1
|
Marshall EJ, Ramarapu R, Leathers TA, Morrison-Welch N, Sandberg K, Kawashima M, Rogers CD. NSAID-mediated cyclooxygenase inhibition disrupts ectodermal derivative formation in axolotl embryos. Differentiation 2025; 143:100856. [PMID: 40154219 DOI: 10.1016/j.diff.2025.100856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/15/2025] [Accepted: 03/10/2025] [Indexed: 04/01/2025]
Abstract
Embryonic exposures to non-steroidal anti-inflammatory drugs (NSAIDs) have been linked to preterm birth, neural tube closure defects, abnormal enteric innervation, and craniofacial malformations, potentially due to disrupted neural tube or neural crest (NC) cell development. Naproxen (NPX), a common non-steroidal anti-inflammatory drug (NSAID) used to relieve pain and inflammation, exerts its effects through non-selective cyclooxygenase (COX) inhibition. Our lab has identified that the cyclooxygenase (COX-1 and COX-2) isoenzymes are expressed during the early stages of vertebrate embryonic development, and that global inhibition of COX-1 and COX-2 function disrupts NC cell migration and differentiation in Ambystoma mexicanum (axolotl) embryos. NC cells differentiate into various adult tissues including craniofacial cartilage, bone, and neurons in the peripheral and enteric nervous systems. To investigate the specific phenotypic and molecular effects of NPX exposure on NC development and differentiation, and to identify molecular links between COX inhibition and NC derivative anomalies, we exposed late neurula and early tailbud stage axolotl embryos to various concentrations of NPX and performed immunohistochemistry (IHC) for markers of migratory and differentiating NC cells. Our results reveal that NPX exposure impairs the migration of SOX9+ NC cells, leading to abnormal development of craniofacial cartilage structures, including Meckel's cartilage in the jaw. NPX exposure also alters the expression of markers associated with peripheral and central nervous system (PNS and CNS) development, suggesting concurrent neurodevelopmental changes.
Collapse
Affiliation(s)
- Emma J Marshall
- Department of Anatomy, Physiology, and Cell Biology, University of California, Davis, Davis, CA, USA
| | - Raneesh Ramarapu
- Department of Anatomy, Physiology, and Cell Biology, University of California, Davis, Davis, CA, USA
| | - Tess A Leathers
- Department of Anatomy, Physiology, and Cell Biology, University of California, Davis, Davis, CA, USA
| | | | - Kathryn Sandberg
- Department of Anatomy, Physiology, and Cell Biology, University of California, Davis, Davis, CA, USA
| | - Maxim Kawashima
- Department of Anatomy, Physiology, and Cell Biology, University of California, Davis, Davis, CA, USA
| | - Crystal D Rogers
- Department of Anatomy, Physiology, and Cell Biology, University of California, Davis, Davis, CA, USA.
| |
Collapse
|
2
|
Marshall EJ, Ramarapu R, Leathers TA, Morrison-Welch N, Sandberg K, Kawashima M, Rogers CD. NSAID-mediated cyclooxygenase inhibition disrupts ectodermal derivative formation in axolotl embryos. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.10.30.621122. [PMID: 39554061 PMCID: PMC11565853 DOI: 10.1101/2024.10.30.621122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Embryonic exposures to non-stseroidal anti-inflammatory drugs (NSAIDs) have been linked to preterm birth, neural tube closure defects, abnormal enteric innervation, and craniofacial malformations, potentially due to disrupted neural tube or neural crest (NC) cell development. Naproxen (NPX), a common non-steroidal anti-inflammatory drug (NSAID) used to relieve pain and inflammation, exerts its effects through non-selective cyclooxygenase (COX) inhibition. Our lab has identified that the cyclooxygenase (COX-1 and COX-2) isoenzymes are expressed during the early stages of vertebrate embryonic development, and that global inhibition of COX-1 and COX-2 function disrupts NC cell migration and differentiation in Ambystoma mexicanum (axolotl) embryos. NC cells differentiate into various adult tissues including craniofacial cartilage, bone, and neurons in the peripheral and enteric nervous systems. To investigate the specific phenotypic and molecular effects of NPX exposure on NC development and differentiation, and to identify molecular links between COX inhibition and NC derivative anomalies, we exposed late neurula and early tailbud stage axolotl embryos to various concentrations of NPX and performed immunohistochemistry (IHC) for markers of migratory and differentiating NC cells. Our results reveal that NPX exposure impairs the migration of SOX9+ NC cells, leading to abnormal development of craniofacial cartilage structures, including Meckel's cartilage in the jaw. NPX exposure also alters the expression of markers associated with peripheral and central nervous system (PNS and CNS) development, suggesting concurrent neurodevelopmental changes.
Collapse
Affiliation(s)
- Emma J Marshall
- Department of Anatomy, Physiology, and Cell Biology, University of California, Davis, Davis, CA, USA
| | - Raneesh Ramarapu
- Department of Anatomy, Physiology, and Cell Biology, University of California, Davis, Davis, CA, USA
| | - Tess A Leathers
- Department of Anatomy, Physiology, and Cell Biology, University of California, Davis, Davis, CA, USA
| | | | - Kathryn Sandberg
- Department of Anatomy, Physiology, and Cell Biology, University of California, Davis, Davis, CA, USA
| | - Maxim Kawashima
- Department of Anatomy, Physiology, and Cell Biology, University of California, Davis, Davis, CA, USA
| | - Crystal D Rogers
- Department of Anatomy, Physiology, and Cell Biology, University of California, Davis, Davis, CA, USA
| |
Collapse
|
3
|
Venkataraman V, McGrory NH, Christiansen TJ, Acedo JN, Coates MI, Prince VE. Development of the zebrafish anterior lateral line system is influenced by underlying cranial neural crest. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.11.637483. [PMID: 39990316 PMCID: PMC11844535 DOI: 10.1101/2025.02.11.637483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
The mechanosensory lateral line system of aquatic vertebrates comprises a superficial network of distributed sensory organs, the neuromasts, which are arranged over the head and trunk and innervated by lateral line nerves to allow detection of changes in water flow and pressure. While the well-studied zebrafish posterior lateral line has emerged as a powerful model to study collective cell migration, far less is known about development of the anterior lateral line, which produces the supraorbital and infraorbital lines around the eye, as well as mandibular and opercular lines over the jaw and cheek. Here we show that normal development of the zebrafish anterior lateral line system from cranial placodes is dependent on another vertebrate-specific cell type, the cranial neural crest. We find that cranial neural crest and anterior lateral lines develop in close proximity, with absence of neural crest cells leading to major disruptions in the overlying anterior lateral line system. Specifically, in the absence of neural crest neither supraorbital nor infraorbital lateral lines fully extend, such that the most anterior cranial regions remain devoid of neuromasts, while supernumerary ectopic neuromasts form in the posterior supraorbital region. Both neural crest and cranial placodes contribute neurons to the lateral line ganglia that innervate the neuromasts and in the absence of neural crest these ganglia, as well as the lateral line afferent nerves, are disrupted. Finally, we establish that as ontogeny proceeds, the most anterior supraorbital neuromasts come to lie within neural crest-derived frontal and nasal bones in the developing cranium. These are the same anterior supraorbital neuromasts that are absent or mislocated in specimens lacking neural crest cells. Together, our results establish that cranial neural crest and cranial placode derivatives function in concert over the course of ontogeny to build the complex cranial lateral line system. Highlights The anterior lateral line and cranial neural crest develop in close proximityAbsence of neural crest disrupts anterior lateral line developmentAbsence of neural crest disrupts lateral line ganglion morphology and innervationEarly interactions of neural crest and placodes prefigure later anatomical interactions.
Collapse
|
4
|
Patterson AS, Dugdale J, Koleilat A, Krauss A, Hernandez-Herrera GA, Wallace JG, Petree C, Varshney GK, Schimmenti LA. Vital Dye Uptake of YO-PRO-1 and DASPEI Depends Upon Mechanoelectrical Transduction Function in Zebrafish Hair Cells. J Assoc Res Otolaryngol 2024; 25:531-543. [PMID: 39433714 DOI: 10.1007/s10162-024-00967-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/27/2024] [Indexed: 10/23/2024] Open
Abstract
PURPOSE Vital dyes allow the visualization of cells in vivo without causing tissue damage, making them a useful tool for studying lateral line and inner ear hair cells in living zebrafish and other vertebrates. FM1-43, YO-PRO-1, and DASPEI are three vital dyes commonly used for hair cell visualization. While it has been established that FM1-43 enters hair cells of zebrafish and other organisms through the mechanoelectrical transduction (MET) channel, the mechanism of entry into hair cells for YO-PRO-1 and DASPEI has not been established despite widespread use. We hypothesize that YO-PRO-1 and DASPEI entry into zebrafish hair cells is MET channel uptake dependent similar to FM1-43. METHODS To test this hypothesis, we used both genetic and pharmacologic means to block MET channel function. Genetic based MET channel assays were conducted with two different mechanotransduction defective zebrafish lines, specifically the myo7aa-/- loss of function mutant tc320b (p.Y846X) and cdh23-/- loss of function mutant (c.570-571del). Pharmacologic assays were performed with Gadolinium(III) Chloride (Gad(III)), a compound that can temporarily block mechanotransduction activity. RESULTS Five-day post fertilization (5dpf) myo7aa-/- and cdh23-/- larvae incubated with FM1-43, YO-PRO-1, and DASPEI all showed nearly absent uptake of each vital dye. Treatment of wildtype zebrafish larvae with Gad(III) significantly reduces uptake of FM1-43, YO-PRO-1, and DASPEI vital dyes. CONCLUSION These results indicate that YO-PRO-1 and DASPEI entry into zebrafish hair cells is MET channel dependent similar to FM1-43. This knowledge expands the repertoire of vital dyes that can be used to assess mechanotransduction and MET channel function in zebrafish and other vertebrate models of hair cell function.
Collapse
Affiliation(s)
- Ashley Scott Patterson
- Initiative for Maximizing Student Development Program, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
- University of Wisconsin School of Medicine & Public Health, Medical Scientist Training Program, 2207 Health Sciences Learning Center, 750 Highland Avenue, Madison, WI, 53705, USA
| | - Joseph Dugdale
- Department of Otorhinolaryngology, Head and Neck Surgery, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Alaa Koleilat
- Mayo Clinic Graduate School of Biomedical Science, 200 First Street SW, Rochester, MN, 55905, USA
- Knight Molecular Diagnostic Laboratory, Oregon Health Sciences University, 2525 SW Third Avenue, Portland, Oregon, 97201, USA
| | - Anna Krauss
- Initiative for Maximizing Student Development Program, Mayo Clinic, Rochester, MN, USA
- The Learning Center for the Deaf, 848 Central St, Framingham, MA, 01701, USA
| | - Gabriel A Hernandez-Herrera
- Mayo Clinic Graduate School of Biomedical Sciences, 200 First Street SW, Rochester, MN, 55905, USA
- University of Puerto Rico School of Medicine, José Celso Barbosa, 9WWG+H5P, P.º Dr, San Juan, PR, 00921, USA
| | - Jasmine G Wallace
- Summer Research Fellowship Program, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
- Current Address: Oakwood University, 7000 Adventist Blvd NW, Huntsville, AL, 35896, USA
| | - Cassidy Petree
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, 825 NE 13Th St, Oklahoma City, OK, 73104, USA
| | - Gaurav K Varshney
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, 825 NE 13Th St, Oklahoma City, OK, 73104, USA
| | - Lisa A Schimmenti
- Departments of Clinical Genomics, Otorhinolaryngology, Head and Neck Surgery, Ophthalmology, and Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street Southwest, Rochester, MN, 55905, USA.
| |
Collapse
|
5
|
Lush ME, Tsai YY, Chen S, Münch D, Peloggia J, Sandler JE, Piotrowski T. Stem and progenitor cell proliferation are independently regulated by cell type-specific cyclinD genes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.21.619490. [PMID: 39484411 PMCID: PMC11526906 DOI: 10.1101/2024.10.21.619490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Regeneration and homeostatic turnover of solid tissues depend on the proliferation of symmetrically dividing adult stem cells, which either remain stem cells or differentiate based on their niche position. Here we demonstrate that in zebrafish lateral line sensory organs, stem and progenitor cell proliferation are independently regulated by two cyclinD genes. Loss of ccnd2a impairs stem cell proliferation during development, while loss of ccndx disrupts hair cell progenitor proliferation but allows normal differentiation. Notably, ccnd2a can functionally replace ccndx, indicating that the respective effects of these Cyclins on proliferation are due to cell type-specific expression. However, even though hair cell progenitors differentiate normally in ccndx mutants, they are mispolarized due to hes2 and Emx2 downregulation. Thus, regulated proliferation ensures that equal numbers of hair cells are polarized in opposite directions. Our study reveals cell type-specific roles for cyclinD genes in regulating the different populations of symmetrically dividing cells governing organ development and regeneration, with implications for regenerative medicine and disease.
