1
|
Ju IJ, Tsai BCK, Kuo WW, Kuo CH, Lin YM, Hsieh DJY, Pai PY, Huang SE, Lu SY, Lee SD, Huang CY. Rhodiola and Salidroside Attenuate Oxidative Stress-Triggered H9c2 Cardiomyoblast Apoptosis Through IGF1R-Induced ERK1/2 Activation. ENVIRONMENTAL TOXICOLOGY 2024; 39:5150-5161. [PMID: 39109685 DOI: 10.1002/tox.24372] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/15/2024] [Accepted: 06/08/2024] [Indexed: 10/17/2024]
Abstract
Oxidative stress is a pivotal factor in the pathogenesis of various cardiovascular diseases. Rhodiola, a traditional Chinese medicine, is recognized for its potent antioxidant properties. Salidroside, a phenylpropanoid glycoside derived from Rhodiola rosea, has shown remarkable antioxidant capabilities. This study aimed to elucidate the potential protective mechanisms of Rhodiola and salidroside against H2O2-induced cardiac apoptosis in H9c2 cardiomyoblast cells. H9c2 cells were exposed to H2O2 for 4 h, and subsequently treated with Rhodiola or salidroside for 24 h. Cell viability and apoptotic pathways were assessed. The involvement of insulin-like growth factor 1 receptor (IGF1R) and the activation of extracellular regulated protein kinases 1/2 (ERK1/2) were investigated. H2O2 (100 μM) exposure significantly induced cardiac apoptosis in H9c2 cells. However, treatment with Rhodiola (12.5, 25, and 50 μg/mL) and salidroside (0.1, 1, and 10 nM) effectively attenuated H2O2-induced cytotoxicity and apoptosis. This protective effect was associated with IGF1R-activated phosphorylation of ERK1/2, leading to the inhibition of Fas-dependent proteins, HIF-1α, Bax, and Bak expression in H9c2 cells. The images from hematoxylin and eosin staining and immunofluorescence assays also revealed the protective effects of Rhodiola and salidroside in H9c2 cells against oxidative damage. Our findings suggest that Rhodiola and salidroside possess antioxidative properties that mitigate H2O2-induced apoptosis in H9c2 cells. The protective mechanisms involve the activation of IGF1R and subsequent phosphorylation of ERK1/2. These results propose Rhodiola and salidroside as potential therapeutic agents for cardiomyocyte cytotoxicity and apoptosis induced by oxidative stress in heart diseases. Future studies may explore their clinical applications in cardiac health.
Collapse
Affiliation(s)
- I-Ju Ju
- Division of General Medicine, Department of Medical Education, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Bruce Chi-Kang Tsai
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung, Taiwan
- Ph.D. Program for Biotechnology Industry, China Medical University, Taichung, Taiwan
- School of Pharmacy, China Medical University, Taichung, Taiwan
| | - Chia-Hua Kuo
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan
- Institute of Sports Sciences, University of Taipei, Taipei, Taiwan
- Department of Kinesiology and Health Science, College of William and Mary, Williamsburg, VA, USA
- School of Physical Education and Sports Science, Soochow University, Suzhou, Jiangsu, China
| | - Yueh-Min Lin
- Department of Pathology, Changhua Christian Hospital, Changhua, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Dennis Jine-Yuan Hsieh
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Pei-Ying Pai
- Division of Cardiovascular Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
- School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Shang-En Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Graduate Institute of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Shang-Yeh Lu
- Division of Cardiovascular Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
- School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Shin-Da Lee
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Rehabilitation Medicine, Weifang Medical University, Weifang, Shandong, China
- Department of Physical Therapy, Graduate Institute of Rehabilitation Science, China Medical University, Taichung, Taiwan
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan
| |
Collapse
|
2
|
Luo Q, Luo L, Zhao J, Wang Y, Luo H. Biological potential and mechanisms of Tea's bioactive compounds: An Updated review. J Adv Res 2024; 65:345-363. [PMID: 38056775 PMCID: PMC11519742 DOI: 10.1016/j.jare.2023.12.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/28/2023] [Accepted: 12/02/2023] [Indexed: 12/08/2023] Open
Abstract
BACKGROUND Tea (Camellia sinensis) has a rich history and is widely consumed across many countries, and is categorized into green tea, white tea, oolong tea, yellow tea, black tea, and dark tea based on the level of fermentation. Based on a review of previous literature, the commonly recognized bioactive substances in tea include tea polyphenols, amino acids, polysaccharides, alkaloids, terpenoids, macro minerals, trace elements, and vitamins, which have been known to have various potential health benefits, such as anticancer, antioxidant, anti-inflammatory, anti-diabetes, and anti-obesity properties, cardiovascular protection, immune regulation, and control of the intestinal microbiota. Most studies have only pointed out the characteristics of tea's bioactivities, so a comprehensive summary of the pharmacological characteristics and mechanisms of tea's bioactivities and their use risks are vital. AIM OF REVIEW This paper aims to summarize tea's bioactive substances of tea and their pharmacological characteristics and mechanisms, providing a scientific basis for the application of bioactive substances in tea and outlining future research directions for the study of bioactive substances in tea. KEY SCIENTIFIC CONCEPTS OF REVIEW This review summarizes the main biologically active substances, pharmacological effects, and mechanisms and discusses the potential risks. It may help researchers grasp more comprehensive progress in the study of tea bioactive substances to further promote the application of tea as a natural bioactive substance in the medical field.
Collapse
Affiliation(s)
- Qiaoxian Luo
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, PR China
| | - Longbiao Luo
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, PR China
| | - Jinmin Zhao
- College of Pharmacy, Guangxi Medical University, Nanning, 530021, PR China
| | - Yitao Wang
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, PR China.
| | - Hua Luo
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, PR China; College of Pharmacy, Guangxi Medical University, Nanning, 530021, PR China.
| |
Collapse
|
3
|
Zheng X, Xue Q, Wang Y, Lu L, Pan Y, Xu J, Zhang J. A. officinarum Hance - P. cablin (Blanco) Benth drug pair improves oxidative stress, intracellular Ca 2+ concentrations and apoptosis by inhibiting the AGE/RAGE axis to ameliorate diabetic gastroparesis: In vitro and in vivo studies. JOURNAL OF ETHNOPHARMACOLOGY 2024; 324:117832. [PMID: 38280660 DOI: 10.1016/j.jep.2024.117832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 01/24/2024] [Indexed: 01/29/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Alpinia officinarum Hance is a perennial natural medicine herbivorous plant, has been used in the management of treat stomach pain and diabetes, it is abundantly cultivated in Qiongzhong, Baisha and other places. P. cablin (Blanco) Benth, one of the most important traditional Chinese plants, which plays functions in antioxidant and gastrointestinal regulation, has been extensively planted in Hainan, Guangdong and other regions. AIM OF THE STUDY In this study, we investigated the role and underlying molecular mechanism of AP on diabetic gastroparesis (DGP) in vitro and in vivo. MATERIALS AND METHODS In this study, using ultra-high performance liquid chromatography-mass spectrometry/mass spectrometry (UPLC-MS/MS) to identify active compounds in A. officinarum Hance-P. cablin (Blanco) Benth drug pair (AP). Molecular docking were utilized to explore the potential mechanism of AP treatment of DGP. In in vitro assays, gastric smooth muscle cells (GSMCs) were treated with 35 mM glucose to promote apoptosis and construct the DGP model, which was treated with different concentrations of AP. Furthermore, transfection technology was used to overexpress RAGE in GSMCs and elucidate the underlying mechanisms of alleviation of DGP by AP. RESULTS Using UPLC-MS/MS analysis, nine components of AP were identified. We found that AP effectively blocked the increase in apoptosis, oxidative stress, and intracellular Ca2+ concentrations. For in vivo experiments, mice were fed with a high-fat irregular diet to construct DGP model, and AP was co-administered via oral gavage daily to prevent the development of DGP. Compared with DGP mice, AP significantly decreased fasting blood glucose levels and increased gastric emptying levels. Consistent with in vitro experiments, AP also considerably decreased the increase in oxidative stress in DGP mice. Mechanistically, AP alleviates apoptosis and DGP by decreasing oxidative stress and intracellular Ca2+ concentrations via the inhibition of the AGE/RAGE axis. CONCLUSIONS Collectively, this study has established that AP can improve DGP, and the mechanism may be related to the inhibition the AGE/RAGE axis to mitigate apoptosis and DGP. To summarize, this study provides a novel supplementary strategy for DGP treatment.
