1
|
Naffaa MM. Neurogenesis dynamics in the olfactory bulb: deciphering circuitry organization, function, and adaptive plasticity. Neural Regen Res 2025; 20:1565-1581. [PMID: 38934393 PMCID: PMC11688548 DOI: 10.4103/nrr.nrr-d-24-00312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/20/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Adult neurogenesis persists after birth in the subventricular zone, with new neurons migrating to the granule cell layer and glomerular layers of the olfactory bulb, where they integrate into existing circuitry as inhibitory interneurons. The generation of these new neurons in the olfactory bulb supports both structural and functional plasticity, aiding in circuit remodeling triggered by memory and learning processes. However, the presence of these neurons, coupled with the cellular diversity within the olfactory bulb, presents an ongoing challenge in understanding its network organization and function. Moreover, the continuous integration of new neurons in the olfactory bulb plays a pivotal role in regulating olfactory information processing. This adaptive process responds to changes in epithelial composition and contributes to the formation of olfactory memories by modulating cellular connectivity within the olfactory bulb and interacting intricately with higher-order brain regions. The role of adult neurogenesis in olfactory bulb functions remains a topic of debate. Nevertheless, the functionality of the olfactory bulb is intricately linked to the organization of granule cells around mitral and tufted cells. This organizational pattern significantly impacts output, network behavior, and synaptic plasticity, which are crucial for olfactory perception and memory. Additionally, this organization is further shaped by axon terminals originating from cortical and subcortical regions. Despite the crucial role of olfactory bulb in brain functions and behaviors related to olfaction, these complex and highly interconnected processes have not been comprehensively studied as a whole. Therefore, this manuscript aims to discuss our current understanding and explore how neural plasticity and olfactory neurogenesis contribute to enhancing the adaptability of the olfactory system. These mechanisms are thought to support olfactory learning and memory, potentially through increased complexity and restructuring of neural network structures, as well as the addition of new granule granule cells that aid in olfactory adaptation. Additionally, the manuscript underscores the importance of employing precise methodologies to elucidate the specific roles of adult neurogenesis amidst conflicting data and varying experimental paradigms. Understanding these processes is essential for gaining insights into the complexities of olfactory function and behavior.
Collapse
Affiliation(s)
- Moawiah M. Naffaa
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
2
|
Zhang Y, Cao L, Yan H, Luo Z, Chen C, Shangguan Z, Li Q, Shi X, Yang L, Tan W, Yang S, Fu J, Wang C, Dou X, Li Q. Pkd2l1 deletion inhibits the neurogenesis of cerebrospinal fluid-contacting neurons and impedes spinal cord injury repair. Cell Death Discov 2025; 11:194. [PMID: 40268899 PMCID: PMC12019451 DOI: 10.1038/s41420-025-02492-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 04/08/2025] [Accepted: 04/11/2025] [Indexed: 04/25/2025] Open
Abstract
Adult neural stem cells (NSCs) offer a promising avenue for restoring spinal cord injury (SCI). However, their precise identity in the mammalian spinal cord remains unclear. Our previous research demonstrated that Pkd2l1-positive cerebrospinal fluid-contacting neurons (CSF-cNs) possess the NSC properties. Furthermore, understanding the role and molecular mechanisms of CSF-cNs as endogenous NSCs in spinal cord repair is crucial for developing effective treatments. This study utilizes a Pkd2l1-/- transgenic mouse model to investigate the role of CSF-cNs in SCI repair. We found that the CSF-cN population was almost absent in Pkd2l1-/- mice. Following SCI, these mice exhibited a significant reduction in the number of NSCs surrounding the central canal. Notably, Pkd2l1-/- mice showed impaired neuronal regeneration and compromised motor function recovery post-SCI. These findings highlight the potential importance of Pkd2l1 as a target for treating SCI by focusing on endogenous NSCs.
Collapse
Affiliation(s)
- Yi Zhang
- Emergency Department, Emergency Medicine Laboratory, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
- Shunyi Maternal and Children's Hospital of Beijing Children's Hospital, Beijing, China
| | - Liang Cao
- Emergency Department, Emergency Medicine Laboratory, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Haijian Yan
- Emergency Department, Emergency Medicine Laboratory, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Zhangrong Luo
- Emergency Department, Emergency Medicine Laboratory, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Chanjuan Chen
- Emergency Department, Emergency Medicine Laboratory, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Zeyu Shangguan
- Emergency Department, Emergency Medicine Laboratory, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Qizhe Li
- Emergency Department, Emergency Medicine Laboratory, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Xuexing Shi
- Emergency Department, Emergency Medicine Laboratory, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Leiluo Yang
- Emergency Department, Emergency Medicine Laboratory, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Wei Tan
- Emergency Department, Emergency Medicine Laboratory, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Shengxin Yang
- Emergency Department, Emergency Medicine Laboratory, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jiangquan Fu
- Emergency Department, Emergency Medicine Laboratory, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Chunqing Wang
- Emergency Department, Emergency Medicine Laboratory, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xiaowei Dou
- Clinical Research Center, Affiliated Hospital of Guizhou Medical University, Guiyang, China.
| | - Qing Li
- Emergency Department, Emergency Medicine Laboratory, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.
| |
Collapse
|
3
|
Cebrian-Silla A, Nascimento MA, Mancia W, Gonzalez-Granero S, Romero-Rodriguez R, Obernier K, Steffen DM, Lim DA, Garcia-Verdugo JM, Alvarez-Buylla A. Neural stem cell relay from B1 to B2 cells in the adult mouse ventricular-subventricular zone. Cell Rep 2025; 44:115264. [PMID: 40019835 PMCID: PMC11979704 DOI: 10.1016/j.celrep.2025.115264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/27/2024] [Accepted: 01/13/2025] [Indexed: 03/05/2025] Open
Abstract
Neurogenesis and gliogenesis continue in the ventricular-subventricular zone (V-SVZ) of the adult rodent brain. V-SVZ astroglial cells with apical contact with the ventricle (B1 cells) function as neural stem cells (NSCs). B1 cells sharply decline during early postnatal life; in contrast, neurogenesis decreases at a slower rate. Here, we show that a second population of astroglia (B2 cells) that do not contact the ventricle also function as NSCs in the adult mouse brain. B2 cell numbers increase postnatally, are sustained in adults, and decrease with aging. We reveal the transcriptomic profile of B1 and B2 cells and show that, like B1 cells, B2 cells can be quiescent or activated. Transplantation and lineage tracing of B2 cells demonstrate their function as primary progenitors for adult neurogenesis. This study reveals that NSC function is progressively relayed from B1 to B2 progenitors helping explain how neurogenesis is maintained into adult life.
Collapse
Affiliation(s)
- Arantxa Cebrian-Silla
- Eli and Edythe Broad Institute for Stem Cell Research and Regeneration Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA.
| | - Marcos Assis Nascimento
- Eli and Edythe Broad Institute for Stem Cell Research and Regeneration Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Walter Mancia
- Eli and Edythe Broad Institute for Stem Cell Research and Regeneration Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Susana Gonzalez-Granero
- BTELab, Research Foundation of the General University Hospital of Valencia, Valencia 46014, Spain
| | - Ricardo Romero-Rodriguez
- Eli and Edythe Broad Institute for Stem Cell Research and Regeneration Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Kirsten Obernier
- Quantitative Biosciences Institute, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - David M Steffen
- Eli and Edythe Broad Institute for Stem Cell Research and Regeneration Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Daniel A Lim
- Eli and Edythe Broad Institute for Stem Cell Research and Regeneration Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jose Manuel Garcia-Verdugo
- Laboratory of Comparative Neurobiology, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia and CIBERNED-ISCIII, Paterna, 46980 Valencia, Spain
| | - Arturo Alvarez-Buylla
- Eli and Edythe Broad Institute for Stem Cell Research and Regeneration Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
4
|
Spence NJ, Martin-Lopez E, Han K, Lefèvre M, Lange NW, Brennan B, Greer CA. Olfactory bulb interneurons - The developmental timeline and targeting defined by embryonic neurogenesis. Mol Cell Neurosci 2025; 133:104007. [PMID: 40122272 DOI: 10.1016/j.mcn.2025.104007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/18/2025] [Accepted: 03/19/2025] [Indexed: 03/25/2025] Open
Abstract
The generation of mouse olfactory bulb (OB) interneurons (INs) is initiated in the embryo but continues throughout life. It is generally agreed that OB INs generated postnatally affect the connectivity of the OB, depending on the timeline of neurogenesis. Here, we focused on OB INs generated embryonically, which have generally received less attention than those generated in the adult. Birthdates of embryonic INs were differentiated by maternal injections of thymidine analogs and their final destinations and phenotypes in the OB analyzed by immunohistochemistry. We found that the first embryonic INs were generated at embryonic day 10 (E10) and continued through the entire embryonic development. Analysis in adult tissues showed that embryonic INs were retained and were distributed across all layers of the OB. Interestingly, an initial lateral preference in cell density was seen in INs generated during E11-E13. Although INs are broadly distributed in the OB, we found that within the granule cell layer (GCL), OB INs distributed mostly in the superficial GCL. Immunostaining for calbindin, parvalbumin, tyrosine hydroxylase, 5T4 and calretinin were lacking co-expression with thymidine analogs labeled cells, suggesting that maturation of embryonic INs occurred slowly following birth. We studied the embryonic neuroblasts migration and differentiation by labeling IN progenitor cells in the lateral ganglionic eminence using in utero electroporation. We found that IN neuroblasts reached the primordial OB as early as E13 and began to differentiate apical dendrites by E15, which extended into the developing external plexiform layer. We established E16 as the embryonic stage at which the prototypical chain of migrating neuroblasts denoting the embryonic rostral migratory stream (RMS) was visible. Collectively, our data highlight the importance of studying OB INs in isolated time windows to better understand the formation of circuits that define the olfactory system function.
Collapse
Affiliation(s)
- Natalie J Spence
- Department of Neurosurgery, Yale University School of Medicine, 310 Cedar St., New Haven, CT 06510, United States of America; Department of Neuroscience, Yale University School of Medicine, 100 College Street, New Haven, CT 06520, United States of America
| | - Eduardo Martin-Lopez
- Department of Neurosurgery, Yale University School of Medicine, 310 Cedar St., New Haven, CT 06510, United States of America; Department of Neuroscience, Yale University School of Medicine, 100 College Street, New Haven, CT 06520, United States of America
| | - Kimberly Han
- Department of Neurosurgery, Yale University School of Medicine, 310 Cedar St., New Haven, CT 06510, United States of America; Department of Neuroscience, Yale University School of Medicine, 100 College Street, New Haven, CT 06520, United States of America
| | - Marion Lefèvre
- Department of Neurosurgery, Yale University School of Medicine, 310 Cedar St., New Haven, CT 06510, United States of America; Department of Neuroscience, Yale University School of Medicine, 100 College Street, New Haven, CT 06520, United States of America
| | - Nathaniel W Lange
- Department of Neurosurgery, Yale University School of Medicine, 310 Cedar St., New Haven, CT 06510, United States of America; Department of Neuroscience, Yale University School of Medicine, 100 College Street, New Haven, CT 06520, United States of America
| | - Bowen Brennan
- Department of Neurosurgery, Yale University School of Medicine, 310 Cedar St., New Haven, CT 06510, United States of America; Department of Neuroscience, Yale University School of Medicine, 100 College Street, New Haven, CT 06520, United States of America
| | - Charles A Greer
- Department of Neurosurgery, Yale University School of Medicine, 310 Cedar St., New Haven, CT 06510, United States of America; Department of Neuroscience, Yale University School of Medicine, 100 College Street, New Haven, CT 06520, United States of America; Interdepartmental Neuroscience Program, Yale University School of Medicine, 315 Cedar St., New Haven, CT 06510, United States of America.
| |
Collapse
|
5
|
Luo Z, Shangguan Z, Cao L, Zhang Y, Li Q, Shi X, Fu J, Wang C, Dou X, Tan W, Li Q. Cerebrospinal fluid-contacting neurons: a promising source for adult neural stem cell transplantation in spinal cord injury treatment. Front Cell Dev Biol 2025; 13:1549194. [PMID: 40143967 PMCID: PMC11936957 DOI: 10.3389/fcell.2025.1549194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/14/2025] [Indexed: 03/28/2025] Open
Abstract
Transplantation of adult neural stem cells (NSCs) is regarded as one of the most promising approaches for treating spinal cord injury (SCI). However, securing a sufficient and reliable source of adult NSCs remains one of the primary challenges in applying this method for SCI treatment. Cerebrospinal fluid-contacting neurons (CSF-cNs) act as adult NSCs and can be substantially expanded in vitro while maintaining their NSC characteristics even after 60 passages. When CSF-cNs are transplanted into the injury sites of SCI mice, they demonstrate high survival rates along with the ability to proliferate and differentiate into neurons, astrocytes, and oligodendrocytes. Additionally, significant improvements in motor function have been observed in SCI mice following the transplantation of CSF-cNs. These results suggest that CSF-cNs may represent a promising source of adult NSCs for transplantation therapy in SCI.
Collapse
Affiliation(s)
- Zhangrong Luo
- Department of Emergency, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Department of Traumatic Orthopedics, The Affiliated Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Zeyu Shangguan
- Department of Emergency, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Liang Cao
- Department of Emergency, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Yi Zhang
- Department of Emergency, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Qizhe Li
- Department of Emergency, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Xuexing Shi
- Department of Emergency, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Jiangquan Fu
- Department of Emergency, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Chunqing Wang
- Department of Emergency, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xiaowei Dou
- Clinical Research Center, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Wei Tan
- Department of Emergency, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Qing Li
- Department of Emergency, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
6
|
Apostolou S, Donega V. Embracing the heterogeneity of neural stem cells in the subventricular zone. Stem Cell Reports 2025:102452. [PMID: 40118056 DOI: 10.1016/j.stemcr.2025.102452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/23/2025] Open
Abstract
Neural stem cells (NSCs) of the subventricular zone (SVZ) could be a potential source for brain repair. These are heterogeneous cells with distinct activation states. To identify NSCs in the SVZ, different markers are used, including Gfap, Nestin, and Sox2. A comparison of these different methods to assess if the NSC marker used is selective toward specific NSC states is currently lacking. Here, we integrated six previously published single-cell RNA sequencing datasets from the adult mouse SVZ, where different methods were used to identify NSCs. Our data show that the approach used to isolate NSCs favors certain cell states over others. Our analyses underscore the importance of enriching for the NSC population of interest to increase data granularity. We also observed that cells with lower gene expression can be assigned incorrectly to clusters. We provide a framework for choosing the most optimal approach to enrich for NSC states of interest.