Collapse
Affiliation(s)
- Mark E. Lush
- Stowers Institute for Medical Research, Kansas City, MO. USA
| | - Ya-Yin Tsai
- Stowers Institute for Medical Research, Kansas City, MO. USA
| | - Shiyuan Chen
- Stowers Institute for Medical Research, Kansas City, MO. USA
| | - Daniela Münch
- Stowers Institute for Medical Research, Kansas City, MO. USA
| | - Julia Peloggia
- Stowers Institute for Medical Research, Kansas City, MO. USA
| | | | - Tatjana Piotrowski
- Stowers Institute for Medical Research, Kansas City, MO. USA
- Lead contact
| |
Collapse
|
6
|
Brown RI, Barber HM, Kucenas S. Satellite glial cell manipulation prior to axotomy enhances developing dorsal root ganglion central branch regrowth into the spinal cord. Glia 2024; 72:1766-1784. [PMID: 39141572 PMCID: PMC11325082 DOI: 10.1002/glia.24581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/30/2024] [Accepted: 06/02/2024] [Indexed: 08/16/2024]
Abstract
The central and peripheral nervous systems (CNS and PNS, respectively) exhibit remarkable diversity in the capacity to regenerate following neuronal injury with PNS injuries being much more likely to regenerate than those that occur in the CNS. Glial responses to damage greatly influence the likelihood of regeneration by either promoting or inhibiting axonal regrowth over time. However, despite our understanding of how some glial lineages participate in nerve degeneration and regeneration, less is known about the contributions of peripheral satellite glial cells (SGC) to regeneration failure following central axon branch injury of dorsal root ganglia (DRG) sensory neurons. Here, using in vivo, time-lapse imaging in larval zebrafish coupled with laser axotomy, we investigate the role of SGCs in axonal regeneration. In our studies we show that SGCs respond to injury by relocating their nuclei to the injury site during the same period that DRG neurons produce new central branch neurites. Laser ablation of SGCs prior to axon injury results in more neurite growth attempts and ultimately a higher rate of successful central axon regrowth, implicating SGCs as inhibitors of regeneration. We also demonstrate that this SGC response is mediated in part by ErbB signaling, as chemical inhibition of this receptor results in reduced SGC motility and enhanced central axon regrowth. These findings provide new insights into SGC-neuron interactions under injury conditions and how these interactions influence nervous system repair.
Collapse
Affiliation(s)
- Robin I Brown
- Department of Biology, University of Virginia, Charlottesville, Virginia, USA
- Program in Fundamental Neuroscience, University of Virginia, Charlottesville, Virginia, USA
| | - Heather M Barber
- Program in Fundamental Neuroscience, University of Virginia, Charlottesville, Virginia, USA
- Cell & Developmental Biology Graduate Program, University of Virginia, Charlottesville, Virginia, USA
| | - Sarah Kucenas
- Department of Biology, University of Virginia, Charlottesville, Virginia, USA
- Program in Fundamental Neuroscience, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
7
|
Wesselman HM, Arceri L, Nguyen TK, Lara CM, Wingert RA. Genetic mechanisms of multiciliated cell development: from fate choice to differentiation in zebrafish and other models. FEBS J 2024; 291:4159-4192. [PMID: 37997009 DOI: 10.1111/febs.17012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 10/17/2023] [Accepted: 11/21/2023] [Indexed: 11/25/2023]
Abstract
Multiciliated cells (MCCS) form bundles of cilia and their activities are essential for the proper development and physiology of many organ systems. Not surprisingly, defects in MCCs have profound consequences and are associated with numerous disease states. Here, we discuss the current understanding of MCC formation, with a special focus on the genetic and molecular mechanisms of MCC fate choice and differentiation. Furthermore, we cast a spotlight on the use of zebrafish to study MCC ontogeny and several recent advances made in understanding MCCs using this vertebrate model to delineate mechanisms of MCC emergence in the developing kidney.
Collapse
Affiliation(s)
| | - Liana Arceri
- Department of Biological Sciences, University of Notre Dame, IN, USA
| | - Thanh Khoa Nguyen
- Department of Biological Sciences, University of Notre Dame, IN, USA
| | - Caroline M Lara
- Department of Biological Sciences, University of Notre Dame, IN, USA
| | - Rebecca A Wingert
- Department of Biological Sciences, University of Notre Dame, IN, USA
| |
Collapse
|
8
|
Boldizar H, Friedman A, Stanley T, Padilla M, Galdieri J, Sclar A, Stawicki TM. The role of cilia in the development, survival, and regeneration of hair cells. Biol Open 2024; 13:bio061690. [PMID: 39263863 PMCID: PMC11413933 DOI: 10.1242/bio.061690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 09/13/2024] Open
Abstract
Mutations impacting cilia genes lead to a class of human diseases known as ciliopathies. This is due to the role of cilia in the development, survival, and regeneration of many cell types. We investigated the extent to which disrupting cilia impacted these processes in lateral line hair cells of zebrafish. We found that mutations in two intraflagellar transport (IFT) genes, ift88 and dync2h1, which lead to the loss of kinocilia, caused increased hair cell apoptosis. IFT gene mutants also have a decreased mitochondrial membrane potential, and blocking the mitochondrial uniporter causes a loss of hair cells in wild-type zebrafish but not mutants, suggesting mitochondria dysfunction may contribute to the apoptosis seen in these mutants. These mutants also showed decreased proliferation during hair cell regeneration but did not show consistent changes in support cell number or proliferation during hair cell development. These results show that the loss of hair cells seen following disruption of cilia through either mutations in anterograde or retrograde IFT genes appears to be due to impacts on hair cell survival but not necessarily development in the zebrafish lateral line.
Collapse
Affiliation(s)
- Hope Boldizar
- Neuroscience Program, Lafayette College, Easton, PA 18042, USA
| | - Amanda Friedman
- Neuroscience Program, Lafayette College, Easton, PA 18042, USA
| | - Tess Stanley
- Neuroscience Program, Lafayette College, Easton, PA 18042, USA
| | - María Padilla
- Biology Department, Lafayette College, Easton, PA 18042, USA
| | | | - Arielle Sclar
- Neuroscience Program, Lafayette College, Easton, PA 18042, USA
| | | |
Collapse
|
9
|
Bell JM, Turner EM, Biesemeyer C, Vanderbeck MM, Hendricks R, McGraw HF. foxg1a is required for hair cell development and regeneration in the zebrafish lateral line. Biol Open 2024; 13:bio060580. [PMID: 39301848 PMCID: PMC11423914 DOI: 10.1242/bio.060580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/22/2024] Open
Abstract
Mechanosensory hair cells located in the inner ear mediate the sensations of hearing and balance. If damaged, mammalian inner ear hair cells are unable to regenerate, resulting in permanent sensory deficits. Aquatic vertebrates like zebrafish (Danio rerio) have a specialized class of mechanosensory hair cells found in the lateral line system, allowing them to sense changes in water current. Unlike mammalian inner ear hair cells, lateral line hair cells can robustly regenerate following damage. In mammals, the transcription factor Foxg1 functions to promote normal development of the inner ear. Foxg1a is expressed in lateral line sensory organs in zebrafish larvae, but its function during lateral line development and regeneration has not been investigated. Our study demonstrates that mutation of foxg1a results in slower posterior lateral line primordium migration and delayed neuromast formation. In developing and regenerating neuromasts, we find that loss of Foxg1a function results in reduced hair cell numbers, as well as decreased proliferation of neuromast cells. Foxg1a specifically regulates the development and regeneration of Islet1-labeled hair cells. These data suggest that Foxg1 may be a valuable target for investigation of clinical hair cell regeneration.
Collapse
Affiliation(s)
- Jon M. Bell
- University of Missouri Kansas City, School of Science and Engineering, Division of Biological and Biomedical Systems, Kansas City, MO 64110, USA
| | - Emily M. Turner
- University of Missouri Kansas City, School of Science and Engineering, Division of Biological and Biomedical Systems, Kansas City, MO 64110, USA
| | - Cole Biesemeyer
- University of Missouri Kansas City, School of Science and Engineering, Division of Biological and Biomedical Systems, Kansas City, MO 64110, USA
- Research Organisms, Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Madison M. Vanderbeck
- University of Missouri Kansas City, School of Science and Engineering, Division of Biological and Biomedical Systems, Kansas City, MO 64110, USA
| | - Roe Hendricks
- University of Missouri Kansas City, School of Science and Engineering, Division of Biological and Biomedical Systems, Kansas City, MO 64110, USA
| | - Hillary F. McGraw
- University of Missouri Kansas City, School of Science and Engineering, Division of Biological and Biomedical Systems, Kansas City, MO 64110, USA
| |
Collapse
|
10
|
von Hellfeld R, Gade C, Leist M, Braunbeck T. Rearing conditions (isolated versus group rearing) affect rotenone-induced changes in the behavior of zebrafish (Danio rerio) embryos in the coiling assay. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:55624-55635. [PMID: 39240433 DOI: 10.1007/s11356-024-34870-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024]
Abstract
Under regulations such as REACH, testing of novel and established compounds for their (neuro)toxic potential is a legal requirement in many countries. These are largely based on animal-, cost-, and time-intensive in vivo models, not in line with the 3 Rs' principle of animal experimentation. Thus, the development of alternative test methods has also received increasing attention in neurotoxicology. Such methods focus either on physiological alterations in brain development and neuronal pathways or on behavioral changes. An example of a behavioral developmental neurotoxicity (DNT) assay is the zebrafish (Danio rerio) embryo coiling assay, which quantifies effects of compounds on the development of spontaneous movement of zebrafish embryos. While the importance of embryo-to-embryo contact prior to hatching in response to environmental contaminants or natural threats has been documented for many other clutch-laying fish species, little is known about the relevance of intra-clutch contacts for zebrafish. Here, the model neurotoxin rotenone was used to assess the effect of grouped versus separate rearing of the embryos on the expression of the coiling behavior. Some group-reared embryos reacted with hyperactivity to the exposure, to an extent that could not be recorded effectively with the utilized software. Separately reared embryos showed reduced activity, compared with group-reared individuals when assessing. However, even the control group embryos of the separately reared cohort showed reduced activity, compared with group-reared controls. Rotenone could thus be confirmed to induce neurotoxic effects in zebrafish embryos, yet modifying one parameter in an otherwise well-established neurotoxicity assay such as the coiling assay may lead to changes in behavior influenced by the proximity between individual embryos. This indicates a complex dependence of the outcome of behavior assays on a multitude of environmental parameters.
Collapse
Affiliation(s)
- Rebecca von Hellfeld
- Centre for Organismal Studies, Aquatic Ecology and Toxicology, University of Heidelberg, 69120, Heidelberg, Germany.
- School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 3UU, UK.
| | - Christoph Gade
- Centre for Organismal Studies, Aquatic Ecology and Toxicology, University of Heidelberg, 69120, Heidelberg, Germany
- School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 3UU, UK
| | - Marcel Leist
- In Vitro Toxicology and Biomedicine, Department Inaugurated By the Doerenkamp-Zbinden Foundation, University of Konstanz, 78457, Constance, Germany
- CAAT Europe, University of Konstanz, 78457, Constance, Germany
| | - Thomas Braunbeck
- Centre for Organismal Studies, Aquatic Ecology and Toxicology, University of Heidelberg, 69120, Heidelberg, Germany
| |
Collapse
|
11
|
Trengove M, Rasighaemi P, Liongue C, Ward AC. Zebrafish Suppressor of Cytokine Signaling 4b (Socs4b) Is Dispensable for Development but May Regulate Epidermal Growth Factor Receptor Signaling. Biomolecules 2024; 14:1063. [PMID: 39334830 PMCID: PMC11430285 DOI: 10.3390/biom14091063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
The suppressor of cytokine signaling (SOCS) family of proteins were named after their defining role as negative feedback regulators of signaling initiated by numerous cytokine receptors. However, multiple members of the SOCS family likely function outside of this paradigm, including SOCS4. Zebrafish possess two SOCS4 paralogues, with socs4a previously shown to participate in central nervous system development and function. This study examined the role of the other paralogue, socs4b, through expression analysis and functional investigations in vivo and in vitro. This revealed maternal deposition of socs4b mRNA, specific zygotic expression during late embryogenesis, including in the brain, eye and intestine, and broad adult expression that was highest in the brain. A mutant allele, socs4bΔ18, was generated by genome editing, in which the start codon was deleted. Fish homozygous for this likely hypomorphic allele showed no overt developmental phenotypes. However, in vitro studies suggested the Socs4b protein may be able to regulate EGFR signaling.
Collapse
Affiliation(s)
- Monique Trengove
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia (C.L.)
| | - Parisa Rasighaemi
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia (C.L.)
| | - Clifford Liongue
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia (C.L.)
- Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC 3216, Australia
| | - Alister C. Ward
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia (C.L.)
- Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC 3216, Australia
| |
Collapse
|
12
|
Brooks PM, Lewis P, Million-Perez S, Yandulskaya AS, Khalil M, Janes M, Porco J, Walker E, Meyers JR. Pharmacological reprogramming of zebrafish lateral line supporting cells to a migratory progenitor state. Dev Biol 2024; 512:70-88. [PMID: 38729405 DOI: 10.1016/j.ydbio.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 04/17/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
In the zebrafish lateral line, non-sensory supporting cells readily re-enter the cell cycle to generate new hair cells and supporting cells during homeostatic maintenance and following damage to hair cells. This contrasts with supporting cells from mammalian vestibular and auditory sensory epithelia which rarely re-enter the cell cycle, and hence loss of hair cells results in permanent sensory deficit. Lateral line supporting cells are derived from multipotent progenitor cells that migrate down the trunk midline as a primordium and are deposited to differentiate into a neuromast. We have found that we can revert zebrafish support cells back to a migratory progenitor state by pharmacologically altering the signaling environment to mimic that of the migratory primordium, with active Wnt signaling and repressed FGF signaling. The reverted supporting cells migrate anteriorly and posteriorly along the horizontal myoseptum and will re-epithelialize to form an increased number of neuromasts along the midline when the pharmacological agents are removed. These data demonstrate that supporting cells can be readily reprogrammed to a migratory multipotent progenitor state that can form new sensory neuromasts, which has important implications for our understanding of how the lateral line system matures and expands in fish and also suggest avenues for returning mammalian supporting cells back to a proliferative state.
