1
|
Li YR, Zhu Y, Fang Y, Lyu Z, Yang L. Emerging trends in clinical allogeneic CAR cell therapy. MED 2025:100677. [PMID: 40367950 DOI: 10.1016/j.medj.2025.100677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/24/2025] [Accepted: 04/04/2025] [Indexed: 05/16/2025]
Abstract
There has been significant progress in the clinical development of allogeneic off-the-shelf chimeric antigen receptor (CAR)-engineered cell therapies for the treatment of cancer and autoimmune diseases. Unlike autologous CAR cell therapies, allogeneic approaches overcome challenges such as high costs, labor-intensive manufacturing, and stringent patient selection. This makes allogeneic therapies a more universally applicable option for a diverse patient population. In this review, we examine recent clinical advancements in allogeneic CAR cell therapies, including CAR-T cell therapy derived from healthy donor peripheral blood mononuclear cells, as well as CAR-NK cell therapy from cord blood or induced pluripotent stem cells. We provide an overview of their genetic engineering strategies, clinical designs, and outcomes, highlighting their promising efficacy and safety. Additionally, we summarize key preclinical developments, address key challenges, and explore future directions to provide insights into emerging trends in the field.
Collapse
Affiliation(s)
- Yan-Ruide Li
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Yichen Zhu
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ying Fang
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Zibai Lyu
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Lili Yang
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Parker Institute for Cancer Immunotherapy, University of California, Los Angeles, Los Angeles, CA 90095, USA; Goodman-Luskin Microbiome Center, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
2
|
Nishimura K, Aoki T, Kobayashi M, Takami M, Ozaki K, Ogawa K, Hongxuan W, Shimizu D, Katsumi D, Yoshizawa H, Komatsu S, Takatani T, Hirahara K, Koseki H, Hishiki T, Motohashi S. Antibody-Dependent Cellular Cytotoxicity of iPS Cell-Derived Natural Killer T Cells by Anti-GD2 mAb for Neuroblastoma. Cancer Sci 2025; 116:884-896. [PMID: 39916425 PMCID: PMC11967243 DOI: 10.1111/cas.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 01/21/2025] [Accepted: 01/27/2025] [Indexed: 04/04/2025] Open
Abstract
While antibody-dependent cellular cytotoxicity (ADCC) by anti-disialoganglioside GD2 monoclonal antibody (mAb) has succeeded in increasing the survival rate of high-risk patients with neuroblastoma, approximately 40%-50% of patients die from the disease. Recently, we developed induced pluripotent stem cell-derived natural killer T (iPS-NKT) cells, which exhibit NK-like cytotoxicity. However, whether iPS-NKT cells can induce ADCC function is unclear. Here, we investigated the ADCC of iPS-NKT cells and the efficacy of the combination treatment of anti-GD2 mAb and iPS-NKT cells against neuroblastoma. Anti-GD2 mAb enhanced the cytotoxicity and secretion of cytokines and cytotoxic granules of iPS-NKT cells, which expressed CD16 to GD2-expressing neuroblastoma cell lines. We also examined which Fcγ receptors contribute to ADCC of iPS-NKT cells. CD16 stimulation against iPS-NKT cells caused cytotoxicity and secretion of interferon-gamma, tumor necrosis factor, and granzyme B. In contrast, CD32 and CD64 stimulation did not. In vivo, the intratumor administration of anti-GD2 mAb and iPS-NKT cells significantly inhibited tumor growth compared with the other treatment groups: no treatment, anti-GD2 mAb alone, and iPS-NKT cells alone. In conclusion, iPS-NKT cells exhibit CD16-mediated ADCC, and the addition of iPS-NKT cells to anti-GD2 mAb therapy may be a potential approach for immunotherapy against neuroblastoma.
Collapse
Affiliation(s)
- Katsuhiro Nishimura
- Department of Medical Immunology, Graduate School of MedicineChiba UniversityChibaJapan
- Department of Pediatric Surgery, Graduate School of MedicineChiba UniversityChibaJapan
| | - Takahiro Aoki
- Department of Medical Immunology, Graduate School of MedicineChiba UniversityChibaJapan
- Department of Pediatrics, Graduate School of MedicineChiba UniversityChibaJapan
- Laboratory for Developmental GeneticsRIKEN Center for Integrative Medical SciencesYokohamaJapan
| | - Midori Kobayashi
- Department of Medical Immunology, Graduate School of MedicineChiba UniversityChibaJapan
| | - Mariko Takami
- Department of Medical Immunology, Graduate School of MedicineChiba UniversityChibaJapan
| | - Ko Ozaki
- Department of Medical Immunology, Graduate School of MedicineChiba UniversityChibaJapan
| | - Keita Ogawa
- Department of Medical Immunology, Graduate School of MedicineChiba UniversityChibaJapan
| | - Wang Hongxuan
- Department of Medical Immunology, Graduate School of MedicineChiba UniversityChibaJapan
| | - Daiki Shimizu
- Department of Medical Immunology, Graduate School of MedicineChiba UniversityChibaJapan
| | - Daisuke Katsumi
- Department of Medical Immunology, Graduate School of MedicineChiba UniversityChibaJapan
- Department of Pediatric Surgery, Graduate School of MedicineChiba UniversityChibaJapan
| | - Hiroko Yoshizawa
- Department of Medical Immunology, Graduate School of MedicineChiba UniversityChibaJapan
- Department of Pediatric Surgery, Graduate School of MedicineChiba UniversityChibaJapan
| | - Shugo Komatsu
- Department of Pediatric Surgery, Graduate School of MedicineChiba UniversityChibaJapan
| | - Tomozumi Takatani
- Department of Pediatrics, Graduate School of MedicineChiba UniversityChibaJapan
| | - Kiyoshi Hirahara
- Department of Immunology, Graduate School of MedicineChiba UniversityChibaJapan
| | - Haruhiko Koseki
- Laboratory for Developmental GeneticsRIKEN Center for Integrative Medical SciencesYokohamaJapan
| | - Tomoro Hishiki
- Department of Pediatric Surgery, Graduate School of MedicineChiba UniversityChibaJapan
| | - Shinichiro Motohashi
- Department of Medical Immunology, Graduate School of MedicineChiba UniversityChibaJapan
| |
Collapse
|
3
|
Li YR, Zhu Y, Chen Y, Yang L. The clinical landscape of CAR-engineered unconventional T cells. Trends Cancer 2025:S2405-8033(25)00069-X. [PMID: 40155286 DOI: 10.1016/j.trecan.2025.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/27/2025] [Accepted: 03/04/2025] [Indexed: 04/01/2025]
Abstract
Unconventional T cells, such as invariant natural killer T (iNKT), γδ T, and mucosal-associated invariant T (MAIT) cells, play a pivotal role in bridging innate and adaptive immunity. Their capacity for rapid tumor targeting and effective modulation of the tumor microenvironment (TME) makes them promising candidates for cancer immunotherapy. Advances in chimeric antigen receptor (CAR) engineering have further highlighted their therapeutic potential, particularly for treating challenging cancers. Notably, these cells exhibit favorable safety profiles, enhancing their viability as off-the-shelf therapeutic options. We provide a comprehensive analysis of the clinical applications of CAR-engineered unconventional T cells, focusing on genetic modifications, manufacturing processes, preconditioning regimens, and dosing strategies. We discuss successful examples from recent clinical trials and explore future directions for utilizing these cells in cancer therapy and beyond.
Collapse
Affiliation(s)
- Yan-Ruide Li
- Department of Microbiology, Immunology, and Molecular Genetics (MIMG), University of California Los Angeles, Los Angeles, CA 90095, USA; Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA.
| | - Yichen Zhu
- Department of Microbiology, Immunology, and Molecular Genetics (MIMG), University of California Los Angeles, Los Angeles, CA 90095, USA; Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Yuning Chen
- Department of Microbiology, Immunology, and Molecular Genetics (MIMG), University of California Los Angeles, Los Angeles, CA 90095, USA; Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Lili Yang
- Department of Microbiology, Immunology, and Molecular Genetics (MIMG), University of California Los Angeles, Los Angeles, CA 90095, USA; Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; Parker Institute for Cancer Immunotherapy, University of California Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
4
|
Metelitsa LS. A milestone method to make natural killer T cells. Nat Biotechnol 2025; 43:302-303. [PMID: 38744945 DOI: 10.1038/s41587-024-02243-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Affiliation(s)
- Leonid S Metelitsa
- Center for Advanced Innate Cell Therapy, Texas Children's Cancer and Hematology Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
5
|
Kirkeby A, Main H, Carpenter M. Pluripotent stem-cell-derived therapies in clinical trial: A 2025 update. Cell Stem Cell 2025; 32:10-37. [PMID: 39753110 DOI: 10.1016/j.stem.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/05/2024] [Accepted: 12/05/2024] [Indexed: 01/28/2025]
Abstract
Since the first derivation of human pluripotent stem cells (hPSCs) 27 years ago, technologies to control their differentiation and manufacturing have advanced immensely, enabling increasing numbers of clinical trials with hPSC-derived products. Here, we revew the landscape of interventional hPSC trials worldwide, highlighting available data on clinical safety and efficacy. As of December 2024, we identify 116 clinical trials with regulatory approval, testing 83 hPSC products. The majority of trials are targeting eye, central nervous system, and cancer. To date, more than 1,200 patients have been dosed with hPSC products, accumulating to >1011 clinically administered cells, so far showing no generalizable safety concerns.
Collapse
Affiliation(s)
- Agnete Kirkeby
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW) and Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; Department of Experimental Medical Sciences, Wallenberg Center for Molecular Medicine (WCMM) and Lund Stem Cell Center, Lund University, 221 84 Lund, Sweden.
| | - Heather Main
- HOYA Consulting (ReGenMed Solutions), Stockholm, Sweden
| | | |
Collapse
|
6
|
Diop MP, van der Stegen SJC. The Pluripotent Path to Immunotherapy. Exp Hematol 2024; 139:104648. [PMID: 39251182 DOI: 10.1016/j.exphem.2024.104648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/14/2024] [Accepted: 09/03/2024] [Indexed: 09/11/2024]
Abstract
Adoptive cell therapy (ACT) enhances the patient's own immune cells' ability to identify and eliminate cancer cells. Several immune cell types are currently being applied in autologous ACT, including T cells, natural killer (NK) cells, and macrophages. The cells' inherent antitumor capacity can be used, or they can be targeted toward tumor-associated antigen through expression of a chimeric antigen receptor (CAR). Although CAR-based ACT has achieved great results in hematologic malignancies, the accessibility of ACT is limited by the autologous nature of the therapy. Induced pluripotent stem cells (iPSCs) hold the potential to address this challenge, because they can provide an unlimited source for the in vitro generation of immune cells. Various immune subsets have been generated from iPSC for application in ACT, including several T-cell subsets (αβT cells, mucosal-associated invariant T cells, invariant NKT [iNKT] cells, and γδT cells), as well as NK cells, macrophages, and neutrophils. iPSC-derived αβT, NK, and iNKT cells are currently being tested in phase I clinical trials. The ability to perform (multiplexed) gene editing at the iPSC level and subsequent differentiation into effector populations not only expands the arsenal of ACT but allows for development of ACT utilizing cell types which cannot be efficiently obtained from peripheral blood or engineered and expanded in vitro.
Collapse
Affiliation(s)
- Mame P Diop
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
| | | |
Collapse
|
7
|
Zhang Y, He Y, Dai C, Zhou Z, Miao Y, Zhao Z, Lei Q, Li C, Wang C, Deng H. Generation of dual-attribute iTNK cells from hPSCs for cancer immunotherapy. CELL REPORTS METHODS 2024; 4:100843. [PMID: 39216483 PMCID: PMC11440056 DOI: 10.1016/j.crmeth.2024.100843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 07/11/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
Dual-attribute immune cells possess advantageous features of cytotoxic T cells and natural killer (NK) cells and hold promise for advancing immunotherapy. Dual-attribute cell types such as invariant natural killer T cells, induced T-to-NK cells, and cytokine-induced killer cells have demonstrated efficacy and safety in preclinical and clinical studies. However, their limited availability hinders their widespread application. Human pluripotent stem cells (hPSCs) offer an ideal source. Here, we generate dual-attribute induced T-NK (iTNK) cells from hPSCs, expressing markers of both cytotoxic T and NK cells. Single-cell RNA and T cell receptor (TCR) sequencing analyses reveal that iTNK cells expressed signature genes associated with both NK and T cells and displayed a diverse TCR repertoire. iTNK cells release cytotoxic mediators, exert cytotoxicity against diverse tumor cell lines, and inhibit tumor growth in vivo. By harnessing adaptive and innate immune responses, hPSC-derived iTNK cells offer promising strategies for cancer immunotherapy.