Collapse
Affiliation(s)
- Stefania Apostolou
- Amsterdam UMC location Vrije Universiteit Amsterdam, department of Anatomy and Neurosciences, De Boelelaan 1117, Amsterdam, the Netherlands
| | - Vanessa Donega
- Amsterdam UMC location Vrije Universiteit Amsterdam, department of Anatomy and Neurosciences, De Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam Neuroscience, Cellular and Molecular Mechanisms, Amsterdam, the Netherlands.
| |
Collapse
|
7
|
Liang Z, Jin N, Guo W. Neural stem cell heterogeneity in adult hippocampus. CELL REGENERATION (LONDON, ENGLAND) 2025; 14:6. [PMID: 40053275 DOI: 10.1186/s13619-025-00222-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/07/2025] [Accepted: 02/11/2025] [Indexed: 03/10/2025]
Abstract
Adult neurogenesis is a unique cellular process of the ongoing generation of new neurons throughout life, which primarily occurs in the subgranular zone (SGZ) of the dentate gyrus (DG) and the subventricular zone (SVZ) of the lateral ventricle. In the adult DG, newly generated granule cells from neural stem cells (NSCs) integrate into existing neural circuits, significantly contributing to cognitive functions, particularly learning and memory. Recently, more and more studies have shown that rather than being a homogeneous population of identical cells, adult NSCs are composed of multiple subpopulations that differ in their morphology and function. In this study, we provide an overview of the origin, regional characteristics, prototypical morphology, and molecular factors that contribute to NSC heterogeneity. In particular, we discuss the molecular mechanisms underlying the balance between activation and quiescence of NSCs. In summary, this review highlights that deciphering NSC heterogeneity in the adult brain is a challenging but critical step in advancing our understanding of tissue-specific stem cells and the process of neurogenesis in the adult brain.
Collapse
Affiliation(s)
- Ziqi Liang
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100093, China
| | - Nuomeng Jin
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100093, China
| | - Weixiang Guo
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100093, China.
| |
Collapse
|
8
|
Huang LY, Zhang YD, Chen J, Fan HD, Wang W, Wang B, Ma JY, Li PP, Pu HW, Guo XY, Shen JG, Qi SH. Maintaining moderate levels of hypochlorous acid promotes neural stem cell proliferation and differentiation in the recovery phase of stroke. Neural Regen Res 2025; 20:845-857. [PMID: 38886957 PMCID: PMC11433893 DOI: 10.4103/1673-5374.392889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/17/2023] [Accepted: 11/23/2023] [Indexed: 06/20/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202503000-00029/figure1/v/2024-06-17T092413Z/r/image-tiff It has been shown clinically that continuous removal of ischemia/reperfusion-induced reactive oxygen species is not conducive to the recovery of late stroke. Indeed, previous studies have shown that excessive increases in hypochlorous acid after stroke can cause severe damage to brain tissue. Our previous studies have found that a small amount of hypochlorous acid still exists in the later stage of stroke, but its specific role and mechanism are currently unclear. To simulate stroke in vivo, a middle cerebral artery occlusion rat model was established, with an oxygen-glucose deprivation/reoxygenation model established in vitro to mimic stroke. We found that in the early stage (within 24 hours) of ischemic stroke, neutrophils produced a large amount of hypochlorous acid, while in the recovery phase (10 days after stroke), microglia were activated and produced a small amount of hypochlorous acid. Further, in acute stroke in rats, hypochlorous acid production was prevented using a hypochlorous acid scavenger, taurine, or myeloperoxidase inhibitor, 4-aminobenzoic acid hydrazide. Our results showed that high levels of hypochlorous acid (200 μM) induced neuronal apoptosis after oxygen/glucose deprivation/reoxygenation. However, in the recovery phase of the middle cerebral artery occlusion model, a moderate level of hypochlorous acid promoted the proliferation and differentiation of neural stem cells into neurons and astrocytes. This suggests that hypochlorous acid plays different roles at different phases of cerebral ischemia/reperfusion injury. Lower levels of hypochlorous acid (5 and 100 μM) promoted nuclear translocation of β-catenin. By transfection of single-site mutation plasmids, we found that hypochlorous acid induced chlorination of the β-catenin tyrosine 30 residue, which promoted nuclear translocation. Altogether, our study indicates that maintaining low levels of hypochlorous acid plays a key role in the recovery of neurological function.
Collapse
Affiliation(s)
- Lin-Yan Huang
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Yi-De Zhang
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Jie Chen
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Hai-Di Fan
- School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
- Department of Laboratory Medicine, Branch Hospital of Huai’an First People’s Hospital, Huai’an, Jiangsu Province, China
| | - Wan Wang
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Bin Wang
- Department of Laboratory Medicine, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Ju-Yun Ma
- School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Peng-Peng Li
- Department of Laboratory Medicine, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Hai-Wei Pu
- Department of Laboratory Medicine, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Xin-Yian Guo
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Jian-Gang Shen
- School of Chinese Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Su-Hua Qi
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
- School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| |
Collapse
|
9
|
Ivanov MN, Stoyanov DS, Veleva LV, Mladenov AM, Pavlov SP, Yamashima T, Tonchev AB. TNC and GJA1 Are Putative Progenitor Markers That Are Localized in the Perivascular Adventitia of the Adult Monkey Brain Subventricular Niche. Int J Mol Sci 2025; 26:1397. [PMID: 40003865 PMCID: PMC11855557 DOI: 10.3390/ijms26041397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/23/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
The largest area in the adult mammalian brain that contains stem and progenitor cells at different stages of differentiation is the subventricular zone located along the lateral wall of the lateral ventricle. We have previously shown in adult monkeys that transient global cerebral ischemia upregulates the expression of hundreds of genes in this zone, including genes known to be related to stemness in the rodent brain. Here, we analyzed the immunophenotype of two of these genes, TNC and GJA1, by co-expression experiments, applying a panel of known stem/progenitor-cell-related markers. We found that both TNC and GJA1 were expressed in the perivascular region. They were localized not to the endothelial cells but to the periendothelial adventitial cells, which was consistent with our previous electron-microscopic data suggesting periendothelial cells as a source of progenitors. We report that the expression of GJA1 was high in quiescent progenitors, while TNC was mostly present in progenitors in the transition from a quiescent to an active state. Our data suggest that TNC and GJA1 can be used as markers for stem/progenitor cells in the largest stem cell area of the adult primate brain.
Collapse
Affiliation(s)
- Martin N. Ivanov
- Department of Anatomy and Cell Biology, Faculty of Medicine, Medical University, 9000 Varna, Bulgaria; (D.S.S.); (L.V.V.); (A.M.M.); (S.P.P.)
- Department of Stem Cell Biology, Research Institute, Medical University, 9000 Varna, Bulgaria
| | - Dimo S. Stoyanov
- Department of Anatomy and Cell Biology, Faculty of Medicine, Medical University, 9000 Varna, Bulgaria; (D.S.S.); (L.V.V.); (A.M.M.); (S.P.P.)
| | - Lora V. Veleva
- Department of Anatomy and Cell Biology, Faculty of Medicine, Medical University, 9000 Varna, Bulgaria; (D.S.S.); (L.V.V.); (A.M.M.); (S.P.P.)
| | - Andon M. Mladenov
- Department of Anatomy and Cell Biology, Faculty of Medicine, Medical University, 9000 Varna, Bulgaria; (D.S.S.); (L.V.V.); (A.M.M.); (S.P.P.)
| | - Stoyan P. Pavlov
- Department of Anatomy and Cell Biology, Faculty of Medicine, Medical University, 9000 Varna, Bulgaria; (D.S.S.); (L.V.V.); (A.M.M.); (S.P.P.)
| | - Tetsumori Yamashima
- Department of Neurosurgery, Division of Neuroscience, Kanazawa University Graduate School of Medical Science, Kanazawa 920-8641, Japan;
| | - Anton B. Tonchev
- Department of Anatomy and Cell Biology, Faculty of Medicine, Medical University, 9000 Varna, Bulgaria; (D.S.S.); (L.V.V.); (A.M.M.); (S.P.P.)
- Department of Stem Cell Biology, Research Institute, Medical University, 9000 Varna, Bulgaria
| |
Collapse
|
10
|
Willis A, Jeong D, Liu Y, Lithopoulos MA, Yuzwa SA, Frankland PW, Kaplan DR, Miller FD. Single cell approaches define neural stem cell niches and identify microglial ligands that can enhance precursor-mediated oligodendrogenesis. Cell Rep 2025; 44:115194. [PMID: 39823226 DOI: 10.1016/j.celrep.2024.115194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/24/2024] [Accepted: 12/19/2024] [Indexed: 01/19/2025] Open
Abstract
Here, we used single cell RNA sequencing and single cell spatial transcriptomics to characterize the forebrain neural stem cell (NSC) niche under homeostatic and injury conditions. We defined the dorsal and lateral ventricular-subventricular zones (V-SVZs) as two distinct neighborhoods and showed that, after white matter injury, NSCs are activated to make oligodendrocytes dorsally for remyelination. This activation is coincident with an increase in transcriptionally distinct microglia in the dorsal V-SVZ niche. We modeled ligand-receptor interactions within this changing niche and identified two remyelination-associated microglial ligands, insulin growth factor 1 and oncostatin M, that promote precursor proliferation and oligodendrogenesis in culture. Infusion of either ligand into the lateral ventricles also enhanced oligodendrogenesis, even in the lateral V-SVZ, where NSCs normally make neuroblasts. These data support a model where gliogenesis versus neurogenesis is determined by the local NSC neighborhood and where injury-induced niche alterations promote NSC activation, local oligodendrogenesis, and likely contribute to myelin repair.
Collapse
Affiliation(s)
- Ashleigh Willis
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Danielle Jeong
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Yunlong Liu
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Marissa A Lithopoulos
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Scott A Yuzwa
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Paul W Frankland
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Psychology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - David R Kaplan
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Freda D Miller
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
11
|
Sun ED, Nagvekar R, Pogson AN, Brunet A. Brain aging and rejuvenation at single-cell resolution. Neuron 2025; 113:82-108. [PMID: 39788089 PMCID: PMC11842159 DOI: 10.1016/j.neuron.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/16/2024] [Accepted: 12/06/2024] [Indexed: 01/12/2025]
Abstract
Brain aging leads to a decline in cognitive function and a concomitant increase in the susceptibility to neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. A key question is how changes within individual cells of the brain give rise to age-related dysfunction. Developments in single-cell "omics" technologies, such as single-cell transcriptomics, have facilitated high-dimensional profiling of individual cells. These technologies have led to new and comprehensive characterizations of brain aging at single-cell resolution. Here, we review insights gleaned from single-cell omics studies of brain aging, starting with a cell-type-centric overview of age-associated changes and followed by a discussion of cell-cell interactions during aging. We highlight how single-cell omics studies provide an unbiased view of different rejuvenation interventions and comment on the promise of combinatorial rejuvenation approaches for the brain. Finally, we propose new directions, including models of brain aging and neural stem cells as a focal point for rejuvenation.
Collapse
Affiliation(s)
- Eric D Sun
- Department of Genetics, Stanford University, Stanford, CA, USA; Department of Biomedical Data Science, Stanford University, Stanford, CA, USA; Biomedical Informatics Graduate Program, Stanford University, Stanford, CA, USA
| | - Rahul Nagvekar
- Department of Genetics, Stanford University, Stanford, CA, USA; Genetics Graduate Program, Stanford University, Stanford, CA, USA
| | - Angela N Pogson
- Department of Genetics, Stanford University, Stanford, CA, USA; Developmental Biology Graduate Program, Stanford University, Stanford, CA, USA
| | - Anne Brunet
- Department of Genetics, Stanford University, Stanford, CA, USA; Glenn Center for the Biology of Aging, Stanford University, Stanford, CA, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
12
|
Dittmann NL, Chen L, Voronova A. Regulation of neural stem cells by innervating neurons. J Neurochem 2025; 169:e16287. [PMID: 39775528 PMCID: PMC11707326 DOI: 10.1111/jnc.16287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 01/11/2025]
Abstract
The adult central nervous system (CNS) hosts several niches, in which the neural stem and precursor cells (NPCs) reside. The subventricular zone (SVZ) lines the lateral brain ventricles and the subgranular zone (SGZ) is located in the dentate gyrus of the hippocampus. SVZ and SGZ NPCs replace neurons and glia in the homeostatic as well as diseased or injured states. Recently, NPCs have been found to express neurotransmitter receptors, respond to electrical stimulation and interact with neurons, suggesting that neuron-NPC communication is an emerging critical regulator of NPC biology. In this review, we discuss reports that demonstrate neuronal innervation and control of the neurogenic niches. We discuss the role of innervating neurons in regulating NPC fates, such as activation, proliferation, and differentiation. Our review focuses primarily on the innervation of the SVZ niche by the following neuronal types: glutamatergic, GABAergic projection and interneurons, cholinergic, dopaminergic, serotonergic, neuropeptidergic, nitrergic, and noradrenergic. We also discuss the origins of SVZ niche innervating neurons, such as striatum, cortex, basal ganglia, raphe nuclei, substantia nigra and ventral tegmental area, hypothalamus, and locus coeruleus. Our review highlights the various roles of innervating neurons in SVZ NPC fates in a spatiotemporal manner and emphasizes a need for future investigation into the impact of neuronal innervation on NPC gliogenesis.
