenomenon was not observed in healthy mice. The specific distribution is driven by the heightened expression of the CCL21-CCR7 axis in mice with autoimmune diseases, facilitating the targeted homing of MSC to the lymph nodes. Within the lymph nodes, MSC exhibit a remarkable capacity to modulate Th17 cell function, exerting a pronounced anti-inflammatory effect. Transplanted MSC stimulates the secretion of L-amino-acid oxidase (LAAO), a response triggered by elevated levels of tumor necrosis factor-α (TNF-α) in mice with autoimmune diseases through the NF-κB pathway. The presence of LAAO is indispensable for the efficacy of MSC, as it significantly contributes to the inhibition of Th17 cells. Furthermore, LAAO-derived indole-3-pyruvic acid (I3P) serves as a potent suppressor of Th17 cells by activating the aryl hydrocarbon receptor (AHR) pathway. These findings advance our understanding of the global immunomodulatory effects exerted by MSC, providing valuable information for optimizing therapeutic outcomes.
Collapse
Affiliation(s)
- Qi Ni
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Le Zhen
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Zhu Zeng
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Jingwen Yang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Yukai Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Huanke Xu
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Qixiang Zhang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Yongcheng Zhu
- Genetic Skin Disease Center, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Yu Tao
- Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jing Wang
- Jiangsu Renocell Biotech Co. Ltd., Nanjing, China
| | - Qing Liu
- Jiangsu Renocell Biotech Co. Ltd., Nanjing, China
| | - Kezheng Yi
- Jiangsu Renocell Biotech Co. Ltd., Nanjing, China
| | - Yang Chen
- Jiangsu Renocell Biotech Co. Ltd., Nanjing, China
| | - Qian Chen
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Guangji Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
| | - Fang Zhou
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
| | - Yunlong Shan
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
7
|
Yuan F, Zhang R, Li J, Lei Q, Wang S, Jiang F, Guo Y, Xiang M. CCR5-overexpressing mesenchymal stem cells protect against experimental autoimmune uveitis: insights from single-cell transcriptome analysis. J Neuroinflammation 2024; 21:136. [PMID: 38802924 PMCID: PMC11131209 DOI: 10.1186/s12974-024-03134-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/17/2024] [Indexed: 05/29/2024] Open
Abstract
Autoimmune uveitis is a leading cause of severe vision loss, and animal models provide unique opportunities for studying its pathogenesis and therapeutic strategies. Here we employ scRNA-seq, RNA-seq and various molecular and cellular approaches to characterize mouse models of classical experimental autoimmune uveitis (EAU), revealing that EAU causes broad retinal neuron degeneration and marker downregulation, and that Müller glia may act as antigen-presenting cells. Moreover, EAU immune response is primarily driven by Th1 cells, and results in dramatic upregulation of CC chemokines, especially CCL5, in the EAU retina. Accordingly, overexpression of CCR5, a CCL5 receptor, in mesenchymal stem cells (MSCs) enhances their homing capacity and improves their immunomodulatory outcomes in preventing EAU, by reducing infiltrating T cells and activated microglia and suppressing Nlrp3 inflammasome activation. Taken together, our data not only provide valuable insights into the molecular characteristics of EAU but also open an avenue for innovative MSC-based therapy.
Collapse
Affiliation(s)
- Fa Yuan
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Rong Zhang
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Jiani Li
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Qiannan Lei
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Shuyi Wang
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Fanying Jiang
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Yanan Guo
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Mengqing Xiang
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China.
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
8
|
Huang M, Zhou P, Hang Y, Wu D, Zhao N, Yao G, Tang X, Sun L. CFL1 restores the migratory capacity of bone marrow mesenchymal stem cells in primary Sjögren's syndrome by regulating CCR1 expression. Int Immunopharmacol 2024; 128:111485. [PMID: 38183912 DOI: 10.1016/j.intimp.2024.111485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/26/2023] [Accepted: 01/01/2024] [Indexed: 01/08/2024]
Abstract
BACKGROUND Primary Sjögren's syndrome (pSS) is a chronic systemic autoimmune disease. There is no relevant research on whether the migratory ability of bone marrow mesenchymal stem cells (BM-MSC) is impaired in patients with pSS (pSS-BMMSC). METHODS Trajectories and velocities of BM-MSC were analyzed. Transwell migration assay and wound healing assay were used to investigate the migratory capacity of BM-MSC. The proliferative capacity of BM-MSC was evaluated by EDU and CCK8 assay. RNA-seq analysis was then performed to identify the underlying mechanism of lentivirus-mediated cofilin-1 overexpression BM-MSC (BMMSCCFL1). The therapeutic efficacy of BMMSCCFL1 was evaluated in NOD mice. RESULTS The migratory capacity of pSS-BMMSC was significantly reduced compared to normal volunteers (HC-BMMSC). The expression of the motility-related gene CFL1 was decreased in pSS-BMMSC. Lentivirus-mediated CFL1 overexpression of pSS-BMMSC promoted the migration capacity of pSS-BMMSC. Furthermore, RNA-seq revealed that CCR1 was the downstream target gene of CFL1. To further elucidate the mechanism of CFL1 in regulating BM-MSC migration and proliferation via the CCL5/CCR1 axis, we performed a rescue experiment using BX431 (a CCR1-specific inhibitor) to inhibit CCR1. The results showed that CCR1 inhibitors suppressed the migration and proliferation capacity of MSC induced by CFL1. CONCLUSION The pSS-BMMSC leads to impaired migration and proliferation, and overexpression of CFL1 can rescue the functional deficiency and alleviate disease symptoms in NOD mice. Mechanically, CFL1 can regulate the expression level of the downstream CCL5/CCR1 axis to enhance the migration and proliferation of BM-MSC.
Collapse
Affiliation(s)
- Mengxi Huang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, 321 Zhongshan Road, Nanjing 210008, Jiangsu, China
| | - Panpan Zhou
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, 321 Zhongshan Road, Nanjing 210008, Jiangsu, China
| | - Yang Hang
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, Jiangsu, China
| | - Dan Wu
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, Jiangsu, China
| | - Nan Zhao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, 321 Zhongshan Road, Nanjing 210008, Jiangsu, China
| | - Genhong Yao
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, Jiangsu, China.
| | - Xiaojun Tang
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, Jiangsu, China.
| | - Lingyun Sun
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, 321 Zhongshan Road, Nanjing 210008, Jiangsu, China; Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, Jiangsu, China.
| |
Collapse
|
9
|
Zhang X, He J, Zhao K, Liu S, Xuan L, Chen S, Xue R, Lin R, Xu J, Zhang Y, Xiang AP, Jin H, Liu Q. Mesenchymal stromal cells ameliorate chronic GVHD by boosting thymic regeneration in a CCR9-dependent manner in mice. Blood Adv 2023; 7:5359-5373. [PMID: 37363876 PMCID: PMC10509672 DOI: 10.1182/bloodadvances.2022009646] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 06/15/2023] [Accepted: 06/18/2023] [Indexed: 06/28/2023] Open
Abstract
Chronic graft-versus-host disease (cGVHD) is a major cause of morbidity and mortality after allogeneic hematopoietic stem cell transplantation. Mature donor T cells within the graft contribute to severe damage of thymic epithelial cells (TECs), which are known as key mediators in the continuum of acute GVHD (aGVHD) and cGVHD pathology. Mesenchymal stromal cells (MSCs) are reportedly effective in the prevention and treatment of cGVHD. In our previous pilot clinical trial in patients with refractory aGVHD, the incidence and severity of cGVHD were decreased, along with an increase in levels of blood signal joint T-cell receptor excision DNA circles after MSCs treatment, which indicated an improvement in thymus function of patients with GVHD, but the mechanisms leading to these effects remain unknown. Here, we show in a murine GVHD model that MSCs promoted the quantity and maturity of TECs as well as elevated the proportion of Aire-positive medullary TECs, improving both CD4+CD8+ double-positive thymocytes and thymic regulatory T cells, balancing the CD4:CD8 ratio in the blood. In addition, CCL25-CCR9 signaling axis was found to play an important role in guiding MSC homing to the thymus. These studies reveal mechanisms through which MSCs ameliorate cGVHD by boosting thymic regeneration and offer innovative strategies for improving thymus function in patients with GVHD.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jiabao He
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Ke Zhao
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Shiqi Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Li Xuan
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Shan Chen
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Rongtao Xue
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Ren Lin
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Jun Xu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Yan Zhang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Andy Peng Xiang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Sun Yat-Sen University, Guangzhou, China
| | - Hua Jin
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Qifa Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| |
Collapse
|
10
|
Wuttisarnwattana P, Eid S, Wilson DL, Cooke KR. Assessment of therapeutic role of mesenchymal stromal cells in mouse models of graft-versus-host disease using cryo-imaging. Sci Rep 2023; 13:1698. [PMID: 36717650 PMCID: PMC9886911 DOI: 10.1038/s41598-023-28478-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 01/19/2023] [Indexed: 02/01/2023] Open
Abstract
Insights regarding the biodistribution and homing of mesenchymal stromal cells (MSCs), as well as their interaction with alloreactive T-cells are critical for understanding how MSCs can regulate graft-versus-host disease (GVHD) following allogeneic (allo) bone marrow transplantation (BMT). We developed novel assays based on 3D, microscopic, cryo-imaging of whole-mouse-sized volumes to assess the therapeutic potential of human MSCs using an established mouse GVHD model. Following infusion, we quantitatively tracked fluorescently labeled, donor-derived, T-cells and third party MSCs in BMT recipients using multispectral cryo-imaging. Specific MSC homing sites were identified in the marginal zones in the spleen and the lymph nodes, where we believe MSC immunomodulation takes place. The number of MSCs found in spleen of the allo BMT recipients was about 200% more than that observed in the syngeneic group. To more carefully define the effects MSCs had on T cell activation and expansion, we developed novel T-cell proliferation assays including secondary lymphoid organ (SLO) enlargement and Carboxyfluoescein succinimidyl ester (CFSE) dilution. As anticipated, significant SLO volume enlargement and CFSE dilution was observed in allo but not syn BMT recipients due to rapid proliferation and expansion of labeled T-cells. MSC treatment markedly attenuated CFSE dilution and volume enlargement of SLO. These assays confirm evidence of potent, in vivo, immunomodulatory properties of MSC following allo BMT. Our innovative platform includes novel methods for tracking cells of interest as well as assessing therapeutic function of MSCs during GVHD induction. Our results support the use of MSCs treatment or prevention of GVHD and illuminate the wider adoption of MSCs as a standard medicinal cell therapy.
Collapse
Affiliation(s)
- Patiwet Wuttisarnwattana
- Optimization Theory and Applications for Engineering Systems Research Group, Department of Computer Engineering, Excellence Center in Infrastructure Technology and Transportation Engineering, Biomedical Engineering Institute, Chiang Mai University, Chiang Mai, Thailand.
| | - Saada Eid
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA
| | - David L Wilson
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.
| | - Kenneth R Cooke
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins Hospital, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
11
|
Ling L, Hou J, Wang Y, Shu H, Huang Y. Effects of Low-Intensity Pulsed Ultrasound on the Migration and Homing of Human Amnion-Derived Mesenchymal Stem Cells to Ovaries in Rats With Premature Ovarian Insufficiency. Cell Transplant 2022; 31:9636897221129171. [PMID: 36282038 PMCID: PMC9608022 DOI: 10.1177/09636897221129171] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Premature ovarian insufficiency (POI) can cause multiple sequelae and is currently incurable. Mesenchymal stem cell (MSC) transplantation might provide an effective treatment method for POI. However, the clinical application of systemic MSC transplantation is limited by the low efficiency of cell homing to target tissue in vivo, including systemic MSC transplantation for POI treatment. Thus, exploration of methods to promote MSC homing is necessary. This study was to investigate the effects of low-intensity pulsed ultrasound (LIPUS) on the migration and homing of transplanted human amnion–derived MSCs (hAD-MSCs) to ovaries in rats with chemotherapy-induced POI. For LIPUS treatment, hAD-MSCs were exposed to LIPUS or sham irradiation. Chemokine receptor expressions in hAD-MSCs were detected by polymerase chain reaction (PCR), Western blot, and immunofluorescence assays. hAD-MSC migration was detected by wound healing and transwell migration assays. Cyclophosphamide-induced POI rat models were established to evaluate the effects of LIPUS on the homing of systemically transplanted hAD-MSCs to chemotherapy-induced POI ovaries in vivo. We found that hAD-MSCs expressed chemokine receptors. The LIPUS promoted the expression of chemokine receptors, especially CXCR4, in hAD-MSCs. SDF-1 induced hAD-MSC migration. The LIPUS promoted hAD-MSC migration induced by SDF-1 through SDF-1/CXCR4 axis. SDF-1 levels significantly increased in ovaries induced by chemotherapy in POI rats. Pretreating hAD-MSCs with LIPUS increased the number of hAD-MSCs homing to ovaries in rats with chemotherapy-induced POI to some extent. However, the difference was not significant. Both hAD-MSC and LIPUS-pretreated hAD-MSC transplantation reduced ovarian injuries and improved ovarian function in rats with chemotherapy-induced POI. CXCR4 antagonist significantly reduced the number of hAD-MSCs- and LIPUS-pretreated hAD-MSCs homing to POI ovaries, and further reduced their efficacy in POI treatment. According to these findings, pretreating MSCs with LIPUS before transplantation might provide a novel, convenient, and safe technique to explore for improving the homing of systemically transplanted MSCs to target tissue.
