1
|
Fan M, Xu Y, Wu B, Long J, Liu C, Liang Z, Zhang R, Liu Z, Wang C. Geniposidic Acid Targeting FXR "S332 and H447" Mediated Conformational Change to Upregulate CYPs and miR-19a-3p to Ameliorate Drug-Induced Liver Injury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409107. [PMID: 39998442 PMCID: PMC12005789 DOI: 10.1002/advs.202409107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 01/03/2025] [Indexed: 02/26/2025]
Abstract
Drug-induced liver injury (DILI), caused by chemical drugs and traditional Chinese medicine, often leads to severe outcomes like liver failure due to a lack of early detection markers. Farnesoid X receptor (FXR), a key regulator of bile acid (BA) and cholesterol metabolism, is a potential therapeutic target. This study investigates the pathogenesis, markers, and treatment strategies for DILI, focusing on the hepatoprotective effects of geniposidic acid (GPA) from Gardenia jasminoides J. Ellis. Using cellular and animal models of acute and chronic DILI induced by acetaminophen and triptolide, we explored GPA's mechanisms in BA and cholesterol metabolism. Lipidomic and BA analyses revealed that GPA alleviates DILI by enhancing bile acid synthesis and transport via FXR activation. Experiments using AAV-shFXR, Fxr- / - mice and molecular assays demonstrated that GPA targets Ser332 and His447 on FXR ligand-binding domain, promoting FXR nuclear translocation and initiating cytochrome P450 proteins (CYPs) transcriptional activation for BA metabolism. Additionally, miRNA sequencing and RNA-pulldown assays showed that GPA-activated FXR upregulates miR-19a-3p, binding to LXR 3'UTR to inhibit cholesterol production. These findings reveal the GPA-FXR "structure-target" relationship, highlighting a dual mechanism in which GPA promotes CYPs-mediated bile acid metabolism and miR-19a-3p-mediated cholesterol synthesis inhibition, providing a basis for FXR-targeted DILI therapies.
Collapse
Affiliation(s)
- Minqi Fan
- State Key Laboratory of Traditional Chinese Medicine SyndromeInternational Institute for Translational Chinese MedicineGuangzhou University of Chinese MedicineGuangzhou510006China
- Chinese Medicine Guangdong LaboratoryHengqinGuangdongChina
| | - Yuanhang Xu
- State Key Laboratory of Traditional Chinese Medicine SyndromeInternational Institute for Translational Chinese MedicineGuangzhou University of Chinese MedicineGuangzhou510006China
- Chinese Medicine Guangdong LaboratoryHengqinGuangdongChina
| | - Bingxin Wu
- State Key Laboratory of Traditional Chinese Medicine SyndromeInternational Institute for Translational Chinese MedicineGuangzhou University of Chinese MedicineGuangzhou510006China
- Chinese Medicine Guangdong LaboratoryHengqinGuangdongChina
| | - Jiachan Long
- State Key Laboratory of Traditional Chinese Medicine SyndromeInternational Institute for Translational Chinese MedicineGuangzhou University of Chinese MedicineGuangzhou510006China
- Chinese Medicine Guangdong LaboratoryHengqinGuangdongChina
| | - Caihong Liu
- State Key Laboratory of Traditional Chinese Medicine SyndromeInternational Institute for Translational Chinese MedicineGuangzhou University of Chinese MedicineGuangzhou510006China
- Chinese Medicine Guangdong LaboratoryHengqinGuangdongChina
| | - Zuhui Liang
- State Key Laboratory of Traditional Chinese Medicine SyndromeInternational Institute for Translational Chinese MedicineGuangzhou University of Chinese MedicineGuangzhou510006China
- Chinese Medicine Guangdong LaboratoryHengqinGuangdongChina
| | - Rong Zhang
- State Key Laboratory of Traditional Chinese Medicine SyndromeInternational Institute for Translational Chinese MedicineGuangzhou University of Chinese MedicineGuangzhou510006China
- Chinese Medicine Guangdong LaboratoryHengqinGuangdongChina
| | - Zhongqiu Liu
