1
|
Campbell KSJ, Oberlander TF. Prenatal Antidepressant Exposure and the Developing Brain: A Review of Neuroimaging Findings. Curr Top Behav Neurosci 2025. [PMID: 40360928 DOI: 10.1007/7854_2025_591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Antenatal mood disturbances are experienced by as many as 20% of pregnant mothers and are commonly treated with serotonin reuptake inhibitor (SRI) antidepressants. Both maternal depression and SRIs during pregnancy are associated with low birth weight and infant neurobehavioral disturbances, as well as longer-term impacts on child neurodevelopment, behavior, and mental health. As maternal depression and its pharmacotherapy are inherently interrelated prenatal exposures, distinguishing how these early life factors uniquely impact child development remains methodologically challenging. Over the past several years, however, advanced neuroimaging has been successfully used to identify neural correlates of prenatal depression and SRI antidepressant exposure on the developing brain, extending from the early newborn period through adolescence. In this review, we examine the use of magnetic resonance imaging and electroencephalography to study child brain structure or function, with a specific focus on prenatal antidepressants as the primary exposure in relation to either typical development or exposure to maternal depressed mood alone. We include both cross-sectional and longitudinal neuroimaging studies, as well as those that link early brain findings with cognitive or behavioral outcome in childhood. We also discuss factors that may shape neurodevelopmental risk (e.g., maternal mental illness severity, sex differences, genetic variability) and present suggestions for future research that will advance our understanding of child brain development in the context of maternal mood disturbances during pregnancy.
Collapse
Affiliation(s)
- Kayleigh S J Campbell
- BC Children's Hospital Research Institute, Vancouver, BC, Canada
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Tim F Oberlander
- BC Children's Hospital Research Institute, Vancouver, BC, Canada.
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
2
|
Ghai U, Chachra P, Mendon S, Janakiraman B, Fanibunda SE, Sarkar A, Gohil D, Jayaprasad AB, Kukkemane K, Singh V, Kolthur-Seetharam U, Vaidya VA. Postnatal and juvenile fluoxetine treatment evokes sex-specific, opposing effects on mood-related behavior, gene expression, mitochondrial function, and dendritic architecture in the rat medial prefrontal cortex. Biol Psychiatry 2025:S0006-3223(25)01188-6. [PMID: 40350070 DOI: 10.1016/j.biopsych.2025.04.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 04/19/2025] [Accepted: 04/30/2025] [Indexed: 05/14/2025]
Abstract
BACKGROUND Serotonin shapes emotional neurocircuit development, and serotonergic neurotransmission is implicated in both the pathophysiology and treatment of neuropsychiatric disorders. The selective serotonin reuptake inhibitor, fluoxetine (Flx) is a common first-line treatment for childhood and adolescent mood disorders given a favourable risk-benefit profile. Using a rodent model we addressed specific long-term behavioral, molecular, bioenergetic and cytoarchitectural consequences of postnatal (PNFlx) and juvenile (JFlx) fluoxetine treatment. METHODS Rat pups received PNFlx (postnatal day 2: P2-P21) or JFlx (P28-48) treatment with the impact on anxiety- and despair-like behavior examined in adulthood, along with assessing global gene expression, mitochondrial function, and dendritic cytoarchitecture in the medial prefrontal cortex (mPFC). RESULTS PNFlx and JFlx evoked long-lasting, opposing changes in anxiety- and despair-like behavior in male, but not female, rats. The PNFlx- and JFlx-evoked increase and decrease in anxiety- and despair-like behavior respectively, were accompanied by distinctive, minimally overlapping, transcriptional changes in the mPFC in adulthood. Furthermore, we noted starkly differing outcomes of PNFlx and JFlx on mitochondrial function and dendritic cytoarchitecture in the mPFC. The PNFlx evoked despair-like behavior was reversed by adult-onset treatment with nicotinamide, a NAD+precursor that enhances mitochondrial bioenergetics. CONCLUSIONS Collectively, our findings highlight distinct developmental epochs wherein fluoxetine exposure can program long-term, sex-specific, opposing outcomes on mood-related behavior, accompanied by persistent changes in gene expression, mitochondrial function and neuronal cytoarchitecture in the mPFC in adulthood. This motivates future studies to examine a potential role for altered bioenergetics in shaping the differential impact of early fluoxetine treatment on emotionality.
Collapse
Affiliation(s)
- Utkarsha Ghai
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Parul Chachra
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Suchith Mendon
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Balaganesh Janakiraman
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Sashaina E Fanibunda
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India; Kasturba Health Society - Medical Research Centre, Mumbai 400056, India
| | - Ambalika Sarkar
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Dievya Gohil
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | | | - Kowshik Kukkemane
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Vivek Singh
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Ullas Kolthur-Seetharam
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Vidita A Vaidya
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India.
| |
Collapse
|
3
|
Eastman B, Tabuchi N, Zhang XL, Spencer WC, Deneris ES. LMX1B missense-perturbation of regulatory element footprints disrupts serotonergic forebrain axon arborization. Proc Natl Acad Sci U S A 2025; 122:e2411716122. [PMID: 40168115 PMCID: PMC12002326 DOI: 10.1073/pnas.2411716122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 02/28/2025] [Indexed: 04/03/2025] Open
Abstract
Pathogenic coding mutations are prevalent in human neuronal transcription factors (TFs) but how they disrupt development is poorly understood. Lmx1b is a master transcriptional regulator of postmitotic Pet1 neurons that give rise to mature serotonin (5-HT) neurons; over two hundred pathogenic heterozygous mutations have been discovered in human LMX1B, yet their impact on brain development has not been investigated. Here, we developed mouse models with different LMX1B DNA-binding missense mutations. Missense heterozygosity broadly altered Pet1 neuron transcriptomes, but expression changes converged on axon and synapse genes. Missense heterozygosity effected highly specific deficits in the postnatal maturation of forebrain serotonin axon arbors, primarily in the hippocampus and motor cortex, which was associated with spatial memory defects. Digital genomic footprinting (DGF) revealed that missense heterozygosity caused complete loss of Lmx1b motif protection and chromatin accessibility at sites enriched for a distal active enhancer/active promoter histone signature and homeodomain binding motifs; at other bound Lmx1b motifs, varying levels of losses, gains, or no change in motif binding and accessibility were found. The spectrum of footprint changes was strongly associated with synapse and axon genes. Further, Lmx1b missense heterozygosity caused wide disruption of Lmx1b-dependent GRNs comprising diverse TFs expressed in Pet1 neurons. These findings reveal an unanticipated continuum of Lmx1b missense-forced perturbations on Pet1 neuron regulatory element TF binding and accessibility. Our work illustrates DGF's utility for gaining unique insight into how expressed TF missense mutations interfere with developing neuronal GRNs.
Collapse
Affiliation(s)
- Brent Eastman
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH44106
| | - Nobuko Tabuchi
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH44106
| | - Xinrui L. Zhang
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH44106
| | - William C. Spencer
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH44106
| | - Evan S. Deneris
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH44106
| |
Collapse
|
4
|
De Stasi AM, Zorrilla de San Martin J, Soto N, Aguirre A, Olusakin J, Lourenço J, Gaspar P, Bacci A. Alterations of Adult Prefrontal Circuits Induced by Early Postnatal Fluoxetine Treatment Mediated by 5-HT7 Receptors. J Neurosci 2025; 45:e2393232024. [PMID: 39909574 PMCID: PMC11800747 DOI: 10.1523/jneurosci.2393-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 02/07/2025] Open
Abstract
The prefrontal cortex (PFC) plays a key role in high-level cognitive functions and emotional behaviors, and PFC alterations correlate with different brain disorders including major depression and anxiety. In mice, the first two postnatal weeks represent a critical period of high sensitivity to environmental changes. In this temporal window, serotonin (5-HT) levels regulate the wiring of PFC cortical neurons. Early-life insults and postnatal exposure to the selective serotonin reuptake inhibitor fluoxetine (FLX) affect PFC development leading to depressive and anxiety-like phenotypes in adult mice. However, the mechanisms responsible for these dysfunctions remain obscure. We found that early postnatal FLX exposure (PNFLX) results in reduced overall firing and high-frequency bursting of putative pyramidal neurons (PNs) of deep layers of the medial PFC of adult mice of both sexes in vivo. Ex vivo, patch-clamp recordings revealed that PNFLX abolished high-frequency firing in a distinct subpopulation of deep-layer mPFC PNs, which transiently express the serotonin transporter SERT during the first 2 postnatal weeks. SERT+ and SERT- PNs exhibit distinct morphofunctional properties. Genetic deletion of 5-HT7Rs and pharmacological 5-HT7R blockade partially rescued both the PNFLX-induced reduction of PN firing in vivo and the altered firing of SERT+ PNs in vitro. This indicates a pivotal role of this 5-HTR subtype in mediating 5-HT-dependent maturation of PFC circuits that are susceptible to early-life insults. Overall, our results suggest potential novel neurobiological mechanisms, underlying detrimental neurodevelopmental consequences induced by early-life alterations of 5-HT levels.
Collapse
Affiliation(s)
| | | | - Nina Soto
- Sorbonne Université, ICM-Paris Brain Institute, CNRS, INSERM, Paris 75013, France
| | - Andrea Aguirre
- Sorbonne Université, ICM-Paris Brain Institute, CNRS, INSERM, Paris 75013, France
| | - Jimmy Olusakin
- INSERM UMRS-839 Institut du Fer à Moulin, Paris 75005, France
| | - Joana Lourenço
- Sorbonne Université, ICM-Paris Brain Institute, CNRS, INSERM, Paris 75013, France
| | - Patricia Gaspar
- Sorbonne Université, ICM-Paris Brain Institute, CNRS, INSERM, Paris 75013, France
| | - Alberto Bacci
- Sorbonne Université, ICM-Paris Brain Institute, CNRS, INSERM, Paris 75013, France
| |
Collapse
|
5
|
Xue Q, Xu H, Zhu M, Qian B, Gao L, Gou L, Hintiryan H, Shih JC, Dong HW. Early Postnatal Pharmacological Intervention Rescues the Disruption of Developmental Connectivity in MAO-A KO Mice. Neurosci Bull 2025; 41:339-343. [PMID: 39446241 PMCID: PMC11794938 DOI: 10.1007/s12264-024-01304-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/27/2024] [Indexed: 10/25/2024] Open
Affiliation(s)
- Qian Xue
- Department of Pharmacology and Pharmaceuticals Sciences, Mann School of Pharmacy, University of Southern California, Los Angeles, CA, 90033, USA
| | - Hanpeng Xu
- Department of Neurobiology, David Geffen School of Medicine, University California Los Angeles, Los Angeles, CA, 90089, USA
| | - Muye Zhu
- Department of Neurobiology, David Geffen School of Medicine, University California Los Angeles, Los Angeles, CA, 90089, USA
| | - Bin Qian
- Department of Pharmacology and Pharmaceuticals Sciences, Mann School of Pharmacy, University of Southern California, Los Angeles, CA, 90033, USA
| | - Lei Gao
- Department of Neurobiology, David Geffen School of Medicine, University California Los Angeles, Los Angeles, CA, 90089, USA
| | - Lin Gou
- Department of Neurobiology, David Geffen School of Medicine, University California Los Angeles, Los Angeles, CA, 90089, USA
| | - Houri Hintiryan
- Department of Neurobiology, David Geffen School of Medicine, University California Los Angeles, Los Angeles, CA, 90089, USA
| | - Jean C Shih
- Department of Pharmacology and Pharmaceuticals Sciences, Mann School of Pharmacy, University of Southern California, Los Angeles, CA, 90033, USA.
- of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90032, USA.
| | - Hong-Wei Dong
- Department of Neurobiology, David Geffen School of Medicine, University California Los Angeles, Los Angeles, CA, 90089, USA.
| |
Collapse
|
6
|
Ni Z, Tian X, Zhao W, Hu W, Lv J, Sun X, Zhang Y, Zhang Y, Zhang Y, Li B, Liu F. The detrimental effects and mechanisms of Orlistat in disrupting energy homeostasis and reproduction in Daphnia magna. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 279:107201. [PMID: 39657302 DOI: 10.1016/j.aquatox.2024.107201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/27/2024] [Accepted: 12/06/2024] [Indexed: 12/12/2024]
Abstract
Orlistat (ORL) has been employed as an anti-obesity pharmaceutical for several decades. Given its low absorption rate, the majority of administered ORL is excreted into the environment with feces. It is crucial to collect scientific information regarding the possible ecological risks associated with ORL. Here, the effects of ORL on Daphnia magna were evaluated using a 21-day chronic test at concentrations of 1, 10, 100, and 1000 μg/L. We found the inhibition of feeding and swimming activities in the 100 and 1000 μg/L ORL exposed D. magna, respectively. Their digestive enzyme activities and metabolites were reduced even at 1 μg/L ORL exposure. It is noteworthy that exposure to 100 μg/L ORL induced a decrease in the reproductive capacity of D. magna, although no discernible genotoxicity was observed. To identify the toxicological mechanisms of ORL, a metabolic analysis was conducted on D. magna exposed to 1000 μg/L ORL. A comprehensive reduction in carbohydrates, lipids, and amino acids was observed, which resulted in a blockage of metabolic flux towards the TCA cycle, as evidenced by mitochondrial dysfunction. These findings substantiate the detrimental impact of ORL on D. magna and provide insights into the underlying molecular mechanisms from a metabolic perspective.