Collapse
Affiliation(s)
- Li Ling
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China,Li Ling, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, No. 74, Linjiang Road, Chongqing 400010, China.
| | - Jiying Hou
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yan Wang
- State Key Laboratory of Ultrasound Engineering in Medicine Co-founded by Chongqing and the Ministry of Science and Technology, Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Han Shu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yubin Huang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
12
|
Zheng D, Bhuvan T, Payne NL, Heng TSP. Secondary Lymphoid Organs in Mesenchymal Stromal Cell Therapy: More Than Just a Filter. Front Immunol 2022; 13:892443. [PMID: 35784291 PMCID: PMC9243307 DOI: 10.3389/fimmu.2022.892443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) have demonstrated therapeutic potential in inflammatory models of human disease. However, clinical translation has fallen short of expectations, with many trials failing to meet primary endpoints. Failure to fully understand their mechanisms of action is a key factor contributing to the lack of successful commercialisation. Indeed, it remains unclear how the long-ranging immunomodulatory effects of MSCs can be attributed to their secretome, when MSCs undergo apoptosis in the lung shortly after intravenous infusion. Their apoptotic fate suggests that efficacy is not based solely on their viable properties, but also on the immune response to dying MSCs. The secondary lymphoid organs (SLOs) orchestrate immune responses and play a key role in immune regulation. In this review, we will discuss how apoptotic cells can modify immune responses and highlight the importance of MSC-immune cell interactions in SLOs for therapeutic outcomes.
Collapse
Affiliation(s)
- Di Zheng
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Tejasvini Bhuvan
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Natalie L. Payne
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
| | - Tracy S. P. Heng
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- ARC Training Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, VIC, Australia
- *Correspondence: Tracy S. P. Heng,
| |
Collapse
|
13
|
Ding L, Han DM, Yan HM, Zhou JX, Zheng XL, Zhu L, Xue M, Liu J, Mao N, Guo ZK, Ning HM, Wang HX, Zhu H. Infusion of haploidentical HSCs combined with allogenic MSCs for the treatment of ALL patients. Bone Marrow Transplant 2022; 57:1086-1094. [PMID: 35468947 DOI: 10.1038/s41409-022-01688-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/09/2022] [Accepted: 04/12/2022] [Indexed: 11/09/2022]
Abstract
Although haploidentical stem cell transplantation (haplo-HSCT) offers almost all acute lymphoblastic leukaemia (ALL) patients an opportunity for immediate transplantation, it exhibits a higher incidence of graft failure and graft versus host disease (GVHD). Mesenchymal stem cells (MSCs) are characterised by their haematopoiesis-promoting and immunomodulatory capacity. Thus, we designed a combination of haplo-HSCT and MSCs for ALL patients. ALL patients (n = 110) were given haploidentical HSCs combined with allogenic MSCs, and ALL patients without MSC infusion (n = 56) were included as controls. The 100-day cumulative incidences of grade ≥2 acute GVHD (aGVHD) and grade ≥3 aGVHD were 40.00% and 9.09% compared to 42.32% (P = 0.79) and 22.79% (P = 0.03) in patients without MSC infusion, respectively. The 3-year cumulative incidences of chronic GVHD (cGVHD) and extensive cGVHD were 22.27% and 10.27% compared to 32.14% (P = 0.19) and 22.21% (P = 0.04) in patients without MSC infusion, respectively. No significant differences in the 3-year relapse incidence, nonrelapse mortality, leukaemia-free survival or overall survival in groups with and without MSC cotransplantation were observed. Multivariate analysis showed that MSC infusion contributed to a lower risk of developing extensive cGVHD. Our data suggested that haplo-HSCT combined with MSCs may provide an effective and safe treatment for ALL patients.
Collapse
Affiliation(s)
- Li Ding
- Air Force Medical Center, PLA, Road Fucheng 30, Beijing, 100142, P.R. China. .,Department of Experimental Hematology& Biochemistry, Beijing Institute of Radiation Medicine, Road Taiping 27, Beijing, 100850, P.R. China.
| | - Dong-Mei Han
- Air Force Medical Center, PLA, Road Fucheng 30, Beijing, 100142, P.R. China
| | - Hong-Min Yan
- Air Force Medical Center, PLA, Road Fucheng 30, Beijing, 100142, P.R. China
| | - Jie-Xin Zhou
- Air Force Medical Center, PLA, Road Fucheng 30, Beijing, 100142, P.R. China
| | - Xiao-Li Zheng
- Air Force Medical Center, PLA, Road Fucheng 30, Beijing, 100142, P.R. China
| | - Ling Zhu
- Air Force Medical Center, PLA, Road Fucheng 30, Beijing, 100142, P.R. China
| | - Mei Xue
- Air Force Medical Center, PLA, Road Fucheng 30, Beijing, 100142, P.R. China
| | - Jing Liu
- Air Force Medical Center, PLA, Road Fucheng 30, Beijing, 100142, P.R. China
| | - Ning Mao
- Beijing Institute of Basic Medical Sciences, Road Taiping 27, Beijing, 100850, P.R. China
| | - Zi-Kuan Guo
- Department of Experimental Hematology& Biochemistry, Beijing Institute of Radiation Medicine, Road Taiping 27, Beijing, 100850, P.R. China.,Beijing Institute of Basic Medical Sciences, Road Taiping 27, Beijing, 100850, P.R. China.,Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China
| | - Hong-Mei Ning
- Beijing Institute of Basic Medical Sciences, Road Taiping 27, Beijing, 100850, P.R. China.,The Fifth Medical Center of Chinese PLA General Hospital, East Street 8, Beijing, 100071, People's Republic of China
| | - Heng-Xiang Wang
- Air Force Medical Center, PLA, Road Fucheng 30, Beijing, 100142, P.R. China.
| | - Heng Zhu
- Department of Experimental Hematology& Biochemistry, Beijing Institute of Radiation Medicine, Road Taiping 27, Beijing, 100850, P.R. China. .,Beijing Institute of Basic Medical Sciences, Road Taiping 27, Beijing, 100850, P.R. China. .,Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China. .,Graduate School of Anhui Medical University, Road Meishan 81, Hefei, 230032, Anhui, P.R. China.
| |
Collapse
|
14
|
Xu R, Ni B, Wang L, Shan J, Pan L, He Y, Lv G, Lin H, Chen W, Zhang Q. CCR2-overexpressing mesenchymal stem cells targeting damaged liver enhance recovery of acute liver failure. Stem Cell Res Ther 2022; 13:55. [PMID: 35123561 PMCID: PMC8817567 DOI: 10.1186/s13287-022-02729-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 01/12/2022] [Indexed: 12/13/2022] Open
Abstract
Background Mesenchymal stem cell (MSC) transplantation is emerging as a promising cell therapeutic strategy in acute liver failure (ALF) clinical research. The potency of MSCs to migrate and engraft into targeted lesions could largely determine their clinical efficacy, in which chemokine/receptor axes play a crucial role. Unfortunately, the downregulation of chemokine receptors expression after in vitro expansion results in a poor homing capacity of MSCs. Methods By evaluating the chemokine expression profile in the liver of ALF patients and ALF mice, we found that CCL2 expression was highly upregulated in damaged livers, while the corresponding receptor, CCR2, was lacking in cultured MSCs. Thus, we genetically modified MSCs to overexpress CCR2 and investigated the targeted homing capacity and treatment efficacy of MSCCCR2 compared to those of the MSCvector control. Results In vivo and ex vivo near-infrared fluorescence imaging showed that MSCCCR2 rapidly migrated and localized to injured livers in remarkably greater numbers following systemic infusion, and these cells were retained in liver lesions for a longer time than MSCvector. Furthermore, MSCCCR2 exhibited significantly enhanced efficacy in the treatment of ALF in mice, which was indicated by a dramatically improved survival rate, the alleviation of liver injury with reduced inflammatory infiltration and hepatic apoptosis, and the promotion of liver regeneration. Conclusions Altogether, these results indicate that CCR2 overexpression enhances the targeted migration of MSCs to damaged livers, improves their treatment effect, and may provide a novel strategy for improving the efficacy of cell therapy for ALF. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02729-y.
Collapse
|
15
|
Ding L, Han DM, Zheng XL, Yan HM, Xue M, Liu J, Zhu L, Guo ZK, Mao N, Ning HM, Wang HX, Heng Zhu. Infusion of haploidentical hematopoietic stem cells combined with mesenchymal stem cells for treatment of severe aplastic anemia in adult patients yields curative effects. Cytotherapy 2021; 24:205-212. [PMID: 34799271 DOI: 10.1016/j.jcyt.2021.09.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 09/11/2021] [Accepted: 09/22/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND AIMS Despite the great advances in immunosuppressive therapy for severe aplastic anemia (SAA), most patients are not completely cured. Haploidentical hematopoietic stem cell transplantation (haplo-HSCT) has been recommended as an alternative treatment in adult SAA patients. However, haplo-HSCT presents a higher incidence of graft failure and graft-versus-host disease (GVHD). The authors designed a combination of haplo-HSCT and umbilical cord-derived mesenchymal stem cells (UC-MSCs) for treatment of SAA in adult patients and evaluated its effects. METHODS Adult patients (≥18 years) with SAA (N = 25) were given HLA-haploidentical hematopoietic stem cells (HSCs) combined with UC-MSCs after a conditioning regimen consisting of busulfan, cyclophosphamide, fludarabine and anti-thymocyte globulin and intensive GVHD prophylaxis, including cyclosporine, basiliximab, mycophenolate mofetil and short-term methotrexate. Additionally, the effects of the protocol in adult SSA patients were compared with those observed in juvenile SAA patients (N = 75). RESULTS All patients achieved myeloid engraftment after haplo-HSCT at a median of 16.12 days (range, 11-26). The median time of platelet engraftment was 28.30 days (range, 13-143). The cumulative incidence of grade II acute GVHD (aGVHD) at day +100 was 32.00 ± 0.91%. No one had grade III-IV aGVHD at day +100. The cumulative incidence of total chronic GVHD was 28.00 ± 0.85%. The overall survival was 71.78 ± 9.05% at a median follow-up of 42.08 months (range, 2.67-104). Promisingly, the protocol yielded a similar curative effect in both young and adult SAA patients. CONCLUSIONS The authors' data suggest that co-transplantation of HLA-haploidentical HSCs and UC-MSCs may provide an effective and safe treatment for adult SAA.
Collapse
Affiliation(s)
- Li Ding
- Air Force Medical Center, People's Liberation Army, Beijing, People's Republic of China; Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China.
| | - Dong-Mei Han
- Air Force Medical Center, People's Liberation Army, Beijing, People's Republic of China
| | - Xiao-Li Zheng
- Air Force Medical Center, People's Liberation Army, Beijing, People's Republic of China
| | - Hong-Min Yan
- Air Force Medical Center, People's Liberation Army, Beijing, People's Republic of China
| | - Mei Xue
- Air Force Medical Center, People's Liberation Army, Beijing, People's Republic of China
| | - Jing Liu
- Air Force Medical Center, People's Liberation Army, Beijing, People's Republic of China
| | - Ling Zhu
- Air Force Medical Center, People's Liberation Army, Beijing, People's Republic of China
| | - Zi-Kuan Guo
- Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China; Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China; Beijing Institute of Basic Medical Sciences, Beijing, People's Republic of China
| | - Ning Mao
- Beijing Institute of Basic Medical Sciences, Beijing, People's Republic of China
| | - Hong-Mei Ning
- Beijing Institute of Basic Medical Sciences, Beijing, People's Republic of China; The Fifth Medical Center of Chinese People's Liberation Army General Hospital, Beijing, People's Republic of China
| | - Heng-Xiang Wang
- Air Force Medical Center, People's Liberation Army, Beijing, People's Republic of China
| | - Heng Zhu
- Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China; Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China; Beijing Institute of Basic Medical Sciences, Beijing, People's Republic of China; Graduate School of Anhui Medical University, Hefei, People's Republic of China
| |
Collapse
|
16
|
Mesenchymal stromal cells in hematopoietic cell transplantation. Blood Adv 2021; 4:5877-5887. [PMID: 33232479 DOI: 10.1182/bloodadvances.2020002646] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/14/2020] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) are widely recognized to possess potent immunomodulatory activity, as well as to stimulate repair and regeneration of diseased or damaged tissue. These fundamental properties suggest important applications in hematopoietic cell transplantation. Although the mechanisms of therapeutic activity in vivo are yet to be fully elucidated, MSCs seem to suppress lymphocytes by paracrine mechanisms, including secreted mediators and metabolic modulators. Most recently, host macrophage engulfment of apoptotic MSCs has emerged as an important contributor to the immune suppressive microenvironment. Although bone marrow-derived MSCs are the most commonly studied, the tissue source of MSCs may be a critical determinant of immunomodulatory function. The key application of MSC therapy in hematopoietic cell transplantation is to prevent or treat graft-versus-host disease (GVHD). The pathogenesis of GVHD reveals multiple potential targets. Moreover, the recently proposed concept of tissue tolerance suggests a new possible mechanism of MSC therapy for GVHD. Beyond GVHD, MSCs may facilitate hematopoietic stem cell engraftment, which could gain greater importance with increasing use of haploidentical transplantation. Despite many challenges and much doubt, commercial MSC products for pediatric steroid-refractory GVHD have been licensed in Japan, conditionally licensed in Canada and New Zealand, and have been recommended for approval by an FDA Advisory Committee in the United States. Here, we review key historical data in the context of the most salient recent findings to present the current state of MSCs as adjunct cell therapy in hematopoietic cell transplantation.