Collapse
Affiliation(s)
- Yingfeng Zhang
- Peking-Tsinghua Center for Life Sciences, The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Yuanyuan He
- Peking-Tsinghua Center for Life Sciences, The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Chenyi Dai
- Changping Laboratory, Beijing 102206, China
| | - Zhengyang Zhou
- Peking-Tsinghua Center for Life Sciences, The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Yudi Miao
- Peking-Tsinghua Center for Life Sciences, The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Zixin Zhao
- Peking-Tsinghua Center for Life Sciences, The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Qi Lei
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Stem Cell Research Center, Peking University Health Science Center, Beijing 100191, China
| | - Cheng Li
- School of Life Sciences, Center for Bioinformatics, Center for Statistical Science, Peking University, Beijing 100871, China
| | - Chengyan Wang
- Peking-Tsinghua Center for Life Sciences, The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.
| | - Hongkui Deng
- Peking-Tsinghua Center for Life Sciences, The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Changping Laboratory, Beijing 102206, China.
| |
Collapse
|
8
|
Takami M, Motohashi S. Comparative assessment of autologous and allogeneic iNKT cell transfer in iNKT cell-based immunotherapy. Front Immunol 2024; 15:1457771. [PMID: 39224603 PMCID: PMC11366658 DOI: 10.3389/fimmu.2024.1457771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
Invariant natural killer T (iNKT) cells are a small subset of T lymphocytes that release large amounts of cytokines such as IFN-γ and exhibit cytotoxic activity upon activation, inducing strong anti-tumor effects. Harnessing the anti-tumor properties of iNKT cells, iNKT cell-based immunotherapy has been developed to treat cancer patients. In one of the iNKT cell-based immunotherapies, two approaches are utilized, namely, active immunotherapy or adoptive immunotherapy, the latter involving the ex vivo expansion and subsequent administration of iNKT cells. There are two sources of iNKT cells for adoptive transfer, autologous and allogeneic, each with its own advantages and disadvantages. Here, we assess clinical trials conducted over the last decade that have utilized iNKT cell adoptive transfer as iNKT cell-based immunotherapy, categorizing them into two groups based on the use of autologous iNKT cells or allogeneic iNKT cells.
Collapse
Affiliation(s)
| | - Shinichiro Motohashi
- Department of Medical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
9
|
Jia W, Ma L, Yu X, Wang F, Yang Q, Wang X, Fan M, Gu Y, Meng R, Wang J, Li Y, Li R, Shao X, Wang YL. Human CD56 +CD39 + dNK cells support fetal survival through controlling trophoblastic cell fate: immune mechanisms of recurrent early pregnancy loss. Natl Sci Rev 2024; 11:nwae142. [PMID: 38966071 PMCID: PMC11223582 DOI: 10.1093/nsr/nwae142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 03/26/2024] [Accepted: 04/04/2024] [Indexed: 07/06/2024] Open
Abstract
Decidual natural killer (dNK) cells are the most abundant immune cells at the maternal-fetal interface during early pregnancy in both mice and humans, and emerging single-cell transcriptomic studies have uncovered various human dNK subsets that are disrupted in patients experiencing recurrent early pregnancy loss (RPL) at early gestational stage, suggesting a connection between abnormal proportions or characteristics of dNK subsets and RPL pathogenesis. However, the functional mechanisms underlying this association remain unclear. Here, we established a mouse model by adoptively transferring human dNK cells into pregnant NOG (NOD/Shi-scid/IL-2Rγnull) mice, where human dNK cells predominantly homed into the uteri of recipients. Using this model, we observed a strong correlation between the properties of human dNK cells and pregnancy outcome. The transfer of dNK cells from RPL patients (dNK-RPL) remarkably worsened early pregnancy loss and impaired placental trophoblast cell differentiation in the recipients. These adverse effects were effectively reversed by transferring CD56+CD39+ dNK cells. Mechanistic studies revealed that CD56+CD39+ dNK subset facilitates early differentiation of mouse trophoblast stem cells (mTSCs) towards both invasive and syncytial pathways through secreting macrophage colony-stimulating factor (M-CSF). Administration of recombinant M-CSF to NOG mice transferred with dNK-RPL efficiently rescued the exacerbated pregnancy outcomes and fetal/placental development. Collectively, this study established a novel humanized mouse model featuring functional human dNK cells homing into the uteri of recipients and uncovered the pivotal role of M-CSF in fetal-supporting function of CD56+CD39+ dNK cells during early pregnancy, highlighting that M-CSF may be a previously unappreciated therapeutic target for intervening RPL.
Collapse
Affiliation(s)
- Wentong Jia
- State Key Laboratory of Stem cell and Reproductive Biology, Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Liyang Ma
- State Key Laboratory of Stem cell and Reproductive Biology, Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xin Yu
- State Key Laboratory of Stem cell and Reproductive Biology, Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- University of the Chinese Academy of Sciences, Beijing 101408, China
| | - Feiyang Wang
- State Key Laboratory of Stem cell and Reproductive Biology, Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- University of the Chinese Academy of Sciences, Beijing 101408, China
| | - Qian Yang
- NHC Key Lab of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China
| | - Xiaoye Wang
- National Clinical Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - Mengjie Fan
- National Clinical Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - Yan Gu
- Department of Family Planning, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Ran Meng
- Department of Prenatal Screening, Haidian Maternal and Child Health Hospital, Beijing 100080, China
| | - Jian Wang
- NHC Key Lab of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China
| | - Yuxia Li
- State Key Laboratory of Stem cell and Reproductive Biology, Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Rong Li
- National Clinical Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - Xuan Shao
- State Key Laboratory of Stem cell and Reproductive Biology, Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- University of the Chinese Academy of Sciences, Beijing 101408, China
| | - Yan-Ling Wang
- State Key Laboratory of Stem cell and Reproductive Biology, Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- University of the Chinese Academy of Sciences, Beijing 101408, China
| |
Collapse
|
10
|
Zhang T, Tai Z, Miao F, Zhang X, Li J, Zhu Q, Wei H, Chen Z. Adoptive cell therapy for solid tumors beyond CAR-T: Current challenges and emerging therapeutic advances. J Control Release 2024; 368:372-396. [PMID: 38408567 DOI: 10.1016/j.jconrel.2024.02.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/05/2024] [Accepted: 02/23/2024] [Indexed: 02/28/2024]
Abstract
Adoptive cellular immunotherapy using immune cells expressing chimeric antigen receptors (CARs) is a highly specific anti-tumor immunotherapy that has shown promise in the treatment of hematological malignancies. However, there has been a slow progress toward the treatment of solid tumors owing to the complex tumor microenvironment that affects the localization and killing ability of the CAR cells. Solid tumors with a strong immunosuppressive microenvironment and complex vascular system are unaffected by CAR cell infiltration and attack. To improve their efficacy toward solid tumors, CAR cells have been modified and upgraded by "decorating" and "pruning". This review focuses on the structure and function of CARs, the immune cells that can be engineered by CARs and the transformation strategies to overcome solid tumors, with a view to broadening ideas for the better application of CAR cell therapy for the treatment of solid tumors.
Collapse
Affiliation(s)
- Tingrui Zhang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China; Medical Guarantee Center, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China; School of Medicine, Shanghai University, Shanghai 200444, China; Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai 200443, China
| | - Zongguang Tai
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China; Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai 200443, China; Department of Pharmacy, First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Fengze Miao
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China; Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai 200443, China
| | - Xinyue Zhang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China; Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai 200443, China
| | - Jiadong Li
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China; Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai 200443, China
| | - Hua Wei
- Medical Guarantee Center, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China.
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China; School of Medicine, Shanghai University, Shanghai 200444, China; Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai 200443, China.
| |
Collapse
|
11
|
Takami M, Aoki T, Nishimura K, Tanaka H, Onodera A, Motohashi S. Anti-Vα24Jα18 TCR Antibody Tunes iNKT Cell Responses to Target and Kill CD1d-negative Tumors in an FcγRII (CD32)-dependent Manner. CANCER RESEARCH COMMUNICATIONS 2024; 4:446-459. [PMID: 38319156 PMCID: PMC10875981 DOI: 10.1158/2767-9764.crc-23-0203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 12/12/2023] [Accepted: 02/01/2024] [Indexed: 02/07/2024]
Abstract
Invariant natural killer T (iNKT) cells play an essential role in antitumor immunity by exerting cytotoxicity and producing massive amounts of cytokines. iNKT cells express invariant T-cell receptors (TCR) to recognize their cognate glycolipid antigens such as α-galactosylceramide (α-GalCer) presented on CD1d. We recently reported that iNKT cells recognize CD1d-negative leukemia cell line K562 in a TCR-dependent manner. However, it remains controversial how iNKT cells use TCRs to recognize and exhibit cytotoxic activity toward CD1d-negative tumors cells without CD1d restriction. Here, we report that iNKT cells exerted cytotoxicity toward K562 cells via a carried over anti-Vα24 TCR mAb from positive selection by magnetic bead sorting. We found that addition of the anti-Vα24Jα18 TCR mAb (6B11 mAb) rendered iNKT cells cytotoxic to K562 cells in an FcγRII (CD32)-dependent manner. Moreover, iNKT cells treated with 6B11 mAb became cytotoxic to other CD32+ cell lines (U937 and Daudi). In addition, iNKT cells treated with 6B11 mAb suppressed K562 cell growth in a murine xenograft model in vivo. These data suggest that anti-iNKT TCR mAb treatment of iNKT cells can be applied as a therapeutic strategy to treat CD32+ cancers such as leukemia, lymphoma, and lung cancer. SIGNIFICANCE Our findings unveiled that iNKT cells recognize and kill CD1d-negative target tumors via the anti-iNKT TCR mAb bound to CD32 at the tumor site, thereby bridging iNKT cells and CD1d-negative tumors. These findings shed light on the therapeutic potential of anti-iNKT TCR mAbs in NKT cell-based immunotherapy to treat CD1d-negative CD32+ cancers.
Collapse
Affiliation(s)
- Mariko Takami
- Department of Medical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takahiro Aoki
- Department of Medical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Katsuhiro Nishimura
- Department of Medical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
- Department of Pediatric Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hidekazu Tanaka
- Department of Medical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
- Department of Thoracic Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Atsushi Onodera
- Institute for Advanced Academic Research, Chiba University, Chiba, Japan
- Research Institute for Disaster Medicine, Chiba University, Chiba, Japan
| | - Shinichiro Motohashi
- Department of Medical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
12
|
Jiang JH, Ren RT, Cheng YJ, Li XX, Zhang GR. Immune cells and RBCs derived from human induced pluripotent stem cells: method, progress, prospective challenges. Front Cell Dev Biol 2024; 11:1327466. [PMID: 38250324 PMCID: PMC10796611 DOI: 10.3389/fcell.2023.1327466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/14/2023] [Indexed: 01/23/2024] Open
Abstract
Blood has an important role in the healthcare system, particularly in blood transfusions and immunotherapy. However, the occurrence of outbreaks of infectious diseases worldwide and seasonal fluctuations, blood shortages are becoming a major challenge. Moreover, the narrow specificity of immune cells hinders the widespread application of immune cell therapy. To address this issue, researchers are actively developing strategies for differentiating induced pluripotent stem cells (iPSCs) into blood cells in vitro. The establishment of iPSCs from terminally differentiated cells such as fibroblasts and blood cells is a straightforward process. However, there is need for further refinement of the protocols for differentiating iPSCs into immune cells and red blood cells to ensure their clinical applicability. This review aims to provide a comprehensive overview of the strategies and challenges facing the generation of iPSC-derived immune cells and red blood cells.
Collapse
Affiliation(s)
- Jin-he Jiang
- Shandong Yinfeng Academy of Life Science, Jinan, Shandong, China
| | - Ru-tong Ren
- Shandong Yinfeng Academy of Life Science, Jinan, Shandong, China
| | - Yan-jie Cheng
- Institute of Biomedical and Health Science, School of Life and Health Science, Anhui Science and Technology University, Chuzhou, Anhui, China
| | - Xin-xin Li
- Shandong Yinfeng Academy of Life Science, Jinan, Shandong, China
| | - Gui-rong Zhang
- Shandong Yinfeng Academy of Life Science, Jinan, Shandong, China
| |
Collapse
|
13
|
Kawamoto H, Masuda K, Nagano S. Development of Immune Cell Therapy Using T Cells Generated from Pluripotent Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1444:207-217. [PMID: 38467982 DOI: 10.1007/978-981-99-9781-7_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
In the field of cancer immunotherapy, the effectiveness of a method in which patient-derived T cells are genetically modified ex vivo and administered to patients has been demonstrated. However, problems remain with this method, such as (1) time-consuming, (2) costly, and (3) difficult to guarantee the quality. To overcome these barriers, strategies to regenerate T cells using iPSC technology are being pursued by several groups in the last decade. The authors have been developing a method by which specific TCR genes are introduced into iPSCs and T cells are generated from those iPSCs (TCR-iPSC method). At present, our group is preparing this approach for clinical trial, where iPSCs provided from the iPSC project are transduced with WT1 antigen-specific TCR that had been already clinically tested, and killer T cells are generated from such TCR-iPSCs, to be administered to acute myeloid leukemia patients. While the adoptive T cell therapies have been mainly directed to be used in cancer immunotherapy, it is possible to apply these approaches to viral infections. Strategies by other groups to regenerate various types of T cells from iPSCs will also be introduced.
Collapse
Affiliation(s)
- Hiroshi Kawamoto
- Laboratory of Immunology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan.
