1
|
Li M, Suzuki K, Wang M, Benner C, Ku M, Ma L, Kobari L, Kim NY, Montserrat N, Chang CJ, Liu G, Qu J, Xu J, Zhang Y, Aizawa E, Wu J, Douay L, Esteban CR, Belmonte JCI. Dynamic WNT signaling controls differentiation of hematopoietic progenitor cells from human pluripotent stem cells. SCIENCE CHINA. LIFE SCIENCES 2025:10.1007/s11427-024-2816-0. [PMID: 40080269 DOI: 10.1007/s11427-024-2816-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 12/11/2024] [Indexed: 03/15/2025]
Abstract
Human pluripotent stem cells (hPSCs) can in theory give rise to any hematopoietic lineages, thereby offering opportunities for disease modeling, drug screening and cell therapies. However, gaps in our knowledge of the signaling requirements for the specification of human hematopoietic stem/progenitor cells (HSPCs), which lie at the apex of all hematopoietic lineages, greatly limit the potential of hPSC in hematological research and application. Transcriptomic analysis reveals aberrant regulation of WNT signaling during maturation of hPSC-derived hematopoietic progenitor cells (hPSC-HPCs), which results in higher mitochondria activity, misregulation of HOX genes, loss of self-renewal and precocious differentiation. These defects are partly due to the activation of the WNT target gene CDX2. Late-stage WNT inhibition improves the yield, self-renewal, multilineage differentiation, and transcriptional and metabolic profiles of hPSC-HPCs. Genome-wide mapping of transcription factor (TF) accessible chromatin reveals a significant overrepresentation of myeloid TF binding motifs in hPSC-HPCs, which could underlie their myeloid-biased lineage potential. Together our findings uncover a previously unappreciated dynamic requirement of the WNT signaling pathway during the specification of human HSPCs. Modulating the WNT pathway with small molecules normalizes the molecular differences between hPSC-HPCs and endogenous hematopoietic stem cells (HSCs), thereby representing a promising approach to improve the differentiation and function of hPSC-HPCs.
Collapse
Affiliation(s)
- Mo Li
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.
- KAUST Center of Excellence for Smart Health (KCSH), Thuwal, 23955-6900, Kingdom of Saudi Arabia.
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, 92037, USA.
| | - Keiichiro Suzuki
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, 92037, USA
- Institute for Advanced Co-Creation Studies, Osaka University, Osaka, 560-8531, Japan
| | - Mengge Wang
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
- KAUST Center of Excellence for Smart Health (KCSH), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Christopher Benner
- Integrative Genomics and Bioinformatics Core, Salk Institute for Biological Studies, La Jolla, 92037, USA
| | - Manching Ku
- Next Generation Sequencing Core, Salk Institute for Biological Studies, La Jolla, 92037, USA
| | - Li Ma
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, 92037, USA
| | - Ladan Kobari
- Prolifération et Différentiation des Cellules Souches, UPMC Univ Paris 06, UMR_S938 CDR Saint-Antoine, Paris, F-75012, France
- Prolifération et Différentiation des Cellules Souches, INSERM, UMR_S938, Paris, F-75012, France
| | - Na Young Kim
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, 92037, USA
| | - Nuria Montserrat
- Center for Regenerative Medicine in Barcelona, Barcelona, 08003, Spain
| | - Chan-Jung Chang
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, 92037, USA
| | - Guanghui Liu
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, 92037, USA
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jing Qu
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, 92037, USA
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jinna Xu
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
- KAUST Center of Excellence for Smart Health (KCSH), Thuwal, 23955-6900, Kingdom of Saudi Arabia
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, 92037, USA
| | - Yingzi Zhang
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Emi Aizawa
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, 92037, USA
| | - Jun Wu
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, 92037, USA
| | - Luc Douay
- Prolifération et Différentiation des Cellules Souches, UPMC Univ Paris 06, UMR_S938 CDR Saint-Antoine, Paris, F-75012, France
- Unité d'Ingénierie et de Thérapie Cellulaire, EFS Ile de France, Créteil, F-94017, France
- Service d'Hématologie et immunologie biologique, AP-HP Hôpital Saint Antoine/Armand Trousseau, Paris, F-75012, France
| | - Concepcion Rodriguez Esteban
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, 92037, USA
- Altos Labs, San Diego, 92122, USA
| | - Juan Carlos Izpisua Belmonte
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, 92037, USA.
- Altos Labs, San Diego, 92122, USA.
| |
Collapse
|
2
|
Mesquita Peixoto M, Soares-da-Silva F, Bonnet V, Zhou Y, Ronteix G, Santos RF, Mailhe MP, Nogueira G, Feng X, Pereira JP, Azzoni E, Anselmi G, de Bruijn MF, Perkins A, Baroud CN, Pinto-do-Ó P, Cumano A. Spatiotemporal dynamics of fetal liver hematopoietic niches. J Exp Med 2025; 222:e20240592. [PMID: 39775824 PMCID: PMC11706214 DOI: 10.1084/jem.20240592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 11/04/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Embryonic hematopoietic cells develop in the fetal liver (FL), surrounded by diverse non-hematopoietic stromal cells. However, the spatial organization and cytokine production patterns of the stroma during FL development remain poorly understood. Here, we characterized and mapped the hematopoietic and stromal cell populations at early (E12.5-14.5) FL stages, revealing that while hepatoblasts were the primary source of hematopoietic growth factors, other stromal cells-including mesenchymal, mesothelial, and endothelial cells-also contributed to this signaling network. Using a dedicated image analysis pipeline, we quantified cell distances to tissue structures and defined neighbor relationships, uncovering that different hematopoietic progenitors exhibit distinct preferences for neighboring stromal cells and show developmental changes in spatial distribution. Notably, our data suggest that the sub-mesothelium region plays a prominent role in early fetal hematopoiesis. This approach offers a valuable tool for studying complex cellular interactions in biological systems, providing new insights into hematopoietic niche organization during development.
Collapse
Affiliation(s)
- Márcia Mesquita Peixoto
- Immunology Department, Unit of Lymphocytes and Immunity, Institut Pasteur, Paris, France
- INSERM U1223, Paris, France
- i3S – Instituto de Investigação e Inovação em Saúde & INEB – Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- Abel Salazar Biomedical Sciences Institute, University of Porto, Porto, Portugal
- Université Paris Cité, Cellule Pasteur, Paris, France
| | - Francisca Soares-da-Silva
- Immunology Department, Unit of Lymphocytes and Immunity, Institut Pasteur, Paris, France
- INSERM U1223, Paris, France
- Université Paris Cité, Cellule Pasteur, Paris, France
| | - Valentin Bonnet
- Physical Microfluidics and Bioengineering, Institut Pasteur, Université Paris Cité, Paris, France
- Laboratoire d’Hydrodynamique, Centre National de la Recherche Scientifique, École Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Yanping Zhou
- Immunology Department, Unit of Lymphocytes and Immunity, Institut Pasteur, Paris, France
- INSERM U1223, Paris, France
- Université Paris Cité, Cellule Pasteur, Paris, France
| | - Gustave Ronteix
- Physical Microfluidics and Bioengineering, Institut Pasteur, Université Paris Cité, Paris, France
- Laboratoire d’Hydrodynamique, Centre National de la Recherche Scientifique, École Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Rita Faria Santos
- i3S – Instituto de Investigação e Inovação em Saúde & INEB – Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- Abel Salazar Biomedical Sciences Institute, University of Porto, Porto, Portugal
| | - Marie-Pierre Mailhe
- Immunology Department, Unit of Lymphocytes and Immunity, Institut Pasteur, Paris, France
- INSERM U1223, Paris, France
- Université Paris Cité, Cellule Pasteur, Paris, France
| | - Gonçalo Nogueira
- Immunology Department, Unit of Lymphocytes and Immunity, Institut Pasteur, Paris, France
- INSERM U1223, Paris, France
- Université Paris Cité, Cellule Pasteur, Paris, France
| | - Xing Feng
- Department of Immunobiology and Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA
| | - João Pedro Pereira
- Department of Immunobiology and Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA
| | - Emanuele Azzoni
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Giorgio Anselmi
- Radcliffe Department of Medicine, MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Marella F.T.R. de Bruijn
- Radcliffe Department of Medicine, MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Archibald Perkins
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Charles N. Baroud
- Physical Microfluidics and Bioengineering, Institut Pasteur, Université Paris Cité, Paris, France
- Laboratoire d’Hydrodynamique, Centre National de la Recherche Scientifique, École Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Perpétua Pinto-do-Ó
- i3S – Instituto de Investigação e Inovação em Saúde & INEB – Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- Abel Salazar Biomedical Sciences Institute, University of Porto, Porto, Portugal
| | - Ana Cumano
- Immunology Department, Unit of Lymphocytes and Immunity, Institut Pasteur, Paris, France
- INSERM U1223, Paris, France
- Université Paris Cité, Cellule Pasteur, Paris, France
| |
Collapse
|
3
|
Liang G, Liu S, Zhou C, Liu M, Zhang Y, Ma D, Wang L, Han JDJ, Liu F. Conversion of placental hemogenic endothelial cells to hematopoietic stem and progenitor cells. Cell Discov 2025; 11:9. [PMID: 39875377 PMCID: PMC11775181 DOI: 10.1038/s41421-024-00760-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 12/11/2024] [Indexed: 01/30/2025] Open
Abstract
Hematopoietic stem and progenitor cells (HSPCs) are critical for the treatment of blood diseases in clinic. However, the limited source of HSPCs severely hinders their clinical application. In the embryo, hematopoietic stem cells (HSCs) arise from hemogenic endothelial (HE) cells lining the major arteries in vivo. In this work, by engineering vascular niche endothelial cells (VN-ECs), we generated functional HSPCs in vitro from ECs at various sites, including the aorta-gonad-mesonephros (AGM) region and the placenta. Firstly, we converted mouse embryonic HE cells from the AGM region (aHE) into induced HSPCs (iHSPCs), which have the abilities for multilineage differentiation and self-renewal. Mechanistically, we found that VN-ECs can promote the generation of iHSPCs via secretion of CX3CL1 and IL1A. Next, through VN-EC co-culture, we showed that placental HE (pHE) cells, a type of extra-embryonic HE cells, were successfully converted into iHSPCs (pHE-iHSPCs), which have multilineage differentiation capacity, but exhibit limited self-renewal ability. Furthermore, comparative transcriptome analysis of aHE-iHSPCs and pHE-iHSPCs showed that aHE-iHSPCs highly expressed HSC-specific and self-renewal-related genes. Moreover, experimental validation showed that retinoic acid (RA) treatment promoted the transformation of pHE cells into iHSPCs that have self-renewal ability. Collectively, our results suggested that pHE cells possess the potential to transform into self-renewing iHSPCs through RA treatment, which will facilitate the clinical application of placental endothelial cells in hematopoietic cell generation.
Collapse
Affiliation(s)
- Guixian Liang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Shicheng Liu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chunyu Zhou
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, China
| | - Mengyao Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yifan Zhang
- School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Dongyuan Ma
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lu Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Jing-Dong J Han
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, China.
| | - Feng Liu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- School of Life Sciences, Shandong University, Qingdao, Shandong, China.
| |
Collapse
|
4
|
Boueya IL, Sandhow L, Albuquerque JRP, Znaidi R, Passaro D. Endothelial heterogeneity in bone marrow: insights across development, adult life and leukemia. Leukemia 2025; 39:8-24. [PMID: 39528790 PMCID: PMC11717709 DOI: 10.1038/s41375-024-02453-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/04/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
The central role of the endothelial microenvironment in orchestrating bone marrow (BM) homeostasis and hematopoietic support has been confirmed at various developmental stages and in adult life. The BM vasculature is crucial in mediating communication between BM parenchyma and circulating blood, displaying remarkable heterogeneity in structure and function. While vascular cell diversity in other tissues has long been recognized, the molecular basis of this phenomenon in BM is just now emerging. Over the past decade, single-cell approaches and microscopic observations have expanded our understanding of BM vasculature. While solely characterized for their paracrine properties in the past, recent advances have revolutionized our perception of endothelial function, revealing distinct anatomical locations associated with diverse endothelial cell states. The identification of phenotypic differences between normal and pathological conditions has therefore deepened our understanding of vascular dynamics and their impact on hematopoiesis in health and disease. In this review, we highlight key milestones and recent advances in understanding vascular heterogeneity within BM microenvironment during development, adulthood and aging. We also explore how leukemia affects this heterogeneity and how we can take this knowledge forward to improve clinical practices. By synthesizing existing literature, we aim to address unresolved questions and outline future research directions.