Collapse
|
17
|
Cuesta-Gomez N, Graham GJ, Campbell JDM. Chemokines and their receptors: predictors of the therapeutic potential of mesenchymal stromal cells. J Transl Med 2021; 19:156. [PMID: 33865426 PMCID: PMC8052819 DOI: 10.1186/s12967-021-02822-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/09/2021] [Indexed: 12/12/2022] Open
Abstract
Multipotent mesenchymal stromal cells (MSCs) are promising cellular therapeutics for the treatment of inflammatory and degenerative disorders due to their anti-inflammatory, immunomodulatory and regenerative potentials. MSCs can be sourced from a variety of tissues within the body, but bone marrow is the most frequently used starting material for clinical use. The chemokine family contains many regulators of inflammation, cellular function and cellular migration-all critical factors in understanding the potential potency of a novel cellular therapeutic. In this review, we focus on expression of chemokine receptors and chemokine ligands by MSCs isolated from different tissues. We discuss the differential migratory, angiogenetic and immunomodulatory potential to understand the role that tissue source of MSC may play within a clinical context. Furthermore, this is strongly associated with leukocyte recruitment, immunomodulatory potential and T cell inhibition potential and we hypothesize that chemokine profiling can be used to predict the in vivo therapeutic potential of MSCs isolated from new sources and compare them to BM MSCs.
Collapse
Affiliation(s)
- Nerea Cuesta-Gomez
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Gerard J Graham
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - John D M Campbell
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK. .,Tissues, Cells and Advanced Therapeutics, Scottish National Blood Transfusion Service, The Jack Copland Centre, Research Avenue North, Edinburgh, UK.
| |
Collapse
|
18
|
Liang JW, Li PL, Wang Q, Liao S, Hu W, Zhao ZD, Li ZL, Yin BF, Mao N, Ding L, Zhu H. Ferulic acid promotes bone defect repair after radiation by maintaining the stemness of skeletal stem cells. Stem Cells Transl Med 2021; 10:1217-1231. [PMID: 33750031 PMCID: PMC8284777 DOI: 10.1002/sctm.20-0536] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/02/2021] [Accepted: 02/13/2021] [Indexed: 12/14/2022] Open
Abstract
The reconstruction of irradiated bone defects after settlement of skeletal tumors remains a significant challenge in clinical applications. In this study, we explored radiation‐induced skeletal stem cell (SSC) stemness impairments and rescuing effects of ferulic acid (FA) on SSCs in vitro and in vivo. The immunophenotype, cell renewal, cell proliferation, and differentiation of SSCs in vitro after irradiation were investigated. Mechanistically, the changes in tissue regeneration‐associated gene expression and MAPK pathway activation in irradiated SSCs were evaluated. The regenerative capacity of SSCs in the presence of FA in an irradiated bone defect mouse model was also investigated. We found that irradiation reduced CD140a‐ and CD105‐positive cells in skeletal tissues and mouse‐derived SSCs. Additionally, irradiation suppressed cell proliferation, colony formation, and osteogenic differentiation of SSCs. The RNA‐Seq results showed that tissue regeneration‐associated gene expression decreased, and the Western blotting results demonstrated the suppression of phosphorylated p38/MAPK and ERK/MAPK in irradiated SSCs. Notably, FA significantly rescued the radiation‐induced impairment of SSCs by activating the p38/MAPK and ERK/MAPK pathways. Moreover, the results of imaging and pathological analyses demonstrated that FA enhanced the bone repair effects of SSCs in an irradiated bone defect mouse model substantially. Importantly, inhibition of the p38/MAPK and ERK/MAPK pathways in SSCs by specific chemical inhibitors partially abolished the promotive effect of FA on SSC‐mediated bone regeneration. In summary, our findings reveal a novel function of FA in repairing irradiated bone defects by maintaining SSC stemness and suggest that the p38/MAPK and ERK/MAPK pathways contribute to SSC‐mediated tissue regeneration postradiation.
Collapse
Affiliation(s)
- Jia-Wu Liang
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China.,Department of Experimental Hematology & Biochemistry, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China.,People's Liberation Army General Hospital, Beijing, People's Republic of China
| | - Pei-Lin Li
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China.,Department of Experimental Hematology & Biochemistry, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Qian Wang
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China.,Department of Experimental Hematology & Biochemistry, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China.,People's Liberation Army General Hospital, Beijing, People's Republic of China
| | - Song Liao
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China.,Department of Experimental Hematology & Biochemistry, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China.,People's Liberation Army General Hospital, Beijing, People's Republic of China
| | - Wei Hu
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China.,Department of Experimental Hematology & Biochemistry, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China.,People's Liberation Army General Hospital, Beijing, People's Republic of China
| | - Zhi-Dong Zhao
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China.,Department of Experimental Hematology & Biochemistry, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China.,People's Liberation Army General Hospital, Beijing, People's Republic of China
| | - Zhi-Ling Li
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China.,Department of Experimental Hematology & Biochemistry, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Bo-Feng Yin
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China.,Department of Experimental Hematology & Biochemistry, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Ning Mao
- Beijing Institute of Basic Medical Sciences, Beijing, People's Republic of China
| | - Li Ding
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China.,Air Force Medical Center, PLA, Beijing, People's Republic of China
| | - Heng Zhu
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China.,Department of Experimental Hematology & Biochemistry, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China.,Beijing Institute of Basic Medical Sciences, Beijing, People's Republic of China.,Graduate School of Anhui Medical University, Hefei, People's Republic of China
| |
Collapse
|
19
|
Challenges and advances in clinical applications of mesenchymal stromal cells. J Hematol Oncol 2021; 14:24. [PMID: 33579329 PMCID: PMC7880217 DOI: 10.1186/s13045-021-01037-x] [Citation(s) in RCA: 402] [Impact Index Per Article: 100.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 01/26/2021] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stromal cells (MSCs), also known as mesenchymal stem cells, have been intensely investigated for clinical applications within the last decades. However, the majority of registered clinical trials applying MSC therapy for diverse human diseases have fallen short of expectations, despite the encouraging pre-clinical outcomes in varied animal disease models. This can be attributable to inconsistent criteria for MSCs identity across studies and their inherited heterogeneity. Nowadays, with the emergence of advanced biological techniques and substantial improvements in bio-engineered materials, strategies have been developed to overcome clinical challenges in MSC application. Here in this review, we will discuss the major challenges of MSC therapies in clinical application, the factors impacting the diversity of MSCs, the potential approaches that modify MSC products with the highest therapeutic potential, and finally the usage of MSCs for COVID-19 pandemic disease.
Collapse
|
20
|
Li H, Liu Q, Gao X, Zhang D, Mao S, Jia Y. IFN-γ gene loaded human umbilical mesenchymal stromal cells targeting therapy for Graft-versus-host disease. Int J Pharm 2021; 592:120058. [PMID: 33220383 DOI: 10.1016/j.ijpharm.2020.120058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/19/2020] [Accepted: 11/03/2020] [Indexed: 02/05/2023]
Abstract
Graft-versus-host disease (GVHD) is a frequent complication following allogeneic hematopoietic stem cell transplantation (allo-HSCT). The application of mesenchymal stromal cells (MSCs) to treat GVHD patients refractory to initial steroid treatment has led to impressive results. In this study, we explored the potential of human umbilical mesenchymal stem cells (HUMSCs) transfected with the IFN-γ gene of human (h)/mice (m) (HUMSCs + Ad-h/mIFN-γ) carried by a recombinant adenoviral vector in the prevention and treatment of GVHD. We demonstrated that HUMSCs + Ad-h/mIFN-γ efficiently suppressed T lymphocyte proliferation and activation, induced G1 cell cycle arrest and apoptosis in vitro. To assess the in vivo efficacy of HUMSCs + Ad-h/mIFN-γ, Balb/c mice were induced to develop GVHD symptoms by tail vein injection of C57BL/6 splenocytes after irradiation. Weight, hair, survival, hemogram, and chimera condition of GVHD model mice were monitored before and after treatment, respectively. The results showed that HUMSCs + Ad-h/mIFN-γ reduced GVHD's incidence and severity on the model mice and provided a significant survival benefit. In conclusion, this study may provide validated evidence that the introduction of IFN-γ into HUMSCs would help ameliorate GVHD after allo-HSCT.
Collapse
Affiliation(s)
- Hui Li
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, People's Republic of China; Department of Hematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital & Affiliated Hospital of University of Electronic Science and Technology of China, Chengdu, People's Republic of China.
| | - Qi Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University, Chengdu, People's Republic of China
| | - Xiaofeng Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University, Chengdu, People's Republic of China
| | - Di Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University, Chengdu, People's Republic of China
| | - Shengjun Mao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University, Chengdu, People's Republic of China
| | - Yongqian Jia
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| |
Collapse
|
21
|
Soder RP, Dawn B, Weiss ML, Dunavin N, Weir S, Mitchell J, Li M, Shune L, Singh AK, Ganguly S, Morrison M, Abdelhakim H, Godwin AK, Abhyankar S, McGuirk J. A Phase I Study to Evaluate Two Doses of Wharton's Jelly-Derived Mesenchymal Stromal Cells for the Treatment of De Novo High-Risk or Steroid-Refractory Acute Graft Versus Host Disease. Stem Cell Rev Rep 2020; 16:979-991. [PMID: 32740891 PMCID: PMC9289888 DOI: 10.1007/s12015-020-10015-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Because of their well-described immunosuppressive properties, allogeneic adult human mesenchymal stromal cells (MSC) derived from bone marrow have demonstrated safety and efficacy in steroid refractory acute graft versus host disease (SR aGVHD). Clinical trials have resulted in variable success and an optimal source of MSC has yet to be defined. Based on the importance of maternal-fetal interface immune tolerance, extraembryonic fetal tissues, such as the umbilical cord, may provide an superior tissue source of MSC to mediate immunomodulation in aGVHD. METHODS A two-dose cohort trial allogeneic Wharton's Jelly-derived mesenchymal stromal cells (WJMSC, referred to as MSCTC-0010, here) were tested in 10 patients with de novo high risk (HR) or SR aGVHD post allogeneic hematopoietic stem cell transplantation (allo-HCT). Following Good Manufacturing Practices isolation, expansion and cryostorage, WJMSC were thawed and administered via intravenous infusions on days 0 and 7 at one of two doses (low dose cohort, 2 × 106/kg, n = 5; high dose cohort, 10 × 106/kg, n = 5). To evaluate safety, patients were monitored for infusion related toxicity, Treatment Related Adverse Events (TRAE) til day 42, or ectopic tissue formation at day 90. Clinical responses were monitored at time points up to 180 days post infusion. Serum biomarkers ST2 and REG3α were acquired 1 day prior to first MSCTC-0010 infusion and on day 14. RESULTS Safety was indicated, e.g., no infusion-related toxicity, no development of TRAE, nor ectopic tissue formation in either low or high dose cohort was observed. Clinical response was suggested at day 28: the overall response rate (ORR) was 70%, 4 of 10 patients had a complete response (CR) and 3 had a partial response (PR). By study day 90, the addition of escalated immunosuppressive therapy was necessary in 2 of 9 surviving patients. Day 100 and 180 post infusion survival was 90% and 60%, respectively. Serum biomarker REG3α decreased, particularly in the high dose cohort, and with REG3α decrease correlated with clinical response. CONCLUSIONS Treatment of patients with de novo HR or SR aGVHD with low or high dose MSCTC-0010 was safe: the infusion was well-tolerated, and no TRAEs or ectopic tissue formation was observed. A clinical improvement was seen in about 70% patients, with 4 of 10 showing a complete response that may have been attributable to MSCTC-0010 infusions. These observations indicate safety of two different doses of MSCTC-0010, and suggest that the 10 × 106 cells/ kg dose be tested in an expanded randomized, controlled Phase 2 trial. Graphical abstract.
Collapse
Affiliation(s)
- Rupal P Soder
- Midwest Stem Cell Therapy Center, University of Kansas Medical Center, Kansas City, KS, USA
| | - Buddhadeb Dawn
- University of Nevada, Las Vegas School of Medicine, Las Vegas, NV, USA
| | - Mark L Weiss
- Midwest Institute of Comparative Stem Cell Biotechnology and Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, USA
| | - Neil Dunavin
- University of California, San Francisco, CA, USA
| | - Scott Weir
- Institute for Advancing Medical Innovation Medical Center, University of Kansas, Kansas City, USA
| | - James Mitchell
- Midwest Stem Cell Therapy Center, University of Kansas Medical Center, Kansas City, KS, USA
| | - Meizhang Li
- Pathology & Laboratory Medicine, Univeristy of Kansas Medical Center, Kansas City, USA
| | - Leyla Shune
- Blood and Marrow Transplant Program, Division of Hematologic Malignancies and Cellular Therapeutics, University of Kansas Medical Center, 2330 Shawnee Mission Parkway, Suite 210, Westwood, KS, 66205, USA
| | - Anurag K Singh
- Blood and Marrow Transplant Program, Division of Hematologic Malignancies and Cellular Therapeutics, University of Kansas Medical Center, 2330 Shawnee Mission Parkway, Suite 210, Westwood, KS, 66205, USA
| | - Siddhartha Ganguly
- Blood and Marrow Transplant Program, Division of Hematologic Malignancies and Cellular Therapeutics, University of Kansas Medical Center, 2330 Shawnee Mission Parkway, Suite 210, Westwood, KS, 66205, USA
| | - Marc Morrison
- Blood and Marrow Transplant Program, Division of Hematologic Malignancies and Cellular Therapeutics, University of Kansas Medical Center, 2330 Shawnee Mission Parkway, Suite 210, Westwood, KS, 66205, USA
| | - Haitham Abdelhakim
- Blood and Marrow Transplant Program, Division of Hematologic Malignancies and Cellular Therapeutics, University of Kansas Medical Center, 2330 Shawnee Mission Parkway, Suite 210, Westwood, KS, 66205, USA
| | - Andrew K Godwin
- Pathology & Laboratory Medicine, Univeristy of Kansas Medical Center, Kansas City, USA
| | - Sunil Abhyankar
- Midwest Stem Cell Therapy Center, University of Kansas Medical Center, Kansas City, KS, USA
- Blood and Marrow Transplant Program, Division of Hematologic Malignancies and Cellular Therapeutics, University of Kansas Medical Center, 2330 Shawnee Mission Parkway, Suite 210, Westwood, KS, 66205, USA
| | - Joseph McGuirk
- Blood and Marrow Transplant Program, Division of Hematologic Malignancies and Cellular Therapeutics, University of Kansas Medical Center, 2330 Shawnee Mission Parkway, Suite 210, Westwood, KS, 66205, USA.