- Laboratory of Regenerative Immunology, International Center for Cell and Gene Therapy, Fujita Health University, Toyoake, Japan.
| | - Kyoko Masuda
- Laboratory of Immunology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Seiji Nagano
- Laboratory of Immunology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
14
|
Aoki T, Motohashi S. Progress in Natural Killer T Cell-Based Immunotherapy for Cancer: Use of Allogeneic and Gene-Edited Cells. Crit Rev Oncog 2024; 29:1-9. [PMID: 38421710 DOI: 10.1615/critrevoncog.2023049526] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Immune cell therapy has received attention in the clinical setting. However, current chimeric antigen receptor T cell therapies require individualized manufacturing based on patient cells, resulting in high costs and long processing times. Allogeneic immune cell therapy, which involves the use of immune cells from other donors, is emerging as a promising alternative that offers multiple advantages, including off-the-shelf availability, standardized manufacturing, and potentially stronger effector functions. Natural killer T (NKT) cells are a type of T cell that can be activated without being restricted by HLA, indicating their potential use in allogeneic cell immunotherapy. They exhibit cytotoxic activity against various cancer targets. However, their low frequency in blood limits their use in ex vivo amplification for treatment. This has led researchers to focus on allogeneic NKT cells as a potential treatment agent. In this study, we review the research on NKT cell-based immunotherapy and focus on the recent progress in clinical trials related to NKT cell-based immunotherapy worldwide. NKT cell-based therapy is not limited to specific cancer types and has been investigated in many ways worldwide over the past decade. Some clinical trials targeting NKT cells have shown promising results; however, the number of trials is low compared to those using T and natural killer cells. The use of allogeneic NKT cells may revolutionize the treatment of cancer and other diseases. However, further research and clinical trials are necessary to fully understand their efficacy, safety, and long-term benefits.
Collapse
Affiliation(s)
- Takahiro Aoki
- Department of Medical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Shinichiro Motohashi
- Department of Medical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
15
|
Chang Y, Hummel SN, Jung J, Jin G, Deng Q, Bao X. Engineered hematopoietic and immune cells derived from human pluripotent stem cells. Exp Hematol 2023; 127:14-27. [PMID: 37611730 PMCID: PMC10615717 DOI: 10.1016/j.exphem.2023.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/09/2023] [Accepted: 08/17/2023] [Indexed: 08/25/2023]
Abstract
For the past decade, significant advances have been achieved in human hematopoietic stem cell (HSC) transplantation for treating various blood diseases and cancers. However, challenges remain with the quality control, amount, and cost of HSCs and HSC-derived immune cells. The advent of human pluripotent stem cells (hPSCs) may transform HSC transplantation and cancer immunotherapy by providing a cost-effective and scalable cell source for fundamental studies and translational applications. In this review, we discuss the current developments in the field of stem cell engineering for hematopoietic stem and progenitor cell (HSPC) differentiation and further differentiation of HSPCs into functional immune cells. The key advances in stem cell engineering include the generation of HSPCs from hPSCs, genetic modification of hPSCs, and hPSC-derived HSPCs for improved function, further differentiation of HPSCs into functional immune cells, and applications of cell culture platforms for hematopoietic cell manufacturing. Current challenges impeding the translation of hPSC-HSPCs and immune cells as well as further directions to address these challenges are also discussed.
Collapse
Affiliation(s)
- Yun Chang
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana; Purdue University Institute for Cancer Research, West Lafayette, Indiana
| | - Sydney N Hummel
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana; Purdue University Institute for Cancer Research, West Lafayette, Indiana
| | - Juhyung Jung
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana; Purdue University Institute for Cancer Research, West Lafayette, Indiana
| | - Gyuhyung Jin
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana; Purdue University Institute for Cancer Research, West Lafayette, Indiana
| | - Qing Deng
- Purdue University Institute for Cancer Research, West Lafayette, Indiana; Department of Biological Sciences, Purdue University, West Lafayette, Indiana
| | - Xiaoping Bao
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana; Purdue University Institute for Cancer Research, West Lafayette, Indiana.
| |
Collapse
|
16
|
Zheng H, Chen Y, Luo Q, Zhang J, Huang M, Xu Y, Huo D, Shan W, Tie R, Zhang M, Qian P, Huang H. Generating hematopoietic cells from human pluripotent stem cells: approaches, progress and challenges. CELL REGENERATION (LONDON, ENGLAND) 2023; 12:31. [PMID: 37656237 PMCID: PMC10474004 DOI: 10.1186/s13619-023-00175-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/13/2023] [Indexed: 09/02/2023]
Abstract
Human pluripotent stem cells (hPSCs) have been suggested as a potential source for the production of blood cells for clinical application. In two decades, almost all types of blood cells can be successfully generated from hPSCs through various differentiated strategies. Meanwhile, with a deeper understanding of hematopoiesis, higher efficiency of generating progenitors and precursors of blood cells from hPSCs is achieved. However, how to generate large-scale mature functional cells from hPSCs for clinical use is still difficult. In this review, we summarized recent approaches that generated both hematopoietic stem cells and mature lineage cells from hPSCs, and remarked their efficiency and mechanisms in producing mature functional cells. We also discussed the major challenges in hPSC-derived products of blood cells and provided some potential solutions. Our review summarized efficient, simple, and defined methodologies for developing good manufacturing practice standards for hPSC-derived blood cells, which will facilitate the translation of these products into the clinic.
Collapse
Affiliation(s)
- Haiqiong Zheng
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310012, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310012, China
| | - Yijin Chen
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310012, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310012, China
| | - Qian Luo
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310012, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310012, China
| | - Jie Zhang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310012, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310012, China
| | - Mengmeng Huang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310012, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310012, China
| | - Yulin Xu
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310012, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310012, China
| | - Dawei Huo
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310012, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310012, China
| | - Wei Shan
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310012, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310012, China
| | - Ruxiu Tie
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310012, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310012, China
| | - Meng Zhang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310012, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China.
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, China.
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310012, China.
| | - Pengxu Qian
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China.
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, China.
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310012, China.
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - He Huang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310012, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China.
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, China.
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310012, China.
| |
Collapse
|
17
|
Zhang P, Zhang G, Wan X. Challenges and new technologies in adoptive cell therapy. J Hematol Oncol 2023; 16:97. [PMID: 37596653 PMCID: PMC10439661 DOI: 10.1186/s13045-023-01492-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/04/2023] [Indexed: 08/20/2023] Open
Abstract
Adoptive cell therapies (ACTs) have existed for decades. From the initial infusion of tumor-infiltrating lymphocytes to the subsequent specific enhanced T cell receptor (TCR)-T and chimeric antigen receptor (CAR)-T cell therapies, many novel strategies for cancer treatment have been developed. Owing to its promising outcomes, CAR-T cell therapy has revolutionized the field of ACTs, particularly for hematologic malignancies. Despite these advances, CAR-T cell therapy still has limitations in both autologous and allogeneic settings, including practicality and toxicity issues. To overcome these challenges, researchers have focused on the application of CAR engineering technology to other types of immune cell engineering. Consequently, several new cell therapies based on CAR technology have been developed, including CAR-NK, CAR-macrophage, CAR-γδT, and CAR-NKT. In this review, we describe the development, advantages, and possible challenges of the aforementioned ACTs and discuss current strategies aimed at maximizing the therapeutic potential of ACTs. We also provide an overview of the various gene transduction strategies employed in immunotherapy given their importance in immune cell engineering. Furthermore, we discuss the possibility that strategies capable of creating a positive feedback immune circuit, as healthy immune systems do, could address the flaw of a single type of ACT, and thus serve as key players in future cancer immunotherapy.
Collapse
Affiliation(s)
- Pengchao Zhang
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Nanshan District, Shenzhen, 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Guizhong Zhang
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Nanshan District, Shenzhen, 518055, People's Republic of China.
| | - Xiaochun Wan
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Nanshan District, Shenzhen, 518055, People's Republic of China.
| |
Collapse
|
18
|
Fukuzawa S, Yamagata K, Takaoka S, Uchida F, Ishibashi-Kanno N, Yanagawa T, Bukawa H. Postoperative Deep Sedation after Microvascular Reconstructive Surgery for Oral Cancer Increases the Risk of Early Postoperative Pneumonia. Dent J (Basel) 2023; 11:dj11050137. [PMID: 37232788 DOI: 10.3390/dj11050137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 03/23/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023] Open
Abstract
This study investigated the effect of postoperative deep sedation after oral cancer reconstructive surgery on the occurrence of early postoperative pneumonia and early postoperative delirium. We obtained medical records of 108 consecutive patients who underwent microvascular reconstructive surgery at Tsukuba University Hospital for oral cancer between January 2013 and December 2021. Forty-six of them woke soon after surgery. Ten of these forty-six patients were restless and required immediate sedation within 3 h after surgery. The comparison between sedation group and no sedation group revealed early postoperative pneumonia in the no sedation group; however, sedation was not related to early postoperative delirium. The preoperative albumin levels of patients with postoperative pneumonia were significantly different (p = 0.03) than those of patients without postoperative pneumonia. The performance status (p = 0.02), preoperative albumin level (p = 0.02), and age 75 years or older (p = 0.02) were significantly associated with postoperative delirium. Restless patients and those who could not be sedated experienced delirium and pneumonia. The risk of pneumonia was increased for patients who were difficult to sedate.
Collapse
Affiliation(s)
- Satoshi Fukuzawa
- Department of Oral and Maxillofacial Surgery, Institute of Clinical Medicine, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Ibaraki, Japan
| | - Kenji Yamagata
- Department of Oral and Maxillofacial Surgery, Institute of Clinical Medicine, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Ibaraki, Japan
| | - Shohei Takaoka
- Department of Oral and Maxillofacial Surgery, Institute of Clinical Medicine, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Ibaraki, Japan
| | - Fumihiko Uchida
- Department of Oral and Maxillofacial Surgery, Institute of Clinical Medicine, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Ibaraki, Japan
| | - Naomi Ishibashi-Kanno
- Department of Oral and Maxillofacial Surgery, Institute of Clinical Medicine, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Ibaraki, Japan
| | - Toru Yanagawa
- Department of Oral and Maxillofacial Surgery, Institute of Clinical Medicine, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Ibaraki, Japan
| | - Hiroki Bukawa
- Department of Oral and Maxillofacial Surgery, Institute of Clinical Medicine, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Ibaraki, Japan
| |
Collapse
|
19
|
Aoki T, Motohashi S, Koseki H. Regeneration of invariant natural killer T (iNKT) cells: application of iPSC technology for iNKT cell-targeted tumor immunotherapy. Inflamm Regen 2023; 43:27. [PMID: 37170375 PMCID: PMC10176773 DOI: 10.1186/s41232-023-00275-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 03/29/2023] [Indexed: 05/13/2023] Open
Abstract
Invariant natural killer T (iNKT) cells are a subset of innate-like T cells restricted by a major histocompatibility complex (MHC) class I-like molecule, CD1d. iNKT cells express an invariant T cell receptor (TCR) encoded by Vα14 Jα18 in mice and Vα24 Jα18 in humans and are activated by recognizing glycolipid antigens, such as α-galactosylceramide (αGalCer), presented by CD1d. iNKT cells exhibit anti-tumor activity via their NK-like cytotoxicity and adjuvant activity. Although iNKT cell-targeted immunotherapy is a conceptually promising approach, we still found a technical hurdle for its clinical implementation which is mainly due to the low frequency of iNKT cells, particularly in humans. To compensate for this, we proposed to generate adequate numbers of clinically competent NKT cells from induced pluripotent stem cells (iPSCs) for cancer immunotherapy. Toward this goal, we first obtained the proof of concept (POC) for this approach in mice. We developed a technology to differentiate iPSCs into iNKT cells (iPSC-iNKT cells) and found iPSC-iNKT cells efficiently rejected a syngeneic experimental thymoma by inducing antigen-specific CD8 T cells. After achieving the POC in mice, we developed human iPSC-iNKT cells, which had a high correlation in their gene expression profiles with parental iNKT cells. Human iPSC-iNKT cells also exhibited anti-tumor activity and adjuvant activity for human NK cells in vivo. Based on this supporting evidence for the anti-tumor activity of human iPSC-iNKT cells, we began to generate good manufacturing practice (GMP)-grade iPSC-iNKT cells. As of now, the first-in-human clinical trial of iPSC-iNKT cell therapy is ongoing as a single-agent, dose-escalation study for patients with advanced head and neck cancer. Demonstration of the safety of iPSC-iNKT cell therapy may allow us to improve the strategy by further reinforcing the therapeutic activity of iPSC-iNKT, cells either by gene-editing or combinatorial use with other immune cell products such as dendritic cells. Sixteen years after the establishment of the iPSC technology, we are reaching the first checkpoint to evaluate the clinical efficacy of iPSC-derived immune cells.
Collapse
Affiliation(s)
- Takahiro Aoki
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.