Collapse
Affiliation(s)
- Zhihua Ni
- Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, 071002, China; Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, 071002, China
| | - Xinling Tian
- College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China
| | - Wenbo Zhao
- Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, 071002, China
| | - Wenkai Hu
- Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, 071002, China
| | - Jinghua Lv
- Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, 071002, China
| | - Xiaoli Sun
- Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, 071002, China
| | - Yajie Zhang
- Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, 071002, China
| | - Yiwen Zhang
- Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, 071002, China
| | - Yuming Zhang
- Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, 071002, China; Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, 071002, China
| | - Baoku Li
- College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China.
| | - Fengsong Liu
- Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, 071002, China; Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, 071002, China.
| |
Collapse
|
7
|
Sim MA, Liao Y, Chan SP, Tan ESJ, Kan CN, Chong JR, Chai YL, Venketasubramanian N, Tan BY, Hilal S, Xu X, Chen CLH, Lai MKP. Low serum serotonin is associated with functional decline, mild behavioural impairment and brain atrophy in dementia-free subjects. Brain Commun 2025; 7:fcaf005. [PMID: 39816197 PMCID: PMC11733688 DOI: 10.1093/braincomms/fcaf005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 11/10/2024] [Accepted: 01/08/2025] [Indexed: 01/18/2025] Open
Abstract
Brain serotonin dysregulation is associated with dementia and neuropsychiatric symptomology. However, the prognostic utility of circulating serotonin levels in detecting features of prodromal dementia including functional decline, cognitive impairment, mild behavioural impairment and brain atrophy remains unclear. In this prospective study of memory clinic subjects followed-up for ≤5 years, dementia-free subjects, classified as having no cognitive impairment or cognitive impairment, no dementia at baseline, underwent annual neuropsychological assessments including Montreal Cognitive Assessment, Global Cognition Z-scores and Clinical Dementia Rating Scale Global Scores (where a ≥ 0.5 increment from baseline denotes functional decline). Mild behavioural impairment was measured using baseline and annual Neuropsychiatric Inventory assessments, while brain atrophy was evaluated using cortical and medial temporal atrophy scores from baseline MRI scans. Baseline serum serotonin was then associated with the neuropsychological and neuroimaging measures cross-sectionally and longitudinally. Furthermore, associations of serum serotonin with cross-sectional brain atrophy scores were studied. Of the 191 elderly subjects included in the study, 63 (33.0%) had no cognitive impairment while 128 (67.0%) had cognitive impairment, no dementia. Fourteen subjects (9.0%) showed baseline mild behavioural impairment. Compared with the highest tertile, subjects within the lowest tertile of serotonin had greater Cortical Atrophy scores (adjusted odds ratio = 2.54, 95% confidence interval=1.22-5.30, P = 0.013). Serotonin levels were not significantly associated with cross-sectional neuropsychological or mild behavioural impairment scores (all P > 0.05). Of the 181 subjects with longitudinal cognitive follow-up (median duration 60.0 months), 56 (30.9%) developed functional decline, while incident mild behavioural impairment occurred in 26/119 (21.8%) subjects. Compared with the highest tertile, lower serotonin levels were associated with higher hazards of functional decline (lowest tertile: adjusted hazards ratio = 2.15, 95% confidence interval = 1.04-4.44, P = 0.039), and incident mild behavioural impairment (lowest tertile: adjusted hazards ratio = 3.82, 95% confidence interval = 1.13-12.87, P = 0.031, middle tertile: adjusted hazards ratio = 3.56, 95% confidence interval =1.05-12.15, P = 0.042). The association between the lowest serotonin tertile and functional decline was mediated via its effect on incident mild behavioural impairment (adjusted odds ratio = 3.96, 95% confidence interval = 1.15-13.61, P = 0.029). In conclusion, low circulating serotonin may be associated with cortical atrophy at baseline, as well as act as an early prognostic marker for functional decline and mild behavioural impairment in elderly, dementia-free subjects.
Collapse
Affiliation(s)
- Ming Ann Sim
- Department of Anaesthesia, National University Health System, S119074 Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, S117600 Singapore, Singapore
- Memory Aging and Cognition Centre, National University Health System, S117599 Singapore, Singapore
| | - Yingqi Liao
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, S117600 Singapore, Singapore
- Memory Aging and Cognition Centre, National University Health System, S117599 Singapore, Singapore
| | - Siew Pang Chan
- National University Heart Centre, S119074 Singapore, Singapore
- Cardiovascular Research Institute, National University of Singapore, S117599 Singapore, Singapore
| | - Eugene S J Tan
- National University Heart Centre, S119074 Singapore, Singapore
- Cardiovascular Research Institute, National University of Singapore, S117599 Singapore, Singapore
| | - Cheuk Ni Kan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, S117600 Singapore, Singapore
- Memory Aging and Cognition Centre, National University Health System, S117599 Singapore, Singapore
| | - Joyce R Chong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, S117600 Singapore, Singapore
- Memory Aging and Cognition Centre, National University Health System, S117599 Singapore, Singapore
| | - Yuek Ling Chai
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, S117600 Singapore, Singapore
- Memory Aging and Cognition Centre, National University Health System, S117599 Singapore, Singapore
| | | | | | - Saima Hilal
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, S117600 Singapore, Singapore
- Memory Aging and Cognition Centre, National University Health System, S117599 Singapore, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, S117549 Singapore, Singapore
| | - Xin Xu
- School of Public Health, Zhejiang University, Hangzhou 310058, People’s Republic of China
| | - Christopher L H Chen
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, S117600 Singapore, Singapore
- Memory Aging and Cognition Centre, National University Health System, S117599 Singapore, Singapore
| | - Mitchell K P Lai
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, S117600 Singapore, Singapore
- Memory Aging and Cognition Centre, National University Health System, S117599 Singapore, Singapore
| |
Collapse
|
8
|
Eastman B, Tabuchi N, Zhang X, Spencer WC, Deneris ES. LMX1B missense-perturbation of regulatory element footprints disrupts serotonergic forebrain axon arborization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.12.628165. [PMID: 39713471 PMCID: PMC11661190 DOI: 10.1101/2024.12.12.628165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Pathogenic coding mutations are prevalent in human neuronal transcription factors (TFs) but how they disrupt development is poorly understood. Lmx1b is a master transcriptional regulator of postmitotic Pet1 neurons that give rise to mature serotonin (5-HT) neurons; over two hundred pathogenic heterozygous mutations have been discovered in human LMX1B, yet their impact on brain development has not been investigated. Here, we developed mouse models with different LMX1B DNA-binding missense mutations. Missense heterozygosity broadly altered Pet1 neuron transcriptomes, but expression changes converged on axon and synapse genes. Missense heterozygosity effected highly specific deficits in the postnatal maturation of forebrain serotonin axon arbors, primarily in the hippocampus and motor cortex, which was associated with spatial memory defects. Digital genomic footprinting (DGF) revealed that missense heterozygosity caused complete loss of Lmx1b motif protection and chromatin accessibility at sites enriched for a distal active enhancer/active promoter histone signature and homeodomain binding motifs; at other bound Lmx1b motifs, varying levels of losses, gains or no change in motif binding and accessibility were found. The spectrum of footprint changes was strongly associated with synapse and axon genes. Further, Lmx1b missense heterozygosity caused wide disruption of Lmx1b-dependent GRNs comprising diverse TFs expressed in Pet1 neurons. These findings reveal an unanticipated continuum of Lmx1b missense-forced perturbations on Pet1 neuron regulatory element TF binding and accessibility. Our work illustrates the power of DGF for gaining unique insight into how TF missense mutations interfere with developing neuronal GRNs.
Collapse
Affiliation(s)
- Brent Eastman
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, United States
| | - Nobuko Tabuchi
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, United States
| | - Xinrui Zhang
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, United States
| | - William C. Spencer
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, United States
| | - Evan S. Deneris
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, United States
| |
Collapse
|
9
|
Castle ME, Flanigan ME. The role of brain serotonin signaling in excessive alcohol consumption and withdrawal: A call for more research in females. Neurobiol Stress 2024; 30:100618. [PMID: 38433994 PMCID: PMC10907856 DOI: 10.1016/j.ynstr.2024.100618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/01/2024] [Accepted: 02/14/2024] [Indexed: 03/05/2024] Open
Abstract
Alcohol Use Disorder (AUD) is a leading cause of death and disability worldwide, but current treatments are insufficient in fully addressing the symptoms that often lead to relapses in alcohol consumption. The brain's serotonin system has been implicated in AUD for decades and is a major regulator of stress-related behaviors associated with increased alcohol consumption. This review will discuss the current literature on the association between neurobiological adaptations in serotonin systems and AUD in humans as well as the effectiveness of serotonin receptor manipulations on alcohol-related behaviors like consumption and withdrawal. We will further discuss how these findings in humans relate to findings in animal models, including a comparison of systemic pharmacological manipulations modulating alcohol consumption. We next provide a detailed overview of brain region-specific roles for serotonin and serotonin receptor signaling in alcohol-related behaviors in preclinical animal models, highlighting the complexity of forming a cohesive model of serotonin function in AUD and providing possible avenues for more effective therapeutic intervention. Throughout the review, we discuss what is known about sex differences in the sequelae of AUD and the role of serotonin in these sequelae. We stress a critical need for additional studies in women and female animals so that we may build a clearer path to elucidating sex-specific serotonergic mechanisms and develop better treatments.
Collapse
Affiliation(s)
- Megan E. Castle
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Meghan E. Flanigan
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| |
Collapse
|
10
|
Li Y, Duan J, Li Y, Zhang M, Wu J, Wang G, Li S, Hu Z, Qu Y, Li Y, Hu X, Guo F, Cao L, Lu J. Transcriptomic profiling across human serotonin neuron differentiation via the FEV reporter system. Stem Cell Res Ther 2024; 15:107. [PMID: 38637896 PMCID: PMC11027224 DOI: 10.1186/s13287-024-03728-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/10/2024] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND The detailed transcriptomic profiles during human serotonin neuron (SN) differentiation remain elusive. The establishment of a reporter system based on SN terminal selector holds promise to produce highly-purified cells with an early serotonergic fate and help elucidate the molecular events during human SN development process. METHODS A fifth Ewing variant (FEV)-EGFP reporter system was established by CRISPR/Cas9 technology to indicate SN since postmitotic stage. FACS was performed to purify SN from the heterogeneous cell populations. RNA-sequencing analysis was performed for cells at four key stages of differentiation (pluripotent stem cells, serotonergic neural progenitors, purified postmitotic SN and purifed mature SN) to explore the transcriptomic dynamics during SN differentiation. RESULTS We found that human serotonergic fate specification may commence as early as day 21 of differentiation from human pluripotent stem cells. Furthermore, the transcriptional factors ZIC1, HOXA2 and MSX2 were identified as the hub genes responsible for orchestrating serotonergic fate determination. CONCLUSIONS For the first time, we exposed the developmental transcriptomic profiles of human SN via FEV reporter system, which will further our understanding for the development process of human SN.
Collapse
Affiliation(s)
- Yingqi Li
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jinjin Duan
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - You Li
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Meihui Zhang
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jiaan Wu
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Guanhao Wang
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Shuanqing Li
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Zhangsen Hu
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yi Qu
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yunhe Li
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xiran Hu
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Fei Guo
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Lining Cao
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China.
| | - Jianfeng Lu
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China.
- Suzhou Institute of Tongji University, Suzhou, China.
| |
Collapse
|
11
|
Nazzi S, Picchi M, Migliarini S, Maddaloni G, Barsotti N, Pasqualetti M. Reversible Morphological Remodeling of Prefrontal and Hippocampal Serotonergic Fibers by Fluoxetine. ACS Chem Neurosci 2024; 15:1702-1711. [PMID: 38433715 DOI: 10.1021/acschemneuro.3c00837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024] Open
Abstract
Serotonin-releasing fibers depart from the raphe nuclei to profusely innervate the entire central nervous system, displaying in some brain regions high structural plasticity in response to genetically induced abrogation of serotonin synthesis. Chronic fluoxetine treatment used as a tool to model peri-physiological, clinically relevant serotonin elevation is also able to cause structural rearrangements of the serotonergic fibers innervating the hippocampus. Whether this effect is limited to hippocampal-innervating fibers or extends to other populations of axons is not known. Here, we used confocal imaging and three-dimensional (3-D) modeling analysis to expand our morphological investigation of fluoxetine-mediated effects on serotonergic circuitry. We found that chronic treatment with a behaviorally active dose of fluoxetine affects the morphology and reduces the density of serotonergic axons innervating the medial prefrontal cortex, a brain region strongly implicated in the regulation of depressive- and anxiety-like behavior. Axons innervating the somatosensory cortex were unaffected, suggesting differential susceptibility to serotonin changes across cortical areas. Importantly, a 1-month washout period was sufficient to reverse morphological changes in both the medial prefrontal cortex and in the previously characterized hippocampus, as well as to normalize behavior, highlighting an intriguing relationship between axon density and an antidepressant-like effect. Overall, these results further demonstrate the bidirectional plasticity of defined serotonergic axons and provide additional insights into fluoxetine effects on the serotonergic system.
Collapse
Affiliation(s)
- Serena Nazzi
- Department of Biology, Unit of Cell and Developmental Biology, University of Pisa, Pisa 56127, Italy
| | - Marta Picchi
- Department of Biology, Unit of Cell and Developmental Biology, University of Pisa, Pisa 56127, Italy
| | - Sara Migliarini
- Department of Biology, Unit of Cell and Developmental Biology, University of Pisa, Pisa 56127, Italy
| | - Giacomo Maddaloni
- Department of Biology, Unit of Cell and Developmental Biology, University of Pisa, Pisa 56127, Italy
| | - Noemi Barsotti
- Department of Biology, Unit of Cell and Developmental Biology, University of Pisa, Pisa 56127, Italy
- Centro per l'Integrazione della Strumentazione Scientifica dell'Università di Pisa (CISUP), Pisa 56126, Italy
| | - Massimo Pasqualetti
- Department of Biology, Unit of Cell and Developmental Biology, University of Pisa, Pisa 56127, Italy
- Centro per l'Integrazione della Strumentazione Scientifica dell'Università di Pisa (CISUP), Pisa 56126, Italy
- Center for Neuroscience and Cognitive Systems@UniTn, Istituto Italiano di Tecnologia, Rovereto 38068, Italy
| |
Collapse
|
12
|
Kisner A, Polter AM. Maturation of glutamatergic transmission onto dorsal raphe serotonergic neurons. J Neurophysiol 2024; 131:626-637. [PMID: 38380827 PMCID: PMC11305679 DOI: 10.1152/jn.00037.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/01/2024] [Accepted: 02/19/2024] [Indexed: 02/22/2024] Open
Abstract
Serotonergic neurons in the dorsal raphe nucleus (DRN) play important roles early in postnatal development in the maturation and modulation of higher-order emotional, sensory, and cognitive circuitry. The pivotal functions of these cells in brain development make them a critical substrate by which early experience can be wired into the brain. In this study, we investigated the maturation of synapses onto dorsal raphe serotonergic neurons in typically developing male and female mice using whole cell patch-clamp recordings in ex vivo brain slices. We show that while inhibition of these neurons is relatively stable across development, glutamatergic synapses greatly increase in strength between postnatal day 6 (P6) and P21-23. In contrast to forebrain regions, where the components making up glutamatergic synapses are dynamic across early life, we find that DRN excitatory synapses maintain a very high ratio of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) to N-methyl-d-aspartate (NMDA) receptors and a rectifying component of the AMPA response until adulthood. Overall, these findings reveal that the development of serotonergic neurons is marked by a significant refinement of glutamatergic synapses during the first three postnatal weeks. This suggests this time is a sensitive period of heightened plasticity for the integration of information from upstream brain areas. Genetic and environmental insults during this period could lead to alterations in serotonergic output, impacting both the development of forebrain circuits and lifelong neuromodulatory actions.NEW & NOTEWORTHY Serotonergic neurons are regulators of both the development of and ongoing activity in neuronal circuits controlling affective, cognitive, and sensory processing. Here, we characterize the maturation of extrinsic synaptic inputs onto these cells, showing that the first three postnatal weeks are a period of synaptic refinement and a potential window for experience-dependent plasticity in response to both enrichment and adversity.
