1
|
Zheng X, Sun Y, Wang J, Yin Y, Li Z, Liu B, Hu H, Xu J, Dai Y, Kanwar YS, Tang Y. Cadmium exposure induces Leydig cell injury via necroptosis caused by oxidative stress and TNF-α/TNFR1 signaling. Biochem Biophys Res Commun 2025; 761:151717. [PMID: 40188597 DOI: 10.1016/j.bbrc.2025.151717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/21/2025] [Accepted: 03/26/2025] [Indexed: 04/08/2025]
Abstract
Cadmium, a ubiquitous environmental pollutant, has been linked to testicular damage, primarily through mechanisms such as oxidative stress and various forms of programmed cell death. Despite extensive studies on its toxic effects, the specific role of necroptosis in cadmium-induced reproductive toxicity remains unclear. In this study, we provide critical insights into how cadmium triggers necroptosis in Leydig cells, leading to testicular dysfunction. Using both in vitro and in vivo models, we demonstrated that cadmium exposure induces necroptotic cell death in Leydig cells, with significant involvement of the TNF-α/TNFR1 signaling pathway and reactive oxygen species (ROS) generation. Co-treatment with Nec-1, a specific necroptosis inhibitor, significantly reduced elevated ROS levels and suppressed TNF-α/TNFR1-induced necroptotic cell death, suggesting that ROS and the TNF-α/TNFR1 signaling pathway contribute to necroptosis activation in cadmium-induced Leydig cell injury. In conclusion, we demonstrate that necroptosis is a key driver of cadmium-induced testicular damage, suggesting that targeting necroptosis could offer novel therapeutic strategies for mitigating reproductive toxicity caused by heavy metals.
Collapse
Affiliation(s)
- Xiaoping Zheng
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-sen University, No.52 Meihua Dong Road, ZhuHai, 519000, China; Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China; Department of Pathology & Medicine, FSM, Northwestern University, Chicago, IL, USA
| | - Yaohui Sun
- Department of Thoracic Surgery and Lung Transplantation, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Jinhua Wang
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-sen University, No.52 Meihua Dong Road, ZhuHai, 519000, China; Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
| | - Yinghao Yin
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-sen University, No.52 Meihua Dong Road, ZhuHai, 519000, China; Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
| | - Zitaiyu Li
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-sen University, No.52 Meihua Dong Road, ZhuHai, 519000, China; Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
| | - Biao Liu
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-sen University, No.52 Meihua Dong Road, ZhuHai, 519000, China; Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
| | - Hongji Hu
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-sen University, No.52 Meihua Dong Road, ZhuHai, 519000, China; Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
| | - Jiarong Xu
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-sen University, No.52 Meihua Dong Road, ZhuHai, 519000, China; Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
| | - Yingbo Dai
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-sen University, No.52 Meihua Dong Road, ZhuHai, 519000, China; Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China.
| | - Yashpal S Kanwar
- Department of Pathology & Medicine, FSM, Northwestern University, Chicago, IL, USA.
| | - Yuxin Tang
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-sen University, No.52 Meihua Dong Road, ZhuHai, 519000, China; Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China.
| |
Collapse
|
2
|
Zhang Y, Song JY, Sun ZG. Exploring the impact of environmental factors on male reproductive health through epigenetics. Reprod Toxicol 2025; 132:108832. [PMID: 39778664 DOI: 10.1016/j.reprotox.2025.108832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/01/2025] [Accepted: 01/04/2025] [Indexed: 01/11/2025]
Abstract
Male infertility has become an increasingly severe global health issue, with its incidence significantly rising over the past few decades. This paper delves into the crucial role of epigenetics in male reproductive health, focusing particularly on the effects of DNA methylation, histone modifications, chromatin remodeling and non-coding RNAs regulation on spermatogenesis. Exposure to various environmental factors can cause sperm DNA damage, leading to epigenetic abnormalities. Among these factors, we have discussed heavy metals (including Zinc, Cadmium, Arsenic, Copper), phthalates, electromagnetic radiation, and temperature in detail. Notably, aberrations in DNA methylation are closely associated with various symptoms of male infertility, and histone modifications and chromatin remodeling are essential for sperm maturation and function. By synthesizing existing literature and experimental data, this narrative review investigates how environmental factors influence male reproductive health through epigenetic mechanisms, thus providing new theoretical foundations and practical guidelines for the early diagnosis and treatment of male infertility.
Collapse
Affiliation(s)
- Yi Zhang
- The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Jing-Yan Song
- Reproductive and Genetic Center, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Zhen-Gao Sun
- Reproductive and Genetic Center, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
3
|
Wiklund L, Wincent E, Beronius A. Using transcriptomics data and Adverse Outcome Pathway networks to explore endocrine disrupting properties of Cadmium and PCB-126. ENVIRONMENT INTERNATIONAL 2025; 197:109352. [PMID: 40054344 DOI: 10.1016/j.envint.2025.109352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/10/2025] [Accepted: 02/24/2025] [Indexed: 03/25/2025]
Abstract
Omics-technologies such as transcriptomics offer valuable insights into toxicity mechanisms. However, integrating this type of data into regulatory frameworks remains challenging due to uncertainties regarding toxicological relevance and links to adverse outcomes. Furthermore, current assessments of endocrine disruptors (EDs) relevant to human health require substantial amounts of data, and primarily rely on standardized animal studies. Identifying EDs is a high priority in the EU, but so are efforts to replace and reduce animal testing. Alternative methods to investigate EDs are needed, and so are health risk assessment methods that support uptake of novel mechanistic information. This study aims to utilize Adverse Outcome Pathways (AOPs) to integrate transcriptomics data for identifying EDs, by establishing a link between molecular data and adverse outcomes. Cadmium (Cd) and 3,3',4,4',5-pentachlorobiphenyl (PCB126) were used as model compounds due to their observed effects on the endocrine system. An AOP network for the estrogen, androgen, thyroid, and steroidogenesis (EATS)-modalities was constructed. RNA sequencing (RNA-Seq) was conducted on zebrafish (Danio rerio) embryos exposed to Cd or PCB126 for 4 days. RNA-Seq data were then linked to the AOP network via Gene Ontology (GO) terms. Enrichment Maps in Cytoscape and the QIAGEN Ingenuity Pathway Analysis (IPA) software were also used to identify potential ED properties and to support the assessment. Potentially EATS-related GO Biological Process (BP) terms were identified for both compounds. A lack of accurate standardized terms in KEs of the AOP network hindered a data-driven mapping approach. Instead, manual mapping of GO BP terms onto the AOP network revealed more connections, underscoring the need for harmonizing AOP development for regulatory use. Both the Enrichment Maps and the IPA results further supported potentially EATS-related effects of both compounds. While AOP networks show promise in integrating RNA-Seq data, several challenges remain.
Collapse
Affiliation(s)
- Linus Wiklund
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Emma Wincent
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anna Beronius
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
4
|
Li Q, Li Y, Zhu J, Liu Z, Sun Y, Lv Y, Li J, Luo L, Zhang C, Zhang W. Cadmium Exposure in Male Rats Results in Ovarian Granulosa Cell Apoptosis in Female Offspring and Paternal Genetic Effects. ENVIRONMENTAL TOXICOLOGY 2024; 39:5187-5198. [PMID: 39119833 DOI: 10.1002/tox.24375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 02/01/2024] [Accepted: 06/01/2024] [Indexed: 08/10/2024]
Abstract
The aim of this study was to investigate whether the damage to male offspring induced by cadmium (Cd) exposure during embryonic period leads to the apoptosis of ovarian granulosa cells (OGCs) in the next generation of female offspring, and whether this apoptosis in the offspring was due to paternal genetic effects. Pregnant Sprague-Dawley (SD) rats were exposed to CdCl2 (0, 0.5, 2.0, or 8.0 mg/kg) by gavage daily for 20 days to produce the filial 1 (F1) generation. F1 males were mated with newly purchased females to produce the F2 generation, and the F3 generation was generated in the same way. No apoptotic bodies were observed in the OGCs of either the F2 or F3 generation as shown by electron microscopy, and a reduced OGC apoptosis rate (detected by flow cytometry) was observed in F2 OGCs from the Cd-exposed group. Moreover, the mRNA (qRT-PCR) levels of Bax and Bcl-2 and the protein (western blotting) level of pro-caspase-8 increased in the F2 generation (p < 0.05). The expression of apoptosis-related miRNAs (qRT-PCR) and methylation of apoptosis-related genes (determined via bisulfite-sequencing PCR) in OGCs were further determined. Compared with those of the controls, the expression patterns of microRNAs (miRNAs) in the F2 offspring were different in the Cd-exposed group. The miR-92a-2-5p expression levels were decreased in both the F2 and F3 generations (p < 0.05), while the average methylation level of apoptosis-related genes did not change significantly (except for individual loci). In summary, this study showed that the paternal genetic intergenerational effect of male Cd exposure during embryonic period induced apoptosis of OGCs in the offspring was weakened, and the transgenerational effect disappeared; nevertheless, intergenerational and transgenerational changes in apoptosis-related genes, epigenetic modifications, DNA methylation, and miRNAs were observed, and may be important for understanding the homeostatic mechanisms of the body to alleviate the intergenerational transmission of Cd-induced damage.