- State Key Laboratory of Traditional Chinese Medicine SyndromeInternational Institute for Translational Chinese MedicineGuangzhou University of Chinese MedicineGuangzhou510006China
- Chinese Medicine Guangdong LaboratoryHengqinGuangdongChina
| | - Caiyan Wang
- State Key Laboratory of Traditional Chinese Medicine SyndromeInternational Institute for Translational Chinese MedicineGuangzhou University of Chinese MedicineGuangzhou510006China
- Chinese Medicine Guangdong LaboratoryHengqinGuangdongChina
| |
Collapse
|
2
|
He L, Kwon D, Trnka MJ, Liu Y, Yang J, Li K, Totah RA, Johnson EF, Burlingame AL, Correia MA. Liver CYP4A autophagic-lysosomal degradation (ALD): A major role for the autophagic receptor SQSTM1/p62 through an uncommon target interaction site. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.14.618315. [PMID: 39464120 PMCID: PMC11507770 DOI: 10.1101/2024.10.14.618315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
The hepatic P450 hemoproteins CYPs 4A are typical N-terminally anchored Type I endoplasmic reticulum (ER)-proteins, that are inducible by hypolipidemic drugs and other "peroxisome proliferators". They are engaged in the ω-/ω-1-oxidation of various fatty acids including arachidonic acid, prostaglandins and leukotrienes and in the biotransformation of some therapeutic drugs. Herein we report that of the mammalian liver CYPs 4A, human CYP4A11 and mouse Cyp4a12a are preferential targets of the ER-lysosome-associated degradation (ERLAD). Consequently, these proteins are stabilized both as 1%Triton X100-soluble and -insoluble species in mouse hepatocytes and HepG2-cells deficient in the autophagic initiation ATG5-gene. Although these proteins exhibit surface LC3-interacting regions (LIRs) that would target them directly to the autophagosome, they nevertheless interact intimately with the autophagic receptor SQSTM1/p62. Through structural deletion analyses and site-directed mutagenesis, we have identified the Cyp4A-interacting p62 subdomain to lie between residues 170 and 233, which include its Traf6-binding and LIM-binding subdomains. Mice carrying a liver-specific genetic deletion of p62 residues 69-251 (p62Mut) that includes the CYP4A-interacting subdomain also exhibit Cyp4a-protein stabilization both as Triton X100-soluble and -insoluble species. Consistently, p62Mut mouse liver microsomes exhibit enhanced ω- and ω-1-hydroxylation of arachidonic acid to its physiologically active metabolites 19- and 20-HETEs relative to the corresponding wild-type mouse liver microsomes. Collectively, our findings suggest that any disruption of CYP4A ERLAD results in functionally active P450 protein and consequent production of proinflammatory metabolites on one hand, and insoluble aggregates on the other, which may contribute to pathological aggregates i.e. Mallory-Denk bodies/inclusions, hallmarks of many liver diseases.
Collapse
|
3
|
Hashiba S, Nakano M, Yokoseki I, Takahashi E, Kondo M, Jimbo Y, Ishiguro N, Arakawa H, Fukami T, Nakajima M. Cytochrome P450 and UDP-Glucuronosyltransferase Expressions, Activities, and Induction Abilities in 3D-Cultured Human Renal Proximal Tubule Epithelial Cells. Drug Metab Dispos 2024; 52:949-956. [PMID: 38866474 DOI: 10.1124/dmd.124.001685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/17/2024] [Accepted: 06/10/2024] [Indexed: 06/14/2024] Open
Abstract