Collapse
Affiliation(s)
- Xiuwen Zheng
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory of R & D on Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hepatobiliary and Liver Transplantation Department of Hainan Digestive Disease Center of The Second Affiliated Hospital of Hainan Medical University, Engineering Research Center of Tropical Medicine of Ministry of Education, The First Affiliated Hospital, Hainan Medical University, Haikou, China.
| | - Qianrong Xue
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory of R & D on Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hepatobiliary and Liver Transplantation Department of Hainan Digestive Disease Center of The Second Affiliated Hospital of Hainan Medical University, Engineering Research Center of Tropical Medicine of Ministry of Education, The First Affiliated Hospital, Hainan Medical University, Haikou, China.
| | - Yinghuan Wang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory of R & D on Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hepatobiliary and Liver Transplantation Department of Hainan Digestive Disease Center of The Second Affiliated Hospital of Hainan Medical University, Engineering Research Center of Tropical Medicine of Ministry of Education, The First Affiliated Hospital, Hainan Medical University, Haikou, China.
| | - Lu Lu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory of R & D on Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hepatobiliary and Liver Transplantation Department of Hainan Digestive Disease Center of The Second Affiliated Hospital of Hainan Medical University, Engineering Research Center of Tropical Medicine of Ministry of Education, The First Affiliated Hospital, Hainan Medical University, Haikou, China.
| | - Yipeng Pan
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory of R & D on Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hepatobiliary and Liver Transplantation Department of Hainan Digestive Disease Center of The Second Affiliated Hospital of Hainan Medical University, Engineering Research Center of Tropical Medicine of Ministry of Education, The First Affiliated Hospital, Hainan Medical University, Haikou, China.
| | - Jian Xu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory of R & D on Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hepatobiliary and Liver Transplantation Department of Hainan Digestive Disease Center of The Second Affiliated Hospital of Hainan Medical University, Engineering Research Center of Tropical Medicine of Ministry of Education, The First Affiliated Hospital, Hainan Medical University, Haikou, China.
| | - Junqing Zhang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory of R & D on Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hepatobiliary and Liver Transplantation Department of Hainan Digestive Disease Center of The Second Affiliated Hospital of Hainan Medical University, Engineering Research Center of Tropical Medicine of Ministry of Education, The First Affiliated Hospital, Hainan Medical University, Haikou, China.
| |
Collapse
|
4
|
Wu T, Zhu W, Chen L, Jiang T, Dong Y, Wang L, Tong X, Zhou H, Yu X, Peng Y, Wang L, Xiao Y, Zhong T. A review of natural plant extracts in beverages: Extraction process, nutritional function, and safety evaluation. Food Res Int 2023; 172:113185. [PMID: 37689936 DOI: 10.1016/j.foodres.2023.113185] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/19/2023] [Accepted: 06/27/2023] [Indexed: 09/11/2023]
Abstract
The demand for foods and beverages with therapeutic and functional features has increased as a result of rising consumer awareness of health and wellness. In natural, plants are abundant, widespread, and inexpensive, in addition to being rich in bioactive components that are beneficial to health. The bioactive substances contained in plants include polyphenols, polysaccharides, flavonoids, aromatics, aliphatics, terpenoids, etc., which have rich active functions and application potential for plant-based beverages. In this review, various existing extraction processes and their advantages and disadvantages are introduced. The antioxidant, anti-inflammatory, intestinal flora regulation, metabolism regulation, and nerve protection effects of plant beverages are described. The biotoxicity and sensory properties of plant-based beverages are also summarized. With the diversification of the food industry and commerce, plant-based beverages may become a promising new category of health functional foods in our daily lives.
Collapse
Affiliation(s)
- Tong Wu
- Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao
| | - Wanying Zhu
- Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao
| | - Linyan Chen
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao
| | - Tao Jiang
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao
| | - Yuhe Dong
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao
| | - Letao Wang
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao
| | - Xinyang Tong
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao
| | - Hui Zhou
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Institute of Plant Resources, Dalian Minzu University, Dalian, China
| | - Xi Yu
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao
| | - Ye Peng
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao
| | - Ling Wang
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao
| | - Ying Xiao
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao
| | - Tian Zhong
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao.
| |
Collapse
|
5
|
Ouyang J, Peng Y, Gong Y. New Perspectives on Sleep Regulation by Tea: Harmonizing Pathological Sleep and Energy Balance under Stress. Foods 2022; 11:3930. [PMID: 36496738 PMCID: PMC9738644 DOI: 10.3390/foods11233930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 12/09/2022] Open
Abstract
Sleep, a conservative evolutionary behavior of organisms to adapt to changes in the external environment, is divided into natural sleep, in a healthy state, and sickness sleep, which occurs in stressful environments or during illness. Sickness sleep plays an important role in maintaining energy homeostasis under an injury and promoting physical recovery. Tea, a popular phytochemical-rich beverage, has multiple health benefits, including lowering stress and regulating energy metabolism and natural sleep. However, the role of tea in regulating sickness sleep has received little attention. The mechanism underlying tea regulation of sickness sleep and its association with the maintenance of energy homeostasis in injured organisms remains to be elucidated. This review examines the current research on the effect of tea on sleep regulation, focusing on the function of tea in modulating energy homeostasis through sickness sleep, energy metabolism, and damage repair in model organisms. The potential mechanisms underlying tea in regulating sickness sleep are further suggested. Based on the biohomology of sleep regulation, this review provides novel insights into the role of tea in sleep regulation and a new perspective on the potential role of tea in restoring homeostasis from diseases.
Collapse
Affiliation(s)
- Jin Ouyang
- Key Laboratory of Tea Science of Ministry of Education, Changsha 410128, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Changsha 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China
| | - Yuxuan Peng
- Key Laboratory of Tea Science of Ministry of Education, Changsha 410128, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Changsha 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China
- College of Physical Education, Hunan City University, Yiyang 413002, China
| | - Yushun Gong
- Key Laboratory of Tea Science of Ministry of Education, Changsha 410128, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Changsha 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
6
|
Lu SY, Hong WZ, Tsai BCK, Chang YC, Kuo CH, Mhone TG, Chen RJ, Kuo WW, Huang CY. Angiotensin II prompts heart cell apoptosis via AT1 receptor-augmented phosphatase and tensin homolog and miR-320-3p functions to enhance suppression of the IGF1R-PI3K-AKT survival pathway. J Hypertens 2022; 40:2502-2512. [PMID: 36093879 PMCID: PMC9640294 DOI: 10.1097/hjh.0000000000003285] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 07/21/2022] [Accepted: 07/21/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Hypertension is a severe public health risk factor worldwide. Elevated angiotensin II (Ang II) produced by the renin-angiotensin-aldosterone system can lead to hypertension and its complications. METHOD In this study, we addressed the cardiac-injury effects of Ang II and investigated the signaling mechanism induced by Ang II. Both H9c2 cardiomyoblast cells and neonatal rat cardiomyocytes were exposed to Ang II to observe hypertension-related cardiac apoptosis. RESULTS The results of western blotting revealed that Ang II significantly attenuated the IGF1R-PI3K-AKT pathway via the Ang II-AT1 receptor axis and phosphatase and tensin homolog expression. Furthermore, real-time PCR showed that Ang II also activated miR-320-3p transcription to repress the PI3K-Akt pathway. In the heart tissue of spontaneously hypertensive rats, activation of the IGF1R survival pathway was also reduced compared with that in Wistar-Kyoto rats, especially in aged spontaneously hypertensive rats. CONCLUSION Hence, we speculate that the Ang II-AT1 receptor axis induces both phosphatase and tensin homolog and miR-320-3p expression to downregulate the IGF1R-PI3K-AKT survival pathway and cause cell apoptosis in the heart.
Collapse
Affiliation(s)
- Shang-Yeh Lu
- Division of Cardiovascular Medicine, Department of Internal Medicine, China Medical University Hospital
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung
| | - Wei-Zhi Hong
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien
| | - Bruce Chi-Kang Tsai
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien
| | - Yu-Chun Chang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien
| | - Chia-Hua Kuo
- Laboratory of Exercise Biochemistry, Institute of Sports Sciences, University of Taipei
| | - Thomas G. Mhone
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung
| | - Ray-Jade Chen
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University
- PhD Program for Biotechnology Industry, China Medical University
| | - Chih-Yang Huang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| |
Collapse
|
7
|
Supplementation with Two New Standardized Tea Extracts Prevents the Development of Hypertension in Mice with Metabolic Syndrome. Antioxidants (Basel) 2022; 11:antiox11081573. [PMID: 36009292 PMCID: PMC9404781 DOI: 10.3390/antiox11081573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 12/20/2022] Open
Abstract
Hypertension is considered to be both a cardiovascular disease and a risk factor for other cardiovascular diseases, such as coronary ischemia or stroke. In many cases, hypertension occurs in the context of metabolic syndrome (MetS), a condition in which other circumstances such as abdominal obesity, dyslipidemia, and insulin resistance are also present. The high incidence of MetS makes necessary the search for new strategies, ideally of natural origin and with fewer side effects than conventional pharmacological treatments. Among them, the tea plant is a good candidate, as it contains several bioactive compounds such as caffeine, volatile terpenes, organic acids, and polyphenols with positive biological effects. The aim of this study was to assess whether two new standardized tea extracts, one of white tea (WTE) and the other of black and green tea (CTE), exert beneficial effects on the cardiovascular alterations associated with MetS. For this purpose, male C57/BL6J mice were fed a standard diet (Controls), a diet high in fats and sugars (HFHS), HFHS supplemented with 1.6% WTE, or HFHS supplemented with 1.6% CTE for 20 weeks. The chromatography results showed that CTE is more concentrated on gallic acid, xanthines and flavan-3-ols than WTE. In vivo, supplementation with WTE and CTE prevented the development of MetS-associated hypertension through improved endothelial function. This improvement was associated with a lower expression of proinflammatory and prooxidant markers, and—in the case of CTE supplementation—also with a higher expression of antioxidant enzymes in arterial tissue. In conclusion, supplementation with WTE and CTE prevents the development of hypertension in obese mice; as such, they could be an interesting strategy to prevent the cardiovascular disorders associated with MetS.