Collapse
Affiliation(s)
- I L Boueya
- Leukemia and Niche Dynamics laboratory, Institut Cochin, Université Paris Cité UMR-S1016, INSERM U1016, CNRS UMR8104, Paris, France
| | - L Sandhow
- Leukemia and Niche Dynamics laboratory, Institut Cochin, Université Paris Cité UMR-S1016, INSERM U1016, CNRS UMR8104, Paris, France
| | - J R P Albuquerque
- Leukemia and Niche Dynamics laboratory, Institut Cochin, Université Paris Cité UMR-S1016, INSERM U1016, CNRS UMR8104, Paris, France
| | - R Znaidi
- Leukemia and Niche Dynamics laboratory, Institut Cochin, Université Paris Cité UMR-S1016, INSERM U1016, CNRS UMR8104, Paris, France
| | - D Passaro
- Leukemia and Niche Dynamics laboratory, Institut Cochin, Université Paris Cité UMR-S1016, INSERM U1016, CNRS UMR8104, Paris, France.
| |
Collapse
|
5
|
Zhang H, Hansen M, Di Summa F, Von Lindern M, Gillemans N, Van IJcken WFJ, Svendsen AF, Philipsen S, Van der Reijden B, Varga E, Van den Akker E. LSD1/KDM1A and GFI1B repress endothelial fate and induce hematopoietic fate in induced pluripotent stem cell-derived hemogenic endothelium. Haematologica 2024; 109:3975-3988. [PMID: 38961746 PMCID: PMC11609818 DOI: 10.3324/haematol.2024.285214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/24/2024] [Indexed: 07/05/2024] Open
Abstract
Differentiation of induced pluripotent stem cells (iPSC) into hematopoietic lineages offers great therapeutic potential. During embryogenesis, hemogenic endothelium (HE) gives rise to hematopoietic stem and progenitor cells through the endothelial- to-hematopoietic transition (EHT). Understanding this process using iPSC is key to generating functional hematopoietic stem cells (HSC), a currently unmet challenge. In this study, we examined the role of the transcriptional factor GFI1B and its co-factor LSD1/KDM1A in EHT. To this end, we employed patient-derived iPSC lines with a dominant-negative dysfunctional GFI1B Q287* and irreversible pharmacological LSD1/KDM1A inhibition in healthy iPSC lines. The formation of HE remained unaffected; however, hematopoietic output was severely reduced in both conditions. Single-cell RNA sequencing (scRNAseq) performed on the CD144+/CD31+ population derived from healthy iPSC revealed similar expression dynamics of genes associated with in vivo EHT. Interestingly, LSD1/KDM1A inhibition in healthy lines before EHT resulted in a complete absence of hematopoietic output. However, uncommitted HE cells did not display GFI1B expression, suggesting a timed transcriptional program. To test this hypothesis, we ectopically expressed GFI1B in uncommitted HE cells, leading to downregulation of endothelial genes and upregulation of hematopoietic genes, including GATA2, KIT, RUNX1, and SPI1. Thus, we demonstrate that LSD1/KDM1A and GFI1B can function at distinct temporal points in different cellular subsets during EHT. Although GFI1B is not detected in uncommitted HE cells, its ectopic expression allows for partial hematopoietic specification. These data indicate that precisely timed expression of specific transcriptional regulators during EHT is crucial to the eventual outcome of EHT.
Collapse
Affiliation(s)
- Huan Zhang
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam
| | - Marten Hansen
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam
| | - Franca Di Summa
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam
| | - Marieke Von Lindern
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam
| | | | | | | | | | - Bert Van der Reijden
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen
| | - Eszter Varga
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam
| | - Emile Van den Akker
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam.
| |
Collapse
|
6
|
Nobuhisa I, Melig G, Taga T. Sox17 and Other SoxF-Family Proteins Play Key Roles in the Hematopoiesis of Mouse Embryos. Cells 2024; 13:1840. [PMID: 39594589 PMCID: PMC11593047 DOI: 10.3390/cells13221840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/23/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
During mouse development, hematopoietic cells first form in the extraembryonic tissue yolk sac. Hematopoietic stem cells (HSCs), which retain their ability to differentiate into hematopoietic cells for a long time, form intra-aortic hematopoietic cell clusters (IAHCs) in the dorsal aorta at midgestation. These IAHCs emerge from the hemogenic endothelium, which is the common progenitor of hematopoietic cells and endothelial cells. HSCs expand in the fetal liver, and finally migrate to the bone marrow (BM) during the peripartum period. IAHCs are absent in the dorsal aorta in mice deficient in transcription factors such as Runx-1, GATA2, and c-Myb that are essential for definitive hematopoiesis. In this review, we focus on the transcription factor Sry-related high mobility group (HMG)-box (Sox) F family of proteins that is known to regulate hematopoiesis in the hemogenic endothelium and IAHCs. The SoxF family is composed of Sox7, Sox17, and Sox18, and they all have the HMG box, which has a DNA-binding ability, and a transcriptional activation domain. Here, we describe the functional and phenotypic properties of SoxF family members, with a particular emphasis on Sox17, which is the most involved in hematopoiesis in the fetal stages considering that enhanced expression of Sox17 in hemogenic endothelial cells and IAHCs leads to the production and maintenance of HSCs. We also discuss SoxF-inducing signaling pathways.
Collapse
Affiliation(s)
- Ikuo Nobuhisa
- Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan;
- Department of Nutritional Sciences, Faculty of Nutritional Sciences, Nakamura Gakuen University, 5-7-1 Befu, Jonan-ku, Fukuoka 814-0198, Japan
- Department of Stem Cell Regulation, Medical Research Laboratory, Institute of Science Tokyo, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Gerel Melig
- Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan;
- Department of Stem Cell Regulation, Medical Research Laboratory, Institute of Science Tokyo, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Tetsuya Taga
- Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan;
- Department of Stem Cell Regulation, Medical Research Laboratory, Institute of Science Tokyo, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| |
Collapse
|
7
|
Hou S, Guo X, Du J, Ding X, Ning X, Wang H, Chen H, Liu B, Lan Y. New insights into the endothelial origin of hematopoietic system inspired by "TIF" approaches. BLOOD SCIENCE 2024; 6:e00199. [PMID: 39027902 PMCID: PMC11254119 DOI: 10.1097/bs9.0000000000000199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 05/07/2024] [Indexed: 07/20/2024] Open
Abstract
Hematopoietic stem progenitor cells (HSPCs) are derived from a specialized subset of endothelial cells named hemogenic endothelial cells (HECs) via a process of endothelial-to-hematopoietic transition during embryogenesis. Recently, with the usage of multiple single-cell technologies and advanced genetic lineage tracing techniques, namely, "TIF" approaches that combining transcriptome, immunophenotype and function/fate analyses, massive new insights have been achieved regarding the cellular and molecular evolution underlying the emergence of HSPCs from embryonic vascular beds. In this review, we focus on the most recent advances in the enrichment markers, functional characteristics, developmental paths, molecular controls, and the embryonic site-relevance of the key intermediate cell populations bridging embryonic vascular and hematopoietic systems, namely HECs and pre-hematopoietic stem cells, the immediate progenies of some HECs, in mouse and human embryos. Specifically, using expression analyses at both transcriptional and protein levels and especially efficient functional assays, we propose that the onset of Kit expression is at the HEC stage, which has previously been controversial.
Collapse
Affiliation(s)
- Siyuan Hou
- Medical Innovation Research Division, Chinese PLA General Hospital, Beijing, China
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xia Guo
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Junjie Du
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- Chinese PLA Medical School, Chinese PLA General Hospital, Beijing, China
| | - Xiaochen Ding
- Medical Innovation Research Division, Chinese PLA General Hospital, Beijing, China
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiaowei Ning
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Haizhen Wang
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Haifeng Chen
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Bing Liu
- Medical Innovation Research Division, Chinese PLA General Hospital, Beijing, China
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Yu Lan
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
8
|
Luff SA, Fernandez NA, Sturgeon CM, Ditadi A. Generation of functionally distinct hemogenic endothelial cell populations from pluripotent stem cells. Exp Hematol 2024; 138:104587. [PMID: 39074529 DOI: 10.1016/j.exphem.2024.104587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 07/31/2024]
Abstract
A diverse array of protocols have been established for the directed differentiation of human pluripotent stem cells (hPSCs) into a variety of cell types, including blood cells, for modeling development and disease, and for the development of cell-based therapeutics. These protocols recapitulate various signaling requirements essential for the establishment of the hematopoietic systems during embryonic development. However, in many instances, the functional properties of those progenitors, and their relevance to human development, remains unclear. The human embryo, much like other vertebrate model organisms, generates hematopoietic cells via successive anatomical location- and time-specific waves, each yielding cells with distinct functional and molecular characteristics. Each of these progenitor "waves" is characterized at the time of emergence of the direct hematopoietic progenitor in the vasculature, the hemogenic endothelial cell (HEC). Critically, despite decades of study in model organisms, the origins of each of these HEC populations remain unclear. Fortunately, through the directed differentiation of hPSCs, recent insights have been made into the earliest origins of each HEC population, revealing that each arises from transcriptionally and phenotypically distinct subsets of nascent mesoderm. Here, we outline the protocols to generate each mesodermal and HEC population via the formation of embryoid bodies and subsequent stage-specific signal manipulation. Through implementation of these discrete signal manipulations, it is possible to obtain human HEC populations that are exclusively extraembryonic-like or exclusively intraembryonic-like, enabling comparative developmental biology studies or specific translational applications.
Collapse
Affiliation(s)
- Stephanie A Luff
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Nestor A Fernandez
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Christopher M Sturgeon
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY.
| | - Andrea Ditadi
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
9
|
Biezeman H, Nubiè M, Oburoglu L. Hematopoietic cells emerging from hemogenic endothelium exhibit lineage-specific oxidative stress responses. J Biol Chem 2024; 300:107815. [PMID: 39326495 PMCID: PMC11532904 DOI: 10.1016/j.jbc.2024.107815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/21/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024] Open
Abstract
During human embryogenesis, distinct waves of hematopoiesis give rise to various blood cell types, originating from hemogenic endothelial (HE) cells. As HE cells reside in hypoxic conditions in the embryo, we investigated the role of hypoxia in human endothelial to hematopoietic transition and subsequent hematopoiesis. Using single-cell RNA sequencing, we describe hypoxia-related transcriptional changes in different HE-derived blood lineages, which reveal that erythroid cells are particularly susceptible to oxidative stress, due to decreased NRF2 activity in hypoxia. In contrast, nonerythroid CD45+ cells exhibit increased proliferative rates in hypoxic conditions and enhanced resilience to oxidative stress. We find that even in normoxia, erythroid cells present a clear predisposition to oxidative stress, with low glutathione levels and high lipid peroxidation, in contrast to CD45+ cells. Intriguingly, reactive oxygen species are produced at different sites in GPA+ and CD45+ cells, revealing differences in oxidative phosphorylation and the use of canonical versus noncanonical tricarboxylic acid cycle in these lineages. Our findings elucidate how hypoxia and oxidative stress distinctly affect HE-derived hematopoietic lineages, uncovering critical transcriptional and metabolic pathways that influence blood cell development.
Collapse
Affiliation(s)
- Harmke Biezeman
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Martina Nubiè
- Division of Gene and Cell Therapy, Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Leal Oburoglu
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden; Division of Gene and Cell Therapy, Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
10
|
Palis J. Erythropoiesis in the mammalian embryo. Exp Hematol 2024; 136:104283. [PMID: 39048071 DOI: 10.1016/j.exphem.2024.104283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
Red blood cells (RBCs) comprise a critical component of the cardiovascular network, which constitutes the first functional organ system of the developing mammalian embryo. Examination of circulating blood cells in mammalian embryos revealed two distinct types of erythroid cells: large, nucleated "primitive" erythroblasts followed by smaller, enucleated "definitive" erythrocytes. This review describes the current understanding of primitive and definitive erythropoiesis gleaned from studies of mouse and human embryos and induced pluripotent stem cells (iPSCs). Primitive erythropoiesis in the mouse embryo comprises a transient wave of committed primitive erythroid progenitors (primitive erythroid colony-forming cells, EryP-CFC) in the early yolk sac that generates a robust cohort of precursors that mature in the bloodstream and enucleate. In contrast, definitive erythropoiesis has two distinct developmental origins. The first comprises a transient wave of definitive erythroid progenitors (burst-forming units erythroid, BFU-E) that emerge in the yolk sac and seed the fetal liver where they terminally mature to provide the first definitive RBCs. The second comprises hematopoietic stem cell (HSC)-derived BFU-E that terminally mature at sites colonized by HSCs particularly the fetal liver and subsequently the bone marrow. Primitive and definitive erythropoiesis are derived from endothelial identity precursors with distinct developmental origins. Although they share prototypical transcriptional regulation, primitive and definitive erythropoiesis are also characterized by distinct lineage-specific factors. The exquisitely timed, sequential production of primitive and definitive erythroid cells is necessary for the survival and growth of the mammalian embryo.
Collapse
Affiliation(s)
- James Palis
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY.
| |
Collapse
|
11
|
Yokomizo T. Hematopoietic cluster formation: an essential prelude to blood cell genesis. Exp Hematol 2024; 136:104284. [PMID: 39032856 DOI: 10.1016/j.exphem.2024.104284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
Adult blood cells are produced in the bone marrow by hematopoietic stem cells (HSCs), the origin of which can be traced back to fetal developmental stages. Indeed, during mouse development, at days 10-11 of gestation, the aorta-gonad-mesonephros (AGM) region is a primary site of HSC production, with characteristic cell clusters related to stem cell genesis observed in the dorsal aorta. Similar clusters linked with hematopoiesis are also observed in the other sites such as the yolk sac and placenta. In this review, I outline the formation and function of these clusters, focusing on the well-characterized intra-aortic hematopoietic clusters (IAHCs).
Collapse
Affiliation(s)
- Tomomasa Yokomizo
- Microscopic and Developmental Anatomy, Tokyo Women's Medical University, Tokyo, Japan.
| |
Collapse
|
12
|
Weijts B, Robin C. Capturing embryonic hematopoiesis in temporal and spatial dimensions. Exp Hematol 2024; 136:104257. [PMID: 38897373 DOI: 10.1016/j.exphem.2024.104257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024]
Abstract
Hematopoietic stem cells (HSCs) possess the ability to sustain the continuous production of all blood cell types throughout an organism's lifespan. Although primarily located in the bone marrow of adults, HSCs originate during embryonic development. Visualization of the birth of HSCs, their developmental trajectory, and the specific interactions with their successive niches have significantly contributed to our understanding of the biology and mechanics governing HSC formation and expansion. Intravital techniques applied to live embryos or non-fixed samples have remarkably provided invaluable insights into the cellular and anatomical origins of HSCs. These imaging technologies have also shed light on the dynamic interactions between HSCs and neighboring cell types within the surrounding microenvironment or niche, such as endothelial cells or macrophages. This review delves into the advancements made in understanding the origin, production, and cellular interactions of HSCs, particularly during the embryonic development of mice and zebrafish, focusing on studies employing (live) imaging analysis.
