1
|
Clerici M, Ciardulli MC, Lamparelli EP, Lovecchio J, Giordano E, Dale TP, Forsyth NR, Maffulli N, Della Porta G. Human tendon stem/progenitor cell-derived extracellular vesicle production promoted by dynamic culture. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2025; 53:1-16. [PMID: 40063517 DOI: 10.1080/21691401.2025.2475099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 11/14/2024] [Accepted: 02/24/2025] [Indexed: 05/13/2025]
Abstract
Tendon injuries significantly impact quality of life, prompting the exploration of innovative solutions beyond conventional surgery. Extracellular Vesicles (EVs) have emerged as a promising strategy to enhance tendon regeneration. In this study, human Tendon Stem/Progenitor Cells (TSPCs) were isolated from surgical biopsies and cultured in a Growth-Differentiation Factor-5-supplemented medium to promote tenogenic differentiation under static and dynamic conditions using a custom-made perfusion bioreactor. Once at 80% confluence, cells were transitioned to a serum-free medium for conditioned media collection. Ultracentrifugation revealed the presence of vesicles with a 106 particles/mL concentration and sub-200nm diameter size. Dynamic culture yielded a 3-fold increase in EV protein content compared to static culture, as confirmed by Western-blot analysis. Differences in surface marker expression were also shown by flow cytometric analysis. Data suggest that we efficiently developed a protocol for extracting EVs from human TSPCs, particularly under dynamic conditions. This approach enhances EV protein content, offering potential therapeutic benefits for tendon regeneration. However, further research is needed to fully understand the role of EVs in tendon regeneration.
Collapse
Affiliation(s)
- Marta Clerici
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, Salerno, Italy
- School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, UK
| | - Maria Camilla Ciardulli
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, Salerno, Italy
| | - Erwin Pavel Lamparelli
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, Salerno, Italy
| | - Joseph Lovecchio
- School of Science and Engineering, Reykjavík University, Reykjavík, Iceland
- Institute of Biomedical and Neural Engineering, Reykjavik University, Reykjavík, Iceland
| | - Emanuele Giordano
- Department of Electrical, Electronic and Information Engineering "Guglielmo Marconi" (DEI), University of Bologna, Cesena, Italy
| | - Tina P Dale
- School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, UK
| | - Nicholas R Forsyth
- School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, UK
- Vice Principals' Office, University of Aberdeen, Kings College, Aberdeen, UK
| | - Nicola Maffulli
- School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, UK
- Department of Trauma and Orthopaedics, Faculty of Medicine and Psychology, Sant'Andrea Hospital, Sapienza University, Rome, Italy
| | - Giovanna Della Porta
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, Salerno, Italy
- Interdepartmental Centre BIONAM, University of Salerno, Fisciano, Salerno, Italy
| |
Collapse
|
2
|
Kong S, Yang Y, Gao Y, Hu F, Yang S, Gao Z, Zhang K, Bai W, Cheng J, Hu X, Guo Q, Gong X, Ao Y, Shi W. Biodegradable Cryo-Self-Assembled Silk Fibroin Sponge for Enzyme-Responsive Exosome Delivery to Enhance Tendon Regeneration. ACS APPLIED BIO MATERIALS 2025; 8:3697-3707. [PMID: 40244687 DOI: 10.1021/acsabm.4c01429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
The utilization of biological therapeutic agents in the treatment of tendon injuries represents a promising avenue, with particular attention drawn to adipose mesenchymal stem-cell-derived exosomes (ADSCs-exos) owing to their pivotal role in regenerative medicine. Identifying a therapeutic strategy to prolong exosome retention at the injury site for effective tendon repair remains challenging. In this study, we explored the potential of ADSC-exosomes in vitro, demonstrating their ability to promote the behavior of tendon stem/progenitor cells (TSPCs). Additionally, we designed a fibroin (SF) sponge as a biodegradable platform for enzyme-responsive exosome delivery. Subsequently, we used biodegradable SF sponges to deliver ADSC exosomes into the patellar tendon defect in rats. The results showed that, in vivo, exosomes were gradually released from the SF sponges, remained in the defect area for an extended period, and exerted functional benefits locally. These findings were supported by the upregulation of tendon-associated protein expression and improved mechanical properties observed in the in vivo specimens. In summary, we substantiated the advantageous role of ADSCs-exos in facilitating tendon regeneration. Moreover, the utilization of a SF-exos sponge delivery system emerged as an efficacious local treatment strategy for exosome delivery. These findings hold promise for the future application of exosomes in innovative therapies tailored to address tendon injuries.
Collapse
Affiliation(s)
- Simin Kong
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing 100191, China
- Beijing Key Laboratory of Sports Injuries, Beijing 100191, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing 100191, China
| | - Yuping Yang
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing 100191, China
- Beijing Key Laboratory of Sports Injuries, Beijing 100191, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing 100191, China
| | - Yitian Gao
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing 100191, China
- Beijing Key Laboratory of Sports Injuries, Beijing 100191, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing 100191, China
| | - Fengyi Hu
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing 100191, China
- Beijing Key Laboratory of Sports Injuries, Beijing 100191, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing 100191, China
| | - Shuai Yang
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing 100191, China
- Beijing Key Laboratory of Sports Injuries, Beijing 100191, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing 100191, China
| | - Zeyuan Gao
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing 100191, China
- Beijing Key Laboratory of Sports Injuries, Beijing 100191, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing 100191, China
| | - Keying Zhang
- Peking University Health Science Center, Beijing 100191, China
| | - Wenbin Bai
- Peking University Health Science Center, Beijing 100191, China
| | - Jin Cheng
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing 100191, China
- Beijing Key Laboratory of Sports Injuries, Beijing 100191, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing 100191, China
| | - Xiaoqing Hu
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing 100191, China
- Beijing Key Laboratory of Sports Injuries, Beijing 100191, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing 100191, China
| | - Qinwei Guo
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing 100191, China
- Beijing Key Laboratory of Sports Injuries, Beijing 100191, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing 100191, China
| | - Xi Gong
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing 100191, China
- Beijing Key Laboratory of Sports Injuries, Beijing 100191, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing 100191, China
| | - Yingfang Ao
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing 100191, China
- Beijing Key Laboratory of Sports Injuries, Beijing 100191, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing 100191, China
| | - Weili Shi
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing 100191, China
- Beijing Key Laboratory of Sports Injuries, Beijing 100191, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing 100191, China
| |
Collapse
|
3
|
Li D, Li S, He S, He H, Yuan G, Ma B, Zhang Y, Yuan C, Liu Z, Deng Z, Xu J. Restoring tendon microenvironment in tendinopathy: Macrophage modulation and tendon regeneration with injectable tendon hydrogel and tendon-derived stem cells exosomes. Bioact Mater 2025; 47:152-169. [PMID: 39906648 PMCID: PMC11791013 DOI: 10.1016/j.bioactmat.2025.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/23/2024] [Accepted: 01/14/2025] [Indexed: 02/06/2025] Open
Abstract
Tendinopathy is a common musculoskeletal disorder in which a significant number of patients do not attain effective therapeutic outcomes. The extent of the inflammatory response and the dynamics of collagen synthesis metabolism are critical factors that influence the intrinsic self-repair capacity of tendons. However, the poor microenvironment within the tendon significantly impedes the self-repair process in tendinopathy. In this study, an injectable tendon-derived decellularized extracellular matrix (tdECM) hydrogel was utilized to treat tendinopathy. This hydrogel provides a more cytocompatible microenvironment while retaining certain bioactive factors of native tendon extracellular matrix (ECM), compared to collagen hydrogel. Notably, it was discovered for the first time that the tdECM hydrogel promotes M2 macrophage polarization, thereby exerting an anti-inflammatory effect in vivo. Furthermore, utilizing tdECM as a carrier for the sustained release of tendon-derived stem cells exosomes (TDSCs-Exos), our findings from both in vitro and in vivo studies indicate that the tdECM hydrogel, in conjunction with exosomes, demonstrated a pronounced synergistic enhancement in modulating inflammation, promoting M2 macrophage polarization, and facilitating tendon regeneration and repair efficacy. These results suggest its potential as a promising therapeutic strategy for tendon disorders.
Collapse
Affiliation(s)
- Danmei Li
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Shuai Li
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Shukun He
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Hongpu He
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Guangxun Yuan
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Binbin Ma
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yijun Zhang
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Chengjie Yuan
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Zhiqin Liu
- Department of Orthopaedics, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, 412007, China
| | - Zhenhan Deng
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Geriatrics Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Jian Xu
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| |
Collapse
|
4
|
Liu W, Wang X, Yu Y, Lin W, Xu H, Jiang X, Yuan C, Wang Y, Wang X, Song W, He Y. Inflammatory Cell Interactions in the Rotator Cuff Microenvironment: Insights From Single-Cell Sequencing. Int J Genomics 2025; 2025:6175946. [PMID: 40265083 PMCID: PMC12014260 DOI: 10.1155/ijog/6175946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 03/18/2025] [Indexed: 04/24/2025] Open
Abstract
Rotator cuff injuries are a common cause of shoulder pain and dysfunction, with chronic inflammation complicating recovery. Recent advances in single-cell RNA sequencing (scRNA-seq) have provided new insights into the immune cell interactions within the rotator cuff microenvironment during injury and healing. This review focuses on the application of scRNA-seq to explore the roles of immune and nonimmune cells, including macrophages, T-cells, fibroblasts, and myofibroblasts, in driving inflammation, tissue repair, and fibrosis. We discuss how immune cell crosstalk and interactions with the extracellular matrix influence the progression of healing or pathology. Single-cell analyses have identified distinct molecular signatures associated with chronic inflammation, which may contribute to persistent tissue damage. Additionally, we highlight the therapeutic potential of targeting inflammation in rotator cuff repair, emphasizing personalized medicine approaches. Overall, the integration of scRNA-seq in studying rotator cuff injuries enhances our understanding of the cellular mechanisms involved and offers new perspectives for developing targeted treatments in regenerative medicine.
Collapse
Affiliation(s)
- Wencai Liu
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinyu Wang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuhao Yu
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiming Lin
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Xu
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiping Jiang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenrui Yuan
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yifei Wang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin Wang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Song
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yaohua He
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Lim JK, Kim JH, Park GT, Woo SH, Cho M, Kang SW. Efficacy of Light-Emitting Diode-Mediated Photobiomodulation in Tendon Healing in a Murine Model. Int J Mol Sci 2025; 26:2286. [PMID: 40076906 PMCID: PMC11899806 DOI: 10.3390/ijms26052286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 02/27/2025] [Accepted: 03/02/2025] [Indexed: 03/14/2025] Open
Abstract
The application of light-emitting diode (LED)-dependent photobiomodulation (PBM) in promoting post-tendon injury healing has been recently reported. Despite establishing a theoretical basis for ligament restoration through PBM, identifying effective LED wavelength combinations and ensuring safety in animal models remain unresolved challenges. In our previous study, we demonstrated that combined irradiation at 630 nm and 880 nm promotes cell proliferation and migration, which are critical processes during the early stage of tendon healing in human-derived tendon fibroblasts. Based on this, we hypothesized that 630/880 nm LED-based PBM might promote rapid healing during the initial phase of tendon healing, and we aimed to analyze the results after PBM treatment in a murine model. Migration kinetics were analyzed at two specific wavelengths: 630 and 880 nm. The Achilles tendon in the hind limbs of Balb/c mice was severed by Achilles tendon transection. Subsequently, the mice were randomized into LED non-irradiation and LED irradiation groups. Mice with intact tendons were employed as healthy controls. The total number of mice was 13 for the healthy and injured groups and 14 for the LED-irradiated injured group, and the data presented in this manuscript were obtained from one representative experiment (n = 4-5 per group). The wounds were LED-irradiated for 20 min daily for two days. Histological properties, tendon healing mediators, and inflammatory mediators were screened on day 14. The roundness of the nuclei and fiber structure, indicating the degree of infiltrated inflammatory cells and severity of fiber fragmentation, respectively, were lower in the LED irradiation group than in the LED non-irradiation group. Immunohistochemical analysis depicted an increase in tenocytes (SCX+ cells) and recovery of wounds with reduced fibrosis (lower collagen 3 and TGF-β1) in the LED irradiation group during healing; conversely, the LED non-irradiation group exhibited tissue fibrosis. Overall, the ratio of M2 macrophages to total macrophages in the LED irradiation group was higher than that in the injured group. LED-based PBM in the Achilles tendon rupture murine model facilitated a rapid restoration of histological and immunochemical outcomes. These findings suggest that LED-based PBM presents remarkable potential as an adjunct therapeutic approach for tendon healing and warrants further research to standardize various parameters to advance and establish it as a reliable treatment regimen.
Collapse
Affiliation(s)
- Jae Kyung Lim
- Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (J.K.L.); (J.H.K.); (G.T.P.)
| | - Jae Ho Kim
- Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (J.K.L.); (J.H.K.); (G.T.P.)
| | - Gyu Tae Park
- Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (J.K.L.); (J.H.K.); (G.T.P.)
| | - Seung Hun Woo
- Department of Orthopedics, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, School of Medicine, Pusan National University, Yangsan 56012, Republic of Korea;
| | - Minkyoung Cho
- Department of Parasitology and Tropical Medicine, Institute of Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Suk Woong Kang
- Department of Orthopedics, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, School of Medicine, Pusan National University, Yangsan 56012, Republic of Korea;
| |
Collapse
|
6
|
Zhu Z, Zhang X, Lin X, Wang Y, Han C, Wang S. Research Advances and Application Progress on miRNAs in Exosomes Derived From M2 Macrophage for Tissue Injury Repairing. Int J Nanomedicine 2025; 20:1543-1560. [PMID: 39925680 PMCID: PMC11806736 DOI: 10.2147/ijn.s508781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 01/23/2025] [Indexed: 02/11/2025] Open
Abstract
Tissue injury repair is a multifaceted and dynamic process characterized by complex interactions among various immune cells, with M2 macrophages assuming a crucial role. Exosomes derived from M2-type macrophages (M2-Exos) significantly influence the injury repair process through intercellular communication mediated by enriched microRNAs (miRNAs). This review aims to elucidate the biological processes underlying exosome formation, the synthesis and function of miRNAs, and the diverse methodologies employed for exosome extraction. Furthermore, we provide a comprehensive summary of the established multifarious functions and mechanisms of M2-Exos miRNAs in tissue injury repair across different systems, while also exploring their potential applications in disease prevention, diagnosis, and clinical practice. Despite the challenges encountered, the therapeutic use of M2-Exos in clinical contexts appears promising, prompting research efforts to focus on improving the efficiency of exosome extraction and application, as well as ensuring the safety of their clinical utilization.