- Department of Medical Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-Ku, Chiba, 260-8670, Japan.
| | - Shinichiro Motohashi
- Department of Medical Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-Ku, Chiba, 260-8670, Japan
| | - Haruhiko Koseki
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
20
|
Hadiloo K, Tahmasebi S, Esmaeilzadeh A. CAR-NKT cell therapy: a new promising paradigm of cancer immunotherapy. Cancer Cell Int 2023; 23:86. [PMID: 37158883 PMCID: PMC10165596 DOI: 10.1186/s12935-023-02923-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/10/2023] [Indexed: 05/10/2023] Open
Abstract
Today, cancer treatment is one of the fundamental problems facing clinicians and researchers worldwide. Efforts to find an excellent way to treat this illness continue, and new therapeutic strategies are developed quickly. Adoptive cell therapy (ACT) is a practical approach that has been emerged to improve clinical outcomes in cancer patients. In the ACT, one of the best ways to arm the immune cells against tumors is by employing chimeric antigen receptors (CARs) via genetic engineering. CAR equips cells to target specific antigens on tumor cells and selectively eradicate them. Researchers have achieved promising preclinical and clinical outcomes with different cells by using CARs. One of the potent immune cells that seems to be a good candidate for CAR-immune cell therapy is the Natural Killer-T (NKT) cell. NKT cells have multiple features that make them potent cells against tumors and would be a powerful replacement for T cells and natural killer (NK) cells. NKT cells are cytotoxic immune cells with various capabilities and no notable side effects on normal cells. The current study aimed to comprehensively provide the latest advances in CAR-NKT cell therapy for cancers.
Collapse
Affiliation(s)
- Kaveh Hadiloo
- Student Research Committee, Department of immunology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Safa Tahmasebi
- Student Research Committee, Department of immunology, School of Medicine, Shahid beheshti University of Medical Sciences, Tehran, Iran.
| | - Abdolreza Esmaeilzadeh
- Department of Immunology, Zanjan University of Medical Sciences, Zanjan, Iran.
- Cancer Gene Therapy Research Center (CGRC), Zanjan University of Medical Sciences, Zanjan, Iran.
| |
Collapse
|
21
|
Courtney AN, Tian G, Metelitsa LS. Natural killer T cells and other innate-like T lymphocytes as emerging platforms for allogeneic cancer cell therapy. Blood 2023; 141:869-876. [PMID: 36347021 PMCID: PMC10023720 DOI: 10.1182/blood.2022016201] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/19/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
T cells expressing chimeric antigen receptors (CARs) have achieved major clinical success in patients with hematologic malignancies. However, these treatments remain largely ineffective for solid cancers and require significant time and resources to be manufactured in an autologous setting. Developing alternative immune effector cells as cancer immunotherapy agents that can be employed in allogeneic settings is crucial for the advancement of cell therapy. Unlike T cells, Vα24-invariant natural killer T cells (NKTs) are not alloreactive and can therefore be generated from allogeneic donors for rapid infusion into numerous patients without the risk of graft-versus-host disease. Additionally, NKT cells demonstrate inherent advantages over T-cell products, including the ability to traffic to tumor tissues, target tumor-associated macrophages, transactivate NK cells, and cross-prime tumor-specific CD8 T cells. Both unmodified NKTs, which specifically recognize CD1d-bound glycolipid antigens expressed by certain types of tumors, and CAR-redirected NKTs are being developed as the next generation of allogeneic cell therapy products. In this review, we describe studies on the biology of NKTs and other types of innate-like T cells and summarize the clinical experiences of unmodified and CAR-redirected NKTs, including recent interim reports on allogeneic NKTs.
Collapse
Affiliation(s)
- Amy N. Courtney
- Department of Pediatrics, Center for Advanced Innate Cell Therapy, Baylor College of Medicine, Houston, TX
| | - Gengwen Tian
- Department of Pediatrics, Center for Advanced Innate Cell Therapy, Baylor College of Medicine, Houston, TX
| | - Leonid S. Metelitsa
- Department of Pediatrics, Center for Advanced Innate Cell Therapy, Baylor College of Medicine, Houston, TX
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX
| |
Collapse
|
22
|
Role of NKT cells in cancer immunotherapy-from bench to bed. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 40:29. [PMID: 36460881 DOI: 10.1007/s12032-022-01888-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/08/2022] [Indexed: 12/04/2022]
Abstract
Natural killer T (NKT) cells are a specific T cell subset known to express the αβ-T cell receptor (TCR) for antigens identification and express typical NK cell specifications, such as surface expression of CD56 and CD16 markers as well as production of granzyme. Human NKT cells are divided into two subgroups based on their cytokine receptor and TCR repertoire. Both of them are CD1-restricted and recognize lipid antigens presented by CD1d molecules. Studies have demonstrated that these cells are essential in defense against malignancies. These cells secret proinflammatory and regulatory cytokines that stimulate or suppress immune system responses. In several murine tumor models, activation of type I NKT cells induces tumor rejection and inhibits metastasis's spread. However, type II NKT cells are associated with an inhibitory and regulatory function during tumor immune responses. Variant NKT cells may suppress tumor immunity via different mechanisms that require cross-talk with other immune-regulatory cells. NKT-like cells display high tumor-killing abilities against many tumor cells. In the recent decade, different studies have been performed based on the application of NKT-based immunotherapy for cancer therapy. Moreover, manipulation of NKT cells through administering autologous dendritic cell (DC) loaded with α-galactosylceramide (α-GalCer) and direct α-GalCer injection has also been tested. In this review, we described different subtypes of NKT cells, their function in the anti-tumor immune responses, and the application of NKT cells in cancer immunotherapy from bench to bed.
Collapse
|
23
|
Tsujimoto H, Osafune K. Current status and future directions of clinical applications using iPS cells-focus on Japan. FEBS J 2022; 289:7274-7291. [PMID: 34407307 DOI: 10.1111/febs.16162] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 08/04/2021] [Accepted: 08/17/2021] [Indexed: 01/13/2023]
Abstract
Regenerative medicine using iPS cell technologies has progressed remarkably in recent years. In this review, we summarize these technologies and their clinical application. First, we discuss progress in the establishment of iPS cells, including the HLA-homo iPS cell stock project in Japan and the advancement of low antigenic iPS cells using genome-editing technology. Then, we describe iPS cell-based therapies in or approaching clinical application, including those for ophthalmological, neurological, cardiac, hematological, cartilage, and metabolic diseases. Next, we introduce disease models generated from patient iPS cells and successfully used to identify therapeutic agents for intractable diseases. Clinical medicine using iPS cells has advanced safely and effectively by making full use of current scientific standards, but tests on cell safety need to be further developed and validated. The next decades will see the further spread of iPS cell technology-based regenerative medicine.
Collapse
Affiliation(s)
- Hiraku Tsujimoto
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Japan.,RegeNephro Co., Ltd., MIC bldg. Graduate School of Medicine, Kyoto University, Japan
| | - Kenji Osafune
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Japan.,Meiji University International Institute for Bio-Resource Research, Meiji University, Kanagawa, Japan
| |
Collapse
|
24
|
Enosawa S. Clinical Trials of Stem Cell Therapy in Japan: The Decade of Progress under the National Program. J Clin Med 2022; 11:7030. [PMID: 36498605 PMCID: PMC9736364 DOI: 10.3390/jcm11237030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022] Open
Abstract
Stem cell therapy is a current world-wide topic in medical science. Various therapies have been approved based on their effectiveness and put into practical use. In Japan, research and development-related stem cell therapy, generally referred to as regenerative medicine, has been led by the government. The national scheme started in 2002, and support for the transition to clinical trials has been accelerating since 2011. Of the initial 18 projects that were accepted in the budget for preclinical research, 15 projects have begun clinical trials so far. These include the transplantation of retinal, cardiac, and dopamine-producing cells differentiated from human induced pluripotent stem (iPS) cells and hepatocyte-like cells differentiated from human embryonic stem (ES) cells. The distinctive feature of the stem cell research in Japan is the use of iPS cells. A national framework was also been set-up to attain the final goal: health insurance coverage. Now, insurance covers cell transplantation therapies for the repair and recovery of damaged skin, articular cartilage, and stroke as well as therapies introduced from abroad, such as allogeneic mesenchymal stem cells for graft-versus-host disease and chimeric antigen receptor-T (CAR-T) cell therapy. To prepare this review, original information was sought from Japanese authentic websites, which are reliable but a little hard to access due to the fact of multiple less-organized databases and the language barrier. Then, each fact was corroborated by citing its English version or publication in international journals as much as possible. This review provides a summary of progress over the past decade under the national program and a state-of-the-art factual view of research activities, government policy, and regulation in Japan for the realization of stem cell therapy.
Collapse
Affiliation(s)
- Shin Enosawa
- Division for Advanced Medical Sciences, National Center for Child Health and Development, Tokyo 157-8535, Japan
| |
Collapse
|
25
|
Delfanti G, Dellabona P, Casorati G, Fedeli M. Adoptive Immunotherapy With Engineered iNKT Cells to Target Cancer Cells and the Suppressive Microenvironment. Front Med (Lausanne) 2022; 9:897750. [PMID: 35615083 PMCID: PMC9125179 DOI: 10.3389/fmed.2022.897750] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/14/2022] [Indexed: 12/12/2022] Open
Abstract
Invariant Natural Killer T (iNKT) cells are T lymphocytes expressing a conserved semi-invariant TCR specific for lipid antigens (Ags) restricted for the monomorphic MHC class I-related molecule CD1d. iNKT cells infiltrate mouse and human tumors and play an important role in the immune surveillance against solid and hematological malignancies. Because of unique functional features, they are attractive platforms for adoptive cells immunotherapy of cancer compared to conventional T cells. iNKT cells can directly kill CD1d-expressing cancer cells, but also restrict immunosuppressive myelomonocytic populations in the tumor microenvironment (TME) via CD1d-cognate recognition, promoting anti-tumor responses irrespective of the CD1d expression by cancer cells. Moreover, iNKT cells can be adoptively transferred across MHC barriers without risk of alloreaction because CD1d molecules are identical in all individuals, in addition to their ability to suppress graft vs. host disease (GvHD) without impairing the anti-tumor responses. Within this functional framework, iNKT cells are successfully engineered to acquire a second antigen-specificity by expressing recombinant TCRs or Chimeric Antigen Receptor (CAR) specific for tumor-associated antigens, enabling the direct targeting of antigen-expressing cancer cells, while maintaining their CD1d-dependent functions. These new evidences support the exploitation of iNKT cells for donor unrestricted, and possibly off the shelf, adoptive cell therapies enabling the concurrent targeting of cancer cells and suppressive microenvironment.
Collapse
Affiliation(s)
- Gloria Delfanti
- Experimental Immunology Unit, Division of Immunology, Transplantation, and Infectious Diseases, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
- *Correspondence: Gloria Delfanti
| | - Paolo Dellabona
- Experimental Immunology Unit, Division of Immunology, Transplantation, and Infectious Diseases, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Giulia Casorati
- Experimental Immunology Unit, Division of Immunology, Transplantation, and Infectious Diseases, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
- Giulia Casorati
| | - Maya Fedeli
- Experimental Immunology Unit, Division of Immunology, Transplantation, and Infectious Diseases, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Maya Fedeli
| |
Collapse
|
26
|
Li YR, Dunn ZS, Zhou Y, Lee D, Yang L. Development of Stem Cell-Derived Immune Cells for Off-the-Shelf Cancer Immunotherapies. Cells 2021; 10:cells10123497. [PMID: 34944002 PMCID: PMC8700013 DOI: 10.3390/cells10123497] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/04/2021] [Accepted: 12/08/2021] [Indexed: 12/14/2022] Open
Abstract
Cell-based cancer immunotherapy has revolutionized the treatment of hematological malignancies. Specifically, autologous chimeric antigen receptor-engineered T (CAR-T) cell therapies have received approvals for treating leukemias, lymphomas, and multiple myeloma following unprecedented clinical response rates. A critical barrier to the widespread usage of current CAR-T cell products is their autologous nature, which renders these cellular products patient-selective, costly, and challenging to manufacture. Allogeneic cell products can be scalable and readily administrable but face critical concerns of graft-versus-host disease (GvHD), a life-threatening adverse event in which therapeutic cells attack host tissues, and allorejection, in which host immune cells eliminate therapeutic cells, thereby limiting their antitumor efficacy. In this review, we discuss recent advances in developing stem cell-engineered allogeneic cell therapies that aim to overcome the limitations of current autologous and allogeneic cell therapies, with a special focus on stem cell-engineered conventional αβ T cells, unconventional T (iNKT, MAIT, and γδ T) cells, and natural killer (NK) cells.
Collapse
Affiliation(s)
- Yan-Ruide Li
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA 90095, USA; (Y.-R.L.); (Y.Z.); (D.L.)
| | - Zachary Spencer Dunn
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA;
| | - Yang Zhou
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA 90095, USA; (Y.-R.L.); (Y.Z.); (D.L.)
| | - Derek Lee
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA 90095, USA; (Y.-R.L.); (Y.Z.); (D.L.)
| | - Lili Yang
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA 90095, USA; (Y.-R.L.); (Y.Z.); (D.L.)