Collapse
Affiliation(s)
| | - Lauren Chen
- Department of Medical Genetics, Faculty of Medicine & DentistryUniversity of AlbertaEdmontonAlbertaCanada
- Department of Cell Biology, Faculty of Medicine & DentistryUniversity of AlbertaEdmontonAlbertaCanada
| | - Anastassia Voronova
- Neurosciences and Mental Health InstituteUniversity of AlbertaEdmontonAlbertaCanada
- Department of Medical Genetics, Faculty of Medicine & DentistryUniversity of AlbertaEdmontonAlbertaCanada
- Department of Cell Biology, Faculty of Medicine & DentistryUniversity of AlbertaEdmontonAlbertaCanada
- Faculty of Medicine & Dentistry, MS CentreUniversity of AlbertaEdmontonAlbertaCanada
- Women and Children's Health Research InstituteUniversity of AlbertaEdmontonAlbertaCanada
| |
Collapse
|
13
|
Rosa F, Dray N, Bedu S, Bally-Cuif L. Non-apoptotic caspase events and Atf3 expression underlie direct neuronal differentiation of adult neural stem cells. Development 2024; 151:dev204381. [PMID: 39565097 DOI: 10.1242/dev.204381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 10/08/2024] [Indexed: 11/21/2024]
Abstract
Neural stem cells (NSCs) generate neurons over a lifetime in adult vertebrate brains. In the adult zebrafish pallium, NSCs persist long term through balanced fate decisions. These decisions include direct neuronal conversions, i.e. delamination and neurogenesis without a division. To characterize this process, we reanalyze intravital imaging data of adult pallial NSCs, and observe shared delamination dynamics between NSCs and committed neuronal progenitors. Searching for mechanisms predicting direct NSC conversions, we build an NSC-specific genetic tracer of Caspase3/7 activation (Cas3*/Cas7*) in vivo. We show that non-apoptotic Cas3*/7* events occur in adult NSCs and are biased towards lineage termination under physiological conditions, with a predominant generation of single neurons. We further identify the transcription factor Atf3 as necessary for this bias. Finally, we show that the Cas3*/7* pathway is engaged by NSCs upon parenchymal lesion and correlates with NSCs more prone to lineage termination and neuron formation. These results provide evidence for non-apoptotic caspase events occurring in vertebrate adult NSCs and link these events with the NSC fate decision of direct conversion, which is important for long-term NSC population homeostasis.
Collapse
Affiliation(s)
- Frédéric Rosa
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Zebrafish Neurogenetics Unit, F-75015 Paris, France
| | - Nicolas Dray
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Zebrafish Neurogenetics Unit, F-75015 Paris, France
| | - Sébastien Bedu
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Zebrafish Neurogenetics Unit, F-75015 Paris, France
| | - Laure Bally-Cuif
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Zebrafish Neurogenetics Unit, F-75015 Paris, France
| |
Collapse
|
14
|
Nath S, Martínez Santamaría JC, Chu YH, Choi JS, Conforti P, Lin JD, Sankowski R, Amann L, Galanis C, Wu K, Deshpande SS, Vlachos A, Prinz M, Lee JK, Schachtrup C. Interaction between subventricular zone microglia and neural stem cells impacts the neurogenic response in a mouse model of cortical ischemic stroke. Nat Commun 2024; 15:9095. [PMID: 39448558 PMCID: PMC11502905 DOI: 10.1038/s41467-024-53217-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 10/04/2024] [Indexed: 10/26/2024] Open
Abstract
After a stroke, the neurogenic response from the subventricular zone (SVZ) to repair the brain is limited. Microglia, as an integral part of the distinctive SVZ microenvironment, control neural stem / precursor cell (NSPC) behavior. Here, we show that discrete stroke-associated SVZ microglial clusters negatively impact the innate neurogenic response, and we propose a repository of relevant microglia-NSPC ligand-receptor pairs. After photothrombosis, a mouse model of ischemic stroke, the altered SVZ niche environment leads to immediate activation of microglia in the niche and an abnormal neurogenic response, with cell-cycle arrest of neural stem cells and neuroblast cell death. Pharmacological restoration of the niche environment increases the SVZ-derived neurogenic repair and microglial depletion increases the formation and survival of newborn neuroblasts in the SVZ. Therefore, we propose that altered cross-communication between microglial subclusters and NSPCs regulates the extent of the innate neurogenic repair response in the SVZ after stroke.
Collapse
Affiliation(s)
- Suvra Nath
- Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Jose C Martínez Santamaría
- Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Yu-Hsuan Chu
- Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - James S Choi
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami School of Medicine, Miami, FL, USA
| | - Pasquale Conforti
- Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Jia-Di Lin
- Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Roman Sankowski
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lukas Amann
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christos Galanis
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kexin Wu
- Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Sachin S Deshpande
- Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Andreas Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- BrainLinks-BrainTools Center, University of Freiburg, Freiburg, Germany
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marco Prinz
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Centre for Biological Signalling Studies (BIOSS) and Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg, Germany
| | - Jae K Lee
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami School of Medicine, Miami, FL, USA
| | - Christian Schachtrup
- Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
15
|
Chaker Z, Makarouni E, Doetsch F. The Organism as the Niche: Physiological States Crack the Code of Adult Neural Stem Cell Heterogeneity. Annu Rev Cell Dev Biol 2024; 40:381-406. [PMID: 38985883 DOI: 10.1146/annurev-cellbio-120320-040213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Neural stem cells (NSCs) persist in the adult mammalian brain and are able to give rise to new neurons and glia throughout life. The largest stem cell niche in the adult mouse brain is the ventricular-subventricular zone (V-SVZ) lining the lateral ventricles. Adult NSCs in the V-SVZ coexist in quiescent and actively proliferating states, and they exhibit a regionalized molecular identity. The importance of such spatial diversity is just emerging, as depending on their position within the niche, adult NSCs give rise to distinct subtypes of olfactory bulb interneurons and different types of glia. However, the functional relevance of stem cell heterogeneity in the V-SVZ is still poorly understood. Here, we put into perspective findings highlighting the importance of adult NSC diversity for brain plasticity, and how the body signals to brain stem cells in different physiological states to regulate their behavior.
Collapse
Affiliation(s)
- Zayna Chaker
- Biozentrum, University of Basel, Basel, Switzerland; , ,
| | | | - Fiona Doetsch
- Biozentrum, University of Basel, Basel, Switzerland; , ,
| |
Collapse
|
16
|
Kunkhyen T, Brechbill TR, Berg SPR, Pothuri P, Rangel AN, Gupta A, Cheetham CEJ. Cell type- and layer-specific plasticity of olfactory bulb interneurons following olfactory sensory neuron ablation. Sci Rep 2024; 14:17771. [PMID: 39090136 PMCID: PMC11294461 DOI: 10.1038/s41598-024-68649-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024] Open
Abstract
Lifelong neurogenesis endows the mouse olfactory system with a capacity for regeneration that is unique in the mammalian nervous system. Throughout life, olfactory sensory neurons (OSNs) are generated from olfactory epithelium (OE) stem cells in the nose, while the subventricular zone generates neuroblasts that migrate to the olfactory bulb (OB) and differentiate into multiple populations of inhibitory interneurons. Methimazole (MMZ) selectively ablates OSNs, but OE neurogenesis enables OSN repopulation and gradual recovery of OSN input to the OB within 6 weeks. However, it is not known how OB interneurons are affected by this loss and subsequent regeneration of OSN input following MMZ treatment. We found that dopaminergic neuron density was significantly reduced 7-14 days post-MMZ but recovered substantially at 35 days. The density of parvalbumin-expressing interneurons was unaffected by MMZ; however, their soma size was significantly reduced at 7-14 days post-MMZ, recovering by 35 days. Surprisingly, we found a transient increase in the density of calretinin-expressing neurons in the glomerular and external plexiform layers, but not the granule cell layer, 7 days post-MMZ. This could not be accounted for by increased neurogenesis but may result from increased calretinin expression. Together, our data demonstrate cell type- and layer-specific changes in OB interneuron density and morphology after MMZ treatment, providing new insight into the range of plasticity mechanisms employed by OB circuits during loss and regeneration of sensory input.
Collapse
Affiliation(s)
- Tenzin Kunkhyen
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Taryn R Brechbill
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Sarah P R Berg
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Pranitha Pothuri
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Alexander N Rangel
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Ashna Gupta
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Claire E J Cheetham
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
17
|
Saibro-Girardi C, Scheibel IM, Santos L, Bittencourt RR, Fröhlich NT, Dos Reis Possa L, Moreira JCF, Gelain DP. Bexarotene drives the self-renewing proliferation of adult neural stem cells, promotes neuron-glial fate shift, and regulates late neuronal differentiation. J Neurochem 2024; 168:1527-1545. [PMID: 37984072 DOI: 10.1111/jnc.15998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 10/05/2023] [Accepted: 10/10/2023] [Indexed: 11/22/2023]
Abstract
Treatment with bexarotene, a selective retinoid X receptor (RXR) agonist, significantly improves behavioral dysfunctions in various neurodegenerative animal models. Additionally, it activates neurodevelopmental and plasticity pathways in the brains of adult mice. Our objective was to investigate the impact of RXR activation by bexarotene on adult neural stem cells (aNSC) and their cell lineages. To achieve this, we treated NSCs isolated from the subventricular zone (SVZ) of adult rat brains from the proliferative stage to the differentiated status. The results showed that bexarotene-treated aNSC exhibited increased BrdU incorporation, SOX2+ dividing cell pairs, and cell migration from neurospheres, revealing that the treatment promotes self-renewing proliferation and cell motility in SVZ-aNCS. Furthermore, bexarotene induced a cell fate shift characterized by a significant increase in GFAP+/S100B+ differentiated astrocytes, which uncovers the participation of activated-RXR in astrogenesis. In the neuronal lineage, the fate shift was counteracted by bexarotene-induced enhancement of NeuN+ nuclei together with neurite network outgrowth, indicating that the RXR agonist stimulates SVZ-aNCS neuronal differentiation at later stages. These findings establish new connections between RXR activation, astro- and neurogenesis in the adult brain, and contribute to the development of therapeutic strategies targeting nuclear receptors for neural repair.
Collapse
Affiliation(s)
- Carolina Saibro-Girardi
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde-Universidade Federal do Rio Grande do Sul (ICBS-UFRGS), Porto Alegre, RS, Brazil
- Programa de Pós-graduação em Biologia Celular e Molecular, Centro de Biotecnologia-Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Ingrid Matsubara Scheibel
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde-Universidade Federal do Rio Grande do Sul (ICBS-UFRGS), Porto Alegre, RS, Brazil
| | - Lucas Santos
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde-Universidade Federal do Rio Grande do Sul (ICBS-UFRGS), Porto Alegre, RS, Brazil
- Programa de Pós-graduação em Biologia Celular e Molecular, Centro de Biotecnologia-Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Reykla Ramon Bittencourt
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde-Universidade Federal do Rio Grande do Sul (ICBS-UFRGS), Porto Alegre, RS, Brazil
| | - Nicole Taís Fröhlich
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde-Universidade Federal do Rio Grande do Sul (ICBS-UFRGS), Porto Alegre, RS, Brazil
| | - Luana Dos Reis Possa
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde-Universidade Federal do Rio Grande do Sul (ICBS-UFRGS), Porto Alegre, RS, Brazil
| | - José Claudio Fonseca Moreira
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde-Universidade Federal do Rio Grande do Sul (ICBS-UFRGS), Porto Alegre, RS, Brazil
- Programa de Pós-graduação em Biologia Celular e Molecular, Centro de Biotecnologia-Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Daniel Pens Gelain
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde-Universidade Federal do Rio Grande do Sul (ICBS-UFRGS), Porto Alegre, RS, Brazil
- Programa de Pós-graduação em Biologia Celular e Molecular, Centro de Biotecnologia-Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
18
|
Cebrian-Silla A, Assis Nascimento M, Mancia W, Gonzalez-Granero S, Romero-Rodriguez R, Obernier K, Steffen DM, Lim DA, Garcia-Verdugo JM, Alvarez-Buylla A. Neural Stem Cell Relay from B1 to B2 cells in the adult mouse Ventricular-Subventricular Zone. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.28.600695. [PMID: 39005355 PMCID: PMC11244865 DOI: 10.1101/2024.06.28.600695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Neurogenesis and gliogenesis continue in the Ventricular-Subventricular Zone (V-SVZ) of the adult rodent brain. B1 cells are astroglial cells derived from radial glia that function as primary progenitors or neural stem cells (NSCs) in the V-SVZ. B1 cells, which have a small apical contact with the ventricle, decline in numbers during early postnatal life, yet neurogenesis continues into adulthood. Here we found that a second population of V-SVZ astroglial cells (B2 cells), that do not contact the ventricle, function as NSCs in the adult brain. B2 cell numbers increase postnatally, remain constant in 12-month-old mice and decrease by 18 months. Transcriptomic analysis of ventricular-contacting and non-contacting B cells revealed key molecular differences to distinguish B1 from B2 cells. Transplantation and lineage tracing of B2 cells demonstrate their function as primary progenitors for adult neurogenesis. This study reveals how NSC function is relayed from B1 to B2 progenitors to maintain adult neurogenesis.
Collapse
|
19
|
Xiong Y, Pi W, Zhao W, Shi W, Yan W, Yang H, Zhou Y, Li Q, Yang L. Roles of cerebrospinal fluid-contacting neurons as potential neural stem cells in the repair and regeneration of spinal cord injuries. Front Cell Dev Biol 2024; 12:1426395. [PMID: 38983786 PMCID: PMC11231923 DOI: 10.3389/fcell.2024.1426395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 05/28/2024] [Indexed: 07/11/2024] Open
Abstract
Cerebrospinal fluid-contacting neurons (CSF-cNs) represent a distinct group of interneurons characterized by their prominent apical globular protrusions penetrating the spinal cord's central canal and their basal axons extending towards adjacent cells. Identified nearly a century back, the specific roles and attributes of CSF-cNs have just started to emerge due to the historical lack of definitive markers. Recent findings have confirmed that CSF-cNs expressing PKD2L1 possess attributes of neural stem cells, suggesting a critical function in the regeneration processes following spinal cord injuries. This review aims to elucidate the molecular markers of CSF-cNs as potential neural stem cells during spinal cord development and assess their roles post-spinal cord injury, with an emphasis on their potential therapeutic implications for spinal cord repair.