Collapse
Affiliation(s)
- Qingyu Li
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Yuchen Li
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Jianlin Zhu
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Zhangpin Liu
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Yi Sun
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Yake Lv
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Jingwen Li
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Lingfeng Luo
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Chenyun Zhang
- Department of Health Law and Policy, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Wenchang Zhang
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
5
|
Bhardwaj JK, Siwach A, Sachdeva D, Sachdeva SN. Revisiting cadmium-induced toxicity in the male reproductive system: an update. Arch Toxicol 2024; 98:3619-3639. [PMID: 39317800 DOI: 10.1007/s00204-024-03871-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/18/2024] [Indexed: 09/26/2024]
Abstract
Heavy metals like cadmium (Cd) are one of the main environmental pollutants, with no biological role in the human body. Cd has been well-documented to have disastrous effects on both plants and animals. It is known to accumulate in kidneys, lungs, liver, and testes and is thought to affect these organs' function over time, which is linked to a very long biological half-life and a very poor rate of elimination. According to recent researches, the testes are extremely vulnerable to cadmium. The disruption of the blood-testis barrier, seminiferous tubules, Sertoli cells, and Leydig cells caused by cadmium leads to the loss of sperm through various mechanisms, such as oxidative stress, spermatogenic cell death, testicular swelling, dysfunction in androgen-producing cells, interference with gene regulation, disruption of ionic homeostasis, and damage to the vascular endothelium. Additionally, through epigenetic control, cadmium disrupts the function of germ cells and somatic cells, resulting in infertile or subfertile males. A full grasp of the mechanisms underlying testicular toxicity caused by Cd is very important to develop suitable strategies to ameliorate male fertility. Therefore, this review article outlines cadmium's impact on growth and functions of the testicles, reviews therapeutic approaches and protective mechanisms, considers recent research findings, and identifies future research directions.
Collapse
Affiliation(s)
- Jitender Kumar Bhardwaj
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra, Haryana, 136119, India.
| | - Anshu Siwach
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra, Haryana, 136119, India
| | - Drishty Sachdeva
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra, Haryana, 136119, India
| | - Som Nath Sachdeva
- Department of Civil Engineering, National Institute of Technology, Kurukshetra and Kurukshetra University, Kurukshetra, Haryana, India
| |
Collapse
|
6
|
Zheng XM, Zhang XD, Tan LL, Zhang J, Wang TT, Ling Q, Wang H, Ouyang KW, Wang KW, Chang W, Li H, Zhu HL, Xiong YW, Wang H. Sirt1 m6A modification-evoked Leydig cell senescence promotes Cd-induced testosterone decline. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116884. [PMID: 39153281 DOI: 10.1016/j.ecoenv.2024.116884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/27/2024] [Accepted: 08/11/2024] [Indexed: 08/19/2024]
Abstract
Diminished testosterone levels have been documented as a key factor in numerous male health disorders. Both human and animal studies have consistently demonstrated that cadmium (Cd), a pervasive environmental heavy metal, results in decreased testosterone levels. However, the exact mechanism through which Cd interferes with testosterone synthesis remains incompletely elucidated. This research sought to examine the impact of cellular senescence on Cd-suppressed testosterone synthesis. We also investigated the related m6A modification mechanism. The results demonstrated that Cd (100 mg/L) led to a decrease in testosterone levels, along with downregulated expression of testosterone synthase in C57BL/6 N male mice. Furthermore, Cd significantly increased β-galactosidase staining intensity, senescence-related proteins, and senescence-related secretory phenotypes in mouse testicular Leydig cells. Subsequent investigations revealed that Cd decreased the mRNA and protein levels of NAD-dependent deacetylase Sirtuin-1 (SIRT1) in Leydig cells. Mechanistically, mice treated with resveratrol (50 mg/kg), a specific SIRT1 activator, mitigated Leydig cell senescence and reversed Cd-reduced testosterone levels in mouse testes. These effects were also restored by SIRT1 overexpression in Leydig cells. Additionally, we found that Cd increased the level of methyltransferase enzyme METTL3 and Sirt1 m6A modification in Leydig cells. Mettl3 siRNA effectively restored Cd-enhanced Sirt1 m6A level and reversed Cd-downregulated Sirt1 mRNA expression in Leydig cells. Overall, our findings suggest that Cd exposure inhibits testosterone synthesis via Sirt1 m6A modification-mediated senescence in mouse testes. These results offer an experimental basis for investigating the causes and potential treatments of hypotestosteronemia induced by environmental factors.
Collapse
Affiliation(s)
- Xin-Mei Zheng
- Department of Toxicology, School of Public Health, Center for Big Data and Population Health of IHM, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, China
| | - Xu-Dong Zhang
- Department of Toxicology, School of Public Health, Center for Big Data and Population Health of IHM, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Lu-Lu Tan
- Department of Toxicology, School of Public Health, Center for Big Data and Population Health of IHM, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Jin Zhang
- Department of Toxicology, School of Public Health, Center for Big Data and Population Health of IHM, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Tian-Tian Wang
- Department of Toxicology, School of Public Health, Center for Big Data and Population Health of IHM, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Qing Ling
- Department of Toxicology, School of Public Health, Center for Big Data and Population Health of IHM, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Hua Wang
- Department of Toxicology, School of Public Health, Center for Big Data and Population Health of IHM, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Kong-Wen Ouyang
- Department of Toxicology, School of Public Health, Center for Big Data and Population Health of IHM, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Kai-Wen Wang
- Department of Toxicology, School of Public Health, Center for Big Data and Population Health of IHM, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Wei Chang
- Department of Toxicology, School of Public Health, Center for Big Data and Population Health of IHM, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Hao Li
- Department of Toxicology, School of Public Health, Center for Big Data and Population Health of IHM, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Hua-Long Zhu
- Department of Toxicology, School of Public Health, Center for Big Data and Population Health of IHM, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Yong-Wei Xiong
- Department of Toxicology, School of Public Health, Center for Big Data and Population Health of IHM, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China.
| | - Hua Wang
- Department of Toxicology, School of Public Health, Center for Big Data and Population Health of IHM, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, China.
| |
Collapse
|
7
|
Du X, Zhu J, Xu X, Lu Z, Li X, Li Y, Luo L, Zhang W, Liu J. Effects of cadmium exposure during pregnancy on genome-wide DNA methylation and the CREB/CREM pathway in the testes of male offspring rats. CHEMOSPHERE 2024; 349:140906. [PMID: 38092170 DOI: 10.1016/j.chemosphere.2023.140906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/28/2023] [Accepted: 12/03/2023] [Indexed: 12/24/2023]
Abstract
This experimental study explored the multigenerational and transgenerational effects of cadmium (Cd) exposure during pregnancy on the testicular tissue and spermatogenesis of male offspring rats. CdCl2 at different doses (0, 0.5, 1, 2 mg/kg/day) were dispensed to pregnant SD rats, thus producing generation F1. Adult females in F1 (PND 56) were mated with untreated fertile males so as to produce generation F2. Likewise, adult females in F2 were mated to produce generation F3. Damages to testicular tissue were observed in all the three generations, with serum testosterone (T) increased in F2 and F3. Notably, the genome-wide DNA methylation level in the testicular tissue of F1 was altered, as was the expression of F1-F3 methyltransferases. In addition, the expression of Creb/Crem pathway, a pathway critical for the metamorphosis from postmeiotic round spermatocytes to spermatozoa, was also remarkably altered in the three generations. In concludion, prenatal Cd exposure might bring multigenerational and transgenerational toxic effects to testes via genome-wide DNA methylation and the regulation of CREB/CREM pathway.