Collapse
Affiliation(s)
- Zhikang Zhu
- Department of Plastic Surgery, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, Zhejiang University, Yiwu, Zhejiang, People’s Republic of China
| | - Xinge Zhang
- Department of Plastic Surgery, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, Zhejiang University, Yiwu, Zhejiang, People’s Republic of China
| | - Xuran Lin
- Department of Plastic Surgery, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, Zhejiang University, Yiwu, Zhejiang, People’s Republic of China
| | - Yuechen Wang
- Department of Plastic Surgery, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, Zhejiang University, Yiwu, Zhejiang, People’s Republic of China
| | - Chunmao Han
- Department of Burns & Wound Care Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China
- Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
| | - Shoujie Wang
- Department of Plastic Surgery, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, Zhejiang University, Yiwu, Zhejiang, People’s Republic of China
- Department of Plastic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
7
|
Nazari M, Taremi S, Elahi R, Mostanadi P, Esmeilzadeh A. Therapeutic Properties of M2 Macrophages in Chronic Wounds: An Innovative Area of Biomaterial-Assisted M2 Macrophage Targeted Therapy. Stem Cell Rev Rep 2025; 21:390-422. [PMID: 39556244 DOI: 10.1007/s12015-024-10806-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2024] [Indexed: 11/19/2024]
Abstract
Wound healing is a dynamic, multi-stage process essential for restoring skin integrity. Dysregulated wound healing is often linked to impaired macrophage function, particularly in individuals with chronic underlying conditions. Macrophages, as key regulators of wound healing, exhibit significant phenotypic diversity, ranging from the pro-healing M2 phenotype to the pro-inflammatory M1 phenotype. Imbalances in the M1/M2 ratio or hyperactivation of the M1 phenotype can delay the normal healing. Consequently, strategies aimed at suppressing the M1 phenotype or promoting the shift of local skin macrophages toward the M2 phenotype can potentially treat chronic non-healing wounds. This manuscript provides an overview of macrophages' role in normal and pathological wound-healing processes. It examines various therapeutic approaches targeting M2 macrophages, such as ex vivo-activated macrophage therapy, immunopharmacological strategies, and biomaterial-directed macrophage polarization. However, it also highlights that M2 macrophage therapies and immunopharmacological interventions may have drawbacks, including rapid phenotypic changes, adverse effects on other skin cells, biotoxicity, and concerns related to biocompatibility, stability, and drug degradation. Therefore, there is a need for more targeted macrophage-based therapies that ensure optimal biosafety, allowing for effective reprogramming of dysregulated macrophages and improved therapeutic outcomes. Recent advances in nano-biomaterials have demonstrated promising regenerative potential compared to traditional treatments. This review discusses the progress of biomaterial-assisted macrophage targeting in chronic wound repair and addresses the challenges faced in its clinical application. Additionally, it explores novel design concepts for combinational therapies, such as incorporating regenerative particles like exosomes into dressing materials or encapsulating them in microneedling systems to enhance wound healing rates.
Collapse
Affiliation(s)
- Mahdis Nazari
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Siavash Taremi
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Reza Elahi
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Parsa Mostanadi
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Abdolreza Esmeilzadeh
- Department of Immunology, Zanjan University of Medical Sciences, Zanjan, Iran.
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.
| |
Collapse
|
8
|
von Stade D, Meyers M, Johnson J, Schlegel T, Romeo A, Regan D, McGilvray K. Primary Human Macrophage and Tenocyte Tendon Healing Phenotypes Changed by Exosomes Per Cell Origin. Tissue Eng Part A 2025. [PMID: 39761039 DOI: 10.1089/ten.tea.2024.0143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025] Open
Abstract
The high failure rate of surgical repair for tendinopathies has spurred interest in adjunct therapies, including exosomes (EVs). Mesenchymal stromal cell (MSC)-derived EVs (MSCdEVs) have been of particular interest as they improve several metrics of tendon healing in animal models. However, research has shown that EVs derived from tissue-native cells, such as tenocytes, are functionally distinct and may better direct tendon healing. To this end, we investigated the differential regulation of human primary macrophage transcriptomic responses and cytokine secretion by tenocyte-derived EVs (TdEVs) compared with MSCdEVs. Compared with MSCdEVs, TdEVs upregulated TNFa-NFkB and TGFB signaling and pathways associated with osteoclast differentiation in macrophages while decreasing secretion of several pro-inflammatory cytokines. Conditioned media of these TdEV educated macrophages drove increased tenocyte migration and decreased MMP3 and MMP13 expression. In contrast, MSCdEV education of macrophages drove increased gene expression pathways related to INFa, INFg and protection against oxidative stress while increasing cytokine expression of MCP1 and IL6. These data demonstrate that EV cell source differentially impacts the function of key effector cells in tendon healing and that TdEVs, compared with MSCdEVs, promote a more favorable tendon healing phenotype within these cells.
Collapse
Affiliation(s)
- Devin von Stade
- Orthopaedic and Bioengineering Research Laboratory, Colorado State University, Fort Collins, Colorado, USA
| | - Melinda Meyers
- Animal Reproduction and Biotechnology Laboratory, Colorado State University, Fort Collins, Colorado, USA
| | - James Johnson
- Orthopaedic and Bioengineering Research Laboratory, Colorado State University, Fort Collins, Colorado, USA
| | | | - Anthony Romeo
- Shoulder Elbow Sports Medicine, Chicago, Illinois, USA
| | - Daniel Regan
- Flint Animal Cancer Center and Dept. of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Kirk McGilvray
- Orthopaedic and Bioengineering Research Laboratory, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
9
|
Quam VG, Belacic ZA, Long S, Rice HC, Dhar MS, Durgam S. Equine bone marrow MSC-derived extracellular vesicles mitigate the inflammatory effects of interleukin-1β on navicular tissues in vitro. Equine Vet J 2025; 57:232-242. [PMID: 38587145 PMCID: PMC11458820 DOI: 10.1111/evj.14090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 03/13/2024] [Indexed: 04/09/2024]
Abstract
BACKGROUND Safe, efficacious therapy for treating degenerate deep digital flexor tendon (DDFT) and navicular bone fibrocartilage (NBF) in navicular horses is critically necessary. While archetypal orthobiologic therapies for navicular disease are used empirically, their safety and efficacy are unknown. Mesenchymal stem cell-derived extracellular vesicles (EV) may overcome several limitations of current orthobiologic therapies. OBJECTIVES To (1) characterise cytokine and growth factor profiles of equine bone marrow mesenchymal stem cell (BM-MSC)-derived extracellular vesicles (BM-EV) and (2) evaluate the in vitro anti-inflammatory and extracellular matrix (ECM) protective potentials of BM-EV on DDFT and NBF explant co-cultures in an IL-1β inflammatory environment. STUDY DESIGN In vitro experimental study. METHODS Cytokines (IL-1β, IL-6, IL-10, IL-1ra and TNF-α) and growth factors (TGFβ1, VEGF, IGF1 and PDGF) in equine BM-EV isolated via ultracentrifugation and precipitation methods were profiled. Forelimb DDFT and NBF explant co-cultures from seven horses were exposed to media alone, or media containing 2 × 109 ± 0.1 × 109 particles/mL or 10 μg/mL BM-EV (BM-EV), 10 ng/mL interleukin-1β (IL-1β), or IL-1β + BM-EV for 48 h. Co-culture media IL-6, TNF-α, MMP-3, MMP-13 concentrations and explant sulphated glycosaminoglycan (sGAG) content were quantified. RESULTS IL-6, IGF1 and VEGF concentrations were 102.1 (37.61-256.2) and 182.3 (163.1-226.3), 72.3 (8-175.6) and 2.4 (0.1-2.6), 108.3 (38.3-709.1) and 211.4 (189.1-318.2) pg/mL per 2 × 109 ± 0.1 × 109 particles/mL or 10 μg/mL 10 μg of BM-EV isolated via ultracentrifugation and precipitation methods, respectively. Co-culture media MMP-3 in BM-EV- (p = 0.03) and BM-EV + IL-1β-treated (p = 0.01) groups were significantly lower than the respective media and IL-1β groups. DDFT explant sGAG content of BM-EV (p = 0.003) and BM-EV + IL-1β groups were significantly higher compared with IL-1β group. MAIN LIMITATIONS Specimen numbers are limited, in vitro model may not replicate clinical case conditions, lack of non-MSC-derived EV control group. CONCLUSIONS Equine BM-EV contains IL-6 and growth factors, IGF1 and VEGF. The anti-inflammatory and ECM protective potentials of BM-EV were evident as increased IL-6 and decreased MMP-3 concentrations in the DDFT-NBF explant co-culture media. These results support further evaluation of BM-EV as an acellular and 'off-the-shelf' intra-bursal/intrasynovial therapy for navicular pathologies.
Collapse
Affiliation(s)
- Vivian G. Quam
- Department of Veterinary Clinical Sciences, College of Veterinary MedicineThe Ohio State UniversityColumbusOhioUSA
- Ballarat Veterinary Practice Equine ClinicMiners RestVictoriaAustralia
| | - Zarah A. Belacic
- Department of Veterinary Clinical Sciences, College of Veterinary MedicineThe Ohio State UniversityColumbusOhioUSA
| | - Sidney Long
- Department of Veterinary Clinical Sciences, College of Veterinary MedicineThe Ohio State UniversityColumbusOhioUSA
| | - Hilary C. Rice
- Department of Veterinary Clinical Sciences, College of Veterinary MedicineThe Ohio State UniversityColumbusOhioUSA
| | - Madhu S. Dhar
- Department of Large Animal Clinical Sciences, College of Veterinary MedicineUniversity of TennesseeKnoxvilleTennesseeUSA
| | - Sushmitha Durgam
- Department of Veterinary Clinical Sciences, College of Veterinary MedicineThe Ohio State UniversityColumbusOhioUSA
| |
Collapse
|
10
|
Jiang F, Zhao H, Zhang P, Bi Y, Zhang H, Sun S, Yao Y, Zhu X, Yang F, Liu Y, Xu S, Yu T, Xiao X. Challenges in tendon-bone healing: emphasizing inflammatory modulation mechanisms and treatment. Front Endocrinol (Lausanne) 2024; 15:1485876. [PMID: 39568806 PMCID: PMC11576169 DOI: 10.3389/fendo.2024.1485876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 10/11/2024] [Indexed: 11/22/2024] Open
Abstract
Tendons are fibrous connective tissues that transmit force from muscles to bones. Despite their ability to withstand various loads, tendons are susceptible to significant damage. The healing process of tendons and ligaments connected to bone surfaces after injury presents a clinical challenge due to the intricate structure, composition, cellular populations, and mechanics of the interface. Inflammation plays a pivotal role in tendon healing, creating an inflammatory microenvironment through cytokines and immune cells that aid in debris clearance, tendon cell proliferation, and collagen fiber formation. However, uncontrolled inflammation can lead to tissue damage, and adhesions, and impede proper tendon healing, culminating in scar tissue formation. Therefore, precise regulation of inflammation is crucial. This review offers insights into the impact of inflammation on tendon-bone healing and its underlying mechanisms. Understanding the inflammatory microenvironment, cellular interactions, and extracellular matrix dynamics is essential for promoting optimal healing of tendon-bone injuries. The roles of fibroblasts, inflammatory cytokines, chemokines, and growth factors in promoting healing, inhibiting scar formation, and facilitating tissue regeneration are discussed, highlighting the necessity of balancing the suppression of detrimental inflammatory responses with the promotion of beneficial aspects to enhance tendon healing outcomes. Additionally, the review explores the significant implications and translational potential of targeted inflammatory modulation therapies in refining strategies for tendon-bone healing treatments.
Collapse
Affiliation(s)
- Fan Jiang
- Department of Orthopedic Surgery, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Haibo Zhao
- Department of Orthopedic Surgery, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Po Zhang
- Department of Orthopedic Surgery, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Yanchi Bi
- Department of Orthopedic Surgery, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Haoyun Zhang
- Department of Orthopedic Surgery, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Shenjie Sun
- Department of Orthopedic Surgery, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Yizhi Yao
- Department of Orthopedic Surgery, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Xuesai Zhu
- Department of Orthopedic Surgery, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Fenghua Yang
- Department of Orthopedic Surgery, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Yang Liu
- Department of Orthopedic Surgery, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Sicong Xu
- Department of Orthopedic Surgery, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Tengbo Yu
- Department of Orthopedic Surgery, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Xiao Xiao
- Central Laboratories, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| |
Collapse
|
11
|
Sankova MV, Beeraka NM, Oganesyan MV, Rizaeva NA, Sankov AV, Shelestova OS, Bulygin KV, Vikram PR H, Barinov A, Khalimova A, Padmanabha Reddy Y, Basappa B, Nikolenko VN. Recent developments in Achilles tendon risk-analyzing rupture factors for enhanced injury prevention and clinical guidance: Current implications of regenerative medicine. J Orthop Translat 2024; 49:289-307. [PMID: 39559294 PMCID: PMC11570240 DOI: 10.1016/j.jot.2024.08.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/16/2024] [Accepted: 08/27/2024] [Indexed: 11/20/2024] Open
Abstract
Background In recent years, many countries have actively implemented programs and strategies to promote physical education and sports. Despite these efforts, the increase in physical activity has been accompanied by a significant rise in muscle and tendon-ligament injuries, with Achilles tendon rupture being the most prevalent, accounting for 47 % of such injuries. This review aims to summarize all significant factors determining the predisposition of the Achilles tendon to rupture, to develop effective personalized prevention measures. Objective To identify and evaluate the risk factors contributing to Achilles tendon rupture and to develop strategies for personalized prevention. Methods This review utilized data from several databases, including Elsevier, Global Health, PubMed-NCBI, Embase, Medline, Scopus, ResearchGate, RSCI, Cochrane Library, Google Scholar, eLibrary.ru, and CyberLeninka. Both non-modifiable and modifiable risk factors for Achilles tendon injuries and ruptures were analyzed. Results The analysis identified several non-modifiable risk factors, such as genetic predisposition, anatomical and functional features of the Achilles tendon, sex, and age. These factors should be considered when selecting sports activities and designing training programs. Modifiable risk factors included imbalanced nutrition, improper exercise regimens, and inadequate monitoring of Achilles tendon conditions in athletes. Early treatment of musculoskeletal injuries, Achilles tendon diseases, foot deformities, and metabolic disorders is crucial. Long-term drug use and its risk assessment were also highlighted as important considerations. Furthermore, recent clinical advancements in both conventional and surgical methods to treat Achilles tendon injuries were described. The efficacy of these therapies in enhancing functional outcomes in individuals with Achilles injuries was compared. Advancements in cell-based and scaffold-based therapies aimed at enhancing cell regeneration and repairing Achilles injuries were also discussed. Discussion The combination of several established factors significantly increases the risk of Achilles tendon rupture. Addressing these factors through personalized prevention strategies can effectively reduce the incidence of these injuries. Proper nutrition, regular monitoring, timely treatment, and the correction of metabolic disorders are essential components of a comprehensive prevention plan. Conclusion Early identification of Achilles tendon risk factors allows for the timely development of effective personalized prevention strategies. These measures can contribute significantly to public health preservation by reducing the incidence of Achilles tendon ruptures associated with physical activity and sports. Continued research and clinical advancements in treatment methods will further enhance the ability to prevent and manage Achilles tendon injuries. The translational potential of this article This study identifies key modifiable and non-modifiable risk factors for Achilles tendon injuries, paving the way for personalized prevention strategies. Emphasizing nutrition, exercise, and early treatment of musculoskeletal issues, along with advancements in cell-based therapies, offers promising avenues for improving recovery and outcomes. These findings can guide clinical practices in prevention and rehabilitation, ultimately reducing Achilles injuries and enhancing public health.