| |
Collapse
|
22
|
Ding L, Han DM, Zheng XL, Yan HM, Xue M, Liu J, Zhu L, Li S, Mao N, Guo ZK, Ning HM, Wang HX, Zhu H. A study of human leukocyte antigen-haploidentical hematopoietic stem cells transplantation combined with allogenic mesenchymal stem cell infusion for treatment of severe aplastic anemia in pediatric and adolescent patients. Stem Cells Transl Med 2020; 10:291-302. [PMID: 32978903 PMCID: PMC7848315 DOI: 10.1002/sctm.20-0345] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 08/27/2020] [Accepted: 09/12/2020] [Indexed: 01/03/2023] Open
Abstract
The clinical applications of human leukocyte antigen (HLA) haploidentical hematopoietic stem cells transplantation (haplo‐HSCT) have offered most of the young severe aplastic anemia (SAA) patients an opportunity to accept curative therapy at the early stage of bone marrow lesions. However, the outcome of juvenile SAA patients received haplo‐HSCT remain to be improved due to high incidence of graft failure and graft vs host disease (GVHD). Mesenchymal stem cells (MSCs) have been characterized by their hematopoiesis‐supporting and immunomodulatory properties. In the current study, we designed a combination of haplo‐HSCT with allogenic MSC for treatment of SAA in pediatric and adolescent patients and evaluated its effects. Juvenile patients (<18 years) with SAA (n = 103) were given HLA‐haploidentical HSC combined with allogenic MSC after a conditioning regimen consisting of busulfan, cyclophosphamide, fludarabine, and antithymocyte globulin and an intensive GVHD prophylaxis, including cyclosporine, short‐term methotrexate, mycophenolate mofetil, and basiliximab. Neutrophil engraftment was achieved in 102 of 103 patients in a median time of 14.3 days (range 9‐25 days). The median time of platelet engraftment was 25.42 days (range 8‐93 days). The cumulative incidence of II‐IV acute GVHD at day +100 was 26.32% ± 0.19% and III‐IV acute GVHD was 6.79% ± 0.06% at day +100, respectively. The cumulative incidence of chronic GVHD was 25.56% ± 0.26%. The overall survival was 87.15% ± 3.3% at a median follow‐up of 40 (1.3‐98) months. Our data suggest that cotransplantation of HLA‐haploidentical HSC and allogenic mesenchymal stem cell may provide an effective and safe treatment for children and adolescents with SAA who lack matched donors.
Collapse
Affiliation(s)
- Li Ding
- Air Force Medical Center, PLA, Beijing, People's Republic of China.,Department of Experimental Hematology & Biochemistry, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Dong-Mei Han
- Air Force Medical Center, PLA, Beijing, People's Republic of China
| | - Xiao-Li Zheng
- Air Force Medical Center, PLA, Beijing, People's Republic of China
| | - Hong-Min Yan
- Air Force Medical Center, PLA, Beijing, People's Republic of China
| | - Mei Xue
- Air Force Medical Center, PLA, Beijing, People's Republic of China
| | - Jing Liu
- Air Force Medical Center, PLA, Beijing, People's Republic of China
| | - Ling Zhu
- Air Force Medical Center, PLA, Beijing, People's Republic of China
| | - Sheng Li
- Air Force Medical Center, PLA, Beijing, People's Republic of China
| | - Ning Mao
- Beijing Institute of Basic Medical Sciences, Beijing, People's Republic of China
| | - Zi-Kuan Guo
- Department of Experimental Hematology & Biochemistry, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China.,Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China.,Beijing Institute of Basic Medical Sciences, Beijing, People's Republic of China
| | - Hong-Mei Ning
- Beijing Institute of Basic Medical Sciences, Beijing, People's Republic of China.,The Fifth Medical Center of Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Heng-Xiang Wang
- Air Force Medical Center, PLA, Beijing, People's Republic of China
| | - Heng Zhu
- Department of Experimental Hematology & Biochemistry, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China.,Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China.,Beijing Institute of Basic Medical Sciences, Beijing, People's Republic of China.,Graduate School of Anhui Medical University, Hefei, Anhui, People's Republic of China
| |
Collapse
|
23
|
Effect of Timing and Complement Receptor Antagonism on Intragraft Recruitment and Protolerogenic Effects of Mesenchymal Stromal Cells in Murine Kidney Transplantation. Transplantation 2020; 103:1121-1130. [PMID: 30801518 DOI: 10.1097/tp.0000000000002611] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Mesenchymal stromal cells (MSCs) have protolerogenic effects in renal transplantation, but they induce long-term regulatory T cells (Treg)-dependent graft acceptance only when infused before transplantation. When given posttransplant, MSCs home to the graft where they promote engraftment syndrome and do not induce Treg. Unfortunately, pretransplant MSC administration is unfeasible in deceased-donor kidney transplantation. METHODS To make MSCs a therapeutic option also for deceased organ recipients, we tested whether MSC infusion at the time of transplant (day 0) or posttransplant (day 2) together with inhibition of complement receptors prevents engraftment syndrome and allows their homing to secondary lymphoid organs for promoting tolerance. We analyzed intragraft and splenic MSC localization, graft survival, and alloimmune response in mice recipients of kidney allografts and syngeneic MSCs given on day 0 or on posttransplant day 2. C3a receptor (C3aR) or C5a receptor (C5aR) antagonists were administered to mice in combination with the cells or were used together to treat MSCs before infusion. RESULTS Syngeneic MSCs given at day 0 homed to the spleen increased Treg numbers and induced long-term graft acceptance. Posttransplant MSC infusion, combined with a short course of C3aR or C5aR antagonist or administration of MSCs pretreated with C3aR and C5aR antagonists, prevented intragraft recruitment of MSCs and graft inflammation, inhibited antidonor T-cell reactivity, but failed to induce Treg, resulting in mild prolongation of graft survival. CONCLUSIONS These data support testing the safety/efficacy profile of administering MSCs on the day of transplant in deceased-donor transplant recipients and indicate that complement is crucial for MSC recruitment into the kidney allograft.
Collapse
|
24
|
Identifying the Therapeutic Significance of Mesenchymal Stem Cells. Cells 2020; 9:cells9051145. [PMID: 32384763 PMCID: PMC7291143 DOI: 10.3390/cells9051145] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 12/12/2022] Open
Abstract
The pleiotropic behavior of mesenchymal stem cells (MSCs) has gained global attention due to their immense potential for immunosuppression and their therapeutic role in immune disorders. MSCs migrate towards inflamed microenvironments, produce anti-inflammatory cytokines and conceal themselves from the innate immune system. These signatures are the reason for the uprising in the sciences of cellular therapy in the last decades. Irrespective of their therapeutic role in immune disorders, some factors limit beneficial effects such as inconsistency of cell characteristics, erratic protocols, deviating dosages, and diverse transfusion patterns. Conclusive protocols for cell culture, differentiation, expansion, and cryopreservation of MSCs are of the utmost importance for a better understanding of MSCs in therapeutic applications. In this review, we address the immunomodulatory properties and immunosuppressive actions of MSCs. Also, we sum up the results of the enhancement, utilization, and therapeutic responses of MSCs in treating inflammatory diseases, metabolic disorders and diabetes.
Collapse
|
25
|
Lu XX, Zhao SZ. Gene-based Therapeutic Tools in the Treatment of Cornea Disease. Curr Gene Ther 2020; 19:7-19. [PMID: 30543166 DOI: 10.2174/1566523219666181213120634] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 11/23/2018] [Accepted: 12/11/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND As one of the main blinding ocular diseases, corneal blindness resulted from neovascularization that disrupts the angiogenic privilege of corneal avascularity. Following neovascularization, inflammatory cells are infiltrating into cornea to strengthen corneal injury. How to maintain corneal angiogenic privilege to treat corneal disease has been investigated for decades. METHODOLOGY Local administration of viral and non-viral-mediated anti-angiogenic factors reduces angiogenic protein expression in situ with limited or free of off-target effects upon gene delivery. Recently, Mesenchymal Stem Cells (MSCs) have been studied to treat corneal diseases. Once MSCs are manipulated to express certain genes of interest, they could achieve superior therapeutic efficacy after transplantation. DISCUSSION In the text, we first introduce the pathological development of corneal disease in the aspects of neovascularization and inflammation. We summarize how MSCs become an ideal candidate in cell therapy for treating injured cornea, focusing on cell biology, property and features. We provide an updated review of gene-based therapies in animals and preclinical studies in the aspects of controlling target gene expression, safety and efficacy. Gene transfer vectors are potent to induce candidate protein expression. Delivered by vectors, MSCs are equipped with certain characters by expressing a protein of interest, which facilitates better for MSC-mediated therapeutic intervention for the treatment of corneal disease. CONCLUSION As the core of this review, we discuss how MSCs could be engineered to be vector system to achieve enhanced therapeutic efficiency after injection.
Collapse
Affiliation(s)
- Xiao-Xiao Lu
- Tianjin Medical University Eye Hospital and Institute, Tianjin 300384, China
| | - Shao-Zhen Zhao
- Tianjin Medical University Eye Hospital and Institute, Tianjin 300384, China
| |
Collapse
|
26
|
Ma T, Luan S, Tao R, Lu D, Guo L, Liu J, Shu J, Zhou X, Han Y, Jia Y, Li G, Zhang H, Han W, Han Y, Li H. Targeted Migration of Human Adipose-Derived Stem Cells to Secondary Lymphoid Organs Enhances Their Immunomodulatory Effect and Prolongs the Survival of Allografted Vascularized Composites. Stem Cells 2019; 37:1581-1594. [PMID: 31414513 DOI: 10.1002/stem.3078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 07/25/2019] [Indexed: 12/13/2022]
Abstract
The targeted delivery of therapeutic agents to secondary lymphoid organs (SLOs), which are the niches for immune initiation, provides an unprecedented opportunity for immune intolerance induction. The alloimmune rejection postvascularized composite allotransplantation (VCA) is mediated by T lymphocytes. Human adipose-derived stem cells (hASCs) possess the superiority of convenient availability and potent immunoregulatory property, but their therapeutic results in the VCA are unambiguous thus far. Chemokine receptor 7 (CCR7) can specifically guide immune cells migrating into SLOs. There, the genes of CCR7-GFP or GFP alone were introduced into hASCs by lentivirus. hASCs/CCR7 maintained the multidifferentiation and immunoregulatory abilities, but it gained the migration capacity elicited by secondary lymphoid organ chemokine (SCL) (CCR7 ligand) in vitro. Noteworthily, intravenously infused hASCs/CCR7 targetedly relocated in the T-cell aggression area in SLOs. In a rat VCA model, hASCs/GFP transfusion had a rare effect on the allografted vascularized composite. However, hASCs/CCR7 infusion potently prolonged the grafts' survival time. The ameliorated pathologic exhibition and the regulated inflammatory cytokines in the peripheral blood were also observed. The altered axis of Th1/Th2 and Tregs/Th17 in SLOs may underlie the downregulated rejection response. Moreover, the proteomic examination of splenic T lymphocytes also confirmed that hASCs/CCR7 decreased the proteins related to cytokinesis, lymphocyte proliferation, differentiation, and apoptotic process. In conclusion, our present study demonstrated that targeted migration of hASCs/CCR7 to SLOs highly intensifies their in vivo immunomodulatory effect in the VCA model for the first time. We believe this SLO-targeting strategy may improve the clinical therapeutic efficacy of hASC for allogeneic and autogenic immune disease. Stem Cells 2019;37:1581-1594.
Collapse
Affiliation(s)
- Tian Ma
- Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, People's Republic of China.,Department of Plastic and Reconstructive Surgery, The First Medical Centre of Chinese PLA General Hospital, Beijing, People's Republic of China
| | - ShaoLiang Luan
- Department of Vascular Surgery, The First Medical Centre of Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Ran Tao
- Department of Plastic and Reconstructive Surgery, The First Medical Centre of Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Di Lu
- Department of Plastic and Reconstructive Surgery, The First Medical Centre of Chinese PLA General Hospital, Beijing, People's Republic of China.,Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Beijing, People's Republic of China
| | - LingLi Guo
- Department of Plastic and Reconstructive Surgery, The First Medical Centre of Chinese PLA General Hospital, Beijing, People's Republic of China
| | - JieJie Liu
- Department of Molecular Biology, The First Medical Centre of Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Jun Shu
- Department of Plastic and Reconstructive Surgery, The First Medical Centre of Chinese PLA General Hospital, Beijing, People's Republic of China
| | - XiangBin Zhou
- Department of Stomatology, The Third Medical Centre of Chinese PLA General Hospital, Beijing, People's Republic of China
| | - YuDi Han
- Department of Burn and Plastic Surgery, The Seventh Medical Centre of Chinese PLA General Hospital, Beijing, People's Republic of China
| | - YiQing Jia
- Department of Emergency, The Sixth Medical Center of Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Guo Li
- Department of Plastic and Reconstructive Surgery, The First Medical Centre of Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Hui Zhang
- Department of Plastic Surgery, The Second Hospital of Shanxi Medical University, Shanxi, People's Republic of China
| | - WeiDong Han
- Department of Molecular Biology, The First Medical Centre of Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Yan Han
- Department of Plastic and Reconstructive Surgery, The First Medical Centre of Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Hong Li
- Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, People's Republic of China.,Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Beijing, People's Republic of China
| |
Collapse
|
27
|
Geiger S, Ozay EI, Geumann U, Hereth MK, Magnusson T, Shanthalingam S, Hirsch D, Kälin S, Günther C, Osborne BA, Tew GN, Hermann FG, Minter LM. Alpha-1 Antitrypsin-Expressing Mesenchymal Stromal Cells Confer a Long-Term Survival Benefit in a Mouse Model of Lethal GvHD. Mol Ther 2019; 27:1436-1451. [PMID: 31138510 DOI: 10.1016/j.ymthe.2019.05.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 05/02/2019] [Accepted: 05/04/2019] [Indexed: 12/29/2022] Open
Abstract
Acute graft-versus-host disease is a frequent complication associated with allogeneic hematopoietic stem cell transplantation. Patients that become refractory to initial steroid treatment have a poor prognosis. apceth-201 consists of human allogeneic mesenchymal stromal cells, engineered by lentiviral transduction to express the protease inhibitor alpha-1 antitrypsin, to augment the anti-inflammatory potential of the mesenchymal stromal cells. We show that apceth-201 mesenchymal stromal cells efficiently suppress T cell proliferation and polarize macrophages to an anti-inflammatory M2 type, in vitro. To assess the in vivo efficacy of apceth-201, it was tested in two different mouse models of acute graft-versus-host disease. Control animals in a humanized model succumbed quickly to disease, whereas median survival was doubled in apceth-201-treated animals. The product was also tested in a graft-versus-host disease model system that closely mimics haploidentical hematopoietic stem cell transplantation, an approach that is now being evaluated for use in the clinic. Control animals succumbed quickly to disease, whereas treatment with apceth-201 resulted in long-term survival of 57% of the animals. Within 25 days after the second injection, clinical scores returned to baseline in responding animals, indicating complete resolution of graft-versus-host disease. These promising data have led to planning of a phase I study using apceth-201.