Collapse
Affiliation(s)
- Xiushuai Du
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Jianlin Zhu
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Xueming Xu
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Zhilan Lu
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Xiaoqin Li
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Yuchen Li
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Lingfeng Luo
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Wenchang Zhang
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian, China.
| | - Jin Liu
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian, China.
| |
Collapse
|
8
|
Wang Y, Liang Y, Yuan Z, Mai W, Leng Y, Zhang R, Chen J, Lai C, Chen H, Wu X, Sheng C, Zhang Q. Cadmium facilitates the formation of large lipid droplets via PLCβ2-DAG-DGKε-PA signal pathway in Leydig cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115610. [PMID: 37866036 DOI: 10.1016/j.ecoenv.2023.115610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/30/2023] [Accepted: 10/15/2023] [Indexed: 10/24/2023]
Abstract
Cadmium (Cd) exposure damages the reproductive system. Lipid droplets (LDs) play an important role in steroid-producing cells to provide raw material for steroid hormone. We have found that the LDs of Leydig cells exposed to Cd are bigger than those of normal cells, but the effects on steroidogenesis and its underlying mechanism remains unclear. Using Isobaric tag for relative and absolute quantitation (iTARQ) proteomics, phosphodiesterase beta-2 (PLCβ2) was identified as the most significantly up-regulated protein in immature Leydig cells (ILCs) and adult Leydig cells (ALCs) derived from male rats exposed to maternal Cd. Consistent with high expression of PLCβ2, the size of LDs was increased in Leydig cells exposed to Cd, accompanied by reduction in cholesterol and progesterone (P4) levels. However, the high PLCβ2 did not result in high diacylglycerol (DAG) level, because Cd exposure up-regulated diacylglycerol kinases ε (DGKε) to promote the conversion from DAG to phosphatidic acid (PA). Exogenous PA, which was consistent with the intracellular PA concentration induced by Cd, facilitated the formation of large LDs in R2C cells, followed by reduced P4 level in the culture medium. When PLCβ2 expression was knocked down, the increased DGKε caused by Cd was reversed, and then the PA level was decreased to normal. As results, large LDs returned to normal size, and the level of total cholesterol was improved to restore steroidogenesis. The accumulation of PA regulated by PLCβ2-DAG-DGKε signal pathway is responsible for the formation of large LDs and insufficient steroid hormone synthesis in Leydig cells exposed to Cd. These data highlight that LD is an important target organelle for Cd-induced steroid hormone deficiency in males.
Collapse
Affiliation(s)
- Youjin Wang
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
| | - Yuqing Liang
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
| | - Zansheng Yuan
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
| | - Wanwen Mai
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
| | - Yang Leng
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
| | - Runze Zhang
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
| | - Jiayan Chen
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
| | - Caiyong Lai
- Department of Urology, The sixth affiliated hospital of Jinan University, Dongguan 523570, China
| | - Hongxia Chen
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China; Guangzhou Biopharmaceutical R&D Center of Jinan University Co., Ltd, Guangzhou 510632, China
| | - Xiaoping Wu
- Institute of Tissue Transplantation and Immunology, Jinan University, Guangzhou 510632, China.
| | - Chao Sheng
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Qihao Zhang
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China; Guangzhou Biopharmaceutical R&D Center of Jinan University Co., Ltd, Guangzhou 510632, China.
| |
Collapse
|
9
|
Luo L, Li J, Sun Y, Lv Y, Liu J, Li Y, Zhang C, Zhang W. Maternal genetic intergenerational and transgenerational effects on hormone synthesis in ovarian granulosa cells of offspring exposed to cadmium during pregnancy. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115278. [PMID: 37481859 DOI: 10.1016/j.ecoenv.2023.115278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/05/2023] [Accepted: 07/17/2023] [Indexed: 07/25/2023]
Abstract
This study aimed to investigate the maternally inherited intergenerational and transgenerational effects of cadmium (Cd) exposure on steroid hormone synthesis in the ovarian granulosa cells (GCs) of offspring rats. F1 rats were obtained by mating adult female Sprague-Dawley rats with healthy adult male rats and were exposed to 0, 0.5, 2.0, and 8.0 mg/kg CdCl2 during pregnancy. The adult female rats (PND 56) were mated with healthy adult male rats to produce F2 and F3 rats. The serum progesterone (Pg) and estradiol (E2) levels of the F2 adult female rats were decreased, while those of F3 rats were significantly increased. Moreover, hormone synthesis-related genes had different expression patterns in the F2 and F3 generations. F2 and F3 rat ovarian GCs exhibited altered miRNA expression profiles and DNA methylation patterns. Validation of miRNAs that regulate hormone synthesis-related genes in the cAMP/PKA signaling pathway suggested that miR-124-3p was downregulated in F2 and F3 rats, while miR-133a-5p and miR-150-5p were upregulated in F2 rats and downregulated in F3 rats. In summary, 1) there are maternal genetic intergenerational (GCs hormone synthesis disorder) and transgenerational (GCs hormone synthesis function repair change) effects on hormone synthesis function changes in offspring GCs induced by Cd exposure during pregnancy. 2) Changes in miRNAs and DNA methylation modifications associated with the genetic effects of altered hormone synthesis function in offspring GCs induced by Cd exposure during pregnancy are important. 3) Under the current environmental level of Cd exposure, the possible risk of maternal genetic intergenerational and transgenerational effects of offspring ovarian toxicity should be strongly considered.
Collapse
Affiliation(s)
- Lingfeng Luo
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China
| | - Jingwen Li
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China
| | - Yi Sun
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China; Key Laboratory of Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yake Lv
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China
| | - Jin Liu
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China
| | - Yuchen Li
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China
| | - Chenyun Zhang
- School of Health Management, Fujian Medical University, Fuzhou 350122, Fujian Province, China.
| | - Wenchang Zhang
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China.
| |
Collapse
|
10
|
Venditti M, Santillo A, Latino D, Ben Rhouma M, Romano MZ, Haddadi A, Di Fiore MM, Minucci S, Messaoudi I, Chieffi Baccari G. Evidence of the protective role of D-Aspartate in counteracting/preventing cadmium-induced oxidative stress in the rat testis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 259:115067. [PMID: 37244200 DOI: 10.1016/j.ecoenv.2023.115067] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 05/29/2023]
Abstract
Cadmium (Cd), by producing oxidative stress and acting as an endocrine disruptor, is known to cause severe testicular injury, documented by histological and biomolecular alterations, such as decreased serum testosterone (T) level and impairment of spermatogenesis. This is the first report on the potential counteractive/preventive action of D-Aspartate (D-Asp), a well-known stimulator of T biosynthesis and spermatogenesis progression by affecting hypothalamic-pituitary-gonadal axis, in alleviating Cd effects in the rat testis. Our results confirmed that Cd affects testicular activity, as documented by the reduction of serum T concentration and of the protein levels of steroidogenesis (StAR, 3β-HSD, and 17β-HSD) and spermatogenesis (PCNA, p-H3, and SYCP3) markers. Moreover, higher protein levels of cytochrome C and caspase 3, together with the number of cells positive to TUNEL assay, indicated the intensification of the apoptotic process. D-Asp administered either simultaneously to Cd, or for 15 days before the Cd-treatment, reduced the oxidative stress induced by the metal, alleviating the consequent harmful effects. Interestingly, the preventive action of D-Asp was more effective than its counteractive effect. A possible explanation is that giving D-Asp for 15 days induces its significant uptake in the testes, reaching the concentrations necessary for optimum function. In summary, this report highlights, for the first time, the beneficial role played by D-Asp in both counteracting/preventing the adverse Cd effects in the rat testis, strongly encouraging further investigations to consider the potential value of D-Asp also in improving human testicular health and male fertility.
