1
|
Wen L, Zhang J, Ju B, Ran Z, Zhang H, Liao Y, Cao L, Hou Q, Hu J, Yang J. Synergistic and toxicity‑reducing effects of acteoside as an adjuvant therapy of oxaliplatin against hepatocellular carcinoma. Int J Oncol 2025; 66:45. [PMID: 40341416 PMCID: PMC12101187 DOI: 10.3892/ijo.2025.5751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 04/04/2025] [Indexed: 05/10/2025] Open
Abstract
Oxaliplatin (OXA) is a first‑line chemotherapy agent for hepatocellular carcinoma (HCC); however, its application is hindered by low therapeutic sensitivity and severe adverse effects. Acteoside (ACT) has both antitumor and hepatoprotective properties. Therefore, the present study investigated the mechanisms underlying the synergistic and toxicity‑reducing effects of ACT as an adjuvant to OXA in HCC therapy. Liver cancer cell lines and a xenograft mouse model were treated with ACT and/or OXA. In vitro Cell Counting kit‑8, Transwell invasive assay, wound healing assay, cell cycle and apoptosis detection assays assessed cell viability, migration, invasion, cell cycle progression and apoptosis to evaluate the synergistic effects of the combination therapy. In vivo studies examined tumor growth, cell proliferation, survival time and blood biochemical indices. The effects of ACT on OXA‑induced toxicity were also evaluated. Transcriptomics and metabolomics analyses were integrated to elucidate the mechanisms by which ACT enhances OXA efficacy and mitigates its toxicities. The results revealed that ACT synergized with OXA to inhibit HCC progression both in vivo and in vitro. ACT significantly alleviated OXA‑induced toxicity, particularly neurotoxicity. Mechanistically, phosphatidylinositol signaling system‑associated genes/proteins exerted important roles in the anti‑HCC effects of ACT. Western blotting revealed that ACT‑induced upregulation of INPP4B inhibited the PI3K/AKT signaling pathway, which may underlie its ability to enhance the therapeutic efficacy of OXA and reduce its toxic effects. In conclusion, ACT enhanced efficacy and reduced the toxicity of OXA in the treatment of HCC, potentially via the regulation of INPP4B to inhibit the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Limei Wen
- Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
- Xinjiang Key Laboratory of Clinical Drug Research, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
- State Key Laboratory of Neurology and Oncology Drug Development, Simcere Pharmaceutical Group Co., Ltd, Nanjing, Jiangsu 210042, P.R. China
| | - Jiawei Zhang
- Department of Pharmacy, The Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Bowei Ju
- Xinjiang Key Laboratory of Clinical Drug Research, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
- Department of Pharmacy, The Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Zheng Ran
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Haibo Zhang
- Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
- Xinjiang Key Laboratory of Clinical Drug Research, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Yucheng Liao
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Lin Cao
- College of Pharmacy, Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Qiang Hou
- College of Pharmacy, Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Junping Hu
- College of Pharmacy, Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Jianhua Yang
- Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
- Xinjiang Key Laboratory of Clinical Drug Research, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| |
Collapse
|
2
|
Yücer R, Schröder A, Topçu G, Efferth T. Identification of anti-inflammatory and anti-cancer compounds targeting the NF-κB-NLRP3 inflammasome pathway from a phytochemical library of the Sideritis genus. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:119074. [PMID: 39522840 DOI: 10.1016/j.jep.2024.119074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 10/09/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
ETHNOBOTANICAL RELEVANCE For centuries, the aerial parts of Sideritis species have been known for their medicinal properties as herbal teas. Although the antioxidant and anti-inflammatory properties of the genus have been widely documented, the underlying mechanisms are yet to be sufficiently clarified. AIM OF THE STUDY We investigated the anti-inflammatory and anticancer activities of phytochemicals of the Sideritis genus. MATERIAL AND METHODS Through literature mining, a chemical library containing 657 components of the Sideritis genus was formed. We studied these compounds for binding to NLRP3 and NF-κB proteins in silico by virtual drug screening and molecular docking, and in vitro by microscale thermophoresis (MST). Liquid chromatography-high-resolution mass spectrometry analysis (LC-HRMS) was performed in the Sideritis extracts. One of the identified compounds, verbascoside, was investigated for its cytotoxic activity by mining a panel of 49 tumor cell lines in the data repository of the National Cancer Institute (NCI, USA). RESULTS Virtual screening and molecular docking results highlighted two compounds targeting both proteins of interest, i.e., verbascoside (acteoside) and apigenin 7,4'-bis(trans-p-coumarate), as both had lowest binding energies of less than -10 kcal/mol. Using MST, we then verified that both compounds bound to the target proteins. Verbascoside bound to NLRP3 and NF-κB with Kd values of 0.67 ± 0.18 μM and 0.01 ± 0.08 μM, while apigenin 7,4'-bis(trans-p-coumarate) had Kd values of 4.60 ± 1.66 μM and 0.27 ± 0.75 μM, respectively. Verbascoside was abundant in the Sideritis extracts, according to LC-HRMS analysis. Since inflammation is strongly related to carcinogenesis, we investigated the anticancer activity of verbascoside in the second part of this study. We investigated the activity of verbascoside in 49 tumor cell lines of the NCI. Comparing its activity with 81 standard anticancer drugs revealed numerous interactions with DNA-damaging agents (alkylators, topoisomerase I/II inhibitors, antimetabolites), indicating that verbascoside may also affect the DNA of tumor cells. We further investigated the involvement of verbascoside in several main drug resistance mechanisms, i.e., ABC transporters, oncogenes, tumor suppressors, cellular proliferation rates, and other parameters. Except for the correlation to the mutational status of NRAS, no other significant relationships were found, indicating that verbascoside is not involved in most of the common drug resistance mechanisms. Two-dimensional cluster analysis-based heatmap generation of a proteomic profile from 40 out of 3171 proteins revealed a significant correlation between the expression of these proteins in 49 tumor cell lines, and the cellular response to verbascoside. This indicates that the presence of these proteins is a determinant for sensitivity or resistance to this natural product. CONCLUSION The database established here represents a valuable resource for the screening of bioactivites of the Sideritis genus. The experimental validation of the anti-inflammatory and cytotoxic activities of selected compounds proved that virtual drug screening and molecular docking are suitable tools for the identification of putative drug candidates. Verbascoside was among the top 10 compounds binding to two key anti-inflammatory proteins, NLRP3 and NF-kB. Additionally, data from the NCI indicate that verbascoside is not linked to main drug resistance mechanisms.