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
- Correspondence:
| |
Collapse
|
27
|
Kawamoto H, Masuda K, Nagano S. Regeneration of antigen-specific T cells by using induced pluripotent stem cell (iPSC) technology. Int Immunol 2021; 33:827-833. [PMID: 34661676 DOI: 10.1093/intimm/dxab091] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/15/2021] [Indexed: 01/20/2023] Open
Abstract
In currently ongoing adoptive T-cell therapies, T cells collected from the patient are given back to the patient after ex vivo cell activation and expansion. In some cases, T cells are transduced with chimeric antigen receptor (CAR) or T-cell receptor (TCR) genes during the ex vivo culture period. Although such strategies have been shown to be effective in some types of cancer, there remain issues to be solved; these methods (i) are time-consuming, (ii) are costly and (iii) it is difficult to guarantee the quality because the products depend on patient-derived T cells. To address these issues, several groups including ours have developed methods in which cytotoxic cells are mass-produced by using induced pluripotent stem cell (iPSC) technology. For the regeneration of T cells, the basic idea is as follows: iPSCs produced from T cells inherit rearranged TCR genes, and thus all regenerated T cells should express the same TCR. Based on this idea, various types of T cells have been regenerated, including conventional cytotoxic T lymphocytes (CTLs), γδT cells, NKT cells and mucosal-associated invariant T (MAIT) cells. On the other hand, any cytotoxic cells can be used as the base cells into which CAR is introduced, and thus iPSC-derived NK cells have been developed. To apply the iPSC-based cell therapy in an allogeneic setting, the authors' group developed a method in which non-T-cell-derived iPSCs are transduced with exogenous TCR genes (TCR-iPSC method). This approach is being prepared for a clinical trial to be realized in Kyoto University Hospital, in which acute myeloid leukemia patients will be treated by the regenerated WT1 antigen-specific CTLs.
Collapse
Affiliation(s)
- Hiroshi Kawamoto
- Laboratory of Immunology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Laboratory of Regenerative Immunology, International Center for Cell and Gene Therapy, Fujita Health University, Toyoake, Japan
| | - Kyoko Masuda
- Laboratory of Immunology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Seiji Nagano
- Laboratory of Immunology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
28
|
Nelson A, Lukacs JD, Johnston B. The Current Landscape of NKT Cell Immunotherapy and the Hills Ahead. Cancers (Basel) 2021; 13:cancers13205174. [PMID: 34680322 PMCID: PMC8533824 DOI: 10.3390/cancers13205174] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/05/2021] [Accepted: 10/05/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Natural killer T (NKT) cells are a subset of lipid-reactive T cells that enhance anti-tumor immunity. While preclinical studies have shown NKT cell immunotherapy to be safe and effective, clinical studies lack predictable therapeutic efficacy and no approved treatments exist. In this review, we outline the current strategies, challenges, and outlook for NKT cell immunotherapy. Abstract NKT cells are a specialized subset of lipid-reactive T lymphocytes that play direct and indirect roles in immunosurveillance and anti-tumor immunity. Preclinical studies have shown that NKT cell activation via delivery of exogenous glycolipids elicits a significant anti-tumor immune response. Furthermore, infiltration of NKT cells is associated with a good prognosis in several cancers. In this review, we aim to summarize the role of NKT cells in cancer as well as the current strategies and status of NKT cell immunotherapy. This review also examines challenges and future directions for improving the therapy.
Collapse
Affiliation(s)
- Adam Nelson
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (A.N.); (J.D.L.)
- Beatrice Hunter Cancer Research Institute, Halifax, NS B3H 4R2, Canada
| | - Jordan D. Lukacs
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (A.N.); (J.D.L.)
- Beatrice Hunter Cancer Research Institute, Halifax, NS B3H 4R2, Canada
| | - Brent Johnston
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (A.N.); (J.D.L.)
- Beatrice Hunter Cancer Research Institute, Halifax, NS B3H 4R2, Canada
- Department of Pediatrics, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Correspondence:
| |
Collapse
|
29
|
Netsrithong R, Wattanapanitch M. Advances in Adoptive Cell Therapy Using Induced Pluripotent Stem Cell-Derived T Cells. Front Immunol 2021; 12:759558. [PMID: 34650571 PMCID: PMC8505955 DOI: 10.3389/fimmu.2021.759558] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 09/13/2021] [Indexed: 12/27/2022] Open
Abstract
Adoptive cell therapy (ACT) using chimeric antigen receptor (CAR) T cells holds impressive clinical outcomes especially in patients who are refractory to other kinds of therapy. However, many challenges hinder its clinical applications. For example, patients who undergo chemotherapy usually have an insufficient number of autologous T cells due to lymphopenia. Long-term ex vivo expansion can result in T cell exhaustion, which reduces the effector function. There is also a batch-to-batch variation during the manufacturing process, making it difficult to standardize and validate the cell products. In addition, the process is labor-intensive and costly. Generation of universal off-the-shelf CAR T cells, which can be broadly given to any patient, prepared in advance and ready to use, would be ideal and more cost-effective. Human induced pluripotent stem cells (iPSCs) provide a renewable source of cells that can be genetically engineered and differentiated into immune cells with enhanced anti-tumor cytotoxicity. This review describes basic knowledge of T cell biology, applications in ACT, the use of iPSCs as a new source of T cells and current differentiation strategies used to generate T cells as well as recent advances in genome engineering to produce next-generation off-the-shelf T cells with improved effector functions. We also discuss challenges in the field and future perspectives toward the final universal off-the-shelf immunotherapeutic products.
Collapse
Affiliation(s)
- Ratchapong Netsrithong
- Siriraj Center for Regenerative Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Methichit Wattanapanitch
- Siriraj Center for Regenerative Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
30
|
Chimeric antigen receptor- and natural killer cell receptor-engineered innate killer cells in cancer immunotherapy. Cell Mol Immunol 2021; 18:2083-2100. [PMID: 34267335 PMCID: PMC8429625 DOI: 10.1038/s41423-021-00732-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/18/2021] [Indexed: 02/06/2023] Open
Abstract
Chimeric antigen receptor (CAR)-engineered T-cell (CAR-T) therapy has demonstrated impressive therapeutic efficacy against hematological malignancies, but multiple challenges have hindered its application, particularly for the eradication of solid tumors. Innate killer cells (IKCs), particularly NK cells, NKT cells, and γδ T cells, employ specific antigen-independent innate tumor recognition and cytotoxic mechanisms that simultaneously display high antitumor efficacy and prevent tumor escape caused by antigen loss or modulation. IKCs are associated with a low risk of developing GVHD, thus offering new opportunities for allogeneic "off-the-shelf" cellular therapeutic products. The unique innate features, wide tumor recognition range, and potent antitumor functions of IKCs make them potentially excellent candidates for cancer immunotherapy, particularly serving as platforms for CAR development. In this review, we first provide a brief summary of the challenges hampering CAR-T-cell therapy applications and then discuss the latest CAR-NK-cell research, covering the advantages, applications, and clinical translation of CAR- and NK-cell receptor (NKR)-engineered IKCs. Advances in synthetic biology and the development of novel genetic engineering techniques, such as gene-editing and cellular reprogramming, will enable the further optimization of IKC-based anticancer therapies.
Collapse
|
31
|
Regulation and Functions of Protumoral Unconventional T Cells in Solid Tumors. Cancers (Basel) 2021; 13:cancers13143578. [PMID: 34298791 PMCID: PMC8304984 DOI: 10.3390/cancers13143578] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/02/2021] [Accepted: 07/12/2021] [Indexed: 01/03/2023] Open
Abstract
The vast majority of studies on T cell biology in tumor immunity have focused on peptide-reactive conventional T cells that are restricted to polymorphic major histocompatibility complex molecules. However, emerging evidence indicated that unconventional T cells, including γδ T cells, natural killer T (NKT) cells and mucosal-associated invariant T (MAIT) cells are also involved in tumor immunity. Unconventional T cells span the innate-adaptive continuum and possess the unique ability to rapidly react to nonpeptide antigens via their conserved T cell receptors (TCRs) and/or to activating cytokines to orchestrate many aspects of the immune response. Since unconventional T cell lineages comprise discrete functional subsets, they can mediate both anti- and protumoral activities. Here, we review the current understanding of the functions and regulatory mechanisms of protumoral unconventional T cell subsets in the tumor environment. We also discuss the therapeutic potential of these deleterious subsets in solid cancers and why further feasibility studies are warranted.
Collapse
|
32
|
Exploiting CD1-restricted T cells for clinical benefit. Mol Immunol 2021; 132:126-131. [PMID: 33582549 DOI: 10.1016/j.molimm.2020.12.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 12/07/2020] [Indexed: 01/11/2023]
Abstract
CD1-restricted T cells were first described over 30 years ago along with the cloning of the CD1 family. Around the same time, invariant Natural Killer cells (iNKT) were identified based on invariant TCR-alpha chains with additional expression of natural killer (NK) cell markers. About 5 years later, iNKT were shown to react with CD1d. Since then, iNKT have been shown to be a major population of CD1d-restricted T cells in humans and many animals. Like NK cells, iNKT are innate lymphocytes with rapid and wide-ranging effector potential. These activities include cytotoxicity and an unusually broad and high-level cytokine production. The development of highly-specific methods of isolating, stimulating, expanding or depleting these relatively rare cells and controlling their potent activities has stimulated considerable interest in therapeutic targeting of iNKT cells. Potential applications include cancers, inflammatory, infectious and autoimmune among other diseases. To date, most trials have targeted various cancers, there are 2 published trials in viral hepatitis and one in sickle cell lung disease. Uniform safety, evidence of immunologic activity and increasingly clinical efficacy have been seen. Approaches to targeting iNKT cells in clinical development include highly specific natural glycolipid ligands presented by CD1d and chemical analogues thereof and monoclonal antibody-based targeting of iNKT cells. In the case of iNKT cell-based therapies, novel approaches include arming them with Chimeric Antigen Receptors (CARs) and recombinant TCRs (rTCR), gene editing and allogeneic use. Controlling the iTCR:CD1d molecular interaction and consequences is a unique and promising therapeutic technology.
Collapse
|
33
|
Trujillo-Ocampo A, Cho HW, Clowers M, Pareek S, Ruiz-Vazquez W, Lee SE, Im JS. IL-7 During Antigenic Stimulation Using Allogeneic Dendritic Cells Promotes Expansion of CD45RA -CD62L +CD4 + Invariant NKT Cells With Th-2 Biased Cytokine Production Profile. Front Immunol 2020; 11:567406. [PMID: 33329531 PMCID: PMC7728799 DOI: 10.3389/fimmu.2020.567406] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/29/2020] [Indexed: 11/18/2022] Open
Abstract
Invariant natural killer T (iNKT) cells are innate-like T lymphocytes cells that recognize glycolipid antigens associated with CD1d, non-classical antigen presenting proteins. They can drive either pro-inflammatory (Th-1) or anti-inflammatory (Th-2) immune microenvironment through the production of both Th-1 and Th-2 type cytokines upon activation, thus play a vital role in cancer, infection, and autoimmune diseases. Adoptive cell therapy using ex vivo expanded iNKT cells is a promising approach to enhance anti-tumor immunity or immunosuppression. However, overcoming phenotypic and functional heterogeneity and promoting in vivo persistency of iNKT cells remains to be a challenge. Here, we compared various methods for ex vivo expansion of human iNKT cells and assessed the quality of expansion, phenotype, and cytokine production profile of expanded iNKT cells. While a direct stimulation of iNKT cells in peripheral blood mononuclear cells with agonist glycolipid led to the expansion of iNKT cells in varying degrees, stimulation of enriched iNKT cells by irradiated autologous peripheral blood mononuclear cells or allogeneic dendritic cells resulted in consistent expansion of highly pure iNKT cells. Interestingly, the mode of antigenic stimulation influenced the dominant subtype of expanded iNKT cells. Further, we evaluated whether additional IL-7 or IL-15 during antigenic stimulation with allogeneic dendritic cells can improve the phenotypic heterogeneity and modify cytokine production profile of iNKT cells expanded from 18 consecutive donors. The presence of IL-7 or IL-15 during antigenic stimulation did not affect the fold of expansion or purity of expanded iNKT cells. However, IL-7, but not IL-15, led to a better expansion of CD4+ iNKT cells, enhanced Th-2 type cytokine production of CD4+ iNKT cells, and maintained the expansion of central memory (CD45RA-CD62L+) CD4+ iNKT cells. Our results suggest the addition of IL-7 during antigenic stimulation with allogeneic dendritic cells can promote the expansion of CD62L+Th-2+CD4+ human iNKT cells that can be used as novel immunotherapeutic to control excessive inflammation to treat various autoimmune diseases.
Collapse
Affiliation(s)
- Abel Trujillo-Ocampo
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Hyun-Woo Cho
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Michael Clowers
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Sumedha Pareek
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Wilfredo Ruiz-Vazquez
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Sung-Eun Lee
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, United States.,Department of Hematology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Jin S Im
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, United States.,Department of Hematology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
34
|
Abstract
Regenerative therapies, including both gene and cellular therapies, aim to induce regeneration of cells, tissues and organs and restore their functions. In this short Spotlight, we summarize the latest advances in cellular therapies using pluripotent stem cells (PSCs), highlighting the current status of clinical trials using induced (i)PSC-derived cells. We also discuss the different cellular products that might be used in clinical studies, and consider safety issues and other challenges in iPSC-based cell therapy.