Collapse
Affiliation(s)
- Alexandre Kisner
- Department of Pharmacology and Physiology, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, United States
| | - Abigail M Polter
- Department of Pharmacology and Physiology, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, United States
| |
Collapse
|
13
|
Bonaldo B, Casile A, Ostuni MT, Bettarelli M, Nasini S, Marraudino M, Panzica G, Gotti S. Perinatal exposure to bisphenol A or S: Effects on anxiety-related behaviors and serotonergic system. CHEMOSPHERE 2024; 349:140827. [PMID: 38042429 DOI: 10.1016/j.chemosphere.2023.140827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/06/2023] [Accepted: 11/26/2023] [Indexed: 12/04/2023]
Abstract
Bisphenols, synthetic organic compounds used in the production of plastics, are an extremely abundant class of Endocrine Disrupting Chemicals, i.e., exogenous chemicals or mixtures of chemicals that can interfere with any aspect of hormone action. Exposure to BPs can lead to a wide range of effects, and it is especially dangerous if it occurs during specific critical periods of life. Focusing on the perinatal exposure to BPA or its largely used substitute BPS, we investigated the effects on anxiety-related behaviors and the serotonergic system, which is highly involved in controlling these behaviors, in adult mice. We treated C57BL/6J dams orally with a dose of 4 μg/kg body weight/day (i.e., EFSA TDI) of BPA or BPS dissolved in corn oil or with vehicle alone, at the onset of mating and continued treatment until the offspring were weaned. Adult offspring of both sexes performed the elevated plus maze and the open field tests. Then, we analyzed the serotonergic system in dorsal (DR) and median (MnR) raphe nuclei by immunohistochemical techniques. Behavioral tests highlighted alterations in BPA- and BPS-treated mice, suggesting different effects of the bisphenols exposure on anxiety-related behavior in males (anxiolytic) and females (anxiogenic). The analysis of the serotonergic system highlighted a sex dimorphism in the DR only, with control females showing higher values of serotonin immunoreactivity (5-HT-ir) than control males. BPA-treated males displayed a significant increase of 5-HT-ir in all analyzed nuclei, whereas BPS-treated males showed an increase in ventral DR only. In females, both bisphenols-treated groups showed a significant increase of 5-HT-ir in dorsal DR compared to the controls, and BPA-treated females also showed a significant increase in MnR.These results provide evidence that exposure during the early phases of life to BPA or BPS alters anxiety and the raphe serotonergic neurons in a sex-dependent manner.
Collapse
Affiliation(s)
- Brigitta Bonaldo
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10-10043 Orbassano, Turin, Italy; Department of Neuroscience "Rita Levi-Montalcini", University of Turin, Via Cherasco 15, 10126, Turin, Italy; Department of Health Sciences and Research Center on Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale (UPO), Novara, Italy.
| | - Antonino Casile
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10-10043 Orbassano, Turin, Italy; Department of Neuroscience "Rita Levi-Montalcini", University of Turin, Via Cherasco 15, 10126, Turin, Italy; School of Pharmacy, Pharmacology Unit, University of Camerino, Via Madonna delle Carceri, 9, Camerino, 62032, Italy
| | - Marialaura Teresa Ostuni
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10-10043 Orbassano, Turin, Italy
| | - Martina Bettarelli
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10-10043 Orbassano, Turin, Italy
| | - Sofia Nasini
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Largo Meneghetti 2, 35131, Padua, PD, Italy
| | - Marilena Marraudino
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10-10043 Orbassano, Turin, Italy; Department of Neuroscience "Rita Levi-Montalcini", University of Turin, Via Cherasco 15, 10126, Turin, Italy
| | - GianCarlo Panzica
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10-10043 Orbassano, Turin, Italy; Department of Neuroscience "Rita Levi-Montalcini", University of Turin, Via Cherasco 15, 10126, Turin, Italy
| | - Stefano Gotti
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10-10043 Orbassano, Turin, Italy; Department of Neuroscience "Rita Levi-Montalcini", University of Turin, Via Cherasco 15, 10126, Turin, Italy
| |
Collapse
|
14
|
Cucun G, Köhler M, Pfitsch S, Rastegar S. Insights into the mechanisms of neuron generation and specification in the zebrafish ventral spinal cord. FEBS J 2024; 291:646-662. [PMID: 37498183 DOI: 10.1111/febs.16913] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/20/2023] [Accepted: 07/25/2023] [Indexed: 07/28/2023]
Abstract
The vertebrate nervous system is composed of a wide range of neurons and complex synaptic connections, raising the intriguing question of how neuronal diversity is generated. The spinal cord provides an excellent model for exploring the mechanisms governing neuronal diversity due to its simple neural network and the conserved molecular processes involved in neuron formation and specification during evolution. This review specifically examines two distinct progenitor domains present in the zebrafish ventral spinal cord: the lateral floor plate (LFP) and the p2 progenitor domain. The LFP is responsible for the production of GABAergic Kolmer-Agduhr neurons (KA″), glutamatergic V3 neurons, and intraspinal serotonergic neurons, while the p2 domain generates V2 precursors that subsequently differentiate into three unique subpopulations of V2 neurons, namely glutamatergic V2a, GABAergic V2b, and glycinergic V2s. Based on recent findings, we will examine the fundamental signaling pathways and transcription factors that play a key role in the specification of these diverse neurons and neuronal subtypes derived from the LFP and p2 progenitor domains.
Collapse
Affiliation(s)
- Gokhan Cucun
- Institute for Biological and Chemical Systems - Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - Melina Köhler
- Institute for Biological and Chemical Systems - Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - Sabrina Pfitsch
- Institute for Biological and Chemical Systems - Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - Sepand Rastegar
- Institute for Biological and Chemical Systems - Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
15
|
O’Connell CJ, Brown RS, Peach TM, Traubert OD, Schwierling HC, Notorgiacomo GA, Robson MJ. Strain in the Midbrain: Impact of Traumatic Brain Injury on the Central Serotonin System. Brain Sci 2024; 14:51. [PMID: 38248266 PMCID: PMC10813794 DOI: 10.3390/brainsci14010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/20/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024] Open
Abstract
Traumatic brain injury (TBI) is a pervasive public health crisis that severely impacts the quality of life of affected individuals. Like peripheral forms of trauma, TBI results from extraordinarily heterogeneous environmental forces being imparted on the cranial space, resulting in heterogeneous disease pathologies. This has made therapies for TBI notoriously difficult to develop, and currently, there are no FDA-approved pharmacotherapies specifically for the acute or chronic treatment of TBI. TBI is associated with changes in cognition and can precipitate the onset of debilitating psychiatric disorders like major depressive disorder (MDD), generalized anxiety disorder (GAD), and post-traumatic stress disorder (PTSD). Complicating these effects of TBI, FDA-approved pharmacotherapies utilized to treat these disorders often fail to reach the desired level of efficacy in the context of neurotrauma. Although a complicated association, decades of work have linked central serotonin (5-HT) neurotransmission as being involved in the etiology of a myriad of neuropsychiatric disorders, including MDD and GAD. 5-HT is a biogenic monoamine neurotransmitter that is highly conserved across scales of biology. Though the majority of 5-HT is isolated to peripheral sites such as the gastrointestinal (GI) tract, 5-HT neurotransmission within the CNS exerts exquisite control over diverse biological functions, including sleep, appetite and respiration, while simultaneously establishing normal mood, perception, and attention. Although several key studies have begun to elucidate how various forms of neurotrauma impact central 5-HT neurotransmission, a full determination of precisely how TBI disrupts the highly regulated dynamics of 5-HT neuron function and/or 5-HT neurotransmission has yet to be conceptually or experimentally resolved. The purpose of the current review is, therefore, to integrate the disparate bodies of 5-HT and TBI research and synthesize insight into how new combinatorial research regarding 5-HT neurotransmission and TBI may offer an informed perspective into the nature of TBI-induced neuropsychiatric complications.
Collapse
Affiliation(s)
- Christopher J. O’Connell
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267, USA; (C.J.O.); (R.S.B.); (T.M.P.)
| | - Ryan S. Brown
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267, USA; (C.J.O.); (R.S.B.); (T.M.P.)
| | - Taylor M. Peach
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267, USA; (C.J.O.); (R.S.B.); (T.M.P.)
| | - Owen D. Traubert
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA;
| | - Hana C. Schwierling
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267, USA; (C.J.O.); (R.S.B.); (T.M.P.)
| | | | - Matthew J. Robson
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267, USA; (C.J.O.); (R.S.B.); (T.M.P.)
- Neuroscience Graduate Program, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| |
Collapse
|
16
|
Ahmadzadeh E, Polglase GR, Stojanovska V, Herlenius E, Walker DW, Miller SL, Allison BJ. Does fetal growth restriction induce neuropathology within the developing brainstem? J Physiol 2023; 601:4667-4689. [PMID: 37589339 PMCID: PMC10953350 DOI: 10.1113/jp284191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 08/04/2023] [Indexed: 08/18/2023] Open
Abstract
Fetal growth restriction (FGR) is a complex obstetric issue describing a fetus that does not reach its genetic growth potential. The primary cause of FGR is placental dysfunction resulting in chronic fetal hypoxaemia, which in turn causes altered neurological, cardiovascular and respiratory development, some of which may be pathophysiological, particularly for neonatal life. The brainstem is the critical site of cardiovascular, respiratory and autonomic control, but there is little information describing how chronic hypoxaemia and the resulting FGR may affect brainstem neurodevelopment. This review provides an overview of the brainstem-specific consequences of acute and chronic hypoxia, and what is known in FGR. In addition, we discuss how brainstem structural alterations may impair functional control of the cardiovascular and respiratory systems. Finally, we highlight the clinical and translational findings of the potential roles of the brainstem in maintaining cardiorespiratory adaptation in the transition from fetal to neonatal life under normal conditions and in response to the pathological environment that arises during development in growth-restricted infants. This review emphasises the crucial role that the brainstem plays in mediating cardiovascular and respiratory responses during fetal and neonatal life. We assess whether chronic fetal hypoxaemia might alter structure and function of the brainstem, but this also serves to highlight knowledge gaps regarding FGR and brainstem development.
Collapse
Affiliation(s)
- Elham Ahmadzadeh
- The Ritchie CentreHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Department of Obstetrics and GynaecologyMonash UniversityClaytonVictoriaAustralia
| | - Graeme R. Polglase
- The Ritchie CentreHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Department of Obstetrics and GynaecologyMonash UniversityClaytonVictoriaAustralia
| | - Vanesa Stojanovska
- The Ritchie CentreHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Department of Obstetrics and GynaecologyMonash UniversityClaytonVictoriaAustralia
| | - Eric Herlenius
- Department of Women's and Children's HealthKarolinska InstitutetSolnaSweden
- Astrid Lindgren Children´s HospitalKarolinska University Hospital StockholmSolnaSweden
| | - David W. Walker
- The Ritchie CentreHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Neurodevelopment in Health and Disease Research Program, School of Health and Biomedical SciencesRoyal Melbourne Institute of Technology (RMIT)MelbourneVictoriaAustralia
| | - Suzanne L. Miller
- The Ritchie CentreHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Department of Obstetrics and GynaecologyMonash UniversityClaytonVictoriaAustralia
| | - Beth J. Allison
- The Ritchie CentreHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Department of Obstetrics and GynaecologyMonash UniversityClaytonVictoriaAustralia
| |
Collapse
|
17
|
Chen F, Köhler M, Cucun G, Takamiya M, Kizil C, Cosacak MI, Rastegar S. sox1a:eGFP transgenic line and single-cell transcriptomics reveal the origin of zebrafish intraspinal serotonergic neurons. iScience 2023; 26:107342. [PMID: 37529101 PMCID: PMC10387610 DOI: 10.1016/j.isci.2023.107342] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/03/2023] [Accepted: 07/06/2023] [Indexed: 08/03/2023] Open
Abstract
Sox transcription factors are crucial for vertebrate nervous system development. In zebrafish embryo, sox1 genes are expressed in neural progenitor cells and neurons of ventral spinal cord. Our recent study revealed that the loss of sox1a and sox1b function results in a significant decline of V2 subtype neurons (V2s). Using single-cell RNA sequencing, we analyzed the transcriptome of sox1a lineage progenitors and neurons in the zebrafish spinal cord at four time points during embryonic development, employing the Tg(sox1a:eGFP) line. In addition to previously characterized sox1a-expressing neurons, we discovered the expression of sox1a in late-developing intraspinal serotonergic neurons (ISNs). Developmental trajectory analysis suggests that ISNs arise from lateral floor plate (LFP) progenitor cells. Pharmacological inhibition of the Notch signaling pathway revealed its role in negatively regulating LFP progenitor cell differentiation into ISNs. Our findings highlight the zebrafish LFP as a progenitor domain for ISNs, alongside known Kolmer-Agduhr (KA) and V3 interneurons.
Collapse
Affiliation(s)
- Fushun Chen
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Campus North, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Melina Köhler
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Campus North, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Gokhan Cucun
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Campus North, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Masanari Takamiya
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Campus North, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Caghan Kizil
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Helmholtz Association, Tatzberg 41, 01307 Dresden, Germany
- Department of Neurology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY 10032, USA
| | - Mehmet Ilyas Cosacak
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Helmholtz Association, Tatzberg 41, 01307 Dresden, Germany
| | - Sepand Rastegar
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Campus North, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
18
|
Newell AJ, Kapps VA, Cai Y, Rai MR, St. Armour G, Horman BM, Rock KD, Witchey SK, Greenbaum A, Patisaul HB. Maternal organophosphate flame retardant exposure alters the developing mesencephalic dopamine system in fetal rat. Toxicol Sci 2023; 191:357-373. [PMID: 36562574 PMCID: PMC9936211 DOI: 10.1093/toxsci/kfac137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Organophosphate flame retardants (OPFRs) have become the predominant substitution for legacy brominated flame retardants but there is concern about their potential developmental neurotoxicity (DNT). OPFRs readily dissociate from the fireproofed substrate to the environment, and they (or their metabolites) have been detected in diverse matrices including air, water, soil, and biota, including human urine and breastmilk. Given this ubiquitous contamination, it becomes increasingly important to understand the potential effects of OPFRs on the developing nervous system. We have previously shown that maternal exposure to OPFRs results in neuroendocrine disruption, alterations to developmental metabolism of serotonin (5-HT) and axonal extension in male fetal rats, and potentiates adult anxiety-like behaviors. The development of the serotonin and dopamine systems occur in parallel and interact, therefore, we first sought to enhance our prior 5-HT work by first examining the ascending 5-HT system on embryonic day 14 using whole mount clearing of fetal heads and 3-dimensional (3D) brain imaging. We also investigated the effects of maternal OPFR exposure on the development of the mesocortical dopamine system in the same animals through 2-dimensional and 3D analysis following immunohistochemistry for tyrosine hydroxylase (TH). Maternal OPFR exposure induced morphological changes to the putative ventral tegmental area and substantia nigra in both sexes and reduced the overall volume of this structure in males, whereas 5-HT nuclei were unchanged. Additionally, dopaminergic axogenesis was disrupted in OPFR exposed animals, as the dorsoventral spread of ventral telencephalic TH afferents were greater at embryonic day 14, while sparing 5-HT fibers. These results indicate maternal exposure to OPFRs alters the development trajectory of the embryonic dopaminergic system and adds to growing evidence of OPFR DNT.