Collapse
Affiliation(s)
- Rümeysa Yücer
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128, Mainz, Germany.
| | - Angela Schröder
- Theophrastus Paracelsus Foundation, 64367, Mühltal, Germany.
| | - Gülaçtı Topçu
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmacy, Bezmialem Vakif University, 34093, Fatih, Istanbul, Turkiye; Drug Application & Research Center (DARC), Bezmialem Vakif University, 34093, Fatih, Istanbul, Turkiye.
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128, Mainz, Germany.
| |
Collapse
|
3
|
Liu J, Li T, Zhong G, Pan Y, Gao M, Su S, Liang Y, Ma C, Liu Y, Wang Q, Shi Q. Exploring the therapeutic potential of natural compounds for Alzheimer's disease: Mechanisms of action and pharmacological properties. Biomed Pharmacother 2023; 166:115406. [PMID: 37659206 DOI: 10.1016/j.biopha.2023.115406] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 09/04/2023] Open
Abstract
Alzheimer's Disease (AD) is a global public health priority characterized by high mortality rates in adults and an increasing prevalence in aging populations worldwide. Despite significant advancements in comprehending the pathogenesis of AD since its initial report in 1907, there remains a lack of effective curative or preventive measures for the disease. In recent years, natural compounds sourced from diverse origins have garnered considerable attention as potential therapeutic agents for AD, owing to their anti-inflammatory, antioxidant, and neuroprotective properties. This review aims to consolidate the therapeutic effects of natural compounds on AD, specifically targeting the reduction of β-amyloid (Aβ) overproduction, anti-apoptosis, autophagy, neuroinflammation, oxidative stress, endoplasmic reticulum (ER) stress, and mitochondrial dysfunction. Notably, the identified compounds exhibiting these effects predominantly originate from plants. This review provides valuable insights into the potential of natural compounds as a reservoir of novel therapeutic agents for AD, thereby stimulating further research and contributing to the development of efficacious treatments for this devastating disease.
Collapse
Affiliation(s)
- Jinman Liu
- Affiliated Jiangmen TCM Hospital of Ji'nan University, Jiangmen 529099, China
| | - Tianyao Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Guangcheng Zhong
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yaru Pan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Minghuang Gao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Shijie Su
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yong Liang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Cuiru Ma
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yuanyue Liu
- Department of Neurology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210017, China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Qing Shi
- Affiliated Jiangmen TCM Hospital of Ji'nan University, Jiangmen 529099, China.
| |
Collapse
|
4
|
Feng D, Zhou SQ, Zhou YX, Jiang YJ, Sun QD, Song W, Cui QQ, Yan WJ, Wang J. Effect of total glycosides of Cistanche deserticola on the energy metabolism of human HepG2 cells. Front Nutr 2023; 10:1117364. [PMID: 36814512 PMCID: PMC9939456 DOI: 10.3389/fnut.2023.1117364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/09/2023] [Indexed: 02/09/2023] Open
Abstract
To study the anti-tumor effect of Cistanche deserticola Y. Ma, HepG2 cells were treated with 0, 3.5, 10.5, 21, 31.5, and 42 μg/ml of total glycosides (TG) from Cistanche deserticola. The HepG2 cell survival rate and 50% inhibition concentration (IC50) were detected using the CCK-8 method, and the level of reactive oxygen species (ROS) was detected by using a DCFH-DA fluorescence probe. Finally, a Seahorse XFe24 energy analyzer (Agilent, United States) was used to detect cell mitochondrial pressure and glycolytic pressure. The results showed that TG could reduce the survival rate of HepG2 cells and that the IC50 level was 35.28 μg/ml. With increasing TG concentration, the level of ROS showed a concentration-dependent upward trend. Energy metabolism showed that each dose group of TG could significantly decline the mitochondrial respiratory and glycolytic functions of HepG2 cells. In conclusion, TG could significantly inhibit the mitochondrial respiration and glycolysis functions of HepG2 cells, increase the level of ROS, and inhibit cell proliferation. Thus, this experiment pointed out that Cistanche deserticola can be used as a source of anti-cancer foods or drugs in the future. However, further studies on its mechanisms and clinical applications are needed.
Collapse
Affiliation(s)
- Duo Feng
- College of Biochemical Engineering, Beijing Union University, Beijing, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, College of Biochemical Engineering, Beijing Union University, Beijing, China
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Shi-qi Zhou
- College of Biochemical Engineering, Beijing Union University, Beijing, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, College of Biochemical Engineering, Beijing Union University, Beijing, China
| | - Ya-xi Zhou
- College of Biochemical Engineering, Beijing Union University, Beijing, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, College of Biochemical Engineering, Beijing Union University, Beijing, China
| | - Yong-jun Jiang
- Inner Mongolia Sankou Biotechnology Co., Ltd., Ordos City, Inner Mongolia, China
| | - Qiao-di Sun
- College of Biochemical Engineering, Beijing Union University, Beijing, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, College of Biochemical Engineering, Beijing Union University, Beijing, China
| | - Wei Song
- College of Biochemical Engineering, Beijing Union University, Beijing, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, College of Biochemical Engineering, Beijing Union University, Beijing, China
| | - Qian-qian Cui
- College of Biochemical Engineering, Beijing Union University, Beijing, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, College of Biochemical Engineering, Beijing Union University, Beijing, China
| | - Wen-jie Yan
- College of Biochemical Engineering, Beijing Union University, Beijing, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, College of Biochemical Engineering, Beijing Union University, Beijing, China
| | - Jing Wang
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
5
|
Wen SY, Wei BY, Ma JQ, Wang L, Chen YY. Phytochemicals, Biological Activities, Molecular Mechanisms, and Future Prospects of Plantago asiatica L. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:143-173. [PMID: 36545763 DOI: 10.1021/acs.jafc.2c07735] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Plantago asiatica L. has been used as a vegetable and nutritious food in Asia for thousands of years. According to recent phytochemical and pharmacological research, the active compositions of the plant contribute to various health benefits, such as antioxidant, anti-inflammatory, antibacterial, antiviral, and anticancer. This article reviews the 87 components of the plant and their structures, as well as their biological activities and molecular research progress, in detail. This review provides valuable reference material for further study, production, and application of P. asiatica, as well as its components in functional foods and therapeutic agents.