Collapse
Affiliation(s)
- Massimo Venditti
- Dipartimento di Medicina Sperimentale, Sez. Fisiologia Umana e Funzioni Biologiche Integrate, Università degli Studi della Campania 'Luigi Vanvitelli', via Santa Maria di Costantinopoli, 16-80138 Napoli, Italy
| | - Alessandra Santillo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania 'Luigi Vanvitelli', Via Vivaldi, 43-81100 Caserta, Italy
| | - Debora Latino
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania 'Luigi Vanvitelli', Via Vivaldi, 43-81100 Caserta, Italy
| | - Mariem Ben Rhouma
- LR11ES41: Génetique, Biodiversité et Valorisation des Bioressources, Institut Supérieur de Biotechnologie, Université de Monastir, Monastir, Tunisia
| | - Maria Zelinda Romano
- Dipartimento di Medicina Sperimentale, Sez. Fisiologia Umana e Funzioni Biologiche Integrate, Università degli Studi della Campania 'Luigi Vanvitelli', via Santa Maria di Costantinopoli, 16-80138 Napoli, Italy
| | - Asma Haddadi
- LR11ES41: Génetique, Biodiversité et Valorisation des Bioressources, Institut Supérieur de Biotechnologie, Université de Monastir, Monastir, Tunisia
| | - Maria Maddalena Di Fiore
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania 'Luigi Vanvitelli', Via Vivaldi, 43-81100 Caserta, Italy
| | - Sergio Minucci
- Dipartimento di Medicina Sperimentale, Sez. Fisiologia Umana e Funzioni Biologiche Integrate, Università degli Studi della Campania 'Luigi Vanvitelli', via Santa Maria di Costantinopoli, 16-80138 Napoli, Italy.
| | - Imed Messaoudi
- LR11ES41: Génetique, Biodiversité et Valorisation des Bioressources, Institut Supérieur de Biotechnologie, Université de Monastir, Monastir, Tunisia
| | - Gabriella Chieffi Baccari
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania 'Luigi Vanvitelli', Via Vivaldi, 43-81100 Caserta, Italy
| |
Collapse
|
11
|
Sun Y, Zhang C, Luo L, Lin H, Liu C, Zhang W. Paternal genetic intergenerational and transgenerational effects of cadmium exposure on hormone synthesis disorders in progeny ovarian granulosa cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121175. [PMID: 36731734 DOI: 10.1016/j.envpol.2023.121175] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
To investigate the paternal genetic effects of cadmium (Cd) exposure on hormone synthesis disorders in the ovarian granulosa cells (GCs) of offspring. Here, male Sprague‒Dawley (SD) rats were gavaged with CdCl2 (0, 0.5, 2, 8 mg/kg) from postnatal day (PND) 28-56, followed by mating with newly purchased healthy adult females to produce F1, and F1 adult males (PND 56) were mated with newly purchased healthy adult females to produce F2. The serum levels of estradiol (E2) and progesterone (Pg) decreased in F1 but essentially returned to normal in F2. The levels of StAR, CYP11A1, CYP17A1, CYP19A1, and SF-1 showed different alterations in F1 and F2 ovarian GCs. The expression patterns of miRNAs and imprinted genes related to hormone synthesis in GCs of F1 and F2 differed, but methylation of hormone synthesis-related genes was not significantly altered (except for individual loci in F1). In addition, there were significant changes in the expression of imprinted genes and miRNAs in F0 and F1 sperm. We conclude that paternal Cd exposure causes intergenerational genetic effects (hormone synthesis disorders) and transgenerational effects (reparative changes in hormone synthesis function) in ovarian GCs. These genetic effects were related to the downregulation of StAR in F1 and the upregulation of CYP17A1, CYP19A1, StAR and SF-1 in F2. Important changes in miRNAs and imprinted genes were also observed, but not all alterations originated from paternal inheritance.
Collapse
Affiliation(s)
- Yi Sun
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Chenyun Zhang
- School of Health Management, Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Lingfeng Luo
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Hao Lin
- Fuzhou Center for Disease Control and Prevention, Fuzhou, 350005, Fujian, China
| | - Chenchen Liu
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Wenchang Zhang
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian, China.
| |
Collapse
|
12
|
Ali W, Ma Y, Zhu J, Zou H, Liu Z. Mechanisms of Cadmium-Induced Testicular Injury: A Risk to Male Fertility. Cells 2022; 11:cells11223601. [PMID: 36429028 PMCID: PMC9688678 DOI: 10.3390/cells11223601] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Cadmium is a heavy toxic metal with unknown biological functions in the human body. Over time, cadmium accretion in the different visceral organs (liver, lungs, kidney, and testis) is said to impair the function of these organs, which is associated with a relatively long biological half-life and a very low rate of excretion. Recently studies have revealed that the testes are highly sensitive to cadmium. In this review, we discussed the adverse effect of cadmium on the development and biological functions of the testis. The Sertoli cells (SCs), seminiferous tubules, and Blood Testis Barrier are severely structurally damaged by cadmium, which results in sperm loss. The development and function of Leydig cells are hindered by cadmium, which also induces Leydig cell tumors. The testis's vascular system is severely disturbed by cadmium. Cadmium also perturbs the function of somatic cells and germ cells through epigenetic regulation, giving rise to infertile or sub-fertile males. In addition, we also summarized the other findings related to cadmium-induced oxidative toxicity, apoptotic toxicity, and autophagic toxicity, along with their possible mechanisms in the testicular tissue of different animal species. Consequently, cadmium represents a high-risk factor for male fertility.
Collapse
Affiliation(s)
- Waseem Ali
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Yonggang Ma
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Jiaqiao Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Correspondence:
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
13
|
Li W, Gao R, Ding Y, Chen X, Liu X, He J, Li F, Long J, Lu S, Yang C, Wang Y. Imbalance hepatic metabolism homeostasis in the F1 generation of endometrial DNMT3B conditional knockout female mice. Front Physiol 2022; 13:1042449. [PMCID: PMC9692016 DOI: 10.3389/fphys.2022.1042449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/01/2022] [Indexed: 11/13/2022] Open
Abstract
Numerous studies have suggested the possibility of explaining the etiology of metabolic syndrome through DNA methylation. DNA methyltransferase 3B (DNMT3B) plays an important role in de novo DNA methylation. There was an alteration in maternal (F0) endometrial function, which might lead to growth and developmental disorder in offspring (F1). In this study, we investigated the effect of maternal endometrial DNMT3B deficiency on the metabolism in offspring. We constructed endometrial DNMT3B conditional knockout female mice (cKO) which were mated with normal C57BL/6 male mice to obtain the F1 generation. Further, to study the development of these offspring, we observed them at three different life stages which included the 6-week-old juvenile, 9-week-old sub-adult and 12-week-old adult. Follow the detection of a range of metabolism-related indicators, we found that in the cKO F1 generation, liver triglyceride level was significantly elevated in 9-week-old female mice, lipid droplet deposition was significantly increased in 9-week-old and 12-week-old mice, and the expression of lipid metabolism key factors in the liver was markedly decreased except of 6-week-old male mice. These results indicate that maternal endometrial DNMT3B conditional knockout leads to imbalance in hepatic metabolism in F1 generation, the mechanism of which requires further discussion.