Collapse
|
8
|
A comprehensive review on bioavailability, safety and antidepressant potential of natural bioactive components from tea. Food Res Int 2022; 158:111540. [DOI: 10.1016/j.foodres.2022.111540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/12/2022] [Accepted: 06/18/2022] [Indexed: 11/22/2022]
|
9
|
Wang S, Zeng T, Zhao S, Zhu Y, Feng C, Zhan J, Li S, Ho CT, Gosslau A. Multifunctional health-promoting effects of oolong tea and its products. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2021.12.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
10
|
Lin HJ, Mahendran R, Huang HY, Chiu PL, Chang YM, Day CH, Chen RJ, Padma VV, Liang-Yo Y, Kuo WW, Huang CY. Aqueous extract of Solanum nigrum attenuates Angiotensin-II induced cardiac hypertrophy and improves cardiac function by repressing protein kinase C-ζ to restore HSF2 deSUMOlyation and Mel-18-IGF-IIR signaling suppression. JOURNAL OF ETHNOPHARMACOLOGY 2022; 284:114728. [PMID: 34634367 DOI: 10.1016/j.jep.2021.114728] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 10/05/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Solanum nigrum, commonly known as Makoi or black shade has been traditionally used in Asian countries and other regions of world to treat liver disorders, diarrhoea, inflammatory conditions, chronic skin ailments (psoriasis and ringworm), fever, hydrophobia, painful periods, eye diseases, etc. It has been observed that S. nigrum contains substances, like steroidal saponins, total alkaloid, steroid alkaloid, and glycoprotein, which show anti-tumor activity. However; there is no scientific evidence of the efficacy of S. nigrum in the treatment of cardiac hypertrophy. AIM To investigate the ability of S. nigrum to attenuate Angiotensin II - induced cardiac hypertrophy and improve cardiac function through the suppression of protein kinase PKC-ζ and Mel-18-IGF-IIR signaling leading to the restoration of HSF2 desumolyation. MATERIALS AND METHODS Cardiomyoblast cells (H9c2) were challenged with 100 nM Angiotensin-II (AngII) for 24 h and were then treated with different concentration of S.nigrum or Calphostin C for 24 h. The hypertrophic effect in cardiomyoblast cells were determined by immunofluorescence staining and the modulations in hypertrophic protein marker along with Protein Kinase C-ζ, MEL18, HSF2, and Insulin like growth factor II (IGFIIR), markers were analyzed by western blotting. In vivo experiments were performed using 12 week old male Wistar Kyoto rats (WKY) and Spontaneously hypertensive rats (SHR) separated into five groups. [1]Control WKY, [2] WKY -100 mg/kg of S.nigrum treatment, [3] SHR, [4] SHR-100 mg/kg of S.nigrum treatment, [5] SHR-300 mg/kg of S.nigrum treatment. S. nigrum was administered intraperitoneally for 8 week time interval. RESULTS Western blotting results indicate that S. nigrum significantly attenuates AngII induced cardiac hypertrophy. Furthermore, actin staining confirmed the ability of S. nigrum to ameliorate AngII induced cardiac hypertrophy. Moreover, S. nigrum administration suppressed the hypertrophic signaling mediators like Protein Kinase C-ζ, Mel-18, and IGFIIR in a dose-dependent manner and HSF2 activation (restore deSUMOlyation) that leads to downregulation of IGF-IIR expression. Additionally in vivo experiments demonstrate the reduced heart sizes of S. nigrum treated SHRs rats when compared to control WKY rats. CONCLUSION Collectively, the data reveals the cardioprotective effect of S. nigrum inhibiting PKC-ζ with alleviated IGF IIR level in the heart that profoundly remits cardiac hypertrophy for hypertension-induced heart failure.
Collapse
Affiliation(s)
- Hung-Jen Lin
- School of Post-Baccalaureate Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan; Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Ramasamy Mahendran
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Hsiang-Yen Huang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung City, 40402, Taiwan, ROC
| | - Ping-Ling Chiu
- Ept Douliu Chinese Medical Clinic, Douliu, Taiwan; 1PT Biotechnology Co., Ltd., Taichung, Taiwan
| | - Yung-Ming Chang
- 1PT Biotechnology Co., Ltd., Taichung, Taiwan; The School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung, Taiwan
| | - Cecilia Hsuan Day
- Department of Nursing, Mei Ho University, Pingguang Road, Pingtung, Taiwan
| | - Ray-Jade Chen
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - V Vijaya Padma
- Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Yang Liang-Yo
- Department of Physiology, School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan; Laboratory for Neural Repair, China Medical University Hospital, Taichung, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichuang, 406, Taiwan; Ph.D. Program for Biotechnology Industry, China Medical University, Taichuang, 406, Taiwan
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan; Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichuang, 406, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan; Department of Biotechnology, Asia University, Taichung, Taiwan; Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, 970, Taiwan.
| |
Collapse
|
11
|
Shibu MA, Lin YJ, Chiang CY, Lu CY, Goswami D, Sundhar N, Agarwal S, Islam MN, Lin PY, Lin SZ, Ho TJ, Tsai WT, Kuo WW, Huang CY. Novel anti-aging herbal formulation Jing Si displays pleiotropic effects against aging associated disorders. Pharmacotherapy 2022; 146:112427. [DOI: 10.1016/j.biopha.2021.112427] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/02/2021] [Accepted: 11/12/2021] [Indexed: 01/07/2023]
|
12
|
Hsu Y, Huang K, Cheng K. Resuscitating the Field of Cardiac Regeneration: Seeking Answers from Basic Biology. Adv Biol (Weinh) 2021; 6:e2101133. [PMID: 34939372 DOI: 10.1002/adbi.202101133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/02/2021] [Indexed: 11/09/2022]
Abstract
Heart failure (HF) is one of the leading causes for hospital admissions worldwide. HF patients are classified based on the chronic changes in left ventricular ejection fraction (LVEF) as preserved (LVEF ≥ 50%), reduced (LVEF ≤ 40%), or mid-ranged (40% < LVEF < 50%) HFs. Treatments nowadays can prevent HFrEF progress, whereas only a few of the treatments have been proven to be effective in improving the survival of HFpEF. In this review, numerous mediators involved in the pathogenesis of HF are summarized. The regional upstream signaling and their diagnostic and therapeutic potential are also discussed. Additionally, the recent challenges and development in cardiac regenerative therapy that hold opportunities for future research and clinical translation are discussed.
Collapse
Affiliation(s)
- Yaching Hsu
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA.,Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill & North Carolina State University, Raleigh, NC, 27607, USA
| | - Ke Huang
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA.,Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill & North Carolina State University, Raleigh, NC, 27607, USA
| | - Ke Cheng
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA.,Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill & North Carolina State University, Raleigh, NC, 27607, USA
| |
Collapse
|
13
|
Zhang J, Cui H, Xue J, Wang W, Wang W, Le T, Chen L, Engelhardt UH, Jiang H. Adsorption Equilibrium and Thermodynamics of Tea Theasinensins on HP20-A High-Efficiency Macroporous Adsorption Resin. Foods 2021; 10:2971. [PMID: 34945522 PMCID: PMC8700908 DOI: 10.3390/foods10122971] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/19/2021] [Accepted: 11/29/2021] [Indexed: 01/26/2023] Open
Abstract
The separation and preparation of theasinensins have been hot spots in the field of tea chemistry in recent years. However, information about the mechanism of efficient adsorption of tea theasinensins by resin has been limited. In this study, the adsorption equilibrium and thermodynamics of tea theasinensins by a high-efficiency macroporous adsorption HP20 resin were evaluated. The adsorption of theasinensin A, theasinensin B, and theasinensin C on HP20 resin were spontaneous physical reaction processes. Adsorption processes were exothermic processes, and lowering the temperature was beneficial to the adsorption. The Freundlich model was more suitable to describe the adsorption of tea theasinensins. The adsorption equilibrium constant and maximum adsorption capacity of theasinensin A were significantly higher than theasinensin B and theasinensin C, which indicated that the adsorption affinity of theasinensin A was stronger than that of theasinensin B and theasinensin C. The phenolic hydroxyl groups and intramolecular hydrogen bonds of theasinensin A were more than those of theasinensin B and theasinensin C, which might be the key to the resin's higher adsorption capacity for theasinensin A. The HP20 resin was very suitable for efficient adsorption of theasinensin A.
Collapse
Affiliation(s)
- Jianyong Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (J.Z.); (J.X.); (W.W.); (W.W.); (T.L.)
| | - Hongchun Cui
- Tea Research Institute, Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, China;
| | - Jinjin Xue
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (J.Z.); (J.X.); (W.W.); (W.W.); (T.L.)
| | - Wei Wang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (J.Z.); (J.X.); (W.W.); (W.W.); (T.L.)
| | - Weiwei Wang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (J.Z.); (J.X.); (W.W.); (W.W.); (T.L.)
| | - Ting Le
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (J.Z.); (J.X.); (W.W.); (W.W.); (T.L.)
| | - Lin Chen
- Institute of Tea Science, Zhejiang University, Hangzhou 310058, China;
| | - Ulrich H. Engelhardt
- Institute of Food Chemistry, Technische Universität Braunschweig, 38106 Braunschweig, Germany;
| | - Heyuan Jiang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (J.Z.); (J.X.); (W.W.); (W.W.); (T.L.)
| |
Collapse
|
14
|
Pharmacology of Catechins in Ischemia-Reperfusion Injury of the Heart. Antioxidants (Basel) 2021; 10:antiox10091390. [PMID: 34573022 PMCID: PMC8465198 DOI: 10.3390/antiox10091390] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 11/17/2022] Open
Abstract
Catechins represent a group of polyphenols that possesses various beneficial effects in the cardiovascular system, including protective effects in cardiac ischemia-reperfusion (I/R) injury, a major pathophysiology associated with ischemic heart disease, myocardial infarction, as well as with cardioplegic arrest during heart surgery. In particular, catechin, (−)-epicatechin, and epigallocatechin gallate (EGCG) have been reported to prevent cardiac myocytes from I/R-induced cell damage and I/R-associated molecular changes, finally, resulting in improved cell viability, reduced infarct size, and improved recovery of cardiac function after ischemic insult, which has been widely documented in experimental animal studies and cardiac-derived cell lines. Cardioprotective effects of catechins in I/R injury were mediated via multiple molecular mechanisms, including inhibition of apoptosis; activation of cardioprotective pathways, such as PI3K/Akt (RISK) pathway; and inhibition of stress-associated pathways, including JNK/p38-MAPK; preserving mitochondrial function; and/or modulating autophagy. Moreover, regulatory roles of several microRNAs, including miR-145, miR-384-5p, miR-30a, miR-92a, as well as lncRNA MIAT, were documented in effects of catechins in cardiac I/R. On the other hand, the majority of results come from cell-based experiments and healthy small animals, while studies in large animals and studies including comorbidities or co-medications are rare. Human studies are lacking completely. The dosages of compounds also vary in a broad scale, thus, pharmacological aspects of catechins usage in cardiac I/R are inconclusive so far. Therefore, the aim of this focused review is to summarize the most recent knowledge on the effects of catechins in cardiac I/R injury and bring deep insight into the molecular mechanisms involved and dosage-dependency of these effects, as well as to outline potential gaps for translation of catechin-based treatments into clinical practice.