Collapse
Affiliation(s)
- Shi-Yuan Wen
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030000, China
| | - Bing-Yan Wei
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030000, China
| | - Jie-Qiong Ma
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030000, China
| | - Li Wang
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030000, China
| | - Yan-Yan Chen
- School of Medicine, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
6
|
Guo W, Wang X, Liu F, Chen S, Wang S, Zhang Q, Yuan L, Du S. Acteoside alleviates dextran sulphate sodium‑induced ulcerative colitis via regulation of the HO‑1/HMGB1 signaling pathway. Mol Med Rep 2022; 26:360. [PMID: 36281914 PMCID: PMC9641715 DOI: 10.3892/mmr.2022.12877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 09/02/2022] [Indexed: 11/05/2022] Open
Abstract
Ulcerative colitis (UC) is a significant burden on human health, and the elucidation of the mechanism by which it develops has potential for the prevention and treatment of UC. It has been reported that acteoside (ACT) exhibits strong anti‑inflammatory activity. In the present study, it was hypothesized that ACT may exert a protective effect against UC. The effects of ACT on inflammation, oxidative stress and apoptosis were evaluated using dextran sulphate sodium (DSS)‑treated mice and DSS‑treated human colorectal adenocarcinoma Caco‑2 cells, which have an epithelial morphology. The results demonstrated that the ACT‑treated mice with DSS‑induced UC exhibited significantly reduced colon inflammation, as demonstrated by a reversal in body weight loss, colon shortening, disease activity index score, inflammation, oxidative stress and colonic barrier dysfunction. Further in vivo experiments demonstrated that ACT inhibited DSS‑induced apoptosis in colon tissues, as demonstrated by the results of the TUNEL assay and the altered protein expression levels of Bax, cleaved caspase‑3 and Bcl‑2. Furthermore, DSS significantly stimulated the protein expression levels of high mobility group box 1 protein (HMGB1), which serves a central role in the initiation and progression of UC, an effect which was markedly inhibited by ACT. Finally, DSS significantly decreased the protein expression levels of heme oxygenase‑1 (HO‑1) in colon tissues and the effect of ACT on GSH, apoptotic proteins and HMGB1 was markedly attenuated in the presence of the HO‑1 inhibitor tin protoporphyrin. In conclusion, ACT ameliorated colon inflammation through HMGB1 inhibition in a HO‑1‑dependent manner.
Collapse
Affiliation(s)
- Wenjuan Guo
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Xiaodi Wang
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Fang Liu
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Shuo Chen
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Shuai Wang
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Qingrui Zhang
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Lan Yuan
- Peking University Medical and Health Analysis Center, Peking University Health Science Center, Beijing 100191, P.R. China
| | - Shiyu Du
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing 100029, P.R. China
| |
Collapse
|
7
|
Ahsan H, Islam SU, Ahmed MB, Lee YS. Role of Nrf2, STAT3, and Src as Molecular Targets for Cancer Chemoprevention. Pharmaceutics 2022; 14:1775. [PMID: 36145523 PMCID: PMC9505731 DOI: 10.3390/pharmaceutics14091775] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/23/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer is a complex and multistage disease that affects various intracellular pathways, leading to rapid cell proliferation, angiogenesis, cell motility, and migration, supported by antiapoptotic mechanisms. Chemoprevention is a new strategy to counteract cancer; to either prevent its incidence or suppress its progression. In this strategy, chemopreventive agents target molecules involved in multiple pathways of cancer initiation and progression. Nrf2, STAT3, and Src are promising molecular candidates that could be targeted for chemoprevention. Nrf2 is involved in the expression of antioxidant and phase II metabolizing enzymes, which have direct antiproliferative action as well as indirect activities of reducing oxidative stress and eliminating carcinogens. Similarly, its cross-talk with NF-κB has great anti-inflammatory potential, which can be utilized in inflammation-induced/associated cancers. STAT3, on the other hand, is involved in multiple pathways of cancer initiation and progression. Activation, phosphorylation, dimerization, and nuclear translocation are associated with tumor cell proliferation and angiogenesis. Src, being the first oncogene to be discovered, is important due to its convergence with many upstream stimuli, its cross-talk with other potential molecular targets, such as STAT3, and its ability to modify the cell cytoskeleton, making it important in cancer invasion and metastasis. Therefore, the development of natural/synthetic molecules and/or design of a regimen that can reduce oxidative stress and inflammation in the tumor microenvironment and stop multiple cellular targets in cancer to stop its initiation or retard its progression can form newer chemopreventive agents.
Collapse
Affiliation(s)
- Haseeb Ahsan
- Department of Pharmacy, Faculty of Life and Environmental Sciences, University of Peshawar, Peshawar 25120, Pakistan
| | - Salman Ul Islam
- Department of Pharmacy, CECOS University, Peshawar 25000, Pakistan
| | - Muhammad Bilal Ahmed
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Korea
| | - Young Sup Lee
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
8
|
Ren Y, He J, Zhao W, Ma Y. The Anti-Tumor Efficacy of Verbascoside on Ovarian Cancer via Facilitating CCN1-AKT/NF-κB Pathway-Mediated M1 Macrophage Polarization. Front Oncol 2022; 12:901922. [PMID: 35785168 PMCID: PMC9249354 DOI: 10.3389/fonc.2022.901922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/02/2022] [Indexed: 11/26/2022] Open
Abstract
Background Ovarian cancer (OC) is the leading cause of gynecological cancer-related mortality. Verbascoside (VB) is a phenylpropanoid glycoside from Chinese herbs, with anti-tumour activities. This study aimed to investigate the effects and mechanism of VB on OC. Methods OC cell lines SKOV3 and A2780 were used in this study. Cell viability, proliferation, and migration were measured using CCK-8, clonogenic, and transwell assays, respectively. Apoptosis and M1/M2 macrophages were detected using flow cytometry. The interaction between VB and CCN1 was predicted by molecular docking. The mRNA expression of CCN1 was detected by RT-qPCR. The protein levels of CCN1, AKT, p-AKT, p65, and p-p65 were determined by western blotting. A xenograft mice model was established for in vivo validation. Results VB inhibited OC cell proliferation and migration in a dose-dependent manner, and promoted apoptosis and M1 macrophage polarization. VB downregulated CCN1 and inhibited the AKT/NF-κB pathway. LY294002, an AKT inhibitor, potentiated the anti-tumour effects of VB. CCN1 overexpression weakened the anti-tumour effects of VB and VB + LY294002. In vivo experiments verified that VB inhibited tumour growth and promoted M1 polarization, which is regulated by the CCN1-mediated AKT/NF-κB pathway. Conclusion VB triggers the CCN1-AKT/NF-κB pathway-mediated M1 macrophage polarization for protecting against OC.