Collapse
Affiliation(s)
- Paige M Brooks
- Dept. of Biology and Program in Neuroscience, Colgate University, 13 Oak Drive, Hamilton, NY, 13346, USA
| | - Parker Lewis
- Dept. of Biology and Program in Neuroscience, Colgate University, 13 Oak Drive, Hamilton, NY, 13346, USA
| | - Sara Million-Perez
- Dept. of Biology and Program in Neuroscience, Colgate University, 13 Oak Drive, Hamilton, NY, 13346, USA
| | - Anastasia S Yandulskaya
- Dept. of Biology and Program in Neuroscience, Colgate University, 13 Oak Drive, Hamilton, NY, 13346, USA
| | - Mahmoud Khalil
- Dept. of Biology and Program in Neuroscience, Colgate University, 13 Oak Drive, Hamilton, NY, 13346, USA
| | - Meredith Janes
- Dept. of Biology and Program in Neuroscience, Colgate University, 13 Oak Drive, Hamilton, NY, 13346, USA
| | - Joseph Porco
- Dept. of Biology and Program in Neuroscience, Colgate University, 13 Oak Drive, Hamilton, NY, 13346, USA
| | - Eleanor Walker
- Dept. of Biology and Program in Neuroscience, Colgate University, 13 Oak Drive, Hamilton, NY, 13346, USA
| | - Jason R Meyers
- Dept. of Biology and Program in Neuroscience, Colgate University, 13 Oak Drive, Hamilton, NY, 13346, USA.
| |
Collapse
|
13
|
Bufalo AJ, Vanderbeck MM, Schmitt J, McGraw HF. EpCAM regulates hair cell development and regeneration in the zebrafish lateral line. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001219. [PMID: 38800699 PMCID: PMC11117072 DOI: 10.17912/micropub.biology.001219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/29/2024]
Abstract
The zebrafish lateral line mechanosensory system shares considerable morphological and molecular similarities with the inner ear. In particular, mechanosensory hair cells are responsible for transducing sensory stimuli in both structures. The epithelia cell adhesion molecule (EpCAM) is expressed in the cells of the inner ear of mammals and in the lateral lines system of fish. EpCAM regulates the many cellular functions including adhesion, migration, proliferation, and differentiation. In this study, we use the epcam jh79 mutant zebrafish line to determine that EpCAM function is required for proper development and regeneration of posterior lateral line hair cells.
Collapse
Affiliation(s)
- Andrew J. Bufalo
- Division of Biology and Biomedical Systems, University of Missouri–Kansas City, Kansas City, Missouri, United States
| | - Madison M. Vanderbeck
- Division of Biological and Biomedical Systems, University of Missouri–Kansas City, Kansas City, Missouri, United States
| | - Jodie Schmitt
- Division of Biological and Biomedical Systems, University of Missouri–Kansas City, Kansas City, Missouri, United States
| | - Hillary F. McGraw
- Division of Biological and Biomedical Systems, University of Missouri–Kansas City, Kansas City, Missouri, United States
| |
Collapse
|
14
|
Bell JM, Biesemeyer C, Turner EM, Vanderbeck MM, McGraw HF. foxg1a is required for hair cell development and regeneration in the zebrafish lateral line. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.12.589268. [PMID: 38659824 PMCID: PMC11042177 DOI: 10.1101/2024.04.12.589268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Mechanosensory hair cells located in the inner ear mediate the sensations of hearing and balance. If damaged, mammalian inner ear hair cells are unable to regenerate, resulting in permanent sensory deficits. Aquatic vertebrates like zebrafish (Danio rerio) have a specialized class of mechanosensory hair cells found in the lateral line system, allowing them to sense changes in water current. Unlike mammalian inner ear hair cells, lateral line hair cells can robustly regenerate following damage. In mammalian models, the transcription factor Foxg1 functions to promote normal development of the inner ear. Foxg1a is expressed in lateral line sensory organs in zebrafish larvae, but its function during lateral line development and regeneration has not been investigated. We find that loss of Foxg1a function results in reduced hair cell development and regeneration, as well as decreased cellular proliferation in the lateral line system. These data suggest that Foxg1 may be a valuable target for investigation of clinical hair cell regeneration. Summary statement Our work demonstrates a role for Foxg1a in developing and regenerating new sensory cells through proliferation.
Collapse
|
15
|
Diana A, Ghilardi A, Del Giacco L. Differentiation and functioning of the lateral line organ in zebrafish require Smpx activity. Sci Rep 2024; 14:7862. [PMID: 38570547 PMCID: PMC10991396 DOI: 10.1038/s41598-024-58138-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/26/2024] [Indexed: 04/05/2024] Open
Abstract
The small muscle protein, X-linked (SMPX) gene encodes a cytoskeleton-associated protein, highly expressed in the inner ear hair cells (HCs), possibly regulating auditory function. In the last decade, several mutations in SMPX have been associated with X-chromosomal progressive non syndromic hearing loss in humans and, in line with this, Smpx-deficient animal models, namely zebrafish and mouse, showed significant impairment of inner ear HCs development, maintenance, and functioning. In this work, we uncovered smpx expression in the neuromast mechanosensory HCs of both Anterior and Posterior Lateral Line (ALL and PLL, respectively) of zebrafish larvae and focused our attention on the PLL. Smpx was subcellularly localized throughout the cytoplasm of the HCs, as well as in their primary cilium. Loss-of-function experiments, via both morpholino-mediated gene knockdown and CRISPR/Cas9 F0 gene knockout, revealed that the lack of Smpx led to fewer properly differentiated and functional neuromasts, as well as to a smaller PLL primordium (PLLp), the latter also Smpx-positive. In addition, the kinocilia of Smpx-deficient neuromast HCs appeared structurally and numerically altered. Such phenotypes were associated with a significant reduction in the mechanotransduction activity of the neuromast HCs, in line with their positivity for Smpx. In summary, this work highlights the importance of Smpx in lateral line development and, specifically, in proper HCs differentiation and/or maintenance, and in the mechanotransduction process carried out by the neuromast HCs. Because lateral line HCs are both functionally and structurally analogous to the cochlear HCs, the neuromasts might represent an invaluable-and easily accessible-tool to dissect the role of Smpx in HCs development/functioning and shed light on the underlying mechanisms involved in hearing loss.
Collapse
Affiliation(s)
- Alberto Diana
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Anna Ghilardi
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Luca Del Giacco
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy.
| |
Collapse
|
16
|
Rodríguez‐Morales R. Sensing in the dark: Constructive evolution of the lateral line system in blind populations of Astyanax mexicanus. Ecol Evol 2024; 14:e11286. [PMID: 38654714 PMCID: PMC11036076 DOI: 10.1002/ece3.11286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/26/2024] [Accepted: 04/03/2024] [Indexed: 04/26/2024] Open
Abstract
Cave-adapted animals evolve a suite of regressive and constructive traits that allow survival in the dark. Most studies aiming at understanding cave animal evolution have focused on the genetics and environmental underpinnings of regressive traits, with special emphasis on vision loss. Possibly as a result of vision loss, other non-visual sensory systems have expanded and compensated in cave species. For instance, in many cave-dwelling fish species, including the blind cavefish of the Mexican tetra, Astyanax mexicanus, a major non-visual mechanosensory system called the lateral line, compensated for vision loss through morphological expansions. While substantial work has shed light on constructive adaptation of this system, there are still many open questions regarding its developmental origin, synaptic plasticity, and overall adaptive value. This review provides a snapshot of the current state of knowledge of lateral line adaption in A. mexicanus, with an emphasis on anatomy, synaptic plasticity, and behavior. Multiple open avenues for future research in this system, and how these can be leveraged as tools for both evolutionary biology and evolutionary medicine, are discussed.
Collapse
Affiliation(s)
- Roberto Rodríguez‐Morales
- Department of Anatomy & Neurobiology, School of MedicineUniversity of Puerto RicoSan JuanPuerto Rico
| |
Collapse
|
17
|
Zhang R, Ma Z, Wang J, Fan C. HIF signaling overactivation inhibits lateral line neuromast development through Wnt in zebrafish. Gene 2024; 898:148077. [PMID: 38097093 DOI: 10.1016/j.gene.2023.148077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/16/2023] [Accepted: 12/11/2023] [Indexed: 12/26/2023]
Abstract
The lateral line is critical for prey detection, predator avoidance, schooling, and rheotaxis behavior in fish. As similar to hair cells in the mammalian inner ear, the lateral line sensory organ called neuromasts is a popular model for hair cell regeneration. However, the mechanism of lateral line development has not been fully understood. In this study, we showed for the first time that hypoxia-inducible factor (HIF) signaling is involved in lateral line development in zebrafish. hif1ab and epas1b were highly expressed in neuromasts during lateral line development. Hypoxia response induced by a prolyl hydroxylase domain-containing proteins (PHD) inhibitor treatment or vhl gene knockout significantly reduced hair cells and support cells in neuromast during lateral line development. In addition, inhibition of Hif-1α or Epas1 could partially rescue hair cells in the larvae with increased HIF activity, respectively. Moreover, the support cell proliferation and the expression of Wnt target genes decreased in vhl mutants which suggests that Wnt signaling mediated the role of HIF signaling in lateral line development. Collectively, our results demonstrate that HIF signaling overactivation inhibits lateral line development in zebrafish and suggest that inhibition of HIF signaling might be a potential therapeutic method for hair cell death.
Collapse
Affiliation(s)
- Ran Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Ziyue Ma
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jian Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.
| | - Chunxin Fan
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; Marine Biomedical Science and Technology Innovation Platform of Lingang New Area, Shanghai, China.
| |
Collapse
|
18
|
Megerson E, Kuehn M, Leifer B, Bell JM, Snyder JL, McGraw HF. Kremen1 regulates the regenerative capacity of support cells and mechanosensory hair cells in the zebrafish lateral line. iScience 2024; 27:108678. [PMID: 38205258 PMCID: PMC10776957 DOI: 10.1016/j.isci.2023.108678] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/28/2023] [Accepted: 12/05/2023] [Indexed: 01/12/2024] Open
Abstract
Mechanosensory hair cells in the inner ear mediate the sensations of hearing and balance, and in the specialized lateral line sensory system of aquatic vertebrates, the sensation of water movement. In mammals, hair cells lack the ability to regenerate following damage, resulting in sensory deficits. In contrast, non-mammalian vertebrates, such as zebrafish, can renew hair cells throughout their lifespan. Wnt signaling is required for development of inner ear and lateral line hair cells and regulates regeneration. Kremen1 inhibits Wnt signaling and hair cell formation, though its role in regeneration is unknown. We used a zebrafish kremen1 mutant line to show overactive Wnt signaling results in supernumerary support cells and hair cell regeneration without increased proliferation, in contrast with the previously described role of Wnt signaling during hair cell regeneration. This work allows us to understand the biology of mechanosensory hair cells and how regeneration might be promoted following damage.
Collapse
Affiliation(s)
- Ellen Megerson
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, MO 64110, USA
- Integrated DNA Technologies, Inc, Coralville, IA 52241, USA
| | - Michael Kuehn
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, MO 64110, USA
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - Ben Leifer
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, MO 64110, USA
- Department of Population Health, University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - Jon M. Bell
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, MO 64110, USA
| | - Julia L. Snyder
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, MO 64110, USA
| | - Hillary F. McGraw
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, MO 64110, USA
| |
Collapse
|
19
|
Hewitt MN, Cruz IA, Raible DW. Spherical harmonics analysis reveals cell shape-fate relationships in zebrafish lateral line neuromasts. Development 2024; 151:dev202251. [PMID: 38276966 PMCID: PMC10905750 DOI: 10.1242/dev.202251] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 12/28/2023] [Indexed: 01/16/2024]
Abstract
Cell shape is a powerful readout of cell state, fate and function. We describe a custom workflow to perform semi-automated, 3D cell and nucleus segmentation, and spherical harmonics and principal components analysis to distill cell and nuclear shape variation into discrete biologically meaningful parameters. We apply these methods to analyze shape in the neuromast cells of the zebrafish lateral line system, finding that shapes vary with cell location and identity. The distinction between hair cells and support cells accounted for much of the variation, which allowed us to train classifiers to predict cell identity from shape features. Using transgenic markers for support cell subpopulations, we found that subtypes had different shapes from each other. To investigate how loss of a neuromast cell type altered cell shape distributions, we examined atoh1a mutants that lack hair cells. We found that mutant neuromasts lacked the cell shape phenotype associated with hair cells, but did not exhibit a mutant-specific cell shape. Our results demonstrate the utility of using 3D cell shape features to characterize, compare and classify cells in a living developing organism.
Collapse
Affiliation(s)
- Madeleine N. Hewitt
- Molecular and Cellular Biology Graduate Program, University of Washington School of Medicine, Seattle, WA 98195, USA
- Department of Otolaryngology-HNS, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Iván A. Cruz
- Department of Biological Structure, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - David W. Raible
- Molecular and Cellular Biology Graduate Program, University of Washington School of Medicine, Seattle, WA 98195, USA
- Department of Otolaryngology-HNS, University of Washington School of Medicine, Seattle, WA 98195, USA
- Department of Biological Structure, University of Washington School of Medicine, Seattle, WA 98195, USA
| |
Collapse
|
20
|
Yáñez J, Eguiguren MH, Anadón R. Neural connections of the torus semicircularis in the adult Zebrafish. J Comp Neurol 2024; 532:e25586. [PMID: 38289191 DOI: 10.1002/cne.25586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/18/2023] [Accepted: 01/09/2024] [Indexed: 02/01/2024]
Abstract
The torus semicircularis (TS) of teleosts is a key midbrain center of the lateral line and acoustic sensory systems. To characterize the TS in adult zebrafish, we studied their connections using the carbocyanine tracers applied to the TS and to other related nuclei and tracts. Two main TS nuclei, central and ventrolateral, were differentiable by their afferent connections. From central TS, (TSc) numerous toropetal cells were labeled bilaterally in several primary octaval nuclei (anterior, magnocellular, descending, and posterior octaval nuclei), in the secondary octaval nucleus, in the caudal octavolateralis nucleus, and in the perilemniscular region. In the midbrain, numerous toropetal cells were labeled in the contralateral TSc. In the diencephalon, toropetal cells labeled from the TSc were observed ipsilaterally in the medial prethalamic nucleus and the periventricular posterior tubercle nucleus. TSc toropetal neurons were also labeled bilaterally in the hypothalamic anterior tuberal nucleus (ATN) and ipsilaterally in the parvicellular preoptic nucleus but not in the telencephalon. Tracer application to the medial octavolateralis nucleus revealed contralateral projections to the ventrolateral TS (TSvl), whereas tracer application to the secondary octaval nucleus labeled fibers bilaterally in TSc and neurons in rostral TSc. The TSc sends ascending fibers to the ipsilateral lateral preglomerular region that, in turn, projects to the pallium. Application of DiI to the optic tectum labeled cells and fibers in the TSvl, whereas application of DiI to the ATN labeled cells and fibers in the TSc. These results reveal that the TSvl and TSc are mainly related with the mechanosensory lateral line and acoustic centers, respectively, and that they show different higher order connections.