Collapse
Affiliation(s)
- Yanxiang Xiong
- Department of Traumatic Orthopedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Wenjun Pi
- Department of Traumatic Orthopedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Wang Zhao
- Department of Traumatic Orthopedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Weiwei Shi
- Department of Medical Examination Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Weihong Yan
- Department of Traumatic Orthopedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Hao Yang
- Department of Traumatic Orthopedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Yuanrong Zhou
- Department of Health, The Qinglong County People’s Hospital, Qinglong, Guizhou, China
| | - Qing Li
- Department of Traumatic Orthopedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Leiluo Yang
- Department of Traumatic Orthopedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| |
Collapse
|
20
|
Arreguin AJ, Shao Z, Colognato H. Dmd mdx mice have defective oligodendrogenesis, delayed myelin compaction and persistent hypomyelination. Dis Model Mech 2024; 17:dmm050115. [PMID: 38721692 PMCID: PMC11095635 DOI: 10.1242/dmm.050115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/28/2024] [Indexed: 05/18/2024] Open
Abstract
Duchenne muscular dystrophy (DMD) is caused by mutations in the DMD gene, resulting in the loss of dystrophin, a large cytosolic protein that links the cytoskeleton to extracellular matrix receptors in skeletal muscle. Aside from progressive muscle damage, many patients with DMD also have neurological deficits of unknown etiology. To investigate potential mechanisms for DMD neurological deficits, we assessed postnatal oligodendrogenesis and myelination in the Dmdmdx mouse model. In the ventricular-subventricular zone (V-SVZ) stem cell niche, we found that oligodendrocyte progenitor cell (OPC) production was deficient, with reduced OPC densities and proliferation, despite a normal stem cell niche organization. In the Dmdmdx corpus callosum, a large white matter tract adjacent to the V-SVZ, we also observed reduced OPC proliferation and fewer oligodendrocytes. Transmission electron microscopy further revealed significantly thinner myelin, an increased number of abnormal myelin structures and delayed myelin compaction, with hypomyelination persisting into adulthood. Our findings reveal alterations in oligodendrocyte development and myelination that support the hypothesis that changes in diffusion tensor imaging seen in patients with DMD reflect developmental changes in myelin architecture.
Collapse
Affiliation(s)
- Andrea J. Arreguin
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
- Medical Scientist Training Program (MSTP), Stony Brook University, Stony Brook, NY 11794-8651, USA
| | - Zijian Shao
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Holly Colognato
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
21
|
Sun ED, Ma R, Navarro Negredo P, Brunet A, Zou J. TISSUE: uncertainty-calibrated prediction of single-cell spatial transcriptomics improves downstream analyses. Nat Methods 2024; 21:444-454. [PMID: 38347138 DOI: 10.1038/s41592-024-02184-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 01/12/2024] [Indexed: 02/27/2024]
Abstract
Whole-transcriptome spatial profiling of genes at single-cell resolution remains a challenge. To address this limitation, spatial gene expression prediction methods have been developed to infer the spatial expression of unmeasured transcripts, but the quality of these predictions can vary greatly. Here we present Transcript Imputation with Spatial Single-cell Uncertainty Estimation (TISSUE) as a general framework for estimating uncertainty for spatial gene expression predictions and providing uncertainty-aware methods for downstream inference. Leveraging conformal inference, TISSUE provides well-calibrated prediction intervals for predicted expression values across 11 benchmark datasets. Moreover, it consistently reduces the false discovery rate for differential gene expression analysis, improves clustering and visualization of predicted spatial transcriptomics and improves the performance of supervised learning models trained on predicted gene expression profiles. Applying TISSUE to a MERFISH spatial transcriptomics dataset of the adult mouse subventricular zone, we identified subtypes within the neural stem cell lineage and developed subtype-specific regional classifiers.
Collapse
Affiliation(s)
- Eric D Sun
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - Rong Ma
- Department of Statistics, Stanford University, Stanford, CA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | - Anne Brunet
- Department of Genetics, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Glenn Center for the Biology of Aging, Stanford University, Stanford, CA, USA
| | - James Zou
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA.
| |
Collapse
|
22
|
Velikic G, Maric DM, Maric DL, Supic G, Puletic M, Dulic O, Vojvodic D. Harnessing the Stem Cell Niche in Regenerative Medicine: Innovative Avenue to Combat Neurodegenerative Diseases. Int J Mol Sci 2024; 25:993. [PMID: 38256066 PMCID: PMC10816024 DOI: 10.3390/ijms25020993] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/30/2023] [Accepted: 12/06/2023] [Indexed: 01/24/2024] Open
Abstract
Regenerative medicine harnesses the body's innate capacity for self-repair to restore malfunctioning tissues and organs. Stem cell therapies represent a key regenerative strategy, but to effectively harness their potential necessitates a nuanced understanding of the stem cell niche. This specialized microenvironment regulates critical stem cell behaviors including quiescence, activation, differentiation, and homing. Emerging research reveals that dysfunction within endogenous neural stem cell niches contributes to neurodegenerative pathologies and impedes regeneration. Strategies such as modifying signaling pathways, or epigenetic interventions to restore niche homeostasis and signaling, hold promise for revitalizing neurogenesis and neural repair in diseases like Alzheimer's and Parkinson's. Comparative studies of highly regenerative species provide evolutionary clues into niche-mediated renewal mechanisms. Leveraging endogenous bioelectric cues and crosstalk between gut, brain, and vascular niches further illuminates promising therapeutic opportunities. Emerging techniques like single-cell transcriptomics, organoids, microfluidics, artificial intelligence, in silico modeling, and transdifferentiation will continue to unravel niche complexity. By providing a comprehensive synthesis integrating diverse views on niche components, developmental transitions, and dynamics, this review unveils new layers of complexity integral to niche behavior and function, which unveil novel prospects to modulate niche function and provide revolutionary treatments for neurodegenerative diseases.
Collapse
Affiliation(s)
- Gordana Velikic
- Department for Research and Development, Clinic Orto MD-Parks Dr. Dragi Hospital, 21000 Novi Sad, Serbia
- Hajim School of Engineering, University of Rochester, Rochester, NY 14627, USA
| | - Dusan M. Maric
- Department for Research and Development, Clinic Orto MD-Parks Dr. Dragi Hospital, 21000 Novi Sad, Serbia
- Faculty of Stomatology Pancevo, University Business Academy, 26000 Pancevo, Serbia;
| | - Dusica L. Maric
- Department of Anatomy, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Gordana Supic
- Institute for Medical Research, Military Medical Academy, 11000 Belgrade, Serbia; (G.S.); (D.V.)
- Medical Faculty of Military Medical Academy, University of Defense, 11000 Belgrade, Serbia
| | - Miljan Puletic
- Faculty of Stomatology Pancevo, University Business Academy, 26000 Pancevo, Serbia;
| | - Oliver Dulic
- Department of Surgery, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia;
| | - Danilo Vojvodic
- Institute for Medical Research, Military Medical Academy, 11000 Belgrade, Serbia; (G.S.); (D.V.)
- Medical Faculty of Military Medical Academy, University of Defense, 11000 Belgrade, Serbia
| |
Collapse
|
23
|
Lin J, Lin Y, Zhu S, Luo J, Zhou C. Transplantation of Wnt3a-modified neural stem cells promotes neural regeneration and functional recovery after spinal cord injury via Wnt-Gli2 pathway. Neuroreport 2024; 35:27-36. [PMID: 37983663 DOI: 10.1097/wnr.0000000000001973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Neural stem cell (NSCs) transplantation has great potential in the treatment of spinal cord injury (SCI). Previous studies have indicated that the Wnt pathway could regulate the expression of basic helix-loop-helix (bHLH) family factor Hes5 and Mash1 in NSCs, but not through the notch intracellular domain. This suggests that there are other signals involved in this process. The aim of this study was to investigate the role of Wnt-Gli2 pathway in the treatment of SCI by transplanting neural stem cells. NSCs were isolated from the striata of embryonic day 14 mice. Activation of the Wnt pathway was achieved using Wnt3a protein, while Gli2 was inhibited using Gli2-siRNA. Expression levels of Gli2 and bHLH factors were assessed using western blotting. NSCs proliferation was evaluated using CCK-8 assay, and neural differentiation was determined by immunofluorescence staining. Finally, the modified NSCs were transplanted into mice with SCI, and their effects were assessed using behavioral and histological tests. Our results demonstrated that Wnt3a promoted the expression of Mash1 through Gli2. Moreover, the expression of Ngn1 and Hes1 was up-regulated, while Hes5 was down-regulated. Wnt3a also promoted NSCs proliferation and neural differentiation through this signaling pathway. In vivo experiments showed that NSCs transplantation mediated by Wnt3a-Gli2 signaling increased the number of neurons and resulted in improved Basso Mouse Scale scores. In conclusion, our findings suggest that Gli2 plays a role in mediating the regulation of Wnt3a signaling on promoting NSCs proliferation and neural differentiation. This pathway is therefore important in NSCs-mediated SCI recovery.
Collapse
Affiliation(s)
- Jiezhao Lin
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou
| | - Yucong Lin
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou
| | - Shuangfang Zhu
- Department of Bone and Soft Tissue, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, People's Republic of China
| | - Jinzhou Luo
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou
| | - Chusong Zhou
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou
| |
Collapse
|
24
|
Lozano-Ureña A, Frade JM. Differential contribution of TrkB and p75 NTR to BDNF-dependent self-renewal, proliferation, and differentiation of adult neural stem cells. Front Mol Neurosci 2023; 16:1271820. [PMID: 38188197 PMCID: PMC10770873 DOI: 10.3389/fnmol.2023.1271820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/01/2023] [Indexed: 01/09/2024] Open
Abstract
Alterations in adult neurogenesis are a common hallmark of neurodegenerative diseases. Therefore, understanding the molecular mechanisms that control this process is an indispensable requirement for designing therapeutic interventions addressing neurodegeneration. Neurotrophins have been implicated in multiple functions including proliferation, survival, and differentiation of the neural stem cells (NSCs), thereby being good candidates for therapeutic intervention. Brain-derived neurotrophic factor (BDNF) belongs to the neurotrophin family and has been proven to promote neurogenesis in the subgranular zone. However, the effects of BDNF in the adult subventricular zone (SVZ) still remain unclear due to contradictory results. Using in vitro cultures of adult NSCs isolated from the mouse SVZ, we show that low concentrations of BDNF are able to promote self-renewal and proliferation in these cells by activating the tropomyosin-related kinase B (TrkB) receptor. However, higher concentrations of BDNF that can bind the p75 neurotrophin receptor (p75NTR) potentiate TrkB-dependent self-renewal and proliferation and promote differentiation of the adult NSCs, suggesting different molecular mechanisms in BDNF-promoting proliferation and differentiation. The use of an antagonist for p75NTR reduces the increment in NSC proliferation and commitment to the oligodendrocyte lineage. Our data support a fundamental role for both receptors, TrkB and p75NTR, in the regulation of NSC behavior.
Collapse
Affiliation(s)
| | - José M. Frade
- Laboratory of Neuronal Generation and Degeneration in Vertebrates, Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute, CSIC, Madrid, Spain
| |
Collapse
|
25
|
Kim YS, Seo N, Kim JH, Kang S, Park JW, Park KD, Lee HA, Park M. Exploring the Functional Heterogeneity of Directly Reprogrammed Neural Stem Cell-Derived Neurons via Single-Cell RNA Sequencing. Cells 2023; 12:2818. [PMID: 38132138 PMCID: PMC10742074 DOI: 10.3390/cells12242818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/08/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
The therapeutic potential of directly reprogrammed neural stem cells (iNSCs) for neurodegenerative diseases relies on reducing the innate tumorigenicity of pluripotent stem cells. However, the heterogeneity within iNSCs is a major hurdle in quality control prior to clinical applications. Herein, we generated iNSCs from human fibroblasts, by transfecting transcription factors using Sendai virus particles, and characterized the expression of iNSC markers. Using immunostaining and quantitative real time -polymerase chain reaction (RT -qPCR), no differences were observed between colonies of iNSCs and iNSC-derived neurons. Unexpectedly, patch-clamp analysis of iNSC-derived neurons revealed distinctive action potential firing even within the same batch product. We performed single-cell RNA sequencing in fibroblasts, iNSCs, and iNSC-derived neurons to dissect their functional heterogeneity and identify cell fate regulators during direct reprogramming followed by neuronal differentiation. Pseudotime trajectory analysis revealed distinct cell types depending on their gene expression profiles. Differential gene expression analysis showed distinct NEUROG1, PEG3, and STMN2 expression patterns in iNSCs and iNSC-derived neurons. Taken together, we recommend performing a predictable functional assessment with appropriate surrogate markers to ensure the quality control of iNSCs and their differentiated neurons, particularly before cell banking for regenerative cell therapy.