Collapse
|
15
|
Role of Herbal Teas in Regulating Cellular Homeostasis and Autophagy and Their Implications in Regulating Overall Health. Nutrients 2021; 13:nu13072162. [PMID: 34201882 PMCID: PMC8308238 DOI: 10.3390/nu13072162] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/19/2021] [Accepted: 06/20/2021] [Indexed: 02/06/2023] Open
Abstract
Tea is one of the most popular and widely consumed beverages worldwide, and possesses numerous potential health benefits. Herbal teas are well-known to contain an abundance of polyphenol antioxidants and other ingredients, thereby implicating protection and treatment against various ailments, and maintaining overall health in humans, although their mechanisms of action have not yet been fully identified. Autophagy is a conserved mechanism present in organisms that maintains basal cellular homeostasis and is essential in mediating the pathogenesis of several diseases, including cancer, type II diabetes, obesity, and Alzheimer’s disease. The increasing prevalence of these diseases, which could be attributed to the imbalance in the level of autophagy, presents a considerable challenge in the healthcare industry. Natural medicine stands as an effective, safe, and economical alternative in balancing autophagy and maintaining homeostasis. Tea is a part of the diet for many people, and it could mediate autophagy as well. Here, we aim to provide an updated overview of popular herbal teas’ health-promoting and disease healing properties and in-depth information on their relation to autophagy and its related signaling molecules. The present review sheds more light on the significance of herbal teas in regulating autophagy, thereby improving overall health.
Collapse
|
16
|
Kirenol Inhibits B[a]P-Induced Oxidative Stress and Apoptosis in Endothelial Cells via Modulation of the Nrf2 Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5585303. [PMID: 33981385 PMCID: PMC8088375 DOI: 10.1155/2021/5585303] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/18/2021] [Accepted: 04/15/2021] [Indexed: 12/20/2022]
Abstract
Atherosclerosis is a persistent inflammatory disorder specified by the dysfunction of the arteries, the world's leading cause of cardiovascular diseases. We sought to determine the effectiveness of KRL in B[a]P-induced oxidative stress and programmed cell death in endothelial cells. Western blotting, real-time PCR, DCFH2-DA, and TUNEL staining were performed to detect pPI3K, pAKT, Nrf2, HO-1, NQO-1, Bcl2, Bax, and caspase-3 on the HUVECs. Through the pretreatment of KRL, a drastic enhancement was observed in the cell viability of HUVECs, whereas DNA damage and generation of reactive oxygen species induced by B[a]P was suppressed. KRL's potential use as an antioxidant was observed to have a direct correlation with an antioxidant gene's augmented expression and the nuclear translocation activation of Nrf2, even during the event when B[a]P was found to be absent. In addition, this study proved that the signaling cascades of PI3K/AKT mediated Nrf2 translocation. Activation of suppressed nuclear Nrf2 and reduced antioxidant genes across cells interacting with an LY294002 confirmed this phenomenon. In addition, knockdown of Nrf2 by Nrf2-siRNA transfection abolished the protective effects of KRL on HUVECs cells against oxidative damage. Finally, the expression of apoptotic proteins also supported the hypothesis that KRL may inhibit endothelial dysfunction. This study showed that KRL potentially prevents B[a]P-induced redox imbalance in the vascular endothelium by inducing the Nrf2 signaling via the PI3K/AKT pathway.
Collapse
|
17
|
Koay KP, Tsai BCK, Kuo CH, Kuo WW, Luk HN, Day CH, Chen RJ, Chen MYC, Padma VV, Huang CY. Hyperglycemia-Induced Cardiac Damage Is Alleviated by Heat-Inactivated Lactobacillus reuteri GMNL-263 via Activation of the IGF1R Survival Pathway. Probiotics Antimicrob Proteins 2021; 13:1044-1053. [PMID: 33527184 DOI: 10.1007/s12602-021-09745-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2021] [Indexed: 12/25/2022]
Abstract
Diabetes-induced cardiomyocyte apoptosis is one of the major causes of mortality in patients with diabetes. Numerous studies have indicated the beneficial effects of Lactobacillus reuteri GMNL-263. However, the protective effect of Lactobacillus reuteri GMNL-263 in cardiac damage associated with diabetes remains poorly understood. In this study, we aimed to investigate the protective effect of Lactobacillus reuteri GMNL-263 on cardiomyocytes in diabetic rats. Five-week-old male Wistar rats were categorized into normal control group, diabetes group (55 mg/kgw STZ-induced diabetes via intraperitoneal injection), and diabetic animals treated with Lactobacillus reuteri GMNL-263 (109 CFU/rat/day, oral administration for 4 weeks). The results were presented that oral administration of a high dose of Lactobacillus reuteri GMNL-263 in diabetic rats activated IGF1R cell survival pathways to decrease the Fas-dependent and mitochondrial-dependent apoptotic pathways induced by hyperglycemia. We found that GMNL-263 significantly attenuated cell apoptosis via the IGF1R survival pathway in diabetic rats. The findings of this study suggest that GMNL-263 treatment maybe an effective therapeutic approach for the prevention of cardiac apoptosis in patients with diabetes.
Collapse
Affiliation(s)
- Ker-Ping Koay
- Department of Anesthesia, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Bruce Chi-Kang Tsai
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Chia-Hua Kuo
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung, Taiwan.,Ph.D. Program for Biotechnology Industry, China Medical University, Taichung, Taiwan
| | - Hsiang-Ning Luk
- Department of Anesthesia, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | | | - Ray-Jade Chen
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Michael Yu-Chih Chen
- Department of Cardiology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - V Vijaya Padma
- Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan. .,Department of Biological Science and Technology, Asia University, Taichung, Taiwan. .,Center of General Education, Tzu Chi University of Science and Technology, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan. .,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan. .,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.
| |
Collapse
|
18
|
Chang YM, Shibu MA, Chen CS, Tamilselvi S, Tsai CT, Tsai CC, Kumar KA, Lin HJ, Mahalakshmi B, Kuo WW, Huang CY. Adipose derived mesenchymal stem cells along with Alpinia oxyphylla extract alleviate mitochondria-mediated cardiac apoptosis in aging models and cardiac function in aging rats. JOURNAL OF ETHNOPHARMACOLOGY 2021; 264:113297. [PMID: 32841691 DOI: 10.1016/j.jep.2020.113297] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 08/04/2020] [Accepted: 08/18/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Fructus (Alpinia oxyphylla MIQ) known as Yi Zhi Ren in Chinese medicine has been used as a food and herbal medicinal substance in China for centuries; in the year 2015 Chinese Pharmacopoeia Commission reported water extracts of Alpinia oxyphyllae Fructus (AoF) as a popular medication for aging-related diseases in the form of tonic, aphrodisiac, and health-care food in south China. AIM OF THE STUDY Adipose mesenchymal stem cells are physiologically and therapeutically associated with healthy vascular function and cardiac health. However aging conditions hinder stem cell function and increases the vulnerability to cardiovascular diseases. In this study, the effect of the anti-aging herbal medicine AoF to enhance the cardiac restorative function of adipose-derived mesenchymal stem cells (ADMSCs) in aging condition was investigated. MATERIALS AND METHODS Low dose (0.1 μM) Doxorubicin and D-galactose (150 mg/kg/day for 8 weeks) were used to respectively induce aging in vitro and in vivo. For In vivo studies, 20 week old WKY rats were divided into Control, Aging induced (AI), AI + AoF, AI + ADMSC, AI + AoF Oral + ADMSC, and AI + AoF treated ADMSC groups. AoF (100 mg/kg/day) was administered orally and ADMSCs (1 × 106 cells) were injected (IV). RESULTS AoF preconditioned ADMSC showed reduction in low dose Dox induced mitochondrial apoptosis and improved DNA replication in H9c2 cardiomyoblasts. In vivo experiments confirmed that both a combined treatment with AoF-ADMSCs and with AoF preconditioned ADMSCs reduced aging associated cardiac damages which was correlated with reduction in apoptosis and expression of senescence markers (P21 and β-gal). Survival and longevity markers were upregulated up on combined administration of AoF and ADMSCs. The cardiac performance of the aging-induced rats was improved significantly in the treatment groups. AoF along with ADMSCs might activate paracrine factors to restore the performance of an aging heart. CONCLUSION Hence, we propose that ADMSCs combined with AoF have promising therapeutic properties in the treatment of healthy aging heart.