Collapse
Affiliation(s)
- Julián Yáñez
- Department of Biology, Faculty of Sciences, University of A Coruña, Coruña, Spain
- Interdisciplinary Center for Chemistry and Biology (CICA), University of A Coruña, Coruña, Spain
| | | | - Ramón Anadón
- Department of Functional Biology, Faculty of Biology, University of Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
21
|
Lin LY, Kantha P, Horng JL. Toxic effects of polystyrene nanoparticles on the development, escape locomotion, and lateral-line sensory function of zebrafish embryos. Comp Biochem Physiol C Toxicol Pharmacol 2023; 272:109701. [PMID: 37478959 DOI: 10.1016/j.cbpc.2023.109701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/24/2023] [Accepted: 07/16/2023] [Indexed: 07/23/2023]
Abstract
Environmental pollution by micro- and nanosized plastic particles is a potential threat to aquatic animals. Polystyrene is one of the most common plastic particles in aquatic environments. Previous studies found that polystyrene nanoparticles (PNs) can penetrate the integument and accumulate in the organs of fish embryos. However, the potential impacts of PNs on fish embryos are not fully understood. To investigate this issue, zebrafish embryos were exposed to different concentrations (10, 25, and 50 mg/L) of PNs (25 nm) for 96 h (4-100 h post-fertilization), and various endpoints were examined, including developmental morphology (body length, sizes of the eyes, otic vesicles, otoliths, pericardial cavity, and yolk sac), locomotion (touch-evoked escape response and spinal motor neurons), and lateral-line function (hair cell number and hair bundle number). Exposure to 50 mg/L of PNs resulted in significant adverse effects across all endpoints studied, indicating that embryonic development was severely disrupted, and both locomotion and sensory function were impaired. However, at 25 mg/L of PNs, only locomotion and sensory function were significantly affected. The effects were insignificant in all examined endpoints at 10 mg/L of PNs. Transcript levels of several marker genes for neuronal function and eye development were suppressed after treatment. Exposure to fluorescent PNs showed that they accumulated in various organs including, the eyes, gills, blood vessels, gallbladder, gut, and lateral line neuromasts. Overall, this study suggests that short-term exposure to a high concentration of PNs can threaten fish survival by impairing embryonic development, locomotion performance, and mechanical sensory function.
Collapse
Affiliation(s)
- Li-Yih Lin
- Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Phunsin Kantha
- Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Jiun-Lin Horng
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
22
|
Megerson E, Kuehn M, Leifer B, Bell J, McGraw HF. Kremen1 regulates the regenerative capacity of support cells and mechanosensory hair cells in the zebrafish lateral line. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.27.550825. [PMID: 37546780 PMCID: PMC10402150 DOI: 10.1101/2023.07.27.550825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Mechanosensory hair cells in the inner ear mediate the sensations of hearing and balance, and in a specialize lateral line sensory system of aquatic vertebrates, the sensation of water movement. In mammals, hair cells lack the ability of regenerate following damage, resulting in sensory deficits. In contrast, non-mammalian vertebrates, such zebrafish, can renew hair cells throughout the life of the animal. Wnt signaling is required for development of inner ear and lateral line hair cells and regulates regeneration. Kremen1 inhibits Wnt signaling and hair cell formation, though its role in regeneration has not been established. We use a zebrafish kremen1 mutant line, to show that when Wnt signaling is overactivated in the lateral line, excessive regeneration occurs in the absence of increased proliferation, due to an increase in support cells. This contrasts with the previously described role of Wnt signaling during hair cell regeneration. This work will allow us to understand the biology of mechanosensory hair cells, and how regeneration might be promoted following damage.
Collapse
|
23
|
Montalvão MF, Chagas TQ, Rodrigues ASDL, Guimarães ATB, Malafaia G. Long-term exposure of zebrafish juveniles to carbon nanofibers at predicted environmentally relevant concentrations: Outspreading warns about ecotoxicological risks to freshwater fish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:163153. [PMID: 37003323 DOI: 10.1016/j.scitotenv.2023.163153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/24/2023] [Accepted: 03/25/2023] [Indexed: 05/13/2023]
Abstract
Although carbon-based nanomaterials (CNMs) toxicity has already been demonstrated in some animal models, little is known about the impact of carbon nanofibers (CNFs) on aquatic vertebrates. Thus, we aimed to evaluate the possible effects of long-term exposure of zebrafish (Danio rerio) juveniles (90 days) to CNFs in predicted environmentally relevant concentrations (10 ng/L and 10 μg/L). Our data revealed that exposure to CNFs did not affect the growth and development of the animals, in addition to not having induced locomotor alterations or anxiety-like behavior. On the other hand, we observed that zebrafish exposed to CNFs showed a response deficit to the vibratory stimulus test, alteration in the density of neuromasts recorded in the final ventral region, as well as an increase in thiobarbituric acid reactive substances levels and a reduction in total antioxidant activity, nitric oxide, and acetylcholinesterase activity in the brain. Such data were directly associated with a higher concentration of total organic carbon in the brain, which suggests the bioaccumulation of CNFs. Furthermore, exposure to CNFs induced a picture suggestive of genomic instability, inferred by the increased frequency of nuclear abnormalities and DNA damage in circulating erythrocytes. Although the individual analyses of the biomarkers did not point to a concentration-dependent effect, the principal component analysis (PCA) and the Integrated Biomarker Response Index (IBRv2) indicate a more prominent effect induced by the higher CNFs concentration (10 μg/L). Therefore, our study confirms the impact of CNFs in the studied model (D. rerio) and sheds light on the ecotoxicological risks of these nanomaterials to freshwater fish. Based on the ecotoxicological screening provided by our study, new horizons are opened for investigations into the mechanisms of action of CNFs, which will help understand the magnitude of the impact of these materials on aquatic biota.
Collapse
Affiliation(s)
- Mateus Flores Montalvão
- Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil
| | - Thales Quintão Chagas
- State Secretariat of Environmental Development (SEDAM), Sedam's Conservation Units Coordination (CUC), Conservation Unit Management Division, Porto Velho, RO, Brazil
| | - Aline Sueli de Lima Rodrigues
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil
| | | | - Guilherme Malafaia
- Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil; Brazilian Academy of Young Scientists (ABJC), Brazil.
| |
Collapse
|
24
|
de Prisco N, Ford C, Elrod ND, Lee W, Tang LC, Huang KL, Lin A, Ji P, Jonnakuti VS, Boyle L, Cabaj M, Botta S, Õunap K, Reinson K, Wojcik MH, Rosenfeld JA, Bi W, Tveten K, Prescott T, Gerstner T, Schroeder A, Fong CT, George-Abraham JK, Buchanan CA, Hanson-Khan A, Bernstein JA, Nella AA, Chung WK, Brandt V, Jovanovic M, Targoff KL, Yalamanchili HK, Wagner EJ, Gennarino VA. Alternative polyadenylation alters protein dosage by switching between intronic and 3'UTR sites. SCIENCE ADVANCES 2023; 9:eade4814. [PMID: 36800428 PMCID: PMC9937581 DOI: 10.1126/sciadv.ade4814] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Alternative polyadenylation (APA) creates distinct transcripts from the same gene by cleaving the pre-mRNA at poly(A) sites that can lie within the 3' untranslated region (3'UTR), introns, or exons. Most studies focus on APA within the 3'UTR; however, here, we show that CPSF6 insufficiency alters protein levels and causes a developmental syndrome by deregulating APA throughout the transcript. In neonatal humans and zebrafish larvae, CPSF6 insufficiency shifts poly(A) site usage between the 3'UTR and internal sites in a pathway-specific manner. Genes associated with neuronal function undergo mostly intronic APA, reducing their expression, while genes associated with heart and skeletal function mostly undergo 3'UTR APA and are up-regulated. This suggests that, under healthy conditions, cells toggle between internal and 3'UTR APA to modulate protein expression.
Collapse
Affiliation(s)
- Nicola de Prisco
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
- Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY, USA
| | - Caitlin Ford
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
- Department of Pediatrics, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Nathan D. Elrod
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Winston Lee
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
- Department Ophthalmology, Columbia University Irving Medical Center, New York, NY, USA
| | - Lauren C. Tang
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Kai-Lieh Huang
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, TX, USA
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Ai Lin
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, WC67+HC Dongcheng, Beijing, China
| | - Ping Ji
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Venkata S. Jonnakuti
- Department of Pediatrics, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, USA
- Program in Quantitative and Computational Biology, Baylor College of Medicine, Houston, TX, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA
| | - Lia Boyle
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
- Department of Pediatrics, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Maximilian Cabaj
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Salvatore Botta
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
- Department of Translational Medical Science, University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Katrin Õunap
- Department of Clinical Genetics, Genetics and Personalized Medicine Clinic, Tartu University Hospital, Tartu, Estonia
- Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Karit Reinson
- Department of Clinical Genetics, Genetics and Personalized Medicine Clinic, Tartu University Hospital, Tartu, Estonia
- Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Monica H. Wojcik
- Broad Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jill A. Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Baylor Genetics Laboratories, Houston, TX, USA
| | - Weimin Bi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Baylor Genetics Laboratories, Houston, TX, USA
| | - Kristian Tveten
- Department of Medical Genetics, Telemark Hospital Trust, 3710 Skien, Norway
| | - Trine Prescott
- Department of Medical Genetics, Telemark Hospital Trust, 3710 Skien, Norway
| | - Thorsten Gerstner
- Department of Child Neurology and Rehabilitation and Department of Pediatrics, Hospital of Southern Norway, Arendal, Norway
| | - Audrey Schroeder
- Division of Medical Genetics, University of Rochester Medical Center, Rochester, NY, USA
| | - Chin-To Fong
- Department of Pediatrics and of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Jaya K. George-Abraham
- Dell Children’s Medical Group, Austin, TX, USA
- Department of Pediatrics, The University of Texas at Austin Dell Medical School, Austin, TX, USA
| | | | - Andrea Hanson-Khan
- Department of Pediatrics, Division of Medical Genetics, Stanford School of Medicine, Palo Alto, CA, USA
- Department of Genetics, Stanford School of Medicine, Palo Alto, CA, USA
| | - Jonathan A. Bernstein
- Department of Pediatrics, Division of Medical Genetics, Stanford School of Medicine, Palo Alto, CA, USA
| | - Aikaterini A. Nella
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, USA
| | - Wendy K. Chung
- Department of Pediatrics, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Vicky Brandt
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Marko Jovanovic
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Kimara L. Targoff
- Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY, USA
- Department of Pediatrics, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Hari Krishna Yalamanchili
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, USA
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Eric J. Wagner
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, TX, USA
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Vincenzo A. Gennarino
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
- Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY, USA
- Department of Pediatrics, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Initiative for Columbia Ataxia and Tremor, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
25
|
ftr82 is necessary for hair cell morphogenesis and auditory function during zebrafish development. J Genet Genomics 2023; 50:77-86. [PMID: 36464225 DOI: 10.1016/j.jgg.2022.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/27/2022] [Accepted: 11/18/2022] [Indexed: 12/04/2022]
Abstract
Damages of sensory hair cells (HCs) are mainly responsible for sensorineural hearing loss, while the pathological mechanism remains not fully understood due to the many potential deafness genes unidentified. ftr82, a member of the largely TRIMs family in fish, has been found specifically expressed in the otic vesicle while its function is still unclear. Here, we investigate the roles of ftr82 in HC development and hearing function utilizing the zebrafish model. The results of in situ hybridization illustrate that ftr82 is always restricted to localize in otic vesicles at different stages. The defects of HCs are observed both in ftr82 morphants and mutants, including significantly decreased crista HCs, shortened cilia as well as remarkably reduced functional HCs in neuromasts, which could be successfully rescued by co-injection of exogenous ftr82 mRNA. The behavior assay of startle response indicates that larvae lacking of ftr82 exhibits lower sensitivity to external sound stimuli. Further research reveals that the loss of HCs is mainly caused by cell apoptosis mediated by caspase-3 activation. Our study demonstrates that ftr82 is a crucial hearing-related gene that regulates the HC morphogenesis and auditory function performing, which provides new insight into the rapid identification of the deafness gene.
Collapse
|
26
|
Miao KZ, Cozzone A, Caetano-Lopes J, Harris MP, Fisher S. Osteoclast activity sculpts craniofacial form to permit sensorineural patterning in the zebrafish skull. Front Endocrinol (Lausanne) 2022; 13:969481. [PMID: 36387889 PMCID: PMC9664155 DOI: 10.3389/fendo.2022.969481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 10/10/2022] [Indexed: 11/07/2022] Open
Abstract
Efforts to understand the morphogenesis of complex craniofacial structures have largely focused on the role of chondrocytes and osteoblasts. Along with these bone-creating cells, bone-resorbing osteoclasts are critical in homeostasis of adult skeletal structures, but there is currently limited information on their role in the complex morphogenetic events of craniofacial development. Fundamental aspects of skull formation and general skeletal development are conserved from zebrafish to mammals. Using a cathepsinK reporter, we documented osteoclast location in the developing zebrafish skull over several weeks, from 5.18 mm to 9.6 mm standard length (approximately 15 to 34 days post fertilization). While broad distribution of osteoclasts is consistent across individuals, they are sparse and the exact locations vary among fish and across developmental time points. Interestingly, we observed osteoclasts concentrating at areas associated with neuromasts and their associated nerves, in particular the hyomandibular foramina and around the supraorbital lateral line. These are areas of active remodeling. In contrast, other areas of rapid bone growth, such as the osteogenic fronts of the frontal and parietal bones, show no particular concentration of osteoclasts, suggesting that they play a special role in shaping bone near neuromasts and nerves. In csf1ra mutants lacking functional osteoclasts, the morphology of the cranial bone was disrupted in both areas. The hyomandibular foramen is present in the initial cartilage template, but after the initiation of ossification, the diameter of the canal is significantly smaller in the absence of osteoclasts. The diameter of the supraorbital lateral line canals was also reduced in the mutants, as was the number of pores associated with neuromasts, which allow for the passage of associated nerves through the bone. Our findings define important and previously unappreciated roles for osteoclast activity in shaping craniofacial skeletal structures with a particular role in bone modeling around peripheral cranial nerves, providing a scaffold for wiring the sensioneural system during craniofacial development. This has important implications for the formation of the evolutionarily diverse lateral line system, as well understanding the mechanism of neurologic sequelae of congenital osteoclast dysfunction in human craniofacial development.