Collapse
Affiliation(s)
- Yu Ren
- Scientific Research Department, Inner Mongolia People’s Hospital, Hohhot, China
| | - Jinying He
- Reproductive Medicine Centre, Inner Mongolia People’s Hospital, Hohhot, China
| | - Wenhua Zhao
- Reproductive Medicine Centre, Inner Mongolia People’s Hospital, Hohhot, China
| | - Yuzhen Ma
- Reproductive Medicine Centre, Inner Mongolia People’s Hospital, Hohhot, China
- *Correspondence: Yuzhen Ma,
| |
Collapse
|
9
|
Zhang C, Xie Y, Lai R, Wu J, Guo Z. Nonsynonymous C1653T Mutation of Hepatitis B Virus X Gene Enhances Malignancy of Hepatocellular Carcinoma Cells. J Hepatocell Carcinoma 2022; 9:367-377. [PMID: 35535232 PMCID: PMC9078866 DOI: 10.2147/jhc.s348690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 04/26/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Methods Results Conclusion
Collapse
Affiliation(s)
- Cuifang Zhang
- Department of Rheumatology and Immunology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, People’s Republic of China
- Department of Oncology, The Pingshan County People’s Hospital, Shijiazhuang, People’s Republic of China
| | - Ying Xie
- Hebei Key Laboratory of Laboratory Animal Science, Hebei Medical University, Shijiazhuang, People’s Republic of China
| | - Ruixue Lai
- Department of Rheumatology and Immunology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, People’s Republic of China
| | - Jianhua Wu
- Animal Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, People’s Republic of China
| | - Zhanjun Guo
- Department of Rheumatology and Immunology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, People’s Republic of China
- Correspondence: Zhanjun Guo, Department of Rheumatology and Immunology, The Fourth Hospital of Hebei Medical University, 12 Jiankang Road, Shijiazhuang, 050011, People’s Republic of China, Tel + 86 311 8609 5734, Fax + 86 311 8609 5237, Email
| |
Collapse
|
10
|
Zhu X, Sun M, Guo H, Lu G, Gu J, Zhang L, Shi L, Gao J, Zhang D, Wang W, Liu J, Wang X. Verbascoside protects from LPS-induced septic cardiomyopathy via alleviating cardiac inflammation, oxidative stress and regulating mitochondrial dynamics. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 233:113327. [PMID: 35203005 DOI: 10.1016/j.ecoenv.2022.113327] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/13/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Verbascoside (VB), as an active component of multiple medicinal plants, has been proved to exert anti-oxidative, anti-aging and neuroprotective effects. This study was designed to investigate whether VB could play a cardioprotective role in septic heart injury. METHODS Mice were injected with lipopolysaccharide (LPS; 10 mg/kg) to induce sepsis. The treatment group received an intraperitoneally injection of VB (20 mg/kg) before LPS challenge. Transthoracic echocardiography, ELISA, immunofluorescence, and qPCR were performed to assess the effect of VB on heart function, oxidative stress, inflammation and apoptosis. Transmission electronic microscopy and immunoblotting were used to evaluate the mitochondrial morphology and biogenesis of the septic heart. In vitro experiments were also performed to repeat above-mentioned assays. RESULTS Compared with LPS group, the VB treatment group showed improved cardiac function in sepsis. VB alleviated oxidative stress and inflammatory cell infiltration, as well as cardiomyocyte apoptosis. Specifically, VB could restore sepsis-induced mitochondrial alterations via regulating mitochondrial biogenesis. These results were also confirmed in in vitro experiments. CONCLUSION Verbascoside could protected from sepsis-induced cardiomyopathy by inhibiting oxidative stress, inflammation, and apoptosis, as well as promoting mitochondrial biogenesis.
Collapse
Affiliation(s)
- Xuanfeng Zhu
- Department of Respiratory Medicine, Geriatric Hospital of Nanjing Medical University; Jiangsu Province Official Hospital, Nanjing, China
| | - Min Sun
- Hypertension Research Institute of Geriatric Hospital of Nanjing Medical University; Jiangsu Province Official Hospital, Nanjing, China
| | - Hongmei Guo
- Department of Respiratory Medicine, Geriatric Hospital of Nanjing Medical University; Jiangsu Province Official Hospital, Nanjing, China
| | - Gan Lu
- Department of Respiratory Medicine, Geriatric Hospital of Nanjing Medical University; Jiangsu Province Official Hospital, Nanjing, China
| | - Jianhua Gu
- Department of Respiratory Medicine, Geriatric Hospital of Nanjing Medical University; Jiangsu Province Official Hospital, Nanjing, China
| | - Lingling Zhang
- Department of Respiratory Medicine, Geriatric Hospital of Nanjing Medical University; Jiangsu Province Official Hospital, Nanjing, China
| | - Licheng Shi
- Department of Respiratory Medicine, Geriatric Hospital of Nanjing Medical University; Jiangsu Province Official Hospital, Nanjing, China
| | - Jia Gao
- Department of Respiratory Medicine, Geriatric Hospital of Nanjing Medical University; Jiangsu Province Official Hospital, Nanjing, China
| | - Dandan Zhang
- Department of Respiratory Medicine, Geriatric Hospital of Nanjing Medical University; Jiangsu Province Official Hospital, Nanjing, China
| | - Wenjun Wang
- Department of Respiratory Medicine, Geriatric Hospital of Nanjing Medical University; Jiangsu Province Official Hospital, Nanjing, China
| | - Jiannan Liu
- Department of Respiratory Medicine, Geriatric Hospital of Nanjing Medical University; Jiangsu Province Official Hospital, Nanjing, China.
| | - Xia Wang
- Department of Geriatric Cardiology, Taian City Central Hospital, Taian, China.