Collapse
Affiliation(s)
- Yung-Ming Chang
- The School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung, 840, Taiwan; Chinese Medicine Department, E-DA Hospital, Kaohsiung, 824, Taiwan; 1PT Biotechnology Co., Ltd., Taichung, 433, Taiwan
| | - Marthandam Asokan Shibu
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, 970, Taiwan
| | - Chih-Sheng Chen
- Graduate Institute of Chinese Medicine, China Medical University, Taiwan; Division of Chinese Medicine Asia University Hospital Taichung, Taiwan
| | - Shanmugam Tamilselvi
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, 970, Taiwan
| | | | - Chin-Chuan Tsai
- The School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung, 840, Taiwan; Chinese Medicine Department, E-DA Hospital, Kaohsiung, 824, Taiwan
| | - Kannan Ashok Kumar
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, 970, Taiwan
| | - Hung-Jen Lin
- Department of Chinese Medicine, China Medical University Hospital, Taichung, 40447, Taiwan; School of Post-Baccalaureate Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - B Mahalakshmi
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, 970, Taiwan; Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 404, Taiwan; Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, 970, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, 404, Taiwan; Department of Biotechnology, Asia University, Taichung, 413, Taiwan.
| |
Collapse
|
19
|
Dolanbay T, Makav M, Gul HF, Karakurt E. The effect of diclofenac sodium intoxication on the cardiovascular system in rats. Am J Emerg Med 2020; 46:560-566. [PMID: 33272872 DOI: 10.1016/j.ajem.2020.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 11/11/2020] [Indexed: 10/23/2022] Open
Abstract
OBJECTIVES Diclofenac sodium (DS) is a widely used nonsteroidal anti-inflammatory drug. Although its high doses are known to cause toxic effects in many tissues including liver and kidney, the effects on the cardiovascular system (CVS) have not been fully elucidated yet. Therefore, this study aimed to investigate the effect of DS on CVS. METHODS The Control group did not receive medication; however, a single dose of 240 mg/kg DS was administered orally to the DS group. Electrocardiography (ECG) measurements were performed in all animals before (0thhour) and after (1st,6th,12th,24thhour) intoxication. After 24 h, All animals were sacrificed. Biochemical (malondialdehyde [MDA], and glutathione (GSH), Apelin, Elabela, Meteorin, Endoglin, Keap1, and Nrf2) and histopathological analyzes were performed on heart tissue samples. RESULTS ECG results showed that there was a statistically significant increase in QTc, QRS, and heart rate at the 12th and 24th hours in the DS group. The biochemical analysis showed that GSH, Apelin, Keap1, and NRF2 values decreased significantly while Meteorin and Endoglin levels increased in the DS group. When histopathological results were evaluated, distinct lesions were observed in the DS group. CONCLUSION In conclusion, high doses of DS intake can cause adverse effects on and damage to CVS.
Collapse
Affiliation(s)
- Turgut Dolanbay
- Kafkas University, Faculty of Medicine, Department of Medical Emergency, Kars, Turkey.
| | - Mustafa Makav
- Kafkas University, Faculty of Veterinary Medicine, Department of Physiology, Kars, Turkey
| | - Huseyin Fatih Gul
- Kafkas University, Faculty of Medicine, Department of Medical Biochemistry, Kars, Turkey
| | - Emin Karakurt
- Kafkas University, Faculty of Veterinary Medicine, Department of Pathology, Kars, Turkey
| |
Collapse
|
20
|
Cardiac CaMKII δ and Wenxin Keli Prevents Ang II-Induced Cardiomyocyte Hypertrophy by Modulating CnA-NFATc4 and Inflammatory Signaling Pathways in H9c2 Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:9502651. [PMID: 33149757 PMCID: PMC7603598 DOI: 10.1155/2020/9502651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/18/2020] [Accepted: 09/20/2020] [Indexed: 01/23/2023]
Abstract
Previous studies have demonstrated that calcium-/calmodulin-dependent protein kinase II (CaMKII) and calcineurin A-nuclear factor of activated T-cell (CnA-NFAT) signaling pathways play key roles in cardiac hypertrophy (CH). However, the interaction between CaMKII and CnA-NFAT signaling remains unclear. H9c2 cells were cultured and treated with angiotensin II (Ang II) with or without silenced CaMKIIδ (siCaMKII) and cyclosporine A (CsA, a calcineurin inhibitor) and subsequently treated with Wenxin Keli (WXKL). Patch clamp recording was conducted to assess L-type Ca2+ current (ICa-L), and the expression of proteins involved in signaling pathways was measured by western blotting. Myocardial cytoskeletal protein and nuclear translocation of target proteins were assessed by immunofluorescence. The results indicated that siCaMKII suppressed Ang II-induced CH, as evidenced by reduced cell surface area and ICa-L. Notably, siCaMKII inhibited Ang II-induced activation of CnA and NFATc4 nuclear transfer. Inflammatory signaling was inhibited by siCaMKII and WXKL. Interestingly, CsA inhibited CnA-NFAT pathway expression but activated CaMKII signaling. In conclusion, siCaMKII may improve CH, possibly by blocking CnA-NFAT and MyD88 signaling, and WXKL has a similar effect. These data suggest that inhibiting CaMKII, but not CnA, may be a promising approach to attenuate CH and arrhythmia progression.
Collapse
|
21
|
Sanyal T, Bhattacharjee P, Paul S, Bhattacharjee P. Recent Advances in Arsenic Research: Significance of Differential Susceptibility and Sustainable Strategies for Mitigation. Front Public Health 2020; 8:464. [PMID: 33134234 PMCID: PMC7578365 DOI: 10.3389/fpubh.2020.00464] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/23/2020] [Indexed: 12/16/2022] Open
Abstract
Arsenic contamination in drinking water and associated adverse outcomes are one of the major health issues in more than 50 countries worldwide. The scenario is getting even more detrimental with increasing number of affected people and newer sites reported from all over the world. Apart from drinking water, the presence of arsenic has been found in various other dietary sources. Chronic arsenic toxicity affects multiple physiological systems and may cause malignancies leading to death. Exposed individuals, residing in the same area, developed differential dermatological lesion phenotypes and varied susceptibility toward various other arsenic-induced disease risk, even after consuming equivalent amount of arsenic from the similar source, over the same duration of time. Researches so far indicate that differential susceptibility plays an important role in arsenic-induced disease manifestation. In this comprehensive review, we have identified major population-based studies of the last 20 years, indicating possible causes of differential susceptibility emphasizing arsenic methylation capacity, variation in host genome (single nucleotide polymorphism), and individual epigenetic pattern (DNA methylation, histone modification, and miRNA expression). Holistic multidisciplinary strategies need to be implemented with few sustainable yet cost-effective solutions like alternative water source, treatment of arsenic-contaminated water, new adaptations in irrigation system, simple modifications in cooking strategy, and dietary supplementations to combat this menace. Our review focuses on the present perspectives of arsenic research with special emphasis on the probable causes of differential susceptibility toward chronic arsenic toxicity and sustainable remediation strategies.
Collapse
Affiliation(s)
- Tamalika Sanyal
- Department of Zoology, University of Calcutta, Kolkata, India.,Department of Environmental Science, University of Calcutta, Kolkata, India
| | - Pritha Bhattacharjee
- Department of Zoology, University of Calcutta, Kolkata, India.,Department of Environmental Science, University of Calcutta, Kolkata, India
| | - Somnath Paul
- Department of Epigenetics and Molecular Carcinogenesis, U.T. MD Anderson Cancer Center, Smithville, TX, United States
| | | |
Collapse
|
22
|
Lai CH, Barik P, Hsieh DJY, Day CH, Ho TJ, Chen RJ, Kuo WW, Padma VV, Shibu MA, Huang CY. Inhibition of cell death-inducing p53 target 1 through miR-210-3p overexpression attenuates reactive oxygen species and apoptosis in rat adipose-derived stem cells challenged with Angiotensin II. Biochem Biophys Res Commun 2020; 532:347-354. [PMID: 32888650 DOI: 10.1016/j.bbrc.2020.07.052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 07/11/2020] [Indexed: 12/31/2022]
Abstract
Hypoxic preconditioning is a well-known strategy to improve the survival and therapeutic potential of stem cells against various challenges including hemodynamic and neurohormonal modulations. However, the mechanism involved in hypoxia-induced benefits on stem cells is still ambiguous. In pathological hypertension, the elevation of the neurohormonal mediator Angiotensin II (Ang II) causes the adverse effects to stem cells. In this study, we investigate the effect and mechanism of action of short term hypoxia-inducible miRNA in suppressing the effects of AngII on stem cells. According to the results obtained, Ang II affects the normal cell cycle and triggers apoptosis in rADSCs with a corresponding increase in the expression of cell death-inducing p53 target 1 (CDIP1) protein. However, the short term hypoxia-inducible miRNA-miR-210-3p was found to target CDIP1 and reduce their levels upon the Ang II challenge. CDIP1 induces stress-mediated apoptosis involving the extrinsic apoptosis pathway via Bid/Bax/cleaved caspase3 activation. Administration of mimic miR-210-3p targets CDIP1 mRNA by binding to the 3' UTR region as confirmed by dual luciferase assay and also reduced Ang II-induced mitochondrial ROS accumulation as analyzed by MitoSOX staining. Moreover, the present study demonstrates the mechanism of miR-210-3p in the regulation of Ang II-induced CDIP1-associated apoptotic pathway in rADSCs.