Collapse
Affiliation(s)
- Yoo Sung Kim
- Advanced Bioconvergence Product Research Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju-si 28159, Republic of Korea; (Y.S.K.); (N.S.); (J.-H.K.); (S.K.); (J.W.P.); (K.D.P.)
| | - NaRi Seo
- Advanced Bioconvergence Product Research Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju-si 28159, Republic of Korea; (Y.S.K.); (N.S.); (J.-H.K.); (S.K.); (J.W.P.); (K.D.P.)
| | - Ji-Hye Kim
- Advanced Bioconvergence Product Research Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju-si 28159, Republic of Korea; (Y.S.K.); (N.S.); (J.-H.K.); (S.K.); (J.W.P.); (K.D.P.)
| | - Soyeong Kang
- Advanced Bioconvergence Product Research Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju-si 28159, Republic of Korea; (Y.S.K.); (N.S.); (J.-H.K.); (S.K.); (J.W.P.); (K.D.P.)
| | - Ji Won Park
- Advanced Bioconvergence Product Research Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju-si 28159, Republic of Korea; (Y.S.K.); (N.S.); (J.-H.K.); (S.K.); (J.W.P.); (K.D.P.)
| | - Ki Dae Park
- Advanced Bioconvergence Product Research Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju-si 28159, Republic of Korea; (Y.S.K.); (N.S.); (J.-H.K.); (S.K.); (J.W.P.); (K.D.P.)
| | - Hyang-Ae Lee
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea;
| | - Misun Park
- Advanced Bioconvergence Product Research Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju-si 28159, Republic of Korea; (Y.S.K.); (N.S.); (J.-H.K.); (S.K.); (J.W.P.); (K.D.P.)
| |
Collapse
|
26
|
Gómez-Oliva R, Geribaldi-Doldán N, Domínguez-García S, Pardillo-Díaz R, Martínez-Ortega S, Oliva-Montero JM, Pérez-García P, García-Cózar FJ, Muñoz-Miranda JP, Sánchez-Gomar I, Nunez-Abades P, Castro C. Targeting epidermal growth factor receptor to recruit newly generated neuroblasts in cortical brain injuries. J Transl Med 2023; 21:867. [PMID: 38037126 PMCID: PMC10687845 DOI: 10.1186/s12967-023-04707-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 11/07/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND Neurogenesis is stimulated in the subventricular zone (SVZ) of mice with cortical brain injuries. In most of these injuries, newly generated neuroblasts attempt to migrate toward the injury, accumulating within the corpus callosum not reaching the perilesional area. METHODS We use a murine model of mechanical cortical brain injury, in which we perform unilateral cortical injuries in the primary motor cortex of adult male mice. We study neurogenesis in the SVZ and perilesional area at 7 and 14 dpi as well as the expression and concentration of the signaling molecule transforming growth factor alpha (TGF-α) and its receptor the epidermal growth factor (EGFR). We use the EGFR inhibitor Afatinib to promote neurogenesis in brain injuries. RESULTS We show that microglial cells that emerge within the injured area and the SVZ in response to the injury express high levels of TGF-α leading to elevated concentrations of TGF-α in the cerebrospinal fluid. Thus, the number of neuroblasts in the SVZ increases in response to the injury, a large number of these neuroblasts remain immature and proliferate expressing the epidermal growth factor receptor (EGFR) and the proliferation marker Ki67. Restraining TGF-α release with a classical protein kinase C inhibitor reduces the number of these proliferative EGFR+ immature neuroblasts in the SVZ. In accordance, the inhibition of the TGF-α receptor, EGFR promotes migration of neuroblasts toward the injury leading to an elevated number of neuroblasts within the perilesional area. CONCLUSIONS Our results indicate that in response to an injury, microglial cells activated within the injury and the SVZ release TGF-α, activating the EGFR present in the neuroblasts membrane inducing their proliferation, delaying maturation and negatively regulating migration. The inactivation of this signaling pathway stimulates neuroblast migration toward the injury and enhances the quantity of neuroblasts within the injured area. These results suggest that these proteins may be used as target molecules to regenerate brain injuries.
Collapse
Affiliation(s)
- Ricardo Gómez-Oliva
- Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain
- Instituto de Investigación e Innovación Biomédica de Cádiz, Cádiz, Spain
| | - Noelia Geribaldi-Doldán
- Instituto de Investigación e Innovación Biomédica de Cádiz, Cádiz, Spain
- Departamento de Anatomía y Embriología Humanas, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain
| | - Samuel Domínguez-García
- Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain
- Instituto de Investigación e Innovación Biomédica de Cádiz, Cádiz, Spain
- Department of Neuroscience, Karolinska Institutet, Biomedicum, Stockholm, Sweden
| | - Ricardo Pardillo-Díaz
- Instituto de Investigación e Innovación Biomédica de Cádiz, Cádiz, Spain
- Hospital Universitario Puerta del Mar, Cadiz, Spain
| | - Sergio Martínez-Ortega
- Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain
- Instituto de Investigación e Innovación Biomédica de Cádiz, Cádiz, Spain
| | - José M Oliva-Montero
- Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain
- Instituto de Investigación e Innovación Biomédica de Cádiz, Cádiz, Spain
| | - Patricia Pérez-García
- Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain
- Instituto de Investigación e Innovación Biomédica de Cádiz, Cádiz, Spain
| | - Francisco J García-Cózar
- Instituto de Investigación e Innovación Biomédica de Cádiz, Cádiz, Spain
- Área de Inmunología, Universidad de Cádiz, Cádiz, Spain
| | - Juan P Muñoz-Miranda
- Servicios Centrales de Investigación Biomédica, Universidad de Cádiz, Cádiz, Spain
| | - Ismael Sánchez-Gomar
- Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain
- Instituto de Investigación e Innovación Biomédica de Cádiz, Cádiz, Spain
| | - Pedro Nunez-Abades
- Instituto de Investigación e Innovación Biomédica de Cádiz, Cádiz, Spain
- Departamento de Fisiología, Universidad de Sevilla, Sevilla, Spain
| | - Carmen Castro
- Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain.
- Instituto de Investigación e Innovación Biomédica de Cádiz, Cádiz, Spain.
| |
Collapse
|
27
|
Chaker Z, Segalada C, Kretz JA, Acar IE, Delgado AC, Crotet V, Moor AE, Doetsch F. Pregnancy-responsive pools of adult neural stem cells for transient neurogenesis in mothers. Science 2023; 382:958-963. [PMID: 37995223 DOI: 10.1126/science.abo5199] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 10/05/2023] [Indexed: 11/25/2023]
Abstract
Adult neural stem cells (NSCs) contribute to lifelong brain plasticity. In the adult mouse ventricular-subventricular zone, NSCs are heterogeneous and, depending on their location in the niche, give rise to different subtypes of olfactory bulb (OB) interneurons. Here, we show that multiple regionally distinct NSCs, including domains that are usually quiescent, are recruited on different gestation days during pregnancy. Synchronized activation of these adult NSC pools generates transient waves of short-lived OB interneurons, especially in layers with less neurogenesis under homeostasis. Using spatial transcriptomics, we identified molecular markers of pregnancy-associated interneurons and showed that some subsets are temporarily needed for own pup recognition. Thus, pregnancy triggers transient yet behaviorally relevant neurogenesis, highlighting the physiological relevance of adult stem cell heterogeneity.
Collapse
Affiliation(s)
- Zayna Chaker
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | | | - Jonas A Kretz
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Ilhan E Acar
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Ana C Delgado
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Valerie Crotet
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Andreas E Moor
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Fiona Doetsch
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| |
Collapse
|
28
|
Anaya-Martínez V, Anacleto-Santos J, Mondragón-Flores R, Zepeda-Rodríguez A, Casarrubias-Tabarez B, de Jesús López-Pérez T, de Alba-Alvarado MC, Martínez-Ortiz-de-Montellano C, Carrasco-Ramírez E, Rivera-Fernández N. Changes in the Proliferation of the Neural Progenitor Cells of Adult Mice Chronically Infected with Toxoplasma gondii. Microorganisms 2023; 11:2671. [PMID: 38004683 PMCID: PMC10673519 DOI: 10.3390/microorganisms11112671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/25/2023] [Accepted: 10/29/2023] [Indexed: 11/26/2023] Open
Abstract
During Toxoplasma gondii chronic infection, certain internal factors that trigger the proliferation of neural progenitor cells (NPCs), such as brain inflammation, cell death, and changes in cytokine levels, are observed. NPCs give rise to neuronal cell types in the adult brain of some mammals. NPCs are capable of dividing and differentiating into a restricted repertoire of neuronal and glial cell types. In this study, the proliferation of NPCs was evaluated in CD-1 adult male mice chronically infected with the T. gondii ME49 strain. Histological brain sections from the infected mice were evaluated in order to observe T. gondii tissue cysts. Sagittal and coronal sections from the subventricular zone of the lateral ventricles and from the subgranular zone of the hippocampal dentate gyrus, as well as sagittal sections from the rostral migratory stream, were obtained from infected and non-infected mice previously injected with bromodeoxyuridine (BrdU). A flotation immunofluorescence technique was used to identify BrdU+ NPC. The scanning of BrdU+ cells was conducted using a confocal microscope, and the counting was performed with ImageJ® software (version 1.48q). In all the evaluated zones from the infected mice, a significant proliferation of the NPCs was observed when compared with that of the control group. We concluded that chronic infection with T. gondii increased the proliferation of NPCs in the three evaluated zones. Regardless of the role these cells are playing, our results could be useful to better understand the pathogenesis of chronic toxoplasmosis.
Collapse
Affiliation(s)
- Verónica Anaya-Martínez
- Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud, Universidad Anáhuac, Lomas Anáhuac, Naucalpan de Juárez 52786, Estado de México, Mexico;
| | - Jhony Anacleto-Santos
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Coyoacán, Ciudad de México 04510, Mexico; (J.A.-S.); (T.d.J.L.-P.); (M.C.d.A.-A.); (E.C.-R.)
| | | | - Armando Zepeda-Rodríguez
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Coyoacán, Ciudad de México 04510, Mexico; (A.Z.-R.); (B.C.-T.)
| | - Brenda Casarrubias-Tabarez
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Coyoacán, Ciudad de México 04510, Mexico; (A.Z.-R.); (B.C.-T.)
| | - Teresa de Jesús López-Pérez
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Coyoacán, Ciudad de México 04510, Mexico; (J.A.-S.); (T.d.J.L.-P.); (M.C.d.A.-A.); (E.C.-R.)
| | - Mariana Citlalli de Alba-Alvarado
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Coyoacán, Ciudad de México 04510, Mexico; (J.A.-S.); (T.d.J.L.-P.); (M.C.d.A.-A.); (E.C.-R.)
| | - Cintli Martínez-Ortiz-de-Montellano
- Departamento de Parasitología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico;
| | - Elba Carrasco-Ramírez
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Coyoacán, Ciudad de México 04510, Mexico; (J.A.-S.); (T.d.J.L.-P.); (M.C.d.A.-A.); (E.C.-R.)
| | - Norma Rivera-Fernández
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Coyoacán, Ciudad de México 04510, Mexico; (J.A.-S.); (T.d.J.L.-P.); (M.C.d.A.-A.); (E.C.-R.)
| |
Collapse
|
29
|
Vogt M, Unnikrishnan MK, Heinig N, Schumann U, Schmidt MHH, Barth K. c-Cbl Regulates Murine Subventricular Zone-Derived Neural Progenitor Cells in Dependence of the Epidermal Growth Factor Receptor. Cells 2023; 12:2400. [PMID: 37830613 PMCID: PMC10572332 DOI: 10.3390/cells12192400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/15/2023] [Accepted: 09/26/2023] [Indexed: 10/14/2023] Open
Abstract
The localization, expression, and physiological role of regulatory proteins in the neurogenic niches of the brain is fundamental to our understanding of adult neurogenesis. This study explores the expression and role of the E3-ubiquitin ligase, c-Cbl, in neurogenesis within the subventricular zone (SVZ) of mice. In vitro neurosphere assays and in vivo analyses were performed in specific c-Cbl knock-out lines to unravel c-Cbl's role in receptor tyrosine kinase signaling, including the epidermal growth factor receptor (EGFR) pathway. Our findings suggest that c-Cbl is significantly expressed within EGFR-expressing cells, playing a pivotal role in neural stem cell proliferation and differentiation. However, c-Cbl's function extends beyond EGFR signaling, as its loss upon knock-out stimulated progenitor cell proliferation in neurosphere cultures. Yet, this effect was not detected in hippocampal progenitor cells, reflecting the lack of the EGFR in the hippocampus. In vivo, c-Cbl exerted only a minor proneurogenic influence with no measurable impact on the formation of adult-born neurons. In conclusion, c-Cbl regulates neural stem cells in the subventricular zone via the EGFR pathway but, likely, its loss is compensated by other signaling modules in vivo.
Collapse
|
30
|
Mancini L, Guirao B, Ortica S, Labusch M, Cheysson F, Bonnet V, Phan MS, Herbert S, Mahou P, Menant E, Bedu S, Tinevez JY, Baroud C, Beaurepaire E, Bellaiche Y, Bally-Cuif L, Dray N. Apical size and deltaA expression predict adult neural stem cell decisions along lineage progression. SCIENCE ADVANCES 2023; 9:eadg7519. [PMID: 37656795 PMCID: PMC10854430 DOI: 10.1126/sciadv.adg7519] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 08/02/2023] [Indexed: 09/03/2023]
Abstract
The maintenance of neural stem cells (NSCs) in the adult brain depends on their activation frequency and division mode. Using long-term intravital imaging of NSCs in the zebrafish adult telencephalon, we reveal that apical surface area and expression of the Notch ligand DeltaA predict these NSC decisions. deltaA-negative NSCs constitute a bona fide self-renewing NSC pool and systematically engage in asymmetric divisions generating a self-renewing deltaAneg daughter, which regains the size and behavior of its mother, and a neurogenic deltaApos daughter, eventually engaged in neuronal production following further quiescence-division phases. Pharmacological and genetic manipulations of Notch, DeltaA, and apical size further show that the prediction of activation frequency by apical size and the asymmetric divisions of deltaAneg NSCs are functionally independent of Notch. These results provide dynamic qualitative and quantitative readouts of NSC lineage progression in vivo and support a hierarchical organization of NSCs in differently fated subpopulations.