Collapse
Affiliation(s)
- Andrew J Newell
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Victoria A Kapps
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Yuheng Cai
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27606, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27606, USA
| | - Mani Ratnam Rai
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27606, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27606, USA
| | - Genevieve St. Armour
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Brian M Horman
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Kylie D Rock
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Shannah K Witchey
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Alon Greenbaum
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27606, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27606, USA
| | - Heather B Patisaul
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695, USA
- Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina 27695, USA
| |
Collapse
|
19
|
Rigby Dames BA, Kilili H, Charvet CJ, Díaz-Barba K, Proulx MJ, de Sousa AA, Urrutia AO. Evolutionary and genomic perspectives of brain aging and neurodegenerative diseases. PROGRESS IN BRAIN RESEARCH 2023; 275:165-215. [PMID: 36841568 PMCID: PMC11191546 DOI: 10.1016/bs.pbr.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This chapter utilizes genomic concepts and evolutionary perspectives to further understand the possible links between typical brain aging and neurodegenerative diseases, focusing on the two most prevalent of these: Alzheimer's disease and Parkinson's disease. Aging is the major risk factor for these neurodegenerative diseases. Researching the evolutionary and molecular underpinnings of aging helps to reveal elements of the typical aging process that leave individuals more vulnerable to neurodegenerative pathologies. Very little is known about the prevalence and susceptibility of neurodegenerative diseases in nonhuman species, as only a few individuals have been observed with these neuropathologies. However, several studies have investigated the evolution of lifespan, which is closely connected with brain size in mammals, and insights can be drawn from these to enrich our understanding of neurodegeneration. This chapter explores the relationship between the typical aging process and the events in neurodegeneration. First, we examined how age-related processes can increase susceptibility to neurodegenerative diseases. Second, we assessed to what extent neurodegeneration is an accelerated form of aging. We found that while at the phenotypic level both neurodegenerative diseases and the typical aging process share some characteristics, at the molecular level they show some distinctions in their profiles, such as variation in genes and gene expression. Furthermore, neurodegeneration of the brain is associated with an earlier onset of cellular, molecular, and structural age-related changes. In conclusion, a more integrative view of the aging process, both from a molecular and an evolutionary perspective, may increase our understanding of neurodegenerative diseases.
Collapse
Affiliation(s)
- Brier A Rigby Dames
- Department of Computer Science, University of Bath, Bath, United Kingdom; Department of Psychology, University of Bath, Bath, United Kingdom.
| | - Huseyin Kilili
- Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Christine J Charvet
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Karina Díaz-Barba
- Licenciatura en Ciencias Genómicas, UNAM, CP62210, Cuernavaca, México; Instituto de Ecología, UNAM, Ciudad Universitaria, CP04510, Ciudad de México, México
| | - Michael J Proulx
- Department of Psychology, University of Bath, Bath, United Kingdom
| | | | - Araxi O Urrutia
- Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom; Licenciatura en Ciencias Genómicas, UNAM, CP62210, Cuernavaca, México; Instituto de Ecología, UNAM, Ciudad Universitaria, CP04510, Ciudad de México, México.
| |
Collapse
|
20
|
Kisner A, Polter AM. Maturation of glutamatergic transmission onto dorsal raphe serotonergic neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.19.524776. [PMID: 36711665 PMCID: PMC9882295 DOI: 10.1101/2023.01.19.524776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Serotonergic neurons in the dorsal raphe nucleus (DRN) play important roles early in postnatal development in the maturation and modulation of higher order emotional, sensory, and cognitive circuitry. This unique position makes these cells a substrate by which early experience can be wired into brain. In this study, we have investigated the maturation of synapses onto dorsal raphe serotonergic neurons in typically developing male and female mice using whole-cell patch-clamp recordings in ex vivo brain slices. We show that while inhibition of these neurons is relatively stable across development, glutamatergic synapses greatly increase in strength between P6 and P21-23. In contrast to forebrain regions, where the components making up glutamatergic synapses are dynamic across early life, we find that the makeup of these synapses onto DRN serotonergic neurons is largely stable after P15. DRN excitatory synapses maintain a very high ratio of AMPA to NMDA receptors and a rectifying component of the AMPA response throughout the lifespan. Overall, these findings reveal that the development of serotonergic neurons is marked by a significant refinement of glutamatergic synapses during the first 3 postnatal weeks. This suggests this time as a sensitive period of heightened plasticity for integration of information from upstream brain areas and that genetic and environmental insults during this period could lead to alterations in serotonergic output, impacting both the development of forebrain circuits and lifelong neuromodulatory actions.
Collapse
Affiliation(s)
- Alexandre Kisner
- Department of Pharmacology and Physiology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037
- Current address: Department of Neuroscience, American University, Washington DC 20016
| | - Abigail M. Polter
- Department of Pharmacology and Physiology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037
| |
Collapse
|
21
|
Dunn GA, Thompson JR, Mitchell AJ, Papadakis S, Selby M, Fair D, Gustafsson HC, Sullivan EL. Perinatal Western-style diet alters serotonergic neurons in the macaque raphe nuclei. Front Neurosci 2023; 16:1067479. [PMID: 36704012 PMCID: PMC9872117 DOI: 10.3389/fnins.2022.1067479] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
Introduction The neurotransmitter serotonin is a key regulator of neurotransmission, mood, and behavior and is essential in neurodevelopment. Dysfunction in this important neurotransmitter system is connected to behavioral disorders such as depression and anxiety. We have previously shown that the developing serotonin system is sensitive to perinatal exposure to Western-style diet (WSD). Methods To advance our hypothesis that perinatal WSD has a long-term impact on the serotonergic system, we designed a fluorescent immunohistochemistry experiment using antibodies against tryptophan hydroxylase 2 (TPH2) and vesicular glutamate transporter 3 (VGLUT3) to probe protein expression in the raphe subnuclei in 13-month-old Japanese macaques (Macaca fuscata; n = 22). VGLUT3 has been shown to be coexpressed in TPH2+ cells in the dorsal raphe (DR) and median raphe nucleus (MnR) of rodent raphe nuclei and may provide information about the projection site of serotonergic fibers into the forebrain. We also sought to improve scientific understanding of the heterogeneity of the serotonin production center for the central nervous system, the midbrain raphe nuclei. Results In this immunohistochemical study, we provide the most detailed characterization of the developing primate raphe to date. We utilize multi-level modeling (MLM) to simultaneously probe the contribution of WSD, offspring sex, and raphe anatomical location, to raphe neuronal measurements. Our molecular and morphological characterization revealed that the 13-month-old macaque DR is remarkably similar to that of adult macaques and humans. We demonstrate that vesicular glutamate transporter 3 (VGLUT3), which rodent studies have recently shown can distinguish raphe populations with distinct projection targets and behavioral functions, likewise contributes to the heterogeneity of the primate raphe. Discussion This study provides evidence that perinatal WSD has a long-term impact on the density of serotonin-producing neurons, potentially limiting serotonin availability throughout the brain. Due to the critical involvement of serotonin in development and behavior, these findings provide important insight into the mechanisms by which maternal nutrition and metabolic state influence offspring behavioral outcomes. Finally, these findings could inform future research focused on designing therapeutic interventions to optimize neural development and decrease a child's risk of developing a mental health disorder.
Collapse
Affiliation(s)
- Geoffrey A. Dunn
- Department of Human Physiology, University of Oregon, Eugene, OR, United States
| | | | - A J Mitchell
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, United States,Department of Psychiatry, Oregon Health & Science University, Portland, OR, United States
| | - Samantha Papadakis
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, United States,Department of Psychiatry, Oregon Health & Science University, Portland, OR, United States
| | - Matthew Selby
- Department of Human Physiology, University of Oregon, Eugene, OR, United States
| | - Damien Fair
- Masonic Institute of Child Development, University of Minnesota School of Medicine, Minneapolis, MN, United States
| | - Hanna C. Gustafsson
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, United States
| | - Elinor L. Sullivan
- Department of Human Physiology, University of Oregon, Eugene, OR, United States,Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, United States,Department of Psychiatry, Oregon Health & Science University, Portland, OR, United States,*Correspondence: Elinor L. Sullivan,
| |
Collapse
|
22
|
Dupuy V, Prieur M, Pizzoccaro A, Margarido C, Valjent E, Bockaert J, Bouschet T, Marin P, Chaumont-Dubel S. Spatiotemporal dynamics of 5-HT 6 receptor ciliary localization during mouse brain development. Neurobiol Dis 2023; 176:105949. [PMID: 36496200 DOI: 10.1016/j.nbd.2022.105949] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/25/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
The serotonin 5-HT6 receptor (5-HT6R) is a promising target to improve cognitive symptoms of psychiatric diseases of neurodevelopmental origin, such as autism spectrum disorders and schizophrenia. However, its expression and localization at different stages of brain development remain largely unknown, due to the lack of specific antibodies to detect endogenous 5-HT6R. Here, we used transgenic mice expressing a GFP-tagged 5-HT6R under the control of its endogenous promoter (Knock-in) as well as embryonic stem cells expressing the GFP-tagged receptor to extensively characterize its expression at cellular and subcellular levels during development. We show that the receptor is already expressed at E13.5 in the cortex, the striatum, the ventricular zone, and to a lesser extent the subventricular zone. In adulthood, it is preferentially found in projection neurons of the hippocampus and cerebral cortex, in striatal medium-sized spiny neurons, as well as in a large proportion of astrocytes, while it is expressed in a minor population of interneurons. Whereas the receptor is almost exclusively detected in the primary cilia of neurons at embryonic and adult stages and in differentiated stem cells, it is located in the somatodendritic compartment of neurons from some brain regions at the neonatal stage and in the soma of undifferentiated stem cells. Finally, knocking-out the receptor induces a shortening of the primary cilium, suggesting that it plays a role in its function. This study provides the first global picture of 5-HT6R expression pattern in the mouse brain at different developmental stages. It reveals dynamic changes in receptor localization in neurons at the neonatal stage, which might underlie its key role in neuronal differentiation and psychiatric disorders of neurodevelopmental origin.
Collapse
Affiliation(s)
- Vincent Dupuy
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Matthieu Prieur
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Anne Pizzoccaro
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Clara Margarido
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Emmanuel Valjent
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Joël Bockaert
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Tristan Bouschet
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Philippe Marin
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Séverine Chaumont-Dubel
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France.
| |
Collapse
|
23
|
Khan KM, Bierlein-De La Rosa G, Biggerstaff N, Pushpavathi Selvakumar G, Wang R, Mason S, Dailey ME, Marcinkiewcz CA. Adolescent ethanol drinking promotes hyperalgesia, neuroinflammation and serotonergic deficits in mice that persist into adulthood. Brain Behav Immun 2023; 107:419-431. [PMID: 35907582 PMCID: PMC10289137 DOI: 10.1016/j.bbi.2022.07.160] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 07/19/2022] [Accepted: 07/23/2022] [Indexed: 02/09/2023] Open
Abstract
Adolescent alcohol use can permanently alter brain function and lead to poor health outcomes in adulthood. Emerging evidence suggests that alcohol use can predispose individuals to pain disorders or exacerbate existing pain conditions, but the underlying neural mechanisms are currently unknown. Here we report that mice exposed to adolescent intermittent access to ethanol (AIE) exhibit increased pain sensitivity and depressive-like behaviors that persist for several weeks after alcohol cessation and are accompanied by elevated CD68 expression in microglia and reduced numbers of serotonin (5-HT)-expressing neurons in the dorsal raphe nucleus (DRN). 5-HT expression was also reduced in the thalamus, anterior cingulate cortex (ACC) and amygdala as well as the lumbar dorsal horn of the spinal cord. We further demonstrate that chronic minocycline administration after AIE alleviated hyperalgesia and social deficits, while chemogenetic activation of microglia in the DRN of ethanol-naïve mice reproduced the effects of AIE on pain and social behavior. Chemogenetic activation of microglia also reduced tryptophan hydroxylase 2 (Tph2) expression and was negatively correlated with the number of 5-HT-immunoreactive cells in the DRN. Taken together, these results indicate that microglial activation in the DRN may be a primary driver of pain, negative affect, and 5-HT depletion after AIE.