Collapse
Affiliation(s)
- Chin-Hu Lai
- Graduate Institute of Basic Medical Science, China Medical University, Taichung City, 40402, Taiwan; Division of Cardiovascular Surgery, Department of Surgery, Taichung Armed Force General Hospital, Taichung City, 41152, Taiwan; National Defense Medical Center, Taipei, Taiwan
| | - Parthasarathi Barik
- Graduate Institute of Basic Medical Science, China Medical University, Taichung City, 40402, Taiwan
| | - Dennis Jine-Yuan Hsieh
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan; Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, 402, Taiwan
| | - Cecilia Husan Day
- Department of Nursing, Mei Ho University, Pingguang Road, Pingtung, Taiwan
| | - Tsung-Jung Ho
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien, Taiwan; Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, 97002, Taiwan; School of Post-Baccalaureate Chinese Medicine, College of Medicine, Tzu Chi University, Hualien, 97004, Taiwan
| | - Ray-Jade Chen
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - V Vijaya Padma
- Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Marthandam Asokan Shibu
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, 970, Taiwan
| | - Chih-Yang Huang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung City, 40402, Taiwan; Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, 970, Taiwan; Department of Biotechnology, Asia University, Taichung, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan; Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, 970, Taiwan.
| |
Collapse
|
23
|
Lay IS, Kuo WW, Shibu MA, Ho TJ, Cheng SM, Day CH, Ban B, Wang S, Li Q, Huang CY. Exercise training restores IGFIR survival signaling in d-galactose induced-aging rats to suppress cardiac apoptosis. J Adv Res 2020; 28:35-41. [PMID: 33364043 PMCID: PMC7753223 DOI: 10.1016/j.jare.2020.06.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/26/2020] [Accepted: 06/17/2020] [Indexed: 12/18/2022] Open
Abstract
Introduction Insulin-like growth factor-I receptor (IGF1R) mediated survival signaling is a crucial mechanism for cellular endurance and a potential indicator of recuperation in deteriorating hearts. Objective This study evaluates the impact of long-term exercise training in enhancing cardiac survival mechanism in D-galactose-induced toxicity associated aging rats. Methods Forty-eight male SD-rats were segregated into 4 groups (n=9) and were named as control, exercise training groups, aging group and aging group with exercise training. Aging was induced by intraperitoneal (IP) D-galactose (150 mL/kg) injection for 8 weeks and for exercise training, the rats were left to swim in warm water for 60 min every day and 5 times/week. Western blotting of proteins from the left ventricles was performed to identify the modulations in the survival signaling. Tissue sections were analyzed to determine the extent of fibrosis and apoptosis. Results Western-blot analysis performed on the excised left ventricles (LV) showed that proteins of the cardiac survival pathway including IGF1R and Akt and the pro-survival Bcl-2 showed significant decrease in the aging group, whereas the levels were restored in the aging rats subjected to exercise training. In addition, aging groups showed increased interstitial space and collagen accumulation. Further, TUNEL assay showed higher number of apoptotic cells in the LV of aging group, which was correlated with increase in the proteins involved in FAS-FADD-dependent apoptosis. However, these aging associated effects were ameliorated upon exercise training in the D-galactose-induced aging rats that showed elevated IGF1R/Akt signaling. Conclusion The results suggest that IGFIR survival signaling cascadeis elevated in following long-term exercise training and thereby provide cardio-protective benefits in D-galactose induced aging rats.
Collapse
Affiliation(s)
- Ing-Shiow Lay
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, 40402 Taichung, Taiwan.,Department of Chinese Medicine, China Medical University Beigang Hospital, Yunlin County 65152, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung 40402, Taiwan
| | - Marthandam Asokan Shibu
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Tsung-Jung Ho
- Integration Center of Traditional Chinese and Modern Medicine, HualienTzu Chi Hospital, Hualien 97002, Taiwan.,Department of Chinese Medicine,Hualien Tzu Chi Hospital, Hualien 97002, Taiwan.,School of Post Baccalaureate Chinese Medicine, College of Medicine, Tzu Chi University, Hualien 97004, Taiwan
| | - Shiu-Min Cheng
- Department of Psychology, Asia University, Taichung, Taiwan
| | | | - Bo Ban
- Department of Endocrinology, Affiliated Hospital of Jining Medical University, Jining Medical University, 89 Guhuai Road, Jining, Shandong 272029, China
| | - Shulin Wang
- Department of Cardiology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, Guangdong, China
| | - Qiaowen Li
- Department of Cardiology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, Guangdong, China
| | - Chih-Yang Huang
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, 40402 Taichung, Taiwan.,Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan.,Department of Biotechnology, Asia University, Taichung, Taiwan.,Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.,Holistic Education Center, Tzu Chi University of Science and Technology, Hualien, Taiwan
| |
Collapse
|
24
|
Lin KH, Marthandam Asokan S, Kuo WW, Hsieh YL, Lii CK, Viswanadha V, Lin YL, Wang S, Yang C, Huang CY. Andrographolide mitigates cardiac apoptosis to provide cardio-protection in high-fat-diet-induced obese mice. ENVIRONMENTAL TOXICOLOGY 2020; 35:707-713. [PMID: 32023008 DOI: 10.1002/tox.22906] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 01/19/2020] [Accepted: 01/20/2020] [Indexed: 06/10/2023]
Abstract
Excessive intake of high fat diet (HFD) and associated obese conditions are critical contributors of cardiac diseases. In this study, an active metabolite andrographolide from Andrographis paniculata was found to ameliorate HFD-induced cardiac apoptosis. C57/BL6 mouse were grouped as control (n = 9), obese (n = 8), low dose (25 mg/kg/d) andrographolide treatment (n = 9), and high dose (50 mg/kg/d) andrographolide treatment (n = 9). The control group was provided with standard laboratory chow and the other groups were fed with HFD. Andrographolide was administered through oral gavage for 1 week. Histopathological analysis showed increase in apoptotic nuclei and considerable cardiac-damages in the obese group signifying cardiac remodeling effects. Further, Western blot results showed increase in pro-apoptotic proteins and decrease in the proteins of IGF-1R-survival signaling. However, feeding of andrographolide significantly reduced the cardiac effects of HFD. The results strongly suggest that andrographolide supplementation can be used for prevention and treatment of cardiovascular disease in obese patients.
Collapse
Affiliation(s)
- Kuan-Ho Lin
- College of Medicine, China Medical University, Taichung, Taiwan
- Department of Emergency Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Shibu Marthandam Asokan
- Cardiovascular and Mitochondria Related Diseases Research Center, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - You-Liang Hsieh
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| | - Chong-Kuei Lii
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | | | - Yi-Lin Lin
- Graduate Institute of Chinese Medical Science, China Medical University, Taichung, Taiwan
| | - Shulin Wang
- Department of Cardiology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Caixian Yang
- Department of Endocrinology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Chih-Yang Huang
- Cardiovascular and Mitochondria Related Diseases Research Center, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
- Graduate Institute of Chinese Medical Science, China Medical University, Taichung, Taiwan
| |
Collapse
|
25
|
Liu SP, Shibu MA, Tsai FJ, Hsu YM, Tsai CH, Chung JG, Yang JS, Tang CH, Wang S, Li Q, Huang CY. Tetramethylpyrazine reverses high-glucose induced hypoxic effects by negatively regulating HIF-1α induced BNIP3 expression to ameliorate H9c2 cardiomyoblast apoptosis. Nutr Metab (Lond) 2020; 17:12. [PMID: 32021640 PMCID: PMC6995207 DOI: 10.1186/s12986-020-0432-x] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 01/20/2020] [Indexed: 01/24/2023] Open
Abstract
Background Diabetic patients are highly vulnerable to hypoxic injury, which is associated with hypoxia induced BNIP3 expression that subsequently activate apoptosis. Our previous research show that Tetramethylpyrazine (TMP), a food flavoring agent, represses the hypoxia induced BNIP3 expression attenuate myocardial apoptosis. In this study, we evaluate the effect of TMP to provide protection against hypoxia aggravated high-glucose associated cellular apoptosis. Methods The cytoprotective effect of TMP against high glucose induced cellular damages was determined on embryo derived H9c2 cardiomyoblast cells that were subjected to 5% hypoxia for 24 h and subjected to different duration of 33 mM high glucose challenge. Further, the involvement of HIF-1α and BNIP3 in cellular damage and the mechanism of protection of TMP were determined by overexpression and silencing HIF-1α and BNIP3 protein expression. Results The results show that hypoxic effects on cell viability aggravates with high glucose challenge and this augmentative effect is mediated through BNIP3 in H9c2 cardiomyoblast cells. However, TMP administration effectively reversed the augmented HIF-1α levels and BNIP3 elevation. TMP improved the survival of H9c2 cells and effectively suppressed apoptosis in H9c2 cells. Further comparison on the effects of TMP on H9c2 cells challenged with high glucose and those challenged with hypoxia show that TMP precisely regulated the hypoxic intensified apoptotic effects in high-glucose condition. Conclusion The results clearly show that flavoring agent-TMP attenuates cytotoxicity amplified by hypoxia challenge in high glucose condition by destabilizing HIF-1α.