Collapse
Affiliation(s)
- Maria V. Sankova
- Department of Human Anatomy and Histology, I.M.Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Narasimha M. Beeraka
- Department of Human Anatomy and Histology, I.M.Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Raghavendra Institute of Pharmaceutical Education and Research (RIPER), Anantapuramu, Chiyyedu, Andhra Pradesh, 515721, India
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut Street, R4-168, Indianapolis, IN, 46202, USA
| | - Marine V. Oganesyan
- Department of Human Anatomy and Histology, I.M.Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Department of Normal and Topographic Anatomy, Lomonosov Moscow State University, Moscow, Russia
| | - Negoriya A. Rizaeva
- Department of Human Anatomy and Histology, I.M.Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Department of Normal and Topographic Anatomy, Lomonosov Moscow State University, Moscow, Russia
| | - Aleksey V. Sankov
- Department of Human Anatomy and Histology, I.M.Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Olga S. Shelestova
- Department of Normal and Topographic Anatomy, Lomonosov Moscow State University, Moscow, Russia
| | - Kirill V. Bulygin
- Department of Human Anatomy and Histology, I.M.Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Department of Normal and Topographic Anatomy, Lomonosov Moscow State University, Moscow, Russia
| | - Hemanth Vikram PR
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India
| | - A.N. Barinov
- Head of Neurology and Psychotherapy Chair of Medical Academy MEDSI Group, Moscow, Russia
| | - A.K. Khalimova
- International Medical Company “Prime Medical Group”, Almaty, Kazakhstan Asia Halimova Prime Medical Group Medical Center, Republic of Kazakhstan
| | - Y. Padmanabha Reddy
- Raghavendra Institute of Pharmaceutical Education and Research (RIPER), Anantapuramu, Chiyyedu, Andhra Pradesh, 515721, India
| | - Basappa Basappa
- Laboratory of Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Mysore, Karnataka, 570006, India
| | - Vladimir N. Nikolenko
- Department of Human Anatomy and Histology, I.M.Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Department of Normal and Topographic Anatomy, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
12
|
Wu S, Zhou Z, Li Y, Jiang J. Advancements in diabetic foot ulcer research: Focus on mesenchymal stem cells and their exosomes. Heliyon 2024; 10:e37031. [PMID: 39286219 PMCID: PMC11403009 DOI: 10.1016/j.heliyon.2024.e37031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/11/2024] [Accepted: 08/26/2024] [Indexed: 09/19/2024] Open
Abstract
Diabetes represents a widely acknowledged global public health concern. Diabetic foot ulcer (DFU) stands as one of the most severe complications of diabetes, its occurrence imposing a substantial economic burden on patients, profoundly impacting their quality of life. Despite the deepening comprehension regarding the pathophysiology and cellular as well as molecular responses of DFU, the current therapeutic arsenal falls short of efficacy, failing to offer a comprehensive remedy for deep-seated chronic wounds and microvascular occlusions. Conventional treatments merely afford symptomatic alleviation or retard the disease's advancement, devoid of the capacity to effectuate further restitution of compromised vasculature and nerves. An escalating body of research underscores the prominence of mesenchymal stem cells (MSCs) owing to their paracrine attributes and anti-inflammatory prowess, rendering them a focal point in the realm of chronic wound healing. Presently, MSCs have been validated as a highly promising cellular therapeutic approach for DFU, capable of effectuating cellular repair, epithelialization, granulation tissue formation, and neovascularization by means of targeted differentiation, angiogenesis promotion, immunomodulation, and paracrine activities, thereby fostering wound healing. The secretome of MSCs comprises cytokines, growth factors, chemokines, alongside exosomes harboring mRNA, proteins, and microRNAs, possessing immunomodulatory and regenerative properties. The present study provides a systematic exposition on the etiology of DFU and elucidates the intricate molecular mechanisms and diverse functionalities of MSCs in the context of DFU treatment, thereby furnishing pioneering perspectives aimed at harnessing the therapeutic potential of MSCs for DFU management and advancing wound healing processes.
Collapse
Affiliation(s)
- ShuHui Wu
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - ZhongSheng Zhou
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yang Li
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jinlan Jiang
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
13
|
Rosenkrans ZT, Thickens AS, Kink JA, Aluicio-Sarduy E, Engle JW, Hematti P, Hernandez R. Investigating the In Vivo Biodistribution of Extracellular Vesicles Isolated from Various Human Cell Sources Using Positron Emission Tomography. Mol Pharm 2024; 21:4324-4335. [PMID: 39164886 PMCID: PMC11891749 DOI: 10.1021/acs.molpharmaceut.4c00298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Positron emission tomography (PET) is a powerful tool for investigating the in vivo behavior of drug delivery systems. We aimed to assess the biodistribution of extracellular vesicles (EVs), nanosized vesicles secreted by cells isolated from various human cell sources using PET. EVs were isolated from mesenchymal stromal cells (MSCs) (MSC EVs), human macrophages (Mϕ EVs), and a melanoma cell line (A375 EVs) by centrifugation and were conjugated with deferoxamine for radiolabeling with Zr-89. PET using conjugated and radiolabeled EVs evaluated their in vivo biodistribution and tissue tropisms. Our study also investigated differences in mouse models, utilizing immunocompetent and immunocompromised mice and an A375 xenograft tumor model. Lastly, we investigated the impact of different labeling techniques on the observed EV biodistribution, including covalent surface modification and membrane incorporation. PET showed that all tested EVs exhibited extended in vivo circulation and generally low uptake in the liver, spleen, and lungs. However, Mϕ EVs showed high liver uptake, potentially attributable to the intrinsic tissue tropism of these EVs from the surface protein composition. MSC EV biodistribution differed between immunocompetent and immunodeficient mice, with increased spleen uptake observed in the latter. PET using A375 xenografts demonstrated efficient tumor uptake of EVs, but no preferential tissue-specific tropism of A375 EVs was found. Biodistribution differences between labeling techniques showed that surface-conjugated EVs had preferential blood circulation and low liver, spleen, and lung uptake compared to membrane integration. This study demonstrates the potential of EVs as effective drug carriers for various diseases, highlights the importance of selecting appropriate cell sources for EV-based drug delivery, and suggests that EV tropism can be harnessed to optimize therapeutic efficacy. Our findings indicate that the cellular source of EVs, labeling technique, and animal model can influence the observed biodistribution.
Collapse
Affiliation(s)
- Zachary T. Rosenkrans
- Departments of Medical Physics and Radiology, University of
Wisconsin-Madison, 1111 Highland Ave., Madison, Wisconsin, 53705, United
States
| | - Anna S. Thickens
- Departments of Medical Physics and Radiology, University of
Wisconsin-Madison, 1111 Highland Ave., Madison, Wisconsin, 53705, United
States
- Department of Medicine, University of Wisconsin-Madison
School of Medicine and Public Health, 1685 Highland Ave., Madison, Wisconsin, 53705,
United States
| | - John A. Kink
- Department of Medicine, University of Wisconsin-Madison
School of Medicine and Public Health, 1685 Highland Ave., Madison, Wisconsin, 53705,
United States
- University of Wisconsin Carbone Cancer Center, University
of Wisconsin-Madison, 600 Highland Ave., Madison, Wisconsin, 53792, United
States
| | - Eduardo Aluicio-Sarduy
- Departments of Medical Physics and Radiology, University of
Wisconsin-Madison, 1111 Highland Ave., Madison, Wisconsin, 53705, United
States
| | - Jonathan W. Engle
- Departments of Medical Physics and Radiology, University of
Wisconsin-Madison, 1111 Highland Ave., Madison, Wisconsin, 53705, United
States
- University of Wisconsin Carbone Cancer Center, University
of Wisconsin-Madison, 600 Highland Ave., Madison, Wisconsin, 53792, United
States
| | - Peiman Hematti
- Department of Medicine, University of Wisconsin-Madison
School of Medicine and Public Health, 1685 Highland Ave., Madison, Wisconsin, 53705,
United States
- University of Wisconsin Carbone Cancer Center, University
of Wisconsin-Madison, 600 Highland Ave., Madison, Wisconsin, 53792, United
States
- Division of Hematology and Oncology, Medical College of
Wisconsin, 9200 W. Wisconsin Ave., Milwaukee, Wisconsin, 53226
| | - Reinier Hernandez
- Departments of Medical Physics and Radiology, University of
Wisconsin-Madison, 1111 Highland Ave., Madison, Wisconsin, 53705, United
States
- University of Wisconsin Carbone Cancer Center, University
of Wisconsin-Madison, 600 Highland Ave., Madison, Wisconsin, 53792, United
States
| |
Collapse
|
14
|
Pinnarò V, Kirchberger S, Künig S, Gil Cantero S, Ciardulli MC, Della Porta G, Blüml S, Elbe-Bürger A, Bochkov V, Stöckl J. Oxidized Phospholipids Regulate Tenocyte Function via Induction of Amphiregulin in Dendritic Cells. Int J Mol Sci 2024; 25:7600. [PMID: 39062855 PMCID: PMC11277520 DOI: 10.3390/ijms25147600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Inflammation is a driving force of tendinopathy. The oxidation of phospholipids by free radicals is a consequence of inflammatory reactions and is an important indicator of tissue damage. Here, we have studied the impact of oxidized phospholipids (OxPAPC) on the function of human tenocytes. We observed that treatment with OxPAPC did not alter the morphology, growth and capacity to produce collagen in healthy or diseased tenocytes. However, since OxPAPC is a known modulator of the function of immune cells, we analyzed whether OxPAPC-treated immune cells might influence the fate of tenocytes. Co-culture of tenocytes with immature, monocyte-derived dendritic cells treated with OxPAPC (Ox-DCs) was found to enhance the proliferation of tenocytes, particularly those from diseased tendons. Using transcriptional profiling of Ox-DCs, we identified amphiregulin (AREG), a ligand for EGFR, as a possible mediator of this proliferation enhancing effect, which we could confirm using recombinant AREG. Of note, diseased tenocytes were found to express higher levels of EGFR compared to tenocytes isolated from healthy donors and show a stronger proliferative response upon co-culture with Ox-DCs, as well as AREG treatment. In summary, we identify an AREG-EGFR axis as a mediator of a DC-tenocyte crosstalk, leading to increased tenocyte proliferation and possibly tendon regeneration.
Collapse
Affiliation(s)
- Veronica Pinnarò
- Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, 1090 Vienna, Austria; (V.P.); (S.K.); (S.G.C.)
| | | | - Sarojinidevi Künig
- Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, 1090 Vienna, Austria; (V.P.); (S.K.); (S.G.C.)
| | - Sara Gil Cantero
- Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, 1090 Vienna, Austria; (V.P.); (S.K.); (S.G.C.)
| | - Maria Camilla Ciardulli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (M.C.C.); (G.D.P.)
| | - Giovanna Della Porta
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (M.C.C.); (G.D.P.)
| | - Stephan Blüml
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, 1090 Vienna, Austria;
| | | | - Valery Bochkov
- Department of Pharmaceutical Chemistry, Institute of Pharmaceutical Sciences, University of Graz, 8010 Graz, Austria;
| | - Johannes Stöckl
- Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, 1090 Vienna, Austria; (V.P.); (S.K.); (S.G.C.)
| |
Collapse
|
15
|
Dou Y, Zhai H, Li H, Xing H, Zhu C, Xuan Z. Endothelial cells-derived exosomes-based hydrogel improved tendinous repair via anti-inflammatory and tissue regeneration-promoting properties. J Nanobiotechnology 2024; 22:401. [PMID: 38982446 PMCID: PMC11232200 DOI: 10.1186/s12951-024-02607-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/30/2024] [Indexed: 07/11/2024] Open
Abstract
Tendon injuries are common orthopedic ailments with a challenging healing trajectory, especially in cases like the Achilles tendon afflictions. The healing trajectory of tendon injuries is often suboptimal, leading to scar formation and functional impairment due to the inherent low metabolic activity and vascularization of tendon tissue. As pressing is needed for effective interventions, efforts are made to explore biomaterials to augment tendon healing. However, tissue engineering approaches face hurdles in optimizing tissue scaffolds and nanomedical strategies. To navigate these challenges, an injectable hydrogel amalgamated with human umbilical vein endothelial cells-derived exosomes (HUVECs-Exos) was prepared and named H-Exos-gel in this study, aiming to enhance tendon repair. In our research involving a model of Achilles tendon injuries in 60 rats, we investigated the efficacy of H-Exos-gel through histological assessments performed at 2 and 4 weeks and behavioral assessments conducted at the 4-week mark revealed its ability to enhance the Achilles tendon's mechanical strength, regulate inflammation and facilitate tendon regeneration and functional recovery. Mechanically, the H-Exos-gel modulated the cellular behaviors of macrophages and tendon-derived stem cells (TDSCs) by inhibiting inflammation-related pathways and promoting proliferation-related pathways. Our findings delineate that the H-Exos-gel epitomizes a viable bioactive medium for tendon healing, heralding a promising avenue for the clinical amelioration of tendon injuries.
Collapse
Affiliation(s)
- Yichen Dou
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Jilin University, 130031, Changchun, P.R. China
| | - Hong Zhai
- Department of Laboratory Medicine, The First Hospital of Jilin University, Jilin University, 130031, Changchun, P.R. China
| | - Haiqiu Li
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Jilin University, 130031, Changchun, P.R. China
| | - Hanlin Xing
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Jilin University, 130031, Changchun, P.R. China
| | - Cheng Zhu
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Jilin University, 130031, Changchun, P.R. China
| | - Zhaopeng Xuan
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Jilin University, 130031, Changchun, P.R. China.
| |
Collapse
|
16
|
Zhang S, Lu C, Zheng S, Hong G. Hydrogel loaded with bone marrow stromal cell-derived exosomes promotes bone regeneration by inhibiting inflammatory responses and angiogenesis. World J Stem Cells 2024; 16:499-511. [PMID: 38817325 PMCID: PMC11135248 DOI: 10.4252/wjsc.v16.i5.499] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/17/2024] [Accepted: 04/02/2024] [Indexed: 05/24/2024] Open
Abstract
BACKGROUND Bone healing is a complex process involving early inflammatory immune regulation, angiogenesis, osteogenic differentiation, and biomineralization. Fracture repair poses challenges for orthopedic surgeons, necessitating the search for efficient healing methods. AIM To investigate the underlying mechanism by which hydrogel-loaded exosomes derived from bone marrow mesenchymal stem cells (BMSCs) facilitate the process of fracture healing. METHODS Hydrogels and loaded BMSC-derived exosome (BMSC-exo) gels were characterized to validate their properties. In vitro evaluations were conducted to assess the impact of hydrogels on various stages of the healing process. Hydrogels could recruit macrophages and inhibit inflammatory responses, enhance of human umbilical vein endothelial cell angiogenesis, and promote the osteogenic differentiation of primary cranial osteoblasts. Furthermore, the effect of hydrogel on fracture healing was confirmed using a mouse fracture model. RESULTS The hydrogel effectively attenuated the inflammatory response during the initial repair stage and subsequently facilitated vascular migration, promoted the formation of large vessels, and enabled functional vascularization during bone repair. These effects were further validated in fracture models. CONCLUSION We successfully fabricated a hydrogel loaded with BMSC-exo that modulates macrophage polarization and angiogenesis to influence bone regeneration.
Collapse
Affiliation(s)
- Shuai Zhang
- Division for International Collaborative and Innovative Dentistry, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Miyagi, Japan
- School of Stomatology, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China
| | - Chuan Lu
- Division for International Collaborative and Innovative Dentistry, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Miyagi, Japan
| | - Sheng Zheng
- School of Stomatology, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China
| | - Guang Hong
- Division for International Collaborative and Innovative Dentistry, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Miyagi, Japan.
| |
Collapse
|
17
|
Rahmati S, Khazaei M, Abpeikar Z, Soleimanizadeh A, Rezakhani L. Exosome-loaded decellularized tissue: Opening a new window for regenerative medicine. J Tissue Viability 2024; 33:332-344. [PMID: 38594147 DOI: 10.1016/j.jtv.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 03/29/2024] [Accepted: 04/04/2024] [Indexed: 04/11/2024]
Abstract
Mesenchymal stem cell-derived exosomes (MSCs-EXO) have received a lot of interest recently as a potential therapeutic tool in regenerative medicine. Extracellular vesicles (EVs) known as exosomes (EXOs) are crucial for cell-cell communication throughout a variety of activities including stress response, aging, angiogenesis, and cell differentiation. Exploration of the potential use of EXOs as essential therapeutic effectors of MSCs to encourage tissue regeneration was motivated by success in the field of regenerative medicine. EXOs have been administered to target tissues using a variety of methods, including direct, intravenous, intraperitoneal injection, oral delivery, and hydrogel-based encapsulation, in various disease models. Despite the significant advances in EXO therapy, various methods are still being researched to optimize the therapeutic applications of these nanoparticles, and it is not completely clear which approach to EXO administration will have the greatest effects. Here, we will review emerging developments in the applications of EXOs loaded into decellularized tissues as therapeutic agents for use in regenerative medicine in various tissues.