| |
Collapse
|
11
|
Fakhri S, Moradi SZ, Yarmohammadi A, Narimani F, Wallace CE, Bishayee A. Modulation of TLR/NF-κB/NLRP Signaling by Bioactive Phytocompounds: A Promising Strategy to Augment Cancer Chemotherapy and Immunotherapy. Front Oncol 2022; 12:834072. [PMID: 35299751 PMCID: PMC8921560 DOI: 10.3389/fonc.2022.834072] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 01/26/2022] [Indexed: 12/12/2022] Open
Abstract
Background Tumors often progress to a more aggressive phenotype to resist drugs. Multiple dysregulated pathways are behind this tumor behavior which is known as cancer chemoresistance. Thus, there is an emerging need to discover pivotal signaling pathways involved in the resistance to chemotherapeutic agents and cancer immunotherapy. Reports indicate the critical role of the toll-like receptor (TLR)/nuclear factor-κB (NF-κB)/Nod-like receptor pyrin domain-containing (NLRP) pathway in cancer initiation, progression, and development. Therefore, targeting TLR/NF-κB/NLRP signaling is a promising strategy to augment cancer chemotherapy and immunotherapy and to combat chemoresistance. Considering the potential of phytochemicals in the regulation of multiple dysregulated pathways during cancer initiation, promotion, and progression, such compounds could be suitable candidates against cancer chemoresistance. Objectives This is the first comprehensive and systematic review regarding the role of phytochemicals in the mitigation of chemoresistance by regulating the TLR/NF-κB/NLRP signaling pathway in chemotherapy and immunotherapy. Methods A comprehensive and systematic review was designed based on Web of Science, PubMed, Scopus, and Cochrane electronic databases. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines were followed to include papers on TLR/NF-κB/NLRP and chemotherapy/immunotherapy/chemoresistance by phytochemicals. Results Phytochemicals are promising multi-targeting candidates against the TLR/NF-κB/NLRP signaling pathway and interconnected mediators. Employing phenolic compounds, alkaloids, terpenoids, and sulfur compounds could be a promising strategy for managing cancer chemoresistance through the modulation of the TLR/NF-κB/NLRP signaling pathway. Novel delivery systems of phytochemicals in cancer chemotherapy/immunotherapy are also highlighted. Conclusion Targeting TLR/NF-κB/NLRP signaling with bioactive phytocompounds reverses chemoresistance and improves the outcome for chemotherapy and immunotherapy in both preclinical and clinical stages.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Akram Yarmohammadi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Narimani
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Carly E. Wallace
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, United States
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, United States
| |
Collapse
|
12
|
Khan RA, Hossain R, Roy P, Jain D, Mohammad Saikat AS, Roy Shuvo AP, Akram M, Elbossaty WF, Khan IN, Painuli S, Semwal P, Rauf A, Islam MT, Khan H. Anticancer effects of acteoside: Mechanistic insights and therapeutic status. Eur J Pharmacol 2022; 916:174699. [PMID: 34919888 DOI: 10.1016/j.ejphar.2021.174699] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/26/2021] [Accepted: 12/07/2021] [Indexed: 12/12/2022]
Abstract
Cancer, the uncontrolled proliferation and metastasis of abnormal cells, is a major public health issue worldwide. To date, several natural compounds have been reported with their efficacy in the treatment of different types of cancer. Chemotherapeutic agents are used in cancer treatment and prevention, among other aspects. Acteoside is a phenylethanoid glycoside, first isolated from Verbascum sinuatum, which has demonstrated multiple effects, including antioxidant, anti-epileptic, neuroprotective, anti-inflammatory, antifungal, antihypertensive, and anti-leishmanial properties. This review gathered, analyzed, and summarized the literature on acteoside and its anticancer properties. All the available information about this compound and its role in different types of cancer was collected using different scientific search engines, including PubMed, Scopus, Springer Link, Wiley Online, Web of Science, Scifinder, ScienceDirect, and Google Scholar. Acteoside is found in a variety of plants and has been shown to have anticancer activity in many experimental models through oxidative stress, apoptosis, anti-angiogenesis, anti-invasion, anti-metastasis, synergism with other agents, and anti-proliferative effects through modulation of several pathways. In conclusion, acteoside exhibited potent anticancer activity against different cancer cell lines through modulating several cancer signaling pathways in different non- and pre-clinical experimental models and thus could be a strong candidate for further clinical studies.
Collapse
Affiliation(s)
- Rasel Ahmed Khan
- Pharmacy Discipline, Khulna University, Khulna, 9280, Bangladesh
| | - Rajib Hossain
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Dhaka, Bangladesh
| | - Pranta Roy
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430064, Hubei, China
| | - Divya Jain
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan University, Tonk, 304022, India
| | - Abu Saim Mohammad Saikat
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Dhaka, Bangladesh
| | - Anik Prasad Roy Shuvo
- Department of Pharmacy, Southern University Bangladesh, Mehedibag Road, Chattagram, 4000, Bangladesh
| | - Muhammad Akram
- Department of Eastern Medicine, Government College University Faisalabad, 38000, Pakistan
| | | | - Ishaq N Khan
- Institute of Basic Medical Sciences Khyber Medical University, Peshawar, 25100, Pakistan
| | - Sakshi Painuli
- Himalayan Environmental Studies and Conservation Organization (HESCO), Dehradun, 248006, Uttarakhand, India
| | - Prabhakar Semwal
- Department of Life Sciences, Graphic Era Demeed to be University, Dehradun, 248002, Uttarakhand, India
| | - Abdur Rauf
- Department of Chemistry University of Swabi, Swabi, Anbar, 23430, KPK, Pakistan.
| | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Dhaka, Bangladesh.
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan.
| |
Collapse
|
13
|
Alarcón-Sánchez BR, Pérez-Carreón JI, Villa-Treviño S, Arellanes-Robledo J. Molecular alterations that precede the establishment of the hallmarks of cancer: An approach on the prevention of hepatocarcinogenesis. Biochem Pharmacol 2021; 194:114818. [PMID: 34757033 DOI: 10.1016/j.bcp.2021.114818] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 02/07/2023]
Abstract
Chronic liver injury promotes the molecular alterations that precede the establishment of cancer. Usually, several decades of chronic insults are needed to develop the most common primary liver tumor known as hepatocellular carcinoma. As other cancer types, liver cancer cells are governed by a common set of rules collectively called the hallmarks of cancer. Although those rules have provided a conceptual framework for understanding the complex pathophysiology of established tumors, therapeutic options are still ineffective in advanced stages. Thus, the molecular alterations that precede the establishment of cancer remain an attractive target for therapeutic interventions. Here, we first summarize the chemopreventive interventions targeting the early liver carcinogenesis stages. After an integrative analysis on the plethora of molecular alterations regulated by anticancer agents, we then underline and discuss that two critical processes namely oxidative stress and genetic alterations, play the role of 'dirty work laborer' in the initial cell damage and drive the transformation of preneoplastic into neoplastic cells, respectively; besides, the activation of cellular senescence works as a key mechanism in attempting to prevent the onset and establishment of liver cancer. Whereas the detrimental effects of the binomial made up of oxidative stress and genetic alterations are either eliminated or reduced, senescence activation is promoted by anticancer agents. We argue that collectively, oxidative stress, genetic alterations, and senescence are key events that influence the fate of initiated cells and the establishment of the hallmarks of cancer.