Collapse
Affiliation(s)
- Weike Li
- Laboratory of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing, China
- Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, China
| | - Rufei Gao
- Laboratory of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing, China
- Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, China
| | - Yubin Ding
- Laboratory of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing, China
- Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, China
| | - Xuemei Chen
- Laboratory of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing, China
- Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, China
| | - Xueqing Liu
- Laboratory of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing, China
- Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, China
| | - Junlin He
- Laboratory of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing, China
- Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, China
| | - Fangfang Li
- Laboratory of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing, China
- Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, China
| | - Jing Long
- Laboratory of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing, China
- Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, China
| | - Siyu Lu
- Laboratory of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing, China
- Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, China
| | - Chengshun Yang
- Laboratory of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing, China
- Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, China
- *Correspondence: Chengshun Yang, ; Yingxiong Wang,
| | - Yingxiong Wang
- Laboratory of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing, China
- Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, China
- *Correspondence: Chengshun Yang, ; Yingxiong Wang,
| |
Collapse
|
14
|
Zhou J, Zhang Y, Zeng L, Wang X, Mu H, Wang M, Pan H, Su P. Paternal cadmium exposure affects testosterone synthesis by reducing the testicular cholesterol pool in offspring mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113947. [PMID: 35999762 DOI: 10.1016/j.ecoenv.2022.113947] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/12/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Cadmium(Cd) is a heavy metal that is harmful to human health. Early studies have shown that cadmium can damage testicular structure, affecting testosterone synthesis and spermatogenesis. However, the effect of paternal Cd exposure on the reproductive system of offspring remains unclear. In this study, male 8-week C57BL/6 J mice were used as research objects, and Cd was injected intraperitoneally every other day at a dose of 1 mg/kg for 5 weeks, after which the effect on the reproductive system of offspring male mice was studied. Our results showed that the body weight of the offspring male mice increased faster, with increases of the testicular and epididymis indices under Cd exposure. At the same time, the serum testosterone and free cholesterol decreased, total cholesterol increased, and the sperm concentration decreased. Further qRT-PCR and western blot analyses showed that the expressions of StAR, P450scc, 3β-HSD and 17β-HSD, which are related to testosterone synthesis, was significantly downregulated. Additionally, ATGL, LDLR and SR-BI, which are related to the intracellular cholesterol pool were downregulated, leading to the reduction of the cholesterol pool and the accumulation of lipid droplets. Oil red O and BODIPY staining revealed an increase in the abundance of lipid droplets in testicular tissue of newborn and adult mice. Prediction of tsRNA target genes in the sperm of parents and testicular transcriptome of newborn mice showed that the differentially expressed genes were associated with catabolism of fatty acids, cholesterol and ion channels, while the mitochondrial and lysosome functions of testicular tissue of adult offspring mice were decreased. Overall, our results suggest that paternal Cd exposure reduced the intracellular cholesterol pool of testicular of offspring, affected testosterone synthesis and reproductive system development.
Collapse
Affiliation(s)
- Jinzhao Zhou
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yanwei Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Ling Zeng
- Medical Genetics Center, Maternal and Child Health Hospital of Hubei Province, Wuhan, China.
| | - Xiaofei Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Hongbei Mu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Mei Wang
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Hao Pan
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and echnology, Wuhan, China.
| | - Ping Su
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Wuhan Tongji Reproductive Medicine Hospital, Wuhan, China.
| |
Collapse
|
15
|
Ikokide EJ, Oyagbemi AA, Oyeyemi MO. Impacts of cadmium on male fertility: Lessons learnt so far. Andrologia 2022; 54:e14516. [PMID: 35765120 DOI: 10.1111/and.14516] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/19/2022] [Accepted: 05/13/2022] [Indexed: 01/04/2023] Open
Abstract
Cadmium (Cd) is one of the most dangerous heavy metals in the world. Globally, toxicities associated with cadmium and its attendant negative impact on humans and animals cannot be under-estimated. Cd is a heavy metal, and people are exposed to it through contaminated foods and smoking. Cd exerts its deleterious impacts on the testes (male reproductive system) by inducing oxidative stress, spermatogenic cells apoptosis, testicular inflammation, decreasing androgenic and sperm cell functions, disrupting ionic homeostasis, pathways and epigenetic gene regulation, damaging vascular endothelium and blood testes barrier. In association with other industrial by-products, Cd has been incriminated for the recent decline of male fertility rate seen in both man and animals. Understanding the processes involved in Cd-induced testicular toxicity is vital for the innovation of techniques that will help ameliorate infertility in males. In this review, we summed up recent studies on the processes of testicular toxicity and male infertility due to Cd exposure. Also, the usage of different compounds including phytochemicals, and plant extracts to manage Cd reprotoxicity will be reviewed.
Collapse
Affiliation(s)
- Emmanuel Joseph Ikokide
- Department of Theriogenology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ademola Adetokunbo Oyagbemi
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | | |
Collapse
|
16
|
Wang Y, Li T, Li H, Liang Y, Mai W, Liu C, Chen H, Huang Y, Zhang Q. CORO1A regulates lipoprotein uptake in Leydig cells exposed to cadmium. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 232:113255. [PMID: 35121256 DOI: 10.1016/j.ecoenv.2022.113255] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Cadmium (Cd) is one of the most common environmental pollutants, which has a long biological half-life. Maternal Cd-exposure in the natural environment causes steroidogenesis defects resulting in spermatogenesis disorder in male offspring. For better understanding its underlying mechanism, we have employed iTRAQ to screen the differentially expressed protein and found that the expression of CORO1A and Cofilin 1 was up-regulated approximately 2 fold in Leydig cells of maternal Cd-exposure offspring. As the major source of steroid hormone, cholesterol is transported to cells via receptor-mediated endocytosis which relies on the remodel of cytoskeleton, then stores in lipid droplets (LDs). However, few studies have focused on the role of cytoskeleton in abnormal steroidogenesis. This study was performed to explore the role of CORO1A in androgen deficiency caused by Cd exposure and its involvement of low-density lipoprotein (LDL) uptake and effects on LDs. We found that Cd resulted in the up-regulation of CORO1A and Cofilin 1, and down-regulation of Profilin 1 in the testis of male offspring with maternal exposure. The structure of filamentous actin was broken, disordered and even crumpled up in Cd-treated R2C cells. F-actin disassembly led to a low uptake of LDL with a reduced number of LDs, followed by decreased total cholesterol and low progesterone production. When CORO1A was silenced, the expression of Cofilin 1 was down-regulated and Profilin 1 was up-regulated in Cd-treated R2C cells. The filamentous actin was rescued and the integrated cytoskeleton prompted LDL uptake, which resulted in the increased total cholesterol and high progesterone production. These findings highlight the crucial role of CORO1A as a cytoskeleton regulatory protein in steroidogenesis, which may help to better understand Cd-induced steroid hormone deficiency in children.
Collapse
Affiliation(s)
- Youjin Wang
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
| | - Teng Li
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Haoji Li
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
| | - Yuqing Liang
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
| | - Wanwen Mai
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
| | - Chen Liu
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
| | - Hongxia Chen
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
| | - Yadong Huang
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China; National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou 510632, China
| | - Qihao Zhang
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China; National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
17
|
Madhu NR, Sarkar B, Slama P, Jha NK, Ghorai SK, Jana SK, Govindasamy K, Massanyi P, Lukac N, Kumar D, Kalita JC, Kesari KK, Roychoudhury S. Effect of Environmental Stressors, Xenobiotics, and Oxidative Stress on Male Reproductive and Sexual Health. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1391:33-58. [PMID: 36472815 DOI: 10.1007/978-3-031-12966-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This article examines the environmental factor-induced oxidative stress (OS) and their effects on male reproductive and sexual health. There are several factors that induce OS, i.e. radition, metal contamination, xenobiotic compounds, and cigarette smoke and lead to cause toxicity in the cells through metabolic or bioenergetic processes. These environmental factors may produce free radicals and enhance the reactive oxygen species (ROS). Free radicals are molecules that include oxygen and disbalance the amount of electrons that can create major chemical chains in the body and cause oxidation. Oxidative damage to cells may impair male fertility and lead to abnormal embryonic development. Moreover, it does not only cause a vast number of health issues such as ageing, cancer, atherosclerosis, insulin resistance, diabetes mellitus, cardiovascular diseases, ischemia-reperfusion injury, and neurodegenerative disorders but also decreases the motility of spermatozoa while increasing sperm DNA damage, impairing sperm mitochondrial membrane lipids and protein kinases. This chapter mainly focuses on the environmental stressors with further discussion on the mechanisms causing congenital impairments due to poor sexual health and transmitting altered signal transduction pathways in male gonadal tissues.