Collapse
Affiliation(s)
- Kanza M Khan
- Department of Neuroscience and Pharmacology, University of Iowa, United States
| | | | - Natalie Biggerstaff
- Department of Neuroscience and Pharmacology, University of Iowa, United States
| | | | - Ruixiang Wang
- Department of Neuroscience and Pharmacology, University of Iowa, United States
| | - Suzanne Mason
- Department of Neuroscience and Pharmacology, University of Iowa, United States
| | - Michael E Dailey
- Iowa Neuroscience Institute, University of Iowa, United States; Department of Biology, University of Iowa, United States
| | - Catherine A Marcinkiewcz
- Department of Neuroscience and Pharmacology, University of Iowa, United States; Iowa Neuroscience Institute, University of Iowa, United States.
| |
Collapse
|
24
|
Fabio MC, Servin-Bernal IJC, Degano AL, Pautassi RM. Serotonin disruption at gestation alters expression of genes associated with serotonin synthesis and reuptake at weaning. Psychopharmacology (Berl) 2022; 239:3355-3366. [PMID: 36063206 DOI: 10.1007/s00213-022-06228-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 08/27/2022] [Indexed: 12/28/2022]
Abstract
RATIONALE Serotonin (5-HT) is a monoamine neuromodulator that plays a key role in the organization of the central nervous system. 5-HT alterations may be associated to the emergence of social deficits and psychiatric disorders, including anxiety, depression, and substance abuse disorders. Notably, disruption of the 5-HT system during sensitive periods of development seems to exert long-term consequences, including altered anxiety responses and problematic use of alcohol. OBJECTIVE We analyzed, in mice, the effects of transient 5-HT depletion at gestation (a developmental stage when medial prefrontal cortex (mPFC) 5-HT levels depend exclusively on placental 5-HT availability) on 5-HT central synthesis and reuptake at weaning. We also explored if 5-HT disruption at the embryonic stage influences behavioral outcomes that may serve as a proxy for autistic- or anxiety-like phenotypes. METHODS C57/BL6 male and female mice, born from dams treated with a 5-HT synthesis inhibitor (PCPA; 4-Chloro-DL-phenylalanine methyl ester hydrochloride) at gestational days (G)13.5-16.5, were subjected to a behavioral battery that assesses social preference and novelty, compulsive behavior, stereotypies, and ethanol's anti-anxiety effects, at postnatal days (P) 21-28. Afterwards, expression of the genes that encode for 5-HT synthesis (Tph2) and SERT (5-HT transporter) were analyzed in mPFC via real-time RT-PCR. Dopamine 2 receptor (D2R) expression was also analyzed via RT-PCR to further explore possible effects of PCPA on dopaminergic transmission. RESULTS Transient 5-HT disruption at G13.5-16.5 reduced Tph2 expression of both male and female mice in mPFC at P23. Notably, female mice also exhibited higher SERT expression and reduced D2R expression in mPFC. Mice derived from 5-HT depleted dams displayed heightened compulsive behavior at P21, when compared to control mice. Alcohol anti-anxiety effects at early adolescence (P28) were exhibited by mice derived from 5-HT depleted dams, but not by control counterparts. No social deficits or stereotyped behaviors were observed. CONCLUSION Transient 5-HT inhibition at gestation resulted in altered expression of genes involved in 5-HT synthesis and reuptake in mPFC at weaning, a period in which the 5-HT system is still developing. These alterations may exert lingering effects, which translate to significant compulsivity and heightened sensitivity to the anxiolytic effects of alcohol at early adolescence.
Collapse
Affiliation(s)
- M C Fabio
- Instituto de Investigaciones Médicas Mercedes y Martín Ferreyra (INIMEC-CONICET-Universidad Nacional de Córdoba), Cordoba, Argentina. .,Facultad de Psicología, Universidad Nacional de Córdoba, Cordoba, Argentina.
| | - I J C Servin-Bernal
- Instituto de Investigaciones Médicas Mercedes y Martín Ferreyra (INIMEC-CONICET-Universidad Nacional de Córdoba), Cordoba, Argentina
| | - A L Degano
- Departamento de Química Biológica Ranwel CaputtoFacultad de Ciencias Químicas, Universidad Nacional de Córdoba, Cordoba, Argentina.,Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Universidad Nacional de Córdoba, Cordoba, Argentina
| | - R M Pautassi
- Instituto de Investigaciones Médicas Mercedes y Martín Ferreyra (INIMEC-CONICET-Universidad Nacional de Córdoba), Cordoba, Argentina.,Facultad de Psicología, Universidad Nacional de Córdoba, Cordoba, Argentina
| |
Collapse
|
25
|
Dong X, Liu C, Miao J, Lin X, Wang Y, Wang Z, Hou Q. Effect of serotonin on the cell viability of the bovine mammary alveolar cell-T (MAC-T) cell line. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2022; 64:922-936. [PMID: 36287778 PMCID: PMC9574616 DOI: 10.5187/jast.2022.e50] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/30/2022] [Accepted: 06/13/2022] [Indexed: 12/02/2022]
Abstract
5-Hydroxytryptamine (5-HT), a monoamine, as a local regulator in the mammary gland is a chemical signal produced by the mammary epithelium cell. In cows, studies have shown that 5-HT is associated with epithelial cell apoptosis during the degenerative phase of the mammary gland. However, studies in other tissues have shown that 5-HT can effectively promote cell viability. Whether 5-HT could have an effect on mammary cell viability in dairy cows is still unknown. The purpose of this study was to determine: (1) effect of 5-HT on the viability of bovine mammary epithelial cells and its related signaling pathways, (2) interaction between prolactin (PRL) and 5-HT on the cell viability. The bovine mammary alveolar cell-T (MAC-T) were cultured with different concentrations of 5-HT for 12, 24, 48 or 72 hours, and then were assayed using cell counting kit-8, polymerase chain reaction (PCR) and immunobloting. The results suggested that 20 μM 5-HT treatment for 12 or 24 h promote cell viability, which was mainly induced by the activation of 5-HT receptor (5-HTR) 1B and 4, because the increase caused by 5-HT vanished when 5-HTR 1B and 4 was blocked by SB224289 and SB204070. And protein expression of mammalian target of rapamycin (mTOR), eukaryotic translation elongation factor 2 (eEF2), janus kinase 2 (JAK2) and signal transducer and activator of transcription 5 (STAT5) were decreased after blocking 5-HT 1B and 4 receptors. When MAC-T cells were treated with 5-HT and PRL simultaneously for 24 h, both the cell viability and the level of mTOR protein were significantly higher than that cultured with 5-HT or PRL alone. In conclusion, our study suggested that 5-HT promotes the viability of MAC-T cells by 5-HTR 1B and/or 4. Furthermore, there is a reciprocal relationship between PRL and 5-HT.
Collapse
Affiliation(s)
- Xusheng Dong
- Ruminant Nutrition and Physiology
Laboratory, College of Animal Science and Technology, Shandong Agricultural
University, Taian, Shandong 271018, China
| | - Chen Liu
- Ruminant Nutrition and Physiology
Laboratory, College of Animal Science and Technology, Shandong Agricultural
University, Taian, Shandong 271018, China
| | - Jialin Miao
- Ruminant Nutrition and Physiology
Laboratory, College of Animal Science and Technology, Shandong Agricultural
University, Taian, Shandong 271018, China
| | - Xueyan Lin
- Ruminant Nutrition and Physiology
Laboratory, College of Animal Science and Technology, Shandong Agricultural
University, Taian, Shandong 271018, China
| | - Yun Wang
- Ruminant Nutrition and Physiology
Laboratory, College of Animal Science and Technology, Shandong Agricultural
University, Taian, Shandong 271018, China
| | - Zhonghua Wang
- Ruminant Nutrition and Physiology
Laboratory, College of Animal Science and Technology, Shandong Agricultural
University, Taian, Shandong 271018, China,Corresponding author: Zhonghua Wang,
Ruminant Nutrition and Physiology Laboratory, College of Animal Science and
Technology, Shandong Agricultural University, Taian, Shandong 271018, China.
Tel: +86-15005485951, E-mail:
| | - Qiuling Hou
- Ruminant Nutrition and Physiology
Laboratory, College of Animal Science and Technology, Shandong Agricultural
University, Taian, Shandong 271018, China,Corresponding author: Qiuling Hou,
Ruminant Nutrition and Physiology Laboratory, College of Animal Science and
Technology, Shandong Agricultural University, Taian, Shandong 271018, China.
Tel: +86-15064175925, E-mail:
| |
Collapse
|
26
|
Katayama KI, Morimura N, Kobayashi K, Corbett D, Okamoto T, Ornthanalai VG, Matsunaga H, Fujita W, Matsumoto Y, Akagi T, Hashikawa T, Yamada K, Murphy NP, Nagao S, Aruga J. Slitrk2 deficiency causes hyperactivity with altered vestibular function and serotonergic dysregulation. iScience 2022; 25:104604. [PMID: 35789858 PMCID: PMC9250022 DOI: 10.1016/j.isci.2022.104604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 04/14/2022] [Accepted: 06/08/2022] [Indexed: 11/16/2022] Open
Abstract
SLITRK2 encodes a transmembrane protein that modulates neurite outgrowth and synaptic activities and is implicated in bipolar disorder. Here, we addressed its physiological roles in mice. In the brain, the Slitrk2 protein was strongly detected in the hippocampus, vestibulocerebellum, and precerebellar nuclei—the vestibular-cerebellar-brainstem neural network including pontine gray and tegmental reticular nucleus. Slitrk2 knockout (KO) mice exhibited increased locomotor activity in novel environments, antidepressant-like behaviors, enhanced vestibular function, and increased plasticity at mossy fiber–CA3 synapses with reduced sensitivity to serotonin. A serotonin metabolite was increased in the hippocampus and amygdala, and serotonergic neurons in the raphe nuclei were decreased in Slitrk2 KO mice. When KO mice were treated with methylphenidate, lithium, or fluoxetine, the mood stabilizer lithium showed a genotype-dependent effect. Taken together, Slitrk2 deficiency causes aberrant neural network activity, synaptic integrity, vestibular function, and serotonergic function, providing molecular-neurophysiological insight into the brain dysregulation in bipolar disorders. Slitrk2 KO mice showed antidepressant-like behaviors and enhanced vestibular function Mossy fiber-CA3 synaptic sensitivity to serotonin was reduced in Slitrk2 KO mice Serotonin metabolite was increased in hippocampus and amygdala of Slitrk2 KO mice Numbers of serotonergic neurons in raphe nuclei were decreased in Slitrk2 KO mice
Collapse
|
27
|
Soiza-Reilly M. Transcriptional preservation of serotonergic connectivity may shed light on neurodegeneration. Trends Neurosci 2022; 45:563-565. [PMID: 35624030 DOI: 10.1016/j.tins.2022.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 05/12/2022] [Indexed: 10/18/2022]
Abstract
In a recent study, Kitt, Tabuchi, and colleagues unveiled a novel function of an early-stage transcriptional network to maintain the adult integrity of serotonergic connectivity. Reported axonal and synaptic morphological alterations in serotonin (5-HT) neurons after selective inactivation of Lmx1b/Pet1 transcriptional networks may help to understand aging and neurodegenerative processes.
Collapse
Affiliation(s)
- Mariano Soiza-Reilly
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
28
|
Zhang XL, Spencer WC, Tabuchi N, Kitt MM, Deneris ES. Reorganization of postmitotic neuronal chromatin accessibility for maturation of serotonergic identity. eLife 2022; 11:e75970. [PMID: 35471146 PMCID: PMC9098219 DOI: 10.7554/elife.75970] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/12/2022] [Indexed: 12/02/2022] Open
Abstract
Assembly of transcriptomes encoding unique neuronal identities requires selective accessibility of transcription factors to cis-regulatory sequences in nucleosome-embedded postmitotic chromatin. Yet, the mechanisms controlling postmitotic neuronal chromatin accessibility are poorly understood. Here, we show that unique distal enhancers define the Pet1 neuron lineage that generates serotonin (5-HT) neurons in mice. Heterogeneous single-cell chromatin landscapes are established early in postmitotic Pet1 neurons and reveal the putative regulatory programs driving Pet1 neuron subtype identities. Distal enhancer accessibility is highly dynamic as Pet1 neurons mature, suggesting the existence of regulatory factors that reorganize postmitotic neuronal chromatin. We find that Pet1 and Lmx1b control chromatin accessibility to select Pet1-lineage-specific enhancers for 5-HT neurotransmission. Additionally, these factors are required to maintain chromatin accessibility during early maturation suggesting that postmitotic neuronal open chromatin is unstable and requires continuous regulatory input. Together, our findings reveal postmitotic transcription factors that reorganize accessible chromatin for neuron specialization.
Collapse
Affiliation(s)
- Xinrui L Zhang
- Department of Neurosciences, Case Western Reserve UniversityClevelandUnited States
| | - William C Spencer
- Department of Neurosciences, Case Western Reserve UniversityClevelandUnited States
| | - Nobuko Tabuchi
- Department of Neurosciences, Case Western Reserve UniversityClevelandUnited States
| | - Meagan M Kitt
- Department of Neurosciences, Case Western Reserve UniversityClevelandUnited States
| | - Evan S Deneris
- Department of Neurosciences, Case Western Reserve UniversityClevelandUnited States
| |
Collapse
|
29
|
Kitt MM, Tabuchi N, Spencer WC, Robinson HL, Zhang XL, Eastman BA, Lobur KJ, Silver J, Mei L, Deneris ES. An adult-stage transcriptional program for survival of serotonergic connectivity. Cell Rep 2022; 39:110711. [PMID: 35443166 PMCID: PMC9109281 DOI: 10.1016/j.celrep.2022.110711] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/23/2022] [Accepted: 03/30/2022] [Indexed: 12/23/2022] Open
Abstract
Neurons must function for decades of life, but how these non-dividing cells are preserved is poorly understood. Using mouse serotonin (5-HT) neurons as a model, we report an adult-stage transcriptional program specialized to ensure the preservation of neuronal connectivity. We uncover a switch in Lmx1b and Pet1 transcription factor function from controlling embryonic axonal growth to sustaining a transcriptomic signature of 5-HT connectivity comprising functionally diverse synaptic and axonal genes. Adult-stage deficiency of Lmx1b and Pet1 causes slowly progressing degeneration of 5-HT synapses and axons, increased susceptibility of 5-HT axons to neurotoxic injury, and abnormal stress responses. Axon degeneration occurs in a die back pattern and is accompanied by accumulation of α-synuclein and amyloid precursor protein in spheroids and mitochondrial fragmentation without cell body loss. Our findings suggest that neuronal connectivity is transcriptionally protected by maintenance of connectivity transcriptomes; progressive decay of such transcriptomes may contribute to age-related diseases of brain circuitry.
Collapse
Affiliation(s)
- Meagan M Kitt
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Nobuko Tabuchi
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - W Clay Spencer
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Heath L Robinson
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Xinrui L Zhang
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Brent A Eastman
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Katherine J Lobur
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jerry Silver
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Lin Mei
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Evan S Deneris
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
30
|
Gundlach M, Di Paolo C, Chen Q, Majewski K, Haigis AC, Werner I, Hollert H. Clozapine modulation of zebrafish swimming behavior and gene expression as a case study to investigate effects of atypical drugs on aquatic organisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:152621. [PMID: 34968598 DOI: 10.1016/j.scitotenv.2021.152621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/01/2021] [Accepted: 12/19/2021] [Indexed: 06/14/2023]
Abstract
Mental illnesses affect more than 150 million people in Europe and lead to an increasing consumption of neuroactive drugs during the last twenty years. The antipsychotic compound, clozapine, is one of the most used psychotropic drugs worldwide, with potentially negative consequences for the aquatic environment. Hence, the objectives of the study presented here were the quantification of clozapine induced changes in swimming behavior of exposed Danio rerio embryos and the elucidation of the molecular effects on the serotonergic and dopaminergic systems. Yolk-sac larvae were exposed to different concentrations (0.2 mg/L, 0.4 mg/L, 0.8 mg/L, 1.6 mg/L, 3.2 mg/L and 6.4 mg/L) of clozapine for 116 h post-fertilization, and changes in the swimming behavior of the larvae were assessed. Further, quantitative real-time PCR was performed to analyze the expression of selected genes. The qualitative evaluation of changes in the swimming behavior of D. rerio larvae revealed a significant decrease of the average swimming distance and velocity in the light-dark transition test, with more than a 36% reduction at the highest exposure concentration of 6.4 mg/L. Furthermore, the total larval body length was reduced at the highest concentration. An in-depth analysis based on expression of selected target genes of the serotonin (slc6a4a) and dopamine (drd2a) system showed an upregulation at a concentration of 1.6 mg/L and above. In addition, a lower increase in expression was detected for biomarkers of general stress (adra1a and cyp1a2). Our data show that exposure to clozapine during development inhibits swimming activity of zebrafish larvae, which could, in part, be due to disruption of the serotonin- and dopamine system.