Collapse
Affiliation(s)
- Laure Mancini
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Zebrafish Neurogenetics Unit, Team supported by the Ligue Nationale Contre le Cancer, Paris 75015, France
- Sorbonne Université, Collège Doctoral, Paris F-75005, France
| | - Boris Guirao
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR 3215, Inserm U934, Genetics and Developmental Biology, Paris 75005, France
| | - Sara Ortica
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Zebrafish Neurogenetics Unit, Team supported by the Ligue Nationale Contre le Cancer, Paris 75015, France
| | - Miriam Labusch
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Zebrafish Neurogenetics Unit, Team supported by the Ligue Nationale Contre le Cancer, Paris 75015, France
- Sorbonne Université, Collège Doctoral, Paris F-75005, France
| | - Felix Cheysson
- LPSM, Sorbonne Université, UMR CNRS 8001, Paris 75005, France
| | - Valentin Bonnet
- Institut Pasteur, Université Paris Cité, Physical Microfluidics and Bioengineering, Paris F-75015, France
- LadHyX, CNRS, Ecole Polytechnique, IP Paris, Palaiseau 91120, France
| | - Minh Son Phan
- Institut Pasteur, Université Paris Cité, Image Analysis Hub, Paris, France
| | - Sébastien Herbert
- Institut Pasteur, Université Paris Cité, Image Analysis Hub, Paris, France
| | - Pierre Mahou
- Laboratory for Optics and Biosciences, CNRS, INSERM, Ecole Polytechnique, IP Paris, Palaiseau, France
| | - Emilie Menant
- Laboratory for Optics and Biosciences, CNRS, INSERM, Ecole Polytechnique, IP Paris, Palaiseau, France
| | - Sébastien Bedu
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Zebrafish Neurogenetics Unit, Team supported by the Ligue Nationale Contre le Cancer, Paris 75015, France
| | - Jean-Yves Tinevez
- Institut Pasteur, Université Paris Cité, Image Analysis Hub, Paris, France
| | - Charles Baroud
- Institut Pasteur, Université Paris Cité, Physical Microfluidics and Bioengineering, Paris F-75015, France
- LadHyX, CNRS, Ecole Polytechnique, IP Paris, Palaiseau 91120, France
| | - Emmanuel Beaurepaire
- Laboratory for Optics and Biosciences, CNRS, INSERM, Ecole Polytechnique, IP Paris, Palaiseau, France
| | - Yohanns Bellaiche
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR 3215, Inserm U934, Genetics and Developmental Biology, Paris 75005, France
| | - Laure Bally-Cuif
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Zebrafish Neurogenetics Unit, Team supported by the Ligue Nationale Contre le Cancer, Paris 75015, France
| | - Nicolas Dray
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Zebrafish Neurogenetics Unit, Team supported by the Ligue Nationale Contre le Cancer, Paris 75015, France
| |
Collapse
|
31
|
Blasco-Chamarro L, Fariñas I. Fine-tuned rest: unveiling the regulatory landscape of adult quiescent neural stem cells. Neuroscience 2023:S0306-4522(23)00298-1. [PMID: 37437796 DOI: 10.1016/j.neuroscience.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/14/2023]
Abstract
Cell quiescence is an essential mechanism that allows cells to temporarily halt proliferation while preserving the potential to resume it at a later time. The molecular mechanisms underlying cell quiescence are complex and involve the regulation of various signaling pathways, transcription factors and epigenetic modifications. The importance of unveiling the mechanisms regulating the quiescent state is undeniable, as its long-term maintenance is key to sustain tissue homeostasis throughout life. Neural stem cells (NSCs) are maintained in the subependymal zone (SEZ) niche of adult mammalian brains mostly as long-lasting quiescent cells, owing to multiple intrinsic and extrinsic cues that actively regulate this state. Differently from other non-proliferative states, quiescence is a reversible and tightly regulated condition that can re-activate to support the formation of new neurons throughout adult lifespan. Decoding its regulatory mechanisms in homeostasis and unveiling how it is modulated in the context of the aged brain or during tumorigenesis, could bring us closer to the development of new potential strategies to intervene in adult neurogenesis with therapeutic purposes. Starting with a general conceptualization of the quiescent state in different stem cell niches, we here review what we have learned about NSC quiescence in the SEZ, encompassing the experimental strategies used for its study, to end up discussing the modulation of quiescence in the context of a physiology or pathological NSC dysregulation.
Collapse
Affiliation(s)
- Laura Blasco-Chamarro
- Biomedical Research Network on Neurodegenerative Diseases (CIBERNED); Department of Cell Biology; Biotechnology and Biomedicine Institute (BioTecMed), University of Valencia, Spain
| | - Isabel Fariñas
- Biomedical Research Network on Neurodegenerative Diseases (CIBERNED); Department of Cell Biology; Biotechnology and Biomedicine Institute (BioTecMed), University of Valencia, Spain.
| |
Collapse
|
32
|
Schoof M, Epplen GD, Walter C, Ballast A, Holdhof D, Göbel C, Neyazi S, Varghese J, Albert TK, Kerl K, Schüller U. The tumor suppressor CREBBP and the oncogene MYCN cooperate to induce malignant brain tumors in mice. Oncogenesis 2023; 12:36. [PMID: 37407554 DOI: 10.1038/s41389-023-00481-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/26/2023] [Accepted: 06/20/2023] [Indexed: 07/07/2023] Open
Abstract
The tumor suppressor and chromatin modifier cAMP response element-binding protein binding protein (CREBBP) and v-myc avian myelocytomatosis viral oncogene neuroblastoma derived homolog (MYCN), a member of the MYC oncogene family, are critically involved in brain development. Both genes are frequently mutated in the same tumor entities, including high-grade glioma and medulloblastoma. Therefore, we hypothesized that alterations in both genes cooperate to induce brain tumor formation. For further investigation, hGFAP-cre::CrebbpFl/Fl::lsl-MYCN mice were generated, which combine Crebbp deletion with overexpression of MYCN in neural stem cells (NSCs). Within eight months, these animals developed aggressive forebrain tumors. The first tumors were detectable in the olfactory bulbs of seven-day-old mice. This location raises the possibility that presumptive founder cells are derived from the ventricular-subventricular zone (V-SVZ). To examine the cellular biology of these tumors, single-cell RNA sequencing was performed, which revealed high intratumoral heterogeneity. Data comparison with reference CNS cell types indicated the highest similarity of tumor cells with transit-amplifying NSCs or activated NSCs of the V-SVZ. Consequently, we analyzed V-SVZ NSCs of our mouse model aiming to confirm that the tumors originate from this stem cell niche. Mutant V-SVZ NSCs showed significantly increased cell viability and proliferation as well as reduced glial and neural differentiation in vitro compared to control cells. In summary, we demonstrate the oncogenic potential of a combined loss of function of CREBBP and overexpression of MYCN in this cell population. hGFAP-cre::CrebbpFl/Fl::lsl-MYCN mice thus provide a valuable tool to study tumor-driving mechanisms in a key neural stem/ progenitor cell niche.
Collapse
Affiliation(s)
- Melanie Schoof
- Research Institute Children`s Cancer Center, Hamburg, Germany
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Carolin Walter
- Institute of Medical Informatics, University of Münster, Münster, Germany
| | - Annika Ballast
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany
| | - Dörthe Holdhof
- Research Institute Children`s Cancer Center, Hamburg, Germany
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Carolin Göbel
- Research Institute Children`s Cancer Center, Hamburg, Germany
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sina Neyazi
- Research Institute Children`s Cancer Center, Hamburg, Germany
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julian Varghese
- Institute of Medical Informatics, University of Münster, Münster, Germany
| | - Thomas Karl Albert
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany
| | - Kornelius Kerl
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany
| | - Ulrich Schüller
- Research Institute Children`s Cancer Center, Hamburg, Germany.
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
33
|
Kalamakis G, Platt RJ. CRISPR for neuroscientists. Neuron 2023:S0896-6273(23)00306-9. [PMID: 37201524 DOI: 10.1016/j.neuron.2023.04.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 03/14/2023] [Accepted: 04/18/2023] [Indexed: 05/20/2023]
Abstract
Genome engineering technologies provide an entry point into understanding and controlling the function of genetic elements in health and disease. The discovery and development of the microbial defense system CRISPR-Cas yielded a treasure trove of genome engineering technologies and revolutionized the biomedical sciences. Comprising diverse RNA-guided enzymes and effector proteins that evolved or were engineered to manipulate nucleic acids and cellular processes, the CRISPR toolbox provides precise control over biology. Virtually all biological systems are amenable to genome engineering-from cancer cells to the brains of model organisms to human patients-galvanizing research and innovation and giving rise to fundamental insights into health and powerful strategies for detecting and correcting disease. In the field of neuroscience, these tools are being leveraged across a wide range of applications, including engineering traditional and non-traditional transgenic animal models, modeling disease, testing genomic therapies, unbiased screening, programming cell states, and recording cellular lineages and other biological processes. In this primer, we describe the development and applications of CRISPR technologies while highlighting outstanding limitations and opportunities.
Collapse
Affiliation(s)
- Georgios Kalamakis
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland; Novartis Institutes for BioMedical Research, 4056 Basel, Switzerland
| | - Randall J Platt
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland; Department of Chemistry, University of Basel, Petersplatz 1, 4003 Basel, Switzerland; NCCR MSE, Mattenstrasse 24a, 4058 Basel, Switzerland; Botnar Research Center for Child Health, Mattenstrasse 24a, 4058 Basel, Switzerland.
| |
Collapse
|
34
|
Genet N, Genet G, Chavkin NW, Paila U, Fang JS, Vasavada HH, Goldberg JS, Acharya BR, Bhatt NS, Baker K, McDonnell SP, Huba M, Sankaranarayanan D, Ma GZM, Eichmann A, Thomas JL, Ffrench-Constant C, Hirschi KK. Connexin 43-mediated neurovascular interactions regulate neurogenesis in the adult brain subventricular zone. Cell Rep 2023; 42:112371. [PMID: 37043357 PMCID: PMC10564973 DOI: 10.1016/j.celrep.2023.112371] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 02/20/2023] [Accepted: 03/22/2023] [Indexed: 04/13/2023] Open
Abstract
The subventricular zone (SVZ) is the largest neural stem cell (NSC) niche in the adult brain; herein, the blood-brain barrier is leaky, allowing direct interactions between NSCs and endothelial cells (ECs). Mechanisms by which direct NSC-EC interactions in the adult SVZ control NSC behavior are unclear. We found that Cx43 is highly expressed by SVZ NSCs and ECs, and its deletion in either leads to increased NSC proliferation and neuroblast generation, suggesting that Cx43-mediated NSC-EC interactions maintain NSC quiescence. This is further supported by single-cell RNA sequencing and in vitro studies showing that ECs control NSC proliferation by regulating expression of genes associated with NSC quiescence and/or activation in a Cx43-dependent manner. Cx43 mediates these effects in a channel-independent manner involving its cytoplasmic tail and ERK activation. Such insights inform adult NSC regulation and maintenance aimed at stem cell therapies for neurodegenerative disorders.
Collapse
Affiliation(s)
- Nafiisha Genet
- Department of Cell Biology, Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Departments of Medicine and Genetics, Yale University School of Medicine, New Haven, CT 06511, USA; Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06511, USA.
| | - Gael Genet
- Department of Cell Biology, Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Nicholas W Chavkin
- Department of Cell Biology, Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Umadevi Paila
- Department of Cell Biology, Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Jennifer S Fang
- Departments of Medicine and Genetics, Yale University School of Medicine, New Haven, CT 06511, USA; Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Hema H Vasavada
- Department of Cell Biology, Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Departments of Medicine and Genetics, Yale University School of Medicine, New Haven, CT 06511, USA; Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Joshua S Goldberg
- Departments of Medicine and Genetics, Yale University School of Medicine, New Haven, CT 06511, USA; Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Bipul R Acharya
- Department of Cell Biology, Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Neha S Bhatt
- Departments of Medicine and Genetics, Yale University School of Medicine, New Haven, CT 06511, USA; Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Kasey Baker
- Departments of Medicine and Genetics, Yale University School of Medicine, New Haven, CT 06511, USA; Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06511, USA; Departments of Neuroscience and Cell Biology, Yale University School of Medicine, New Haven, CT 06511, USA; Department of Neurology, Yale University School of Medicine, New Haven, CT 06511, USA; Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Stephanie P McDonnell
- Department of Cell Biology, Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Mahalia Huba
- Department of Cell Biology, Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Danya Sankaranarayanan
- Department of Cell Biology, Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Gerry Z M Ma
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK; Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, UK
| | - Anne Eichmann
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06511, USA; Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Jean-Leon Thomas
- Departments of Neuroscience and Cell Biology, Yale University School of Medicine, New Haven, CT 06511, USA; Department of Neurology, Yale University School of Medicine, New Haven, CT 06511, USA; Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Charles Ffrench-Constant
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK; Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, UK
| | - Karen K Hirschi
- Department of Cell Biology, Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Departments of Medicine and Genetics, Yale University School of Medicine, New Haven, CT 06511, USA; Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06511, USA.
| |
Collapse
|
35
|
Murtaj V, Butti E, Martino G, Panina-Bordignon P. Endogenous neural stem cells characterization using omics approaches: Current knowledge in health and disease. Front Cell Neurosci 2023; 17:1125785. [PMID: 37091923 PMCID: PMC10113633 DOI: 10.3389/fncel.2023.1125785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/03/2023] [Indexed: 04/08/2023] Open
Abstract
Neural stem cells (NSCs), an invaluable source of neuronal and glial progeny, have been widely interrogated in the last twenty years, mainly to understand their therapeutic potential. Most of the studies were performed with cells derived from pluripotent stem cells of either rodents or humans, and have mainly focused on their potential in regenerative medicine. High-throughput omics technologies, such as transcriptomics, epigenetics, proteomics, and metabolomics, which exploded in the past decade, represent a powerful tool to investigate the molecular mechanisms characterizing the heterogeneity of endogenous NSCs. The transition from bulk studies to single cell approaches brought significant insights by revealing complex system phenotypes, from the molecular to the organism level. Here, we will discuss the current literature that has been greatly enriched in the “omics era”, successfully exploring the nature and function of endogenous NSCs and the process of neurogenesis. Overall, the information obtained from omics studies of endogenous NSCs provides a sharper picture of NSCs function during neurodevelopment in healthy and in perturbed environments.
Collapse
Affiliation(s)
- Valentina Murtaj
- Division of Neuroscience, San Raffaele Vita-Salute University, Milan, Italy
- Neuroimmunology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Erica Butti
- Neuroimmunology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Gianvito Martino
- Division of Neuroscience, San Raffaele Vita-Salute University, Milan, Italy
- Neuroimmunology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Paola Panina-Bordignon
- Division of Neuroscience, San Raffaele Vita-Salute University, Milan, Italy
- Neuroimmunology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS Ospedale San Raffaele, Milan, Italy
- *Correspondence: Paola Panina-Bordignon
| |
Collapse
|
36
|
Geben LC, Brockman AA, Chalkley MBL, Sweet SR, Gallagher JE, Scheuing AL, Simerly RB, Ess KC, Irish JM, Ihrie RA. Dephosphorylation of 4EBP1/2 Induces Prenatal Neural Stem Cell Quiescence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.14.528513. [PMID: 36824760 PMCID: PMC9948964 DOI: 10.1101/2023.02.14.528513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
A limiting factor in the regenerative capacity of the adult brain is the abundance and proliferative ability of neural stem cells (NSCs). Adult NSCs are derived from a subpopulation of embryonic NSCs that temporarily enter quiescence during mid-gestation and remain quiescent until postnatal reactivation. Here we present evidence that the mechanistic/mammalian target of rapamycin (mTOR) pathway regulates quiescence entry in embryonic NSCs of the developing forebrain. Throughout embryogenesis, two downstream effectors of mTOR, p-4EBP1/2 T37/46 and p-S6 S240/244, were mutually exclusive in NSCs, rarely occurring in the same cell. While 4EBP1/2 was phosphorylated in stem cells undergoing mitosis at the ventricular surface, S6 was phosphorylated in more differentiated cells migrating away from the ventricle. Phosphorylation of 4EBP1/2, but not S6, was responsive to quiescence induction in cultured embryonic NSCs. Further, inhibition of p-4EBP1/2, but not p-S6, was sufficient to induce quiescence. Collectively, this work offers new insight into the regulation of quiescence entry in embryonic NSCs and, thereby, correct patterning of the adult brain. These data suggest unique biological functions of specific posttranslational modifications and indicate that the preferential inhibition of such modifications may be a useful therapeutic approach in neurodevelopmental diseases where NSC numbers, proliferation, and differentiation are altered.