The role of the kidney as an excretory organ for exogenous and endogenous compounds is well recognized, but there is a wealth of data demonstrating that the kidney has significant metabolizing capacity for a variety of exogenous and endogenous compounds that in some cases surpass the liver. The induction of drug-metabolizing enzymes by some chemicals can cause drug-drug interactions and intraindividual variability in drug clearance. In this study, we evaluated the expression and induction of cytochrome P450 (P450) and UDP-glucuronosyltransferase (UGT) isoforms in 3D-cultured primary human renal proximal tubule epithelial cells (RPTEC) to elucidate their utility as models of renal drug metabolism. CYP2B6, CYP2E1, CYP3A4, CYP3A5, and all detected UGTs (UGT1A1, UGT1A4, UGT1A6, UGT1A9, and UGT2B7) mRNA levels in 3D-RPTEC were significantly higher than those in 2D-RPTEC and HK-2 cells and were close to the levels in the human kidney cortex. CYP1B1 and CYP2J2 mRNA levels in 3D-RPTEC were comparable to those in 2D-RPTEC, HK-2 cells, and the human kidney cortex. Midazolam 1'-hydroxylation, trifluoperazine N-glucuronidation, serotonin O-glucuronidation, propofol O-glucuronidation, and morphine 3-glucuronidation in the 3D-RPTEC were significantly higher than the 2D-RPTEC and comparable to those in the HepaRG cells, although bupropion, ebastine, and calcitriol hydroxylations were not different between the 2D- and 3D-RPTEC. Treatment with ligands of the aryl hydrocarbon receptor and farnesoid X receptor induced CYP1A1 and UGT2B4 expression, respectively, in 3D-RPTEC compared with 2D-RPTEC. We provided information on the expression, activity, and induction abilities of P450s and UGTs in 3D-RPTEC as an in vitro human renal metabolism model. SIGNIFICANCE STATEMENT: This study demonstrated that the expression of cytochrome P450s (P450s) and UDP-glucuronosyltransferases (UGTs) in 3D-cultured primary human renal proximal tubule epithelial cells (3D-RPTEC) was higher than those in 2D-cultured primary human renal proximal tubule epithelial cells and HK-2 cells. The results were comparable to that in the human kidney cortex. 3D-RPTEC are useful for evaluating the induction of kidney P450s, UDP-glucuronosyltransferases, and human renal drug metabolism in cellulo.
Collapse
Affiliation(s)
- Shiori Hashiba
- Drug Metabolism and Toxicology (S.H., Ma.N., I.Y., T.F., Mi.N.) and Pharmaceutical and Health Sciences (H.A.), Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan; WPI Nano Life Science Institute (WPI-NanoLSI) Kanazawa University, Kanazawa, Japan (Ma.N., T.F., Mi.N.); R&D Department, Precision Engineering Center, Industrial Division, Nikkiso Co., Ltd., Kanazawa, Japan (E.T., M.K., Y.J.); and Department of Pharmacokinetics and Nonclinical Safety, Nippon Boehringer Ingelheim Co. Ltd., Kobe, Japan (N.I.)
| | - Masataka Nakano
- Drug Metabolism and Toxicology (S.H., Ma.N., I.Y., T.F., Mi.N.) and Pharmaceutical and Health Sciences (H.A.), Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan; WPI Nano Life Science Institute (WPI-NanoLSI) Kanazawa University, Kanazawa, Japan (Ma.N., T.F., Mi.N.); R&D Department, Precision Engineering Center, Industrial Division, Nikkiso Co., Ltd., Kanazawa, Japan (E.T., M.K., Y.J.); and Department of Pharmacokinetics and Nonclinical Safety, Nippon Boehringer Ingelheim Co. Ltd., Kobe, Japan (N.I.)
| | - Itsuki Yokoseki
- Drug Metabolism and Toxicology (S.H., Ma.N., I.Y., T.F., Mi.N.) and Pharmaceutical and Health Sciences (H.A.), Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan; WPI Nano Life Science Institute (WPI-NanoLSI) Kanazawa University, Kanazawa, Japan (Ma.N., T.F., Mi.N.); R&D Department, Precision Engineering Center, Industrial Division, Nikkiso Co., Ltd., Kanazawa, Japan (E.T., M.K., Y.J.); and Department of Pharmacokinetics and Nonclinical Safety, Nippon Boehringer Ingelheim Co. Ltd., Kobe, Japan (N.I.)
| | - Etsushi Takahashi
- Drug Metabolism and Toxicology (S.H., Ma.N., I.Y., T.F., Mi.N.) and Pharmaceutical and Health Sciences (H.A.), Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan; WPI Nano Life Science Institute (WPI-NanoLSI) Kanazawa University, Kanazawa, Japan (Ma.N., T.F., Mi.N.); R&D Department, Precision Engineering Center, Industrial Division, Nikkiso Co., Ltd., Kanazawa, Japan (E.T., M.K., Y.J.); and Department of Pharmacokinetics and Nonclinical Safety, Nippon Boehringer Ingelheim Co. Ltd., Kobe, Japan (N.I.)