Collapse
Affiliation(s)
- Shima Rahmati
- Cancer Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mozafar Khazaei
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zahra Abpeikar
- Department of Tissue Engineering, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Arghavan Soleimanizadeh
- Faculty of Medicine, Graduate School 'Molecular Medicine, University of Ulm, 89081, Ulm, Germany
| | - Leila Rezakhani
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
18
|
Kasula V, Padala V, Gupta N, Doyle D, Bagheri K, Anastasio A, Adams SB. The Use of Extracellular Vesicles in Achilles Tendon Repair: A Systematic Review. Biomedicines 2024; 12:942. [PMID: 38790904 PMCID: PMC11117955 DOI: 10.3390/biomedicines12050942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 05/26/2024] Open
Abstract
Achilles tendon (AT) pathologies are common musculoskeletal conditions that can significantly impair function. Despite various traditional treatments, recovery is often slow and may not restore full functionality. The use of extracellular vesicles (EVs) has emerged as a promising therapeutic option due to their role in cell signaling and tissue regeneration. This systematic review aims to consolidate current in vivo animal study findings on the therapeutic effects of EVs on AT injuries. An extensive literature search was conducted using the PubMed, Scopus, and Embase databases for in vivo animal studies examining the effects of EVs on AT pathologies. The extracted variables included but were not limited to the study design, type of EVs used, administration methods, efficacy of treatment, and proposed therapeutic mechanisms. After screening, 18 studies comprising 800 subjects were included. All but one study reported that EVs augmented wound healing processes in the AT. The most proposed mechanisms through which this occurred were gene regulation of the extracellular matrix (ECM), the enhancement of macrophage polarization, and the delivery of therapeutic microRNAs to the injury site. Further research is warranted to not only explore the therapeutic potential of EVs in the context of AT pathologies, but also to establish protocols for their clinical application.
Collapse
Affiliation(s)
- Varun Kasula
- Department of Orthopedic Surgery, Campbell University School of Osteopathic Medicine, Lillington, NC 27546, USA
| | - Vikram Padala
- Department of Orthopedic Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Nithin Gupta
- Department of Orthopedic Surgery, Campbell University School of Osteopathic Medicine, Lillington, NC 27546, USA
| | - David Doyle
- Department of Orthopedic Surgery, Central Michigan University College of Medicine, Saginaw, MI 48602, USA
| | - Kian Bagheri
- Department of Orthopedic Surgery, Campbell University School of Osteopathic Medicine, Lillington, NC 27546, USA
| | - Albert Anastasio
- Department of Orthopedic Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Samuel Bruce Adams
- Department of Orthopedic Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
19
|
Mirsanei Z, Jamshidi-Adegani F, Vakilian S, Ahangari F, Soufihasanabad S, Al-Riyami K, Soudi S, Ghaffari Khaligh S, Al-Hashmi S, Hashemi SM. Synergistic effects of mesenchymal stem cell-derived extracellular vesicles and dexamethasone on macrophage polarization under inflammatory conditions. Inflammopharmacology 2024; 32:1317-1332. [PMID: 38512654 DOI: 10.1007/s10787-024-01438-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 12/22/2023] [Indexed: 03/23/2024]
Abstract
The undesirable inflammation and the excessive M1 macrophage activity may lead to inflammatory diseases. Corticosteroids and stem cell therapy are used in clinical practice to promote anti-inflammatory responses. However, this protocol has limitations and is associated with numerous side effects. In this study, the synergistic anti-inflammatory effects of dexamethasone (Dex) and mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) were evaluated to enhance the polarization of M1 inflammatory macrophages into the anti-inflammatory (M2) phenotype. Hence, we designed different combinations of Dex and EVs using three methods, including EVs isolated from Dex-preconditioned MSCs (Pre-Dex-EVs), EVs loaded with Dex (L-Dex-EVs), and EVs and Dex co-administration (Dex + EVs). All designed EVs had a significant effect on reducing the expression of M1-related genes (iNOS, Stat1, and IRF5), cytokines (IL6 and TNF-a), and CD markers (CD86) in lipopolysaccharide-stimulated macrophages. On the other hand, these combinations promoted the expression of alternative-activated M2-related genes (Arg-1, Stat6, and IRF4), cytokine (IL10), and CD markers (CD206).The combination of Dex and MSC-EVs enhances the effectiveness of both and synergistically promotes the conversion of inflammatory macrophages into an anti-inflammatory state.
Collapse
Affiliation(s)
- Zahra Mirsanei
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Jamshidi-Adegani
- Laboratory for Stem Cell and Regenerative Medicine, Natural and Medical Sciences Research Center, University of Nizwa, P. O. Box: 33, PC, 616, Nizwa, Oman
| | - Saeid Vakilian
- Laboratory for Stem Cell and Regenerative Medicine, Natural and Medical Sciences Research Center, University of Nizwa, P. O. Box: 33, PC, 616, Nizwa, Oman
| | - Fateme Ahangari
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Soufihasanabad
- Department of Biology, School of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Khamis Al-Riyami
- Laboratory for Stem Cell and Regenerative Medicine, Natural and Medical Sciences Research Center, University of Nizwa, P. O. Box: 33, PC, 616, Nizwa, Oman
| | - Sara Soudi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modarres University, Tehran, Iran
| | | | - Sulaiman Al-Hashmi
- Laboratory for Stem Cell and Regenerative Medicine, Natural and Medical Sciences Research Center, University of Nizwa, P. O. Box: 33, PC, 616, Nizwa, Oman.
| | - Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Kink JA, Bellio MA, Forsberg MH, Lobo A, Thickens AS, Lewis BM, Ong IM, Khan A, Capitini CM, Hematti P. Large-scale bioreactor production of extracellular vesicles from mesenchymal stromal cells for treatment of acute radiation syndrome. Stem Cell Res Ther 2024; 15:72. [PMID: 38475968 DOI: 10.1186/s13287-024-03688-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Hematopoietic acute radiation syndrome (H-ARS) occurring after exposure to ionizing radiation damages bone marrow causing cytopenias, increasing susceptibility to infections and death. We and others have shown that cellular therapies like human mesenchymal stromal cells (MSCs), or monocytes/macrophages educated ex-vivo with extracellular vesicles (EVs) from MSCs were effective in a lethal H-ARS mouse model. However, given the complexity of generating cellular therapies and the potential risks of using allogeneic products, development of an "off-the-shelf" cell-free alternative like EVs may have utility in conditions like H-ARS that require rapid deployment of available therapeutics. The purpose of this study was to determine the feasibility of producing MSC-derived EVs at large scale using a bioreactor and assess critical quality control attributes like identity, sterility, and potency in educating monocytes and promoting survival in a lethal H-ARS mouse model. METHODS EVs were isolated by ultracentrifugation from unprimed and lipopolysaccharide (LPS)-primed MSCs grown at large scale using a hollow fiber bioreactor and compared to a small scale system using flasks. The physical identity of EVs included a time course assessment of particle diameter, yield, protein content and surface marker profile by flow-cytometry. Comparison of the RNA cargo in EVs was determined by RNA-seq. Capacity of EVs to generate exosome educated monocytes (EEMos) was determined by qPCR and flow cytometry, and potency was assessed in vivo using a lethal ARS model with NSG mice. RESULTS Physical identity of EVs at both scales were similar but yields by volume were up to 38-fold more using a large-scale bioreactor system. RNA-seq indicated that flask EVs showed upregulated let-7 family and miR-143 micro-RNAs. EEMos educated with LPS-EVs at each scale were similar, showing increased gene expression of IL-6, IDO, FGF-2, IL-7, IL-10, and IL-15 and immunophenotyping consistent with a PD-L1 high, CD16 low, and CD86 low cell surface expression. Treatment with LPS-EVs manufactured at both scales were effective in the ARS model, improving survival and clinical scores through improved hematopoietic recovery. EVs from unprimed MSCs were less effective than LPS-EVs, with flask EVs providing some improved survival while bioreactor EVs provide no survival benefit. CONCLUSIONS LPS-EVs as an effective treatment for H-ARS can be produced using a scale-up development manufacturing process, representing an attractive off-the-shelf, cell-free therapy.
Collapse
Affiliation(s)
- John A Kink
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
- University of Wisconsin Carbone Cancer Center, 1111 Highland Ave, WIMR 4137, Madison, WI, USA
| | - Michael A Bellio
- Interdisciplinary Stem Cell Institute, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Matthew H Forsberg
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Alexandra Lobo
- Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Anna S Thickens
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Bryson M Lewis
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Irene M Ong
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
- University of Wisconsin Carbone Cancer Center, 1111 Highland Ave, WIMR 4137, Madison, WI, USA
- Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
- Department of Obstetrics and Gynecology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Aisha Khan
- Interdisciplinary Stem Cell Institute, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Christian M Capitini
- University of Wisconsin Carbone Cancer Center, 1111 Highland Ave, WIMR 4137, Madison, WI, USA.
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA.
| | - Peiman Hematti
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA.
- University of Wisconsin Carbone Cancer Center, 1111 Highland Ave, WIMR 4137, Madison, WI, USA.
- Medical College of Wisconsin, 9200 W. Wisconsin Ave, Milwaukee, WI, 53326, USA.
| |
Collapse
|
21
|
Wang Y, Lu X, Lu J, Hernigou P, Jin F. The role of macrophage polarization in tendon healing and therapeutic strategies: Insights from animal models. Front Bioeng Biotechnol 2024; 12:1366398. [PMID: 38486869 PMCID: PMC10937537 DOI: 10.3389/fbioe.2024.1366398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 02/19/2024] [Indexed: 03/17/2024] Open
Abstract
Tendon injuries, a common musculoskeletal issue, usually result in adhesions to the surrounding tissue, that will impact functional recovery. Macrophages, particularly through their M1 and M2 polarizations, play a pivotal role in the inflammatory and healing phases of tendon repair. In this review, we explore the role of macrophage polarization in tendon healing, focusing on insights from animal models. The review delves into the complex interplay of macrophages in tendon pathology, detailing how various macrophage phenotypes contribute to both healing and adhesion formation. It also explores the potential of modulating macrophage activity to enhance tendon repair and minimize adhesions. With advancements in understanding macrophage behavior and the development of innovative biomaterials, this review highlights promising therapeutic strategies for tendon injuries.
Collapse
Affiliation(s)
- Yicheng Wang
- Department of Pediatric Orthopedics, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao Lu
- Shanghai Bio-lu Biomaterials Co., Ltd., Shanghai, China
- Shanghai Technology Innovation Center of Orthopedic Biomaterials, Shanghai, China
| | - Jianxi Lu
- Shanghai Bio-lu Biomaterials Co., Ltd., Shanghai, China
- Shanghai Technology Innovation Center of Orthopedic Biomaterials, Shanghai, China
| | - Philippe Hernigou
- University Paris East, Orthopedic Hospital Geoffroy Saint Hilaire, Paris, France
| | - Fangchun Jin
- Department of Pediatric Orthopedics, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
22
|
Miron RJ, Estrin NE, Sculean A, Zhang Y. Understanding exosomes: Part 2-Emerging leaders in regenerative medicine. Periodontol 2000 2024; 94:257-414. [PMID: 38591622 DOI: 10.1111/prd.12561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 04/10/2024]
Abstract
Exosomes are the smallest subset of extracellular signaling vesicles secreted by most cells with the ability to communicate with other tissues and cell types over long distances. Their use in regenerative medicine has gained tremendous momentum recently due to their ability to be utilized as therapeutic options for a wide array of diseases/conditions. Over 5000 publications are currently being published yearly on this topic, and this number is only expected to dramatically increase as novel therapeutic strategies continue to be developed. Today exosomes have been applied in numerous contexts including neurodegenerative disorders (Alzheimer's disease, central nervous system, depression, multiple sclerosis, Parkinson's disease, post-traumatic stress disorders, traumatic brain injury, peripheral nerve injury), damaged organs (heart, kidney, liver, stroke, myocardial infarctions, myocardial infarctions, ovaries), degenerative processes (atherosclerosis, diabetes, hematology disorders, musculoskeletal degeneration, osteoradionecrosis, respiratory disease), infectious diseases (COVID-19, hepatitis), regenerative procedures (antiaging, bone regeneration, cartilage/joint regeneration, osteoarthritis, cutaneous wounds, dental regeneration, dermatology/skin regeneration, erectile dysfunction, hair regrowth, intervertebral disc repair, spinal cord injury, vascular regeneration), and cancer therapy (breast, colorectal, gastric cancer and osteosarcomas), immune function (allergy, autoimmune disorders, immune regulation, inflammatory diseases, lupus, rheumatoid arthritis). This scoping review is a first of its kind aimed at summarizing the extensive regenerative potential of exosomes over a broad range of diseases and disorders.
Collapse
Affiliation(s)
- Richard J Miron
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Nathan E Estrin
- Advanced PRF Education, Venice, Florida, USA
- School of Dental Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Anton Sculean
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Yufeng Zhang
- Department of Oral Implantology, University of Wuhan, Wuhan, China
| |
Collapse
|
23
|
Yanuar A, Agustina H, Budhiparama NC, Atik N. Prospect of Exosome in Ligament Healing: A Systematical Review. Stem Cells Cloning 2023; 16:91-101. [PMID: 38162837 PMCID: PMC10757805 DOI: 10.2147/sccaa.s438023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/13/2023] [Indexed: 01/03/2024] Open
Abstract
Aim The relationship between ligaments and bone is a complex and heterogeneous junction involving bone, mineralized fibro cartilage, non-mineralized fibro cartilage and ligaments. Mesenchymal stem cells (MSC) can be used in vivo to control inflammation and aid in tissue repair, according to studies. This review focused on using exosomes as an alternative to MSC, as a cell-free therapy for modulating the remodelling process. Methods To conduct a systematic review of the literature, the phrases "exosome" and "ligament" or "tendon" and "extracellular vesicle" and "stem cells" were used as the search keywords in PubMed (MEDLINE), OVID, the Cochrane Library, and Science Direct. From the literature, 73 studies in all were found. Six studies were included in this systematic review after full-text evaluation. Results Six included studies covered a range of MSC types, isolation techniques, animal models, and interventions. Biomechanical results consistently indicated the beneficial impact of conditioned media, vesicles, and exosomes on treating tendons and ligaments. Noteworthy findings were the reduction of inflammation by iMSC-IEVs, chondrocyte protection by iPSC-EVs (extracellular vesicles generated by inflammation-primed adipose-derived stem cells), osteolysis treatment using DPSC-sEVs (small extracellular vesicles derived from dental pulp stem cells), and the contribution of exosome-educated macrophages to ligament injury wound healing. Conclusion Exosomes may serve as a cell-free therapeutic substitute for modulating the remodelling process, particularly in ligament healing.