Collapse
Affiliation(s)
- Laura C. Geben
- Program in Pharmacology, Vanderbilt University, Nashville, TN, 37235, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, 37235, USA
| | - Asa A. Brockman
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, 37235, USA
| | | | - Serena R. Sweet
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37235, USA
| | - Julia E. Gallagher
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, 37235, USA
| | - Alexandra L. Scheuing
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, 37235, USA
| | - Richard B. Simerly
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37235, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville TN 37235, USA
| | - Kevin C. Ess
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, 37235, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37235, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville TN 37235, USA
| | - Jonathan M. Irish
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, 37235, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37235, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37235, USA
| | - Rebecca A. Ihrie
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, 37235, USA
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN 37235, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37235, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville TN 37235, USA
| |
Collapse
|
37
|
Temporal and spatial stability of the EM/PM molecular subtypes in adult diffuse glioma. Front Med 2023; 17:240-262. [PMID: 36645634 DOI: 10.1007/s11684-022-0936-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/21/2022] [Indexed: 01/17/2023]
Abstract
Detailed characterizations of genomic alterations have not identified subtype-specific vulnerabilities in adult gliomas. Mapping gliomas into developmental programs may uncover new vulnerabilities that are not strictly related to genomic alterations. After identifying conserved gene modules co-expressed with EGFR or PDGFRA (EM or PM), we recently proposed an EM/PM classification scheme for adult gliomas in a histological subtype- and grade-independent manner. By using cohorts of bulk samples, paired primary and recurrent samples, multi-region samples from the same glioma, single-cell RNA-seq samples, and clinical samples, we here demonstrate the temporal and spatial stability of the EM and PM subtypes. The EM and PM subtypes, which progress in a subtype-specific mode, are robustly maintained in paired longitudinal samples. Elevated activities of cell proliferation, genomic instability and microenvironment, rather than subtype switching, mark recurrent gliomas. Within individual gliomas, the EM/PM subtype was preserved across regions and single cells. Malignant cells in the EM and PM gliomas were correlated to neural stem cell and oligodendrocyte progenitor cell compartment, respectively. Thus, while genetic makeup may change during progression and/or within different tumor areas, adult gliomas evolve within a neurodevelopmental framework of the EM and PM molecular subtypes. The dysregulated developmental pathways embedded in these molecular subtypes may contain subtype-specific vulnerabilities.
Collapse
|
38
|
Sminia P, Guipaud O, Viktorsson K, Ahire V, Baatout S, Boterberg T, Cizkova J, Dostál M, Fernandez-Palomo C, Filipova A, François A, Geiger M, Hunter A, Jassim H, Edin NFJ, Jordan K, Koniarová I, Selvaraj VK, Meade AD, Milliat F, Montoro A, Politis C, Savu D, Sémont A, Tichy A, Válek V, Vogin G. Clinical Radiobiology for Radiation Oncology. RADIOBIOLOGY TEXTBOOK 2023:237-309. [DOI: 10.1007/978-3-031-18810-7_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
AbstractThis chapter is focused on radiobiological aspects at the molecular, cellular, and tissue level which are relevant for the clinical use of ionizing radiation (IR) in cancer therapy. For radiation oncology, it is critical to find a balance, i.e., the therapeutic window, between the probability of tumor control and the probability of side effects caused by radiation injury to the healthy tissues and organs. An overview is given about modern precision radiotherapy (RT) techniques, which allow optimal sparing of healthy tissues. Biological factors determining the width of the therapeutic window are explained. The role of the six typical radiobiological phenomena determining the response of both malignant and normal tissues in the clinic, the 6R’s, which are Reoxygenation, Redistribution, Repopulation, Repair, Radiosensitivity, and Reactivation of the immune system, is discussed. Information is provided on tumor characteristics, for example, tumor type, growth kinetics, hypoxia, aberrant molecular signaling pathways, cancer stem cells and their impact on the response to RT. The role of the tumor microenvironment and microbiota is described and the effects of radiation on the immune system including the abscopal effect phenomenon are outlined. A summary is given on tumor diagnosis, response prediction via biomarkers, genetics, and radiomics, and ways to selectively enhance the RT response in tumors. Furthermore, we describe acute and late normal tissue reactions following exposure to radiation: cellular aspects, tissue kinetics, latency periods, permanent or transient injury, and histopathology. Details are also given on the differential effect on tumor and late responding healthy tissues following fractionated and low dose rate irradiation as well as the effect of whole-body exposure.
Collapse
|
39
|
de Almeida MMA, Goodkey K, Voronova A. Regulation of microglia function by neural stem cells. Front Cell Neurosci 2023; 17:1130205. [PMID: 36937181 PMCID: PMC10014810 DOI: 10.3389/fncel.2023.1130205] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/13/2023] [Indexed: 03/05/2023] Open
Abstract
Neural stem and precursor cells (NPCs) build and regenerate the central nervous system (CNS) by maintaining their pool (self-renewal) and differentiating into neurons, astrocytes, and oligodendrocytes (multipotency) throughout life. This has inspired research into pro-regenerative therapies that utilize transplantation of exogenous NPCs or recruitment of endogenous adult NPCs for CNS regeneration and repair. Recent advances in single-cell RNA sequencing and other "omics" have revealed that NPCs express not just traditional progenitor-related genes, but also genes involved in immune function. Here, we review how NPCs exert immunomodulatory function by regulating the biology of microglia, immune cells that are present in NPC niches and throughout the CNS. We discuss the role of transplanted and endogenous NPCs in regulating microglia fates, such as survival, proliferation, migration, phagocytosis and activation, in the developing, injured and degenerating CNS. We also provide a literature review on NPC-specific mediators that are responsible for modulating microglia biology. Our review highlights the immunomodulatory properties of NPCs and the significance of these findings in the context of designing pro-regenerative therapies for degenerating and diseased CNS.
Collapse
Affiliation(s)
- Monique M. A. de Almeida
- Department of Medical Genetics, Faculty of Medicine & Dentistry, Edmonton, AB, Canada
- Faculty of Medicine & Dentistry, Neuroscience and Mental Health Institute, Edmonton, AB, Canada
| | - Kara Goodkey
- Department of Medical Genetics, Faculty of Medicine & Dentistry, Edmonton, AB, Canada
- Women and Children’s Health Research Institute, 5-083 Edmonton Clinic Health Academy, University of Alberta, Edmonton, AB, Canada
| | - Anastassia Voronova
- Department of Medical Genetics, Faculty of Medicine & Dentistry, Edmonton, AB, Canada
- Faculty of Medicine & Dentistry, Neuroscience and Mental Health Institute, Edmonton, AB, Canada
- Women and Children’s Health Research Institute, 5-083 Edmonton Clinic Health Academy, University of Alberta, Edmonton, AB, Canada
- Department of Cell Biology, Faculty of Medicine & Dentistry, Edmonton, AB, Canada
- Multiple Sclerosis Centre and Department of Cell Biology, Faculty of Medicine & Dentistry, Edmonton, AB, Canada
| |
Collapse
|
40
|
Lozano-Ureña A, Lázaro-Carot L, Jiménez-Villalba E, Montalbán-Loro R, Mateos-White I, Duart-Abadía P, Martínez-Gurrea I, Nakayama KI, Fariñas I, Kirstein M, Gil-Sanz C, Ferrón SR. IGF2 interacts with the imprinted gene Cdkn1c to promote terminal differentiation of neural stem cells. Development 2023; 150:dev200563. [PMID: 36633189 PMCID: PMC9903205 DOI: 10.1242/dev.200563] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 11/23/2022] [Indexed: 01/13/2023]
Abstract
Adult neurogenesis is supported by multipotent neural stem cells (NSCs) with unique properties and growth requirements. Adult NSCs constitute a reversibly quiescent cell population that can be activated by extracellular signals from the microenvironment in which they reside in vivo. Although genomic imprinting plays a role in adult neurogenesis through dose regulation of some relevant signals, the roles of many imprinted genes in the process remain elusive. Insulin-like growth factor 2 (IGF2) is encoded by an imprinted gene that contributes to NSC maintenance in the adult subventricular zone through a biallelic expression in only the vascular compartment. We show here that IGF2 additionally promotes terminal differentiation of NSCs into astrocytes, neurons and oligodendrocytes by inducing the expression of the maternally expressed gene cyclin-dependent kinase inhibitor 1c (Cdkn1c), encoding the cell cycle inhibitor p57. Using intraventricular infusion of recombinant IGF2 in a conditional mutant strain with Cdkn1c-deficient NSCs, we confirm that p57 partially mediates the differentiation effects of IGF2 in NSCs and that this occurs independently of its role in cell-cycle progression, balancing the relationship between astrogliogenesis, neurogenesis and oligodendrogenesis.
Collapse
Affiliation(s)
- Anna Lozano-Ureña
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, Valencia 46100, Spain
- Departamento de Biología Celular, Universidad de Valencia, Valencia 46100, Spain
| | - Laura Lázaro-Carot
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, Valencia 46100, Spain
- Departamento de Biología Celular, Universidad de Valencia, Valencia 46100, Spain
| | - Esteban Jiménez-Villalba
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, Valencia 46100, Spain
- Departamento de Biología Celular, Universidad de Valencia, Valencia 46100, Spain
| | - Raquel Montalbán-Loro
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, Valencia 46100, Spain
- Departamento de Biología Celular, Universidad de Valencia, Valencia 46100, Spain
| | - Isabel Mateos-White
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, Valencia 46100, Spain
- Departamento de Biología Celular, Universidad de Valencia, Valencia 46100, Spain
| | - Pere Duart-Abadía
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, Valencia 46100, Spain
- Departamento de Biología Celular, Universidad de Valencia, Valencia 46100, Spain
| | - Irene Martínez-Gurrea
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, Valencia 46100, Spain
- Departamento de Biología Celular, Universidad de Valencia, Valencia 46100, Spain
| | - Keiichi I. Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 819-0395, Japan
| | - Isabel Fariñas
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, Valencia 46100, Spain
- Departamento de Biología Celular, Universidad de Valencia, Valencia 46100, Spain
| | - Martina Kirstein
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, Valencia 46100, Spain
- Departamento de Biología Celular, Universidad de Valencia, Valencia 46100, Spain
| | - Cristina Gil-Sanz
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, Valencia 46100, Spain
- Departamento de Biología Celular, Universidad de Valencia, Valencia 46100, Spain
| | - Sacri R. Ferrón
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, Valencia 46100, Spain
- Departamento de Biología Celular, Universidad de Valencia, Valencia 46100, Spain
| |
Collapse
|
41
|
Favaloro F, DeLeo AM, Delgado AC, Doetsch F. miR-17∼92 exerts stage-specific effects in adult V-SVZ neural stem cell lineages. Cell Rep 2022; 41:111773. [PMID: 36476846 DOI: 10.1016/j.celrep.2022.111773] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 06/11/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022] Open
Abstract
Neural stem cells (NSCs) in the adult ventricular-subventricular zone (V-SVZ) generate neurons and glia throughout life. MicroRNAs are important post-transcriptional regulators frequently acting in a context-dependent manner. Here, microRNA profiling defines cohorts of miRNAs in quiescent and activated NSCs, with miR-17∼92 highly upregulated in activated NSCs and transit amplifying cells (TACs) versus quiescent NSCs. Conditional miR-17∼92 deletion in the adult V-SVZ results in stage-specific effects. In NSCs, it reduces proliferation in vitro and in vivo, whereas in TACs, it selectively shifts neurogenic OLIG2- DLX2+ toward oligodendrogenic OLIG2+ DLX2- TACs, due to de-repression of an oligodendrogenic program, leading to increased oligodendrogenesis in vivo. This differential regulation of TAC subpopulations highlights the importance of TAC heterogeneity. Finally, in the NSC lineage for intraventricular oligodendrocyte progenitors, miR-17∼92 deletion decreases proliferation and maturation. Together, these findings reveal multiple stage-specific functions of the miR-17∼92 cluster within different adult V-SVZ lineages.
Collapse
Affiliation(s)
| | - Annina M DeLeo
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Ana C Delgado
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Fiona Doetsch
- Biozentrum, University of Basel, 4056 Basel, Switzerland.
| |
Collapse
|
42
|
Wang J, Ware K, Bedolla A, Allgire E, Turcato FC, Weed M, Sah R, Luo Y. Disruption of Sonic Hedgehog Signaling Accelerates Age-Related Neurogenesis Decline and Abolishes Stroke-Induced Neurogenesis and Leads to Increased Anxiety Behavior in Stroke Mice. Transl Stroke Res 2022; 13:830-844. [PMID: 35146631 PMCID: PMC10114538 DOI: 10.1007/s12975-022-00994-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/10/2022] [Accepted: 01/31/2022] [Indexed: 02/03/2023]
Abstract
Sonic Hedgehog (SHH) signaling has a critical role in mediating developmental neurogenesis and has been implicated in adult subventricular (SVZ) neurogenesis. However, the precise role of Smoothened (SMO) receptor-mediated SHH signaling in adult neurogenesis during aging especially in hippocampal subgranular zone (SGZ) neurogenesis remains undefined. Additionally, our previous study showed that stimulation of SHH signaling post-stroke leads to increased neurogenesis and improved behavioral functions after stroke. However, it is not clear whether SHH signaling in neural stem cells (NSCs) is required for stroke-induced neurogenesis and functional recovery post-stroke. In this study, using conditional knockout (cKO) of SHH signaling receptor Smo gene in NSCs, we show a decreased neurogenesis at both SVZ and SGZ in young-adult mice and an accelerated depletion of neurogenic cells in the process of aging suggesting that SHH signaling is critical in maintaining neurogenesis during aging. Behavior studies revealed that compromised neurogenesis in Smo cKO mice leads to increased anxiety/depression-like behaviors without affecting general locomotor function or spatial and fear-related learning. Importantly, we also show that NSCs with a cKO of SHH signaling abolishes stroke-induced neurogenesis in Smo cKO mice. Compared to control mice, Smo cKO mice also show delayed motor function recovery and increased anxiety level after stroke. Our data highlights the essential role of Smo function in regulating adult neurogenesis and emotional behaviors during both aging and CNS injury such as stroke.