Collapse
Affiliation(s)
- Brisa Rodope Alarcón-Sánchez
- Laboratory of Liver Diseases, National Institute of Genomic Medicine - INMEGEN, CDMX, Mexico; Departament of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute - CINVESTAV-IPN, CDMX, Mexico
| | | | - Saúl Villa-Treviño
- Departament of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute - CINVESTAV-IPN, CDMX, Mexico
| | - Jaime Arellanes-Robledo
- Laboratory of Liver Diseases, National Institute of Genomic Medicine - INMEGEN, CDMX, Mexico; Directorate of Cátedras, National Council of Science and Technology - CONACYT, CDMX, Mexico.
| |
Collapse
|
14
|
Aziz MA, Sarwar MS, Akter T, Uddin MS, Xun S, Zhu Y, Islam MS, Hongjie Z. Polyphenolic molecules targeting STAT3 pathway for the treatment of cancer. Life Sci 2021; 268:118999. [PMID: 33421525 DOI: 10.1016/j.lfs.2020.118999] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 01/17/2023]
Abstract
Cancer is accounted as the second-highest cause of morbidity and mortality throughout the world. Numerous preclinical and clinical investigations have consistently highlighted the role of natural polyphenolic compounds against various cancers. A plethora of potential bioactive polyphenolic molecules, primarily flavonoids, phenolic acids, lignans and stilbenes, have been explored from the natural sources for their chemopreventive and chemoprotective activities. Moreover, combinations of these polyphenols with current chemotherapeutic agents have also demonstrated their strong role against both progression and resistance of malignancies. Signal transducer and activator of transcription 3 (STAT3) is a ubiquitously-expressed signaling molecule in almost all body cells. Thousands of literatures have revealed that STAT3 plays significant roles in promoting the cellular proliferation, differentiation, cell cycle progression, metastasis, angiogenesis and immunosuppression as well as chemoresistance through the regulation of its downstream target genes such as Bcl-2, Bcl-xL, cyclin D1, c-Myc and survivin. For its key role in cancer development, researchers considered STAT3 as a major target for cancer therapy that mainly focuses on abrogating the expression (activation or phosphorylation) of STAT3 in tumor cells both directly and indirectly. Polyphenolic molecules have explicated their protective actions in malignant cells via targeting STAT3 both in vitro and in vivo. In this article, we reviewed how polyphenolic compounds as well as their combinations with other chemotherapeutic drugs inhibit cancer cells by targeting STAT3 signaling pathway.
Collapse
Affiliation(s)
- Md Abdul Aziz
- Department of Pharmacy, Faculty of Science, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Md Shahid Sarwar
- Department of Pharmacy, Faculty of Science, Noakhali Science and Technology University, Noakhali 3814, Bangladesh.
| | - Tahmina Akter
- Department of Pharmacy, Faculty of Science, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh; Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Song Xun
- School of Pharmaceutical Science, Health Science Center, Shenzhen University, Shenzhen, China
| | - Yu Zhu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
| | - Mohammad Safiqul Islam
- Department of Pharmacy, Faculty of Science, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Zhang Hongjie
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China.
| |
Collapse
|
15
|
Ma D, Wang J, Liu L, Chen M, Wang Z. Acteoside as a potential therapeutic option for primary hepatocellular carcinoma: a preclinical study. BMC Cancer 2020; 20:936. [PMID: 32993568 PMCID: PMC7526186 DOI: 10.1186/s12885-020-07447-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 09/21/2020] [Indexed: 01/10/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) is a common malignant tumor with characteristics of poor prognosis, high morbidity and mortality worldwide. In particular, only a few systemic treatment options are available for advanced HCC patients, and include sorafenib and the recently described atezolizumab plus bevacizumab regimen as possible first-line treatments. We here propose acteoside, a phenylethanoid glycoside widely distributed in many medicinal plants as a potential candidate against advanced HCC. Methods Cell proliferation, colony formation and migration were analyzed in the three human HCC cell lines BEL7404, HLF and JHH-7. Angiogenesis assay was performed using HUVESs. The BEL7404 or JHH-7 xenograft nude mice model was established to analyze the possible antitumor effects of acteoside. qRT-PCR and western blotting were used to reveal the potential antitumor mechanisms of acteoside. Results Acteoside inhibited cell proliferation, colony formation and migration in all the three human HCC cell lines BEL7404, HLF and JHH-7. The prohibition of angiogenesis by acteoside was revealed by the inhibition of tube formation and cell migration of HUVECs. The combination of acteoside and sorafenib produced stronger inhibition of cell colony formation and migration of the HCC cells as well as of angiogenesis of HUVECs. The in vivo antitumor efficacy of acteoside was further demonstrated in BEL7404 or JHH-7 xenograft nude mice model, with an enhancement when combined with sorafenib in inhibiting the growth of JHH-7 xenograft. Further treatment of JHH-7 cells with acteoside revealed an increase in the level of tumor suppressor protein p53 as well as a decrease of kallikrein-related peptidase (KLK1, 2, 4, 9 and 10) gene level with no significant changes of the rest of KLK1–15 genes. Conclusions Acteoside exerts an antitumor effect possibly through its up-regulation of p53 levels as well as inhibition of KLK expression and angiogenesis. Acteoside could be useful as an adjunct in the treatment of advanced HCC in the clinic.
Collapse
Affiliation(s)
- Di Ma
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Juan Wang
- China State Key Laboratory of New Drug & Pharmaceutical Process, Center for Pharmacological Evaluation and Research, Shanghai Institute of Pharmaceutical Industry, 1111 Rd. Zhongshanbeiyi, Hongkou, Shanghai, 200437, China
| | - Lu Liu
- China State Key Laboratory of New Drug & Pharmaceutical Process, Center for Pharmacological Evaluation and Research, Shanghai Institute of Pharmaceutical Industry, 1111 Rd. Zhongshanbeiyi, Hongkou, Shanghai, 200437, China
| | - Meiqi Chen
- China State Key Laboratory of New Drug & Pharmaceutical Process, Center for Pharmacological Evaluation and Research, Shanghai Institute of Pharmaceutical Industry, 1111 Rd. Zhongshanbeiyi, Hongkou, Shanghai, 200437, China
| | - Zhiyong Wang
- China State Key Laboratory of New Drug & Pharmaceutical Process, Center for Pharmacological Evaluation and Research, Shanghai Institute of Pharmaceutical Industry, 1111 Rd. Zhongshanbeiyi, Hongkou, Shanghai, 200437, China.