Collapse
Affiliation(s)
- Hideyuki Okano
- Keio University School of Medicine, Department of Physiology, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582, Japan .,Keio University Global Research Institute, 2-15-45 Mita, Minato-ku, Tokyo 108-8345, Japan
| | - Doug Sipp
- Keio University School of Medicine, Department of Physiology, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582, Japan.,Keio University Global Research Institute, 2-15-45 Mita, Minato-ku, Tokyo 108-8345, Japan.,RIKEN Center for Developmental Biology, 2-2-3 Minatojima Minamimachi, Chuo-ku, Kobe 650-0047, Japan.,RIKEN Center for Advanced Intelligence Project, Nihonbashi 1-chome Mitsui Building, 15th floor, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
| |
Collapse
|
35
|
Aoki T, Takami M, Takatani T, Motoyoshi K, Ishii A, Hara A, Toyoda T, Okada R, Hino M, Koyama-Nasu R, Kiuchi M, Hirahara K, Kimura MY, Nakayama T, Shimojo N, Motohashi S. Activated invariant natural killer T cells directly recognize leukemia cells in a CD1d-independent manner. Cancer Sci 2020; 111:2223-2233. [PMID: 32324315 PMCID: PMC7385353 DOI: 10.1111/cas.14428] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/03/2020] [Accepted: 04/17/2020] [Indexed: 01/27/2023] Open
Abstract
Invariant natural killer T (iNKT) cells are innate‐like CD1d‐restricted T cells that express the invariant T cell receptor (TCR) composed of Vα24 and Vβ11 in humans. iNKT cells specifically recognize glycolipid antigens such as α‐galactosylceramide (αGalCer) presented by CD1d. iNKT cells show direct cytotoxicity toward CD1d‐positive tumor cells, especially when CD1d presents glycolipid antigens. However, iNKT cell recognition of CD1d‐negative tumor cells is unknown, and direct cytotoxicity of iNKT cells toward CD1d‐negative tumor cells remains controversial. Here, we demonstrate that activated iNKT cells recognize leukemia cells in a CD1d‐independent manner, however still in a TCR‐mediated way. iNKT cells degranulated and released Th1 cytokines toward CD1d‐negative leukemia cells (K562, HL‐60, REH) as well as αGalCer‐loaded CD1d‐positive Jurkat cells. The CD1d‐independent cytotoxicity was enhanced by natural killer cell‐activating receptors such as NKG2D, 2B4, DNAM‐1, LFA‐1 and CD2, but iNKT cells did not depend on these receptors for the recognition of CD1d‐negative leukemia cells. In contrast, TCR was essential for CD1d‐independent recognition and cytotoxicity. iNKT cells degranulated toward patient‐derived leukemia cells independently of CD1d expression. iNKT cells targeted myeloid malignancies more than acute lymphoblastic leukemia. These findings reveal a novel anti–tumor mechanism of iNKT cells in targeting CD1d‐negative tumor cells and indicate the potential of iNKT cells for clinical application to treat leukemia independently of CD1d.
Collapse
Affiliation(s)
- Takahiro Aoki
- Department of Medical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan.,Department of Pediatrics, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Mariko Takami
- Department of Medical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tomozumi Takatani
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kiwamu Motoyoshi
- Department of Medical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Ayana Ishii
- Department of Medical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Ayaka Hara
- Department of Medical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takahide Toyoda
- Department of Medical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Reona Okada
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Moeko Hino
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Ryo Koyama-Nasu
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masahiro Kiuchi
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kiyoshi Hirahara
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Motoko Y Kimura
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Toshinori Nakayama
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Naoki Shimojo
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Shinichiro Motohashi
- Department of Medical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
36
|
Fujii SI, Shimizu K. Immune Networks and Therapeutic Targeting of iNKT Cells in Cancer. Trends Immunol 2019; 40:984-997. [PMID: 31676264 DOI: 10.1016/j.it.2019.09.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 01/08/2023]
Abstract
One of the primary goals in tumor immunotherapy is to reset the immune system from tolerogenic to immunogenic - a process in which invariant natural killer T (iNKT) cells are implicated. iNKT cells develop in the thymus and perform immunosurveillance against tumor cells peripherally. When optimally stimulated, iNKT cells differentiate and display more efficient immune functions. Some cells survive and act as effector memory cells. We discuss the putative roles of iNKT cells in antitumor immunity, and posit that it may be possible to develop novel therapeutic strategies to treat cancers using iNKT cells. In particular, we highlight the challenge of uniquely energizing iNKT cell-licensed dendritic cells to serve as effective immunoadjuvants for both arms of the immune system, thus coupling immunological networks.
Collapse
Affiliation(s)
- Shin-Ichiro Fujii
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa, Japan.
| | - Kanako Shimizu
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa, Japan
| |
Collapse
|
37
|
Wang Z, Wang Z, Li B, Wang S, Chen T, Ye Z. Innate Immune Cells: A Potential and Promising Cell Population for Treating Osteosarcoma. Front Immunol 2019; 10:1114. [PMID: 31156651 PMCID: PMC6531991 DOI: 10.3389/fimmu.2019.01114] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Accepted: 05/01/2019] [Indexed: 12/13/2022] Open
Abstract
Advanced, recurrent, or metastasized osteosarcomas remain challenging to cure or even alleviate. Therefore, the development of novel therapeutic strategies is urgently needed. Cancer immunotherapy has greatly improved in recent years, with options including adoptive cellular therapy, vaccination, and checkpoint inhibitors. As such, immunotherapy is becoming a potential strategy for the treatment of osteosarcoma. Innate immunocytes, the first line of defense in the immune system and the bridge to adaptive immunity, are one of the vital effector cell subpopulations in cancer immunotherapy. Innate immune cell-based therapy has shown potent antitumor activity against hematologic malignancies and some solid tumors, including osteosarcoma. Importantly, some immune checkpoints are expressed on both innate and adaptive immune cells, modulating their functions in tumor immunity. Therefore, blocking or activating immune checkpoint-mediated downstream signaling pathways can improve the therapeutic effects of innate immune cell-based therapy. In this review, we summarize the current status and future prospects of innate immune cell-based therapy for the treatment of osteosarcoma, with a focus on the potential synergistic effects of combination therapy involving innate immunotherapy and immune checkpoint inhibitors/oncolytic viruses.
Collapse
Affiliation(s)
- Zenan Wang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Zhan Wang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Binghao Li
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Shengdong Wang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Tao Chen
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Zhaoming Ye
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| |
Collapse
|
38
|
Shoda H, Natsumoto B, Fujio K. New horizons in clinical immunology: applications of induced pluripotent stem cells for the analysis of immune disorders. Immunol Med 2019; 41:12-16. [PMID: 30938253 DOI: 10.1080/09114300.2018.1451596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Abstract
The discovery of induced pluripotent stem cells (iPSCs) has diversified approaches to studies of human diseases. iPSCs can be used in regenerative medicine and for the analysis of the pathogenesis of hereditary diseases. They can also be applied to research on immune disorders, including the influence of genetic factors on autoimmune diseases in the human system. Some immune cells, such as dendritic cells and macrophages, can be differentiated from iPSCs. Thus, immune disorders caused by defects in the innate immune system can be studied with that approach. We propose that biological mechanisms of genetic risks could be examined by mutating or modifying disease-susceptibility genes in iPSCs by genome editing. Studies using human iPSCs are also expected to elucidate the underlying pathogenesis of immunological diseases and new approaches to drug discovery.
Collapse
Affiliation(s)
- Hirofumi Shoda
- a Department of Allergy and Rheumatology, Graduate School of Medicine , University of Tokyo , Tokyo , Japan
| | - Bunki Natsumoto
- a Department of Allergy and Rheumatology, Graduate School of Medicine , University of Tokyo , Tokyo , Japan
| | - Keishi Fujio
- a Department of Allergy and Rheumatology, Graduate School of Medicine , University of Tokyo , Tokyo , Japan
| |
Collapse
|
39
|
Matsuda M, Ono R, Iyoda T, Endo T, Iwasaki M, Tomizawa-Murasawa M, Saito Y, Kaneko A, Shimizu K, Yamada D, Ogonuki N, Watanabe T, Nakayama M, Koseki Y, Kezuka-Shiotani F, Hasegawa T, Yabe H, Kato S, Ogura A, Shultz LD, Ohara O, Taniguchi M, Koseki H, Fujii SI, Ishikawa F. Human NK cell development in hIL-7 and hIL-15 knockin NOD/SCID/IL2rgKO mice. Life Sci Alliance 2019; 2:e201800195. [PMID: 30936185 PMCID: PMC6445396 DOI: 10.26508/lsa.201800195] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 02/21/2019] [Accepted: 02/22/2019] [Indexed: 01/22/2023] Open
Abstract
The immune system encompasses acquired and innate immunity that matures through interaction with microenvironmental components. Cytokines serve as environmental factors that foster functional maturation of immune cells. Although NOD/SCID/IL2rgKO (NSG) humanized mice support investigation of human immunity in vivo, a species barrier between human immune cells and the mouse microenvironment limits human acquired as well as innate immune function. To study the roles of human cytokines in human acquired and innate immune cell development, we created NSG mice expressing hIL-7 and hIL-15. Although hIL-7 alone was not sufficient for supporting human NK cell development in vivo, increased frequencies of human NK cells were confirmed in multiple organs of hIL-7 and hIL-15 double knockin (hIL-7xhIL-15 KI) NSG mice engrafted with human hematopoietic stem cells. hIL-7xhIL-15 KI NSG humanized mice provide a valuable in vivo model to investigate development and function of human NK cells.
Collapse
Affiliation(s)
- Masashi Matsuda
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Rintaro Ono
- Laboratory for Human Disease Models, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Tomonori Iyoda
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Takaho Endo
- Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Makoto Iwasaki
- Laboratory for Human Disease Models, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Mariko Tomizawa-Murasawa
- Laboratory for Human Disease Models, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Yoriko Saito
- Laboratory for Human Disease Models, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Akiko Kaneko
- Laboratory for Human Disease Models, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Kanako Shimizu
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Daisuke Yamada
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Narumi Ogonuki
- Bioresource Engineering Division, RIKEN BioResource Center, Tsukuba, Japan
| | - Takashi Watanabe
- Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Manabu Nakayama
- Department of Technology Development, Kazusa DNA Research Institute, Kisarazu, Japan
| | - Yoko Koseki
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Fuyuko Kezuka-Shiotani
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Takanori Hasegawa
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Hiromasa Yabe
- Department of Cell Transplantation and Regenerative Medicine, Tokai University School of Medicine, Isehara, Japan
| | - Shunichi Kato
- Department of Cell Transplantation and Regenerative Medicine, Tokai University School of Medicine, Isehara, Japan
| | - Atsuo Ogura
- Bioresource Engineering Division, RIKEN BioResource Center, Tsukuba, Japan
| | | | - Osamu Ohara
- Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Technology Development, Kazusa DNA Research Institute, Kisarazu, Japan
| | - Masaru Taniguchi
- Laboratory for Immune Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Haruhiko Koseki
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Shin-Ichiro Fujii
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Fumihiko Ishikawa
- Laboratory for Human Disease Models, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| |
Collapse
|
40
|
Kumar A, Lee JH, Suknuntha K, D'Souza SS, Thakur AS, Slukvin II. NOTCH Activation at the Hematovascular Mesoderm Stage Facilitates Efficient Generation of T Cells with High Proliferation Potential from Human Pluripotent Stem Cells. THE JOURNAL OF IMMUNOLOGY 2018; 202:770-776. [PMID: 30578305 DOI: 10.4049/jimmunol.1801027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 11/15/2018] [Indexed: 01/30/2023]
Abstract
Human pluripotent stem cells (hPSCs) offer the potential to serve as a versatile and scalable source of T cells for immunotherapies, which could be coupled with genetic engineering technologies to meet specific clinical needs. To improve T cell production from hPSCs, it is essential to identify cell subsets that are highly enriched in T cell progenitors and those stages of development at which NOTCH activation induces the most potent T cells. In this study, we evaluated the efficacy of T cell production from cell populations isolated at different stages of hematopoietic differentiation, including mesoderm, hemogenic endothelium (HE), and multipotent hematopoietic progenitors. We demonstrate that KDRhiCD31- hematovascular mesodermal progenitors (HVMPs) with definitive hematopoietic potential produce the highest numbers of T cells when cultured on OP9-DLL4 as compared with downstream progenitors, including HE and multipotent hematopoietic progenitors. In addition, we found that T cells generated from HVMPs have the capacity to expand for 6-7 wk in vitro, in comparison with T cells generated from HE and hematopoietic progenitors, which could only be expanded for 4-5 wk. Demonstrating the critical need of NOTCH activation at the HVMP stage of hematopoietic development to establish robust T cell production from hPSCs may aid in establishing protocols for the efficient off-the-shelf production and expansion of T cells for treating hematologic malignancies.