Collapse
Affiliation(s)
- Michael Gundlach
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, 52074 Aachen, Germany
| | - Carolina Di Paolo
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, 52074 Aachen, Germany
| | - Qiqing Chen
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China
| | - Kendra Majewski
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, 52074 Aachen, Germany
| | - Ann-Cathrin Haigis
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China
| | - Inge Werner
- Swiss Centre for Applied Ecotoxicology, Überlandstrasse 131, 8600 Dübendorf, Switzerland
| | - Henner Hollert
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, 52074 Aachen, Germany; Department Evolutionary Ecology and Environmental Toxicology, Faculty Biological Sciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
31
|
Brown J, Li B, Yang L. MAOI Antidepressants: Could They Be a Next-Generation ICB Therapy? Front Immunol 2022; 13:853624. [PMID: 35359979 PMCID: PMC8963899 DOI: 10.3389/fimmu.2022.853624] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/21/2022] [Indexed: 01/06/2023] Open
Affiliation(s)
- James Brown
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Bo Li
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States
- *Correspondence: Bo Li, ; Lili Yang,
| | - Lili Yang
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, United States
- Jonsson Comprehensive Cancer Center, The David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States
- *Correspondence: Bo Li, ; Lili Yang,
| |
Collapse
|
32
|
Kuo HY, Liu FC. Pathophysiological Studies of Monoaminergic Neurotransmission Systems in Valproic Acid-Induced Model of Autism Spectrum Disorder. Biomedicines 2022; 10:560. [PMID: 35327362 PMCID: PMC8945169 DOI: 10.3390/biomedicines10030560] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 01/27/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder with complex etiology. The core syndromes of ASD are deficits in social communication and self-restricted interests and repetitive behaviors. Social communication relies on the proper integration of sensory and motor functions, which is tightly interwoven with the limbic function of reward, motivation, and emotion in the brain. Monoamine neurotransmitters, including serotonin, dopamine, and norepinephrine, are key players in the modulation of neuronal activity. Owing to their broad distribution, the monoamine neurotransmitter systems are well suited to modulate social communication by coordinating sensory, motor, and limbic systems in different brain regions. The complex and diverse functions of monoamine neurotransmission thus render themselves as primary targets of pathophysiological investigation of the etiology of ASD. Clinical studies have reported that children with maternal exposure to valproic acid (VPA) have an increased risk of developing ASD. Extensive animal studies have confirmed that maternal treatments of VPA include ASD-like phenotypes, including impaired social communication and repetitive behavior. Here, given that ASD is a neurodevelopmental disorder, we begin with an overview of the neural development of monoaminergic systems with their neurochemical properties in the brain. We then review and discuss the evidence of human clinical and animal model studies of ASD with a focus on the VPA-induced pathophysiology of monoamine neurotransmitter systems. We also review the potential interactions of microbiota and monoamine neurotransmitter systems in ASD pathophysiology. Widespread and complex changes in monoamine neurotransmitters are detected in the brains of human patients with ASD and validated in animal models. ASD animal models are not only essential to the characterization of pathogenic mechanisms, but also provide a preclinical platform for developing therapeutic approaches to ASD.
Collapse
Affiliation(s)
- Hsiao-Ying Kuo
- Institute of Anatomy and Cell Biology, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Fu-Chin Liu
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| |
Collapse
|
33
|
Graham DP, Harding MJ, Nielsen DA. Pharmacogenetics of Addiction Therapy. Methods Mol Biol 2022; 2547:437-490. [PMID: 36068473 DOI: 10.1007/978-1-0716-2573-6_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Drug addiction is a serious relapsing disease that has high costs to society and to the individual addicts. Treatment of these addictions is still in its nascency, with only a few examples of successful therapies. Therapeutic response depends upon genetic, biological, social, and environmental components. A role for genetic makeup in the response to treatment has been shown for several addiction pharmacotherapies with response to treatment based on individual genetic makeup. In this chapter, we will discuss the role of genetics in pharmacotherapies, specifically for cocaine, alcohol, and opioid dependences. The continued elucidation of the role of genetics should aid in the development of new treatments and increase the efficacy of existing treatments.
Collapse
Affiliation(s)
- David P Graham
- Michael E. DeBakey Veterans Affairs Medical Center, and the Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Mark J Harding
- Michael E. DeBakey Veterans Affairs Medical Center, and the Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | - David A Nielsen
- Michael E. DeBakey Veterans Affairs Medical Center, and the Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
34
|
An injury-induced serotonergic neuron subpopulation contributes to axon regrowth and function restoration after spinal cord injury in zebrafish. Nat Commun 2021; 12:7093. [PMID: 34876587 PMCID: PMC8651775 DOI: 10.1038/s41467-021-27419-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 11/18/2021] [Indexed: 11/26/2022] Open
Abstract
Spinal cord injury (SCI) interrupts long-projecting descending spinal neurons and disrupts the spinal central pattern generator (CPG) that controls locomotion. The intrinsic mechanisms underlying re-wiring of spinal neural circuits and recovery of locomotion after SCI are unclear. Zebrafish shows axonal regeneration and functional recovery after SCI making it a robust model to study mechanisms of regeneration. Here, we use a two-cut SCI model to investigate whether recovery of locomotion can occur independently of supraspinal connections. Using this injury model, we show that injury induces the localization of a specialized group of intraspinal serotonergic neurons (ISNs), with distinctive molecular and cellular properties, at the injury site. This subpopulation of ISNs have hyperactive terminal varicosities constantly releasing serotonin activating 5-HT1B receptors, resulting in axonal regrowth of spinal interneurons. Axon regrowth of excitatory interneurons is more pronounced compared to inhibitory interneurons. Knock-out of htr1b prevents axon regrowth of spinal excitatory interneurons, negatively affecting coordination of rostral-caudal body movements and restoration of locomotor function. On the other hand, treatment with 5-HT1B receptor agonizts promotes functional recovery following SCI. In summary, our data show an intraspinal mechanism where a subpopulation of ISNs stimulates axonal regrowth resulting in improved recovery of locomotor functions following SCI in zebrafish.
Collapse
|
35
|
Kingston R, Amin D, Misra S, Gross JM, Kuwajima T. Serotonin transporter-mediated molecular axis regulates regional retinal ganglion cell vulnerability and axon regeneration after nerve injury. PLoS Genet 2021; 17:e1009885. [PMID: 34735454 PMCID: PMC8594818 DOI: 10.1371/journal.pgen.1009885] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 11/16/2021] [Accepted: 10/17/2021] [Indexed: 11/19/2022] Open
Abstract
Molecular insights into the selective vulnerability of retinal ganglion cells (RGCs) in optic neuropathies and after ocular trauma can lead to the development of novel therapeutic strategies aimed at preserving RGCs. However, little is known about what molecular contexts determine RGC susceptibility. In this study, we show the molecular mechanisms underlying the regional differential vulnerability of RGCs after optic nerve injury. We identified RGCs in the mouse peripheral ventrotemporal (VT) retina as the earliest population of RGCs susceptible to optic nerve injury. Mechanistically, the serotonin transporter (SERT) is upregulated on VT axons after injury. Utilizing SERT-deficient mice, loss of SERT attenuated VT RGC death and led to robust retinal axon regeneration. Integrin β3, a factor mediating SERT-induced functions in other systems, is also upregulated in RGCs and axons after injury, and loss of integrin β3 led to VT RGC protection and axon regeneration. Finally, RNA sequencing analyses revealed that loss of SERT significantly altered molecular signatures in the VT retina after optic nerve injury, including expression of the transmembrane protein, Gpnmb. GPNMB is rapidly downregulated in wild-type, but not SERT- or integrin β3-deficient VT RGCs after injury, and maintaining expression of GPNMB in RGCs via AAV2 viruses even after injury promoted VT RGC survival and axon regeneration. Taken together, our findings demonstrate that the SERT-integrin β3-GPNMB molecular axis mediates selective RGC vulnerability and axon regeneration after optic nerve injury.
Collapse
Affiliation(s)
- Rody Kingston
- Department of Ophthalmology, The Louis J. Fox Center for Vision Restoration, Pittsburgh, Pennsylvania, United States of America
| | - Dwarkesh Amin
- Department of Ophthalmology, The Louis J. Fox Center for Vision Restoration, Pittsburgh, Pennsylvania, United States of America
| | - Sneha Misra
- Department of Ophthalmology, The Louis J. Fox Center for Vision Restoration, Pittsburgh, Pennsylvania, United States of America
| | - Jeffrey M. Gross
- Department of Ophthalmology, The Louis J. Fox Center for Vision Restoration, Pittsburgh, Pennsylvania, United States of America
- Department of Developmental Biology, The McGowan Institute for Regenerative Medicine, The University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Takaaki Kuwajima
- Department of Ophthalmology, The Louis J. Fox Center for Vision Restoration, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
36
|
Senft RA, Dymecki SM. Neuronal pericellular baskets: neurotransmitter convergence and regulation of network excitability. Trends Neurosci 2021; 44:915-924. [PMID: 34565612 PMCID: PMC8551026 DOI: 10.1016/j.tins.2021.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/29/2021] [Accepted: 08/27/2021] [Indexed: 11/20/2022]
Abstract
A pericellular basket is a presynaptic configuration of numerous axonal boutons outlining a target neuron soma and its proximal dendrites. Recent studies show neurochemical diversity of pericellular baskets and suggest that neurotransmitter usage together with the dense, soma-proximal boutons may permit strong input effects on different timescales. Here we review the development, distribution, neurochemical phenotypes, and possible functions of pericellular baskets. As an example, we highlight pericellular baskets formed by projections of certain Pet1/Fev neurons of the serotonergic raphe nuclei. We propose that pericellular baskets represent convergence sites of competition or facilitation between neurotransmitter systems on downstream circuitry, especially in limbic brain regions, where pericellular baskets are widespread. Study of these baskets may enhance our understanding of monoamine regulation of memory, social behavior, and brain oscillations.
Collapse
Affiliation(s)
- Rebecca A Senft
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Susan M Dymecki
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
37
|
Prenatal Serotonin Fluctuation Affects Serotoninergic Development and Related Neural Circuits in Chicken Embryos. Neuroscience 2021; 473:66-80. [PMID: 34425158 DOI: 10.1016/j.neuroscience.2021.08.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 12/16/2022]
Abstract
The placenta is the primary source of serotonin (5-HT) for fetal development, programming fetal neural wiring in humans and other mammals. The fluctuation in maternal 5-HT affects fetal neurogenesis with life-long consequences, however, its mechanisms have not been well known. The chicken embryo, independent of maternal neurohormonal influence, may offer an ideal model for studying the mechanisms of prenatal 5-HT exposure altering postnatal physiological homeostasis and behavioral exhibition. To investigate the fine-tuning of 5-HT to the early embryonic neurodevelopment, 10 µg and 20 µg 5-HT were secretively injected to chicken embryos before incubation. 5-HT exposure mainly affected the neural development in the pons and midbrain, altered the serotoninergic and dopaminergic (DAergic) neuronal morphology, nucleus distribution, and their metabolisms and related gene expressions. The comprehensive effect of 5-HT exposure was not dosage-dependent but the working pathways differed, 10 µg 5-HT exposure reduced 5-HT turnover rate, increased 5-HT 1a receptor expression, and facilitated the ventral tegmental area neuronal development; while 20 µg 5-HT exposure increased the serotoninergic and DAergic neurotransmission and enhanced serotoninergic regulation to the hypothalamus. These findings indicate that the 5-HT exposure effect can be achieved via different paths by modifying the embryonic serotonergic (5-HTergic) and DAergic systems and altering fetal 5-HTergic influence on the thalamocortical circuit and hypothalamic-pituitary-adrenal axis. These results may offer a novel sight for understanding the function of 5-HT during neurodevelopment and raise the possibility for using selective 5-HT reuptake inhibitors to regulate emotional and mental wellness during early pregnancy and possible risks of complications for babies.
Collapse
|
38
|
Cunha C, Smiley JF, Chuhma N, Shah R, Bleiwas C, Menezes EC, Seal RP, Edwards RH, Rayport S, Ansorge MS, Castellanos FX, Teixeira CM. Perinatal interference with the serotonergic system affects VTA function in the adult via glutamate co-transmission. Mol Psychiatry 2021; 26:4795-4812. [PMID: 32398719 PMCID: PMC7657958 DOI: 10.1038/s41380-020-0763-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 04/07/2020] [Accepted: 04/27/2020] [Indexed: 11/29/2022]
Abstract
Serotonin and dopamine are associated with multiple psychiatric disorders. How they interact during development to affect subsequent behavior remains unknown. Knockout of the serotonin transporter or postnatal blockade with selective serotonin reuptake inhibitors (SSRIs) leads to novelty-induced exploration deficits in adulthood, potentially involving the dopamine system. Here, we show in the mouse that raphe nucleus serotonin neurons activate ventral tegmental area dopamine neurons via glutamate co-transmission and that this co-transmission is reduced in animals exposed postnatally to SSRIs. Blocking serotonin neuron glutamate co-transmission mimics this SSRI-induced hypolocomotion, while optogenetic activation of dopamine neurons reverses this hypolocomotor phenotype. Our data demonstrate that serotonin neurons modulate dopamine neuron activity via glutamate co-transmission and that this pathway is developmentally malleable, with high serotonin levels during early life reducing co-transmission, revealing the basis for the reduced novelty-induced exploration in adulthood due to postnatal SSRI exposure.