Collapse
Affiliation(s)
- Kelly Z. Miao
- Department of Pharmacology and Experimental Therapeutics, Boston University Aram V. Chobanian & Edward Avedisian School of Medicine, Boston, MA, United States
| | - Austin Cozzone
- Department of Pharmacology and Experimental Therapeutics, Boston University Aram V. Chobanian & Edward Avedisian School of Medicine, Boston, MA, United States
| | - Joana Caetano-Lopes
- Department of Orthopaedic Surgery, Boston Children’s Hospital, Boston, MA, United States
- Department of Genetics, Harvard Medical School, Boston, MA, United States
| | - Matthew P. Harris
- Department of Orthopaedic Surgery, Boston Children’s Hospital, Boston, MA, United States
- Department of Genetics, Harvard Medical School, Boston, MA, United States
| | - Shannon Fisher
- Department of Pharmacology and Experimental Therapeutics, Boston University Aram V. Chobanian & Edward Avedisian School of Medicine, Boston, MA, United States
| |
Collapse
|
27
|
Pagán AJ, Lee LJ, Edwards-Hicks J, Moens CB, Tobin DM, Busch-Nentwich EM, Pearce EL, Ramakrishnan L. mTOR-regulated mitochondrial metabolism limits mycobacterium-induced cytotoxicity. Cell 2022; 185:3720-3738.e13. [PMID: 36103894 PMCID: PMC9596383 DOI: 10.1016/j.cell.2022.08.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 06/17/2022] [Accepted: 08/16/2022] [Indexed: 02/01/2023]
Abstract
Necrosis of macrophages in the granuloma, the hallmark immunological structure of tuberculosis, is a major pathogenic event that increases host susceptibility. Through a zebrafish forward genetic screen, we identified the mTOR kinase, a master regulator of metabolism, as an early host resistance factor in tuberculosis. We found that mTOR complex 1 protects macrophages from mycobacterium-induced death by enabling infection-induced increases in mitochondrial energy metabolism fueled by glycolysis. These metabolic adaptations are required to prevent mitochondrial damage and death caused by the secreted mycobacterial virulence determinant ESAT-6. Thus, the host can effectively counter this early critical mycobacterial virulence mechanism simply by regulating energy metabolism, thereby allowing pathogen-specific immune mechanisms time to develop. Our findings may explain why Mycobacterium tuberculosis, albeit humanity's most lethal pathogen, is successful in only a minority of infected individuals.
Collapse
Affiliation(s)
- Antonio J. Pagán
- Molecular Immunity Unit, Cambridge Institute of Therapeutic Immunology and Infectious Diseases, Department of Medicine, University of Cambridge, Cambridge CB2 0AW, UK,MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK,Department of Microbiology, University of Washington, Seattle, WA 98195, USA,Corresponding author
| | - Lauren J. Lee
- Molecular Immunity Unit, Cambridge Institute of Therapeutic Immunology and Infectious Diseases, Department of Medicine, University of Cambridge, Cambridge CB2 0AW, UK,MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Joy Edwards-Hicks
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Cecilia B. Moens
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - David M. Tobin
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
| | - Elisabeth M. Busch-Nentwich
- Molecular Immunity Unit, Cambridge Institute of Therapeutic Immunology and Infectious Diseases, Department of Medicine, University of Cambridge, Cambridge CB2 0AW, UK
| | - Erika L. Pearce
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Lalita Ramakrishnan
- Molecular Immunity Unit, Cambridge Institute of Therapeutic Immunology and Infectious Diseases, Department of Medicine, University of Cambridge, Cambridge CB2 0AW, UK,MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK,Department of Microbiology, University of Washington, Seattle, WA 98195, USA,Corresponding author
| |
Collapse
|
28
|
Echeverri K. Zebrafishing for enhancers of hearing regeneration. CELL GENOMICS 2022; 2:100178. [PMID: 36778669 PMCID: PMC9903800 DOI: 10.1016/j.xgen.2022.100178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The discovery of regeneration-specific enhancer elements has added an exciting player to the field of regeneration biology. In this issue of Cell Genomics, Jimenez et al.1 demonstrate the power of combining single-cell genomics with the genetically tractable zebrafish to identify modulators of adult hair cell regeneration.
Collapse
Affiliation(s)
- Karen Echeverri
- Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA, USA
- Corresponding author
| |
Collapse
|
29
|
Chen C, Ni X, Yin X, Chen H, Zhou Y, Sun H, Qi C, Bu N, Wang S, Yu J, Yang J, Ao W, Zhao B, Dong W. Developmental disorders caused by cefixime in the otic vesicles of zebrafish embryos or larvae. Comp Biochem Physiol C Toxicol Pharmacol 2022; 255:109295. [PMID: 35134541 DOI: 10.1016/j.cbpc.2022.109295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/30/2022] [Accepted: 02/02/2022] [Indexed: 02/06/2023]
Abstract
To explore the developmental toxicity of cefixime (CE) in the developmental disorder and toxicity mechanism of CE on otic vesicles, zebrafish embryos were used as an animal model. The results showed that CE increased mortality in a dose-dependent manner and decreased the hatching rate of zebrafish larva at 96 hpf. Interestingly, CE significantly reduced the area of the saccule and utricle, as well as the area of otic vesicles in zebrafish larvae (p < 0.001). Fibroblast growth factor 8a (Fgf8a) inhibitors and bone morphogenetic protein (BMP) inhibitors caused similar morphological changes. CE decreased the lateral hair cells of zebrafish larvae in a dose-dependent manner. Furthermore, CE caused the downregulation of cartilage and bone-related genes and Na+/K+-ATPase-related genes of zebrafish larvae at 72 hpf and 120 hpf according to RT-qPCR. A comparison with the control group revealed that 100 μg/mL CE also caused a decrease in Na+/K+-ATPase activity (p < 0.01). In addition, antibody staining verified that CE inhibited the expression of Na+/K+-ATPase in the otic vesicles and the nephridium of zebrafish larvae. The data obtained in this study suggested that CE has significant ototoxicity during embryonic development of zebrafish, which is closely related to Na+/K+-ATPase and the regulation of the Fgf8a/BMP signaling pathways. The effects and toxicity of CE on ear development in other animal models need to be further explored.
Collapse
Affiliation(s)
- Chaobao Chen
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, Collage of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Xuan Ni
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, Collage of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Xiaoyu Yin
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, Collage of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Hao Chen
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, Collage of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Yini Zhou
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, Collage of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Huiying Sun
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, Collage of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Chelimuge Qi
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, Collage of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Nini Bu
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, Collage of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Shuaiyu Wang
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, Collage of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Jianhua Yu
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, Collage of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Jingfeng Yang
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, Collage of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Wuliji Ao
- Inner Mongolia Research Institute of Traditional Mongolian Medicine Engineering Technology/College of Mongolian Medicine and Pharmacy, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Baoquan Zhao
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China
| | - Wu Dong
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, Collage of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China.
| |
Collapse
|
30
|
Tang D, Zheng S, Zheng Z, Liu C, Zhang J, Yan R, Wu C, Zuo N, Wu L, Xu H, Liu S, He Y. Dnmt1 is required for the development of auditory organs via cell cycle arrest and Fgf signalling. Cell Prolif 2022; 55:e13225. [PMID: 35352419 PMCID: PMC9136517 DOI: 10.1111/cpr.13225] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 03/07/2022] [Accepted: 03/10/2022] [Indexed: 11/30/2022] Open
Abstract
Objectives To explore the role of DNA methyltransferase 1 (DNMT1) in the development of auditory system using zebrafish as experimental model. Methods Morpholino oligonucleotide was used to induce Dnmt1 deficiency. RNA sequencing, in situ hybridization (ISH), whole genomic bisulfide sequencing (WGBS) and immunostaining were used to investigate the morphologic alterations and mechanisms. Results We found that downregulation of Dnmt1 induced decreased number of neuromasts and repressed cell proliferation of primordium in the developing posterior lateral line system of zebrafish. The ISH data uncovered that Fgf signalling pathway was inhibited and the expression of chemokine members cxcr4b, cxcr7b and cxcl12a were interfered, while lef1 expression was increased after inhibiting Dnmt1. Additionally, Dnmt1 downregulation led to malformed otoliths and deformed semicircular canals, and hair cell differentiation in utricle and saccule was inhibited severely. The in situ staining of otic placode markers pax2/5 and fgf 3/8/10 was decreased when Dnmt1 downregulated. The WGBS analysis demonstrated that the global methylation status was markedly downregulated, and cell cycle genes were among those most differently expressed between Dnmt1 morphants and the controls. Further ISH analysis confirmed the findings by RNA‐seq and WGBS assay that cdkn1a and tp53 were both upregulated after knockdown of Dnmt1. Conclusion Our results revealed that Dnmt1 is essential for the development of zebrafish auditory organ through regulating cell cycle genes together with Wnt and Fgf signalling pathways.
Collapse
Affiliation(s)
- Dongmei Tang
- ENT Institute and Otorhinolaryngology Department, Eye and ENT Hospital, NHC Key Laboratory of Hearing Medicine Research, Fudan University, Shanghai, China
| | - Shimei Zheng
- Department of Otolaryngology-Head and Neck Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Zhiwei Zheng
- ENT Institute and Otorhinolaryngology Department, Eye and ENT Hospital, NHC Key Laboratory of Hearing Medicine Research, Fudan University, Shanghai, China
| | - Chang Liu
- ENT Institute and Otorhinolaryngology Department, Eye and ENT Hospital, NHC Key Laboratory of Hearing Medicine Research, Fudan University, Shanghai, China
| | - Jiner Zhang
- Department of Otolaryngology-Head and Neck Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Renchun Yan
- Department of Otolaryngology-Head and Neck Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Cheng Wu
- Department of Otolaryngology-Head and Neck Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Na Zuo
- Department of Otolaryngology-Head and Neck Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Lijuan Wu
- Department of Otolaryngology-Head and Neck Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Hongfei Xu
- Department of Forensic Medicine, Soochow University, Suzhou, China
| | - Shaofeng Liu
- Department of Otolaryngology-Head and Neck Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Yingzi He
- ENT Institute and Otorhinolaryngology Department, Eye and ENT Hospital, NHC Key Laboratory of Hearing Medicine Research, Fudan University, Shanghai, China
| |
Collapse
|
31
|
Mekdara PJ, Tirmizi S, Schwalbe MAB, Tytell ED. Comparison of Aminoglycoside Antibiotics and Cobalt Chloride for Ablation of the Lateral Line System in Giant Danios. Integr Org Biol 2022; 4:obac012. [PMID: 35359665 PMCID: PMC8964175 DOI: 10.1093/iob/obac012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Synopsis
The mechanoreceptive lateral line system in fish is composed of neuromasts containing hair cells, which can be temporarily ablated by aminoglycoside antibiotics and heavy metal ions. These chemicals have been used for some time in studies exploring the functional role of the lateral line system in many fish species. However, little information on the relative effectiveness and rate of action of these chemicals for ablation is available. In particular, aminoglycoside antibiotics are thought to affect canal neuromasts, which sit in bony or trunk canals, differently from superficial neuromasts, which sit directly on the skin. This assumed ablation pattern has not been fully quantified for commonly used lateral line ablation agents. This study provides a detailed characterization of the effects of two aminoglycoside antibiotics, streptomycin sulfate and neomycin sulfate, and a heavy metal salt, cobalt (II) chloride hexahydrate (CoCl2), on the ablation of hair cells in canal and superficial neuromasts in the giant danio (Devario aequipinnatus) lateral line system, as a model for adult teleost fishes. We also quantified the regeneration of hair cells after ablation using CoCl2 and gentamycin sulfate to verify the time course to full recovery, and whether the ablation method affects the recovery time. Using a fluorescence stain, 4-Di-2-ASP, we verified the effectiveness of each chemical by counting the number of fluorescing canal and superficial neuromasts present throughout the time course of ablation and regeneration of hair cells. We found that streptomycin and neomycin were comparably effective at ablating all neuromasts in less than 12 h using a 250 μM dosage and in less than 8 h using a 500 μM dosage. The 500 μM dosage of either streptomycin or neomycin can ablate hair cells in superficial neuromasts within 2–4 h, while leaving those in canal neuromasts mostly intact. CoCl2 (0.1 mM) worked the fastest, ablating all of the hair cells in less than 6 h. Complete regeneration of the neuromasts in the lateral line system took 7 days regardless of chemicals used to ablate the hair cells. This study adds to the growing knowledge in hearing research about how effective specific chemicals are at ablating hair cells in the acoustic system of vertebrates.