Collapse
Affiliation(s)
- Nithar Ranjan Madhu
- Department of Zoology, Acharya Prafulla Chandra College, New Barrackpore, Kolkata, West Bengal, India
| | - Bhanumati Sarkar
- Department of Botany, Acharya Prafulla Chandra College, New Barrackpore, Kolkata, West Bengal, India
| | - Petr Slama
- Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, India
| | | | - Sandip Kumar Jana
- Department of Zoology, Bajkul Milani Mahavidyalaya, Purba Medinipur, West Bengal, India
| | - Kadirvel Govindasamy
- Animal Production Division, ICAR Research Complex for NEH Region, Indian Council of Agricultural Research, Umiam, Meghalaya, India
| | - Peter Massanyi
- Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
| | - Norbert Lukac
- Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
| | - Dhruv Kumar
- School of Health Sciences & Technology, UPES University, Dehradun, Uttarakhand, India
| | - Jogen C Kalita
- Department of Zoology, Gauhati University, Guwahati, India
| | | | | |
Collapse
|
18
|
Hernández-Rodríguez J, López AL, Montes S, Bonilla-Jaime H, Morales I, Limón-Morales O, Ríos C, Hernández-González M, Vigueras-Villaseñor RM, Arteaga-Silva M. Delay in puberty indices of Wistar rats caused by Cadmium. Focus on the redox system in reproductive organs. Reprod Toxicol 2021; 99:71-79. [PMID: 33249230 DOI: 10.1016/j.reprotox.2020.11.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/27/2020] [Accepted: 11/16/2020] [Indexed: 12/30/2022]
Abstract
Puberty is a transitional period from juvenile stage to adulthood, followed by the functional maturation of gonads and reproductive organs. This period is sensitive to environmental pollutants like cadmium (Cd), a heavy metal that represents a serious health risk. Cd is an endocrine disruptor that interferes with reproduction by causing oxidative stress in the reproductive organs, affecting the sexual function and decreasing testosterone (T) levels. However, little research has been done on the effects of Cd on puberty markers and antioxidant systems. In this study, we evaluated the effects of Cd on puberty markers: preputial separation, testes descent and T levels, and the antioxidant activity (SOD, CAT, GSH/GSSG and TAC) in the seminal vesicles, testis and epididymis. Male Wistar pups were treated with 1 mg/kg Cd or saline solution by i.p. injection from day 1 to 35; the other treatment was administrated for 49 days. At the end of treatment, the animals were sacrificed, and the tissues of interest dissected, weighed and prepared for the respective assays. Cd treated rats from birth to puberty showed a delay onset in the puberty markers and a low weight in reproductive organs. Also, Cd induced differential effects on the redox system in reproductive organs and decreased T levels, these effects played a pivotal role in the delay of puberty markers onset (testes descent and preputial separation), affecting the development and sexual maturity of the male rats.
Collapse
Affiliation(s)
- Joel Hernández-Rodríguez
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Ciudad de México, Mexico
| | - Ana Laura López
- Departamento de Fisiología, Biofísica y Neurociencias, CINVESTAV Zacatenco, Ciudad de México, Mexico
| | - Sergio Montes
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, Insurgentes Sur 3877, Col. La Fama, C.P. 14269, Ciudad de México, Mexico
| | - Herlinda Bonilla-Jaime
- Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, C.P. 09340, Ciudad de México, Mexico
| | - Ivis Morales
- Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, C.P. 09340, Ciudad de México, Mexico
| | - Ofelia Limón-Morales
- Departamento de Ciencias de la Salud. Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, C.P. 09340, Ciudad de México, Mexico
| | - Camilo Ríos
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, Insurgentes Sur 3877, Col. La Fama, C.P. 14269, Ciudad de México, Mexico
| | - Marisela Hernández-González
- Instituto de Neurociencias, Universidad de Guadalajara, Francisco de Quevedo 180, Col. Arcos Vallarta, C.P. 44130, Guadalajara, Jalisco, Mexico
| | - Rosa María Vigueras-Villaseñor
- Instituto Nacional de Pediatría, Calzada México Xochimilco No. 101, Col. San Lorenzo Huipulco, Tlalpan, C.P. 14370, Ciudad de México, Mexico
| | - Marcela Arteaga-Silva
- Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, C.P. 09340, Ciudad de México, Mexico.
| |
Collapse
|
19
|
Souza TL, Batschauer AR, Brito PM, Martino-Andrade AJ, Ortolani-Machado CF. Evaluation of testicular structure in mice after exposure to environmentally relevant doses of manganese during critical windows of development. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111537. [PMID: 33254399 DOI: 10.1016/j.ecoenv.2020.111537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/29/2020] [Accepted: 10/16/2020] [Indexed: 06/12/2023]
Abstract
Despite being an essential trace element with great importance for vital metabolic activities, the manganese (Mn) can also cause damage to organ systems. However, data on the effect of this metal on the male reproductive system are limited, especially using relevant doses to human exposure. The present study aimed to evaluate and compare the effects of Mn exposure on the testicular structure of mice. Three experiments were conducted: (I) direct exposure to realistic doses (0.013, 0.13, and 1.3 mg/kg/day of MnCl2); (II) parental and direct exposure to realistic doses (as in experiment I), where the animals were exposed during intrauterine development and from lactation until reproductive maturity; (III) direct exposure to high doses (15, 30, and 60 mg/kg/day of MnCl2). Biometric, histopathological, histomorphometric and stereological parameters of the testis were evaluated, in addition to sperm morphology. Bioinformatic analyses were performed to identify potential Mn binding sites in 3β-HSD and P450ssc, as well as their protein-protein interaction network. The results obtained were compared using the integrated biomarker response index (IBR). There was an increase of seminiferous tubules pathologies in all experimental conditions tested, with effects on tubular volume, as well as a reduction in tubular diameter. The IBR analyses showed that parental and direct exposure had a significant negative effect on the testicular structure due to the exposure of this metal to sensitive periods of animal development. This study suggests that Mn has the potential to alter the morphological parameters of the testes, affecting the spermatogenesis in mice.
Collapse
Affiliation(s)
- Tugstênio L Souza
- Laboratory of Embryotoxicology, Department of Cell Biology, Federal University of Paraná, Curitiba, PR, Brazil.
| | - Amândia R Batschauer
- Laboratory of Embryotoxicology, Department of Cell Biology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Patricia M Brito
- Laboratory of Cell Toxicology, Department of Cell Biology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Anderson J Martino-Andrade
- Laboratory of Endocrine Physiology and Animal Reproduction, Department of Physiology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Claudia F Ortolani-Machado
- Laboratory of Embryotoxicology, Department of Cell Biology, Federal University of Paraná, Curitiba, PR, Brazil
| |
Collapse
|
20
|
Liu J, Zeng L, Zhuang S, Zhang C, Li Y, Zhu J, Zhang W. Cadmium exposure during prenatal development causes progesterone disruptors in multiple generations via steroidogenic enzymes in rat ovarian granulosa cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 201:110765. [PMID: 32497815 DOI: 10.1016/j.ecoenv.2020.110765] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/09/2020] [Accepted: 05/13/2020] [Indexed: 06/11/2023]
Abstract
Exposure to the heavy metal cadmium (Cd) in the environment is linked to adverse health. To fully understand the adverse effects of this important endocrine-disrupting compound (EDC) requires studies that address multigenerational effects and epigenetic mechanisms. The present study orally dosed pregnant SD rats with Cd from gestation day 1 until birth. First filial generation (F1) female rats were mated with untreated males to generate the secondary filial generation (F2). Ovarian granulosa cells (OGCs) were collected at postnatal day (PND) 56 from both generations after prenatal Cd exposure, and hormone secretion examinations showed a progesterone disorder. Significant decreases in steroidogenic enzymes (steroidogenic acute regulatory protein (StAR) and P450 cholesterol side-chain cleavage enzyme (CYP11A1)) were observed in F1 and F2 rats. However, F1 and F2 rats had different patterns of mRNA and protein expression of steroidogenic factor 1 (SF-1). We also found that microRNAs were significantly changed using a microarray, and miR-10b-5p and miR-27a-3p were upregulated in F1 and F2 rats. The COV434 cell line microRNA-knockdown model showed that these two important microRNAs regulated the StAR-induced Cd effect on progesterone secretion. Overall, the results of this study indicate that prenatal Cd exposure causes cytotoxicity problems, progesterone disorder and microRNAs expression changed in a multigenerational manner. And progesterone disorder may interfere with the steroidogenic enzymes in offspring. The present study also revealed that environmental pollution produces multigenerational effects.