Collapse
Affiliation(s)
| | - Emrah I Ozay
- Program in Molecular & Cellular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA; Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Ulf Geumann
- apceth Biopharma GmbH, 81377 Munich, Germany
| | | | | | - Sudarvili Shanthalingam
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | | | | | | | - Barbara A Osborne
- Program in Molecular & Cellular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA; Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Gregory N Tew
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | | | - Lisa M Minter
- Program in Molecular & Cellular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA; Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA 01003, USA.
| |
Collapse
|
28
|
Yang SN, Pu X, Xiang SL, Chen JP, Pei L. [Brain derived neurotrophic factor enhances the role of mesenchymal stem cells in inhibiting follicular helper T cells]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2019; 39:37-40. [PMID: 29551031 PMCID: PMC7343120 DOI: 10.3760/cma.j.issn.0253-2727.2018.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
目的 探讨脑源性神经营养因子(BDNF)增强间充质干细胞(MSC)抑制滤泡辅助性T细胞(Tfh细胞)的作用及机制。 方法 ELISA法检测MSC培养上清中吲哚胺2,3-二加氧酶(IDO)、IL-10、TGF-β和IL-21的含量;采集健康志愿者的外周血标本,采用人淋巴细胞分离液分离外周血中的淋巴细胞;采用Transwell小室进行MSC和淋巴细胞共培养,流式细胞术检测CD4+CXCR5+ Tfh细胞及其亚群的比例。 结果 ①BDNF组(BDNF刺激的MSC)培养上清IL-10、TGF-β、IDO浓度均高于对照组(加入等体积磷酸盐缓冲液)[IL-10:(42.1±4.4)ng/ml对(19.3±2.1)ng/ml,t=4.761,P=0.009;TGF-β:(13.9±1.7)ng/ml对(5.3±0.6)ng/ml,t=5.129,P=0.008;IDO:(441.3±56.9)ng/ml对(226.7±37.6)ng/ml,t=3.130,P=0.035];②BDNF组(淋巴细胞与BDNF刺激的MSC共培养)与MSC组(淋巴细胞与MSC共培养)比较:CD4+CXCR5+Tfh细胞比例降低[(3.37±0.21)%对(6.51±0.27)%,t=9.353,P<0.001],CD4+ CXCR5+ CXCR3+ CCR6−Tfh1细胞比例升高[(41.14±2.04)%对(26.72±2.57)%,t=4.383,P=0.012],CD4+CXCR5+CXCR3−CCR6−Tfh2细胞和CD4+CXCR5+CXCR3−CCR6+Tfh17细胞比例降低[Tfh2:(30.16±5.38)%对(43.26±4.11)%,t=4.426,P=0.012;Tfh17:(15.61±1.52)%对(22.32±0.72)%,t=4.202,P=0.014],CD4+CXCR5+Foxp3+ Tfr细胞比例升高[(4.95±0.22)%对(2.32±0.16)%,t=10.241,P<0.001],淋巴细胞培养上清中IL-21浓度降低[(0.28±0.03)ng/ml对(0.85±0.08)ng/ml,t=6.675,P=0.003]。 结论 BDNF能够增强MSC抑制Tfh细胞的作用,机制是抑制淋巴细胞中Tfh细胞比例升高及其向Tfh2和Tfh17亚群的分化。
Collapse
Affiliation(s)
- S N Yang
- Department of Hematology, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | | | | | | | | |
Collapse
|
29
|
Chang YJ, Zhao XY, Huang XJ. Strategies for Enhancing and Preserving Anti-leukemia Effects Without Aggravating Graft-Versus-Host Disease. Front Immunol 2018; 9:3041. [PMID: 30619371 PMCID: PMC6308132 DOI: 10.3389/fimmu.2018.03041] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 12/10/2018] [Indexed: 12/29/2022] Open
Abstract
Allogeneic stem cell transplantation (allo-SCT) is a curable method for the treatment of hematological malignancies. In the past two decades, the establishment of haploidentical transplant modalities make “everyone has a donor” become a reality. However, graft-versus-host disease (GVHD) and relapse remain the major two causes of death either in the human leukocyte antigen (HLA)-matched transplant or haploidentical transplant settings, both of which restrict the improvement of transplant outcomes. Preclinical mice model showed that both donor-derived T cells and natural killer (NK) cells play important role in the pathogenesis of GVHD and the effects of graft-versus-leukemia (GVL). Hence, understanding the immune mechanisms of GVHD and GVL would provide potential strategies for the control of leukemia relapse without aggravating GVHD. The purpose of the current review is to summarize the biology of GVHD and GVL responses in preclinical models and to discuss potential novel therapeutic strategies to reduce the relapse rate after allo-SCT. We will also review the approaches, including optimal donor selection and, conditioning regimens, donor lymphocyte infusion, BCR/ABL-specific CTL, and chimeric antigen receptor-modified T cells, which have been successfully used in the clinic to enhance and preserve anti-leukemia activity, especially GVL effects, without aggravating GVHD or alleviate GVHD.
Collapse
Affiliation(s)
- Ying-Jun Chang
- Peking University People's Hospital & Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiang-Yu Zhao
- Peking University People's Hospital & Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiao-Jun Huang
- Peking University People's Hospital & Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Beijing, China
| |
Collapse
|
30
|
Yousefi F, Lavi Arab F, Saeidi K, Amiri H, Mahmoudi M. Various strategies to improve efficacy of stem cell transplantation in multiple sclerosis: Focus on mesenchymal stem cells and neuroprotection. J Neuroimmunol 2018; 328:20-34. [PMID: 30557687 DOI: 10.1016/j.jneuroim.2018.11.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 11/30/2018] [Indexed: 02/09/2023]
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS) which predominantly affect young adults and undergo heavy socioeconomic burdens. Conventional therapeutic modalities for MS mostly downregulate aggressive immune responses and are almost insufficient for management of progressive course of the disease. Mesenchymal stem cells (MSCs), due to both immunomodulatory and neuroprotective properties have been known as practical cells for treatment of neurodegenerative diseases like MS. However, clinical translation of MSCs is associated with some limitations such as short-life engraftment duration, little in vivo trans-differentiation and restricted accessibility into damaged sites. Therefore, laboratory manipulation of MSCs can improve efficacy of MSCs transplantation in MS patients. In this review, we discuss several novel approaches, which can potentially enhance MSCs capabilities for treating MS.
Collapse
Affiliation(s)
- Forouzan Yousefi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fahimeh Lavi Arab
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kolsoum Saeidi
- Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Houshang Amiri
- Neurology Research Center, Kerman University of Medical Sciences, Kerman, Iran; Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Mahmoud Mahmoudi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
31
|
Huang Y, Wang J, Cai J, Qiu Y, Zheng H, Lai X, Sui X, Wang Y, Lu Q, Zhang Y, Yuan M, Gong J, Cai W, Liu X, Shan Y, Deng Z, Shi Y, Shu Y, Zhang L, Qiu W, Peng L, Ren J, Lu Z, Xiang AP. Targeted homing of CCR2-overexpressing mesenchymal stromal cells to ischemic brain enhances post-stroke recovery partially through PRDX4-mediated blood-brain barrier preservation. Theranostics 2018; 8:5929-5944. [PMID: 30613272 PMCID: PMC6299433 DOI: 10.7150/thno.28029] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 10/22/2018] [Indexed: 12/13/2022] Open
Abstract
Rationale: Mesenchymal stromal cells (MSCs) are emerging as a novel therapeutic strategy for the acute ischemic stroke (AIS). However, the poor targeted migration and low engraftment in ischemic lesions restrict their treatment efficacy. The ischemic brain lesions express a specific chemokine profile, while cultured MSCs lack the set of corresponding receptors. Thus, we hypothesize that overexpression of certain chemokine receptor might help in MSCs homing and improve therapeutic efficacy. Methods: Using the middle cerebral artery occlusion (MCAO) model of ischemic stroke, we identified that CCL2 is one of the most highly expressed chemokines in the ipsilateral hemisphere. Then, we genetically transduced the corresponding receptor, CCR2 to the MSCs and quantified the cell retention of MSCCCR2 compared to the MSCdtomato control. Results: MSCCCR2 exhibited significantly enhanced migration to the ischemic lesions and improved the neurological outcomes. Brain edema and blood-brain barrier (BBB) leakage levels were also found to be much lower in the MSCCCR2-treated rats than the MSCdtomato group. Moreover, this BBB protection led to reduced inflammation infiltration and reactive oxygen species (ROS) generation. Similar results were also confirmed using the in vitro BBB model. Furthermore, genome-wide RNA sequencing (RNA-seq) analysis revealed that peroxiredoxin4 (PRDX4) was highly expressed in MSCs, which mainly contributed to their antioxidant impacts on MCAO rats and oxygen-glucose deprivation (OGD)-treated endothelium. Conclusion: Taken together, this study suggests that overexpression of CCR2 on MSCs enhances their targeted migration to the ischemic hemisphere and improves the therapeutic outcomes, which is attributed to the PRDX4-mediated BBB preservation.
Collapse
Affiliation(s)
- Yinong Huang
- Department of Neurology, The Third Affiliated Hospital, Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou, China, 510630
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China, 510080
| | - Jiancheng Wang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China, 510080
| | - Jianye Cai
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China, 510080
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital, Organ Transplantation Institute, Sun Yat-Sen University, Guangzhou, China, 510630
| | - Yuan Qiu
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China, 510080
| | - Haiqing Zheng
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China
| | - Xiaofan Lai
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China, 510080
| | - Xin Sui
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China, 510080
- Department of Surgery Intensive Care Unit, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China
| | - Yi Wang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China, 510080
| | - Qiying Lu
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China, 510080
| | - Yanan Zhang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China, 510080
| | - Meng Yuan
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China, 510080
| | - Jin Gong
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China, 510080
| | - Wei Cai
- Department of Neurology, The Third Affiliated Hospital, Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou, China, 510630
| | - Xin Liu
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China, 510080
| | - Yilong Shan
- Department of Neurology, The Third Affiliated Hospital, Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou, China, 510630
| | - Zhezhi Deng
- Department of Neurology, The Third Affiliated Hospital, Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou, China, 510630
| | - Yue Shi
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China, 510080
| | - Yaqing Shu
- Department of Neurology, The Third Affiliated Hospital, Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou, China, 510630
| | - Lei Zhang
- Department of Neurology, The Fifth Affiliated Hospital, Sun Yat-Sen University, No. 52 Mei Hua East Road, Zhuhai, China, 519000
| | - Wei Qiu
- Department of Neurology, The Third Affiliated Hospital, Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou, China, 510630
| | - Lisheng Peng
- Department of Neurology, The Third Affiliated Hospital, Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou, China, 510630
| | - Jie Ren
- Department of Medical Ultrasonic, Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China
| | - Zhengqi Lu
- Department of Neurology, The Third Affiliated Hospital, Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou, China, 510630
| | - Andy Peng Xiang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China, 510080
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China, 510080
| |
Collapse
|
32
|
Ranganath SH. Bioengineered cellular and cell membrane-derived vehicles for actively targeted drug delivery: So near and yet so far. Adv Drug Deliv Rev 2018; 132:57-80. [PMID: 29935987 DOI: 10.1016/j.addr.2018.06.012] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/31/2018] [Accepted: 06/18/2018] [Indexed: 12/16/2022]
Abstract
Cellular carriers for drug delivery are attractive alternatives to synthetic nanoparticles owing to their innate homing/targeting abilities. Here, we review molecular interactions involved in the homing of Mesenchymal stem cells (MSCs) and other cell types to understand the process of designing and engineering highly efficient, actively targeting cellular vehicles. In addition, we comprehensively discuss various genetic and non-genetic strategies and propose futuristic approaches of engineering MSC homing using micro/nanotechnology and high throughput small molecule screening. Most of the targeting abilities of a cell come from its plasma membrane, thus, efforts to harness cell membranes as drug delivery vehicles are gaining importance and are highlighted here. We also recognize and report the lack of detailed characterization of cell membranes in terms of safety, structural integrity, targeting functionality, and drug transport. Finally, we provide insights on future development of bioengineered cellular and cell membrane-derived vesicles for successful clinical translation.