Collapse
Affiliation(s)
- Jiapeng Wang
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, 45267, USA
- Department of Molecular Genetics, Biochemistry and Microbiology, College of Medicine, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Kierra Ware
- Department of Molecular Genetics, Biochemistry and Microbiology, College of Medicine, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Alicia Bedolla
- Department of Molecular Genetics, Biochemistry and Microbiology, College of Medicine, University of Cincinnati, Cincinnati, OH, 45267, USA
- Neuroscience Graduate Program, College of Medicine, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Emily Allgire
- Neuroscience Graduate Program, College of Medicine, University of Cincinnati, Cincinnati, OH, 45267, USA
- Department of Pharmacology & Systems Physiology, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Flavia Correa Turcato
- Department of Molecular Genetics, Biochemistry and Microbiology, College of Medicine, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Maxwell Weed
- Department of Molecular Genetics, Biochemistry and Microbiology, College of Medicine, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Renu Sah
- Neuroscience Graduate Program, College of Medicine, University of Cincinnati, Cincinnati, OH, 45267, USA
- Department of Pharmacology & Systems Physiology, University of Cincinnati, Cincinnati, OH, 45267, USA
- Cincinnati VA Medical Center, Cincinnati, OH, 45220, USA
| | - Yu Luo
- Department of Molecular Genetics, Biochemistry and Microbiology, College of Medicine, University of Cincinnati, Cincinnati, OH, 45267, USA.
| |
Collapse
|
43
|
El Waly B, Bertet C, Paris M, Falque M, Milpied P, Magalon K, Cayre M, Durbec P. Neuroblasts contribute to oligodendrocytes generation upon demyelination in the adult mouse brain. iScience 2022; 25:105102. [PMID: 36185360 PMCID: PMC9519617 DOI: 10.1016/j.isci.2022.105102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 04/06/2022] [Accepted: 09/05/2022] [Indexed: 11/21/2022] Open
Abstract
After demyelinating insult, the neuronal progenitors of the adult mouse sub-ventricular zone (SVZ) called neuroblasts convert into oligodendrocytes that participate to the remyelination process. We use this rare example of spontaneous fate conversion to identify the molecular mechanisms governing these processes. Using in vivo cell lineage and single cell RNA-sequencing, we demonstrate that SVZ neuroblasts fate conversion proceeds through formation of a non-proliferating transient cellular state co-expressing markers of both neuronal and oligodendrocyte identities. Transition between the two identities starts immediately after demyelination and occurs gradually, by a stepwise upregulation/downregulation of key TFs and chromatin modifiers. Each step of this fate conversion involves fine adjustments of the transcription and translation machineries as well as tight regulation of metabolism and migratory behaviors. Together, these data constitute the first in-depth analysis of a spontaneous cell fate conversion in the adult mammalian CNS. NB can contribute to myelin repair by converting into oligodendrocytes NB fate conversion occurs gradually, through formation of an intermediate cell type NB fate conversion does not involve reversion toward a pluripotent state NB fate conversion seems to involve EMT-related mechanisms and metabolic changes
Collapse
|
44
|
Endogenous Neural Stem Cell Mediated Oligodendrogenesis in the Adult Mammalian Brain. Cells 2022; 11:cells11132101. [PMID: 35805185 PMCID: PMC9265817 DOI: 10.3390/cells11132101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 02/08/2023] Open
Abstract
Oligodendrogenesis is essential for replacing worn-out oligodendrocytes, promoting myelin plasticity, and for myelin repair following a demyelinating injury in the adult mammalian brain. Neural stem cells are an important source of oligodendrocytes in the adult brain; however, there are considerable differences in oligodendrogenesis from neural stem cells residing in different areas of the adult brain. Amongst the distinct niches containing neural stem cells, the subventricular zone lining the lateral ventricles and the subgranular zone in the dentate gyrus of the hippocampus are considered the principle areas of adult neurogenesis. In addition to these areas, radial glia-like cells, which are the precursors of neural stem cells, are found in the lining of the third ventricle, where they are called tanycytes, and in the cerebellum, where they are called Bergmann glia. In this review, we will describe the contribution and regulation of each of these niches in adult oligodendrogenesis.
Collapse
|
45
|
Yan Y, Dai W, Mei Q. Multicentric Glioma: An Ideal Model to Reveal the Mechanism of Glioma. Front Oncol 2022; 12:798018. [PMID: 35747806 PMCID: PMC9209746 DOI: 10.3389/fonc.2022.798018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
As a special type of glioma, multicentric glioma provides an ideal pathological model for glioma research. According to the stem-cell-origin theory, multiple lesions of multicentric glioma share the same neuro-oncological origin, both in gene level and in cell level. Although the number of studies focusing on genetic evolution in gliomas with the model of multicentric gliomas were limited, some mutations, including IDH1 mutations, TERTp mutations and PTEN deletions, are found to be at an early stage in the process of genetic aberrance during glioma evolution based on the results of these studies. This article reviews the clinical reports and genetic studies of multicentric glioma, and intends to explain the various clinical phenomena of multicentric glioma from the perspective of genetic aberrance accumulation and tumor cell evolution. The malignant degree of a glioma is determined by both the tumorigenicity of early mutant genes, and the stemness of early suffered cells.
Collapse
Affiliation(s)
- Yong Yan
- Departmentof Neurosurgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Wei Dai
- Departmentof Neurosurgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Qiyong Mei
- Departmentof Neurosurgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
46
|
Baklaushev VP, Yusubalieva GM, Samoilova EM, Belopasov VV. Resident Neural Stem Cell Niches and Regeneration: The Splendors and Miseries of Adult Neurogenesis. Russ J Dev Biol 2022. [DOI: 10.1134/s1062360422030080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
47
|
Tufo C, Poopalasundaram S, Dorrego-Rivas A, Ford MC, Graham A, Grubb MS. Development of the mammalian main olfactory bulb. Development 2022; 149:274348. [PMID: 35147186 PMCID: PMC8918810 DOI: 10.1242/dev.200210] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The mammalian main olfactory bulb is a crucial processing centre for the sense of smell. The olfactory bulb forms early during development and is functional from birth. However, the olfactory system continues to mature and change throughout life as a target of constitutive adult neurogenesis. Our Review synthesises current knowledge of prenatal, postnatal and adult olfactory bulb development, focusing on the maturation, morphology, functions and interactions of its diverse constituent glutamatergic and GABAergic cell types. We highlight not only the great advances in the understanding of olfactory bulb development made in recent years, but also the gaps in our present knowledge that most urgently require addressing. Summary: This Review describes the morphological and functional maturation of cells in the mammalian main olfactory bulb, from embryonic development to adult neurogenesis.
Collapse
Affiliation(s)
- Candida Tufo
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Subathra Poopalasundaram
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Ana Dorrego-Rivas
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Marc C Ford
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Anthony Graham
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Matthew S Grubb
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| |
Collapse
|
48
|
Kalinina A, Gnyra C, Tang V, Xue Y, Lagace DC. Isolation of the side population from neurogenic niches enriches for endothelial cells. PLoS One 2022; 17:e0250752. [PMID: 35045082 PMCID: PMC8769340 DOI: 10.1371/journal.pone.0250752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 12/03/2021] [Indexed: 11/22/2022] Open
Abstract
In stem cell research, DNA-binding dyes offer the ability to purify live stem cells using flow cytometry as they form a low-fluorescence side population due to the activity of ABC transporters. Adult neural stem cells exist within the lateral ventricle and dentate gyrus of the adult brain yet the ability of DNA-binding dyes to identify these adult stem cells as side populations remains untested. The following experiments utilize the efflux of a DNA-binding dye, Vyrbant DyeCycle Violet (DCV), to isolate bona fide side populations in the mouse dentate gyrus and subventricular zone (SVZ), and test their sensitivity to ABC transporter inhibitors. A distinct side population was found in both the adult lateral ventricle and dentate gyrus using DCV fluorescence and forward scatter instead of the conventional dual fluorescence approach. These side populations responded strongly to inhibition with the ABC transporter antagonists, verapamil and fumitremorgin C. The majority of the cells residing in the side populations of dentate gyrus and SVZ were characterized by their expression of CD31. Additionally, at least 90% of all CD31+ cells found in the dentate gyrus and SVZ were negative for the hematopoietic marker CD45, leading to the hypothesis that the CD31+ cells in the side population were endothelial cells. These findings, therefore, suggest that the side population analysis provides an efficient method to purify CD31-expressing endothelial cells, but not adult neural stem cells.
Collapse
Affiliation(s)
- Alena Kalinina
- Department of Cellular and Molecular Medicine, Neuroscience Program, Ottawa Hospital Research Institute, Brain and Mind Research Institute, University of Ottawa, Ottawa, Canada
| | - Catherine Gnyra
- Department of Cellular and Molecular Medicine, Neuroscience Program, Ottawa Hospital Research Institute, Brain and Mind Research Institute, University of Ottawa, Ottawa, Canada
| | - Vera Tang
- University of Ottawa Flow Cytometry and Virometry Core Facility, Ottawa, Ontario, Canada
| | - Yingben Xue
- Department of Cellular and Molecular Medicine, Neuroscience Program, Ottawa Hospital Research Institute, Brain and Mind Research Institute, University of Ottawa, Ottawa, Canada
| | - Diane C. Lagace
- Department of Cellular and Molecular Medicine, Neuroscience Program, Ottawa Hospital Research Institute, Brain and Mind Research Institute, University of Ottawa, Ottawa, Canada
| |
Collapse
|
49
|
Li Y, Dittmann NL, Watson AES, de Almeida MMA, Footz T, Voronova A. Hepatoma Derived Growth Factor Enhances Oligodendrocyte Genesis from Subventricular Zone Precursor Cells. ASN Neuro 2022; 14:17590914221086340. [PMID: 35293825 PMCID: PMC8943302 DOI: 10.1177/17590914221086340] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Oligodendrocytes, the myelinating cells of the central nervous system (CNS), perform vital functions in neural protection and communication, as well as cognition. Enhanced production of oligodendrocytes has been identified as a therapeutic approach for neurodegenerative and neurodevelopmental disorders. In the postnatal brain, oligodendrocytes are generated from the neural stem and precursor cells (NPCs) in the subventricular zone (SVZ) and parenchymal oligodendrocyte precursor cells (OPCs). Here, we demonstrate exogenous Hepatoma Derived Growth Factor (HDGF) enhances oligodendrocyte genesis from murine postnatal SVZ NPCs in vitro without affecting neurogenesis or astrogliogenesis. We further show that this is achieved by increasing proliferation of both NPCs and OPCs, as well as OPC differentiation into oligodendrocytes. In vivo results demonstrate that intracerebroventricular infusion of HDGF leads to increased oligodendrocyte genesis from SVZ NPCs, as well as OPC proliferation. Our results demonstrate a novel role for HDGF in regulating SVZ precursor cell proliferation and oligodendrocyte differentiation.
Collapse
Affiliation(s)
- Yutong Li
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
| | - Nicole Leanne Dittmann
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada
| | - Adrianne Eve Scovil Watson
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
| | - Monique Marylin Alves de Almeida
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada
| | - Tim Footz
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
| | - Anastassia Voronova
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada
- Women and Children’s Health Research Institute, 5-083 Edmonton Clinic Health Academy, University of Alberta, 11405 87 Avenue NW Edmonton, Alberta, Canada, T6G 1C9
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
- Multiple Sclerosis Centre, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
| |
Collapse
|
50
|
Fu X, He Q, Tao Y, Wang M, Wang W, Wang Y, Yu QC, Zhang F, Zhang X, Chen YG, Gao D, Hu P, Hui L, Wang X, Zeng YA. Recent advances in tissue stem cells. SCIENCE CHINA. LIFE SCIENCES 2021; 64:1998-2029. [PMID: 34865207 DOI: 10.1007/s11427-021-2007-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/08/2021] [Indexed: 12/13/2022]
Abstract
Stem cells are undifferentiated cells capable of self-renewal and differentiation, giving rise to specialized functional cells. Stem cells are of pivotal importance for organ and tissue development, homeostasis, and injury and disease repair. Tissue-specific stem cells are a rare population residing in specific tissues and present powerful potential for regeneration when required. They are usually named based on the resident tissue, such as hematopoietic stem cells and germline stem cells. This review discusses the recent advances in stem cells of various tissues, including neural stem cells, muscle stem cells, liver progenitors, pancreatic islet stem/progenitor cells, intestinal stem cells, and prostate stem cells, and the future perspectives for tissue stem cell research.
Collapse
Affiliation(s)
- Xin Fu
- Xinhua Hospital affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200233, China
| | - Qiang He
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yu Tao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Mengdi Wang
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Bioland Laboratory (Guangzhou), Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Wang
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Bioland Laboratory (Guangzhou), Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yalong Wang
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Qing Cissy Yu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Fang Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xiaoyu Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ye-Guang Chen
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Max-Planck Center for Tissue Stem Cell Research and Regenerative Medicine, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510530, China.
| | - Dong Gao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Ping Hu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
- Xinhua Hospital affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200233, China.
- Max-Planck Center for Tissue Stem Cell Research and Regenerative Medicine, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510530, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Bio-Research Innovation Center, Shanghai Institute of Biochemistry and Cell Biology, Suzhou, 215121, China.
| | - Lijian Hui
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Bio-Research Innovation Center, Shanghai Institute of Biochemistry and Cell Biology, Suzhou, 215121, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, 310024, China.
| | - Xiaoqun Wang
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Bioland Laboratory (Guangzhou), Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Advanced Innovation Center for Human Brain Protection, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China.
| | - Yi Arial Zeng
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
- Bio-Research Innovation Center, Shanghai Institute of Biochemistry and Cell Biology, Suzhou, 215121, China.
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, 310024, China.
| |
Collapse
|