Collapse
Affiliation(s)
- Catarina Cunha
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, 10962, USA
- Department of Child and Adolescent Psychiatry, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - John F Smiley
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, 10962, USA
- Department of Child and Adolescent Psychiatry, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Nao Chuhma
- Department of Psychiatry, Columbia University and New York State Psychiatric Institute, New York, NY, 10032, USA
- Department of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Relish Shah
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, 10962, USA
| | - Cynthia Bleiwas
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, 10962, USA
| | - Edenia C Menezes
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, 10962, USA
| | - Rebecca P Seal
- Department of Neurobiology and Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15260, USA
| | - Robert H Edwards
- Departments of Neurology and Physiology, University of California, San Francisco School of Medicine, San Francisco, CA, 94143, USA
| | - Stephen Rayport
- Department of Psychiatry, Columbia University and New York State Psychiatric Institute, New York, NY, 10032, USA
- Department of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Mark S Ansorge
- Department of Psychiatry, Columbia University and New York State Psychiatric Institute, New York, NY, 10032, USA
- Department of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Francisco X Castellanos
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, 10962, USA
- Department of Child and Adolescent Psychiatry, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Catia M Teixeira
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, 10962, USA.
- Department of Child and Adolescent Psychiatry, New York University Grossman School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|
39
|
Vuong HE, Coley EJL, Kazantsev M, Cooke ME, Rendon TK, Paramo J, Hsiao EY. Interactions between maternal fluoxetine exposure, the maternal gut microbiome and fetal neurodevelopment in mice. Behav Brain Res 2021; 410:113353. [PMID: 33979656 DOI: 10.1016/j.bbr.2021.113353] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/26/2021] [Accepted: 05/07/2021] [Indexed: 01/16/2023]
Abstract
Selective serotonin reuptake inhibitors (SSRIs) are the most widely used treatment by women experiencing depression during pregnancy. However, the effects of maternal SSRI use on early offspring development remain poorly understood. Recent studies suggest that SSRIs can modify the gut microbiota and interact directly with particular gut bacteria, raising the question of whether the gut microbiome impacts host responses to SSRIs. In this study, we investigate effects of prenatal SSRI exposure on fetal neurodevelopment and further evaluate potential modulatory influences of the maternal gut microbiome. We demonstrate that maternal treatment with the SSRI fluoxetine induces widespread alterations in the fetal brain transcriptome during midgestation, including increases in the expression of genes relevant to synaptic organization and neuronal signaling and decreases in the expression of genes related to DNA replication and mitosis. Notably, maternal fluoxetine treatment from E7.5 to E14.5 has no overt effects on the composition of the maternal gut microbiota. However, maternal pretreatment with antibiotics to deplete the gut microbiome substantially modifies transcriptional responses of the fetal brain to maternal fluoxetine treatment. In particular, maternal fluoxetine treatment elevates localized expression of the opioid binding protein/cell adhesion molecule like gene Opcml in the fetal thalamus and lateral ganglionic eminence, which is prevented by maternal antibiotic treatment. Together, these findings reveal that maternal fluoxetine treatment alters gene expression in the fetal brain through pathways that are impacted, at least in part, by the presence of the maternal gut microbiota.
Collapse
Affiliation(s)
- Helen E Vuong
- Department of Integrative Biology & Physiology, University of California Los Angeles, Los Angeles, CA, 90095, USA.
| | - Elena J L Coley
- Department of Integrative Biology & Physiology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Maria Kazantsev
- Department of Integrative Biology & Physiology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Michaela E Cooke
- Department of Integrative Biology & Physiology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Tomiko K Rendon
- Department of Integrative Biology & Physiology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Jorge Paramo
- Department of Integrative Biology & Physiology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Elaine Y Hsiao
- Department of Integrative Biology & Physiology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
40
|
Mouradian GC, Kilby M, Alvarez S, Kaplan K, Hodges MR. Mortality and ventilatory effects of central serotonin deficiency during postnatal development depend on age but not sex. Physiol Rep 2021; 9:e14946. [PMID: 34228894 PMCID: PMC8259800 DOI: 10.14814/phy2.14946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 11/24/2022] Open
Abstract
Serotonin (5-HT) influences brain development and has predominantly excitatory neuromodulatory effects on the neural respiratory control circuitry. Infants that succumb to sudden infant death syndrome (SIDS) have reduced brainstem 5-HT levels and Tryptophan hydroxylase 2 (Tph2). Furthermore, there are age- and sex-dependent risk factors associated with SIDS. Here we utilized our established Dark Agouti transgenic rat lacking central serotonin KO to test the hypotheses that CNS 5-HT deficiency leads to: (1) high mortality in a sex-independent manner, (2) age-dependent alterations in other CNS aminergic systems, and (3) age-dependent impairment of chemoreflexes during post-natal development. KO rat pups showed high neonatal mortality but not in a sex-dependent manner and did not show altered hypoxic or hypercapnic ventilatory chemoreflexes. However, KO rat pups had increased apnea-related metrics during a specific developmental age (P12-16), which were preceded by transient increases in dopaminergic system activity (P7-8). These results support and extend the concept that 5-HT per se is a critical factor in supporting respiratory control during post-natal development.
Collapse
Affiliation(s)
- Gary C. Mouradian
- Department of PhysiologyMedical College of WisconsinMilwaukeeWIUSA
- Neuroscience Research CenterMedical College of WisconsinMilwaukeeWIUSA
| | - Madeline Kilby
- Department of PhysiologyMedical College of WisconsinMilwaukeeWIUSA
| | - Santiago Alvarez
- Department of PhysiologyMedical College of WisconsinMilwaukeeWIUSA
| | - Kara Kaplan
- Department of PhysiologyMedical College of WisconsinMilwaukeeWIUSA
| | - Matthew R. Hodges
- Department of PhysiologyMedical College of WisconsinMilwaukeeWIUSA
- Neuroscience Research CenterMedical College of WisconsinMilwaukeeWIUSA
| |
Collapse
|
41
|
Rocha ACG, Cristina-Silva C, Taxini CL, da Costa Silva KS, Lima VTM, Macari M, Bícego KC, Szawka RE, Gargaglioni LH. Embryonic Thermal Manipulation Affects Ventilation, Metabolism, Thermal Control and Central Dopamine in Newly Hatched and Juvenile Chicks. Front Physiol 2021; 12:699142. [PMID: 34220555 PMCID: PMC8249324 DOI: 10.3389/fphys.2021.699142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 05/20/2021] [Indexed: 11/29/2022] Open
Abstract
The first third of incubation is critical for embryonic development, and environmental changes during this phase can affect the physiology and survival of the embryos. We evaluated the effects of low (LT), control (CT), and high (HT) temperatures during the first 5 days of incubation on ventilation (V.E), body temperature (Tb), oxygen consumption (V.O2), respiratory equivalent (V.E/V.O2), and brain monoamines on 3-days-old (3d) and 14-days-old (14d) male and female chickens. The body mass of LT animals of both ages and sexes was higher compared to HT and CT animals (except for 3d males). The heart mass of 14d HT animals was higher than that of CT animals. Thermal manipulation did not affect V.E, V.O2 or V.E/V.O2 of 3d animals in normoxia, except for 3d LT males V.E, which was lower than CT. Regarding 14d animals, the HT females showed a decrease in V.E and V.O2 compared to CT and LT groups, while the HT males displayed a lower V.O2 compared to CT males, but no changes in V.E/V.O2. Both sexes of 14d HT chickens presented a greater Tb compared to CT animals. Thermal manipulations increased the dopamine turnover in the brainstem of 3d females. No differences were observed in ventilatory and metabolic parameters in the 3d animals of either sexes, and 14d males under 7% CO2. The hypercapnic hyperventilation was attenuated in the 14d HT females due to changes in V.O2, without alterations in V.E. The 14d LT males showed a lower V.E, during hypercapnia, compared to CT, without changes in V.O2, resulting in an attenuation in V.E/V.O2. During hypoxia, 3d LT females showed an attenuated hyperventilation, modulated by a higher V.O2. In 14d LT and HT females, the increase in V.E was greater and the hypometabolic response was attenuated, compared to CT females, which resulted in no change in the V.E/V.O2. In conclusion, thermal manipulations affect hypercapnia-induced hyperventilation more so than hypoxic challenge, and at both ages, females are more affected by thermal manipulation than males.
Collapse
Affiliation(s)
- Aline C G Rocha
- Department of Animal Morphology and Physiology, College of Agricultural and Veterinarian Sciences, São Paulo State University, São Paulo, Brazil
| | - Caroline Cristina-Silva
- Department of Animal Morphology and Physiology, College of Agricultural and Veterinarian Sciences, São Paulo State University, São Paulo, Brazil
| | | | - Kaoma Stephani da Costa Silva
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais - UFMG, Belo Horizonte, Brazil
| | - Virgínia T M Lima
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais - UFMG, Belo Horizonte, Brazil
| | - Marcos Macari
- Department of Animal Morphology and Physiology, College of Agricultural and Veterinarian Sciences, São Paulo State University, São Paulo, Brazil
| | - Kênia C Bícego
- Department of Animal Morphology and Physiology, College of Agricultural and Veterinarian Sciences, São Paulo State University, São Paulo, Brazil
| | - Raphael E Szawka
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais - UFMG, Belo Horizonte, Brazil
| | - Luciane H Gargaglioni
- Department of Animal Morphology and Physiology, College of Agricultural and Veterinarian Sciences, São Paulo State University, São Paulo, Brazil
| |
Collapse
|
42
|
Sahu MP, Pazos-Boubeta Y, Steinzeig A, Kaurinkoski K, Palmisano M, Borowecki O, Piepponen TP, Castrén E. Depletion of TrkB Receptors From Adult Serotonergic Neurons Increases Brain Serotonin Levels, Enhances Energy Metabolism and Impairs Learning and Memory. Front Mol Neurosci 2021; 14:616178. [PMID: 33935645 PMCID: PMC8082189 DOI: 10.3389/fnmol.2021.616178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 03/23/2021] [Indexed: 11/20/2022] Open
Abstract
Neurotrophin brain-derived neurotrophic factor (BDNF) and neurotransmitter serotonin (5-HT) regulate each other and have been implicated in several neuronal mechanisms, including neuroplasticity. We have investigated the effects of BDNF on serotonergic neurons by deleting BDNF receptor TrkB from serotonergic neurons in the adult brain. The transgenic mice show increased 5-HT and Tph2 levels with abnormal behavioral phenotype. In spite of increased food intake, the transgenic mice are significantly leaner than their wildtype littermates, which may be due to increased metabolic activity. Consistent with increased 5-HT, the proliferation of hippocampal progenitors is significantly increased, however, long-term survival of newborn cells is unchanged. Our data indicates that BDNF-TrkB signaling regulates the functional phenotype of 5-HT neurons with long-term behavioral consequences.
Collapse
Affiliation(s)
- Madhusmita P Sahu
- Neuroscience Center, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Yago Pazos-Boubeta
- Neuroscience Center, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Anna Steinzeig
- Neuroscience Center, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Katja Kaurinkoski
- Neuroscience Center, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Michela Palmisano
- Neuroscience Center, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Olgierd Borowecki
- Neuroscience Center, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland.,Faculty of Philosopy and Social Sciences, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | | | - Eero Castrén
- Neuroscience Center, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| |
Collapse
|
43
|
Muzerelle A, Soiza-Reilly M, Hainer C, Ruet PL, Lesch KP, Bader M, Alenina N, Scotto-Lomassese S, Gaspar P. Dorsal raphe serotonin neurotransmission is required for the expression of nursing behavior and for pup survival. Sci Rep 2021; 11:6004. [PMID: 33727585 PMCID: PMC7966367 DOI: 10.1038/s41598-021-84368-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 02/09/2021] [Indexed: 12/30/2022] Open
Abstract
Proper maternal care is an essential factor of reproductive success in mammals, involving a repertoire of behaviors oriented toward the feeding and care of the offspring. Among the neurotransmitters involved in the initiation of these behaviors, serotonin (5-HT) seems to play an important role. Here we compared pup-oriented maternal behaviors in mice with constitutive 5-HT depletion, the tryptophan hydroxylase 2-knock-out (Tph2-KO) and the Pet1-KO mice. We report that the only common pup-oriented defect in these 2 hyposerotoninergic models is a defective nursing in parturient mice and altered nursing-like (crouching) behavior in virgin mice, while pup retrieval defects are only present in Tph2-KO. Despite a normal mammary gland development and milk production, the defect in appropriate nursing is responsible for severe growth retardation and early lethality of pups born to hyposerotonergic dams. This nursing defect is due to acute rather constitutive 5-HT depletion, as it is reproduced by adult knockdown of Tph2 in the dorsal raphe nucleus in mothers with a prior normal maternal experience. We conclude that 5-HT innervation from the dorsal raphe is required for both the initiation and maintenance of a normal nursing behavior. Our findings may be related to observations of reduced maternal/infant interactions in human depression.
Collapse
Affiliation(s)
- Aude Muzerelle
- INSERM, Institut du Fer À Moulin, Sorbonne Université UMR-S 1270, Paris, France
| | - Mariano Soiza-Reilly
- INSERM, Institut du Fer À Moulin, Sorbonne Université UMR-S 1270, Paris, France.,Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Cornelia Hainer
- Max-Delbrück Center for Molecular Medecine (MDC), Berlin-Buch, Germany
| | - Pierre-Louis Ruet
- INSERM, Institut du Fer À Moulin, Sorbonne Université UMR-S 1270, Paris, France
| | - Klaus-Peter Lesch
- Division of Molecular Psychiatry, Laboratory of Translational Neuroscience, Center of Mental Health, Department of Psychiatry, University of Würzburg, Würzburg, Germany.,Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University, Moscow, Russia.,Department of Neuropsychology and Psychiatry, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, The Netherlands
| | - Michael Bader
- Max-Delbrück Center for Molecular Medecine (MDC), Berlin-Buch, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site, Berlin, Germany.,Charite-University Medicine, Berlin, Germany.,Institute for Biology, University of Lübeck, Lübeck, Germany
| | - Natalia Alenina
- Max-Delbrück Center for Molecular Medecine (MDC), Berlin-Buch, Germany. .,German Center for Cardiovascular Research (DZHK), Partner Site, Berlin, Germany. .,Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia. .,Institute of Cytology, Russian Academy of Science, St. Petersburg, Russia.
| | | | - Patricia Gaspar
- INSERM, Institut du Fer À Moulin, Sorbonne Université UMR-S 1270, Paris, France. .,INSERM U1127, Paris Brain Institute, 75013, Paris, France.
| |
Collapse
|
44
|
Vicenzi S, Foa L, Gasperini RJ. Serotonin functions as a bidirectional guidance molecule regulating growth cone motility. Cell Mol Life Sci 2021; 78:2247-2262. [PMID: 32939562 PMCID: PMC11072016 DOI: 10.1007/s00018-020-03628-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/14/2020] [Accepted: 08/21/2020] [Indexed: 02/02/2023]
Abstract
The neurotransmitter serotonin has been implicated in a range of complex neurological disorders linked to alterations of neuronal circuitry. Serotonin is synthesized in the developing brain before most neuronal circuits become fully functional, suggesting that serotonin might play a distinct regulatory role in shaping circuits prior to its function as a classical neurotransmitter. In this study, we asked if serotonin acts as a guidance cue by examining how serotonin alters growth cone motility of rodent sensory neurons in vitro. Using a growth cone motility assay, we found that serotonin acted as both an attractive and repulsive guidance cue through a narrow concentration range. Extracellular gradients of 50 µM serotonin elicited attraction, mediated by the serotonin 5-HT2a receptor while 100 µM serotonin elicited repulsion mediated by the 5-HT1b receptor. Importantly, high resolution imaging of growth cones indicated that these receptors signalled through their canonical pathways of endoplasmic reticulum-mediated calcium release and cAMP depletion, respectively. This novel characterisation of growth cone motility in response to serotonin gradients provides compelling evidence that secreted serotonin acts at the molecular level as an axon guidance cue to shape neuronal circuit formation during development.