Collapse
Affiliation(s)
- Sudhir H Ranganath
- Bio-INvENT Lab, Department of Chemical Engineering, Siddaganga Institute of Technology, B.H. Road, Tumakuru, 572103, Karnataka, India.
| |
Collapse
|
33
|
Wang L, Zhu CY, Ma DX, Gu ZY, Xu CC, Wang FY, Chen JG, Liu CJ, Guan LX, Gao R, Gao Z, Fang S, Zhuo DJ, Liu SF, Gao CJ. Efficacy and safety of mesenchymal stromal cells for the prophylaxis of chronic graft-versus-host disease after allogeneic hematopoietic stem cell transplantation: a meta-analysis of randomized controlled trials. Ann Hematol 2018; 97:1941-1950. [PMID: 29947972 DOI: 10.1007/s00277-018-3384-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/24/2018] [Indexed: 12/15/2022]
Abstract
A meta-analysis of randomized controlled trials (RCTs) was conducted to evaluate the efficacy and safety of mesenchymal stromal cells (MSCs) for the prophylaxis of chronic graft-versus-host disease (cGVHD) in patients with hematological malignancies undergoing allogeneic hematopoietic stem cell transplantation (allo-HSCT). Six studies involving 365 patients were included. The pooled results showed that MSCs significantly reduced the incidence of cGVHD (risk ratio [RR] 0.63, 95% confidence interval [CI] 0.46 to 0.86, P = 0.004). Favorable prophylactic effects of MSCs on cGVHD were observed with umbilical cord-derived, high-dose, and late-infusion MSCs, while bone marrow-derived, low-dose, and coinfused MSCs did not confer beneficial prophylactic effects. In addition, MSC infusion did not increase the risk of primary disease relapse and infection (RR 1.02, 95% CI 0.70 to 1.50, P = 0.913; RR 0.89, 95% CI 0.44 to 1.81, P = 0.752; respectively). Moreover, there was an apparent trend toward increased overall survival (OS) in the MSC group compared with that in the control group (RR 1.13, 95% CI 0.98 to 1.29, P = 0.084). In conclusion, this meta-analysis demonstrated that MSC infusion is an effective and safe prophylactic strategy for cGVHD in patients with hematological malignancies undergoing allo-HSCT.
Collapse
Affiliation(s)
- Li Wang
- Department of Hematology, Laoshan Branch of No. 401 Hospital of Chinese People's Liberation Army (PLA), 109 Laoshan Road, Qingdao, 266101, China.,Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Cheng-Ying Zhu
- Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - De-Xun Ma
- Department of Hematology, Laoshan Branch of No. 401 Hospital of Chinese People's Liberation Army (PLA), 109 Laoshan Road, Qingdao, 266101, China
| | - Zhen-Yang Gu
- Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Chang-Chun Xu
- Department of Hematology, Laoshan Branch of No. 401 Hospital of Chinese People's Liberation Army (PLA), 109 Laoshan Road, Qingdao, 266101, China
| | - Fei-Yan Wang
- Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Ji-Gang Chen
- Department of Hematology, Laoshan Branch of No. 401 Hospital of Chinese People's Liberation Army (PLA), 109 Laoshan Road, Qingdao, 266101, China
| | - Cheng-Jun Liu
- Department of Hematology, Laoshan Branch of No. 401 Hospital of Chinese People's Liberation Army (PLA), 109 Laoshan Road, Qingdao, 266101, China
| | - Li-Xun Guan
- Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Rui Gao
- Department of Hematology, Laoshan Branch of No. 401 Hospital of Chinese People's Liberation Army (PLA), 109 Laoshan Road, Qingdao, 266101, China
| | - Zhe Gao
- Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Shu Fang
- Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Du-Jun Zhuo
- Department of Hematology, Laoshan Branch of No. 401 Hospital of Chinese People's Liberation Army (PLA), 109 Laoshan Road, Qingdao, 266101, China
| | - Shu-Feng Liu
- Department of Hematology, Laoshan Branch of No. 401 Hospital of Chinese People's Liberation Army (PLA), 109 Laoshan Road, Qingdao, 266101, China.
| | - Chun-Ji Gao
- Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital, 28 Fuxing Road, Beijing, 100853, China.
| |
Collapse
|
34
|
Wang L, Zhang H, Guan L, Zhao S, Gu Z, Wei H, Gao Z, Wang F, Yang N, Luo L, Li Y, Wang L, Liu D, Gao C. Mesenchymal stem cells provide prophylaxis against acute graft-versus-host disease following allogeneic hematopoietic stem cell transplantation: A meta-analysis of animal models. Oncotarget 2018; 7:61764-61774. [PMID: 27528221 PMCID: PMC5308689 DOI: 10.18632/oncotarget.11238] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 07/28/2016] [Indexed: 02/06/2023] Open
Abstract
A meta-analysis of animal models was conducted to evaluate the prophylactic effects of mesenchymal stem cells (MSCs) on acute graft-versus-host disease (aGVHD) after allogeneic hematopoietic stem cell transplantation. A total of 50 studies involving 1848 animals were included. The pooled results showed that MSCs significantly reduced aGVHD-associated mortality (risk ratio = 0.70, 95% confidence interval 0.62 to 0.79, P = 2.73×10−9) and clinical scores (standardized mean difference = −3.60, 95% confidence interval −4.43 to −2.76, P = 3.61×10−17). In addition, MSCs conferred robust favorable prophylactic effects on aGVHD across recipient species, MSC doses, and administration times, but not MSC sources. Our meta-analysis showed that MSCs significantly prevented mortality and alleviated the clinical manifestations of aGVHD in animal models. These data support further clinical trials aimed at evaluating the efficacy of using MSCs to prevent aGVHD.
Collapse
Affiliation(s)
- Li Wang
- Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China.,Department of Hematology and Oncology, Laoshan Branch, No. 401 Hospital of Chinese PLA, Qingdao, China
| | - Haiyan Zhang
- Department of Hematology, Linyi People's Hospital, Linyi, China
| | - Lixun Guan
- Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Shasha Zhao
- Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Zhenyang Gu
- Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Huaping Wei
- Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Zhe Gao
- Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Feiyan Wang
- Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Nan Yang
- Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Lan Luo
- Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Yonghui Li
- Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Lili Wang
- Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Daihong Liu
- Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Chunji Gao
- Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| |
Collapse
|
35
|
Genetic modification to induce CXCR2 overexpression in mesenchymal stem cells enhances treatment benefits in radiation-induced oral mucositis. Cell Death Dis 2018; 9:229. [PMID: 29445104 PMCID: PMC5833705 DOI: 10.1038/s41419-018-0310-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/26/2017] [Accepted: 01/08/2018] [Indexed: 12/13/2022]
Abstract
Radiation-induced oral mucositis affects patient quality of life and reduces tolerance to cancer therapy. Unfortunately, traditional treatments are insufficient for the treatment of mucositis and might elicit severe side effects. Due to their immunomodulatory and anti-inflammatory properties, the transplantation of mesenchymal stem cells (MSCs) is a potential therapeutic strategy for mucositis. However, systemically infused MSCs rarely reach inflamed sites, impacting their clinical efficacy. Previous studies have demonstrated that chemokine axes play an important role in MSC targeting. By systematically evaluating the expression patterns of chemokines in radiation/chemical-induced oral mucositis, we found that CXCL2 was highly expressed, whereas cultured MSCs negligibly express the CXCL2 receptor CXCR2. Thus, we explored the potential therapeutic benefits of the transplantation of CXCR2-overexpressing MSCs (MSCsCXCR2) for mucositis treatment. Indeed, MSCsCXCR2 exhibited enhanced targeting ability to the inflamed mucosa in radiation/chemical-induced oral mucositis mouse models. Furthermore, we found that MSCCXCR2 transplantation accelerated ulcer healing by suppressing the production of pro-inflammatory chemokines and radiogenic reactive oxygen species (ROS). Altogether, these findings indicate that CXCR2 overexpression in MSCs accelerates ulcer healing, providing new insights into cell-based therapy for radiation/chemical-induced oral mucositis.
Collapse
|
36
|
CXCR3 blockade combined with cyclosporine A alleviates acute graft-versus-host disease by inhibiting alloreactive donor T cell responses in a murine model. Mol Immunol 2017; 94:82-90. [PMID: 29288898 DOI: 10.1016/j.molimm.2017.12.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 11/20/2017] [Accepted: 12/12/2017] [Indexed: 01/28/2023]
Abstract
Chemotaxis of T cells to acute graft-versus-host disease (aGvHD) target tissues directed by chemokines and their receptors plays a key role in the pathogenesis of aGvHD. Blockade of lymphocyte migration by targeting chemokine receptors may be a viable strategy for the prevention and treatment of aGvHD, which is quite distinguishable from typical efforts to use immunosuppressive medications that have been associated with some side effects. CXCR3 and its ligands have been reported to be correlated with aGvHD pathogenesis. Using the small-molecule CXCR3 antagonist AMG487, we demonstrated that AMG487 combined with cyclosporine A (CsA) effectively alleviated aGvHD with a prolonged mean survival time and significantly inhibited the infiltration of inflammatory cells in aGvHD target tissues in a murine aGvHD model. In addition, AMG487 combined with CsA inhibited the activation, proliferation and differentiation of donor-derived T cells in the spleens. Further results showed that the concentrations of Th1 cells associated with pro-inflammatory cytokines such as IFN-γ and TNFα in serum were decreased. In addition, AMG487 treatment did not alter CXCR3 and CCR5 expression in donor-derived T cells but elevated the serum CXCL9 and CXCL10 levels. This novel and effective approach has the potential to develop a new clinical method to prevent and treat aGvHD.
Collapse
|
37
|
CTLA4-CD28 chimera gene modification of T cells enhances the therapeutic efficacy of donor lymphocyte infusion for hematological malignancy. Exp Mol Med 2017; 49:e360. [PMID: 28751785 PMCID: PMC5565951 DOI: 10.1038/emm.2017.104] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 01/26/2017] [Accepted: 01/31/2017] [Indexed: 02/06/2023] Open
Abstract
Donor lymphocyte infusion (DLI) followed by hematopoietic stem cell transplantation has served as an effective prevention/treatment modality against the relapse of some hematologic tumors, such as chronic myeloid leukemia (CML). However, the therapeutic efficacies of DLI for other types of leukemia, including acute lymphocytic leukemia (ALL), have been limited thus far. Therefore, we examined whether increasing the reactivity of donor T cells by gene modification could enhance the therapeutic efficacy of DLI in a murine model of ALL. When a CTLA4-CD28 chimera gene (CTC28) in which the intracellular signaling domain of CTLA4 was replaced with the CD28 signaling domain was introduced into CD4 and CD8 T cells in DLI, the graft-versus-tumor (GVT) effect was significantly increased. This effect was correlated with an increased expansion of donor CD8 T cells in vivo, and the depletion of CD8 T cells abolished this effect. The CD8 T cell expansion and the enhanced GVT effect were dependent on the transduction of both CD4 and CD8 T cells with CTC28, which emphasizes the role of dual modification in this therapeutic effect. The CTC28-transduced T cells that expanded in vivo also exhibited enhanced functionality. Although the potentiation of the GVT effect mediated by the CTC28 gene modification of T cells was accompanied by an increase of graft-versus-host disease (GVHD), the GVHD was not lethal and was mitigated by treatment with IL-10 gene-modified third-party mesenchymal stem cells. Thus, the combined genetic modification of CD4 and CD8 donor T cells with CTC28 could be a promising strategy for enhancing the therapeutic efficacy of DLI.
Collapse
|
38
|
Zhang X, Huang W, Chen X, Lian Y, Wang J, Cai C, Huang L, Wang T, Ren J, Xiang AP. CXCR5-Overexpressing Mesenchymal Stromal Cells Exhibit Enhanced Homing and Can Decrease Contact Hypersensitivity. Mol Ther 2017; 25:1434-1447. [PMID: 28454789 PMCID: PMC5475252 DOI: 10.1016/j.ymthe.2017.04.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 04/02/2017] [Accepted: 04/03/2017] [Indexed: 12/31/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) can modulate inflammation and contribute to tissue regeneration and, thus, have emerged as a promising option for cell-based therapy. However, the ability of MSCs to migrate to injured tissues still needs to be improved. In this study, we investigated whether genetically engineered MSCs could exhibit increased migratory properties and improved therapeutic efficacy. Using a mouse model of contact hypersensitivity (CHS), chemokine gene expression screening revealed that CXCL13 changed most significantly in injured tissue. Unfortunately, MSCs hardly express the corresponding receptor, CXCR5. Thus, CXCR5-overexpressing MSCs (MSCCXCR5) were generated that retained their abilities of proliferation, differentiation, and immunomodulation. Furthermore, MSCCXCR5 showed significantly increased migrating ability toward CXCL13. Importantly, systemic infusion of MSCCXCR5 dramatically suppressed CHS in mice, as evidenced by decreased levels of inflammatory cell infiltration and pro-inflammatory cytokine production. Numerous MSCCXCR5 migrated into inflamed ears, localized with T cells, inhibited T cell proliferation, promoted T cell apoptosis, and suppressed the production of T cell-derived pro-inflammatory factors. Collectively, these findings demonstrate that CXCR5 overexpression increases the ability of MSCs to respond to migratory stimuli and highly intensifies their immunomodulatory effects in vivo. This strategy for enhancing targeted stem/progenitor cell homing may improve the efficacy of MSC-based therapies.