Collapse
Affiliation(s)
- Shih-Ping Liu
- 1Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Marthandam Asokan Shibu
- 2College of Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien, Taiwan
| | - Fuu-Jen Tsai
- 3School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, 40402 Taiwan.,4China Medical University Children's Hospital, China Medical University, Taichung, Taiwan
| | - Yuan-Man Hsu
- 5Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Chang-Hai Tsai
- 4China Medical University Children's Hospital, China Medical University, Taichung, Taiwan
| | - Jing-Gung Chung
- 5Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Jai-Sing Yang
- 6Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Chih-Hsin Tang
- 7Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Shulin Wang
- 8Department of Cardiology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518 Guangdong China
| | - Qiaowen Li
- 8Department of Cardiology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518 Guangdong China
| | - Chih-Yang Huang
- 2College of Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien, Taiwan.,7Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.,9Department of Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
26
|
Sanyal T, Bhattacharjee P, Paul S, Bhattacharjee P. Recent Advances in Arsenic Research: Significance of Differential Susceptibility and Sustainable Strategies for Mitigation. Front Public Health 2020. [PMID: 33134234 DOI: 10.3389/fpubh/2020.00464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
Arsenic contamination in drinking water and associated adverse outcomes are one of the major health issues in more than 50 countries worldwide. The scenario is getting even more detrimental with increasing number of affected people and newer sites reported from all over the world. Apart from drinking water, the presence of arsenic has been found in various other dietary sources. Chronic arsenic toxicity affects multiple physiological systems and may cause malignancies leading to death. Exposed individuals, residing in the same area, developed differential dermatological lesion phenotypes and varied susceptibility toward various other arsenic-induced disease risk, even after consuming equivalent amount of arsenic from the similar source, over the same duration of time. Researches so far indicate that differential susceptibility plays an important role in arsenic-induced disease manifestation. In this comprehensive review, we have identified major population-based studies of the last 20 years, indicating possible causes of differential susceptibility emphasizing arsenic methylation capacity, variation in host genome (single nucleotide polymorphism), and individual epigenetic pattern (DNA methylation, histone modification, and miRNA expression). Holistic multidisciplinary strategies need to be implemented with few sustainable yet cost-effective solutions like alternative water source, treatment of arsenic-contaminated water, new adaptations in irrigation system, simple modifications in cooking strategy, and dietary supplementations to combat this menace. Our review focuses on the present perspectives of arsenic research with special emphasis on the probable causes of differential susceptibility toward chronic arsenic toxicity and sustainable remediation strategies.
Collapse
Affiliation(s)
- Tamalika Sanyal
- Department of Zoology, University of Calcutta, Kolkata, India
- Department of Environmental Science, University of Calcutta, Kolkata, India
| | - Pritha Bhattacharjee
- Department of Zoology, University of Calcutta, Kolkata, India
- Department of Environmental Science, University of Calcutta, Kolkata, India
| | - Somnath Paul
- Department of Epigenetics and Molecular Carcinogenesis, U.T. MD Anderson Cancer Center, Smithville, TX, United States
| | | |
Collapse
|
27
|
Mechanism of AMPK-mediated apoptosis of rat gastric smooth muscle cells under high glucose condition. Biosci Rep 2019; 39:221336. [PMID: 31769476 PMCID: PMC6911152 DOI: 10.1042/bsr20192504] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 11/06/2019] [Accepted: 11/25/2019] [Indexed: 11/17/2022] Open
Abstract
To observe changes in AMP-activated protein kinase (AMPK) activity and phosphorylation changes in AMPK signaling pathway in gastric smooth muscle cells of rats with diabetic gastroparesis (DGP), investigate the effect of AMPK on apoptosis and explore the underlying mechanism. After establishing rat model of DGP, rats were divided into normal control (NC) and DGP groups. The phosphorylation changes in AMPK pathway were detected by AMPK Signaling Phospho-Antibody Array, and the apoptosis-related proteins were determined. Rat gastric smooth muscle cells were cultured in vitro under different glucose conditions, and divided into normal and high glucose groups. The AMPK activity and intracellular Ca2+ changes in cells were observed. After AMPK silencing, cells were divided into high glucose-24h, high glucose-48h and high glucose-48h+siRNA groups. Changes in expression of apoptosis-related proteins were observed. AMPK activity and apoptosis rates were both increased in gastric smooth muscle tissues in DGP rats (P<0.05, P<0.001, respectively). A total of 14 apoptosis-related differentially phosphorylated proteins were identified. Under high-glucose condition, AMPK activity and intracellular Ca2+ concentrations in rat gastric smooth muscle cells were increased (both P<0.05). After AMPK silencing, p53 expression was decreased, Akt and p70 S6 ribosomal protein kinase (p70S6K) activities were were increased, Bcl-2 expression was increased, CaMKII activity was decreased in the high glucose-48h group. Under high-glucose condition, activated AMPK can directly or indirectly promote cells apoptosis by regulating the expression and activity of p53, Akt, p70S6K, Protein kinase A (PKA), Phospholipidol C (PLC)-β3, CaMKII, CaMKIV and eukaryotic translation initiation factor 4E binding protein1 (4E-BP1) in rat gastric smooth muscle cells.
Collapse
|
28
|
Exercise training augments Sirt1-signaling and attenuates cardiac inflammation in D-galactose induced-aging rats. Aging (Albany NY) 2019; 10:4166-4174. [PMID: 30582744 PMCID: PMC6326662 DOI: 10.18632/aging.101714] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 12/06/2018] [Indexed: 01/25/2023]
Abstract
Exercise is known to be beneficial in controlling aging associated disorders however, the consequence of long-term exercise on cardiac health among aging population is not much clear. In this study the protective effect of exercise on aging associated cardiac disorders was determined using a D-galactose-induced aging model. Eight weeks old Sprague Dawley rats were given intraperitoneal injection of 150 mL/kg D-galactose. Swimming exercise was provided in warm water for 60 min/day for five days per week. Hematoxylin and eosin staining of cardiac tissue sections revealed cardiomyocyte disarrangements in the aging rat hearts but long-term exercise training showed improvements in the cardiac histology. Exercise training also enhanced the expression levels of proteins such as SIRT1, PGC-1α and AMPKα1 that are associated with energy homeostasis and further suppressed aging associated inflammatory cytokines. Our results show that long-term exercise training potentially enhances SIRT1 associated anti-aging signaling and provide cardio-protection against aging.
Collapse
|
29
|
Tang GY, Meng X, Gan RY, Zhao CN, Liu Q, Feng YB, Li S, Wei XL, Atanasov AG, Corke H, Li HB. Health Functions and Related Molecular Mechanisms of Tea Components: An Update Review. Int J Mol Sci 2019; 20:6196. [PMID: 31817990 PMCID: PMC6941079 DOI: 10.3390/ijms20246196] [Citation(s) in RCA: 210] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 12/02/2019] [Accepted: 12/06/2019] [Indexed: 02/07/2023] Open
Abstract
Tea is widely consumed all over the world. Generally, tea is divided into six categories: White, green, yellow, oolong, black, and dark teas, based on the fermentation degree. Tea contains abundant phytochemicals, such as polyphenols, pigments, polysaccharides, alkaloids, free amino acids, and saponins. However, the bioavailability of tea phytochemicals is relatively low. Thus, some novel technologies like nanotechnology have been developed to improve the bioavailability of tea bioactive components and consequently enhance the bioactivity. So far, many studies have demonstrated that tea shows various health functions, such as antioxidant, anti-inflammatory, immuno-regulatory, anticancer, cardiovascular-protective, anti-diabetic, anti-obesity, and hepato-protective effects. Moreover, it is also considered that drinking tea is safe to humans, since reports about the severe adverse effects of tea consumption are rare. In order to provide a better understanding of tea and its health potential, this review summarizes and discusses recent literature on the bioactive components, bioavailability, health functions, and safety issues of tea, with special attention paid to the related molecular mechanisms of tea health functions.
Collapse
Affiliation(s)
- Guo-Yi Tang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (G.-Y.T.); (X.M.); (C.-N.Z.); (Q.L.)
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, No. 10 Sassoon Road, Pokfulam, Hong Kong 999077, China; (Y.-B.F.); (S.L.)
| | - Xiao Meng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (G.-Y.T.); (X.M.); (C.-N.Z.); (Q.L.)
| | - Ren-You Gan
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (X.-L.W.); (H.C.)
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China
| | - Cai-Ning Zhao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (G.-Y.T.); (X.M.); (C.-N.Z.); (Q.L.)
| | - Qing Liu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (G.-Y.T.); (X.M.); (C.-N.Z.); (Q.L.)
| | - Yi-Bin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, No. 10 Sassoon Road, Pokfulam, Hong Kong 999077, China; (Y.-B.F.); (S.L.)
| | - Sha Li
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, No. 10 Sassoon Road, Pokfulam, Hong Kong 999077, China; (Y.-B.F.); (S.L.)
| | - Xin-Lin Wei
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (X.-L.W.); (H.C.)
| | - Atanas G. Atanasov
- The Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzębiec, 05-552 Magdalenka, Poland;
| | - Harold Corke
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (X.-L.W.); (H.C.)
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (G.-Y.T.); (X.M.); (C.-N.Z.); (Q.L.)
| |
Collapse
|
30
|
Chen CH, Lin JW, Huang CY, Yeh YL, Shen CY, Badrealam KF, Ho TJ, Padma VV, Kuo WW, Huang CY. The combined inhibition of the CaMKIIδ and calcineurin signaling cascade attenuates IGF-IIR-induced cardiac hypertrophy. J Cell Physiol 2019; 235:3539-3547. [PMID: 31584202 DOI: 10.1002/jcp.29242] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 09/03/2019] [Indexed: 12/11/2022]
Abstract
Cardiac hypertrophy is a common phenomenon observed in progressive heart disease associated with heart failure. Insulin-like growth factor receptor II (IGF-IIR) has been much implicated in myocardial hypertrophy. Our previous studies have found that increased activities of signaling mediators, such as calcium/calmodulin-dependent protein kinase II (CaMKII) and calcineurin induces pathological hypertrophy. Given the critical roles played by CaMKII and calcineurin signaling in the progression of maladaptive hypertrophy, we anticipated that inhibition of CaMKII and calcineurin signaling may attenuate IGF-IIR-induced cardiac hypertrophy. The current study, therefore, investigated the effects of IGF-IIR activation on the CaMKII and calcineurin signaling and whether the combinatorial inhibition of the CaMKIIδ and calcineurin signaling could ameliorate IGF-IIR-induced pathological hypertrophy. In the present study, we induced IGF-IIR through the cardiomyocyte-specific transduction of IGFIIY27L via adeno-associated virus 2 (AAV2) to evaluate its effects on cardiac hypertrophy. Interestingly, it was observed that the activation of IGF-IIR signaling through IGFIIY27L induces significant hypertrophy of the myocardium and increased cardiac apoptosis and fibrosis. Moreover, we found that Leu27 IGF-II significantly induced calcineurin and CaMKII expression. Furthermore and importantly, the combinatorial treatment with CaMKII and calcineurin inhibitors significantly alleviates IGF-IIR-induced hypertrophic responses. Thus, it could be envisaged that the inhibition of IGF-IIR may serve as a promising candidate for attenuating maladaptive hypertrophy. Both calcineurin and CaMKII could be valuable targets for developing treatment strategies against hypertension-induced cardiomyopathies.