Collapse
Affiliation(s)
- Akhilesh Kumar
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715
| | - Jeong Hee Lee
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715
| | - Kran Suknuntha
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715
| | - Saritha S D'Souza
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715
| | - Abir S Thakur
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715
| | - Igor I Slukvin
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715; .,Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53707; and.,Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792
| |
Collapse
|
41
|
Xue W, Li W, Shang Y, Zhang Y, Lan X, Wang G, Li Z, Zhang X, Song Y, Wu B, Dong M, Wang X, Zhang M. One method to establish Epstein-Barr virus-associated NK/T cell lymphoma mouse models. J Cell Mol Med 2018; 23:1509-1516. [PMID: 30484952 PMCID: PMC6349153 DOI: 10.1111/jcmm.14057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 10/22/2018] [Accepted: 11/05/2018] [Indexed: 01/18/2023] Open
Abstract
Novel nude mice model of human NK/T cell lymphoma were established by subcutaneously injecting two NK/T cell lymphoma cell lines into the right axillary region of mice and successful passages were completed by injecting cell suspension which was obtained through a 70‐μm cell strainer. These mice models and corresponding cell clones have been successfully developed for more than 8 generations. The survival rates of both resuscitation and transplantation in NKYS and YT models were 90% and 70% correspondingly. Pathologically, the tumour cells in all passages of the lymphoma‐bearing mice and cell lines obtained from tumours were parallel to initial cell lines. Immunologically, the tumour cells expressed the characteristics of the primary and essential NK/T lymphomas. The novel mice models maintained the essential features of human NK/T cell lymphoma, and they would be ideal tools in vivo for further research of human NK/T cell lymphoma.
Collapse
Affiliation(s)
- Weili Xue
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Jonint International Research Laboratory of Lymphoma, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Weiming Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Jonint International Research Laboratory of Lymphoma, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Yufeng Shang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Jonint International Research Laboratory of Lymphoma, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanjie Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Jonint International Research Laboratory of Lymphoma, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xuan Lan
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Jonint International Research Laboratory of Lymphoma, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guannan Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhaoming Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Jonint International Research Laboratory of Lymphoma, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Lymphoma Diagnosis and Treatment Center of Henan Province, Zhengzhou, China
| | - Xudong Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Jonint International Research Laboratory of Lymphoma, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Lymphoma Diagnosis and Treatment Center of Henan Province, Zhengzhou, China
| | - Yue Song
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Jonint International Research Laboratory of Lymphoma, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Baopeng Wu
- The Boiler & Pressure Vessel Safety Inspection Institute of Henan Province, Zhengzhou, China
| | - Meng Dong
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Jonint International Research Laboratory of Lymphoma, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinhua Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Jonint International Research Laboratory of Lymphoma, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Lymphoma Diagnosis and Treatment Center of Henan Province, Zhengzhou, China
| | - Mingzhi Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Jonint International Research Laboratory of Lymphoma, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Lymphoma Diagnosis and Treatment Center of Henan Province, Zhengzhou, China
| |
Collapse
|
42
|
Consonni M, Dellabona P, Casorati G. Potential advantages of CD1-restricted T cell immunotherapy in cancer. Mol Immunol 2018; 103:200-208. [PMID: 30308433 DOI: 10.1016/j.molimm.2018.09.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/01/2018] [Accepted: 09/29/2018] [Indexed: 12/11/2022]
Abstract
Adoptive cell therapy (ACT) using tumor-specific "conventional" MHC-restricted T cells obtained from tumor-infiltrating lymphocytes, or derived ex vivo by either antigen-specific expansion or genetic engineering of polyclonal T cell populations, shows great promise for cancer treatment. However, the wide applicability of this therapy finds limits in the high polymorphism of MHC molecules that restricts the use in the autologous context. CD1 antigen presenting molecules are nonpolymorphic and specialized for lipid antigen presentation to T cells. They are often expressed on malignant cells and, therefore, may represent an attractive target for ACT. We provide a brief overview of the CD1-resticted T cell response in tumor immunity and we discuss the pros and cons of ACT approaches based on unconventional CD1-restricted T cells.
Collapse
Affiliation(s)
- Michela Consonni
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milano, Italy.
| | - Paolo Dellabona
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milano, Italy
| | - Giulia Casorati
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milano, Italy
| |
Collapse
|
43
|
Stolk D, van der Vliet HJ, de Gruijl TD, van Kooyk Y, Exley MA. Positive & Negative Roles of Innate Effector Cells in Controlling Cancer Progression. Front Immunol 2018; 9:1990. [PMID: 30298063 PMCID: PMC6161645 DOI: 10.3389/fimmu.2018.01990] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/13/2018] [Indexed: 12/29/2022] Open
Abstract
Innate immune cells are active at the front line of host defense against pathogens and now appear to play a range of roles under non-infectious conditions as well, most notably in cancer. Establishing the balance of innate immune responses is critical for the “flavor” of these responses and subsequent adaptive immunity and can be either “good or bad” in controlling cancer progression. The importance of innate NK cells in tumor immune responses has already been extensively studied over the last few decades, but more recently several relatively mono- or oligo-clonal [i.e., (semi-) invariant] innate T cell subsets received substantial interest in tumor immunology including invariant natural killer T (iNKT), γδ-T and mucosal associated invariant T (MAIT) cells. These subsets produce high levels of various pro- and/or anti-inflammatory cytokines/chemokines reflecting their capacity to suppress or stimulate immune responses. Survival of patients with cancer has been linked to the frequencies and activation status of NK, iNKT, and γδ-T cells. It has become clear that NK, iNKT, γδ-T as well as MAIT cells all have physiological roles in anti-tumor responses, which emphasize their possible relevance for tumor immunotherapy. A variety of clinical trials has focused on manipulating NK, iNKT, and γδ-T cell functions as a cancer immunotherapeutic approach demonstrating their safety and potential for achieving beneficial therapeutic effects, while the exploration of MAIT cell related therapies is still in its infancy. Current issues limiting the full therapeutic potential of these innate cell subsets appear to be related to defects and suppressive properties of these subsets that, with the right stimulus, might be reversed. In general, how innate lymphocytes are activated appears to control their subsequent abilities and consequent impact on adaptive immunity. Controlling these potent regulators and mediators of the immune system should enable their protective roles to dominate and their deleterious potential (in the specific context of cancer) to be mitigated.
Collapse
Affiliation(s)
- Dorian Stolk
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, Netherlands
| | - Hans J van der Vliet
- Department of Medical Oncology, VU University Medical Center, Amsterdam, Netherlands
| | - Tanja D de Gruijl
- Department of Medical Oncology, VU University Medical Center, Amsterdam, Netherlands
| | - Yvette van Kooyk
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, Netherlands
| | - Mark A Exley
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.,Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States.,Agenus, Inc., Lexington, MA, United States
| |
Collapse
|
44
|
Takami M, Ihara F, Motohashi S. Clinical Application of iNKT Cell-mediated Anti-tumor Activity Against Lung Cancer and Head and Neck Cancer. Front Immunol 2018; 9:2021. [PMID: 30245690 PMCID: PMC6137091 DOI: 10.3389/fimmu.2018.02021] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 08/16/2018] [Indexed: 01/09/2023] Open
Abstract
Invariant natural killer T (iNKT) cells produce copious amounts of cytokines in response to T-cell receptor (TCR) stimulation by recognizing antigens such as α-galactosylceramide (α-GalCer) presented on CD1d; thus, orchestrating other immune cells to fight against pathogen infection and tumors. Because of their ability to induce strong anti-tumor responses and the convenience of their invariant TCR activated by a synthetic ligand, α-GalCer, iNKT cells have been intensively studied for application in immunotherapeutic approaches to treat cancer patients in the clinic. Here, we summarize the clinical trials of iNKT cell based immunotherapy for non-small cell lung cancer, and head and neck cancer. Although solid tumors are thought to be refractory to immunotherapeutic approaches, our clinical trials showed that the intravenous injection of α-GalCer-pulsed antigen presenting cells (APCs) activated endogenous iNKT cells and iNKT cell dependent responses. Moreover, an increase in the number of IFN-γ producing cells in PBMCs was associated with prolonged survival. The marked infiltration of iNKT cells and the accumulation of conventional T cells in the tumor microenvironment were also observed after the administration of α-GalCer-pulsed APCs and/or ex vivo activated iNKT cells. In cases of advanced head and neck squamous cell carcinoma, the increased accumulation of iNKT cells in the tumor microenvironment was correlated with objective clinical responses. We will also discuss potential combination therapies of iNKT cell based immunotherapy to achieve enhanced anti-tumor activity and provide better treatment options for these patients.
Collapse
Affiliation(s)
- Mariko Takami
- Department of Medical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Fumie Ihara
- Department of Medical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan.,Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Shinichiro Motohashi
- Department of Medical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
45
|
Ren Y, Sekine-Kondo E, Tateyama M, Kasetthat T, Wongratanacheewin S, Watarai H. New Genetically Manipulated Mice Provide Insights Into the Development and Physiological Functions of Invariant Natural Killer T Cells. Front Immunol 2018; 9:1294. [PMID: 29963043 PMCID: PMC6010523 DOI: 10.3389/fimmu.2018.01294] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 05/24/2018] [Indexed: 12/24/2022] Open
Abstract
Invariant natural killer T (iNKT) cells are a unique T cell subset that exhibits characteristics of both innate immune cells and T cells. They express Vα14-Jα18 (Trav11-Traj18) as an invariant chain of the T cell receptor (TCR) and are restricted to the MHC class I-like monomorphic antigen presenting molecule CD1d. iNKT cells are known as immune regulators that bridge the innate and acquired immune systems by rapid and massive production of a wide range of cytokines, which could enable them to participate in immune responses during various disease states. Thus, Traj18-deficient mice, Cd1d-deficient mice, or iNKT cell-overexpressing mice such as iNKT TCRα transgenic mice and iNKT cell cloned mice which contain a Vα14-Jα18 rearrangement in the TCRα locus are useful experimental models for the analysis of iNKT cells in vivo and in vitro. In this review, we describe the pros and cons of the various available genetically manipulated mice and summarize the insights gained from their study, including the possible roles of iNKT cells in obesity and diabetes.
Collapse
Affiliation(s)
- Yue Ren
- Division of Stem Cell Cellomics, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Tokyo, Japan.,Department of Neurology, The Neurological Institute of Jiangxi Province, Jiangxi Provincial People's Hospital, Nanchang, China
| | - Etsuko Sekine-Kondo
- Division of Stem Cell Cellomics, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Midori Tateyama
- Division of Stem Cell Cellomics, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Tokyo, Japan.,Department of Immunology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Thitinan Kasetthat
- Division of Stem Cell Cellomics, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Tokyo, Japan.,Department of Microbiology, Khon Kaen University, Khon Kaen, Thailand
| | | | - Hiroshi Watarai
- Division of Stem Cell Cellomics, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| |
Collapse
|
46
|
O'Day E, Hosta-Rigau L, Oyarzún DA, Okano H, de Lorenzo V, von Kameke C, Alsafar H, Cao C, Chen GQ, Ji W, Roberts RJ, Ronaghi M, Yeung K, Zhang F, Lee SY. Are We There Yet? How and When Specific Biotechnologies Will Improve Human Health. Biotechnol J 2018; 14:e1800195. [PMID: 29799175 DOI: 10.1002/biot.201800195] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 05/11/2018] [Indexed: 12/11/2022]
Abstract
Patient X: A 67-year-old Caucasian man slips on a patch of ice. He has abrasions to his hands and has sustained significant damage to his hip. At the emergency room, he informs clinicians he takes atorvastatin, metformin, and glimepiride to treat hypertension and Type 2 Diabetes Mellitus (T2DM). X-rays reveal a fractured hip, which will require total hip replacement surgery.