Collapse
Affiliation(s)
- Bart Weijts
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Catherine Robin
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands; Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
13
|
Sommer A, Gomez Perdiguero E. Extraembryonic hematopoietic lineages-to macrophages and beyond. Exp Hematol 2024; 136:104285. [PMID: 39053841 DOI: 10.1016/j.exphem.2024.104285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
The first blood and immune cells in vertebrates emerge in the extraembryonic yolk sac. Throughout the last century, it has become evident that this extraembryonic tissue gives rise to transient primitive and definitive hematopoiesis but not hematopoietic stem cells. More recently, studies have elucidated that yolk sac-derived blood and immune cells are present far longer than originally expected. These cells take over essential roles for the survival and proper organogenesis of the developing fetus up until birth. In this review, we discuss the most recent findings and views on extraembryonic hematopoiesis in mice and humans.
Collapse
Affiliation(s)
- Alina Sommer
- Macrophages and Endothelial Cells Unit, Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris Cité, Paris, France; Sorbonne Université, Collège Doctoral, Paris, France
| | - Elisa Gomez Perdiguero
- Macrophages and Endothelial Cells Unit, Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris Cité, Paris, France.
| |
Collapse
|
14
|
Torcq L, Majello S, Vivier C, Schmidt AA. Tuning apicobasal polarity and junctional recycling in the hemogenic endothelium orchestrates the morphodynamic complexity of emerging pre-hematopoietic stem cells. eLife 2024; 12:RP91429. [PMID: 38809590 PMCID: PMC11136496 DOI: 10.7554/elife.91429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024] Open
Abstract
Hematopoietic stem cells emerge in the embryo from an aortic-derived tissue called the hemogenic endothelium (HE). The HE appears to give birth to cells of different nature and fate but the molecular principles underlying this complexity are largely unknown. Here we show, in the zebrafish embryo, that two cell types emerge from the aortic floor with radically different morphodynamics. With the support of live imaging, we bring evidence suggesting that the mechanics underlying the two emergence types rely, or not, on apicobasal polarity establishment. While the first type is characterized by reinforcement of apicobasal polarity and maintenance of the apical/luminal membrane until release, the second type emerges via a dynamic process reminiscent of trans-endothelial migration. Interfering with Runx1 function suggests that the balance between the two emergence types depends on tuning apicobasal polarity at the level of the HE. In support of this and unexpectedly, we show that Pard3ba - one of the four Pard3 proteins expressed in the zebrafish - is sensitive to interference with Runx1 activity, in aortic endothelial cells. This supports the idea of a signaling cross talk controlling cell polarity and its associated features, between aortic and hemogenic cells. In addition, using new transgenic fish lines that express Junctional Adhesion Molecules and functional interference, we bring evidence for the essential role of ArhGEF11/PDZ-RhoGEF in controlling the HE-endothelial cell dynamic interface, including cell-cell intercalation, which is ultimately required for emergence completion. Overall, we highlight critical cellular and dynamic events of the endothelial-to-hematopoietic transition that support emergence complexity, with a potential impact on cell fate.
Collapse
Affiliation(s)
- Léa Torcq
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris CitéParisFrance
- Sorbonne UniversitéParisFrance
| | - Sara Majello
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris CitéParisFrance
| | - Catherine Vivier
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris CitéParisFrance
| | - Anne A Schmidt
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris CitéParisFrance
| |
Collapse
|
15
|
Scarfò R, Randolph LN, Abou Alezz M, El Khoury M, Gersch A, Li ZY, Luff SA, Tavosanis A, Ferrari Ramondo G, Valsoni S, Cascione S, Didelon E, Passerini L, Amodio G, Brandas C, Villa A, Gregori S, Merelli I, Freund JN, Sturgeon CM, Tavian M, Ditadi A. CD32 captures committed haemogenic endothelial cells during human embryonic development. Nat Cell Biol 2024; 26:719-730. [PMID: 38594587 PMCID: PMC11098737 DOI: 10.1038/s41556-024-01403-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 03/07/2024] [Indexed: 04/11/2024]
Abstract
During embryonic development, blood cells emerge from specialized endothelial cells, named haemogenic endothelial cells (HECs). As HECs are rare and only transiently found in early developing embryos, it remains difficult to distinguish them from endothelial cells. Here we performed transcriptomic analysis of 28- to 32-day human embryos and observed that the expression of Fc receptor CD32 (FCGR2B) is highly enriched in the endothelial cell population that contains HECs. Functional analyses using human embryonic and human pluripotent stem cell-derived endothelial cells revealed that robust multilineage haematopoietic potential is harboured within CD32+ endothelial cells and showed that 90% of CD32+ endothelial cells are bona fide HECs. Remarkably, these analyses indicated that HECs progress through different states, culminating in FCGR2B expression, at which point cells are irreversibly committed to a haematopoietic fate. These findings provide a precise method for isolating HECs from human embryos and human pluripotent stem cell cultures, thus allowing the efficient generation of haematopoietic cells in vitro.
Collapse
Affiliation(s)
- Rebecca Scarfò
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Lauren N Randolph
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Monah Abou Alezz
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Mahassen El Khoury
- Université de Strasbourg, Inserm, IRFAC/UMR-S1113, FHU ARRIMAGE, FMTS, Strasbourg, France
| | - Amélie Gersch
- Université de Strasbourg, Inserm, IRFAC/UMR-S1113, FHU ARRIMAGE, FMTS, Strasbourg, France
| | - Zhong-Yin Li
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Stephanie A Luff
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Andrea Tavosanis
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giulia Ferrari Ramondo
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sara Valsoni
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sara Cascione
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Emma Didelon
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Laura Passerini
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giada Amodio
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Brandas
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Anna Villa
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Institute of Genetic and Biomedical Research, Milan Unit, National Research Council, Milan, Italy
| | - Silvia Gregori
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ivan Merelli
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Institute for Biomedical Technologies, National Research Council, Milan, Italy
| | - Jean-Noël Freund
- Université de Strasbourg, Inserm, IRFAC/UMR-S1113, FHU ARRIMAGE, FMTS, Strasbourg, France
- INSERM U1256-NGERE, Université de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Christopher M Sturgeon
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Manuela Tavian
- Université de Strasbourg, Inserm, IRFAC/UMR-S1113, FHU ARRIMAGE, FMTS, Strasbourg, France.
| | - Andrea Ditadi
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
16
|
Li Y, Nie Y, Yang X, Liu Y, Deng X, Hayashi Y, Plummer R, Li Q, Luo N, Kasai T, Okumura T, Kamishibahara Y, Komoto T, Ohkuma T, Okamoto S, Isobe Y, Yamaguchi K, Furukawa Y, Taniguchi H. Integration of Kupffer cells into human iPSC-derived liver organoids for modeling liver dysfunction in sepsis. Cell Rep 2024; 43:113918. [PMID: 38451817 DOI: 10.1016/j.celrep.2024.113918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/29/2023] [Accepted: 02/19/2024] [Indexed: 03/09/2024] Open
Abstract
Maximizing the potential of human liver organoids (LOs) for modeling human septic liver requires the integration of innate immune cells, particularly resident macrophage Kupffer cells. In this study, we present a strategy to generate LOs containing Kupffer cells (KuLOs) by recapitulating fetal liver hematopoiesis using human induced pluripotent stem cell (hiPSC)-derived erythro-myeloid progenitors (EMPs), the origin of tissue-resident macrophages, and hiPSC-derived LOs. Remarkably, LOs actively promote EMP hematopoiesis toward myeloid and erythroid lineages. Moreover, supplementing with macrophage colony-stimulating factor (M-CSF) proves crucial in sustaining the hematopoietic population during the establishment of KuLOs. Exposing KuLOs to sepsis-like endotoxins leads to significant organoid dysfunction that closely resembles the pathological characteristics of the human septic liver. Furthermore, we observe a notable functional recovery in KuLOs upon endotoxin elimination, which is accelerated by using Toll-like receptor-4-directed endotoxin antagonist. Our study represents a comprehensive framework for integrating hematopoietic cells into organoids, facilitating in-depth investigations into inflammation-mediated liver pathologies.
Collapse
Affiliation(s)
- Yang Li
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Minato, Tokyo 108-8639, Japan; Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Minato, Tokyo 108-8639, Japan
| | - Yunzhong Nie
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Minato, Tokyo 108-8639, Japan; Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Minato, Tokyo 108-8639, Japan; Advanced Medical Research Center, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan.
| | - Xia Yang
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Minato, Tokyo 108-8639, Japan; Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Minato, Tokyo 108-8639, Japan
| | - Yang Liu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiaoshan Deng
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Minato, Tokyo 108-8639, Japan; Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Minato, Tokyo 108-8639, Japan
| | - Yoshihito Hayashi
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Minato, Tokyo 108-8639, Japan; Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Minato, Tokyo 108-8639, Japan
| | - Riana Plummer
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Minato, Tokyo 108-8639, Japan; Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Minato, Tokyo 108-8639, Japan
| | - Qinglin Li
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Minato, Tokyo 108-8639, Japan; Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Minato, Tokyo 108-8639, Japan
| | - Na Luo
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Minato, Tokyo 108-8639, Japan; Department of Pathology, Immunology and Microbiology, Graduate School of Medicine, The University of Tokyo, Minato, Tokyo 108-8639, Japan
| | - Toshiharu Kasai
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Minato, Tokyo 108-8639, Japan
| | - Takashi Okumura
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Minato, Tokyo 108-8639, Japan
| | - Yu Kamishibahara
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Minato, Tokyo 108-8639, Japan
| | - Takemasa Komoto
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Minato, Tokyo 108-8639, Japan
| | - Takuya Ohkuma
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Minato, Tokyo 108-8639, Japan
| | - Satoshi Okamoto
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Minato, Tokyo 108-8639, Japan
| | - Yumiko Isobe
- Division of Clinical Genome Research, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Minato, Tokyo 108-8639, Japan
| | - Kiyoshi Yamaguchi
- Division of Clinical Genome Research, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Minato, Tokyo 108-8639, Japan
| | - Yoichi Furukawa
- Division of Clinical Genome Research, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Minato, Tokyo 108-8639, Japan
| | - Hideki Taniguchi
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Minato, Tokyo 108-8639, Japan; Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Minato, Tokyo 108-8639, Japan; Advanced Medical Research Center, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan.
| |
Collapse
|
17
|
Shin YJ, Lee JH. Exploring the Molecular and Developmental Dynamics of Endothelial Cell Differentiation. Int J Stem Cells 2024; 17:15-29. [PMID: 37879853 PMCID: PMC10899884 DOI: 10.15283/ijsc23086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/06/2023] [Accepted: 09/05/2023] [Indexed: 10/27/2023] Open
Abstract
The development and differentiation of endothelial cells (ECs) are fundamental processes with significant implications for both health and disease. ECs, which are found in all organs and blood vessels, play a crucial role in facilitating nutrient and waste exchange and maintaining proper vessel function. Understanding the intricate signaling pathways involved in EC development holds great promise for enhancing vascularization, tissue engineering, and vascular regeneration. Hematopoietic stem cells originating from hemogenic ECs, give rise to diverse immune cell populations, and the interaction between ECs and immune cells is vital for maintaining vascular integrity and regulating immune responses. Dysregulation of vascular development pathways can lead to various diseases, including cancer, where tumor-specific ECs promote tumor growth through angiogenesis. Recent advancements in single-cell genomics and in vivo genetic labeling have shed light on EC development, plasticity, and heterogeneity, uncovering tissue-specific gene expression and crucial signaling pathways. This review explores the potential of ECs in various applications, presenting novel opportunities for advancing vascular medicine and treatment strategies.
Collapse
Affiliation(s)
- Yu Jung Shin
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Jung Hyun Lee
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
- Department of Dermatology, School of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
18
|
Yokomizo T, Suda T. Development of the hematopoietic system: expanding the concept of hematopoietic stem cell-independent hematopoiesis. Trends Cell Biol 2024; 34:161-172. [PMID: 37481335 DOI: 10.1016/j.tcb.2023.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 07/24/2023]
Abstract
Hematopoietic stem cells (HSCs) give rise to nearly all blood cell types and play a central role in blood cell production in adulthood. For many years it was assumed that these roles were similarly responsible for driving the formation of the hematopoietic system during the embryonic period. However, detailed analysis of embryonic hematopoiesis has revealed the presence of hematopoietic cells that develop independently of HSCs both before and after HSC generation. Furthermore, it is becoming increasingly clear that HSCs are less involved in the production of functioning blood cells during the embryonic period when there is a much higher contribution from HSC-independent hematopoietic processes. We outline the current understanding and arguments for HSC-dependent and -independent hematopoiesis, mainly focusing on mouse ontogeny.
Collapse
Affiliation(s)
- Tomomasa Yokomizo
- Microscopic and Developmental Anatomy, Tokyo Women's Medical University, Tokyo 162-8666, Japan.
| | - Toshio Suda
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599; International Research Center for Medical Sciences, Kumamoto University, Kumamoto 860-0811, Japan.
| |
Collapse
|
19
|
Ma Z, Sugimura R, Lui KO. The role of m6A mRNA modification in normal and malignant hematopoiesis. J Leukoc Biol 2024; 115:100-115. [PMID: 37195903 DOI: 10.1093/jleuko/qiad061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/04/2023] [Accepted: 05/01/2023] [Indexed: 05/19/2023] Open
Abstract
Hematopoiesis is a highly orchestrated biological process sustaining the supply of leukocytes involved in the maintenance of immunity, O2 and CO2 exchange, and wound healing throughout the lifetime of an animal, including humans. During early hematopoietic cell development, several waves of hematopoiesis require the precise regulation of hematopoietic ontogeny as well as the maintenance of hematopoietic stem and progenitor cells in the hematopoietic tissues, such as the fetal liver and bone marrow. Recently, emerging evidence has suggested the critical role of m6A messenger RNA (mRNA) modification, an epigenetic modification dynamically regulated by its effector proteins, in the generation and maintenance of hematopoietic cells during embryogenesis. In the adulthood, m6A has also been demonstrated to be involved in the functional maintenance of hematopoietic stem and progenitor cells in the bone marrow and umbilical cord blood, as well as the progression of malignant hematopoiesis. In this review, we focus on recent progress in identifying the biological functions of m6A mRNA modification, its regulators, and downstream gene targets during normal and pathological hematopoiesis. We propose that targeting m6A mRNA modification could offer novel insights into therapeutic development against abnormal and malignant hematopoietic cell development in the future.