Collapse
Affiliation(s)
- Andre Yanuar
- Doctoral Program, Faculty of Medicine, Padjadjaran University, Bandung, West Java, Indonesia
- Department of Orthopaedic and Traumatology, Santo Borromeus Hospital, Bandung, West Java, Indonesia
| | - Hasrayati Agustina
- Department of Pathology Anatomy, Faculty of Medicine, Universitas Padjadjaran/Dr. Hasan Sadikin General Hospital, Bandung, West Java, Indonesia
| | - Nicolaas C Budhiparama
- Department of Orthopaedic and Traumatology, Faculty of Medicine, Airlangga University, Surabaya, East Java, Indonesia
- Department of Orthopaedics, Leiden University Medical Centre, Leiden, the Netherlands
| | - Nur Atik
- Department of Biomedical Sciences, Faculty of Medicine, Padjadjaran University, Bandung, West Java, Indonesia
| |
Collapse
|
24
|
Xue Y, Riva N, Zhao L, Shieh JS, Chin YT, Gatt A, Guo JJ. Recent advances of exosomes in soft tissue injuries in sports medicine: A critical review on biological and biomaterial applications. J Control Release 2023; 364:90-108. [PMID: 37866405 DOI: 10.1016/j.jconrel.2023.10.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/08/2023] [Accepted: 10/19/2023] [Indexed: 10/24/2023]
Abstract
Sports medicine is generally associated with soft tissue injuries including muscle injuries, meniscus and ligament injuries, tendon ruptures, tendinopathy, rotator cuff tears, and tendon-bone healing during injuries. Tendon and ligament injuries are the most common sport injuries accounting for 30-40% of all injuries. Therapies for tendon injuries can be divided into surgical and non-surgical methods. Surgical methods mainly depend on the operative procedures, the surgeons and postoperative interventions. In non-surgical methods, cell therapy with stem cells and cell-free therapy with secretome of stem cell origin are current directions. Exosomes are the main paracrine factors of mesenchymal stem cells (MSCs) containing biological components such as proteins, nucleic acids and lipids. Compared with MSCs, MSC-exosomes (MSC-exos) possess the capacity to escape phagocytosis and achieve long-term circulation. In addition, the functions of exosomes from various cell sources in soft tissue injuries in sports medicine have been gradually revealed in recent years. Along with the biological and biomaterial advances in exosomes, exosomes can be designed as drug carriers with biomaterials and exosome research is providing promising contributions in cell biology. Exosomes with biomaterial have the potential of becoming one of the novel therapeutic modalities in regenerative researches. This review summarizes the derives of exosomes in soft tissue regeneration and focuses on the biological and biomaterial mechanism and advances in exosomal therapy in soft tissue injuries.
Collapse
Affiliation(s)
- Yulun Xue
- Department of Orthopaedic Surgery, Suzhou Municipal Hospital/The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou 215006, Jiangsu, PR China; Department of Orthopedics and Sports Medicine, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, PR China
| | - Nicoletta Riva
- Department of Pathology, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Lingying Zhao
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health of PR China, Suzhou 215006, Jiangsu, PR China; Department of Hematology, National Clinical Research Center for Hematologic Disease, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, PR China
| | - Ju-Sheng Shieh
- Department of Periodontology, School of Dentistry, Tri-Service General Hospital, National Defense Medical Center, Taipei City 11490, Taiwan
| | - Yu-Tang Chin
- Department of Periodontology, School of Dentistry, Tri-Service General Hospital, National Defense Medical Center, Taipei City 11490, Taiwan
| | - Alexander Gatt
- Department of Pathology, Faculty of Medicine and Surgery, University of Malta, Msida, Malta; Department of Haematology, Mater Dei Hospital, Msida, Malta
| | - Jiong Jiong Guo
- Department of Orthopedics and Sports Medicine, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, PR China; Department of Hematology, National Clinical Research Center for Hematologic Disease, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, PR China.
| |
Collapse
|
25
|
Chamberlain C, Prabahar A, Kink J, Mueller E, Li Y, Yopp S, Capitini C, William M, Hematti P, Vanderby R, Jiang P. Modulating Mesenchymal Stromal Cell Microenvironment Alters Exosome RNA Content and Ligament Healing Capacity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.22.563485. [PMID: 37961625 PMCID: PMC10634732 DOI: 10.1101/2023.10.22.563485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Although mesenchymal stromal cell (MSC) based therapies hold promise in regenerative medicine, their applications in clinical settings remain challenging due to issues such as immunocompatibility and cell stability. MSC-derived exosomes, small vesicles carrying various bioactive molecules, are a promising cell-free therapy to promote tissue regeneration. However, it remains unknown mainly regarding the ability to customize the content of MSC-derived exosomes, how alterations in the MSC microenvironment influence exosome content, and the effects of such modifications on healing efficiency and mechanical properties in tissue regeneration. In this study, we used an in vitro system of human MSC-derived exosomes and an in vivo rat ligament injury model to address these questions. We found a context-dependent correlation between exosomal and parent cell RNA content. Under native conditions, the correlation was moderate but heightened with microenvironmental changes. In vivo rat ligament injury model showed that MSC-derived exosomes increased ligament max load and stiffness. We also found that changes in the MSCs' microenvironment significantly influence the mechanical properties driven by exosome treatment. Additionally, a link was identified between altered exosomal microRNA levels and expression changes in microRNA targets in ligaments. These findings elucidate the nuanced interplay between MSCs, their exosomes, and tissue regeneration.
Collapse
|
26
|
Wang S, Yao Z, Chen L, Li J, Chen S, Fan C. Preclinical assessment of IL-1β primed human umbilical cord mesenchymal stem cells for tendon functional repair through TGF-β/IL-10 signaling. Heliyon 2023; 9:e21411. [PMID: 37954299 PMCID: PMC10638607 DOI: 10.1016/j.heliyon.2023.e21411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 11/14/2023] Open
Abstract
Background Inadequate repair capacity and disturbed immune compartments are the main pathological causes of tendinopathy. Transplantation of mesenchymal stem cells (MSCs) become an effective clinic option to alleviate tendinopathy. Interleukin-1β (IL-1β) could confer on MSCs enhanced immunoregulatory capability to remodel the repair microenvironment favoring tissue repair. Therefore, IL-1β activated UC-MSCs (1βUC-MSCs) may exert favorable efficacy in promoting tendon repair in a preclinical tendinopathy rat model. Methods Tendon-derived stem cells (TDSCs) were isolated and characterized. In vitro, the levels of immunoregulatory-related cytokines such as IL-1β, IL-6, IL-10, and TGF-β secreted by 1βUC-MSCs and unprimed UC-MSCs was measured. And tendon-specific markers expressed by TDSCs cultured with primed cultured medium (CM) or unprimed CM were detected. In vivo, Achilles tendinopathy was induced by 30 μL collagenase I injection in Sprague Dawley rats. One week later, the rats were randomly injected with UC-MSCs primed with IL-1β (106 cells per tendon), UC-MSCs, or PBS. After rats were sacrificed, histological evaluation, electron microscopy, biomechanical tests, gait performance were conducted to evaluate the structural and functional recovery of Achilles tendons. The inflammation and metabolic state of the extracellular matrix, and the potential mechanism were assessed by immunohistochemical staining and Western blot. Results UC-MSCs were activated by IL-1β to secrete higher levels of IL-10 and TGF-β while the secretion levels of IL-6 and IL-1β were not changed significantly, promoting a higher expression level of COL I and TNMD in TDSCs under proinflammatory environment. In vivo, the transplanted 1βUC-MSCs could survive up to 5 weeks after injection with tenogenic differentiation and improved tendon healing histologically semi-quantified by modified Bonar scores. This structural regeneration was further confirmed by observation of ultrastructural morphology, and led to good functional recovery including improved biomechanical properties and gait performance. During this process, the inflammatory response and metabolism of the extracellular matrix was improved through TGF-β/IL-10 pathway. Conclusion This study demonstrated that the transplantation of UC-MSCs activated by IL-1β exhibited satisfactory ability for promoting tendon functional repair in a tendinopathy rat model. During this process, the balance of inflammatory response and extracellular matrix metabolism was remodeled, and the TGF-β/Smad2/3 and IL-10 signaling pathways were activated simultaneously. We cautiously conclude that the IL-1β primed UC-MSCs could be a promising strategy for enhancing the ability of MSCs to treat tendinopathy.
Collapse
Affiliation(s)
- Shikun Wang
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China
| | - Zhixiao Yao
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China
| | - Lei Chen
- Department of Orthopedics, Tongji Hospital, School of Medicine Tongji University, Shanghai, China
| | - Juehong Li
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China
| | - Shuai Chen
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China
| | - Cunyi Fan
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China
| |
Collapse
|
27
|
Zhang Y, Ju W, Zhang H, Mengyun L, Shen W, Chen X. Mechanisms and therapeutic prospects of mesenchymal stem cells-derived exosomes for tendinopathy. Stem Cell Res Ther 2023; 14:307. [PMID: 37880763 PMCID: PMC10601253 DOI: 10.1186/s13287-023-03431-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 07/26/2023] [Indexed: 10/27/2023] Open
Abstract
Tendinopathy is a debilitating and crippling syndrome resulting from the degeneration of tendon tissue, leading to loss of mechanical properties and function, and eventual tendon rupture. Unfortunately, there is currently no treatment for tendinopathy that can prevent or delay its progression. Exosomes are small extracellular vesicles that transport bioactive substances produced by cells, such as proteins, lipids, mRNAs, non-coding RNAs, and DNA. They can generate by mesenchymal stem cells (MSCs) throughout the body and play a role in intercellular communication and regulation of homeostasis. Recent research suggests that MSCs-derived exosomes (MSCs-exos) may serve as useful therapeutic candidates for promoting tendon healing. This review focuses on the function and mechanisms of MSCs-exos in tendinopathy treatment and discusses their potential application for treating this condition.
Collapse
Affiliation(s)
- Yuxiang Zhang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine and Department of Orthopedic Surgery of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Ju
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Hong Zhang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine and Department of Orthopedic Surgery of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
| | - Liu Mengyun
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum-Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Weiliang Shen
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China.
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China.
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China.
- Dr. Li Dak Sum-Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Xiao Chen
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China.
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China.
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China.
- Dr. Li Dak Sum-Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
28
|
Tashak Golroudbari H, Banikarimi SP, Ayati A, Hadizadeh A, Khorasani Zavareh Z, Hajikhani K, Heirani-Tabasi A, Ahmadi Tafti M, Davoodi S, Ahmadi Tafti H. Advanced micro-/nanotechnologies for exosome encapsulation and targeting in regenerative medicine. Clin Exp Med 2023; 23:1845-1866. [PMID: 36705868 DOI: 10.1007/s10238-023-00993-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 01/05/2023] [Indexed: 01/28/2023]
Abstract
Exosomes, a subset of vesicles generated from cell membranes, are crucial for cellular communication. Exosomes' innate qualities have been used in recent studies to create nanocarriers for various purposes, including medication delivery and immunotherapy. As a result, a wide range of approaches has been designed to utilize their non-immunogenic nature, drug-loading capacity, or targeting ability. In this study, we aimed to review the novel methods and approaches in exosome engineering for encapsulation and targeting in regenerative medicine. We have assessed and evaluated each method's efficacy, advantages, and disadvantages and discussed the results of related studies. Even though the therapeutic role of non-allogenic exosomes has been demonstrated in several studies, their application has certain limitations as these particles are neither fully specific to target tissue nor tissue retainable. Hence, there is a strong demand for developing more efficient encapsulation methods along with more accurate and precise targeting methods, such as 3D printing and magnetic nanoparticle loading in exosomes, respectively.
Collapse
Affiliation(s)
- Hasti Tashak Golroudbari
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyedeh Parnian Banikarimi
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Aryan Ayati
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Hadizadeh
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Khorasani Zavareh
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Kiana Hajikhani
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Asieh Heirani-Tabasi
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Ahmadi Tafti
- Colorectal Surgery Research Center, Imam Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Davoodi
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Ahmadi Tafti
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
29
|
Little D, Amadio PC, Awad HA, Cone SG, Dyment NA, Fisher MB, Huang AH, Koch DW, Kuntz AF, Madi R, McGilvray K, Schnabel LV, Shetye SS, Thomopoulos S, Zhao C, Soslowsky LJ. Preclinical tendon and ligament models: Beyond the 3Rs (replacement, reduction, and refinement) to 5W1H (why, who, what, where, when, how). J Orthop Res 2023; 41:2133-2162. [PMID: 37573480 PMCID: PMC10561191 DOI: 10.1002/jor.25678] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/21/2023] [Accepted: 08/02/2023] [Indexed: 08/14/2023]
Abstract
Several tendon and ligament animal models were presented at the 2022 Orthopaedic Research Society Tendon Section Conference held at the University of Pennsylvania, May 5 to 7, 2022. A key objective of the breakout sessions at this meeting was to develop guidelines for the field, including for preclinical tendon and ligament animal models. This review summarizes the perspectives of experts for eight surgical small and large animal models of rotator cuff tear, flexor tendon transection, anterior cruciate ligament tear, and Achilles tendon injury using the framework: "Why, Who, What, Where, When, and How" (5W1H). A notable conclusion is that the perfect tendon model does not exist; there is no single gold standard animal model that represents the totality of tendon and ligament disease. Each model has advantages and disadvantages and should be carefully considered in light of the specific research question. There are also circumstances when an animal model is not the best approach. The wide variety of tendon and ligament pathologies necessitates choices between small and large animal models, different anatomic sites, and a range of factors associated with each model during the planning phase. Attendees agreed on some guiding principles including: providing clear justification for the model selected, providing animal model details at publication, encouraging sharing of protocols and expertise, improving training of research personnel, and considering greater collaboration with veterinarians. A clear path for translating from animal models to clinical practice was also considered as a critical next step for accelerating progress in the tendon and ligament field.
Collapse
Affiliation(s)
- Dianne Little
- Department of Basic Medical Sciences, The Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Peter C Amadio
- Department of Orthopaedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Hani A Awad
- Department of Orthopaedics, Department of Biomedical Engineering, The Center for Musculoskeletal Research, University of Rochester, Rochester, New York, USA
| | - Stephanie G Cone
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, USA
| | - Nathaniel A Dyment
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Matthew B Fisher
- Joint Department of Biomedical Engineering, College of Engineering, North Carolina State University-University of North Carolina at Chapel Hill, Raleigh, North Carolina, USA
| | - Alice H Huang
- Department of Orthopedic Surgery, Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Drew W Koch
- Department of Clinical Sciences, College of Veterinary Medicine, and Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
| | - Andrew F Kuntz
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rashad Madi
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kirk McGilvray
- Department of Mechanical Engineering, School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado, USA
| | - Lauren V Schnabel
- Department of Clinical Sciences, College of Veterinary Medicine, and Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
| | - Snehal S Shetye
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Stavros Thomopoulos
- Department of Orthopedic Surgery, Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Chunfeng Zhao
- Department of Orthopaedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Louis J Soslowsky
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
30
|
Rong X, Tang Y, Cao S, Xiao S, Wang H, Zhu B, Huang S, Adeli M, Rodriguez RD, Cheng C, Ma L, Qiu L. An Extracellular Vesicle-Cloaked Multifaceted Biocatalyst for Ultrasound-Augmented Tendon Matrix Reconstruction and Immune Microenvironment Regulation. ACS NANO 2023; 17:16501-16516. [PMID: 37616178 DOI: 10.1021/acsnano.3c00911] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
The healing of tendon injury is often hindered by peritendinous adhesion and poor regeneration caused by the accumulation of reactive oxygen species (ROS), development of inflammatory responses, and the deposition of type-III collagen. Herein, an extracellular vesicles (EVs)-cloaked enzymatic nanohybrid (ENEV) was constructed to serve as a multifaceted biocatalyst for ultrasound (US)-augmented tendon matrix reconstruction and immune microenvironment regulation. The ENEV-based biocatalyst exhibits integrated merits for treating tendon injury, including the efficient catalase-mimetic scavenging of ROS in the injured tissue, sustainable release of Zn2+ ions, cellular uptake augmented by US, and immunoregulation induced by EVs. Our study suggests that ENEVs can promote tenocyte proliferation and type-I collagen synthesis at an early stage by protecting tenocytes from ROS attack. The ENEVs also prompted efficient immune regulation, as the polarization of macrophages (Mφ) was reversed from M1φ to M2φ. In a rat Achilles tendon defect model, the ENEVs combined with US treatment significantly promoted functional recovery and matrix reconstruction, restored tendon morphology, suppressed intratendinous scarring, and inhibited peritendinous adhesion. Overall, this study offers an efficient nanomedicine for US-augmented tendon regeneration with improved healing outcomes and provides an alternative strategy to design multifaceted artificial biocatalysts for synergetic tissue regenerative therapies.