Collapse
Affiliation(s)
- P J Mekdara
- Department of Biology, Tufts University, 200 Boston Avenue, Ste 4700, Medford, MA 02155, USA
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive, Building 35, 2B-1004, Bethesda, MD 20892, USA
| | - S Tirmizi
- Department of Biology, Tufts University, 200 Boston Avenue, Ste 4700, Medford, MA 02155, USA
| | - M A B Schwalbe
- Department of Biology, Tufts University, 200 Boston Avenue, Ste 4700, Medford, MA 02155, USA
- Department of Biology, Lake Forest College, 555 N Sheridan Road, Lake Forest, IL 60045, USA
| | - E D Tytell
- Department of Biology, Tufts University, 200 Boston Avenue, Ste 4700, Medford, MA 02155, USA
| |
Collapse
|
32
|
Trengove M, Wyett R, Liongue C, Ward AC. Functional Analysis of Zebrafish socs4a: Impacts on the Notochord and Sensory Function. Brain Sci 2022; 12:brainsci12020241. [PMID: 35204004 PMCID: PMC8869963 DOI: 10.3390/brainsci12020241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 02/04/2023] Open
Abstract
The suppressor of cytokine signaling (SOCS) proteins play important roles in cytokine and growth factor signaling, where they act principally as negative feedback regulators, particularly of the downstream signal transducer and activator of transcription (STAT) transcription factors. This critical mode of regulation impacts on both development and homeostasis. However, understanding of the function of SOCS4 remains limited. To address this, we investigated one of the zebrafish SOCS4 paralogues, socs4a, analyzing its expression and the consequences of its ablation. The socs4a gene had a dynamic expression profile during zebrafish embryogenesis, with initial ubiquitous expression becoming restricted to sensory ganglion within the developing nervous system. The knockdown of zebrafish socs4a revealed novel roles in notochord development, as well as the formation of a functional sensory system.
Collapse
Affiliation(s)
- Monique Trengove
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia; (M.T.); (R.W.); (C.L.)
| | - Ruby Wyett
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia; (M.T.); (R.W.); (C.L.)
| | - Clifford Liongue
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia; (M.T.); (R.W.); (C.L.)
- Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC 3216, Australia
| | - Alister C. Ward
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia; (M.T.); (R.W.); (C.L.)
- Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC 3216, Australia
- Correspondence:
| |
Collapse
|
33
|
Riley SE, Feng Y, Hansen CG. Hippo-Yap/Taz signalling in zebrafish regeneration. NPJ Regen Med 2022; 7:9. [PMID: 35087046 PMCID: PMC8795407 DOI: 10.1038/s41536-022-00209-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 12/14/2021] [Indexed: 12/29/2022] Open
Abstract
The extent of tissue regeneration varies widely between species. Mammals have a limited regenerative capacity whilst lower vertebrates such as the zebrafish (Danio rerio), a freshwater teleost, can robustly regenerate a range of tissues, including the spinal cord, heart, and fin. The molecular and cellular basis of this altered response is one of intense investigation. In this review, we summarise the current understanding of the association between zebrafish regeneration and Hippo pathway function, a phosphorylation cascade that regulates cell proliferation, mechanotransduction, stem cell fate, and tumorigenesis, amongst others. We also compare this function to Hippo pathway activity in the regenerative response of other species. We find that the Hippo pathway effectors Yap/Taz facilitate zebrafish regeneration and that this appears to be latent in mammals, suggesting that therapeutically promoting precise and temporal YAP/TAZ signalling in humans may enhance regeneration and hence reduce morbidity.
Collapse
Affiliation(s)
- Susanna E Riley
- University of Edinburgh Centre for Inflammation Research, Institute for Regeneration and Repair, Queen's Medical Research Institute, Edinburgh bioQuarter, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Yi Feng
- University of Edinburgh Centre for Inflammation Research, Institute for Regeneration and Repair, Queen's Medical Research Institute, Edinburgh bioQuarter, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Carsten Gram Hansen
- University of Edinburgh Centre for Inflammation Research, Institute for Regeneration and Repair, Queen's Medical Research Institute, Edinburgh bioQuarter, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK.
| |
Collapse
|
34
|
Petersen SC. Open-Ended Inquiry into Zebrafish Nerve Development Using Image Analysis. JOURNAL OF UNDERGRADUATE NEUROSCIENCE EDUCATION : JUNE : A PUBLICATION OF FUN, FACULTY FOR UNDERGRADUATE NEUROSCIENCE 2021; 20:A73-A82. [PMID: 35540941 PMCID: PMC9053433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/07/2021] [Accepted: 09/20/2021] [Indexed: 06/14/2023]
Abstract
Open-ended laboratory projects increase student success and retention in the sciences. However, developing organismal-based research projects is a challenge for students with restricted laboratory access, such as those attending courses remotely. Here I describe the use of image analysis of zebrafish neural development for authentic research projects in an introductory biology laboratory course. Zebrafish are a vertebrate model that produce large numbers of externally and rapidly developing embryos. Because zebrafish larvae are transparent, fluorescent reporters marking nervous system structures can be imaged over time and analyzed by undergraduate scientists. In the pilot of this project, remote first-year college students independently developed biological questions based on an image collection comparing zebrafish mutants and wild-type siblings. Students created and mastered techniques to analyze position, organization, and other morphological features of developing neurons and glia in the images to directly test their biological questions. At the end of the course, students communicated their project results in journal article format and oral presentations. Students were able to hone skills in organismal observation and data collection while studying remotely, and they reported excitement at applying lecture-based knowledge to their own independent questions. This module can be adapted by other instructors for both students on- and off-campus to teach principles of neural development, data collection, data analysis, and scientific communication.
Collapse
Affiliation(s)
- Sarah C Petersen
- Department of Neuroscience and Department of Biology, Kenyon College, Gambier, OH 43022
| |
Collapse
|
35
|
Luo Z, Guo S, Ho NY, Takamiya M, Strähle U, Yang L. Methylmercury-induced hair cell loss requires hydrogen peroxide production and leukocytes in zebrafish embryos. Toxicol Lett 2021; 356:151-160. [PMID: 34954246 DOI: 10.1016/j.toxlet.2021.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/07/2021] [Accepted: 12/17/2021] [Indexed: 10/19/2022]
Abstract
Hearing impairment and deafness is frequently observed as one of the neurological signs in patients with Minamata disease caused by methylmercury (MeHg) poisoning. Loss of hair cells in humans and animals is a consequence of MeHg poisoning. However, it is still not clear how MeHg causes hearing deficits. We employed the hair cells of the lateral line system of zebrafish embryos as a model to explore this question. We exposed transgenic zebrafish embryos to MeHg (30-360 μg/L) at the different stages, and scored the numbers of hair cells. We find that MeHg-induced reduction of hair cells is in a concentration dependent manner. By employing antisense morpholino against to pu.1, we confirm that loss of hair cells involves the action of leukocytes. Moreover, hair cell loss is attenuated by co-treating MeHg-exposed embryos with pharmacological inhibitors of NADPH oxidases named diphenyleneiodonium (DPI) and VAS2870. In situ gene expression analysis showed that genes encoding the SQSTM1-Keap1-Nrf2 systems involved in combating oxidative stress and immune responses are highly expressed in the lateral line organs of embryos exposed to MeHg. This suggests that induction of hydrogen peroxide (H2O2) is the primary effect of MeHg on the hair cells. Genes induced by MeHg are also involved in regeneration of the hair cells. These features are likely related to the capacity of the zebrafish to regenerate the lost hair cells.
Collapse
Affiliation(s)
- Zidie Luo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012, Beijing, China
| | - Shaojuan Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012, Beijing, China
| | - Nga Yu Ho
- Institute of Biological and Chemical Systems-Biological Information Processing, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Masanari Takamiya
- Institute of Biological and Chemical Systems-Biological Information Processing, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Uwe Strähle
- Institute of Biological and Chemical Systems-Biological Information Processing, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Lixin Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012, Beijing, China.
| |
Collapse
|
36
|
Montalbano G, Olivotto I, Germanà A, Randazzo B. Evaluation of the hair cell regeneration and claudin b and phoenix gene expression during exposure to low concentrations of cadmium and zinc in early developing zebrafish larvae. Comp Biochem Physiol C Toxicol Pharmacol 2021; 248:109116. [PMID: 34182097 DOI: 10.1016/j.cbpc.2021.109116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/14/2021] [Accepted: 06/18/2021] [Indexed: 12/28/2022]
Abstract
Zebrafish possess hair cells on the body surface similar to that of mammals inner hear, in particular in the neuromasts, and due to its ability in regenerating damaged hair cells, is regularly used as a powerful animal model to study in vivo cytotoxicity. Among the factors leading to hair cell disruption, metal ions are of particular concern since they are important environmental pollutants. To date, several studies on zebrafish hair cell regeneration after metal exposure exist, while no data on regeneration during continuous metal exposure are available. In the present study, neuromast hair cell disruption and regeneration were assessed in zebrafish larvae for the first time during zinc (Zn) and cadmium (Cd) continuous exposure and a visual and molecular approach was adopted. Fluorescent vital dye DASPEI was used to assess hair cell regeneration and the gene expression of claudin b (cldnb) and phoenix (pho), was analyzed. Metallotionein-2 (mt2) gene expression was used as standard molecular marker of metal toxicity and confirmed the higher toxicity of Cd compared to Zn. In addition, Cd caused a delay in hair cell regeneration compared to Zn. Molecular analysis showed cldnb gene expression increased in relation to the metal concentrations used, confirming the involvement of this gene in hair cell regeneration. On the contrary, a dramatic decrease of pho gene expression was observed in Cd exposed groups, suggesting a negative impact of Cd on pho expression, thus negatively interfering with hair cell regeneration in zebrafish larvae exposed to this metal.
Collapse
Affiliation(s)
| | - Ike Olivotto
- Polytechnic University of Marche, Department of Life and Environmental Sciences, Ancona, Italy
| | - Antonino Germanà
- Messina Study University, Department of Veterinary Sciences, Messina, Italy
| | - Basilio Randazzo
- Polytechnic University of Marche, Department of Life and Environmental Sciences, Ancona, Italy.
| |
Collapse
|
37
|
Aragona M, Porcino C, Guerrera MC, Montalbano G, Levanti M, Abbate F, Laurà R, Germanà A. Localization of Neurotrophin Specific Trk Receptors in Mechanosensory Systems of Killifish ( Nothobranchius guentheri). Int J Mol Sci 2021; 22:10411. [PMID: 34638748 PMCID: PMC8508645 DOI: 10.3390/ijms221910411] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 12/25/2022] Open
Abstract
Neurotrophins (NTs) and their signal-transducing Trk receptors play a crucial role in the development and maintenance of specific neuronal subpopulations in nervous and sensory systems. NTs are supposed to regulate two sensory systems in fish, the inner ear and the lateral line system (LLS). The latter is one of the major mechanosensory systems in fish. Considering that annual fishes of the genus Nothobranchius, with their short life expectancy, have become a suitable model for aging studies and that the occurrence and distribution of neurotrophin Trk receptors have never been investigated in the inner ear and LLS of killifish (Nothobranchius guentheri), our study aimed to investigate the localization of neurotrophin-specific Trk receptors in mechanosensory systems of N. guentheri. For histological and immunohistochemical analysis, adult specimens of N. guentheri were processed using antibodies against Trk receptors and S100 protein. An intense immunoreaction for TrkA and TrkC was found in the sensory cells of the inner ear as well as in the hair cells of LLS. Moreover, also the neurons localized in the acoustic ganglia displayed a specific immunoreaction for all Trk receptors (TrkA, B, and C) analyzed. Taken together, our results demonstrate, for the first time, that neurotrophins and their specific receptors could play a pivotal role in the biology of the sensory cells of the inner ear and LLS of N. guentheri and might also be involved in the hair cells regeneration process in normal and aged conditions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Antonino Germanà
- Zebrafish Neuromorphology Laboratory, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (M.A.); (C.P.); (M.C.G.); (G.M.); (M.L.); (F.A.); (R.L.)
| |
Collapse
|
38
|
Wang J, Wang D, Hu G, Yang L, Liu Z, Yan D, Serikuly N, Alpyshov E, Demin KA, Strekalova T, Gil Barcellos LJ, Barcellos HHA, Amstislavskaya TG, de Abreu MS, Kalueff AV. The role of auditory and vibration stimuli in zebrafish neurobehavioral models. Behav Processes 2021; 193:104505. [PMID: 34547376 DOI: 10.1016/j.beproc.2021.104505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 11/16/2022]
Abstract
Strongly affecting human and animal physiology, sounds and vibration are critical environmental factors whose complex role in behavioral and brain functions necessitates further clinical and experimental studies. Zebrafish are a promising model organism for neuroscience research, including probing the contribution of auditory and vibration stimuli to neurobehavioral processes. Here, we summarize mounting evidence on the role of sound and vibration in zebrafish behavior and brain function, and outline future directions of translational research in this field. With the growing environmental exposure to noise and vibration, we call for more active use of zebrafish models for probing neurobehavioral and bioenvironmental consequences of acute and long-term exposure to sounds and vibration in complex biological systems.