Collapse
Affiliation(s)
- Zhangjing Ma
- Department of Chemical Pathology, and Li Ka Shing Institute of Health Science, Prince of Wales Hospital, The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong, China
| | - Rio Sugimura
- School of Biomedical Sciences, The University of Hong Kong, 21 Sassoon Road, Pokfulam , Hong Kong, China
| | - Kathy O Lui
- Department of Chemical Pathology, and Li Ka Shing Institute of Health Science, Prince of Wales Hospital, The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Nanshan District, Shenzhen, China
| |
Collapse
|
20
|
Ahlback A, Gentek R. Fate-Mapping Macrophages: From Ontogeny to Functions. Methods Mol Biol 2024; 2713:11-43. [PMID: 37639113 DOI: 10.1007/978-1-0716-3437-0_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Macrophages are vital to the physiological function of most tissues, but also contribute to disease through a multitude of pathological roles. They are thus highly plastic and heterogeneous. It is now well recognized that macrophages develop from several distinct progenitors from embryogenesis onwards and extending throughout life. Tissue-resident macrophages largely originate from embryonic sources and in many cases self-maintain independently without monocyte input. However, in certain tissues, monocyte-derived macrophages replace these over time or as a result of tissue injury and inflammation. This additional layer of heterogeneity has introduced many questions regarding the influence of origin on fate and function of macrophages in health and disease. To comprehensively address these questions, appropriate methods of tracing macrophage ontogeny are required. This chapter explores why ontogeny is of vital importance in macrophage biology and how to delineate macrophage populations by origin through genetic fate mapping. First, we summarize the current view of macrophage ontogeny and briefly discuss how origin may influence macrophage function in homeostasis and pathology. We go on to make the case for genetic fate mapping as the gold standard and briefly review different fate-mapping models. We then put forward our recommendations for fate-mapping strategies best suited to answer specific research questions and finally discuss the strengths and limitations of currently available models.
Collapse
Affiliation(s)
- Anna Ahlback
- The University of Edinburgh, Institute for Regeneration and Repair, Centre for Reproductive Health & Centre for Inflammation Research, Edinburgh, UK
| | - Rebecca Gentek
- The University of Edinburgh, Institute for Regeneration and Repair, Centre for Reproductive Health & Centre for Inflammation Research, Edinburgh, UK.
| |
Collapse
|
21
|
Vink CS, Popravko A, Dzierzak E. De novo hematopoietic (stem) cell generation - A differentiation or stochastic process? Curr Opin Cell Biol 2023; 85:102255. [PMID: 37806296 DOI: 10.1016/j.ceb.2023.102255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/28/2023] [Accepted: 09/10/2023] [Indexed: 10/10/2023]
Abstract
The hematopoietic system is one of the earliest tissues to develop. De novo generation of hematopoietic progenitor and stem cells occurs through a transdifferentiation of (hemogenic) endothelial cells to hematopoietic identity, resulting in the formation of intra-aortic hematopoietic cluster (IAHC) cells. Heterogeneity of IAHC cell phenotypes and functions has stymied the field in its search for the transcriptional program of emerging hematopoietic stem cells (HSCs), given that an individual IAHC cannot be simultaneously examined for function and transcriptome. Several models could account for this heterogeneity, including a novel model suggesting that the transcriptomes of individual emerging IAHC cells are in an unstable/metastable state, with pivotal hematopoietic transcription factors expressed dynamically due to transcriptional pulsing and combinatorial activities. The question remains - how is functional hematopoietic cell fate established - is the process stochastic? This article touches upon these important issues, which may be relevant to the field's inability to make HSCs ex vivo.
Collapse
Affiliation(s)
- Chris S Vink
- The University of Edinburgh, Centre for Inflammation Research, Edinburgh, Midlothian, Scotland, EH16 4UU, UK
| | - Anna Popravko
- The University of Edinburgh, Centre for Inflammation Research, Edinburgh, Midlothian, Scotland, EH16 4UU, UK
| | - Elaine Dzierzak
- The University of Edinburgh, Centre for Inflammation Research, Edinburgh, Midlothian, Scotland, EH16 4UU, UK.
| |
Collapse
|
22
|
Ning X, Du J, Gong Y, Yao Y, Bai Z, Ni Y, Li Y, Li Z, Zhao H, Zhou J, Liu B, Lan Y, Hou S. Divergent expression of Neurl3 from hemogenic endothelial cells to hematopoietic stem progenitor cells during development. J Genet Genomics 2023; 50:661-675. [PMID: 37230320 DOI: 10.1016/j.jgg.2023.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/07/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023]
Abstract
Prior to the generation of hematopoietic stem cells (HSCs) from the hemogenic endothelial cells (HECs) mainly in the dorsal aorta in midgestational mouse embryos, multiple hematopoietic progenitors including erythro-myeloid progenitors and lymphoid progenitors are generated from yolk sac HECs. These HSC-independent hematopoietic progenitors have recently been identified as major contributors to functional blood cell production until birth. However, little is known about yolk sac HECs. Here, combining integrative analyses of multiple single-cell RNA-sequencing datasets and functional assays, we reveal that Neurl3-EGFP, in addition to marking the continuum throughout the ontogeny of HSCs from HECs, can also serve as a single enrichment marker for yolk sac HECs. Moreover, while yolk sac HECs have much weaker arterial characteristics than either arterial endothelial cells in the yolk sac or HECs within the embryo proper, the lymphoid potential of yolk sac HECs is largely confined to the arterial-biased subpopulation featured by the Unc5b expression. Interestingly, the B lymphoid potential of hematopoietic progenitors, but not for myeloid potentials, is exclusively detected in Neurl3-negative subpopulations in midgestational embryos. Taken together, these findings enhance our understanding of blood birth from yolk sac HECs and provide theoretical basis and candidate reporters for monitoring step-wise hematopoietic differentiation.
Collapse
Affiliation(s)
- Xiaowei Ning
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100850, China
| | - Junjie Du
- Chinese PLA Medical School, Chinese PLA General Hospital, Beijing 100853, China; State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology, Senior Department of Hematology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
| | - Yandong Gong
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology, Senior Department of Hematology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
| | - Yingpeng Yao
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Zhijie Bai
- Chinese PLA Medical School, Chinese PLA General Hospital, Beijing 100853, China
| | - Yanli Ni
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology, Senior Department of Hematology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
| | - Yanyan Li
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Zongcheng Li
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology, Senior Department of Hematology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
| | - Haixin Zhao
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology, Senior Department of Hematology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
| | - Jie Zhou
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology, Senior Department of Hematology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
| | - Bing Liu
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100850, China; Chinese PLA Medical School, Chinese PLA General Hospital, Beijing 100853, China; State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology, Senior Department of Hematology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China; Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China.
| | - Yu Lan
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China.
| | - Siyuan Hou
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology, Senior Department of Hematology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China; Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China.
| |
Collapse
|
23
|
Peixoto MM, Soares-da-Silva F, Bonnet V, Ronteix G, Santos RF, Mailhe MP, Feng X, Pereira JP, Azzoni E, Anselmi G, de Bruijn M, Baroud CN, Pinto-do-Ó P, Cumano A. Spatiotemporal dynamics of cytokines expression dictate fetal liver hematopoiesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.24.554612. [PMID: 37662317 PMCID: PMC10473721 DOI: 10.1101/2023.08.24.554612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
During embryogenesis, yolk-sac and intra-embryonic-derived hematopoietic progenitors, comprising the precursors of adult hematopoietic stem cells, converge into the fetal liver. With a new staining strategy, we defined all non-hematopoietic components of the fetal liver and found that hepatoblasts are the major producers of hematopoietic growth factors. We identified mesothelial cells, a novel component of the stromal compartment, producing Kit ligand, a major hematopoietic cytokine. A high-definition imaging dataset analyzed using a deep-learning based pipeline allowed the unambiguous identification of hematopoietic and stromal populations, and enabled determining a neighboring network composition, at the single cell resolution. Throughout active hematopoiesis, progenitors preferentially associate with hepatoblasts, but not with stellate or endothelial cells. We found that, unlike yolk sac-derived progenitors, intra-embryonic progenitors respond to a chemokine gradient created by CXCL12-producing stellate cells. These results revealed that FL hematopoiesis is a spatiotemporal dynamic process, defined by an environment characterized by low cytokine concentrations.
Collapse
|
24
|
Goh I, Botting RA, Rose A, Webb S, Engelbert J, Gitton Y, Stephenson E, Londoño MQ, Mather M, Mende N, Imaz-Rosshandler I, Yang L, Horsfall D, Basurto-Lozada D, Chipampe NJ, Rook V, Lee JTH, Ton ML, Keitley D, Mazin P, Vijayabaskar M, Hannah R, Gambardella L, Green K, Ballereau S, Inoue M, Tuck E, Lorenzi V, Kwakwa K, Alsinet C, Olabi B, Miah M, Admane C, Popescu DM, Acres M, Dixon D, Ness T, Coulthard R, Lisgo S, Henderson DJ, Dann E, Suo C, Kinston SJ, Park JE, Polanski K, Marioni J, van Dongen S, Meyer KB, de Bruijn M, Palis J, Behjati S, Laurenti E, Wilson NK, Vento-Tormo R, Chédotal A, Bayraktar O, Roberts I, Jardine L, Göttgens B, Teichmann SA, Haniffa M. Yolk sac cell atlas reveals multiorgan functions during human early development. Science 2023; 381:eadd7564. [PMID: 37590359 PMCID: PMC7614978 DOI: 10.1126/science.add7564] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 07/03/2023] [Indexed: 08/19/2023]
Abstract
The extraembryonic yolk sac (YS) ensures delivery of nutritional support and oxygen to the developing embryo but remains ill-defined in humans. We therefore assembled a comprehensive multiomic reference of the human YS from 3 to 8 postconception weeks by integrating single-cell protein and gene expression data. Beyond its recognized role as a site of hematopoiesis, we highlight roles in metabolism, coagulation, vascular development, and hematopoietic regulation. We reconstructed the emergence and decline of YS hematopoietic stem and progenitor cells from hemogenic endothelium and revealed a YS-specific accelerated route to macrophage production that seeds developing organs. The multiorgan functions of the YS are superseded as intraembryonic organs develop, effecting a multifaceted relay of vital functions as pregnancy proceeds.