| |
Collapse
|
16
|
Zhang MQ, Ren X, Zhao Q, Yue SJ, Fu XM, Li X, Chen KX, Guo YW, Shao CL, Wang CY. Hepatoprotective effects of total phenylethanoid glycosides from Acanthus ilicifolius L. against carbon tetrachloride-induced hepatotoxicity. JOURNAL OF ETHNOPHARMACOLOGY 2020; 256:112795. [PMID: 32224197 DOI: 10.1016/j.jep.2020.112795] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 02/23/2020] [Accepted: 03/23/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Acanthus ilicifolius L. has been used as a folk medicine in the treatment of acute and chronic hepatitis in China for a long time. Phenylethanoid glycosides are one of main components in A. ilicifolius L. AIM OF THE STUDY The aim of present study was to assess the hepatoprotective activities of total phenylethanoid glycosides from A. ilicifolius L. (APhGs) against carbon tetrachloride (CCl4)-induced liver injury in vivo and in vitro. MATERIALS AND METHOD The APhGs was separated by resin column chromatography. The purity of total phenylethanoid glycosides was determined by UV-Vis spectrophotometry using acteoside as a standard. The hepatoprotective activities of APhGs against CCl4-induced liver injury were performed on experimental mice and L-02 hepatocytes. Moreover, the antioxidant activities of APhGs were tested in vitro. RESULTS The results showed that pre-administration of APhGs to mice decreased alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels in serum, and improved superoxide dismutase (SOD) activity and decreased malondialdehyde (MDA) level in serum and liver tissue induced by CCl4. Specifically, the SOD activities of APhGs-H and APhGs-M treatment groups were stronger than that of silymarin treatment group. The protective activities of APhGs were confirmed by histopathological results. Moreover, immunohistochemical analysis showed that APhGs could remarkably down-regulate the protein expression of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β). In vitro experiment, APhGs was observed to increase L-02 hepatocyte viability against CCl4-induced hepatotoxicity. In addition, antioxidation assays revealed that APhGs showed 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, and ferric reducing ability. CONCLUSION Overall, total phenylethanoid glycosides from A. ilicifolius L. displayed promising hepatoprotective effects. These results offer a support for the medicine uses of A. ilicifolius L.
Collapse
Affiliation(s)
- Meng-Qi Zhang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Key Laboratory for Biosensor of Shandong Province, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China
| | - Xia Ren
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Qing Zhao
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Shi-Jun Yue
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Xiu-Mei Fu
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; College of Economics, Ocean University of China, Qingdao, 266100, China
| | - Xin Li
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Kai-Xian Chen
- Open Studio for Druggability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yue-Wei Guo
- Open Studio for Druggability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Chang-Lun Shao
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| | - Chang-Yun Wang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
17
|
Aisa Y, Yunusi K, Chen Q, Mi N. Systematic understanding of the potential targets and pharmacological mechanisms of acteoside by network pharmacology approach. Med Chem Res 2020. [DOI: 10.1007/s00044-020-02524-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
18
|
Hwang TW, Kim DH, Kim DB, Jang TW, Kim GH, Moon M, Yoon KA, Choi DE, Park JH, Kim JJ. Synergistic anticancer effect of acteoside and temozolomide-based glioblastoma chemotherapy. Int J Mol Med 2019; 43:1478-1486. [PMID: 30664150 DOI: 10.3892/ijmm.2019.4061] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 01/09/2019] [Indexed: 11/05/2022] Open
Abstract
Temozolomide (TMZ) is an alkylating agent commonly used as a first‑line treatment for high‑grade glioblastoma. However, TMZ has short half‑life and frequently induces tumor resistance, which can limit its therapeutic efficiency. In the present study, it was hypothesized that combined treatment with TMZ and acteoside has synergistic effects in glioblastoma therapy. Using cell viability and wound‑healing assays, it was determined that this treatment regimen reduced cell viability and migration to a greater extent than either TMZ or acteoside alone. Following previous reports that TMZ affected autophagy in glioma cells, the present study examined the effects of TMZ + acteoside combination treatment on apoptosis and autophagy. The TMZ + acteoside combination treatment increased the cleavage of caspase‑3 and levels of B‑cell lymphoma 2 (Bcl‑2)‑associated X protein and phosphorylated p53, and decreased the level of Bcl‑2. The combination treatment increased microtubule‑associated protein 1 light chain 3 and apoptosis‑related gene expression. It was also determined that TMZ + acteoside induced apoptosis and autophagy through the mitogen‑activated protein kinase signaling pathway. These findings suggest that acteoside has beneficial effects on TMZ‑based glioblastoma therapy.
Collapse
Affiliation(s)
- Tae Woong Hwang
- Department of Medical Science, School of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Dong Hun Kim
- Department of Medical Science, School of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Da Bi Kim
- Department of Medical Science, School of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Tae Won Jang
- Department of Medicinal Plant Resources, Andong National University, Andong, Gyeongsangbuk 36729, Republic of Korea
| | - Gun-Hwa Kim
- Drug and Disease Target Team, Division of Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, Chungcheong 28119, Republic of Korea
| | - Minho Moon
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea
| | - Kyung Ah Yoon
- Department of Clinical Laboratory Science, Daejeon Health Sciences College, Daejeon 34504, Republic of Korea
| | - Dae Eun Choi
- Department of Nephrology, School of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Jae Ho Park
- Department of Pharmaceutical Science, Jungwon University, Geosan, Chungbuk 28024, Republic of Korea
| | - Jwa-Jin Kim
- Department of Medical Science, School of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| |
Collapse
|
19
|
Zhang Y, Yuan Y, Wu H, Xie Z, Wu Y, Song X, Wang J, Shu W, Xu J, Liu B, Wan L, Yan Y, Ding X, Shi X, Pan Y, Li X, Yang J, Zhao X, Wang L. Effect of verbascoside on apoptosis and metastasis in human oral squamous cell carcinoma. Int J Cancer 2018. [DOI: 10.1002/ijc.31378] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Yaqin Zhang
- Department of Biochemical Molecular, School of Basic Medical Sciences; Nanjing Medical University; Nanjing China
| | - Yi Yuan
- Jiangsu Key Laboratory of Oral Diseases; Nanjing Medical University; Nanjing China
- Institute of Stomatology; Nanjing Medical University; Nanjing China
| | - Heming Wu
- Institute of Stomatology; Nanjing Medical University; Nanjing China
| | - Zhuoying Xie
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering; Southeast University; Nanjing China
| | - Yunong Wu
- Institute of Stomatology; Nanjing Medical University; Nanjing China
| | - Xiaomeng Song
- Institute of Stomatology; Nanjing Medical University; Nanjing China