Collapse
Affiliation(s)
- Jin Liu
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Xueyan Road No. 1, Minhou Coudslanty, Fuzhou, 350108, China.
| | - Lingfeng Zeng
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Xueyan Road No. 1, Minhou Coudslanty, Fuzhou, 350108, China; School Key Discipline of Nutrition and Food Hygiene, Public Health School, Changsha Medical University, Changsha, China.
| | - Siqi Zhuang
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Xueyan Road No. 1, Minhou Coudslanty, Fuzhou, 350108, China.
| | - Chenyun Zhang
- Department of Health Law and Policy, School of Public Health, Fujian Medical University, Xueyan Road No. 1, Minhou County, Fuzhou, 350108, China.
| | - Yuchen Li
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Xueyan Road No. 1, Minhou Coudslanty, Fuzhou, 350108, China.
| | - Jianlin Zhu
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Xueyan Road No. 1, Minhou Coudslanty, Fuzhou, 350108, China.
| | - Wenchang Zhang
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Xueyan Road No. 1, Minhou Coudslanty, Fuzhou, 350108, China.
| |
Collapse
|
21
|
Souza TL, Batschauer AR, Brito PM, Leão-Buchir J, Spercoski KM, Neto FF, Martino-Andrade AJ, Ortolani-Machado CF. Evaluation of Mn exposure in the male reproductive system and its relationship with reproductive dysfunction in mice. Toxicology 2020; 441:152504. [DOI: 10.1016/j.tox.2020.152504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/24/2020] [Accepted: 05/18/2020] [Indexed: 12/16/2022]
|
22
|
Zhu Q, Li X, Ge RS. Toxicological Effects of Cadmium on Mammalian Testis. Front Genet 2020; 11:527. [PMID: 32528534 PMCID: PMC7265816 DOI: 10.3389/fgene.2020.00527] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 04/30/2020] [Indexed: 12/15/2022] Open
Abstract
Cadmium is a heavy metal, and people are exposed to it through contaminated foods and smoking. In humans and other mammals, cadmium causes damage to male testis. In this review, we summarize the effects of cadmium on the development and function of the testis. Cadmium causes severe structural damage to the seminiferous tubules, Sertoli cells, and blood-testis barrier, thus leading to the loss of sperm. Cadmium hinders Leydig cell development, inhibits Leydig cell function, and induces Leydig cell tumors. Cadmium also disrupts the vascular system of the testis. Cadmium is a reactive oxygen species inducer and possibly induces DNA damage, thus epigenetically regulating somatic cell and germ cell function, leading to male subfertility/infertility.
Collapse
Affiliation(s)
- Qiqi Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaoheng Li
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ren-Shan Ge
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
23
|
Ren X, Wang S, Zhang C, Hu X, Zhou L, Li Y, Xu L. Selenium ameliorates cadmium-induced mouse leydig TM3 cell apoptosis via inhibiting the ROS/JNK /c-jun signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 192:110266. [PMID: 32058163 DOI: 10.1016/j.ecoenv.2020.110266] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 01/27/2020] [Accepted: 01/29/2020] [Indexed: 05/11/2023]
Abstract
Despite the well-known acknowledgement of both the toxicity of cadmium (Cd) and the ameliorative effect of selenium (Se), the mechanism of the protective effect of selenium on cadmium-induced Mouse Leydig (TM3) cell apoptosis remains unknown. In this study, we hypothesized that the reactive oxygen species (ROS)-mediated c-jun N-terminal kinase (JNK) signaling pathway is involved in anti-apoptosis of selenium against cadmium in TM3 cells. We found that exposure to cadmium caused evident cytotoxicity, in which cell viability was inhibited, followed by inducement of apoptosis. Moreover, the level of ROS generation was elevated, leading to the phosphorylation of JNK. In addition, following cadmium exposure, the nuclear transcription factor c-jun was significantly activated, which led to increased expression of downstream gene c-jun, resulting in downstream activation of the apoptosis-related protein Caspase3 and upregulation of Cleaved-PARP, as well as inhibition of the anti-apoptosis protein Bcl-2. However, pretreatment with selenium remarkably suppressed cadmium-induced TM3 cell apoptosis. Furthermore, the level of ROS declined, and the JNK signaling pathway was blocked. Following this, the gene expression of c-jun decreased while Bcl-2 increased, which was consistent with the effects on proteins, that Caspase3 activity and Cleaved-PARP were inhibited while Bcl-2 level was restored. In order to explain the relationship between molecules of the signaling pathway, N-acetyl-L-cysteine (NAC), the ROS inhibitor, and JNK1/2 siRNA were administered, which further indicated the mediatory role of the ROS/JNK/c-jun signaling pathway in regulating anti-apoptosis of selenium against cadmium-induced TM3 cell apoptosis.
Collapse
Affiliation(s)
- Xiangmei Ren
- Department of Nutrition, School of Public Health, Xuzhou Medical University, China.
| | - Susu Wang
- Department of Nutrition, School of Public Health, Xuzhou Medical University, China
| | - Chaoqin Zhang
- Department of Nutrition, School of Public Health, Xuzhou Medical University, China
| | - Xindi Hu
- Department of Nutrition, School of Public Health, Xuzhou Medical University, China
| | - Li Zhou
- Department of Nutrition, School of Public Health, Xuzhou Medical University, China
| | - Yuanhong Li
- Department of Nutrition, School of Public Health, Xuzhou Medical University, China
| | - Lichun Xu
- Department of Hygiene, School of Public Health, Xuzhou Medical University, China
| |
Collapse
|
24
|
Huang Y, Zhu J, Li H, Wang W, Li Y, Yang X, Zheng N, Liu Q, Zhang Q, Zhang W, Liu J. Cadmium exposure during prenatal development causes testosterone disruption in multigeneration via SF-1 signaling in rats. Food Chem Toxicol 2020; 135:110897. [DOI: 10.1016/j.fct.2019.110897] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/15/2019] [Accepted: 10/17/2019] [Indexed: 12/30/2022]
|
25
|
Wang Y, Ni C, Li X, Lin Z, Zhu Q, Li L, Ge RS. Phthalate-Induced Fetal Leydig Cell Dysfunction Mediates Male Reproductive Tract Anomalies. Front Pharmacol 2019; 10:1309. [PMID: 31780936 PMCID: PMC6851233 DOI: 10.3389/fphar.2019.01309] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 10/15/2019] [Indexed: 12/19/2022] Open
Abstract
Male fetal Leydig cells in the testis secrete androgen and insulin-like 3, determining the sexual differentiation. The abnormal development of fetal Leydig cells could lead to the reduction of androgen and insulin-like 3, thus causing the male reproductive tract anomalies in male neonates, including cryptorchidism and hypospadias. Environmental pollutants, such as phthalic acid esters (phthalates), can perturb the development and differentiated function of Leydig cells, thereby contributing to the reproductive toxicity in the male. Here, we review the epidemiological studies in humans and experimental investigations in rodents of various phthalates. Most of phthalates disturb the expression of various genes encoded for steroidogenesis-related proteins and insulin-like 3 in fetal Leydig cells and the dose-additive effects are exerted after exposure in a mixture.