Collapse
Affiliation(s)
- Chung-Hao Chen
- Graduate Institute of Aging Medicine, China Medical University, Taichung, Taiwan
| | - Jing-Wei Lin
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan
| | - Chih-Yang Huang
- Translation Research Core, China Medical University Hospital, Taichung, Taiwan
| | - Yu-Lan Yeh
- Department of Pathology, Changhua Christian Hospital, Changhua, Taiwan
| | - Chia-Yao Shen
- Department of Nursing, Mei Ho University, Pingtung, Taiwan
| | - Khan Farheen Badrealam
- Cardiovascular and Mitochondria Related Diseases Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Tsung-Jung Ho
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien, Taiwan
| | - V Vijaya Padma
- Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Chih-Yang Huang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Cardiovascular and Mitochondria Related Diseases Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan.,Department of Medical Research, China Medical Hospital, China Medical University, Taichung, Taiwan.,Department of Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
31
|
Huang PC, Shibu MA, Kuo CH, Han CK, Chen YS, Lo FY, Li H, Viswanadha VP, Lai CH, Li X, Huang CY. Pheretima aspergillum extract attenuates high-KCl-induced mitochondrial injury and pro-fibrotic events in cardiomyoblast cells. ENVIRONMENTAL TOXICOLOGY 2019; 34:921-927. [PMID: 31066208 DOI: 10.1002/tox.22763] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 04/17/2019] [Accepted: 04/24/2019] [Indexed: 06/09/2023]
Abstract
Hyperkalemia is often associated with cardiac dysfunction. In this study an earthworm extract (dilong) was prepared from dried Pheretima aspergillum powder and its effect against high-KCl challenge was determined in H9c2 cardiomyoblast cells. H9c2 cells pre-treated with dilong (31.25, 62.5, 125, and 250 mg/mL) for 24 hours, where challenged with different doses of KCl treatment for 3 hours to determine the protective mechanisms of dilong against cardiac fibrosis. High-KCl administration induced mitochondrial injury and elevated the levels of pro-apoptotic proteins. The mediators of fibrosis such as ERK, uPA, SP1, and CTGF were also found to be upregulated in high-KCl condition. However, dilong treatment enhanced IGF1R/PI3k/Akt activation which is associated with cell survival. In addition, dilong also reversed high-KCl induced cardiac fibrosis related events in H9c2 cells and displayed a strong cardio-protective effect. Therefore, dilong is a potential agent to overcome cardiac events associated with high-KCl toxicity.
Collapse
Affiliation(s)
- Pei-Chen Huang
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan
- Department of Obstetrics and Gynecology, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Marthandam Asokan Shibu
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Chia-Hua Kuo
- Department of Sports Sciences, University of Taipei, Taipei, Taiwan
| | - Chien-Kuo Han
- Department of Biotechnology, Asia University, Taichung, Taiwan
| | - Yueh-Sheng Chen
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan
| | - Feng-Yueh Lo
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Heng Li
- Department of Anesthesiology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong, China
| | | | - Chao-Hung Lai
- Division of Cardiology, Department of Internal Medicine, Taichung Armed Force General Hospital, Taichung, Taiwan
| | - Xudong Li
- Division of Cardiac Surgery, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong, China
| | - Chih-Yang Huang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
- College of Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
32
|
Cao SY, Zhao CN, Gan RY, Xu XY, Wei XL, Corke H, Atanasov AG, Li HB. Effects and Mechanisms of Tea and Its Bioactive Compounds for the Prevention and Treatment of Cardiovascular Diseases: An Updated Review. Antioxidants (Basel) 2019; 8:E166. [PMID: 31174371 PMCID: PMC6617169 DOI: 10.3390/antiox8060166] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 12/16/2022] Open
Abstract
Cardiovascular diseases (CVDs) are critical global public health issues with high morbidity and mortality. Epidemiological studies have revealed that regular tea drinking is inversely associated with the risk of CVDs. Additionally, substantial in vitro and in vivo experimental studies have shown that tea and its bioactive compounds are effective in protecting against CVDs. The relevant mechanisms include reducing blood lipid, alleviating ischemia/reperfusion injury, inhibiting oxidative stress, enhancing endothelial function, attenuating inflammation, and protecting cardiomyocyte function. Moreover, some clinical trials also proved the protective role of tea against CVDs. In order to provide a better understanding of the relationship between tea and CVDs, this review summarizes the effects of tea and its bioactive compounds against CVDs and discusses potential mechanisms of action based on evidence from epidemiological, experimental, and clinical studies.
Collapse
Affiliation(s)
- Shi-Yu Cao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Cai-Ning Zhao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Ren-You Gan
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Xiao-Yu Xu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Xin-Lin Wei
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Harold Corke
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Atanas G Atanasov
- The Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzębiec, 05-552 Magdalenka, Poland.
- Department of Pharmacognosy, University of Vienna, 1090 Vienna, Austria.
- Institute of Neurobiology, Bulgarian Academy of Sciences, 23 Acad. G. Bonchev str., 1113 Sofia, Bulgaria.
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| |
Collapse
|
33
|
|
34
|
Lin KH, Shibu MA, Peramaiyan R, Chen YF, Shen CY, Hsieh YL, Chen RJ, Viswanadha VP, Kuo WW, Huang CY. Bioactive flavone fisetin attenuates hypertension associated cardiac hypertrophy in H9c2 cells and in spontaneously hypertension rats. J Funct Foods 2019. [DOI: 10.1016/j.jff.2018.10.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
35
|
Alpinate Oxyphyllae
extracts enhance the longevity and homing of mesenchymal stem cells and augment their protection against senescence in H9c2 cells. J Cell Physiol 2018; 234:12042-12050. [DOI: 10.1002/jcp.27867] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 11/13/2018] [Indexed: 12/19/2022]
|
36
|
Chiang JT, Badrealam KF, Shibu MA, Kuo CH, Huang CY, Chen BC, Lin YM, Viswanadha VP, Kuo WW, Huang CY. Eriobotrya japonica ameliorates cardiac hypertrophy in H9c2 cardiomyoblast and in spontaneously hypertensive rats. ENVIRONMENTAL TOXICOLOGY 2018; 33:1113-1122. [PMID: 29974613 DOI: 10.1002/tox.22589] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 06/04/2018] [Accepted: 06/04/2018] [Indexed: 06/08/2023]
Abstract
Eriobotrya japonica (EJ) is a traditional Chinese plant with high medicinal value. EJ extracts are reported to exhibit antioxidant and anti-inflammatory biological attributes. The current study aims to evaluate the prospective efficacy of E. japonica leave extract (EJLE) against Angiotensin-II induced cardiac hypertrophy in H9c2 cardiomyoblast and in spontaneously hypertensive rats (SHRs). For the in vitro studies, Angiotensin-II pretreated H9c2 cells were treated with EJLE and analyzed through Western blotting and rhodamine phalloidin staining for their cardio-protective attributes. In the in vivo studies, 12-week-old SHRs were randomly divided into groups: SHRs supplemented with EJLE, control SHR group supplemented with PBS; in addition, a control group of Wistar-Kyoto rats (WKY) was also employed. All rats were supplemented twice a week for 8 week time interval. Finally, echocardiography, morphological, histology, and Western blot analysis were performed to assess their role against cardiac hypertrophy. Interestingly, we could observe that supplementation of EJLE could rescue Ang-II induced cardiac hypertrophy as evident through Western blot, rhodamine phalloidin staining, and Hematoxylin-Eosin staining. Notably, morphological and echocardiography data provided further supports for their ability to ameliorate cardiac characteristics. Cumulatively, the results clearly suggests that supplementation of EJLE promotes cardio-protective effects through amelioration of cardiac hypertrophy in vitro and in vivo.
Collapse
Affiliation(s)
- Jui-Ting Chiang
- Graduate Institute of Aging Medicine, China Medical University, Taichung, Taiwan
| | | | | | - Chia-Hua Kuo
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan
| | - Chih-Yang Huang
- Translation Research Core, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Bih-Cheng Chen
- School of Post-Baccalaureate Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Yueh-Min Lin
- Department of Pathology, Changhua Christian Hospital, Changhua, Taiwan
| | | | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Chih-Yang Huang
- Graduate Institute of Aging Medicine, China Medical University, Taichung, Taiwan
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
- Department of Clinical Laboratory, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangdong, China
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
37
|
Marthandam Asokan S, Wang T, Su W, Lin W. Short Tetra‐peptide from soy‐protein hydrolysate attenuates hyperglycemia associated damages in H9c2 cells and ICR mice. J Food Biochem 2018. [DOI: 10.1111/jfbc.12638] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Shibu Marthandam Asokan
- Department for Management of Science and Technology Development Ton Duc Thang University Ho Chi Minh City Vietnam
- Faculty of Applied Sciences Ton Duc Thang University Ho Chi Minh City Vietnam
| | - Ting Wang
- Department of Hospitality Management, College of Agriculture Tunghai University Taichung Taiwan
| | - Wei‐Ting Su
- Department of Food Science, College of Agriculture Tunghai University Taichung Taiwan
| | - Wan‐Teng Lin
- Department of Hospitality Management, College of Agriculture Tunghai University Taichung Taiwan
| |
Collapse
|