| | - Masayuki Kondo
- Drug Metabolism and Toxicology (S.H., Ma.N., I.Y., T.F., Mi.N.) and Pharmaceutical and Health Sciences (H.A.), Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan; WPI Nano Life Science Institute (WPI-NanoLSI) Kanazawa University, Kanazawa, Japan (Ma.N., T.F., Mi.N.); R&D Department, Precision Engineering Center, Industrial Division, Nikkiso Co., Ltd., Kanazawa, Japan (E.T., M.K., Y.J.); and Department of Pharmacokinetics and Nonclinical Safety, Nippon Boehringer Ingelheim Co. Ltd., Kobe, Japan (N.I.)
| | - Yoichi Jimbo
- Drug Metabolism and Toxicology (S.H., Ma.N., I.Y., T.F., Mi.N.) and Pharmaceutical and Health Sciences (H.A.), Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan; WPI Nano Life Science Institute (WPI-NanoLSI) Kanazawa University, Kanazawa, Japan (Ma.N., T.F., Mi.N.); R&D Department, Precision Engineering Center, Industrial Division, Nikkiso Co., Ltd., Kanazawa, Japan (E.T., M.K., Y.J.); and Department of Pharmacokinetics and Nonclinical Safety, Nippon Boehringer Ingelheim Co. Ltd., Kobe, Japan (N.I.)
| | - Naoki Ishiguro
- Drug Metabolism and Toxicology (S.H., Ma.N., I.Y., T.F., Mi.N.) and Pharmaceutical and Health Sciences (H.A.), Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan; WPI Nano Life Science Institute (WPI-NanoLSI) Kanazawa University, Kanazawa, Japan (Ma.N., T.F., Mi.N.); R&D Department, Precision Engineering Center, Industrial Division, Nikkiso Co., Ltd., Kanazawa, Japan (E.T., M.K., Y.J.); and Department of Pharmacokinetics and Nonclinical Safety, Nippon Boehringer Ingelheim Co. Ltd., Kobe, Japan (N.I.)
| | - Hiroshi Arakawa
- Drug Metabolism and Toxicology (S.H., Ma.N., I.Y., T.F., Mi.N.) and Pharmaceutical and Health Sciences (H.A.), Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan; WPI Nano Life Science Institute (WPI-NanoLSI) Kanazawa University, Kanazawa, Japan (Ma.N., T.F., Mi.N.); R&D Department, Precision Engineering Center, Industrial Division, Nikkiso Co., Ltd., Kanazawa, Japan (E.T., M.K., Y.J.); and Department of Pharmacokinetics and Nonclinical Safety, Nippon Boehringer Ingelheim Co. Ltd., Kobe, Japan (N.I.)
| | - Tatsuki Fukami
- Drug Metabolism and Toxicology (S.H., Ma.N., I.Y., T.F., Mi.N.) and Pharmaceutical and Health Sciences (H.A.), Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan; WPI Nano Life Science Institute (WPI-NanoLSI) Kanazawa University, Kanazawa, Japan (Ma.N., T.F., Mi.N.); R&D Department, Precision Engineering Center, Industrial Division, Nikkiso Co., Ltd., Kanazawa, Japan (E.T., M.K., Y.J.); and Department of Pharmacokinetics and Nonclinical Safety, Nippon Boehringer Ingelheim Co. Ltd., Kobe, Japan (N.I.)
| | - Miki Nakajima
- Drug Metabolism and Toxicology (S.H., Ma.N., I.Y., T.F., Mi.N.) and Pharmaceutical and Health Sciences (H.A.), Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan; WPI Nano Life Science Institute (WPI-NanoLSI) Kanazawa University, Kanazawa, Japan (Ma.N., T.F., Mi.N.); R&D Department, Precision Engineering Center, Industrial Division, Nikkiso Co., Ltd., Kanazawa, Japan (E.T., M.K., Y.J.); and Department of Pharmacokinetics and Nonclinical Safety, Nippon Boehringer Ingelheim Co. Ltd., Kobe, Japan (N.I.)