Collapse
Affiliation(s)
- Xiao Rong
- Department of Ultrasound, National Clinical Research Center for Geriatrics, Med-X Center for Materials, West China Hospital, Sichuan University, Chengdu, 610041, China
- Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuanjiao Tang
- Department of Ultrasound, National Clinical Research Center for Geriatrics, Med-X Center for Materials, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Sujiao Cao
- Department of Ultrasound, National Clinical Research Center for Geriatrics, Med-X Center for Materials, West China Hospital, Sichuan University, Chengdu, 610041, China
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Sutong Xiao
- Department of Ultrasound, National Clinical Research Center for Geriatrics, Med-X Center for Materials, West China Hospital, Sichuan University, Chengdu, 610041, China
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Haonan Wang
- Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bihui Zhu
- Department of Ultrasound, National Clinical Research Center for Geriatrics, Med-X Center for Materials, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Songya Huang
- Department of Ultrasound, National Clinical Research Center for Geriatrics, Med-X Center for Materials, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Mohsen Adeli
- Department of Organic Chemistry, Lorestan University, Khorramabad 6815144316, Iran
| | - Raul D Rodriguez
- Tomsk Polytechnic University, Lenina Avenue 30, 634034, Tomsk, Russia
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Lang Ma
- Department of Ultrasound, National Clinical Research Center for Geriatrics, Med-X Center for Materials, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Li Qiu
- Department of Ultrasound, National Clinical Research Center for Geriatrics, Med-X Center for Materials, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
31
|
Na YR, Kim SW, Seok SH. A new era of macrophage-based cell therapy. Exp Mol Med 2023; 55:1945-1954. [PMID: 37653035 PMCID: PMC10545778 DOI: 10.1038/s12276-023-01068-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 09/02/2023] Open
Abstract
Macrophages are essential innate immune cells found throughout the body that have protective and pathogenic functions in many diseases. When activated, macrophages can mediate the phagocytosis of dangerous cells or materials and participate in effective tissue regeneration by providing growth factors and anti-inflammatory molecules. Ex vivo-generated macrophages have thus been used in clinical trials as cell-based therapies, and based on their intrinsic characteristics, they outperformed stem cells within specific target diseases. In addition to the old methods of generating naïve or M2 primed macrophages, the recently developed chimeric antigen receptor-macrophages revealed the potential of genetically engineered macrophages for cell therapy. Here, we review the current developmental status of macrophage-based cell therapy. The findings of important clinical and preclinical trials are updated, and patent status is investigated. Additionally, we discuss the limitations and future directions of macrophage-based cell therapy, which will help broaden the potential utility and clinical applications of macrophages.
Collapse
Affiliation(s)
- Yi Rang Na
- Translational Immunology Laboratory, Department of Transdisciplinary Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Sang Wha Kim
- Macrophage Laboratory, Department of Microbiology and Immunology, and Institute of Endemic Disease, Seoul National University College of Medicine, Seoul, 110-799, South Korea
| | - Seung Hyeok Seok
- Macrophage Laboratory, Department of Microbiology and Immunology, and Institute of Endemic Disease, Seoul National University College of Medicine, Seoul, 110-799, South Korea.
- Department of Biomedical Sciences and Seoul National University College of Medicine, Seoul, Republic of Korea.
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea.
| |
Collapse
|
32
|
Koch DW, Schnabel LV. Mesenchymal stem cell licensing: enhancing MSC function as a translational approach for the treatment of tendon injury. Am J Vet Res 2023; 84:1-8. [PMID: 37669745 PMCID: PMC11027115 DOI: 10.2460/ajvr.23.07.0154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/14/2023] [Indexed: 09/07/2023]
Abstract
Tendon injuries are common in both veterinary and human clinical patients and result in morbidity, pain, and lost athletic performance. Consequently, utilizing naturally occurring injuries in veterinary patients as a comparative model could inform the development of novel therapies and increase translation for the treatment of human tendon injuries. Mesenchymal stem cells (MSCs) have shown considerable efficacy for the treatment of experimental and clinical superficial digital flexor tendon injury in the horse; however, the reinjury rate following treatment can remain high and MSC efficacy in treating other tendons is less well known. Additionally, the translation of MSC therapy to human tendon injury has remained poor. Recent evidence indicates that naïve MSC function can be enhanced through exogenous stimulation or manipulation of their environment. This stimulation or activation, herein termed MSC licensing, markedly alters MSC functions associated with immunomodulation, extracellular matrix remodeling, vascular development, bioactive factor production, and endogenous stromal/progenitor cell support. Additionally, a variety of licensing strategies has proven to influence MSC-secreted factors that have positively influenced outcome parameters in both in vitro and in vivo disease models separate from musculoskeletal tissues. Therefore, identifying the optimal licensing strategy for MSCs could ultimately provide an avenue for reliable and repeatable treatment of a broad range of tendon injuries of both veterinary and human clinical patients. This article details current evidence on the effects of licensed MSCs in both in vitro and in vivo disease models of different species and provides commentary on how those effector functions identified may be translated to the treatment of tendon injuries.
Collapse
Affiliation(s)
- Drew W. Koch
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC
| | - Lauren V. Schnabel
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC
| |
Collapse
|
33
|
Cui J, Zhang YJ, Li X, Luo JJ, Zhao LL, Xie XY, Ding W, Luo JC, Qin TW. Decellularized tendon scaffolds loaded with collagen targeted extracellular vesicles from tendon-derived stem cells facilitate tendon regeneration. J Control Release 2023; 360:842-857. [PMID: 37478916 DOI: 10.1016/j.jconrel.2023.07.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 07/23/2023]
Abstract
Stem cell-based treatment of tendon injuries remains to have some inherent issues. Extracellular vesicles derived from stem cells have shown promising achievements in tendon regeneration, though their retention in vivo is low. This study reports on the use of a collagen binding domain (CBD) to bind extracellular vesicles, obtained from tendon-derived stem cells (TDSCs), to collagen. CBD-extracellular vesicles (CBD-EVs) were coupled to decellularized bovine tendon sheets (DBTS) to fabricate a bio-functionalized scaffold (CBD-EVs-DBTS). Our results show that thus obtained bio-functionalized scaffolds facilitate the proliferation, migration and tenogenic differentiation of stem cells in vitro. Furthermore, the scaffolds promote endogenous stem cell recruitment to the defects, facilitate collagen deposition and improve the biomechanics of injured tendons, thus resulting in functional regeneration of tendons.
Collapse
Affiliation(s)
- Jing Cui
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yan-Jing Zhang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xuan Li
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jia-Jiao Luo
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Lei-Lei Zhao
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xin-Yue Xie
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Ding
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jing-Cong Luo
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ting-Wu Qin
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
34
|
Zou M, Wang J, Shao Z. Therapeutic Potential of Exosomes in Tendon and Tendon-Bone Healing: A Systematic Review of Preclinical Studies. J Funct Biomater 2023; 14:299. [PMID: 37367263 PMCID: PMC10299056 DOI: 10.3390/jfb14060299] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/16/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
Exosomes have been proven to play a positive role in tendon and tendon-bone healing. Here, we systematically review the literature to evaluate the efficacy of exosomes in tendon and tendon-bone healing. Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, a systematic and comprehensive review of the literature was performed on 21 January 2023. The electronic databases searched included Medline (through PubMed), Web of Science, Embase, Scopus, Cochrane Library and Ovid. In the end, a total of 1794 articles were systematically reviewed. Furthermore, a "snowball" search was also carried out. Finally, forty-six studies were included for analysis, with the total sample size being 1481 rats, 416 mice, 330 rabbits, 48 dogs, and 12 sheep. In these studies, exosomes promoted tendon and tendon-bone healing and displayed improved histological, biomechanical and morphological outcomes. Some studies also suggested the mechanism of exosomes in promoting tendon and tendon-bone healing, mainly through the following aspects: (1) suppressing inflammatory response and regulating macrophage polarization; (2) regulating gene expression, reshaping cell microenvironment and reconstructing extracellular matrix; (3) promoting angiogenesis. The risk of bias in the included studies was low on the whole. This systematic review provides evidence of the positive effect of exosomes on tendon and tendon-bone healing in preclinical studies. The unclear-to-low risk of bias highlights the significance of standardization of outcome reporting. It should be noted that the most suitable source, isolation methods, concentration and administration frequency of exosomes are still unknown. Additionally, few studies have used large animals as subjects. Further studies may be required on comparing the safety and efficacy of different treatment parameters in large animal models, which would be conducive to the design of clinical trials.
Collapse
Affiliation(s)
- Mingrui Zou
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing 100191, China; (M.Z.); (J.W.)
- Beijing Key Laboratory of Sports Injuries, Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing 100191, China
| | - Jingzhou Wang
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing 100191, China; (M.Z.); (J.W.)
- Beijing Key Laboratory of Sports Injuries, Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing 100191, China
| | - Zhenxing Shao
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing 100191, China; (M.Z.); (J.W.)
- Beijing Key Laboratory of Sports Injuries, Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing 100191, China
| |
Collapse
|
35
|
von Stade D, Meyers M, Johnson J, Schlegel TT, Romeo A, Regan D, McGilvray K. Exosome Cell Origin Affects In Vitro Markers of Tendon Repair in Ovine Macrophages and Tenocytes. Tissue Eng Part A 2023; 29:282-291. [PMID: 36792933 PMCID: PMC10178933 DOI: 10.1089/ten.tea.2022.0185] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/10/2023] [Indexed: 02/17/2023] Open
Abstract
Tendon injuries and disease are resistant to surgical repair; thus, adjunct therapies are widely investigated, especially mesenchymal stromal cells (MSCs) and, more recently, their extracellular vesicles (MSCdEVs), for example, exosomes. Thought to act on resident and infiltrating immune cells, the role of MSCdEVs in paracrine signaling is of great interest. This study investigated how MSCdEVs differ from analogs derived from resident (tenocyte) populations (TdEV). As macrophages play a significant role in tendon maintenance and repair, macrophage signaling was compared by cytokine quantification using a multiplexed immunoassay and tenocyte migration by in vitro scratch-wound analysis. TdEV-treated macrophages decreased IL-1 and increased MIP-1 and CXCL8 expression. In addition, macrophage signaling favored collagen synthesis and tenocyte bioactivity, while reducing proangiogenic signaling when TdEVs were used in place of MSCdEVs. These in vitro data demonstrate a differential influence of exosomes on macrophage signaling, according to cell source, supporting that local cell-derived exosomes may preferentially drive healing by different means with possible different outcomes compared to MSCdEVs. Impact Statement Adipose-derived mesenchymal stromal cell (AdMSC) exosomes (EVs) can improve tendon mechanical resilience, tissue organization, and M2 macrophage phenotype predominance in response to tendon injury. This active area of investigation drives great interest in the function of these exosomes as adjunct therapies for tendon disease, particularly rotator cuff tendinopathy. However, little is known about the effects of EVs as a function of cell source, nor regarding their efficacy in preclinical translational ovine models. Herein we demonstrate a differential effect of exosomes as a function of cell source, tenocyte compared to AdMSCs, on macrophage signaling and tenocyte migration of ovine cells.
Collapse
Affiliation(s)
- Devin von Stade
- Department of Mechanical Engineering, Orthopaedic Bioengineering Research Laboratory, Colorado State University, Fort Collins, Colorado, USA
| | - Melinda Meyers
- Department of Clinical Sciences, Animal Reproduction and Biotechnology Laboratory, Colorado State University, Fort Collins, Colorado, USA
| | - James Johnson
- Department of Mechanical Engineering, Orthopaedic Bioengineering Research Laboratory, Colorado State University, Fort Collins, Colorado, USA
| | | | - Anthony Romeo
- Shoulder Elbow Sports Medicine, Chicago, Illinois, USA
| | - Daniel Regan
- Department of Microbiology, Immunology, and Pathology, Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado, USA
| | - Kirk McGilvray
- Department of Mechanical Engineering, Orthopaedic Bioengineering Research Laboratory, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
36
|
Wang C, Jiang Z, Pang R, Zhang H, Li H, Li Z. Global trends in research of achilles tendon injury/rupture: A bibliometric analysis, 2000–2021. Front Surg 2023; 10:1051429. [PMID: 37051567 PMCID: PMC10083236 DOI: 10.3389/fsurg.2023.1051429] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 03/10/2023] [Indexed: 03/28/2023] Open
Abstract
BackgroundThe Achilles tendon is the strongest and most susceptible tendon in humans. Achilles tendon injuries and ruptures have gradually attracted research attention. However, a bibliometric analysis of global research in this field is lacking. This study involved a bibliometric analysis of the developmental trends and research hotspots in Achilles tendon injuries/ruptures from 2000 to 2021.MethodsArticles published between 2001 and 2021 were retrieved from an extended database of the Science Citation Index using Web of Science. VOSviewer and CiteSpace were used to analyze the relationships between publications, countries, institutions, journals, authors, references, and keywords.ResultsThis study included 3,505 studies of 73 countries, 3,274 institutions, and 12,298 authors and explored the cooperation between them and the relationships between citations. Over the past 22 years, the number of publications has significantly increased. Foot Ankle International has published the most papers on Achilles tendon injuries/ruptures, and British Journal of Sports Medicine is the most famous journal. Re-rupture, exosomes, acute Achilles tendon rupture, and tendon adhesions gradually become the research focus over the past few years.ConclusionAchilles tendon injury and rupture are important research topics. A vast number of newly published papers on this topic have demonstrated that clinicians and researchers are interested in their study. Over time, these recent studies will be widely cited; therefore, this bibliometric analysis should be constantly updated.