Collapse
Affiliation(s)
- Issac Goh
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
- Biosciences Institute, Newcastle University, NE2 4HH, UK
| | - Rachel A. Botting
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
- Biosciences Institute, Newcastle University, NE2 4HH, UK
| | - Antony Rose
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
- Biosciences Institute, Newcastle University, NE2 4HH, UK
| | - Simone Webb
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
- Biosciences Institute, Newcastle University, NE2 4HH, UK
| | | | - Yorick Gitton
- Sorbonne Université, INSERM, CNRS, Institut de la Vision,
Paris, France
| | - Emily Stephenson
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
- Biosciences Institute, Newcastle University, NE2 4HH, UK
| | | | - Michael Mather
- Biosciences Institute, Newcastle University, NE2 4HH, UK
| | - Nicole Mende
- Department of Haematology, Wellcome-MRC Cambridge Stem Cell
Institute, CB2 0AW, UK
| | - Ivan Imaz-Rosshandler
- Department of Haematology, Wellcome-MRC Cambridge Stem Cell
Institute, CB2 0AW, UK
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus,
CD2 0QH, UK
| | - Lu Yang
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
| | - Dave Horsfall
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
- Biosciences Institute, Newcastle University, NE2 4HH, UK
| | - Daniela Basurto-Lozada
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
- Biosciences Institute, Newcastle University, NE2 4HH, UK
| | - Nana-Jane Chipampe
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
| | - Victoria Rook
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
| | - Jimmy Tsz Hang Lee
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
| | - Mai-Linh Ton
- Department of Haematology, Wellcome-MRC Cambridge Stem Cell
Institute, CB2 0AW, UK
| | - Daniel Keitley
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
- Department of Zoology, University of Cambridge, Cambridge UK
| | - Pavel Mazin
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
| | - M.S. Vijayabaskar
- Department of Haematology, Wellcome-MRC Cambridge Stem Cell
Institute, CB2 0AW, UK
| | - Rebecca Hannah
- Department of Haematology, Wellcome-MRC Cambridge Stem Cell
Institute, CB2 0AW, UK
| | - Laure Gambardella
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
| | - Kile Green
- Translational and Clinical Research Institute, Newcastle University,
NE2 4HH, UK
| | - Stephane Ballereau
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
| | - Megumi Inoue
- Sorbonne Université, INSERM, CNRS, Institut de la Vision,
Paris, France
| | - Elizabeth Tuck
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
| | - Valentina Lorenzi
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
| | - Kwasi Kwakwa
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
| | - Clara Alsinet
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
- Centre Nacional d’Analisi Genomica-Centre de Regulacio
Genomica (CNAG-CRG), Barcelona Institute of Science and Technology (BIST),
Barcelona, Spain
| | - Bayanne Olabi
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
- Biosciences Institute, Newcastle University, NE2 4HH, UK
| | - Mohi Miah
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
- Biosciences Institute, Newcastle University, NE2 4HH, UK
| | - Chloe Admane
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
- Biosciences Institute, Newcastle University, NE2 4HH, UK
| | | | - Meghan Acres
- Biosciences Institute, Newcastle University, NE2 4HH, UK
| | - David Dixon
- Biosciences Institute, Newcastle University, NE2 4HH, UK
| | - Thomas Ness
- NovoPath, Department of Pathology, Newcastle Hospitals NHS
Foundation Trust, Newcastle upon Tyne, UK
| | - Rowen Coulthard
- NovoPath, Department of Pathology, Newcastle Hospitals NHS
Foundation Trust, Newcastle upon Tyne, UK
| | - Steven Lisgo
- Biosciences Institute, Newcastle University, NE2 4HH, UK
| | | | - Emma Dann
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
| | - Chenqu Suo
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
| | - Sarah J. Kinston
- Department of Haematology, Wellcome-MRC Cambridge Stem Cell
Institute, CB2 0AW, UK
| | - Jong-eun Park
- Korea Advanced Institute of Science and Technology, Daejeon, South
Korea
| | - Krzysztof Polanski
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
| | - John Marioni
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
- EMBL-EBI, Wellcome Genome Campus, Cambridge, UK
- CRUK Cambridge Institute, University of Cambridge, Cambridge,
UK
| | - Stijn van Dongen
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
| | - Kerstin B. Meyer
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
| | - Marella de Bruijn
- MRC Molecular Haematology Unit, MRC Weatherall Institute of
Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, OX3 9DS,
UK
| | - James Palis
- Department of Pediatrics, University of Rochester Medical Center,
Rochester, 14642, NY, USA
| | - Sam Behjati
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
- Department of Paediatrics, University of Cambridge, Cambridge,
UK
| | - Elisa Laurenti
- Department of Haematology, Wellcome-MRC Cambridge Stem Cell
Institute, CB2 0AW, UK
| | - Nicola K. Wilson
- Department of Haematology, Wellcome-MRC Cambridge Stem Cell
Institute, CB2 0AW, UK
| | - Roser Vento-Tormo
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
| | - Alain Chédotal
- Sorbonne Université, INSERM, CNRS, Institut de la Vision,
Paris, France
| | - Omer Bayraktar
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
| | - Irene Roberts
- Department of Paediatrics, University of Oxford, OX3 9DS, UK
| | - Laura Jardine
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
- Biosciences Institute, Newcastle University, NE2 4HH, UK
| | - Berthold Göttgens
- Department of Haematology, Wellcome-MRC Cambridge Stem Cell
Institute, CB2 0AW, UK
| | - Sarah A. Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
- Theory of Condensed Matter Group, Cavendish Laboratory/Department
of Physics, University of Cambridge, Cambridge, UK
| | - Muzlifah Haniffa
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
- Biosciences Institute, Newcastle University, NE2 4HH, UK
- Department of Dermatology and NIHR Newcastle Biomedical Research
Centre, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE1 4LP,
UK
| |
Collapse
|
25
|
Ornoy A, Miller RK. Yolk sac development, function and role in rodent pregnancy. Birth Defects Res 2023; 115:1243-1254. [PMID: 36949669 DOI: 10.1002/bdr2.2172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/24/2023]
Abstract
During the early phases of embryonic development, the yolk sac serves as an initial placenta in many animal species. While in some, this role subsides around the end of active organogenesis, it continues to have important functions in rodents, alongside the chorio-allantoic placenta. The yolk sac is the initial site of hematopoiesis in many animal species including primates. Cells of epiblastic origin form blood islands that are the forerunners of hematopoietic cells and of the primitive endothelial cells that form the vitelline circulation. The yolk sac is also a major route of embryonic and fetal nutrition apparently as long as it functions. In mammals and especially rodents, macro and micronutrients are absorbed by active pinocytosis into the visceral yolk sac, degraded and the degradation products (i.e., amino acids) are then transferred to the embryo. Interference with the yolk sac function may directly reflect on embryonic growth and development, inducing congenital malformations or in extreme damage, causing embryonic and fetal death. In rodents, many agents were found to damage the yolk sac (i.e., anti-yolk sac antibodies or toxic substances interfering with yolk sac pinocytosis) subsequently affecting the embryo/fetus. Often, the damage to the yolk sac is transient while embryonic damage persists. In humans, decreased yolk sac diameter was associated with diabetic pregnancies and increased diameter was associated with pregnancy loss. In addition, culture of rat yolk sacs in serum obtained from pregnant diabetic women or from women with autoimmune diseases induced severe damage to the visceral yolk sac epithelium and embryonic malformations. It can be concluded that as a result of the crucial role of the yolk sac in the well-being of the early embryo, any damage to its normal function may severely and irreversibly affect further development of the embryo/fetus.
Collapse
Affiliation(s)
- Asher Ornoy
- Department of Morphological Sciences and Teratology, Adelson School of Medicine, Ariel University and Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Richard K Miller
- School of Medicine and Dentistry, Departments of Obstetrics/Gynecology, of Pediatrics, of Pathology and of Environmental Medicine, University of Rochester, Rochester, New York, 14642, USA
| |
Collapse
|
26
|
Kobayashi M, Yoshimoto M. Multiple waves of fetal-derived immune cells constitute adult immune system. Immunol Rev 2023; 315:11-30. [PMID: 36929134 PMCID: PMC10754384 DOI: 10.1111/imr.13192] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
It has been over three decades since Drs. Herzenberg and Herzenberg proposed the layered immune system hypothesis, suggesting that different types of stem cells with distinct hematopoietic potential produce specific immune cells. This layering of immune system development is now supported by recent studies showing the presence of fetal-derived immune cells that function in adults. It has been shown that various immune cells arise at different embryonic ages via multiple waves of hematopoiesis from special endothelial cells (ECs), referred to as hemogenic ECs. However, it remains unknown whether these fetal-derived immune cells are produced by hematopoietic stem cells (HSCs) during the fetal to neonatal period. To address this question, many advanced tools have been used, including lineage-tracing mouse models, cellular barcoding techniques, clonal assays, and transplantation assays at the single-cell level. In this review, we will review the history of the search for the origins of HSCs, B-1a progenitors, and mast cells in the mouse embryo. HSCs can produce both B-1a and mast cells within a very limited time window, and this ability declines after embryonic day (E) 14.5. Furthermore, the latest data have revealed that HSC-independent adaptive immune cells exist in adult mice, which implies more complicated developmental pathways of immune cells. We propose revised road maps of immune cell development.
Collapse
Affiliation(s)
- Michihiro Kobayashi
- Center for Stem Cell and Regenerative Medicine, Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Momoko Yoshimoto
- Center for Stem Cell and Regenerative Medicine, Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
27
|
Carpenter KA, Thurlow KE, Craig SEL, Grainger S. Wnt regulation of hematopoietic stem cell development and disease. Curr Top Dev Biol 2023; 153:255-279. [PMID: 36967197 PMCID: PMC11104846 DOI: 10.1016/bs.ctdb.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Hematopoietic stem cells (HSCs) are multipotent stem cells that give rise to all cells of the blood and most immune cells. Due to their capacity for unlimited self-renewal, long-term HSCs replenish the blood and immune cells of an organism throughout its life. HSC development, maintenance, and differentiation are all tightly regulated by cell signaling pathways, including the Wnt pathway. Wnt signaling is initiated extracellularly by secreted ligands which bind to cell surface receptors and give rise to several different downstream signaling cascades. These are classically categorized either β-catenin dependent (BCD) or β-catenin independent (BCI) signaling, depending on their reliance on the β-catenin transcriptional activator. HSC development, homeostasis, and differentiation is influenced by both BCD and BCI, with a high degree of sensitivity to the timing and dosage of Wnt signaling. Importantly, dysregulated Wnt signals can result in hematological malignancies such as leukemia, lymphoma, and myeloma. Here, we review how Wnt signaling impacts HSCs during development and in disease.
Collapse
Affiliation(s)
- Kelsey A Carpenter
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI, United States
| | - Kate E Thurlow
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI, United States; Van Andel Institute Graduate School, Grand Rapids, MI, United States
| | - Sonya E L Craig
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI, United States
| | - Stephanie Grainger
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI, United States.
| |
Collapse
|
28
|
Wu M, Xu J, Zhang Y, Wen Z. Learning from Zebrafish Hematopoiesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1442:137-157. [PMID: 38228963 DOI: 10.1007/978-981-99-7471-9_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Hematopoiesis is a complex process that tightly regulates the generation, proliferation, differentiation, and maintenance of hematopoietic cells. Disruptions in hematopoiesis can lead to various diseases affecting both hematopoietic and non-hematopoietic systems, such as leukemia, anemia, thrombocytopenia, rheumatoid arthritis, and chronic granuloma. The zebrafish serves as a powerful vertebrate model for studying hematopoiesis, offering valuable insights into both hematopoietic regulation and hematopoietic diseases. In this chapter, we present a comprehensive overview of zebrafish hematopoiesis, highlighting its distinctive characteristics in hematopoietic processes. We discuss the ontogeny and modulation of both primitive and definitive hematopoiesis, as well as the microenvironment that supports hematopoietic stem/progenitor cells. Additionally, we explore the utility of zebrafish as a disease model and its potential in drug discovery, which not only advances our understanding of the regulatory mechanisms underlying hematopoiesis but also facilitates the exploration of novel therapeutic strategies for hematopoietic diseases.
Collapse
Affiliation(s)
- Mei Wu
- Affiliated Hospital of Guangdong Medical University and Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Jin Xu
- South China University of Technology, School of Medicine, Guangzhou, Guangdong, China.
| | - Yiyue Zhang
- South China University of Technology, School of Medicine, Guangzhou, Guangdong, China.
| | - Zilong Wen
- Southern University of Science and Technology, School of Life Sciences, Shenzhen, Guangdong, China.
| |
Collapse
|
29
|
Bain FM, Che JLC, Jassinskaja M, Kent DG. Lessons from early life: understanding development to expand stem cells and treat cancers. Development 2022; 149:277217. [PMID: 36217963 PMCID: PMC9724165 DOI: 10.1242/dev.201070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Haematopoietic stem cell (HSC) self-renewal is a process that is essential for the development and homeostasis of the blood system. Self-renewal expansion divisions, which create two daughter HSCs from a single parent HSC, can be harnessed to create large numbers of HSCs for a wide range of cell and gene therapies, but the same process is also a driver of the abnormal expansion of HSCs in diseases such as cancer. Although HSCs are first produced during early embryonic development, the key stage and location where they undergo maximal expansion is in the foetal liver, making this tissue a rich source of data for deciphering the molecules driving HSC self-renewal. Another equally interesting stage occurs post-birth, several weeks after HSCs have migrated to the bone marrow, when HSCs undergo a developmental switch and adopt a more dormant state. Characterising these transition points during development is key, both for understanding the evolution of haematological malignancies and for developing methods to promote HSC expansion. In this Spotlight article, we provide an overview of some of the key insights that studying HSC development have brought to the fields of HSC expansion and translational medicine, many of which set the stage for the next big breakthroughs in the field.
Collapse
Affiliation(s)
- Fiona M. Bain
- Department of Biology, York Biomedical Research Institute, University of York, York, YO10 5DD, UK
| | - James L. C. Che
- Department of Biology, York Biomedical Research Institute, University of York, York, YO10 5DD, UK
| | - Maria Jassinskaja
- Department of Biology, York Biomedical Research Institute, University of York, York, YO10 5DD, UK
| | - David G. Kent
- Department of Biology, York Biomedical Research Institute, University of York, York, YO10 5DD, UK
- Author for correspondence ()
| |
Collapse
|
30
|
Monsalve A, Canals I, Oburoglu L. FOXO1 regulates pentose phosphate pathway-mediated induction of developmental erythropoiesis. Front Cell Dev Biol 2022; 10:1039636. [PMID: 36313554 PMCID: PMC9596918 DOI: 10.3389/fcell.2022.1039636] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 09/28/2022] [Indexed: 11/25/2022] Open
Abstract
Primitive, neonatal and adult erythroid cells have been previously shown to have an active pentose phosphate pathway (PPP) that fuels various processes. However, it is unclear whether the PPP plays a role during the emergence of erythroid progenitors from hemogenic endothelium (HE). In this study, we explored PPP and its genetic regulation in developmental erythropoiesis. We induced hematopoietic differentiation of human induced pluripotent stem cells (hiPSCs) to obtain HE cells. These cells were treated with lentiviral vectors harboring shRNAs against FOXO1, or with inhibitors against the PPP, NRF2 or AKT. Erythroid differentiation, proliferation and frequency were evaluated by flow cytometry. Gene expression was assessed by qPCR or by analysis of available RNAseq data. We found that PPP is indispensable for the erythroid differentiation of HE cells and it partially fuels nucleotide biosynthesis. Moreover, we showed that NRF2 and AKT are essential, while FOXO1 is detrimental, for HE-derived erythroid differentiation. In contrast, blocking FOXO1 expression did not affect erythroid differentiation of cord-blood HSPCs. Mechanistically, FOXO1 inhibition in HE cells led to an increase in the non-oxidative branch of the PPP. During developmental erythropoiesis, the gradual decrease in FOXO1 activates the PPP and fuels nucleotide biosynthesis and cell proliferation.