Collapse
Affiliation(s)
- Yiyan Wang
- Department of Anesthesiology The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chaobo Ni
- Department of Anesthesiology The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaoheng Li
- Department of Anesthesiology The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhenkun Lin
- Center of Scientific Research, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qiqi Zhu
- Center of Scientific Research, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Linxi Li
- Center of Scientific Research, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ren-Shan Ge
- Department of Anesthesiology The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Center of Scientific Research, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
26
|
Souza TL, Batschauer AR, Brito PM, Oliveira Ribeiro CA, Martino-Andrade AJ, Ortolani-Machado CF. Multigenerational analysis of the functional status of male reproductive system in mice after exposure to realistic doses of manganese. Food Chem Toxicol 2019; 133:110763. [DOI: 10.1016/j.fct.2019.110763] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/09/2019] [Accepted: 08/15/2019] [Indexed: 12/16/2022]
|
27
|
Moynihan M, Telléz-Rojo MM, Colacino J, Jones A, Song PXK, Cantoral A, Mercado-García A, Peterson KE. Prenatal Cadmium Exposure Is Negatively Associated With Adiposity in Girls Not Boys During Adolescence. Front Public Health 2019; 7:61. [PMID: 31032242 PMCID: PMC6473031 DOI: 10.3389/fpubh.2019.00061] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 02/27/2019] [Indexed: 01/20/2023] Open
Abstract
Introduction: Cadmium is a pervasive toxic metal that remains a public health concern and exposure in early life has been associated with growth deficits in infancy and childhood. Growth during adolescence also may be sensitive to effects of cadmium exposure, given the changes in distribution of lean and adipose tissue that vary by sex during puberty. This study examines whether prenatal and concurrent cadmium exposures are associated with adiposity measures at ages 8-15 years in a well-characterized birth cohort. Methods: The sample included 185 participants from the ELEMENT birth cohorts in Mexico City with complete data on urinary cadmium exposures, anthropometry and covariates [child age and sex, household socioeconomic status, and maternal smoking history and body mass index (BMI)]. Maternal third trimester and adolescent urines were analyzed for cadmium using an Inductively Coupled Plasma Mass Spectrometer. Trained personnel obtained anthropometry including height, weight, waist circumference and subscapular, suprailiac, and triceps skinfold thickness. BMI z-scores for age and sex were calculated using the World Health Organization's reference standard. Linear regression models were used to estimate the association of prenatal and concurrent urinary cadmium levels with adolescent anthropometry, adjusting for covariates. Results: Among 87 males and 98 females, median age was 10 years (IQR 9 -11 years). Pregnant women and children had median urinary cadmium concentrations of 0.19 μg/L (IQR 0.12- 0.27 μg/L) and 0.14 μg/L (IQR 0.11- 0.18 μg/L), respectively. Regression models showed inverse relationships between prenatal cadmium exposure and adolescent adiposity. An IQR increase in prenatal cadmium was associated with percent decreases in BMI z-score (-27%, p = 0.01), waist circumference (-3%, p = 0.01), and subscapular (-11%, p = 0.01), suprailiac (-11%, p = 0.02), and triceps (-8%, p < 0.01) skinfold thickness. When stratified by sex, these relationships remained statistically significant in females but not males. Conclusions: Prenatal cadmium exposure was negatively associated with measures of both abdominal and peripheral adiposity in girls, but not in boys. These results emphasize the sex-dependent effects of in utero cadmium exposure on adiposity in adolescence.
Collapse
Affiliation(s)
- Meghan Moynihan
- Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, United States
| | - Martha Maria Telléz-Rojo
- Center for Research on Nutrition and Health, National Institute of Public Health, Cuernavaca, Mexico
| | - Justin Colacino
- Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, United States.,Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, United States
| | - Andrew Jones
- Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, United States.,Center for Human Growth and Development, University of Michigan, Ann Arbor, MI, United States
| | - Peter X K Song
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, United States
| | - Alejandra Cantoral
- Center for Research on Nutrition and Health, National Institute of Public Health, Cuernavaca, Mexico
| | - Adriana Mercado-García
- Center for Research on Nutrition and Health, National Institute of Public Health, Cuernavaca, Mexico
| | - Karen E Peterson
- Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, United States.,Center for Human Growth and Development, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
28
|
Wang S, Ren X, Hu X, Zhou L, Zhang C, Zhang M. Cadmium-induced apoptosis through reactive oxygen species-mediated mitochondrial oxidative stress and the JNK signaling pathway in TM3 cells, a model of mouse Leydig cells. Toxicol Appl Pharmacol 2019; 368:37-48. [DOI: 10.1016/j.taap.2019.02.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 02/19/2019] [Accepted: 02/20/2019] [Indexed: 12/24/2022]
|
29
|
Zhao Q, Gao L, Liu Q, Cao Y, He Y, Hu A, Chen W, Cao J, Hu C, Li L, Tao F. Impairment of learning and memory of mice offspring at puberty, young adulthood, and adulthood by low-dose Cd exposure during pregnancy and lactation via GABA AR α5 and δ subunits. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 166:336-344. [PMID: 30278395 DOI: 10.1016/j.ecoenv.2018.09.109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/20/2018] [Accepted: 09/25/2018] [Indexed: 06/08/2023]
Abstract
Cadmium (Cd) is a pervasive carcinogen and environmental endocrine disruptor. We studied the changes in learning and memory of offspring mice, whose mothers were exposed to 10 mg Cd/L via the drinking water during pregnancy and lactation period, as well as the changes of testosterone and estrogen levels, serum Cd levels, the histopathological changes and the changes in the mRNA and protein levels of different subunits of γ-aminobutyric acid receptor subtype A subunits (GABAARs) in the hippocampus at the prepuberty, puberty, young adult, and adult stages. At birth, Cd had no obvious effect on mice offspring as statistically accessed based on their body weight, body length, and tail length (all p > 0.05). After grouped, the serum Cd levels increased in the three exposed groups more than in the normal control group at stages (all p < 0.05). Only serum estradiol of female offspring at age 7 weeks was significantly decreased compared with other groups (all p < 0.05). Histopathological results showed that the arrangement of the cells in hippocampal CA1 area of mice offspring was significantly sparse in the exposed groups compared with the control group. At 5 and 7 weeks, two Cd-exposed groups showed prolonged escape latency and exploring time for the platform compared with the normal group in the Morris water maze (all p < 0.05). Only increased protein expression of GABAARα5 was found in the Cd group at these two ages. At age 12 weeks, similar impaired learning and memory of female mice, and decreased protein expression of GABAARδ was found in Cd-exposed groups. Collectively, low-dose Cd had no effect on the growth of mice offspring but affected their learning and memory, especially female offspring, at puberty, young adulthood, and adulthood through changed structure in the hippocampal CA1 area and protein expression of GABAARα5 and GABAARδ.
Collapse
Affiliation(s)
- Qihong Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, 81 Mei Shan Road, Hefei 230032, Anhui, China; Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui Province, China
| | - Lei Gao
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, 81 Mei Shan Road, Hefei 230032, Anhui, China
| | - Qifei Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, 81 Mei Shan Road, Hefei 230032, Anhui, China
| | - Ye Cao
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, 81 Mei Shan Road, Hefei 230032, Anhui, China
| | - Yue He
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, 81 Mei Shan Road, Hefei 230032, Anhui, China
| | - Anla Hu
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, 81 Mei Shan Road, Hefei 230032, Anhui, China
| | - Wenjun Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, 81 Mei Shan Road, Hefei 230032, Anhui, China
| | - Jiyu Cao
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, 81 Mei Shan Road, Hefei 230032, Anhui, China
| | - Chuanlai Hu
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, 81 Mei Shan Road, Hefei 230032, Anhui, China
| | - Li Li
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, 81 Mei Shan Road, Hefei 230032, Anhui, China
| | - Fangbiao Tao
- Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui Province, China.
| |
Collapse
|