| | - Jingjing Wang
- Department of Biochemical Molecular, School of Basic Medical Sciences; Nanjing Medical University; Nanjing China
| | - Wei Shu
- Stomatology Department; Jiangsu Provincial Hospital of Traditional Chinese Medicine
| | - Junyong Xu
- Institute of Stomatology; Nanjing Medical University; Nanjing China
| | - Bin Liu
- Department of Biomedical Engineering, School of Basic Medical Sciences; Nanjing Medical University; Nanjing China
| | - Linzhong Wan
- Institute of Stomatology; Nanjing Medical University; Nanjing China
| | - Yanan Yan
- Institute of Stomatology; Nanjing Medical University; Nanjing China
| | - Xu Ding
- Institute of Stomatology; Nanjing Medical University; Nanjing China
| | - Xinghui Shi
- Institute of Stomatology; Nanjing Medical University; Nanjing China
| | - Yongchu Pan
- Institute of Stomatology; Nanjing Medical University; Nanjing China
| | - Xiaokang Li
- Jiangsu Key Laboratory of Oral Diseases; Nanjing Medical University; Nanjing China
- Reproductive Medicine Center; The University of Hong Kong-Shenzhen Hospital; China
| | - Jianrong Yang
- Institute of Stomatology; Nanjing Medical University; Nanjing China
| | - Xiaohui Zhao
- Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources; Northwest Institute of Plateau Biology, Chinese Academy of Sciences; Xining China
| | - Lin Wang
- Jiangsu Key Laboratory of Oral Diseases; Nanjing Medical University; Nanjing China
- Institute of Stomatology; Nanjing Medical University; Nanjing China
| |
Collapse
|
20
|
Rajagopal C, Lankadasari MB, Aranjani JM, Harikumar KB. Targeting oncogenic transcription factors by polyphenols: A novel approach for cancer therapy. Pharmacol Res 2018; 130:273-291. [PMID: 29305909 DOI: 10.1016/j.phrs.2017.12.034] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 11/30/2017] [Accepted: 12/31/2017] [Indexed: 02/06/2023]
Abstract
Inflammation is one of the major causative factor of cancer and chronic inflammation is involved in all the major steps of cancer initiation, progression metastasis and drug resistance. The molecular mechanism of inflammation driven cancer is the complex interplay between oncogenic and tumor suppressive transcription factors which include FOXM1, NF-kB, STAT3, Wnt/β- Catenin, HIF-1α, NRF2, androgen and estrogen receptors. Several products derived from natural sources modulate the expression and activity of multiple transcription factors in various tumor models as evident from studies conducted in cell lines, pre-clinical models and clinical samples. Further combination of these natural products along with currently approved cancer therapies added an additional advantage and they considered as promising targets for prevention and treatment of inflammation and cancer. In this review we discuss the application of multi-targeting natural products by analyzing the literature and future directions for their plausible applications in drug discovery.
Collapse
Affiliation(s)
- Chitra Rajagopal
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, Kerala, India
| | - Manendra Babu Lankadasari
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, Kerala, India
| | - Jesil Mathew Aranjani
- Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - K B Harikumar
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, Kerala, India.
| |
Collapse
|
21
|
Li S, Wang Z, Yang Y, Yang S, Yao C, Liu K, Cui S, Zou Q, Sun H, Guo G. Lachnospiraceae shift in the microbial community of mice faecal sample effects on water immersion restraint stress. AMB Express 2017; 7:82. [PMID: 28417435 PMCID: PMC5393979 DOI: 10.1186/s13568-017-0383-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 04/05/2017] [Indexed: 02/07/2023] Open
Abstract
Stress, including both psychological and physical stimulation, can cause changes in the microbiota and mucosal function of the gastrointestinal system. There are few research studies available about the faecal microbiota changes after stress, such as water immersion restraint stress (WIRS). Therefore, in this study, we focused on analysing the composition changes of faecal microbiota in WIRS mice. The WIRS model, in which Blab/c mice were immersed in 21 ± 2 °C water for 4 h each day for 14 days, was established. Behavioural changes, the serum levels of corticosterone, IFN-γ and IL-17 and gastric mucosal injury were also assessed. Ten faecal microbiota samples were detected by Illumina Miseq sequencing of the 16S rRNA genes from 367205 characterised sequences. Finally, we find significant differences in the faecal microbiota composition between the control and the WIRS groups. There was an obvious increase in Lachnospiraceae in the WIRS mice (p = 0.0286, p < 0.05), which is associated with human diseases, such as ulcerative colitis, Crohn’s and celiac disease. Our research indicates that stress changes in the faecal microbiota. These results suggest that observing shifts of the intestinal microbiota is a promising method to explore the mechanism of the stress associated with gastrointestinal diseases and to provide us with a better understanding of the relationship between the microbiota and disease.
Collapse
|
22
|
Awoyemi OV, Okotie UJ, Oyagbemi AA, Omobowale TO, Asenuga ER, Ola-Davies OE, Ogunpolu BS. Cobalt chloride exposure dose-dependently induced hepatotoxicity through enhancement of cyclooxygenase-2 (COX-2)/B-cell associated protein X (BAX) signaling and genotoxicity in Wistar rats. ENVIRONMENTAL TOXICOLOGY 2017; 32:1899-1907. [PMID: 28303633 DOI: 10.1002/tox.22412] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 02/17/2017] [Accepted: 02/21/2017] [Indexed: 06/06/2023]
Abstract
Cobalt chloride (CoCl2 ) is one of the many environmental contaminants, used in numerous industrial sectors. It is a pollutant with deadly toxicological consequences both in developing and developed countries. We investigated toxicological impact of CoCl2 on hepatic antioxidant status, apoptosis, and genotoxicity. Forty Wistar rats were divided into four groups, 10 rats per group: Group 1 served as control and received clean tap water orally; Group 2 received CoCl2 solution (150 mg/L); Group 3 received CoCl2 solution (300 mg/L); and Group 4 received CoCl2 (600 mg/L) in drinking water for 7 days, respectively. Exposure of rats to CoCl2 led to a significant decline in hepatic antioxidant enzymes together with significant increase in markers of oxidative stress. Immunohistochemistry revealed dose-dependent increase in cyclooxygenase-2 and BAX expressions together with increased frequency of Micronucleated Polychromatic Erythrocytes. Combining all, CoCl2 administration led to hepatic damage through induction of oxidative stress, inflammation, and apoptosis.
Collapse
Affiliation(s)
| | - Ufuoma Jowafe Okotie
- Federal College of Animal Health and Production Technology, Moor Plantation, Ibadan, Nigeria
| | - Ademola Adetokunbo Oyagbemi
- Department of Veterinary Physiology, Biochemistry and Pharmacology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Temidayo Olutayo Omobowale
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ebunoluwa Racheal Asenuga
- Department of Veterinary Biochemistry, Faculty of Veterinary Medicine, University of Benin, Benin, Nigeria
| | - Olufunke Eunice Ola-Davies
- Department of Veterinary Physiology, Biochemistry and Pharmacology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Blessing Seun Ogunpolu
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|