Collapse
Affiliation(s)
- Anuntxi Monsalve
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Isaac Canals
- Neurology, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Leal Oburoglu
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| |
Collapse
|
31
|
Mimicry of embryonic circulation enhances the hoxa hemogenic niche and human blood development. Cell Rep 2022; 40:111339. [PMID: 36103836 DOI: 10.1016/j.celrep.2022.111339] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 05/11/2022] [Accepted: 08/19/2022] [Indexed: 11/22/2022] Open
Abstract
Precursors of the adult hematopoietic system arise from the aorta-gonad-mesonephros (AGM) region shortly after the embryonic circulation is established. Here, we develop a microfluidic culture system to mimic the primitive embryonic circulation and address the hypothesis that circulatory flow and shear stress enhance embryonic blood development. Embryonic (HOXA+) hematopoiesis was derived from human pluripotent stem cells and induced from mesoderm by small-molecule manipulation of TGF-β and WNT signaling (SB/CHIR). Microfluidic and orbital culture promoted the formation of proliferative CD34+RUNX1C-GFP+SOX17-mCHERRY+ precursor cells that were released into the artificial circulation from SOX17+ arterial-like structures. Single-cell transcriptomic analysis delineated extra-embryonic (yolk sac) and HOXA+ embryonic blood differentiation pathways. SB/CHIR and circulatory flow enhance hematopoiesis by the formation of proliferative HOXA+RUNX1C+CD34+ precursor cells that differentiate into monocyte/macrophage, granulocyte, erythrocyte, and megakaryocyte progenitors.
Collapse
|
32
|
Tu J, Yu S, Li J, Ren M, Zhang Y, Luo J, Sun K, Lv Y, Han Y, Huang Y, Ren X, Jiang T, Tang Z, Williams MTS, Lu Q, Liu M. Dhx38 is required for the maintenance and differentiation of erythro-myeloid progenitors and hematopoietic stem cells by alternative splicing. Development 2022; 149:276218. [DOI: 10.1242/dev.200450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 07/21/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Mutations that occur in RNA-splicing machinery may contribute to hematopoiesis-related diseases. How splicing factor mutations perturb hematopoiesis, especially in the differentiation of erythro-myeloid progenitors (EMPs), remains elusive. Dhx38 is a pre-mRNA splicing-related DEAH box RNA helicase, for which the physiological functions and splicing mechanisms during hematopoiesis currently remain unclear. Here, we report that Dhx38 exerts a broad effect on definitive EMPs as well as the differentiation and maintenance of hematopoietic stem and progenitor cells (HSPCs). In dhx38 knockout zebrafish, EMPs and HSPCs were found to be arrested in mitotic prometaphase, accompanied by a ‘grape’ karyotype, owing to the defects in chromosome alignment. Abnormal alternatively spliced genes related to chromosome segregation, the microtubule cytoskeleton, cell cycle kinases and DNA damage were present in the dhx38 mutants. Subsequently, EMPs and HSPCs in dhx38 mutants underwent P53-dependent apoptosis. This study provides novel insights into alternative splicing regulated by Dhx38, a process that plays a crucial role in the proliferation and differentiation of fetal EMPs and HSPCs.
Collapse
Affiliation(s)
- Jiayi Tu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology 1 , Wuhan 430074 , P.R. China
| | - Shanshan Yu
- Institute of Visual Neuroscience and Stem Cell Engineering, College of Life Sciences and Health, Wuhan University of Science and Technology 2 , Wuhan, Hubei 430065 , P.R. China
| | - Jingzhen Li
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology 1 , Wuhan 430074 , P.R. China
| | - Mengmeng Ren
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology 1 , Wuhan 430074 , P.R. China
| | - Yangjun Zhang
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology 3 , Wuhan 430030 , P.R. China
| | - Jiong Luo
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology 1 , Wuhan 430074 , P.R. China
| | - Kui Sun
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology 1 , Wuhan 430074 , P.R. China
| | - Yuexia Lv
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology 1 , Wuhan 430074 , P.R. China
| | - Yunqiao Han
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology 1 , Wuhan 430074 , P.R. China
| | - Yuwen Huang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology 1 , Wuhan 430074 , P.R. China
| | - Xiang Ren
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology 1 , Wuhan 430074 , P.R. China
| | - Tao Jiang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology 1 , Wuhan 430074 , P.R. China
| | - Zhaohui Tang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology 1 , Wuhan 430074 , P.R. China
| | - Mark Thomas Shaw Williams
- Charles Oakley Laboratories 4 , Department of Biological and Biomedical Sciences , , Glasgow G4 0BA , UK
- Glasgow Caledonian University 4 , Department of Biological and Biomedical Sciences , , Glasgow G4 0BA , UK
| | - Qunwei Lu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology 1 , Wuhan 430074 , P.R. China
| | - Mugen Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology 1 , Wuhan 430074 , P.R. China
| |
Collapse
|
33
|
Tacconi C, Plein A, Colletto C, Villa E, Denti L, Barone C, Javanmardi Y, Moeendarbary E, Azzoni E, Fantin A, Ruhrberg C. KIT is dispensable for physiological organ vascularisation in the embryo. Angiogenesis 2022; 25:343-353. [PMID: 35416527 PMCID: PMC9249691 DOI: 10.1007/s10456-022-09837-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 03/25/2022] [Indexed: 11/08/2022]
Abstract
Blood vessels form vast networks in all vertebrate organs to sustain tissue growth, repair and homeostatic metabolism, but they also contribute to a range of diseases with neovascularisation. It is, therefore, important to define the molecular mechanisms that underpin blood vessel growth. The receptor tyrosine kinase KIT is required for the normal expansion of hematopoietic progenitors that arise during embryogenesis from hemogenic endothelium in the yolk sac and dorsal aorta. Additionally, KIT has been reported to be expressed in endothelial cells during embryonic brain vascularisation and has been implicated in pathological angiogenesis. However, it is neither known whether KIT expression is widespread in normal organ endothelium nor whether it promotes blood vessel growth in developing organs. Here, we have used single-cell analyses to show that KIT is expressed in endothelial cell subsets of several organs, both in the adult and in the developing embryo. Knockout mouse analyses revealed that KIT is dispensable for vascularisation of growing organs in the midgestation embryo, including the lung, liver and brain. By contrast, vascular changes emerged during late-stage embryogenesis in these organs from KIT-deficient embryos, concurrent with severe erythrocyte deficiency and growth retardation. These findings suggest that KIT is not required for developmental tissue vascularisation in physiological conditions, but that KIT deficiency causes foetal anaemia at late gestation and thereby pathological vascular remodelling.
Collapse
Affiliation(s)
- Carlotta Tacconi
- Department of Biosciences, University of Milan, Via G. Celoria 26, 20133, Milan, Italy
| | - Alice Plein
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK
| | - Chiara Colletto
- Department of Biosciences, University of Milan, Via G. Celoria 26, 20133, Milan, Italy
| | - Emanuela Villa
- Department of Biosciences, University of Milan, Via G. Celoria 26, 20133, Milan, Italy
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Laura Denti
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK
| | - Cristiana Barone
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Yousef Javanmardi
- UCL Department of Mechanical Engineering, University College London, London, UK
| | - Emad Moeendarbary
- UCL Department of Mechanical Engineering, University College London, London, UK
| | - Emanuele Azzoni
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Alessandro Fantin
- Department of Biosciences, University of Milan, Via G. Celoria 26, 20133, Milan, Italy.
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK.
| | - Christiana Ruhrberg
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK.
| |
Collapse
|
34
|
Ho VW, Grainger DE, Chagraoui H, Porcher C. Specification of the haematopoietic stem cell lineage: From blood-fated mesodermal angioblasts to haemogenic endothelium. Semin Cell Dev Biol 2022; 127:59-67. [PMID: 35125239 DOI: 10.1016/j.semcdb.2022.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 11/19/2022]
Abstract
Haematopoietic stem and progenitor cells emerge from specialized haemogenic endothelial cells in select vascular beds during embryonic development. Specification and commitment to the blood lineage, however, occur before endothelial cells are endowed with haemogenic competence, at the time of mesoderm patterning and production of endothelial cell progenitors (angioblasts). Whilst early blood cell fate specification has long been recognized, very little is known about the mechanisms that induce endothelial cell diversification and progressive acquisition of a blood identity by a subset of these cells. Here, we review the endothelial origin of the haematopoietic system and the complex developmental journey of blood-fated angioblasts. We discuss how recent technological advances will be instrumental to examine the diversity of the embryonic anatomical niches, signaling pathways and downstream epigenetic and transcriptional processes controlling endothelial cell heterogeneity and blood cell fate specification. Ultimately, this will give essential insights into the ontogeny of the cells giving rise to haematopoietic stem cells, that may aid in the development of novel strategies for their in vitro production for clinical purposes.
Collapse
Affiliation(s)
- Vivien W Ho
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - David E Grainger
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Hedia Chagraoui
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Catherine Porcher
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK.
| |
Collapse
|
35
|
Embryonic Origins of the Hematopoietic System: Hierarchies and Heterogeneity. Hemasphere 2022; 6:e737. [PMID: 35647488 PMCID: PMC9132533 DOI: 10.1097/hs9.0000000000000737] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/28/2022] [Indexed: 11/26/2022] Open
Abstract
The hierarchical framework of the adult blood system as we know it from current medical and hematology textbooks, displays a linear branching network of dividing and differentiated cells essential for the growth and maintenance of the healthy organism. This view of the hierarchy has evolved over the last 75 years. An amazing increase in cellular complexity has been realized; however, innovative single-cell technologies continue to uncover essential cell types and functions in animal models and the human blood system. The most potent cell of the hematopoietic hierarchy is the hematopoietic stem cell. Stem cells for adult tissues are the long-lived self-renewing cellular component, which ensure that differentiated tissue-specific cells are maintained and replaced through the entire adult lifespan. Although much blood research is focused on hematopoietic tissue homeostasis, replacement and regeneration during adult life, embryological studies have widened and enriched our understanding of additional developmental hierarchies and interacting cells of this life-sustaining tissue. Here, we review the current state of knowledge of the hierarchical organization and the vast heterogeneity of the hematopoietic system from embryonic to adult stages.
Collapse
|
36
|
Freyer L, Lallemand Y, Dardenne P, Sommer A, Biton A, Gomez Perdiguero E. Erythro-myeloid progenitor origin of Hofbauer cells in the early mouse placenta. Development 2022; 149:dev200104. [PMID: 35438172 PMCID: PMC9124577 DOI: 10.1242/dev.200104] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 03/31/2022] [Indexed: 12/17/2022]
Abstract
Hofbauer cells (HBCs) are tissue macrophages of the placenta thought to be important for fetoplacental vascular development and innate immune protection. The developmental origins of HBCs remain unresolved and could implicate functional diversity of HBCs in placenta development and disease. In this study, we used flow cytometry and paternally inherited reporters to phenotype placenta macrophages and to identify fetal-derived HBCs and placenta-associated maternal macrophages in the mouse. In vivo pulse-labeling traced the ontogeny of HBCs from yolk sac-derived erythro-myeloid progenitors, with a minor contribution from fetal hematopoietic stem cells later on. Single-cell RNA-sequencing revealed transcriptional similarities between placenta macrophages and erythro-myeloid progenitor-derived fetal liver macrophages and microglia. As with other fetal tissue macrophages, HBCs were dependent on the transcription factor Pu.1, the loss-of-function of which in embryos disrupted fetoplacental labyrinth morphology, supporting a role for HBC in labyrinth angiogenesis and/or remodeling. HBC were also sensitive to Pu.1 (Spi1) haploinsufficiency, which caused an initial deficiency in the numbers of macrophages in the early mouse placenta. These results provide groundwork for future investigation into the relationship between HBC ontogeny and function in placenta pathophysiology.
Collapse
Affiliation(s)
- Laina Freyer
- Institut Pasteur, Unit for Macrophages and Endothelial Cells, Developmental and Stem Cell Biology Department, UMR3738 CNRS, 75015 Paris, France
| | - Yvan Lallemand
- Institut Pasteur, Unit for Macrophages and Endothelial Cells, Developmental and Stem Cell Biology Department, UMR3738 CNRS, 75015 Paris, France
| | - Pascal Dardenne
- Institut Pasteur, Unit for Macrophages and Endothelial Cells, Developmental and Stem Cell Biology Department, UMR3738 CNRS, 75015 Paris, France
| | - Alina Sommer
- Institut Pasteur, Unit for Macrophages and Endothelial Cells, Developmental and Stem Cell Biology Department, UMR3738 CNRS, 75015 Paris, France
- Sorbonne Université, Collège Doctoral, F-75005 Paris, France
| | - Anne Biton
- Bioinformatics and Biostatistics Hub, Institut Pasteur, 75015 Paris, France
| | - Elisa Gomez Perdiguero
- Institut Pasteur, Unit for Macrophages and Endothelial Cells, Developmental and Stem Cell Biology Department, UMR3738 CNRS, 75015 Paris, France
| |
Collapse
|
37
|
Barone C, Orsenigo R, Meneveri R, Brunelli S, Azzoni E. One Size Does Not Fit All: Heterogeneity in Developmental Hematopoiesis. Cells 2022; 11:1061. [PMID: 35326511 PMCID: PMC8947200 DOI: 10.3390/cells11061061] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 02/06/2023] Open
Abstract
Our knowledge of the complexity of the developing hematopoietic system has dramatically expanded over the course of the last few decades. We now know that, while hematopoietic stem cells (HSCs) firmly reside at the top of the adult hematopoietic hierarchy, multiple HSC-independent progenitor populations play variegated and fundamental roles during fetal life, which reflect on adult physiology and can lead to disease if subject to perturbations. The importance of obtaining a high-resolution picture of the mechanisms by which the developing embryo establishes a functional hematopoietic system is demonstrated by many recent indications showing that ontogeny is a primary determinant of function of multiple critical cell types. This review will specifically focus on exploring the diversity of hematopoietic stem and progenitor cells unique to embryonic and fetal life. We will initially examine the evidence demonstrating heterogeneity within the hemogenic endothelium, precursor to all definitive hematopoietic cells. Next, we will summarize the dynamics and characteristics of the so-called "hematopoietic waves" taking place during vertebrate development. For each of these waves, we will define the cellular identities of their components, the extent and relevance of their respective contributions as well as potential drivers of heterogeneity.