Collapse
Affiliation(s)
- Jingtao Wang
- School of Pharmacy, Southwest University, Chongqing, China
| | - Dongmei Wang
- School of Pharmacy, Southwest University, Chongqing, China
| | - Guojun Hu
- School of Pharmacy, Southwest University, Chongqing, China
| | - LongEn Yang
- School of Pharmacy, Southwest University, Chongqing, China
| | - ZiYuan Liu
- School of Pharmacy, Southwest University, Chongqing, China
| | - Dongni Yan
- School of Pharmacy, Southwest University, Chongqing, China
| | - Nazar Serikuly
- School of Pharmacy, Southwest University, Chongqing, China
| | - Erik Alpyshov
- School of Pharmacy, Southwest University, Chongqing, China
| | - Konstantin A Demin
- St. Petersburg State University, St. Petersburg, Russia; Neurobiology Program, Sirius University, Sochi, Russia
| | - Tatiana Strekalova
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia; Maastricht University, Maastricht, The Netherlands; Research Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Leonardo J Gil Barcellos
- Graduate Programs in Bio-experimentation and Environmental Sciences, University of Passo Fundo, Passo Fundo, Brazil; Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, Brazil
| | | | | | - Murilo S de Abreu
- Bioscience Institute, University of Passo Fundo, Passo Fundo, Brazil; Laboratory of Cell and Molecular Biology and Neurobiology, Moscow Institute of Physics and Technology, Moscow, Russia.
| | - Allan V Kalueff
- School of Pharmacy, Southwest University, Chongqing, China; Ural Federal University, Ekaterinburg, Russia.
| |
Collapse
|
39
|
He CQ, Mao L, Yao J, Zhao WC, Huang B, Hu N, Long DX. The Threshold Effects of Low-Dose-Rate Radiation on miRNA-Mediated Neurodevelopment of Zebrafish. Radiat Res 2021; 196:633-646. [PMID: 34399425 DOI: 10.1667/rade-20-00265.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 07/29/2021] [Indexed: 11/03/2022]
Abstract
The biological effects and regulatory mechanisms of low-dose and low-dose-rate radiation are still rather controversial. Therefore, in this study we investigated the effects of low-dose-rate radiation on zebrafish neurodevelopment and the role of miRNAs in radiation-induced neurodevelopment. Zebrafish embryos received prolonged gamma-ray irradiation (0 mGy/h, 0.1 mGy/h, 0.2 mGy/h, 0.4 mGy/h) during development. Neurodevelopmental indicators included mortality, malformation rate, swimming speed, as well as the morphology changes of the lateral line system and brain tissue. Additionally, spatiotemporal expression of development-related miRNAs (dre-miR-196a-5p, dre-miR-210-3p, dre-miR-338) and miRNA processing enzymes genes (Dicer and Drosha) were assessed by qRT-PCR and whole mount in situ hybridization (WISH). The results revealed a decline in mortality, malformation and swimming speed, with normal histological and morphological appearance, in zebrafish that received 0.1 mGy/h; however, increased mortality, malformation and swimming speed were observed, with pathological changes, in zebrafish that received 0.2 mGy/h and 0.4 mGy/h. The expression of miRNA processing enzyme genes was altered after irradiation, and miRNAs expression was downregulated in the 0.1 mGy/h group, and upregulated in the 0.2 mGy/h and 0.4 mGy/h groups. Furthermore, ectopic expression of dre-miR-210-3p, Dicer and Drosha was also observed in the 0.4 mGy/h group. In conclusion, the effect of low-dose and low-dose-rate radiation on neurodevelopment follows the threshold model, under the regulation of miRNAs, excitatory effects occurred at a dose rate of 0.1 mGy/h and toxic effects occurred at a dose rate of 0.2 mGy/h and 0.4 mGy/h.
Collapse
Affiliation(s)
- Chu-Qi He
- School of Public Health, University of South China, Hengyang 421001, PR China.,Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, Hengyang, Hunan 421001, China
| | - Liang Mao
- School of Public Health, University of South China, Hengyang 421001, PR China.,Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, Hengyang, Hunan 421001, China
| | - Jin Yao
- School of Public Health, University of South China, Hengyang 421001, PR China.,Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, Hengyang, Hunan 421001, China
| | - Wei-Chao Zhao
- School of Public Health, University of South China, Hengyang 421001, PR China.,Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, Hengyang, Hunan 421001, China
| | - Bo Huang
- School of Public Health, University of South China, Hengyang 421001, PR China.,Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, Hengyang, Hunan 421001, China
| | - Nan Hu
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, Hunan 421001, China
| | - Ding-Xin Long
- School of Public Health, University of South China, Hengyang 421001, PR China.,Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, Hengyang, Hunan 421001, China
| |
Collapse
|
40
|
Hardy K, Amariutei AE, De Faveri F, Hendry A, Marcotti W, Ceriani F. Functional development and regeneration of hair cells in the zebrafish lateral line. J Physiol 2021; 599:3913-3936. [PMID: 34143497 PMCID: PMC7612129 DOI: 10.1113/jp281522] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 06/03/2021] [Indexed: 12/22/2022] Open
Abstract
Hair cells are mechanosensory receptors responsible for transducing auditory and vestibular information into electrical signals, which are then transmitted with remarkable precision to afferent neurons. Different from mammals, the hair cells of lower vertebrates, including those present in the neuromasts of the zebrafish lateral line, regenerate following environmental or chemical insults. Here we investigate the time-course of regeneration of hair cells in vivo using electrophysiology, 2-photon imaging and immunostaining applied to wild-type and genetically-encoded fluorescent indicator zebrafish lines. Functional hair cells drive spontaneous action potentials in the posterior lateral line afferent fibres, the frequency of which progressively increases over the first 10-days post-fertilization (dpf). Higher firing-rate fibres are only observed from ~6 dpf. Following copper treatment, newly formed hair cells become functional and are able to drive APs in the afferent fibres within 48 hours in both early-larval (≤8 dpf) and late-larval (12-17 dpf) zebrafish. However, the complete functional regeneration of the entire neuromast is delayed in late-larval compared to early-larval zebrafish. We propose that while individual regenerating hair cells can rapidly become active, the acquisition of fully functional neuromasts progresses faster at early-larval stages, a time when hair cells are still under development. At both ages, the afferent terminals in the regenerating neuromast appear to make initial contact with supporting cells. The ablation of the lateral line afferent neurons prevents the timely regeneration of supporting cells and hair cells. These findings indicate that the afferent system is likely to facilitate or promote the neuromast regeneration process.
Collapse
Affiliation(s)
- Katherine Hardy
- Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | - Ana E Amariutei
- Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | | | - Aenea Hendry
- Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | - Walter Marcotti
- Department of Biomedical Science, University of Sheffield, Sheffield, UK.,Sheffield Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Federico Ceriani
- Department of Biomedical Science, University of Sheffield, Sheffield, UK
| |
Collapse
|
41
|
Colón-Cruz L, Rodriguez-Morales R, Santana-Cruz A, Cantres-Velez J, Torrado-Tapias A, Lin SJ, Yudowski G, Kensler R, Marie B, Burgess SM, Renaud O, Varshney GK, Behra M. Cnr2 Is Important for Ribbon Synapse Maturation and Function in Hair Cells and Photoreceptors. Front Mol Neurosci 2021; 14:624265. [PMID: 33958989 PMCID: PMC8093779 DOI: 10.3389/fnmol.2021.624265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 02/24/2021] [Indexed: 02/04/2023] Open
Abstract
The role of the cannabinoid receptor 2 (CNR2) is still poorly described in sensory epithelia. We found strong cnr2 expression in hair cells (HCs) of the inner ear and the lateral line (LL), a superficial sensory structure in fish. Next, we demonstrated that sensory synapses in HCs were severely perturbed in larvae lacking cnr2. Appearance and distribution of presynaptic ribbons and calcium channels (Cav1.3) were profoundly altered in mutant animals. Clustering of membrane-associated guanylate kinase (MAGUK) in post-synaptic densities (PSDs) was also heavily affected, suggesting a role for cnr2 for maintaining the sensory synapse. Furthermore, vesicular trafficking in HCs was strongly perturbed suggesting a retrograde action of the endocannabinoid system (ECs) via cnr2 that was modulating HC mechanotransduction. We found similar perturbations in retinal ribbon synapses. Finally, we showed that larval swimming behaviors after sound and light stimulations were significantly different in mutant animals. Thus, we propose that cnr2 is critical for the processing of sensory information in the developing larva.
Collapse
Affiliation(s)
- Luis Colón-Cruz
- Department of Anatomy and Neurobiology, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico
| | - Roberto Rodriguez-Morales
- Department of Anatomy and Neurobiology, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico
| | - Alexis Santana-Cruz
- Department of Anatomy and Neurobiology, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico
| | - Juan Cantres-Velez
- Department of Anatomy and Neurobiology, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico
| | - Aranza Torrado-Tapias
- Department of Anatomy and Neurobiology, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico
| | - Sheng-Jia Lin
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Guillermo Yudowski
- Department of Anatomy and Neurobiology, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico.,School of Medicine, Institute of Neurobiology, University of Puerto Rico, San Juan, Puerto Rico
| | - Robert Kensler
- Department of Anatomy and Neurobiology, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico
| | - Bruno Marie
- Department of Anatomy and Neurobiology, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico.,School of Medicine, Institute of Neurobiology, University of Puerto Rico, San Juan, Puerto Rico
| | - Shawn M Burgess
- Developmental Genomics Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Olivier Renaud
- Cell and Tissue Imaging Facility (PICT-IBiSA, FranceBioImaging), Institut Curie, PSL Research University, U934/UMR3215, Paris, France
| | - Gaurav K Varshney
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Martine Behra
- Department of Anatomy and Neurobiology, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico
| |
Collapse
|
42
|
Unlocking the Secrets of the Regenerating Fish Heart: Comparing Regenerative Models to Shed Light on Successful Regeneration. J Cardiovasc Dev Dis 2021; 8:jcdd8010004. [PMID: 33467137 PMCID: PMC7830602 DOI: 10.3390/jcdd8010004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 01/01/2023] Open
Abstract
The adult human heart cannot repair itself after injury and, instead, forms a permanent fibrotic scar that impairs cardiac function and can lead to incurable heart failure. The zebrafish, amongst other organisms, has been extensively studied for its innate capacity to repair its heart after injury. Understanding the signals that govern successful regeneration in models such as the zebrafish will lead to the development of effective therapies that can stimulate endogenous repair in humans. To date, many studies have investigated cardiac regeneration using a reverse genetics candidate gene approach. However, this approach is limited in its ability to unbiasedly identify novel genes and signalling pathways that are essential to successful regeneration. In contrast, drawing comparisons between different models of regeneration enables unbiased screens to be performed, identifying signals that have not previously been linked to regeneration. Here, we will review in detail what has been learnt from the comparative approach, highlighting the techniques used and how these studies have influenced the field. We will also discuss what further comparisons would enhance our knowledge of successful regeneration and scarring. Finally, we focus on the Astyanax mexicanus, an intraspecies comparative fish model that holds great promise for revealing the secrets of the regenerating heart.
Collapse
|
43
|
Marsay KS, Greaves S, Mahabaleshwar H, Ho CM, Roehl H, Monk PN, Carney TJ, Partridge LJ. Tetraspanin Cd9b and Cxcl12a/Cxcr4b have a synergistic effect on the control of collective cell migration. PLoS One 2021; 16:e0260372. [PMID: 34847198 PMCID: PMC8631670 DOI: 10.1371/journal.pone.0260372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 11/08/2021] [Indexed: 11/30/2022] Open
Abstract
Collective cell migration is essential for embryonic development and homeostatic processes. During zebrafish development, the posterior lateral line primordium (pLLP) navigates along the embryo flank by collective cell migration. The chemokine receptors, Cxcr4b and Cxcr7b, as well as their cognate ligand, Cxcl12a, are essential for this process. We corroborate that knockdown of the zebrafish cd9 tetraspanin orthologue, cd9b, results in mild pLL abnormalities. Through generation of CRISPR and TALEN mutants, we show that cd9a and cd9b function partially redundantly in pLLP migration, which is delayed in the cd9b single and cd9a; cd9b double mutants. This delay led to a transient reduction in neuromast numbers. Loss of both Cd9a and Cd9b sensitized embryos to reduced Cxcr4b and Cxcl12a levels. Together these results provide evidence that Cd9 modulates collective cell migration of the pLLP during zebrafish development. One interpretation of these observations is that Cd9 contributes to more effective chemokine signalling.
Collapse
Affiliation(s)
- Katherine S. Marsay
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
- Department of Infection, Immunity and Cardiovascular Science, University of Sheffield, Sheffield, United Kingdom
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - Sarah Greaves
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Harsha Mahabaleshwar
- Lee Kong Chian School of Medicine, Experimental Medicine Building, Yunnan Garden Campus, Nanyang Technological University, Singapore, Singapore
| | - Charmaine Min Ho
- Lee Kong Chian School of Medicine, Experimental Medicine Building, Yunnan Garden Campus, Nanyang Technological University, Singapore, Singapore
| | - Henry Roehl
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
- * E-mail:
| | - Peter N. Monk
- Department of Infection, Immunity and Cardiovascular Science, University of Sheffield, Sheffield, United Kingdom
| | - Tom J. Carney
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
- Lee Kong Chian School of Medicine, Experimental Medicine Building, Yunnan Garden Campus, Nanyang Technological University, Singapore, Singapore
| | - Lynda J. Partridge
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
44
|
Jung J, Serrano-Rojas SJ, Warkentin KM. Multimodal mechanosensing enables treefrog embryos to escape egg-predators. J Exp Biol 2020; 223:jeb236141. [PMID: 33188064 DOI: 10.1242/jeb.236141] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/03/2020] [Indexed: 01/05/2023]
Abstract
Mechanosensory-cued hatching (MCH) is widespread, diverse and important for survival in many animals. From flatworms and insects to frogs and turtles, embryos use mechanosensory cues and signals to inform hatching timing, yet mechanisms mediating mechanosensing in ovo are largely unknown. The arboreal embryos of red-eyed treefrogs, Agalychnis callidryas, hatch prematurely to escape predation, cued by physical disturbance in snake attacks. When otoconial organs in the developing vestibular system become functional, this response strengthens, but its earlier occurrence indicates another sensor must contribute. Post-hatching, tadpoles use lateral line neuromasts to detect water motion. We ablated neuromast function with gentamicin to assess their role in A. callidryas' hatching response to disturbance. Prior to vestibular function, this nearly eliminated the hatching response to a complex simulated attack cue, egg jiggling, revealing that neuromasts mediate early MCH. Vestibular function onset increased hatching, independent of neuromast function, indicating young embryos use multiple mechanosensory systems. MCH increased developmentally. All older embryos hatched in response to egg jiggling, but neuromast function reduced response latency. In contrast, neuromast ablation had no effect on the timing or level of hatching in motion-only vibration playbacks. It appears only a subset of egg-disturbance cues stimulate neuromasts; thus, embryos in attacked clutches may receive unimodal or multimodal stimuli. Agalychnis callidryas embryos have more neuromasts than described for any other species at hatching, suggesting precocious sensory development may facilitate MCH. Our findings provide insight into the behavioral roles of two mechanosensory systems in ovo and open possibilities for exploring sensory perception across taxa in early life stages.