Collapse
Affiliation(s)
- Chenguang Wang
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhaohui Jiang
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Ran Pang
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Huafeng Zhang
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Hui Li
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Chinese & Western Medicine Hospital, Tianjin, China
- Correspondence: Zhijun Li Hui Li
| | - Zhijun Li
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
- Correspondence: Zhijun Li Hui Li
| |
Collapse
|
37
|
Qi H, Shen E, Shu X, Liu D, Wu C. ERK-estrogen receptor α signaling plays a role in the process of bone marrow mesenchymal stem cell-derived exosomes protecting against ovariectomy-induced bone loss. J Orthop Surg Res 2023; 18:250. [PMID: 36973789 PMCID: PMC10045825 DOI: 10.1186/s13018-023-03660-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 02/28/2023] [Indexed: 03/29/2023] Open
Abstract
BACKGROUND Exosomes derived from bone marrow mesenchymal stem cells (BMSC-Exos) are considered as candidates for osteoporosis (OP) therapy. Estrogen is critical in the maintenance of bone homeostasis. However, the role of estrogen and/or its receptor in BMSC-Exos treatment of OP, as well as its methods of regulation during this process remain unclear. METHODS BMSCs were cultured and characterized. Ultracentrifugation was performed to collect BMSC-Exos. Transmission electron microscopy, nanoparticle tracking analysis, and western blotting were used to identify BMSC-Exos. We examined the effects of BMSC-Exos on the proliferation, osteogenic differentiation, mineralization, and cell cycle distribution of MG-63 cells. The protein expression of estrogen receptor α (ERα) and the phosphorylation of ERK were investigated through western blotting. We determined the effects of BMSC-Exos on the prevention of bone loss in female rats. The female Sprague-Dawley rats were divided into three groups: the sham group, ovariectomized (OVX) group, and the OVX + BMSC-Exos group. Bilateral ovariectomy was performed in the OVX and OVX + BMSC-Exos groups, while a similar volume of adipose tissue around the ovary was removed in the sham group. The rats in OVX group and OVX + BMSC-Exos group were given PBS or BMSC-Exos after 2 weeks of surgery. Micro-CT scanning and histological staining were used to evaluate the in vivo effects of BMSC-Exos. RESULTS BMSC-Exos significantly enhanced the proliferation, alkaline phosphatase activity, and the Alizarin red S staining in MG-63 cells. The results of cell cycle distribution demonstrated that BMSC-Exos increased the proportion of cells in the G2 + S phase and decreased the proportion of cells in the G1 phase. Moreover, PD98059, an inhibitor of ERK, inhibited both the activation of ERK and the expression of ERα, which were promoted by administration of BMSC-Exos. Micro-CT scan showed that in the OVX + BMSC-Exos group, bone mineral density, bone volume/tissue volume fraction, trabecular number were significantly upregulated. Additionally, the microstructure of the trabecular bone was preserved in the OVX + BMSC-Exos group compared to that in the OVX group. CONCLUSION BMSC-Exos showed an osteogenic-promoting effect both in vitro and in vivo, in which ERK-ERα signaling might play an important role.
Collapse
Affiliation(s)
- Hui Qi
- Beijing Research Institute of Traumatology and Orthopaedics, Beijing, 100035, China
- Beijing Jishuitan Hospital, Beijing, 100035, China
| | - Enpu Shen
- Department of Orthopaedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, China
| | - Xiong Shu
- Beijing Research Institute of Traumatology and Orthopaedics, Beijing, 100035, China
- Beijing Jishuitan Hospital, Beijing, 100035, China
| | - Danping Liu
- Department of Orthopaedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, China.
| | - Cheng'ai Wu
- Beijing Research Institute of Traumatology and Orthopaedics, Beijing, 100035, China.
- Beijing Jishuitan Hospital, Beijing, 100035, China.
| |
Collapse
|
38
|
Marshall BP, Levine WN, Thomopoulos S. The Role of the Subacromial Bursa in Rotator Cuff Healing: Friend or Foe? J Bone Joint Surg Am 2023; 105:417-425. [PMID: 36575165 PMCID: PMC10353884 DOI: 10.2106/jbjs.22.00680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
39
|
Vinhas A, Almeida AF, Rodrigues MT, Gomes ME. Prospects of magnetically based approaches addressing inflammation in tendon tissues. Adv Drug Deliv Rev 2023; 196:114815. [PMID: 37001644 DOI: 10.1016/j.addr.2023.114815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 03/24/2023] [Accepted: 03/25/2023] [Indexed: 03/31/2023]
Abstract
Tendon afflictions constitute a significant share of musculoskeletal diseases and represent a primary cause of incapacity worldwide. Unresolved/chronic inflammatory states have been associated with the onset and progression of tendon disorders, contributing to undesirable immune stimulation and detrimental tissue effects. Thus, targeting persistent inflammatory events could assist important developments to solve pathophysiological processes and innovative therapeutics to address impaired healing and accomplish complete tendon regeneration. This review overviews the impact of inflammation and inflammatory mediators in tendon niches, unveiling the importance of tendon cell populations and their signature features, and the influence of microenvironmental factors on inflamed and injured tendons. The demand for non-invasive instructive strategies to manage persistent inflammatory mediators, guide inflammatory pathways, and modulate cellular responses will also be approached by exploring the role of pulsed electromagnetic field (PEMF). PEMF alone or combined with more sophisticated systems triggered by magnetic fields will be considered in the design of successful therapies to control inflammation in tendinopathic conditions.
Collapse
|
40
|
Xu H, Zhu Y, Hsiao AWT, Xu J, Tong W, Chang L, Zhang X, Chen YF, Li J, Chen W, Zhang Y, Chan HF, Lee CW. Bioactive glass-elicited stem cell-derived extracellular vesicles regulate M2 macrophage polarization and angiogenesis to improve tendon regeneration and functional recovery. Biomaterials 2023; 294:121998. [PMID: 36641814 DOI: 10.1016/j.biomaterials.2023.121998] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 12/31/2022] [Accepted: 01/08/2023] [Indexed: 01/11/2023]
Abstract
Effective countermeasures for tendon injury remains unsatisfactory. Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs)-based therapy via regulation of Mφ-mediated angiogenesis has emerged as a promising strategy for tissue regeneration. Still, approaches to tailor the functions of EVs to treat tendon injuries have been limited. We reported a novel strategy by applying MSC-EVs boosted with bioactive glasses (BG). BG-elicited EVs (EVB) showed up-regulation of medicinal miRNAs, including miR-199b-3p and miR-125a-5p, which play a pivotal role in M2 Mφ-mediated angiogenesis. EVB accelerated angiogenesis via the reprogrammed anti-inflammatory M2 Mφs compared with naïve MSC-EVs (EVN). In rodent Achilles tendon rupture model, EVB local administration activated anti-inflammatory responses via M2 polarization and led to a spatial correlation between M2 Mφs and newly formed blood vessels. Our results showed that EVB outperformed EVN in promoting tenogenesis and in reducing detrimental morphological changes without causing heterotopic ossification. Biomechanical test revealed that EVB significantly improved ultimate load, stiffness, and tensile modulus of the repaired tendon, along with a positive correlation between M2/M1 ratio and biomechanical properties. On the basis of the boosted nature to reprogram regenerative microenvironment, EVB holds considerable potential to be developed as a next-generation therapeutic modality for enhancing functional regeneration to achieve satisfying tendon regeneration.
Collapse
Affiliation(s)
- Hongtao Xu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China; Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Yanlun Zhu
- Institute for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| | - Allen Wei-Ting Hsiao
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Jiankun Xu
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China; Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Wenxue Tong
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China; Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Liang Chang
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China; Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Xuerao Zhang
- Institute for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| | - Yi-Fan Chen
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; International Ph.D. Program for Translational Science, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Master Program in Clinical Genomics and Proteomics, School of Pharmacy, Taipei Medical University, Taipei, Taiwan.
| | - Jie Li
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.
| | - Wei Chen
- Department of Orthopedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China.
| | - Yingze Zhang
- Department of Orthopedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China.
| | - Hon Fai Chan
- Institute for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; Center for Neuromusculoskeletal Restorative Medicine, Hong Kong SAR, China.
| | - Chien-Wei Lee
- Center for Translational Genomics & Regenerative Medicine Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.
| |
Collapse
|
41
|
Comparative analysis of magnetically activated cell sorting and ultracentrifugation methods for exosome isolation. PLoS One 2023; 18:e0282238. [PMID: 36854030 PMCID: PMC9974127 DOI: 10.1371/journal.pone.0282238] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/09/2023] [Indexed: 03/02/2023] Open
Abstract
Mesenchymal stem cell-derived exosomes regulate cell migration, proliferation, differentiation, and synthesis of the extracellular matrix, giving great potential for the treatment of different diseases. The ultracentrifugation method is the gold standard method for exosome isolation due to the simple protocol, and high yield, but presents low purity and requires specialized equipment. Amelioration of technical optimization is required for quick and reliable confinement of exosomes to translate them to the clinic as cell therapeutics In this study, we hypothesized that magnetically activated cell sorting may provide, an effective, reliable, and rapid tool for exosome isolation when compared to ultracentrifugation. We, therefore, aimed to compare the efficiency of magnetically activated cell sorting and ultracentrifugation for human mesenchymal stem cell-derived exosome isolation from culture media by protein quantification, surface biomarker, size, number, and morphological analysis. Magnetically activated cell sorting provided a higher purity and amount of exosomes that carry visible magnetic beads when compared to ultracentrifugation. The particle number of the magnetically activated cell sorting group was higher than the ultracentrifugation. In conclusion, magnetically activated cell sorting presents a quick, and reliable method to collect and present human mesenchymal stem cell exosomes to clinics at high purity for potential cellular therapeutic approaches. The novel isolation and purification method may be extended to different clinical protocols using different autogenic or allogeneic cell sources.
Collapse
|
42
|
Hart DA, Ahmed AS, Ackermann P. Optimizing repair of tendon ruptures and chronic tendinopathies: Integrating the use of biomarkers with biological interventions to improve patient outcomes and clinical trial design. Front Sports Act Living 2023; 4:1081129. [PMID: 36685063 PMCID: PMC9853460 DOI: 10.3389/fspor.2022.1081129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/09/2022] [Indexed: 01/09/2023] Open
Abstract
Tendons are dense connective tissues of the musculoskeletal system that link bones with muscles to foster mobility. They have complex structures and exist in varying biomechanical, metabolic and biological environments. In addition, tendon composition and mechanical properties can change over the lifespan as an individual ages. Many tendons function in high stress conditions with a low vascular and neuronal supply, conditions often leading to development of chronic tendinopathies, and in some cases, overt rupture of the tissues. Given their essential nature for human mobility and navigation through the environment, the effective repair and regeneration of different tendons after injury or damage is critical for quality of life, and for elite athletes, the return to sport participation at a high level. However, for mainly unknown reasons, the outcomes following injury are not always successful and lead to functional compromise and risk for re-injury. Thus, there is a need to identify those patients who are at risk for developing tendon problems, as well those at risk for poor outcomes after injury and to design interventions to improve outcomes after injury or rupture to specific tendons. This review will discuss recent advances in the identification of biomarkers prognostic for successful and less successful outcomes after tendon injury, and the mechanistic implications of such biomarkers, as well as the potential for specific biologic interventions to enhance outcomes to improve both quality of life and a return to participation in sports. In addition, the implication of these biomarkers for clinical trial design is discussed, as is the issue of whether such biomarkers for successful healing of one tendon can be extended to all tendons or are valid only for tendons in specific biomechanical and biological environments. As maintaining an active lifestyle is critical for health, the successful implementation of these advances will benefit the large number of individuals at risk.
Collapse
Affiliation(s)
- David A. Hart
- Department of Surgery, Faculty of Kinesiology, McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada,Correspondence: David A. Hart
| | - Aisha S. Ahmed
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Paul Ackermann
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
43
|
Yoshida Y, Takeda Y, Yamahara K, Yamamoto H, Takagi T, Kuramoto Y, Nakano-Doi A, Nakagomi T, Soma T, Matsuyama T, Doe N, Yoshimura S. Enhanced angiogenic properties of umbilical cord blood primed by OP9 stromal cells ameliorates neurological deficits in cerebral infarction mouse model. Sci Rep 2023; 13:262. [PMID: 36609640 PMCID: PMC9822952 DOI: 10.1038/s41598-023-27424-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/29/2022] [Indexed: 01/09/2023] Open
Abstract
Umbilical cord blood (UCB) transplantation shows proangiogenic effects and contributes to symptom amelioration in animal models of cerebral infarction. However, the effect of specific cell types within a heterogeneous UCB population are still controversial. OP9 is a stromal cell line used as feeder cells to promote the hematoendothelial differentiation of embryonic stem cells. Hence, we investigated the changes in angiogenic properties, underlying mechanisms, and impact on behavioral deficiencies caused by cerebral infarction in UCB co-cultured with OP9 for up to 24 h. In the network formation assay, only OP9 pre-conditioned UCB formed network structures. Single-cell RNA sequencing and flow cytometry analysis showed a prominent phenotypic shift toward M2 in the monocytic fraction of OP9 pre-conditioned UCB. Further, OP9 pre-conditioned UCB transplantation in mice models of cerebral infarction facilitated angiogenesis in the peri-infarct lesions and ameliorated the associated symptoms. In this study, we developed a strong, fast, and feasible method to augment the M2, tissue-protecting, pro-angiogenic features of UCB using OP9. The ameliorative effect of OP9-pre-conditioned UCB in vivo could be partly due to promotion of innate angiogenesis in peri-infarct lesions.
Collapse
Affiliation(s)
- Yasunori Yoshida
- grid.272264.70000 0000 9142 153XDepartment of Neurosurgery, Hyogo Medical University, 1-1 Mukogawa, Nishinomiya, Hyogo 663-8501 Japan
| | - Yuki Takeda
- grid.272264.70000 0000 9142 153XDepartment of Neurosurgery, Hyogo Medical University, 1-1 Mukogawa, Nishinomiya, Hyogo 663-8501 Japan
| | - Kenichi Yamahara
- Laboratory of Molecular and Cellular Therapy, Institute for Advanced Medical Sciences, Hyogo Medical University, 1-1 Mukogawa, Nishinomiya, Hyogo, 663-8501, Japan.
| | - Hanae Yamamoto
- grid.272264.70000 0000 9142 153XLaboratory of Molecular and Cellular Therapy, Institute for Advanced Medical Sciences, Hyogo Medical University, 1-1 Mukogawa, Nishinomiya, Hyogo 663-8501 Japan
| | - Toshinori Takagi
- grid.272264.70000 0000 9142 153XDepartment of Neurosurgery, Hyogo Medical University, 1-1 Mukogawa, Nishinomiya, Hyogo 663-8501 Japan
| | - Yoji Kuramoto
- grid.272264.70000 0000 9142 153XDepartment of Neurosurgery, Hyogo Medical University, 1-1 Mukogawa, Nishinomiya, Hyogo 663-8501 Japan
| | - Akiko Nakano-Doi
- Laboratory of Neurogenesis and CNS Repair, Institute for Advanced Medical Sciences, Hyogo Medial University, 1-1 Mukogawa, Nishinomiya, Hyogo 663-8501 Japan
| | - Takayuki Nakagomi
- Laboratory of Neurogenesis and CNS Repair, Institute for Advanced Medical Sciences, Hyogo Medial University, 1-1 Mukogawa, Nishinomiya, Hyogo 663-8501 Japan
| | - Toshihiro Soma
- grid.272264.70000 0000 9142 153XDepartment of Hematology, Hyogo Medical University, 1-1 Mukogawa, Nishinomiya, Hyogo 663-8501 Japan
| | - Tomohiro Matsuyama
- grid.272264.70000 0000 9142 153XDepartment of Therapeutic Progress in Brain Diseases, Hyogo Medical University, 1-1 Mukogawa, Nishinomiya, Hyogo 663-8501 Japan
| | - Nobutaka Doe
- Laboratory of Neurogenesis and CNS Repair, Institute for Advanced Medical Sciences, Hyogo Medial University, 1-1 Mukogawa, Nishinomiya, Hyogo 663-8501 Japan ,grid.272264.70000 0000 9142 153XDepartment of Occupational Therapy, School of Rehabilitation, Hyogo Medical University, 1-3-6 Minatojima, Chuo-Ku, Kobe, Hyogo 650-8530 Japan
| | - Shinichi Yoshimura
- grid.272264.70000 0000 9142 153XDepartment of Neurosurgery, Hyogo Medical University, 1-1 Mukogawa, Nishinomiya, Hyogo 663-8501 Japan
| |
Collapse
|
44
|
Wu G, Su Q, Li J, Xue C, Zhu J, Cai Q, Huang J, Ji S, Cheng B, Ge H. NAMPT encapsulated by extracellular vesicles from young adipose-derived mesenchymal stem cells treated tendinopathy in a "One-Stone-Two-Birds" manner. J Nanobiotechnology 2023; 21:7. [PMID: 36604715 PMCID: PMC9814467 DOI: 10.1186/s12951-022-01763-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/27/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Tendinopathy is the leading sports-related injury and will cause severe weakness and tenderness. Effective therapy for tendinopathy remains limited, and extracellular vesicles (EVs) derived from adipose tissue-derived mesenchymal stem cells (ADMSCs) have demonstrated great potential in tendinopathy treatment; however, the influence of aging status on EV treatment has not been previously described. RESULTS In this study, it was found that ADMSCs derived from old mice (ADMSCold) demonstrated remarkable cellular senescence and impaired NAD+ metabolism compared with ADMSCs derived from young mice (ADMSCyoung). Lower NAMPT contents were detected in both ADMSCold and its secreted EVs (ADMSCold-EVs). Advanced animal experiments demonstrated that ADMSCyoung-EVs, but not ADMSCold-EVs, alleviated the pathological structural, functional and biomechanical properties in tendinopathy mice. Mechanistic analyses demonstrated that ADMSCyoung-EVs improved cell viability and relieved cellular senescence of tenocytes through the NAMPT/SIRT1/PPARγ/PGC-1α pathway. ADMSCyoung-EVs, but not ADMSCold-EVs, promoted phagocytosis and M2 polarization in macrophages through the NAMPT/SIRT1/Nf-κb p65/NLRP3 pathway. The macrophage/tenocyte crosstalk in tendinopathy was influenced by ADMSCyoung-EV treatment and thus it demonstrated "One-Stone-Two-Birds" effects in tendinopathy treatment. CONCLUSIONS This study demonstrates an effective novel therapy for tendinopathy and uncovers the influence of donor age on curative effects by clarifying the detailed biological mechanism.