Collapse
Affiliation(s)
| | | | | | | | - Emanuele Azzoni
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (C.B.); (R.O.); (R.M.); (S.B.)
| |
Collapse
|
38
|
Endothelial MEKK3-KLF2/4 signaling integrates inflammatory and hemodynamic signals during definitive hematopoiesis. Blood 2022; 139:2942-2957. [PMID: 35245372 PMCID: PMC9101247 DOI: 10.1182/blood.2021013934] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 02/11/2022] [Indexed: 11/20/2022] Open
Abstract
The hematopoietic stem cells (HSCs) that produce blood for the lifetime of an animal arise from RUNX1+ hemogenic endothelial cells (HECs) in the embryonic vasculature through a process of endothelial-to-hematopoietic transition (EHT). Studies have identified inflammatory mediators and fluid shear forces as critical environmental stimuli for EHT, raising the question of how such diverse inputs are integrated to drive HEC specification. Endothelial cell MEKK3-KLF2/4 signaling can be activated by both fluid shear forces and inflammatory mediators, and plays roles in cardiovascular development and disease that have been linked to both stimuli. Here we demonstrate that MEKK3 and KLF2/4 are required in endothelial cells for the specification of RUNX1+ HECs in both the yolk sac and dorsal aorta of the mouse embryo and for their transition to intra-aortic hematopoietic cluster cells (IAHCs). The inflammatory mediators lipopolysaccharide and interferon gamma increase RUNX1+ HECs in an MEKK3-dependent manner. Maternal administration of catecholamines that stimulate embryo cardiac function and accelerate yolk sac vascular remodeling increases EHT by wild-type but not MEKK3-deficient endothelium. These findings identify MEKK-KLF2/4 signaling as an essential pathway for EHT and provide a molecular basis for the integration of diverse environmental inputs, such as inflammatory mediators and hemodynamic forces, during definitive hematopoiesis.
Collapse
|
39
|
Bennett LF, Mumau MD, Li Y, Speck NA. MyD88-dependent TLR signaling oppositely regulates hematopoietic progenitor and stem cell formation in the embryo. Development 2022; 149:274040. [PMID: 35043940 PMCID: PMC8935211 DOI: 10.1242/dev.200025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 01/07/2022] [Indexed: 11/20/2022]
Abstract
Hemogenic endothelial (HE) cells in the dorsal aorta undergo an endothelial-to-hematopoietic transition (EHT) to form multipotent progenitors, lympho-myeloid biased progenitors (LMPs), pre-hematopoietic stem cells (pre-HSCs) and adult-repopulating HSCs. These briefly accumulate in intra-arterial hematopoietic clusters (IAHCs) before being released into the circulation. It is generally assumed that the number of IAHC cells correlates with the number of HSCs. Here, we show that changes in the number of IAHC cells, LMPs and HSCs can be uncoupled. Mutations impairing MyD88-dependent toll-like receptor (TLR) signaling decreased the number of IAHC cells and LMPs, but increased the number of HSCs in the aorta-gonad-mesonephros region of mouse embryos. TLR4-deficient embryos generated normal numbers of HE cells, but IAHC cell proliferation decreased. Loss of MyD88-dependent TLR signaling in innate immune myeloid cells had no effect on IAHC cell numbers. Instead, TLR4 deletion in endothelial cells (ECs) recapitulated the phenotype observed with germline deletion, demonstrating that MyD88-dependent TLR signaling in ECs and/or in IAHCs regulates the numbers of LMPs and HSCs.
Collapse
Affiliation(s)
- Laura F. Bennett
- Abramson Family Cancer Research Institute and Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Melanie D. Mumau
- Abramson Family Cancer Research Institute and Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yan Li
- Department of Veterinary Medicine and Institute of Preventive Veterinary Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Nancy A. Speck
- Abramson Family Cancer Research Institute and Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA,Author for correspondence ()
| |
Collapse
|
40
|
Oburoglu L, Mansell E, Canals I, Sigurdsson V, Guibentif C, Soneji S, Woods N. Pyruvate metabolism guides definitive lineage specification during hematopoietic emergence. EMBO Rep 2022; 23:e54384. [PMID: 34914165 PMCID: PMC8811648 DOI: 10.15252/embr.202154384] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 11/30/2021] [Accepted: 11/30/2021] [Indexed: 01/07/2023] Open
Abstract
During embryonic development, hematopoiesis occurs through primitive and definitive waves, giving rise to distinct blood lineages. Hematopoietic stem cells (HSCs) emerge from hemogenic endothelial (HE) cells, through endothelial-to-hematopoietic transition (EHT). In the adult, HSC quiescence, maintenance, and differentiation are closely linked to changes in metabolism. However, metabolic processes underlying the emergence of HSCs from HE cells remain unclear. Here, we show that the emergence of blood is regulated by multiple metabolic pathways that induce or modulate the differentiation toward specific hematopoietic lineages during human EHT. In both in vitro and in vivo settings, steering pyruvate use toward glycolysis or OXPHOS differentially skews the hematopoietic output of HE cells toward either an erythroid fate with primitive phenotype, or a definitive lymphoid fate, respectively. We demonstrate that glycolysis-mediated differentiation of HE toward primitive erythroid hematopoiesis is dependent on the epigenetic regulator LSD1. In contrast, OXPHOS-mediated differentiation of HE toward definitive hematopoiesis is dependent on cholesterol metabolism. Our findings reveal that during EHT, metabolism is a major regulator of primitive versus definitive hematopoietic differentiation.
Collapse
Affiliation(s)
- Leal Oburoglu
- Molecular Medicine and Gene TherapyLund Stem Cell CenterLund UniversityLundSweden
| | - Els Mansell
- Molecular Medicine and Gene TherapyLund Stem Cell CenterLund UniversityLundSweden
| | - Isaac Canals
- NeurologyLund Stem Cell CenterLund UniversityLundSweden
| | - Valgardur Sigurdsson
- Molecular Medicine and Gene TherapyLund Stem Cell CenterLund UniversityLundSweden
| | - Carolina Guibentif
- Molecular Medicine and Gene TherapyLund Stem Cell CenterLund UniversityLundSweden
- Present address:
Sahlgrenska Center for Cancer ResearchDepartment of Microbiology and ImmunologyInstitute of BiomedicineUniversity of GothenburgGothenburgSweden
| | - Shamit Soneji
- Molecular HematologyLund Stem Cell CenterLund UniversityLundSweden
| | - Niels‐Bjarne Woods
- Molecular Medicine and Gene TherapyLund Stem Cell CenterLund UniversityLundSweden
| |
Collapse
|
41
|
Thambyrajah R, Bigas A. Notch Signaling in HSC Emergence: When, Why and How. Cells 2022; 11:cells11030358. [PMID: 35159166 PMCID: PMC8833884 DOI: 10.3390/cells11030358] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 02/07/2023] Open
Abstract
The hematopoietic stem cell (HSC) sustains blood homeostasis throughout life in vertebrates. During embryonic development, HSCs emerge from the aorta-gonads and mesonephros (AGM) region along with hematopoietic progenitors within hematopoietic clusters which are found in the dorsal aorta, the main arterial vessel. Notch signaling, which is essential for arterial specification of the aorta, is also crucial in hematopoietic development and HSC activity. In this review, we will present and discuss the evidence that we have for Notch activity in hematopoietic cell fate specification and the crosstalk with the endothelial and arterial lineage. The core hematopoietic program is conserved across vertebrates and here we review studies conducted using different models of vertebrate hematopoiesis, including zebrafish, mouse and in vitro differentiated Embryonic stem cells. To fulfill the goal of engineering HSCs in vitro, we need to understand the molecular processes that modulate Notch signaling during HSC emergence in a temporal and spatial context. Here, we review relevant contributions from different model systems that are required to specify precursors of HSC and HSC activity through Notch interactions at different stages of development.
Collapse
Affiliation(s)
- Roshana Thambyrajah
- Program in Cancer Research, Institut Hospital del Mar d’Investigacions Mèdiques, CIBERONC, 08003 Barcelona, Spain
- Correspondence: (R.T.); (A.B.); Tel.: +34-933160437 (R.T.); +34-933160440 (A.B.)
| | - Anna Bigas
- Program in Cancer Research, Institut Hospital del Mar d’Investigacions Mèdiques, CIBERONC, 08003 Barcelona, Spain
- Josep Carreras Leukemia Research Institute, 08003 Barcelona, Spain
- Correspondence: (R.T.); (A.B.); Tel.: +34-933160437 (R.T.); +34-933160440 (A.B.)
| |
Collapse
|
42
|
Azzoni E, Frontera V, Anselmi G, Rode C, James C, Deltcheva EM, Demian AS, Brown J, Barone C, Patelli A, Harman JR, Nicholls M, Conway SJ, Morrissey E, Jacobsen SEW, Sparrow DB, Harris AL, Enver T, de Bruijn MFTR. The onset of circulation triggers a metabolic switch required for endothelial to hematopoietic transition. Cell Rep 2021; 37:110103. [PMID: 34910918 PMCID: PMC8692754 DOI: 10.1016/j.celrep.2021.110103] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/11/2021] [Accepted: 11/15/2021] [Indexed: 12/14/2022] Open
Abstract
Hematopoietic stem cells (HSCs) emerge during development from the vascular wall of the main embryonic arteries. The onset of circulation triggers several processes that provide critical external factors for HSC generation. Nevertheless, it is not fully understood how and when the onset of circulation affects HSC emergence. Here we show that in Ncx1-/- mouse embryos devoid of circulation the HSC lineage develops until the phenotypic pro-HSC stage. However, these cells reside in an abnormal microenvironment, fail to activate the hematopoietic program downstream of Runx1, and are functionally impaired. Single-cell transcriptomics shows that during the endothelial-to-hematopoietic transition, Ncx1-/- cells fail to undergo a glycolysis to oxidative phosphorylation metabolic switch present in wild-type cells. Interestingly, experimental activation of glycolysis results in decreased intraembryonic hematopoiesis. Our results suggest that the onset of circulation triggers metabolic changes that allow HSC generation to proceed.
Collapse
Affiliation(s)
- Emanuele Azzoni
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK.
| | - Vincent Frontera
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Giorgio Anselmi
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Christina Rode
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Chela James
- Department of Cancer Biology, UCL Cancer Institute, University College London, London, WC1E 6DD, UK
| | - Elitza M Deltcheva
- Department of Cancer Biology, UCL Cancer Institute, University College London, London, WC1E 6DD, UK
| | - Atanasiu S Demian
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - John Brown
- Department of Cancer Biology, UCL Cancer Institute, University College London, London, WC1E 6DD, UK
| | - Cristiana Barone
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, 20900, Italy
| | - Arianna Patelli
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, 20900, Italy
| | - Joe R Harman
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Matthew Nicholls
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Simon J Conway
- HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, IN 46033, USA
| | - Edward Morrissey
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Sten Eirik W Jacobsen
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK; Hematopoietic Stem Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK; Department of Cell and Molecular Biology, Wallenberg Institute for Regenerative Medicine and Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet and Karolinska University Hospital, 171 77 Stockholm, Sweden
| | - Duncan B Sparrow
- Department of Physiology, Anatomy and Genetics, BHF Centre of Research Excellence, University of Oxford, Oxford, OX1 3PT, UK
| | - Adrian L Harris
- Department of Oncology, Molecular Oncology Laboratories, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Tariq Enver
- Department of Cancer Biology, UCL Cancer Institute, University College London, London, WC1E 6DD, UK; Division of Molecular Medicine and Gene Therapy, Lund University, Lund, 22184, Sweden
| | - Marella F T R de Bruijn
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK.
| |
Collapse
|
43
|
Neo WH, Meng Y, Rodriguez-Meira A, Fadlullah MZH, Booth CAG, Azzoni E, Thongjuea S, de Bruijn MFTR, Jacobsen SEW, Mead AJ, Lacaud G. Ezh2 is essential for the generation of functional yolk sac derived erythro-myeloid progenitors. Nat Commun 2021; 12:7019. [PMID: 34857757 PMCID: PMC8640066 DOI: 10.1038/s41467-021-27140-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 10/27/2021] [Indexed: 01/01/2023] Open
Abstract
Yolk sac (YS) hematopoiesis is critical for the survival of the embryo and a major source of tissue-resident macrophages that persist into adulthood. Yet, the transcriptional and epigenetic regulation of YS hematopoiesis remains poorly characterized. Here we report that the epigenetic regulator Ezh2 is essential for YS hematopoiesis but dispensable for subsequent aorta-gonad-mesonephros (AGM) blood development. Loss of EZH2 activity in hemogenic endothelium (HE) leads to the generation of phenotypically intact but functionally deficient erythro-myeloid progenitors (EMPs), while the generation of primitive erythroid cells is not affected. EZH2 activity is critical for the generation of functional EMPs at the onset of the endothelial-to-hematopoietic transition but subsequently dispensable. We identify a lack of Wnt signaling downregulation as the primary reason for the production of non-functional EMPs. Together, our findings demonstrate a critical and stage-specific role of Ezh2 in modulating Wnt signaling during the generation of EMPs from YS HE.
Collapse
Affiliation(s)
- Wen Hao Neo
- Haematopoietic Stem Cell Biology Laboratory, MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK.
- Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Macclesfield, SK10 4TG, UK.
| | - Yiran Meng
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Alba Rodriguez-Meira
- Haematopoietic Stem Cell Biology Laboratory, MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Muhammad Z H Fadlullah
- Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Macclesfield, SK10 4TG, UK
| | - Christopher A G Booth
- Haematopoietic Stem Cell Biology Laboratory, MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Emanuele Azzoni
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Supat Thongjuea
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Marella F T R de Bruijn
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Sten Eirik W Jacobsen
- Haematopoietic Stem Cell Biology Laboratory, MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine and Department of Cell and Molecular Biology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Adam J Mead
- Haematopoietic Stem Cell Biology Laboratory, MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK.
| | - Georges Lacaud
- Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Macclesfield, SK10 4TG, UK.
| |
Collapse
|
44
|
Weijts B, Yvernogeau L, Robin C. Recent Advances in Developmental Hematopoiesis: Diving Deeper With New Technologies. Front Immunol 2021; 12:790379. [PMID: 34899758 PMCID: PMC8652083 DOI: 10.3389/fimmu.2021.790379] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 10/28/2021] [Indexed: 12/15/2022] Open
Abstract
The journey of a hematopoietic stem cell (HSC) involves the passage through successive anatomical sites where HSCs are in direct contact with their surrounding microenvironment, also known as niche. These spatial and temporal cellular interactions throughout development are required for the acquisition of stem cell properties, and for maintaining the HSC pool through balancing self-renewal, quiescence and lineage commitment. Understanding the context and consequences of these interactions will be imperative for our understanding of HSC biology and will lead to the improvement of in vitro production of HSCs for clinical purposes. The aorta-gonad-mesonephros (AGM) region is in this light of particular interest since this is the cradle of HSC emergence during the embryonic development of all vertebrate species. In this review, we will focus on the developmental origin of HSCs and will discuss the novel technological approaches and recent progress made to identify the cellular composition of the HSC supportive niche and the underlying molecular events occurring in the AGM region.
Collapse
Affiliation(s)
- Bart Weijts
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) & University Medical Center Utrecht, Utrecht, Netherlands
| | - Laurent Yvernogeau
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) & University Medical Center Utrecht, Utrecht, Netherlands
| | - Catherine Robin
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) & University Medical Center Utrecht, Utrecht, Netherlands
- Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
45
|
He W, Zhang Y, Cao Z, Ye Z, Lu X, Fan J, Peng W, Li Z. Wild-Type p53-Induced Phosphatase 1 Plays a Positive Role in Hematopoiesis in the Mouse Embryonic Head. Front Cell Dev Biol 2021; 9:732527. [PMID: 34604235 PMCID: PMC8484912 DOI: 10.3389/fcell.2021.732527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/18/2021] [Indexed: 12/02/2022] Open
Abstract
The first adult repopulating hematopoietic stem cells (HSCs) are found in the aorta-gonad-mesonephros (AGM) region, which are produced from hemogenic endothelial cells. Embryonic head is the other site for HSC development. Wild-type p53-induced phosphatase 1 (Wip1) is a type-2Cδ family serine/threonine phosphatase involved in various cellular processes such as lymphoid development and differentiation of adult HSCs. Most recently, we have shown that Wip1 modulates the pre-HSC maturation in the AGM region. However, it is not clear whether Wip1 regulates hematopoiesis in the embryonic head. Here we reported that disruption of Wip1 resulted in a decrease of hematopoietic progenitor cell number in the embryonic head. In vivo transplantation assays showed a reduction of HSC function after Wip1 ablation. We established that Wip1 deletion reduced the frequency and cell number of microglia in the embryonic head. Further observations revealed that Wip1 absence enhanced the gene expression of microglia-derived pro-inflammatory factors. Thus, it is likely that Wip1 functions as a positive regulator in HSC development by regulating the function of microglia in the embryonic head.
Collapse
Affiliation(s)
- Wenyan He
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ying Zhang
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zhan Cao
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zehua Ye
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xun Lu
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Junwan Fan
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wei Peng
- Department of Stomatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhuan Li
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
46
|
Sugden WW, North TE. Making Blood from the Vessel: Extrinsic and Environmental Cues Guiding the Endothelial-to-Hematopoietic Transition. Life (Basel) 2021; 11:life11101027. [PMID: 34685398 PMCID: PMC8539454 DOI: 10.3390/life11101027] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 01/10/2023] Open
Abstract
It is increasingly recognized that specialized subsets of endothelial cells carry out unique functions in specific organs and regions of the vascular tree. Perhaps the most striking example of this specialization is the ability to contribute to the generation of the blood system, in which a distinct population of “hemogenic” endothelial cells in the embryo transforms irreversibly into hematopoietic stem and progenitor cells that produce circulating erythroid, myeloid and lymphoid cells for the lifetime of an animal. This review will focus on recent advances made in the zebrafish model organism uncovering the extrinsic and environmental factors that facilitate hemogenic commitment and the process of endothelial-to-hematopoietic transition that produces blood stem cells. We highlight in particular biomechanical influences of hemodynamic forces and the extracellular matrix, metabolic and sterile inflammatory cues present during this developmental stage, and outline new avenues opened by transcriptomic-based approaches to decipher cell–cell communication mechanisms as examples of key signals in the embryonic niche that regulate hematopoiesis.
Collapse
Affiliation(s)
- Wade W. Sugden
- Stem Cell Program, Department of Hematology/Oncology, Boston Children’s Hospital, Boston, MA 02115, USA;
- Developmental and Regenerative Biology Program, Harvard Medical School, Boston, MA 02115, USA
| | - Trista E. North
- Stem Cell Program, Department of Hematology/Oncology, Boston Children’s Hospital, Boston, MA 02115, USA;
- Developmental and Regenerative Biology Program, Harvard Medical School, Boston, MA 02115, USA
- Correspondence:
| |
Collapse
|
47
|
Canonical Wnt: a safeguard and threat for erythropoiesis. Blood Adv 2021; 5:3726-3735. [PMID: 34516644 DOI: 10.1182/bloodadvances.2021004845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/09/2021] [Indexed: 11/20/2022] Open
Abstract
Myeloid dysplastic syndrome (MDS) reflects a preleukemic bone marrow (BM) disorder with limited treatment options and poor disease survival. As only a minority of MDS patients are eligible for curative hematopoietic stem cell transplantation, there is an urgent need to develop alternative treatment options. Chronic activation of Wnt/β-catenin has been implicated to underlie MDS formation and recently assigned to drive MDS transformation to acute myeloid leukemia. Wnt/β-catenin signaling therefore may harbor a pharmaceutical target to treat MDS and/or prevent leukemia formation. However, targeting the Wnt/β-catenin pathway will also affect healthy hematopoiesis in MDS patients. The control of Wnt/β-catenin in healthy hematopoiesis is poorly understood. Whereas Wnt/β-catenin is dispensable for steady-state erythropoiesis, its activity is essential for stress erythropoiesis in response to BM injury and anemia. Manipulation of Wnt/β-catenin signaling in MDS may therefore deregulate stress erythropoiesis and even increase anemia severity. Here, we provide a comprehensive overview of the most recent and established insights in the field to acquire more insight into the control of Wnt/β-catenin signaling in healthy and inefficient erythropoiesis as seen in MDS.
Collapse
|
48
|
Glutamine metabolism regulates endothelial to hematopoietic transition and hematopoietic lineage specification. Sci Rep 2021; 11:17589. [PMID: 34475502 PMCID: PMC8413451 DOI: 10.1038/s41598-021-97194-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/20/2021] [Indexed: 12/16/2022] Open
Abstract
During hematopoietic development, definitive hematopoietic cells are derived from hemogenic endothelial (HE) cells through a process known as endothelial to hematopoietic transition (EHT). During EHT, transitioning cells proliferate and undergo progressive changes in gene expression culminating in the new cell identity with corresponding changes in function, phenotype and morphology. However, the metabolic pathways fueling this transition remain unclear. We show here that glutamine is a crucial regulator of EHT and a rate limiting metabolite in the hematopoietic differentiation of HE cells. Intriguingly, different hematopoietic lineages require distinct derivatives of glutamine. While both derivatives, α-ketoglutarate and nucleotides, are required for early erythroid differentiation of HE during glutamine deprivation, lymphoid differentiation relies on α-ketoglutarate alone. Furthermore, treatment of HE cells with α-ketoglutarate in glutamine-free conditions pushes their differentiation towards lymphoid lineages both in vitro and in vivo, following transplantation into NSG mice. Thus, we report an essential role for glutamine metabolism during EHT, regulating both the emergence and the specification of hematopoietic cells through its various derivatives.
Collapse
|
49
|
Li YQ, Gong Y, Hou S, Huang T, Wang H, Liu D, Ni Y, Wang C, Wang J, Hou J, Yang R, Yan J, Zhang G, Liu B, Lan Y. Spatiotemporal and Functional Heterogeneity of Hematopoietic Stem Cell-Competent Hemogenic Endothelial Cells in Mouse Embryos. Front Cell Dev Biol 2021; 9:699263. [PMID: 34458261 PMCID: PMC8385538 DOI: 10.3389/fcell.2021.699263] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/19/2021] [Indexed: 11/13/2022] Open
Abstract
Hematopoietic stem cells (HSCs) are derived from hemogenic endothelial cells (HECs) during embryogenesis. The HSC-primed HECs increased to the peak at embryonic day (E) 10 and have been efficiently captured by the marker combination CD41-CD43-CD45-CD31+CD201+Kit+CD44+ (PK44) in the aorta-gonad-mesonephros (AGM) region of mouse embryos most recently. In the present study, we investigated the spatiotemporal and functional heterogeneity of PK44 cells around the time of emergence of HSCs. First, PK44 cells in the E10.0 AGM region could be further divided into three molecularly different populations showing endothelial- or hematopoietic-biased characteristics. Specifically, with the combination of Kit, the expression of CD93 or CD146 could divide PK44 cells into endothelial- and hematopoietic-feature biased populations, which was further functionally validated at the single-cell level. Next, the PK44 population could also be detected in the yolk sac, showing similar developmental dynamics and functional diversification with those in the AGM region. Importantly, PK44 cells in the yolk sac demonstrated an unambiguous multilineage reconstitution capacity after in vitro incubation. Regardless of the functional similarity, PK44 cells in the yolk sac displayed transcriptional features different from those in the AGM region. Taken together, our work delineates the spatiotemporal characteristics of HECs represented by PK44 and reveals a previously unknown HSC competence of HECs in the yolk sac. These findings provide a fundamental basis for in-depth study of the different origins and molecular programs of HSC generation in the future.
Collapse
Affiliation(s)
- Yun-Qiao Li
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Yandong Gong
- State Key Laboratory of Experimental Hematology, Fifth Medical Center of Chinese PLA General Hospital, Institute of Hematology, Beijing, China
| | - Siyuan Hou
- Key Laboratory for Regenerative Medicine of Ministry of Education, School of Medicine, Institute of Hematology, Jinan University, Guangzhou, China
| | - Tao Huang
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Haizhen Wang
- Key Laboratory for Regenerative Medicine of Ministry of Education, School of Medicine, Institute of Hematology, Jinan University, Guangzhou, China
| | - Di Liu
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Yanli Ni
- State Key Laboratory of Experimental Hematology, Fifth Medical Center of Chinese PLA General Hospital, Institute of Hematology, Beijing, China
| | - Chaojie Wang
- Key Laboratory for Regenerative Medicine of Ministry of Education, School of Medicine, Institute of Hematology, Jinan University, Guangzhou, China
| | - Junliang Wang
- Department of Radiotherapy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jun Hou
- The Fifth Medical Center of PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Ruichuang Yang
- The Fifth Medical Center of PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Jing Yan
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Guangyu Zhang
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Bing Liu
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China.,State Key Laboratory of Experimental Hematology, Fifth Medical Center of Chinese PLA General Hospital, Institute of Hematology, Beijing, China.,Key Laboratory for Regenerative Medicine of Ministry of Education, School of Medicine, Institute of Hematology, Jinan University, Guangzhou, China
| | - Yu Lan
- Key Laboratory for Regenerative Medicine of Ministry of Education, School of Medicine, Institute of Hematology, Jinan University, Guangzhou, China
| |
Collapse
|
50
|
Mack R, Zhang L, Breslin Sj P, Zhang J. The Fetal-to-Adult Hematopoietic Stem Cell Transition and its Role in Childhood Hematopoietic Malignancies. Stem Cell Rev Rep 2021; 17:2059-2080. [PMID: 34424480 DOI: 10.1007/s12015-021-10230-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2021] [Indexed: 01/07/2023]
Abstract
As with most organ systems that undergo continuous generation and maturation during the transition from fetal to adult life, the hematopoietic and immune systems also experience dynamic changes. Such changes lead to many unique features in blood cell function and immune responses in early childhood. The blood cells and immune cells in neonates are a mixture of fetal and adult origin due to the co-existence of both fetal and adult types of hematopoietic stem cells (HSCs) and progenitor cells (HPCs). Fetal blood and immune cells gradually diminish during maturation of the infant and are almost completely replaced by adult types of cells by 3 to 4 weeks after birth in mice. Such features in early childhood are associated with unique features of hematopoietic and immune diseases, such as leukemia, at these developmental stages. Therefore, understanding the cellular and molecular mechanisms by which hematopoietic and immune changes occur throughout ontogeny will provide useful information for the study and treatment of pediatric blood and immune diseases. In this review, we summarize the most recent studies on hematopoietic initiation during early embryonic development, the expansion of both fetal and adult types of HSCs and HPCs in the fetal liver and fetal bone marrow stages, and the shift from fetal to adult hematopoiesis/immunity during neonatal/infant development. We also discuss the contributions of fetal types of HSCs/HPCs to childhood leukemias.
Collapse
Affiliation(s)
- Ryan Mack
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA
| | - Lei Zhang
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA
| | - Peter Breslin Sj
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA.,Departments of Molecular/Cellular Physiology and Biology, Loyola University Medical Center and Loyola University Chicago, Chicago, IL, 60660, USA
| | - Jiwang Zhang
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA.
| |
Collapse
|