Collapse
Affiliation(s)
- Julie Jung
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
| | - Shirley J Serrano-Rojas
- Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Panamá, República de Panamá
| | - Karen M Warkentin
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
- Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Panamá, República de Panamá
| |
Collapse
|
45
|
Zhang R, Liu X, Li Y, Wang M, Chen L, Hu B. Suppression of Inflammation Delays Hair Cell Regeneration and Functional Recovery Following Lateral Line Damage in Zebrafish Larvae. Biomolecules 2020; 10:biom10101451. [PMID: 33081293 PMCID: PMC7650643 DOI: 10.3390/biom10101451] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/08/2020] [Accepted: 10/13/2020] [Indexed: 12/18/2022] Open
Abstract
Cochlear hair cells in human beings cannot regenerate after loss; however, those in fish and other lower species can. Recently, the role of inflammation in hair cell regeneration has been attracting the attention of scientists. In the present study, we investigated how suppression of inflammatory factors affects hair cell regeneration and the functional recovery of regenerated hair cells in zebrafish. We killed hair cells in the lateral line of zebrafish larvae with CuSO4 to induce an inflammatory response and coapplied BRS-28, an anti-inflammatory agent to suppress the inflammation. The recovery of the hair cell number and rheotaxis was slower when CuSO4 and BRS-28 were coapplied than when CuSO4 was applied alone. The recovery of hair cell count lagged behind that of the calcium imaging signal during the regeneration. The calcium imaging signal in the neuromasts in the inflammation-inhibited group was weaker than that in the noninflammation-inhibited group at the early stage of regeneration, although it returned to normal at the late stage. Our study demonstrates that suppressing inflammation by BRS-28 delays hair cell regeneration and functional recovery when hair cells are damaged. We suspect that BRS-28 inhibits pro-inflammatory factors and thereby reduces the migration of macrophages to delay the regeneration of hair cells.
Collapse
Affiliation(s)
- Ru Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Biomedical Sciences, University of Science and Technology of China, Hefei 230027, China; (R.Z.); (M.W.)
- Laboratory of Neurodevelopment and Repair, University of Science and Technology of China, Hefei 230027, China;
| | - Xiaopeng Liu
- Center for Hearing and Deafness, State University of New York at Buffalo, Buffalo, NY 14214, USA;
| | - Yajuan Li
- Laboratory of Neurodevelopment and Repair, University of Science and Technology of China, Hefei 230027, China;
| | - Ming Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Biomedical Sciences, University of Science and Technology of China, Hefei 230027, China; (R.Z.); (M.W.)
- Auditory Research Laboratory, University of Science and Technology of China, Hefei 230027, China
| | - Lin Chen
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Biomedical Sciences, University of Science and Technology of China, Hefei 230027, China; (R.Z.); (M.W.)
- Auditory Research Laboratory, University of Science and Technology of China, Hefei 230027, China
- Correspondence: (L.C.); (B.H.); Tel.: +86-(551)-6360-7623 (L.C.); +86 (551)-6360-2489 (B.H.)
| | - Bing Hu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Biomedical Sciences, University of Science and Technology of China, Hefei 230027, China; (R.Z.); (M.W.)
- Laboratory of Neurodevelopment and Repair, University of Science and Technology of China, Hefei 230027, China;
- Correspondence: (L.C.); (B.H.); Tel.: +86-(551)-6360-7623 (L.C.); +86 (551)-6360-2489 (B.H.)
| |
Collapse
|
46
|
Iwasaki M, Yokoi H, Suzuki T, Kawakami K, Wada H. Development of the anterior lateral line system through local tissue-tissue interactions in the zebrafish head. Dev Dyn 2020; 249:1440-1454. [PMID: 32658373 DOI: 10.1002/dvdy.225] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/07/2020] [Accepted: 07/07/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The distribution of sensory organs is important for detecting environmental signals efficiently. The mechanosensory receptors of the lateral line system, neuromasts, are stereotypically distributed over the head and body surface of fish, although how neuromasts arise in these predetermined positions during development remains unclear. RESULTS We investigated the development of the anterior lateral line (ALL) system in zebrafish head. The ALL neuromasts formed in the predetermined positions through proliferation and differentiation of (a) nonmigratory lateral line primordia, (b) migratory primordia, (c) interneuromast cells connecting preexisting neuromasts, and (d) budding primordia. We demonstrated that R-spondin2 (Rspo2), an activator of Wnt/β-catenin signaling, is required for the development of a particular set of neuromasts associated with hyomandibular cartilage. Further genetic analyses suggested that Rspo2, which emanates from the hyoid mesenchyme, acts on the adjacent neuromast progenitor cells to stimulate their proliferation through activating Wnt/β-catenin signaling. CONCLUSION This study has revealed novel mechanisms for neuromast positioning through local tissue-tissue interactions, providing insights into the development and evolution of the vertebrate head.
Collapse
Affiliation(s)
- Miki Iwasaki
- College of Liberal Arts and Sciences, Kitasato University, Sagamihara, Japan
| | - Hayato Yokoi
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Tohru Suzuki
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Koichi Kawakami
- National Institute of Genetics, The Graduate University for Advanced Studies (SOKENDAI), Mishima, Japan
| | - Hironori Wada
- College of Liberal Arts and Sciences, Kitasato University, Sagamihara, Japan
| |
Collapse
|
47
|
Expression patterns of activating transcription factor 5 (atf5a and atf5b) in zebrafish. Gene Expr Patterns 2020; 37:119126. [PMID: 32663618 DOI: 10.1016/j.gep.2020.119126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 07/07/2020] [Accepted: 07/07/2020] [Indexed: 11/20/2022]
Abstract
The Activating Transcription Factor 5 (ATF5) is a basic leucine-zipper (bZIP) transcription factor (TF) with proposed stress-protective, anti-apoptotic and oncogenic roles which were all established in cell systems. In whole animals, Atf5 function seems highly context dependent. Atf5 is strongly expressed in the rodent nose and mice knockout (KO) pups have defective olfactory sensory neurons (OSNs), smaller olfactory bulbs (OB), while adults are smell deficient. It was therefore proposed that Atf5 plays an important role in maturation and maintenance of OSNs. Atf5 expression was also described in murine liver and bones where it appears to promote differentiation of progenitor cells. By contrast in the rodent brain, Atf5 was first described as uniquely expressed in neuroprogenitors and thus, proposed to drive their proliferation and inhibit their differentiation. However, it was later also found in mature neurons stressing the need for additional work in whole animals. ATF5 is well conserved with two paralogs, atf5a and atf5b in zebrafish. Here, we present the expression patterns for both from 6 h (hpf) to 5day post-fertilization (dpf). We found early expression for both genes, and from 1dpf onwards overlapping expression patterns in the inner ear and the developing liver. In the brain, at 24hpf both atf5a and atf5b were expressed in the forebrain, midbrain, and hindbrain. However, from 2dpf and onwards we only detected atf5a expression namely in the olfactory bulbs, the mesencephalon, and the metencephalon. We further evidenced additional differential expression for atf5a in the sensory neurons of the olfactory organs, and for atf5b in the neuromasts, that form the superficial sensory organ called the lateral line (LL). Our results establish the basis for future functional analyses in this lower vertebrate.
Collapse
|
48
|
Davis SN, Wu P, Camci ED, Simon JA, Rubel EW, Raible DW. Chloroquine kills hair cells in zebrafish lateral line and murine cochlear cultures: Implications for ototoxicity. Hear Res 2020; 395:108019. [PMID: 32768772 PMCID: PMC7345387 DOI: 10.1016/j.heares.2020.108019] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/08/2020] [Accepted: 06/10/2020] [Indexed: 02/09/2023]
Abstract
Hearing and balance deficits have been reported during and following treatment with the antimalarial drug chloroquine. However, experimental work examining the direct actions of chloroquine on mechanoreceptive hair cells in common experimental models is lacking. This study examines the effects of chloroquine on hair cells using two common experimental models: the zebrafish lateral line and neonatal mouse cochlear cultures. Zebrafish larvae were exposed to varying concentrations of chloroquine phosphate or hydroxychloroquine for 1 h or 24 h, and hair cells assessed by antibody staining. A significant, dose-dependent reduction in the number of surviving hair cells was seen across conditions for both exposure periods. Hydroxychloroquine showed similar toxicity. In mouse cochlear cultures, chloroquine damage was specific to outer hair cells in tissue from the cochlear basal turn, consistent with susceptibility to other ototoxic agents. These findings suggest a need for future studies employing hearing and balance monitoring during exposure to chloroquine and related compounds, particularly with interest in these compounds as therapeutics against viral infections including coronavirus.
Collapse
Affiliation(s)
- Samantha N Davis
- Virginial Merrill Bloedel Hearing Research Center, University of Washington, Seattle, WA, USA; Department of Speech and Hearing Sciences, University of Washington, Seattle, WA, USA
| | - Patricia Wu
- Virginial Merrill Bloedel Hearing Research Center, University of Washington, Seattle, WA, USA; Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Esra D Camci
- Virginial Merrill Bloedel Hearing Research Center, University of Washington, Seattle, WA, USA; Department of Otolaryngology - Head and Neck Surgery, University of Washington, Seattle, WA, USA
| | - Julian A Simon
- Virginial Merrill Bloedel Hearing Research Center, University of Washington, Seattle, WA, USA; Fred Hutch Cancer Research Center, Seattle, WA, USA
| | - Edwin W Rubel
- Virginial Merrill Bloedel Hearing Research Center, University of Washington, Seattle, WA, USA
| | - David W Raible
- Virginial Merrill Bloedel Hearing Research Center, University of Washington, Seattle, WA, USA; Department of Biological Structure, University of Washington, Seattle, WA, USA.
| |
Collapse
|
49
|
Dalle Nogare D, Chitnis AB. NetLogo agent-based models as tools for understanding the self-organization of cell fate, morphogenesis and collective migration of the zebrafish posterior Lateral Line primordium. Semin Cell Dev Biol 2019; 100:186-198. [PMID: 31901312 DOI: 10.1016/j.semcdb.2019.12.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 12/20/2019] [Accepted: 12/21/2019] [Indexed: 01/25/2023]
Abstract
Interactions between primordium cells and their environment determines the self-organization of the zebrafish posterior Lateral Line primordium as it migrates under the skin from the ear to the tip of the tail forming and depositing neuromasts to spearhead formation of the posterior Lateral Line sensory system. In this review we describe how the NetLogo agent-based programming environment has been used in our lab to visualize and explore how self-generated chemokine gradients determine collective migration, how the dynamics of Wnt signaling can be used to predict patterns of neuromast deposition, and how previously defined interactions between Wnt and Fgf signaling systems have the potential to determine the periodic formation of center-biased Fgf signaling centers in the wake of a shrinking Wnt system. We also describe how NetLogo was used as a database for storing and visualizing the results of in toto lineage analysis of all cells in the migrating primordium. Together, the models illustrate how this programming environment can be used in diverse ways to integrate what has been learnt from biological experiments about the nature of interactions between cells and their environment, and explore how these interactions could potentially determine emergent patterns of cell fate specification, morphogenesis and collective migration of the zebrafish posterior Lateral Line primordium.
Collapse
Affiliation(s)
- Damian Dalle Nogare
- Section on Neural Developmental Dynamics, Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD USA
| | - Ajay B Chitnis
- Section on Neural Developmental Dynamics, Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD USA.
| |
Collapse
|
50
|
Rissone A, Jimenez E, Bishop K, Carrington B, Slevin C, Wincovitch SM, Sood R, Candotti F, Burgess SM. A model for reticular dysgenesis shows impaired sensory organ development and hair cell regeneration linked to cellular stress. Dis Model Mech 2019; 12:dmm040170. [PMID: 31727854 PMCID: PMC6955229 DOI: 10.1242/dmm.040170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 11/05/2019] [Indexed: 12/14/2022] Open
Abstract
Mutations in the gene AK2 are responsible for reticular dysgenesis (RD), a rare and severe form of primary immunodeficiency in children. RD patients have a severely shortened life expectancy and without treatment die, generally from sepsis soon after birth. The only available therapeutic option for RD is hematopoietic stem cell transplantation (HSCT). To gain insight into the pathophysiology of RD, we previously created zebrafish models for Ak2 deficiencies. One of the clinical features of RD is hearing loss, but its pathophysiology and causes have not been determined. In adult mammals, sensory hair cells of the inner ear do not regenerate; however, their regeneration has been observed in several non-mammalian vertebrates, including zebrafish. Therefore, we used our RD zebrafish models to determine whether Ak2 deficiency affects sensory organ development and/or hair cell regeneration. Our studies indicated that Ak2 is required for the correct development, survival and regeneration of sensory hair cells. Interestingly, Ak2 deficiency induces the expression of several oxidative stress markers and it triggers an increased level of cell death in the hair cells. Finally, we show that glutathione treatment can partially rescue hair cell development in the sensory organs in our RD models, pointing to the potential use of antioxidants as a therapeutic treatment supplementing HSCT to prevent or ameliorate sensorineural hearing deficits in RD patients.
Collapse
Affiliation(s)
- Alberto Rissone
- Translational and Functional Genomics Branch, National Human Genome Research Institute (NHGRI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Erin Jimenez
- Translational and Functional Genomics Branch, National Human Genome Research Institute (NHGRI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Kevin Bishop
- NHGRI Zebrafish Core, Translational and Functional Genomics Branch, NHGRI, NIH, Bethesda, MD, USA
| | - Blake Carrington
- NHGRI Zebrafish Core, Translational and Functional Genomics Branch, NHGRI, NIH, Bethesda, MD, USA
| | - Claire Slevin
- Translational and Functional Genomics Branch, National Human Genome Research Institute (NHGRI), National Institutes of Health (NIH), Bethesda, MD, USA
| | | | - Raman Sood
- Translational and Functional Genomics Branch, National Human Genome Research Institute (NHGRI), National Institutes of Health (NIH), Bethesda, MD, USA
- NHGRI Zebrafish Core, Translational and Functional Genomics Branch, NHGRI, NIH, Bethesda, MD, USA
| | - Fabio Candotti
- Division of Immunology and Allergy, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Shawn M Burgess
- Translational and Functional Genomics Branch, National Human Genome Research Institute (NHGRI), National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|