Collapse
Affiliation(s)
- Xiaoran Zhang
- Biotherapy Center, Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510275, China; Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou 510275, China
| | - Weijun Huang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xiaoyong Chen
- Biotherapy Center, Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510275, China; Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yufan Lian
- Department of Medical Ultrasonic, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510275, China
| | - Jiancheng Wang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou 510275, China
| | - Chuang Cai
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou 510275, China
| | - Li Huang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou 510275, China
| | - Tao Wang
- Biotherapy Center, Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jie Ren
- Department of Medical Ultrasonic, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510275, China.
| | - Andy Peng Xiang
- Biotherapy Center, Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510275, China; Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou 510275, China; Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510275, China; Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou 511436, China.
| |
Collapse
|
39
|
LL-37 boosts immunosuppressive function of placenta-derived mesenchymal stromal cells. Stem Cell Res Ther 2016; 7:189. [PMID: 28038684 PMCID: PMC5203704 DOI: 10.1186/s13287-016-0448-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 11/16/2016] [Accepted: 11/23/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Although promising for graft-versus-host disease (GvHD) treatment, MSC therapy still faces important challenges. For instance, increasing MSC migratory capacity as well as potentializing immune response suppression are of interest. For GvHD management, preventing opportunistic infections is also a valuable strategy, since immunocompromised patients are easy targets for infections. LL-37 is a host defense peptide (HDP) that has been deeply investigated due to its immunomodulatory function. In this scenario, the combination of MSC and LL-37 may result in a robust combination to be clinically used. METHODS In the present study, the effects of LL-37 upon the proliferation and migratory capacity of human placenta-derived MSCs (pMSCs) were assessed by MTT and wound scratch assays. The influence of LL-37 over the immunosuppressive function of pMSCs was then investigated using CFSE cell division kit. Flow cytometry and real-time PCR were used to investigate the molecular mechanisms involved in the effects observed. RESULTS LL-37 had no detrimental effects over MSC proliferation and viability, as assessed by MTT assay. Moreover, the peptide promoted increased migratory behavior of pMSCs and enhanced their immunomodulatory function over activated human PBMCs. Strikingly, our data shows that LL-37 treatment leads to increased TLR3 levels, as shown by flow cytometry, and to an increased expression of factors classically related to immunosuppression, namely IDO, IL-10, TGF-β, IL-6, and IL-1β. CONCLUSIONS Taken together, our observations may serve as groundwork for the development of new therapeutic strategies based on the combined use of LL-37 and MSCs, which may provide patients not only with an enhanced immunosuppression regime, but also with an agent to prevent opportunistic infections.
Collapse
|
40
|
Ma T, Luan SL, Huang H, Sun XK, Yang YM, Zhang H, Han WD, Li H, Han Y. Upregulation of CC Chemokine Receptor 7 (CCR7) Enables Migration of Xenogeneic Human Adipose-Derived Mesenchymal Stem Cells to Rat Secondary Lymphoid Organs. Med Sci Monit 2016; 22:5206-5217. [PMID: 28035134 PMCID: PMC5221418 DOI: 10.12659/msm.902690] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Background CC chemokine receptor 7 (CCR7) expression is vital for cell migration to secondary lymphoid organs (SLOs). Our previous work showed that inducing CCR7 expression enabled syngeneic mesenchymal stem cells (MSCs) to migrate into SLOs, resulting in enhanced immunosuppressive performance in mice. Given that human adipose-derived stem cells (hASCs) are widely used in clinical therapy, we further investigated whether upregulation of CCR7 enables xenogeneic hASCs to migrate to rat SLOs. Material/Methods hASCs rarely express CCR7; therefore, hASCs were transfected with lentivirus encoding rat CCR7 (rCCR7) plus green fluorescence protein (GFP) or GFP alone. CCR7 mRNA and cell surface expression of rCCR7-hASCs and GFP-hASCs were examined by reverse transcription-polymerase chain reaction (RT-PCR) and flow cytometry (FCM), respectively. The phenotype, differentiation, and proliferation capacity of each cell type was also determined. To examine migration, rCCR7-hASCs and GFP-hASCs were injected intravenously into Lewis rats, and the proportion of GFP-positive cells in the spleen and lymph nodes was determined with FCM. Results mRNA and cell surface protein expression of CCR7 was essentially undetectable in hASCs and GFP-ASCs; however, CCR7 was highly expressed in rCCR7-ASCs. rCCR7-hASCs, GFP-hASCs, and hASCs shared a similar immunophenotype, and maintained the ability of multilineage differentiation and proliferation. In addition, the average proportion of GFP-positive cells was significantly higher following transplantation of rCCR7-hASCs compared with GFP-hASCs (p<0.01). Conclusions These results suggest that upregulation of rat CCR7 expression does not change the phenotype, differentiation, or proliferation capacity of hASCs, but does enable efficient migration of hASCs to rat SLOs.
Collapse
Affiliation(s)
- Tian Ma
- Department of Plastic and Reconstruction, Chinese PLA General Hospital, Beijing, China (mainland)
| | - Shao-Liang Luan
- Department of Vascular and Endovascular, Chinese PLA General Hospital, Beijing, China (mainland)
| | - Hong Huang
- Institute of Basic Medicine, Chinese PLA General Hospital, Beijing, China (mainland)
| | - Xing-Kun Sun
- Department of Stomatology, General Hospital of Chinese People's Armed Police Forces, Beijing, China (mainland)
| | - Yan-Mei Yang
- Department of Stomatology, Chinese PLA General Hospital, Beijing, China (mainland)
| | - Hui Zhang
- Department of Plastic Surgery, The Second Hospital of ShanXi Medical University, Taiyuan, Shanxi, China (mainland)
| | - Wei-Dong Han
- Department of Molecular Biology, Chinese PLA General Hospital, Beijing, China (mainland)
| | - Hong Li
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Beijing, China (mainland)
| | - Yan Han
- Department of Plastic and Reconstruction, Chinese PLA General Hospital, Beijing, China (mainland)
| |
Collapse
|
41
|
Blanco B, Herrero-Sánchez MDC, Rodríguez-Serrano C, García-Martínez ML, Blanco JF, Muntión S, García-Arranz M, Sánchez-Guijo F, Del Cañizo C. Immunomodulatory effects of bone marrow versus adipose tissue-derived mesenchymal stromal cells on NK cells: implications in the transplantation setting. Eur J Haematol 2016; 97:528-537. [PMID: 27118602 DOI: 10.1111/ejh.12765] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2016] [Indexed: 12/12/2022]
Abstract
INTRODUCTION The ability of mesenchymal stromal cells (MSC) to suppress T-cell function has prompted their therapeutic use for graft-versus-host disease (GVHD) control. However, as MSC also modulate the activity of NK cells, which play an important role in graft-versus-leukemia (GVL) reaction, their administration could hamper this beneficial effect of allogeneic hematopoietic stem cell transplantation. MSC can be expanded from several sources, especially bone marrow and fat, but it is not well established if the cell source makes a difference in their immunoregulatory capacity. OBJECTIVE The aim of this study was to compare the immunomodulatory effect of MSC derived from bone marrow (BM-CSM) or adipose tissue (AT-MSC) on NK cells, to determine whether the use of MSC from one or the other origin could be more favorable to preserve NK cell activity and, therefore, GVL. METHODS Human NK cells were stimulated with IL-15 in the presence of BM-MSC or AT-MSC. The effect of both MSC populations on NK cell proliferation, cell cycle progression, and CD56 expression was analyzed by flow cytometry. Cytokine secretion was measured by ELISA, and cytotoxic activity was assessed by calcein release assays. RESULTS Although both BM-MSC and AT-MSC induced a similar inhibition of NK cell proliferation, only BM-MSC decreased significantly NK cell cytotoxic activity and showed a trend for a higher reduction of IFN-γ secretion. CONCLUSION These results suggest that, in the context of GVHD inhibition, the use of AT-MSC rather than BM-MSC could further preserve NK cell activity and, thus, favor GVL.
Collapse
Affiliation(s)
- Belén Blanco
- Servicio de Hematología, Hospital Universitario de Salamanca - Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - María Del Carmen Herrero-Sánchez
- Servicio de Hematología, Hospital Universitario de Salamanca - Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Concepción Rodríguez-Serrano
- Servicio de Hematología, Hospital Universitario de Salamanca - Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - María Lourdes García-Martínez
- Servicio de Cirugía Plástica, Hospital Universitario de Salamanca - Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Juan F Blanco
- Servicio de Traumatología y Ortopedia, Hospital Universitario de Salamanca - Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Sandra Muntión
- Servicio de Hematología, Hospital Universitario de Salamanca - Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Mariano García-Arranz
- Laboratorio de Terapia Celular, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD) - Universidad Autónoma de Madrid, Madrid, Spain
| | - Fermín Sánchez-Guijo
- Servicio de Hematología, Hospital Universitario de Salamanca - Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Consuelo Del Cañizo
- Servicio de Hematología, Hospital Universitario de Salamanca - Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| |
Collapse
|
42
|
Leovsky C, Fabian C, Naaldijk Y, Jäger C, Jang HJ, Böhme J, Rudolph L, Stolzing A. Biodistribution of in vitro-derived microglia applied intranasally and intravenously to mice: effects of aging. Cytotherapy 2016; 17:1617-26. [PMID: 26432561 DOI: 10.1016/j.jcyt.2015.07.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 07/13/2015] [Accepted: 07/30/2015] [Indexed: 12/28/2022]
Abstract
BACKGROUND AIMS The age of both the donor and the recipient has a potential influence on the efficacy of various cell therapies, but the underlying mechanisms are still being charted. We studied the effect of donor and recipient age in the context of microglia migration. METHODS Microglia were in vitro--differentiated from bone marrow of young (3 months) and aged (12 months) mice and transplanted into young (∼ 3 months) and aged (∼ 17 months) C57BL/6 mice (n = 25) through intravenous and intranasal application routes. Recipients were not immune-suppressed or irradiated. Transplanted microglia were tracked through the use of a sex-mismatched setup or histologically with the use of cells from enhanced green fluorescent protein enhanced green fluorescent protein transgenic mice. RESULTS No acute rejections or transplant-associated toxicity was observed. After 10 days, both intravenously and intranasally transplanted cells were detected in the brain. Transplanted cells were also found in the blood and the lymph system. The applied cells were also tracked in lungs and kidney but only after intravenous injection subjected to a "pulmonary first-pass effect." After 28 days, intravenously delivered cells were also found in the bone marrow and other organs, especially in aged recipients. Whereas in young recipients the transplanted microglia did not appear to persist, in aged brains the transplanted cells could still be identified up to 28 days after transplantation. However, when cells from aged donors were used, no signals of transplanted cells could be detected in the recipients. CONCLUSIONS This study establishes proof of principle that in vitro--derived microglia from young but not from aged donors, intravenously or intranasally transplanted, migrate to the brain in young and aged recipients.
Collapse
Affiliation(s)
| | - Claire Fabian
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany; Translational Centre for Regenerative Medicine (TRM), University of Leipzig, Leipzig, Germany
| | - Yahaira Naaldijk
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany; Translational Centre for Regenerative Medicine (TRM), University of Leipzig, Leipzig, Germany
| | - Carsten Jäger
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | - Hwa Jin Jang
- Korea Ministry of Food and Drug Safety (MFDS), Hangul, Korea
| | - Josephine Böhme
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Lukas Rudolph
- Translational Centre for Regenerative Medicine (TRM), University of Leipzig, Leipzig, Germany
| | - Alexandra Stolzing
- Translational Centre for Regenerative Medicine (TRM), University of Leipzig, Leipzig, Germany; University of Loughborough, Centre for Biological Engineering, Wolfson School of Material and Manufacturing Engineering, Loughborough, United Kingdom.
| |
Collapse
|
43
|
Genetic Engineering of Mesenchymal Stem Cells to Induce Their Migration and Survival. Stem Cells Int 2016; 2016:4956063. [PMID: 27242906 PMCID: PMC4868914 DOI: 10.1155/2016/4956063] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 02/22/2016] [Accepted: 03/14/2016] [Indexed: 12/20/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are very attractive for regenerative medicine due to their relatively easy derivation and broad range of differentiation capabilities, either naturally or induced through cell engineering. However, efficient methods of delivery to diseased tissues and the long-term survival of grafted cells still need improvement. Here, we review genetic engineering approaches designed to enhance the migratory capacities of MSCs, as well as extend their survival after transplantation by the modulation of prosurvival approaches, including prevention of senescence and apoptosis. We highlight some of the latest examples that explore these pivotal points, which have great relevance in cell-based therapies.
Collapse
|
44
|
Dang RJ, Yang YM, Zhang L, Cui DC, Hong B, Li P, Lin Q, Wang Y, Wang QY, Xiao F, Mao N, Wang C, Jiang XX, Wen N. A20 plays a critical role in the immunoregulatory function of mesenchymal stem cells. J Cell Mol Med 2016; 20:1550-60. [PMID: 27028905 PMCID: PMC4956951 DOI: 10.1111/jcmm.12849] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 02/25/2016] [Indexed: 12/19/2022] Open
Abstract
Mesenchymal stem cells (MSCs) possess an immunoregulatory capacity and are a therapeutic target for many inflammation‐related diseases. However, the detailed mechanisms of MSC‐mediated immunosuppression remain unclear. In this study, we provide new information to partly explain the molecular mechanisms of immunoregulation by MSCs. Specifically, we found that A20 expression was induced in MSCs by inflammatory cytokines. Knockdown of A20 in MSCs resulted in increased proliferation and reduced adipogenesis, and partly reversed the suppressive effect of MSCs on T cell proliferation in vitro and inhibited tumour growth in vivo. Mechanistic studies indicated that knockdown of A20 in MSCs inhibited activation of the p38 mitogen‐activated protein kinase (MAPK) pathway, which potently promoted the production of tumour necrosis factor (TNF)‐α and inhibited the production of interleukin (IL)‐10. Collectively, these data reveal a crucial role of A20 in regulating the immunomodulatory activities of MSCs by controlling the expression of TNF‐α and IL‐10 in an inflammatory environment. These findings provide novel insights into the pathogenesis of various inflammatory‐associated diseases, and are a new reference for the future development of treatments for such afflictions.