Collapse
Affiliation(s)
- Elizabeth O'Day
- Global Future Council on the Future of Biotechnologies, World Economic Forum, Cologny, CH-1223, Geneva, Switzerland.,Olaris Therapeutics, Inc., 45 Moulton St., Cambridge, MA, 02138, USA
| | - Leticia Hosta-Rigau
- Global Future Council on the Future of Biotechnologies, World Economic Forum, Cologny, CH-1223, Geneva, Switzerland.,Department of Micro- and Nanotechnology, Center for Nanomedicine and Theranostics, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Diego A Oyarzún
- Global Future Council on the Future of Biotechnologies, World Economic Forum, Cologny, CH-1223, Geneva, Switzerland.,Department of Mathematics, Imperial College London, London, SW7 2AZ, UK.,EPSRC Centre for Mathematics of Precision Healthcare, Imperial College London, London, SW7 2AZ, UK
| | - Hideyuki Okano
- Global Future Council on the Future of Biotechnologies, World Economic Forum, Cologny, CH-1223, Geneva, Switzerland.,Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Víctor de Lorenzo
- Global Future Council on the Future of Biotechnologies, World Economic Forum, Cologny, CH-1223, Geneva, Switzerland.,National Center of Biotechnology CSIC, Systems Biology Program, Campus de Cantoblanco, E-28049, Madrid, Spain
| | - Conrad von Kameke
- Global Future Council on the Future of Biotechnologies, World Economic Forum, Cologny, CH-1223, Geneva, Switzerland.,BioInnovators Europe, Berlin, Germany
| | - Habiba Alsafar
- Global Future Council on the Future of Biotechnologies, World Economic Forum, Cologny, CH-1223, Geneva, Switzerland.,Khalifa University Center for Biotechnology, Khalifa University, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Cong Cao
- Global Future Council on the Future of Biotechnologies, World Economic Forum, Cologny, CH-1223, Geneva, Switzerland.,University of Nottingham, 199 East Taikang Road, Ningbo, 315100, China
| | - Guo-Qiang Chen
- Global Future Council on the Future of Biotechnologies, World Economic Forum, Cologny, CH-1223, Geneva, Switzerland.,Center for Synthetic and Systems Biology, MOE Lab for Industrial Biocatalysis, Tsinghua-Peking University Center of Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Weizhi Ji
- Global Future Council on the Future of Biotechnologies, World Economic Forum, Cologny, CH-1223, Geneva, Switzerland.,Kunming University of Science and Technology, 727 Jingming South Rd. Chenh Gong, Kunming, 650500, Yunnan, China
| | - Richard J Roberts
- Global Future Council on the Future of Biotechnologies, World Economic Forum, Cologny, CH-1223, Geneva, Switzerland.,New England Biolabs, 240 County Road, Ipswich, MA, 01938, USA
| | - Mostafa Ronaghi
- Global Future Council on the Future of Biotechnologies, World Economic Forum, Cologny, CH-1223, Geneva, Switzerland.,Illumina Inc., 5200 Illumina Way, San Diego, CA, 92121, USA
| | - Karen Yeung
- Global Future Council on the Future of Biotechnologies, World Economic Forum, Cologny, CH-1223, Geneva, Switzerland.,Law School and School of Computer Science University of Birmingham, Birmingham, UK, B15 2TT
| | - Feng Zhang
- Global Future Council on the Future of Biotechnologies, World Economic Forum, Cologny, CH-1223, Geneva, Switzerland.,Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.,McGovern Institute for Brain Research at MIT, Cambridge, MA, 02139, USA.,Department of Brain and Cognitive Sciences and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Sang Yup Lee
- Global Future Council on the Future of Biotechnologies, World Economic Forum, Cologny, CH-1223, Geneva, Switzerland.,Department of Chemical and Biomolecular Engineering (BK21 Plus program), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-Ro, Daejeon, 34141, Republic of Korea.,The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Bygning 220, 2800, Kongens Lyngby, Denmark
| |
Collapse
|
47
|
Ueda N, Uemura Y, Zhang R, Kitayama S, Iriguchi S, Kawai Y, Yasui Y, Tatsumi M, Ueda T, Liu TY, Mizoro Y, Okada C, Watanabe A, Nakanishi M, Senju S, Nishimura Y, Kuzushima K, Kiyoi H, Naoe T, Kaneko S. Generation of TCR-Expressing Innate Lymphoid-like Helper Cells that Induce Cytotoxic T Cell-Mediated Anti-leukemic Cell Response. Stem Cell Reports 2018; 10:1935-1946. [PMID: 29805109 PMCID: PMC5993651 DOI: 10.1016/j.stemcr.2018.04.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 04/27/2018] [Accepted: 04/30/2018] [Indexed: 12/31/2022] Open
Abstract
CD4+ T helper (Th) cell activation is essential for inducing cytotoxic T lymphocyte (CTL) responses against malignancy. We reprogrammed a Th clone specific for chronic myelogenous leukemia (CML)-derived b3a2 peptide to pluripotency and re-differentiated the cells into original TCR-expressing T-lineage cells (iPS-T cells) with gene expression patterns resembling those of group 1 innate lymphoid cells. CD4 gene transduction into iPS-T cells enhanced b3a2 peptide-specific responses via b3a2 peptide-specific TCR. iPS-T cells upregulated CD40 ligand (CD40L) expression in response to interleukin-2 and interleukin-15. In the presence of Wilms tumor 1 (WT1) peptide, antigen-specific dendritic cells (DCs) conditioned by CD4-modified CD40Lhigh iPS-T cells stimulated WT1-specific CTL priming, which eliminated WT1 peptide-expressing CML cells in vitro and in vivo. Thus, CD4 modification of CD40Lhigh iPS-T cells generates innate lymphoid helper-like cells inducing bcr-abl-specific TCR signaling that mediates effectiveanti-leukemic CTL responses via DC maturation, showing potential for adjuvant immunotherapy against leukemia. iPSC-derived T cells have molecular similarity to group 1 innate lymphoid cells iPSC-derived CD40Lhigh T cell-adjuvants induce leukemia-specific CTLs via DCs
Collapse
MESH Headings
- Biomarkers
- CD40 Ligand/metabolism
- Cell Differentiation
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Gene Expression
- Humans
- Immunity, Innate
- Immunophenotyping
- Induced Pluripotent Stem Cells/cytology
- Induced Pluripotent Stem Cells/immunology
- Induced Pluripotent Stem Cells/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/immunology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/mortality
- Receptors, Antigen, T-Cell/genetics
- T-Cell Antigen Receptor Specificity/immunology
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
- T-Lymphocytes, Helper-Inducer/immunology
- T-Lymphocytes, Helper-Inducer/metabolism
- WT1 Proteins/immunology
Collapse
Affiliation(s)
- Norihiro Ueda
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8501, Japan; Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan; Division of Immunology, Aichi Cancer Center Research Institute (ACCRI), 1-1 Kanokoden, Chikusa-ku, Nagoya 464-8681, Japan
| | - Yasushi Uemura
- Division of Cancer Immunotherapy, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center (NCC), 6-5-1 Kashiwanoha, Kashiwa, Chiba 277-8577, Japan; Division of Immunology, Aichi Cancer Center Research Institute (ACCRI), 1-1 Kanokoden, Chikusa-ku, Nagoya 464-8681, Japan.
| | - Rong Zhang
- Division of Cancer Immunotherapy, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center (NCC), 6-5-1 Kashiwanoha, Kashiwa, Chiba 277-8577, Japan; Division of Immunology, Aichi Cancer Center Research Institute (ACCRI), 1-1 Kanokoden, Chikusa-ku, Nagoya 464-8681, Japan
| | - Shuichi Kitayama
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shoichi Iriguchi
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yohei Kawai
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yutaka Yasui
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Minako Tatsumi
- Division of Immunology, Aichi Cancer Center Research Institute (ACCRI), 1-1 Kanokoden, Chikusa-ku, Nagoya 464-8681, Japan
| | - Tatsuki Ueda
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Tian-Yi Liu
- Division of Immunology, Aichi Cancer Center Research Institute (ACCRI), 1-1 Kanokoden, Chikusa-ku, Nagoya 464-8681, Japan; Key Laboratory of Cancer Center, Chinese PLA General Hospital, 28 Fuxing Road, Beijing 100853, China
| | - Yasutaka Mizoro
- Department of Life Science Frontiers, CiRA, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Chihiro Okada
- Department of Life Science Frontiers, CiRA, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Akira Watanabe
- Department of Life Science Frontiers, CiRA, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Mahito Nakanishi
- Research Center for Stem Cell Engineering, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8561, Japan
| | - Satoru Senju
- Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Yasuharu Nishimura
- Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Kiyotaka Kuzushima
- Division of Immunology, Aichi Cancer Center Research Institute (ACCRI), 1-1 Kanokoden, Chikusa-ku, Nagoya 464-8681, Japan; Department of Cellular Oncology, Nagoya University Graduate School of Medicine, 65, Tsurumai-cho, Showa-ku, Nagoya 464-8603, Japan
| | - Hitoshi Kiyoi
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Tomoki Naoe
- National Hospital Organization Nagoya Medical Center, 4-1-1, Sannomaru, Naka-ku, Nagoya 460-0001, Japan
| | - Shin Kaneko
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
48
|
Krijgsman D, Hokland M, Kuppen PJK. The Role of Natural Killer T Cells in Cancer-A Phenotypical and Functional Approach. Front Immunol 2018. [PMID: 29535734 PMCID: PMC5835336 DOI: 10.3389/fimmu.2018.00367] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Natural killer T (NKT) cells are a subset of CD1d-restricted T cells at the interface between the innate and adaptive immune system. NKT cells can be subdivided into functional subsets that respond rapidly to a wide variety of glycolipids and stress-related proteins using T- or natural killer (NK) cell-like effector mechanisms. Because of their major modulating effects on immune responses via secretion of cytokines, NKT cells are also considered important players in tumor immunosurveillance. During early tumor development, T helper (TH)1-like NKT cell subsets have the potential to rapidly stimulate tumor-specific T cells and effector NK cells that can eliminate tumor cells. In case of tumor progression, NKT cells may become overstimulated and anergic leading to deletion of a part of the NKT cell population in patients via activation-induced cell death. In addition, the remaining NKT cells become hyporesponsive, or switch to immunosuppressive TH2-/T regulatory-like NKT cell subsets, thereby facilitating tumor progression and immune escape. In this review, we discuss this important role of NKT cells in tumor development and we conclude that there should be three important focuses of future research in cancer patients in relation with NKT cells: (1) expansion of the NKT cell population, (2) prevention and breaking of NKT cell anergy, and (3) skewing of NKT cells toward TH1-like subsets with antitumor activity.
Collapse
Affiliation(s)
- Daniëlle Krijgsman
- Department of Surgery, Leiden University Medical Center, Leiden, Netherlands.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Peter J K Kuppen
- Department of Surgery, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
49
|
Kawamoto H, Masuda K, Nagano S, Maeda T. Cloning and expansion of antigen-specific T cells using iPS cell technology: development of "off-the-shelf" T cells for the use in allogeneic transfusion settings. Int J Hematol 2018; 107:271-277. [PMID: 29388165 DOI: 10.1007/s12185-018-2399-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 01/12/2018] [Indexed: 10/18/2022]
Abstract
Recent advances in adoptive immunotherapy using cytotoxic T lymphocytes (CTLs) have led to moderate therapeutic anti-cancer effects in clinical trials. However, a critical issue, namely that CTLs collected from patients are easily exhausted during expansion culture, has yet to be solved. To address this issue, we have been developing a strategy which utilizes induced pluripotent stem cell (iPSC) technology. This strategy is based on the idea that when iPSCs are produced from antigen-specific CTLs, CTLs regenerated from such iPSCs should show the same antigen specificity as the original CTLs. Pursuing this idea, we previously succeeded in regenerating melanoma antigen MART1-specific CTLs, and more recently in producing potent CTLs expressing CD8αβ heterodimer. We are now developing a novel method by which non-T derived iPSCs are transduced with exogenous T cell receptor genes. If this method is applied to Human Leukocyte Antigen (HLA) haplotype-homozygous iPSC stock, it will be possible to prepare "off-the-shelf" T cells. As a first-in-human trial, we are planning to apply our strategy to relapsed acute myeloid leukemia patients by targeting the WT1 antigen.
Collapse
Affiliation(s)
- Hiroshi Kawamoto
- Laboratory of Immunology, Institute for Frontier Life and Medical Science, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Kyoko Masuda
- Laboratory of Immunology, Institute for Frontier Life and Medical Science, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Seiji Nagano
- Laboratory of Immunology, Institute for Frontier Life and Medical Science, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.,Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takuya Maeda
- Laboratory of Immunology, Institute for Frontier Life and Medical Science, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.,Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
50
|
Shissler SC, Lee MS, Webb TJ. Mixed Signals: Co-Stimulation in Invariant Natural Killer T Cell-Mediated Cancer Immunotherapy. Front Immunol 2017; 8:1447. [PMID: 29163518 PMCID: PMC5671952 DOI: 10.3389/fimmu.2017.01447] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 10/17/2017] [Indexed: 12/31/2022] Open
Abstract
Invariant natural killer T (iNKT) cells are an integral component of the immune system and play an important role in antitumor immunity. Upon activation, iNKT cells can directly kill malignant cells as well as rapidly produce cytokines that stimulate other immune cells, making them a front line defense against tumorigenesis. Unfortunately, iNKT cell number and activity are reduced in multiple cancer types. This anergy is often associated with upregulation of co-inhibitory markers such as programmed death-1. Similar to conventional T cells, iNKT cells are influenced by the conditions of their activation. Conventional T cells receive signals through the following three types of receptors: (1) T cell receptor (TCR), (2) co-stimulation molecules, and (3) cytokine receptors. Unlike conventional T cells, which recognize peptide antigen presented by MHC class I or II, the TCRs of iNKT cells recognize lipid antigen in the context of the antigen presentation molecule CD1d (Signal 1). Co-stimulatory molecules can positively and negatively influence iNKT cell activation and function and skew the immune response (Signal 2). This study will review the background of iNKT cells and their co-stimulatory requirements for general function and in antitumor immunity. We will explore the impact of monoclonal antibody administration for both blocking inhibitory pathways and engaging stimulatory pathways on iNKT cell-mediated antitumor immunity. This review will highlight the incorporation of co-stimulatory molecules in antitumor dendritic cell vaccine strategies. The use of co-stimulatory intracellular signaling domains in chimeric antigen receptor-iNKT therapy will be assessed. Finally, we will explore the influence of innate-like receptors and modification of immunosuppressive cytokines (Signal 3) on cancer immunotherapy.
Collapse
Affiliation(s)
- Susannah C Shissler
- Department of Microbiology and Immunology, Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Michael S Lee
- Department of Microbiology and Immunology, Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Tonya J Webb
- Department of Microbiology and Immunology, Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|