Collapse
Affiliation(s)
- Silvia Vicenzi
- School of Medicine, University of Tasmania, Hobart, Australia
| | - Lisa Foa
- School of Psychological Sciences, University of Tasmania, Hobart, Australia
| | | |
Collapse
|
45
|
Charvériat M, Guiard BP. Serotonergic neurons in the treatment of mood disorders: The dialogue with astrocytes. PROGRESS IN BRAIN RESEARCH 2021; 259:197-228. [PMID: 33541677 DOI: 10.1016/bs.pbr.2021.01.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Astrocytes were traditionally regarded as cells important to neuronal activity, providing both metabolic and structural supports. Recent evidence suggests that they may also play a crucial role in the control of higher brain functions. In keeping with this hypothesis, it is now well accepted that astrocytes contribute to stress but also react to antidepressant drugs as they express serotonergic transporters and receptors. However, the downstream mechanisms leading to the fine-tuned regulation of mood are still unknown. This chapter pays attention to the role of astrocytes in the regulation of emotional behavior and related serotonergic neurotransmission. In particular, it gives a current state of the clinical and preclinical evidence showing that astrocytes respond to environmental conditions and antidepressant drugs through the release of gliotransmitters and neurotrophic factors which in turn, influence serotonergic tone in discrete brain areas. This state-of-the-art review aims at demonstrating the remarkable potential for novel therapeutic antidepressant strategies targeting these glial cells.
Collapse
Affiliation(s)
| | - Bruno P Guiard
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, Toulouse, France.
| |
Collapse
|
46
|
Vahid-Ansari F, Albert PR. Rewiring of the Serotonin System in Major Depression. Front Psychiatry 2021; 12:802581. [PMID: 34975594 PMCID: PMC8716791 DOI: 10.3389/fpsyt.2021.802581] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 11/17/2021] [Indexed: 12/14/2022] Open
Abstract
Serotonin is a key neurotransmitter that is implicated in a wide variety of behavioral and cognitive phenotypes. Originating in the raphe nuclei, 5-HT neurons project widely to innervate many brain regions implicated in the functions. During the development of the brain, as serotonin axons project and innervate brain regions, there is evidence that 5-HT plays key roles in wiring the developing brain, both by modulating 5-HT innervation and by influencing synaptic organization within corticolimbic structures. These actions are mediated by 14 different 5-HT receptors, with region- and cell-specific patterns of expression. More recently, the role of the 5-HT system in synaptic re-organization during adulthood has been suggested. The 5-HT neurons have the unusual capacity to regrow and reinnervate brain regions following insults such as brain injury, chronic stress, or altered development that result in disconnection of the 5-HT system and often cause depression, anxiety, and cognitive impairment. Chronic treatment with antidepressants that amplify 5-HT action, such as selective serotonin reuptake inhibitors (SSRIs), appears to accelerate the rewiring of the 5-HT system by mechanisms that may be critical to the behavioral and cognitive improvements induced in these models. In this review, we survey the possible 5-HT receptor mechanisms that could mediate 5-HT rewiring and assess the evidence that 5-HT-mediated brain rewiring is impacting recovery from mental illness. By amplifying 5-HT-induced rewiring processes using SSRIs and selective 5-HT agonists, more rapid and effective treatments for injury-induced mental illness or cognitive impairment may be achieved.
Collapse
Affiliation(s)
- Faranak Vahid-Ansari
- Ottawa Hospital Research Institute (Neuroscience), University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
| | - Paul R Albert
- Ottawa Hospital Research Institute (Neuroscience), University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
| |
Collapse
|
47
|
White AN, Gross JD, Kaski SW, Trexler KR, Wix KA, Wetsel WC, Kinsey SG, Siderovski DP, Setola V. Genetic deletion of Rgs12 in mice affects serotonin transporter expression and function in vivo and ex vivo. J Psychopharmacol 2020; 34:1393-1407. [PMID: 32842837 PMCID: PMC8576640 DOI: 10.1177/0269881120944160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Regulator of G protein Signaling (RGS) proteins inhibit G protein-coupled receptor (GPCR) signaling, including the signals that arise from neurotransmitter release. We have shown that RGS12 loss diminishes locomotor responses of C57BL/6J mice to dopamine transporter (DAT)-targeting psychostimulants. This diminution resulted from a brain region-specific upregulation of DAT expression and function in RGS12-null mice. This effect on DAT prompted us to investigate whether the serotonin transporter (SERT) exhibits similar alterations upon RGS12 loss in C57BL/6J mice. AIMS Does RGS12 loss affect (a) hyperlocomotion to the preferentially SERT-targeting psychostimulant 3,4-methylenedioxymethamphetamine (MDMA), (b) SERT expression and function in relevant brain regions, and/or (c) serotonergically modulated behaviors? METHODS Open-field and spontaneous home-cage locomotor activities were quantified. 5-HT, 5-HIAA, and SERT levels in brain-region homogenates, as well as SERT expression and function in brain-region tissue preparations, were measured using appropriate biochemical assays. Serotonergically modulated behaviors were assessed using forced swim and tail suspension paradigms, elevated plus and elevated zero maze tests, and social interaction assays. RESULTS RGS12-null mice displayed no hyperlocomotion to 10 mg/kg MDMA. There were brain region-specific alterations in SERT expression and function associated with RGS12 loss. Drug-naïve RGS12-null mice displayed increases in both anxiety-like and anti-depressive-like behaviors. CONCLUSION RGS12 is a critical modulator of serotonergic neurotransmission and serotonergically modulated behavior in mice; lack of hyperlocomotion to low dose MDMA in RGS12-null mice is related to an alteration of steady-state SERT expression and 5-HT uptake.
Collapse
Affiliation(s)
- Allison N. White
- Department of Neuroscience, West Virginia University, Morgantown WV 26506 USA
| | - Joshua D. Gross
- Department of Neuroscience, West Virginia University, Morgantown WV 26506 USA
| | - Shane W. Kaski
- Department of Neuroscience, West Virginia University, Morgantown WV 26506 USA,Department of Behavioral Medicine & Psychiatry, West Virginia University, Morgantown WV 26506 USA
| | - Kristen R. Trexler
- Department of Neuroscience, West Virginia University, Morgantown WV 26506 USA,Department of Psychology, West Virginia University, Morgantown WV 26506 USA
| | - Kim A. Wix
- Department of Neuroscience, West Virginia University, Morgantown WV 26506 USA
| | - William C. Wetsel
- Mouse Behavioral and Neuroendocrine Analysis Core Facility, Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham NC 27710 USA,Departments of Cell Biology and Neurobiology, Duke University Medical Center, Durham NC 27710 USA
| | - Steven G. Kinsey
- Department of Neuroscience, West Virginia University, Morgantown WV 26506 USA,Department of Psychology, West Virginia University, Morgantown WV 26506 USA
| | - David P. Siderovski
- Department of Neuroscience, West Virginia University, Morgantown WV 26506 USA
| | - Vincent Setola
- Department of Neuroscience, West Virginia University, Morgantown WV 26506 USA,Department of Behavioral Medicine & Psychiatry, West Virginia University, Morgantown WV 26506 USA,Corresponding author: Dr. Vincent Setola, Department of Neuroscience, West Virginia University School of Medicine, 108 Biomedical Road, WVU Health Sciences Center, Morgantown, WV 26506;
| |
Collapse
|
48
|
Sex-Specific Role for Dopamine Receptor D2 in Dorsal Raphe Serotonergic Neuron Modulation of Defensive Acoustic Startle and Dominance Behavior. eNeuro 2020; 7:ENEURO.0202-20.2020. [PMID: 33214315 PMCID: PMC7768286 DOI: 10.1523/eneuro.0202-20.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 10/19/2020] [Accepted: 11/09/2020] [Indexed: 11/27/2022] Open
Abstract
Brain networks underlying states of social and sensory alertness are normally adaptive, influenced by serotonin and dopamine (DA), and abnormal in neuropsychiatric disorders, often with sex-specific manifestations. Underlying circuits, cells, and molecules are just beginning to be delineated. Implicated is a subtype of serotonergic neuron denoted Drd2-Pet1, distinguished by expression of the type-2 DA receptor (Drd2) gene, inhibited cell-autonomously by DRD2 agonism in slice, and, when constitutively silenced in male mice, affects levels of defensive and exploratory behaviors (Niederkofler et al., 2016). Unknown has been whether DRD2 signaling in these Pet1 neurons contributes to their capacity for shaping defensive behaviors. To address this, we generated mice in which Drd2 gene sequences were deleted selectively in Pet1 neurons. We found that Drd2Pet1-CKO males, but not females, demonstrated increased winning against sex-matched controls in a social dominance assay. Drd2Pet1-CKO females, but not males, exhibited blunting of the acoustic startle response, a protective, defensive reflex. Indistinguishable from controls were auditory brainstem responses (ABRs), locomotion, cognition, and anxiety-like and depression-like behaviors. Analyzing wild-type Drd2-Pet1 neurons, we found sex-specific differences in the proportional distribution of axonal collaterals, in action potential (AP) duration, and in transcript levels of Gad2, important for GABA synthesis. Drd2Pet1-CKO cells displayed sex-specific differences in the percentage of cells harboring Gad2 transcripts. Our results suggest that DRD2 function in Drd2-Pet1 neurons is required for normal defensive/protective behaviors in a sex-specific manner, which may be influenced by the identified sex-specific molecular and cellular features. Related behaviors in humans too show sex differences, suggesting translational relevance.
Collapse
|
49
|
Witchey SK, Al Samara L, Horman BM, Stapleton HM, Patisaul HB. Perinatal exposure to FireMaster® 550 (FM550), brominated or organophosphate flame retardants produces sex and compound specific effects on adult Wistar rat socioemotional behavior. Horm Behav 2020; 126:104853. [PMID: 32949556 PMCID: PMC7726037 DOI: 10.1016/j.yhbeh.2020.104853] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/31/2020] [Accepted: 09/10/2020] [Indexed: 12/11/2022]
Abstract
Firemaster 550 (FM550) is a flame retardant (FR) mixture that has become one of the most commonly used FRs in household items such as foam-based furniture and baby products. Because this mixture readily leaches from products, contamination of the environment and human tissues is widespread. Prior work by us and others has reported sex-specific behavioral deficits in rodents and zebrafish following early life exposure. In an effort to understand the mechanisms by which these behavioral effects occur, here we explored the effects of its constituents on behavioral outcomes previously shown to be altered by developmental FM550 exposure. The FM550 commercial mixture is composed of two brominated compounds (BFR) and two organophosphate compounds (OPFRs) at almost equivalent proportions. Both the BFR and the OPFR components are differentially metabolized and structurally distinct, but similar to known neurotoxicants. Here we examined adult Wistar rat offspring socioemotional behaviors following perinatal exposure (oral, to the dam) to vehicle, 2000 μg/day FM550, 1000 μg/day BFR or 1000 μg/day OPFR from gestation day 0 to weaning. Beginning on postnatal day 65 offspring from all groups were subjected to a series of behavioral tasks including open field, elevated plus maze, marble burying, social interaction tests, and running wheel. Effects were exposure-, sex- and task-specific, with BFR exposure resulting in the most consistent behavioral deficits. Overall, exposed females showed more deficits compared to males across all dose groups and tasks. These findings help elucidate how different classes of flame retardants, independently and as a mixture, contribute to sex-specific behavioral effects of exposure.
Collapse
Affiliation(s)
- Shannah K Witchey
- Department of Biological Sciences, NC State University, Raleigh, NC 27695, United States of America; Center for Human Health and the Environment, NC State University, Raleigh, NC 27695, United States of America
| | - Loujain Al Samara
- Department of Biological Sciences, NC State University, Raleigh, NC 27695, United States of America
| | - Brian M Horman
- Department of Biological Sciences, NC State University, Raleigh, NC 27695, United States of America
| | - Heather M Stapleton
- Nicholas School of the Environment, Levine Science Research Center, Duke University, Durham, NC 27710, United States of America
| | - Heather B Patisaul
- Department of Biological Sciences, NC State University, Raleigh, NC 27695, United States of America; Center for Human Health and the Environment, NC State University, Raleigh, NC 27695, United States of America.
| |
Collapse
|
50
|
Development of serotonergic projections to the suprachiasmatic nucleus in the mouse brain. Neurosci Lett 2020; 739:135438. [PMID: 33132178 DOI: 10.1016/j.neulet.2020.135438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 09/12/2020] [Accepted: 10/05/2020] [Indexed: 11/21/2022]
Abstract
Serotonin (5-HT) and its innervation have been implicated in various neural functions including circadian systems. Although classical studies have examined the 5-HT innervation pattern in the adult suprachiasmatic nucleus (SCN), the fine-grained morphological study of the development of pathway and terminal projections to the SCN remains scarce. Here, we utilize transgenic mice expressing GFP under the serotonin transporter (SERT) promoter to subserve our developmental mapping study. We demonstrate that the morphology of 5-HT pathway fibers decussating over the supraoptic commissure that projects to the SCN exhibits two distinct developmental patterns. The punctate fibers at the fetal stage gradually become smooth and filamentous, especially during postnatal one week and remain constant thereafter. The innervation field in the SCN develops properly only during postnatal two weeks. Its ventromedial area remains one of the highest 5-HT innervated areas in the adult brain, whereas the dorsolateral area is less innervated. Thus, we provide novel and specific insights on the developmental map of 5-HT system into the SCN using transgenic mouse.
Collapse
|