Collapse
Affiliation(s)
- Guanghao Wu
- grid.43555.320000 0000 8841 6246School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081 China
| | - Qihang Su
- grid.24516.340000000123704535Department of Orthopedics, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, 200072 China
| | - Jie Li
- Department of Orthopedics, Zhabei Central Hospital of Jing’an District, Shanghai, 200070 China
| | - Chao Xue
- grid.24516.340000000123704535Department of Orthopedics, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, 200072 China
| | - Jie Zhu
- grid.9227.e0000000119573309National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190 China
| | - Qiuchen Cai
- grid.24516.340000000123704535Department of Orthopedics, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, 200072 China
| | - Jingbiao Huang
- grid.24516.340000000123704535Department of Orthopedics, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, 200072 China
| | - Shaoyang Ji
- grid.9227.e0000000119573309National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190 China
| | - Biao Cheng
- grid.24516.340000000123704535Department of Orthopedics, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065 China
| | - Hengan Ge
- grid.24516.340000000123704535Department of Orthopedics, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065 China
| |
Collapse
|
45
|
Xu H, Zhu Y, Xu J, Tong W, Hu S, Chen Y, Deng S, Yao H, Li J, Lee C, Chan HF. Injectable bioactive glass/sodium alginate hydrogel with immunomodulatory and angiogenic properties for enhanced tendon healing. Bioeng Transl Med 2023; 8:e10345. [PMID: 36684098 PMCID: PMC9842034 DOI: 10.1002/btm2.10345] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/17/2022] [Accepted: 04/29/2022] [Indexed: 01/25/2023] Open
Abstract
Tendon healing is a complex process involving inflammation, proliferation, and remodeling, eventually achieving a state of hypocellularity and hypovascularity. Currently, few treatments can satisfactorily restore the structure and function of native tendon. Bioactive glass (BG) has been shown to possess immunomodulatory and angiogenic properties. In this study, we investigated whether an injectable hydrogel fabricated of BG and sodium alginate (SA) could be applied to enhance tenogenesis following suture repair of injured tendon. We demonstrated that BG/SA hydrogel significantly accelerated tenogenesis without inducing heterotopic ossification based on histological analysis. The therapeutic effect could attribute to increased angiogenesis and M1 to M2 phenotypic switch of macrophages within 7 days post-surgery. Morphological characterization demonstrated that BG/SA hydrogel partially reverted the pathological changes of Achilles tendon, including increased length and cross-sectional area (CSA). Finally, biomechanical test showed that BG/SA hydrogel significantly improved ultimate load, failure stress, and tensile modulus of the repaired tendon. In conclusion, administration of an injectable BG/SA hydrogel can be a novel and promising therapeutic approach to augment Achilles tendon healing in conjunction with surgical intervention.
Collapse
Affiliation(s)
- Hongtao Xu
- Musculoskeletal Research Laboratory, Department of Orthopedics and TraumatologyThe Chinese University of Hong KongHong Kong SARChina
- Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong SARChina
- Department of OrthopedicsThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Yanlun Zhu
- Institute for Tissue Engineering and Regenerative Medicine, Faculty of MedicineThe Chinese University of Hong KongHong Kong SARChina
- Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of MedicineThe Chinese University of Hong KongHong Kong SARChina
| | - Jiankun Xu
- Musculoskeletal Research Laboratory, Department of Orthopedics and TraumatologyThe Chinese University of Hong KongHong Kong SARChina
- Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong SARChina
| | - Wenxue Tong
- Musculoskeletal Research Laboratory, Department of Orthopedics and TraumatologyThe Chinese University of Hong KongHong Kong SARChina
- Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong SARChina
| | - Shiwen Hu
- Musculoskeletal Research Laboratory, Department of Orthopedics and TraumatologyThe Chinese University of Hong KongHong Kong SARChina
- Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong SARChina
- School of Materials Science and EngineeringLanzhou University of TechnologyLanzhouChina
| | - Yi‐Fan Chen
- The Ph.D. Program for Translational Medicine, College of Medical Science and TechnologyTaipei Medical UniversityTaipeiTaiwan
- Graduate Institute of Translational Medicine, College of Medical Science and TechnologyTaipei Medical UniversityTaipeiTaiwan
- International Ph.D. Program for Translational Science, College of Medical Science and TechnologyTaipei Medical UniversityTaipeiTaiwan
- Master Program in Clinical Genomics and Proteomics, School of PharmacyTaipei Medical UniversityTaipeiTaiwan
| | - Shuai Deng
- Institute for Tissue Engineering and Regenerative Medicine, Faculty of MedicineThe Chinese University of Hong KongHong Kong SARChina
- Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of MedicineThe Chinese University of Hong KongHong Kong SARChina
| | - Hao Yao
- Musculoskeletal Research Laboratory, Department of Orthopedics and TraumatologyThe Chinese University of Hong KongHong Kong SARChina
- Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong SARChina
| | - Jie Li
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingChina
| | - Chien‐Wei Lee
- Center for Translational Genomics ResearchChina Medical University Hospital, China Medical UniversityTaichungTaiwan
| | - Hon Fai Chan
- Institute for Tissue Engineering and Regenerative Medicine, Faculty of MedicineThe Chinese University of Hong KongHong Kong SARChina
- Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of MedicineThe Chinese University of Hong KongHong Kong SARChina
- Hong Kong Branch of CAS Center for Excellence in Animal Evolution and GeneticsThe Chinese University of Hong KongHong Kong SARChina
- Center for Neuromusculoskeletal Restorative MedicineHong Kong Science ParkHong Kong SARChina
| |
Collapse
|
46
|
Su G, Lei X, Wang Z, Xie W, Wen D, Wu Y. Mesenchymal Stem Cell-derived Exosomes Affect Macrophage Phenotype: A Cell-free Strategy for the Treatment of Skeletal Muscle Disorders. Curr Mol Med 2023; 23:350-357. [PMID: 35546766 DOI: 10.2174/1566524022666220511123625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/08/2022] [Accepted: 03/18/2022] [Indexed: 11/22/2022]
Abstract
The process of tissue damage, repair, and regeneration in the skeletal muscle system involves complex inflammatory processes. Factors released in the inflammatory microenvironment can affect the phenotypic changes of macrophages, thereby changing the inflammatory process, making macrophages an important target for tissue repair treatment. Mesenchymal stem cells exert anti-inflammatory effects by regulating immune cells. In particular, exosomes secreted by mesenchymal stem cells have become a new cell-free treatment strategy due to their low tumorigenicity and immunogenicity. This article focuses on the mechanism of the effect of exosomes derived from mesenchymal stem cells on the phenotype of macrophages after skeletal muscle system injury and explores the possible mechanism of macrophages as potential therapeutic targets after tissue injury.
Collapse
Affiliation(s)
- Gang Su
- Institute of Genetics, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Xiaoting Lei
- Department of Orthopedics, The First People's Hospital of Tianshui City, Tianshui, China
| | - Zhenyu Wang
- Department of Orthopedics, The First People's Hospital of Tianshui City, Tianshui, China
| | - Weiqiang Xie
- Department of Orthopedics, The First People's Hospital of Tianshui City, Tianshui, China
| | - Donghong Wen
- Department of Orthopedics, The First People's Hospital of Tianshui City, Tianshui, China
| | - Yucheng Wu
- Department of Orthopedics, The First People's Hospital of Tianshui City, Tianshui, China
| |
Collapse
|
47
|
Citro V, Clerici M, Boccaccini AR, Della Porta G, Maffulli N, Forsyth NR. Tendon tissue engineering: An overview of biologics to promote tendon healing and repair. J Tissue Eng 2023; 14:20417314231196275. [PMID: 37719308 PMCID: PMC10501083 DOI: 10.1177/20417314231196275] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/06/2023] [Indexed: 09/19/2023] Open
Abstract
Tendons are dense connective tissues with a hierarchical polarized structure that respond to and adapt to the transmission of muscle contraction forces to the skeleton, enabling motion and maintaining posture. Tendon injuries, also known as tendinopathies, are becoming more common as populations age and participation in sports/leisure activities increases. The tendon has a poor ability to self-heal and regenerate given its intrinsic, constrained vascular supply and exposure to frequent, severe loading. There is a lack of understanding of the underlying pathophysiology, and it is not surprising that disorder-targeted medicines have only been partially effective at best. Recent tissue engineering approaches have emerged as a potential tool to drive tendon regeneration and healing. In this review, we investigated the physiochemical factors involved in tendon ontogeny and discussed their potential application in vitro to reproduce functional and self-renewing tendon tissue. We sought to understand whether stem cells are capable of forming tendons, how they can be directed towards the tenogenic lineage, and how their growth is regulated and monitored during the entire differentiation path. Finally, we showed recent developments in tendon tissue engineering, specifically the use of mesenchymal stem cells (MSCs), which can differentiate into tendon cells, as well as the potential role of extracellular vesicles (EVs) in tendon regeneration and their potential for use in accelerating the healing response after injury.
Collapse
Affiliation(s)
- Vera Citro
- School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, Staffordshire, UK
- Department of Materials Science and Engineering, Institute of Biomaterials University of Erlangen-Nuremberg, Cauerstrasse 6, Erlangen, Germany
| | - Marta Clerici
- School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, Staffordshire, UK
- Department of Medicine, Surgery and Dentistry, University of Salerno, via S. Allende, Baronissi, Salerno, Italy
| | - Aldo R. Boccaccini
- Department of Materials Science and Engineering, Institute of Biomaterials University of Erlangen-Nuremberg, Cauerstrasse 6, Erlangen, Germany
| | - Giovanna Della Porta
- Department of Medicine, Surgery and Dentistry, University of Salerno, via S. Allende, Baronissi, Salerno, Italy
- Interdepartmental Centre BIONAM, University of Salerno, via Giovanni Paolo I, Fisciano, Salerno, Italy
| | - Nicola Maffulli
- School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, Staffordshire, UK
- Department of Medicine, Surgery and Dentistry, University of Salerno, via S. Allende, Baronissi, Salerno, Italy
- Department of Trauma and Orthopaedic Surgery, University Hospital ‘San Giovanni di Dio e Ruggi D’Aragona’, Salerno, Italy
| | - Nicholas R. Forsyth
- School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, Staffordshire, UK
- Vice Principals’ Office, University of Aberdeen, Kings College, Aberdeen, UK
| |
Collapse
|
48
|
Fujisawa Y, Ming L, Yamada D, Takao T, Takarada T. Establishment of a human pluripotent stem cell-derived MKX-td Tomato reporter system. Stem Cell Res Ther 2022; 13:515. [DOI: 10.1186/s13287-022-03203-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/27/2022] [Indexed: 11/14/2022] Open
Abstract
AbstractTendon regeneration is difficult because detailed knowledge about tendon progenitor cells (TPCs), which produce tenocytes to repair tendon tissue, has not been revealed. Mohawk homeobox (MKX) is a marker of TPCs or tenocytes, but a human pluripotent stem cell (hPSC)-based reporter system that visualizes MKX+ cells has not been developed. Here, we established an hPSC-derived MKX-tdTomato reporter cell line and tested the induction ratio of MKX-tdTomato+ cells using our stepwise/xeno-free differentiation protocol. MKX-tdTomato+ cells were generated with high efficiency and expressed tendon-specific markers, including MKX, SCX, TNMD, and COL1A1. Our MKX-tdTomato hPSC line would be a useful tool for studying the development or regeneration of tendon tissue.
Collapse
|
49
|
Muscat S, Nichols AEC, Gira E, Loiselle AE. CCR2 is expressed by tendon resident macrophage and T cells, while CCR2 deficiency impairs tendon healing via blunted involvement of tendon-resident and circulating monocytes/macrophages. FASEB J 2022; 36:e22607. [PMID: 36250393 PMCID: PMC9593314 DOI: 10.1096/fj.202201162r] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/13/2022] [Accepted: 09/29/2022] [Indexed: 11/11/2022]
Abstract
During tendon healing, macrophages are thought to be a key mediator of scar tissue formation, which prevents successful functional restoration of the tendon. However, macrophages are critical for successful tendon healing as they aid in wound debridement, extracellular matrix deposition, and promote fibroblast proliferation. Recent work has sought to better define the multi-faceted functions of macrophages using depletion studies, while other studies have identified a tendon resident macrophage population. To begin to delineate the functions of tendon-resident versus circulation-derived macrophages, we examined the tendon healing phenotype in Chemokine Receptor 2 (CCR2) reporter (CCR2GFP/+ ), and knockout mice. CCR2 is a chemokine receptor primarily found on the surface of circulating bone marrow-derived monocytes, with CCR2 being an important mediator of macrophage recruitment to wound environments. Surprisingly, CCR2GFP/+ cells were present in the tendon during adult homeostasis, and single-cell RNA sequencing identified these cells as tendon-resident macrophages and T cells. During both homeostasis and healing, CCR2 knockout resulted in a substantial decrease in CCR2GFP+ cells and pan-macrophages. Additionally, loss of CCR2 resulted in reduced numbers of myofibroblasts and impeded functional recovery during late healing. This study highlights the heterogeneity of tendon-resident and recruited immune cells and their contributions following injury, and establishes an important role for CCR2 in modulating both the adult tendon cell environment and tendon healing process.
Collapse
Affiliation(s)
- Samantha Muscat
- Center for Musculoskeletal Research, Department of Orthopaedics & Rehabilitation, University of Rochester Medical Center, Rochester, New York, USA
| | - Anne E C Nichols
- Center for Musculoskeletal Research, Department of Orthopaedics & Rehabilitation, University of Rochester Medical Center, Rochester, New York, USA
| | - Emma Gira
- Center for Musculoskeletal Research, Department of Orthopaedics & Rehabilitation, University of Rochester Medical Center, Rochester, New York, USA
| | - Alayna E Loiselle
- Center for Musculoskeletal Research, Department of Orthopaedics & Rehabilitation, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
50
|
Periostin Modulates Extracellular Matrix Behavior in Tendons. Matrix Biol Plus 2022; 16:100124. [DOI: 10.1016/j.mbplus.2022.100124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 10/10/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022] Open
|