Collapse
Affiliation(s)
- Rui-Jie Dang
- Department of Stomatology, Chinese PLA General Hospital, Haidian District, Beijing, China.,Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences, Haidian District, Beijing, China
| | - Yan-Mei Yang
- Department of Stomatology, Chinese PLA General Hospital, Haidian District, Beijing, China.,Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences, Haidian District, Beijing, China
| | - Lei Zhang
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences, Haidian District, Beijing, China.,Department of Biology and Chemical Engineering, Tongren University, Tongren City, Guizhou, China
| | - Dian-Chao Cui
- Department of Anesthesiology, Beijing Aiyuhua Hospital for Children and Women, Beijing, China
| | - Bangxing Hong
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
| | - Ping Li
- Department of Stomatology, Chinese PLA General Hospital, Haidian District, Beijing, China.,Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences, Haidian District, Beijing, China
| | - Qiuxia Lin
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences, Haidian District, Beijing, China
| | - Yan Wang
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences, Haidian District, Beijing, China
| | - Qi-Yu Wang
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences, Haidian District, Beijing, China
| | - Fengjun Xiao
- Department of Experimental Hematology, Institute of Radiation Medicine, Beijing, China
| | - Ning Mao
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences, Haidian District, Beijing, China
| | - Changyong Wang
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences, Haidian District, Beijing, China
| | - Xiao-Xia Jiang
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences, Haidian District, Beijing, China
| | - Ning Wen
- Department of Stomatology, Chinese PLA General Hospital, Haidian District, Beijing, China
| |
Collapse
|
45
|
Gao F, Chiu SM, Motan DAL, Zhang Z, Chen L, Ji HL, Tse HF, Fu QL, Lian Q. Mesenchymal stem cells and immunomodulation: current status and future prospects. Cell Death Dis 2016; 7:e2062. [PMID: 26794657 PMCID: PMC4816164 DOI: 10.1038/cddis.2015.327] [Citation(s) in RCA: 820] [Impact Index Per Article: 91.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 09/13/2015] [Accepted: 09/25/2015] [Indexed: 12/11/2022]
Abstract
The unique immunomodulatory properties of mesenchymal stem cells (MSCs) make them an invaluable cell type for the repair of tissue/ organ damage caused by chronic inflammation or autoimmune disorders. Although they hold great promise in the treatment of immune disorders such as graft versus host disease (GvHD) and allergic disorders, there remain many challenges to overcome before their widespread clinical application. An understanding of the biological properties of MSCs will clarify the mechanisms of MSC-based transplantation for immunomodulation. In this review, we summarize the preclinical and clinical studies of MSCs from different adult tissues, discuss the current hurdles to their use and propose the future development of pluripotent stem cell-derived MSCs as an approach to immunomodulation therapy.
Collapse
Affiliation(s)
- F Gao
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - S M Chiu
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - D A L Motan
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Z Zhang
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - L Chen
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - H-L Ji
- Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, Texas 75708, USA
| | - H-F Tse
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Q-L Fu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Q Lian
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong.,Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| |
Collapse
|
46
|
Galipeau J, Krampera M, Barrett J, Dazzi F, Deans RJ, DeBruijn J, Dominici M, Fibbe WE, Gee AP, Gimble JM, Hematti P, Koh MBC, LeBlanc K, Martin I, McNiece IK, Mendicino M, Oh S, Ortiz L, Phinney DG, Planat V, Shi Y, Stroncek DF, Viswanathan S, Weiss DJ, Sensebe L. International Society for Cellular Therapy perspective on immune functional assays for mesenchymal stromal cells as potency release criterion for advanced phase clinical trials. Cytotherapy 2015; 18:151-9. [PMID: 26724220 DOI: 10.1016/j.jcyt.2015.11.008] [Citation(s) in RCA: 371] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 11/17/2015] [Accepted: 11/17/2015] [Indexed: 02/08/2023]
Abstract
Mesenchymal stromal cells (MSCs) as a pharmaceutical for ailments characterized by pathogenic autoimmune, alloimmune and inflammatory processes now cover the spectrum of early- to late-phase clinical trials in both industry and academic sponsored studies. There is a broad consensus that despite different tissue sourcing and varied culture expansion protocols, human MSC-like cell products likely share fundamental mechanisms of action mediating their anti-inflammatory and tissue repair functionalities. Identification of functional markers of potency and reduction to practice of standardized, easily deployable methods of measurements of such would benefit the field. This would satisfy both mechanistic research as well as development of release potency assays to meet Regulatory Authority requirements for conduct of advanced clinical studies and their eventual registration. In response to this unmet need, the International Society for Cellular Therapy (ISCT) addressed the issue at an international workshop in May 2015 as part of the 21st ISCT annual meeting in Las Vegas. The scope of the workshop was focused on discussing potency assays germane to immunomodulation by MSC-like products in clinical indications targeting immune disorders. We here provide consensus perspective arising from this forum. We propose that focused analysis of selected MSC markers robustly deployed by in vitro licensing and metricized with a matrix of assays should be responsive to requirements from Regulatory Authorities. Workshop participants identified three preferred analytic methods that could inform a matrix assay approach: quantitative RNA analysis of selected gene products; flow cytometry analysis of functionally relevant surface markers and protein-based assay of secretome. We also advocate that potency assays acceptable to the Regulatory Authorities be rendered publicly accessible in an "open-access" manner, such as through publication or database collection.
Collapse
Affiliation(s)
- Jacques Galipeau
- Department of Hematology and Medical Oncology, Winship Cancer Institute, and Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA.
| | - Mauro Krampera
- Section of Hematology, Stem Cell Research Laboratory and Cell Factory, Department of Medicine, University of Verona, Verona, Italy
| | - John Barrett
- Stem Cell Allotransplantation Section, Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Francesco Dazzi
- Regenerative and Heamatological Medicine, King's College London, London, UK
| | - Robert J Deans
- Regenerative Medicine, Athersys Inc., Cleveland, OH, USA
| | - Joost DeBruijn
- School of Engineering and Materials Science, Queen Mary University of London, London, UK
| | - Massimo Dominici
- Department of Medical and Surgical Sciences for Children and Adults, Division of Oncology, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Willem E Fibbe
- Department of Immunohematology and Bloodtransfusion, Leiden University Medical Centre, Leiden, Netherlands
| | - Adrian P Gee
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, Texas Children's Hospital, Houston, TX, USA
| | - Jeffery M Gimble
- Center for Stem Cell Research and Regenerative Medicine, Department of Medicine, and Department of Surgery, Tulane University School of Medicine, New Orleans, LA, USA
| | - Peiman Hematti
- Department of Medicine, University of Wisconsin-Madison, School of Medicine and Public Health, and University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | - Mickey B C Koh
- Department of Haematology, St George's Hospital and Medical School, London, UK; Blood Services Group, Health Sciences Authority, Singapore
| | - Katarina LeBlanc
- Division of Clinical Immunology and Transfusion Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ivan Martin
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Ian K McNiece
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | | | - Steve Oh
- Stem Cell Group, Bioprocessing Technology Institute, Agency for Science Technology and Research (A*STAR), Singapore
| | - Luis Ortiz
- Division of Occupational and Environmental Health Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Donald G Phinney
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, FL, USA
| | - Valerie Planat
- IFR150 STROMALab UMR 5273 UPS-CNRS-EFS-INSERM U1031, Toulouse, France
| | - Yufang Shi
- Institute of Health Sciences, Chinese Academy of Sciences, Shanghai, China; The First Affiliated Hospital, Soochow University Institutes for Translational Medicine, Suzhou, China
| | - David F Stroncek
- Cell Processing Section, Department of Transfusion Medicine Clinical Center, NIH, Bethesda, MD, USA
| | | | - Daniel J Weiss
- Department of Medicine, University of Vermont College of Medicine, Burlington, VT, USA
| | - Luc Sensebe
- UMR5273 STROMALab CNRS/EFS/UPS-INSERM U1031, Toulouse, France
| |
Collapse
|
47
|
Luz-Crawford P, Torres MJ, Noël D, Fernandez A, Toupet K, Alcayaga-Miranda F, Tejedor G, Jorgensen C, Illanes SE, Figueroa FE, Djouad F, Khoury M. The immunosuppressive signature of menstrual blood mesenchymal stem cells entails opposite effects on experimental arthritis and graft versus host diseases. Stem Cells 2015; 34:456-69. [DOI: 10.1002/stem.2244] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 09/09/2015] [Accepted: 09/14/2015] [Indexed: 12/14/2022]
Affiliation(s)
- Patricia Luz-Crawford
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de Los Andes; Santiago Chile
- Inserm, U1183; Montpellier France
- University Montpellier; Montpellier France
| | - Maria J. Torres
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de Los Andes; Santiago Chile
| | - Daniele Noël
- Inserm, U1183; Montpellier France
- University Montpellier; Montpellier France
| | - Ainoa Fernandez
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de Los Andes; Santiago Chile
- Cells for Cells; Santiago Chile
| | - Karine Toupet
- Inserm, U1183; Montpellier France
- University Montpellier; Montpellier France
| | - Francisca Alcayaga-Miranda
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de Los Andes; Santiago Chile
- Cells for Cells; Santiago Chile
| | - Gautier Tejedor
- Inserm, U1183; Montpellier France
- University Montpellier; Montpellier France
| | - Christian Jorgensen
- Inserm, U1183; Montpellier France
- University Montpellier; Montpellier France
- Clinical Immunology and Osteoarticular Diseases Therapeutic Unit, Lapeyronie University Hospital; Montpellier France
| | - Sebastian E. Illanes
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de Los Andes; Santiago Chile
| | - Fernando E. Figueroa
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de Los Andes; Santiago Chile
| | - Farida Djouad
- Inserm, U1183; Montpellier France
- University Montpellier; Montpellier France
| | - Maroun Khoury
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de Los Andes; Santiago Chile
- Cells for Cells; Santiago Chile
| |
Collapse
|
48
|
Organ-specific migration of mesenchymal stromal cells: Who, when, where and why? Immunol Lett 2015; 168:159-69. [DOI: 10.1016/j.imlet.2015.06.019] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 06/17/2015] [Accepted: 06/23/2015] [Indexed: 12/13/2022]
|
49
|
Auletta JJ, Eid SK, Wuttisarnwattana P, Silva I, Metheny L, Keller MD, Guardia-Wolff R, Liu C, Wang F, Bowen T, Lee Z, Solchaga LA, Ganguly S, Tyler M, Wilson DL, Cooke KR. Human mesenchymal stromal cells attenuate graft-versus-host disease and maintain graft-versus-leukemia activity following experimental allogeneic bone marrow transplantation. Stem Cells 2015; 33:601-14. [PMID: 25336340 DOI: 10.1002/stem.1867] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 09/08/2014] [Accepted: 09/29/2014] [Indexed: 12/22/2022]
Abstract
We sought to define the effects and underlying mechanisms of human, marrow-derived mesenchymal stromal cells (hMSCs) on graft-versus-host disease (GvHD) and graft-versus-leukemia (GvL) activity. Irradiated B6D2F1 mice given C57BL/6 BM and splenic T cells and treated with hMSCs had reduced systemic GvHD, donor T-cell expansion, and serum TNFα and IFNγ levels. Bioluminescence imaging demonstrated that hMSCs redistributed from lungs to abdominal organs within 72 hours, and target tissues harvested from hMSC-treated allogeneic BMT (alloBMT) mice had less GvHD than untreated controls. Cryoimaging more precisely revealed that hMSCs preferentially distributed to splenic marginal zones and regulated T-cell expansion in the white pulp. Importantly, hMSCs had no effect on in vitro cytotoxic T-cell activity and preserved potent GvL effects in vivo. Mixed leukocyte cultures containing hMSCs exhibited decreased T-cell proliferation, reduced TNFα, IFNγ, and IL-10 but increased PGE2 levels. Indomethacin and E-prostanoid 2 (EP2) receptor antagonisms both reversed while EP2 agonism restored hMSC-mediated in vitro T-cell suppression, confirming the role for PGE2 . Furthermore, cyclo-oxygenase inhibition following alloBMT abrogated the protective effects of hMSCs. Together, our data show that hMSCs preserve GvL activity and attenuate GvHD and reveal that hMSC biodistribute to secondary lymphoid organs wherein they attenuate alloreactive T-cell proliferation likely through PGE2 induction.
Collapse
Affiliation(s)
- Jeffery J Auletta
- Host Defense Program, Hematology/Oncology/BMT and Infectious Diseases, Nationwide Children's Hospital, Columbus, Ohio, USA; Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
De Becker A, Van Riet I. Mesenchymal Stromal Cell Therapy in Hematology: From Laboratory to Clinic and Back Again. Stem Cells Dev 2015; 24:1713-1729. [PMID: 25923433 DOI: 10.1089/scd.2014.0564] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
There is currently major interest to use mesenchymal stromal cells (MSCs) for a very diverse range of therapeutic applications. This stems mainly from the immunosuppressive qualities and differentiation capacity of these cells. In this review, we focus on cell therapy applications for MSCs in hematology. In this domain, MSCs are used for the treatment or prevention of graft-versus-host disease, support of hematopoiesis, or repair of tissue toxicities after hematopoietic cell transplantation. We critically review the accumulating clinical data and elaborate on complications that might arise from treatment with MSCs. In addition, we assume that the real clinical benefit of using MSCs for these purposes can only be estimated by a better understanding of the influence of in vitro expansion on the biological properties of these cells as well as by more harmonization of the currently used expansion protocols.
Collapse
Affiliation(s)
- Ann De Becker
- Stem Cell Laboratory, Department Clinical Hematology, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel (VUB) , Brussel, Belgium
| | - Ivan Van Riet
- Stem Cell Laboratory, Department Clinical Hematology, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel (VUB) , Brussel, Belgium
| |
Collapse
|