| |
Collapse
|
4
|
Penning TM, Covey DF. 5β-Dihydrosteroids: Formation and Properties. Int J Mol Sci 2024; 25:8857. [PMID: 39201544 PMCID: PMC11354470 DOI: 10.3390/ijms25168857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/06/2024] [Accepted: 08/10/2024] [Indexed: 09/02/2024] Open
Abstract
5β-Dihydrosteroids are produced by the reduction of Δ4-3-ketosteroids catalyzed by steroid 5β-reductase (AKR1D1). By analogy with steroid 5α-reductase, genetic deficiency exists in AKR1D1 which leads to errors in newborn metabolism and in this case to bile acid deficiency. Also, like the 5α-dihydrosteroids (e.g., 5α-dihydrotestosterone), the 5β-dihydrosteroids produced by AKR1D1 are not inactive but regulate ligand access to nuclear receptors, can act as ligands for nuclear and membrane-bound receptors, and regulate ion-channel opening. For example, 5β-reduction of cortisol and cortisone yields the corresponding 5β-dihydroglucocorticoids which are inactive on the glucocorticoid receptor (GR) and provides an additional mechanism of pre-receptor regulation of ligands for the GR in liver cells. By contrast, 5β-pregnanes can act as neuroactive steroids at the GABAA and NMDA receptors and at low-voltage-activated calcium channels, act as tocolytic agents, have analgesic activity and act as ligands for PXR, while bile acids act as ligands for FXR and thereby control cholesterol homeostasis. The 5β-androstanes also have potent vasodilatory properties and work through blockade of Ca2+ channels. Thus, a preference for 5β-dihydrosteroids to work at the membrane level exists via a variety of mechanisms. This article reviews the field and identifies gaps in knowledge to be addressed in future research.
Collapse
Affiliation(s)
- Trevor M. Penning
- Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19061, USA
| | - Douglas F. Covey
- Department of Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA;
- Taylor Family Institute for Innovative Psychiatric Research, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
5
|
Danek PJ, Daniel WA. The effect of new atypical antipsychotic drugs on the expression of transcription factors regulating cytochrome P450 enzymes in rat liver. Pharmacol Rep 2024; 76:895-901. [PMID: 38878234 PMCID: PMC11294401 DOI: 10.1007/s43440-024-00608-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND Our recent studies showed that prolonged administration of novel atypical antipsychotics affected the expression and activity of cytochrome P450 (CYP), as demonstrated in vitro on human hepatocytes and in vivo on the rat liver. The aim of the present work was to study the effect of repeated treatment with asenapine, iloperidone, and lurasidone on the expression of transcription factors regulating CYP drug-metabolizing enzymes in rat liver. METHODS The hepatic mRNA (qRT-PCR) and protein levels (Western blotting) of aryl hydrocarbon receptor (AhR), pregnane X receptor (PXR), constitutive androstane receptor (CAR) and peroxisome proliferator-activated receptor (PPARγ) were measured in male Wistar rats after 2 week-treatment with asenapine, iloperidone or lurasidone. RESULTS The 2-week treatment with asenapine significantly diminished the AhR and PXR expression (mRNA, protein level), and CAR mRNA level in rat liver. Iloperidone lowered the AhR and CAR expression and PXR protein level. Lurasidone did not affect the expression of AhR and CAR, but increased PXR expression. The antipsychotics did not affect PPARγ. CONCLUSIONS Prolonged treatment with asenapine, iloperidone, or lurasidone affects the expression of transcription factors regulating the CYP drug-metabolizing enzymes. The changes in the expression of AhR, CAR, and PXR mostly correlate with alterations in the expression and activity of respective CYP enzymes found in our previous studies. Since these transcription factors are also engaged in the expression of phase II drug metabolism and drug transporters, changes in their expression may affect the metabolism of endogenous substrates and pharmacokinetics of concomitantly used drugs.
Collapse
Affiliation(s)
- Przemysław J Danek
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Władysława A Daniel
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland.
| |
Collapse
|
6
|
Sellamuthu G, Naseer A, Hradecký J, Chakraborty A, Synek J, Modlinger R, Roy A. Gene expression plasticity facilitates different host feeding in Ips sexdentatus (Coleoptera: Curculionidae: Scolytinae). INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 165:104061. [PMID: 38151136 DOI: 10.1016/j.ibmb.2023.104061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/30/2023] [Accepted: 12/15/2023] [Indexed: 12/29/2023]
Abstract
Host shift is ecologically advantageous and a crucial driver for herbivore insect speciation. Insects on the non-native host obtain enemy-free space and confront reduced competition, but they must adapt to survive. Such signatures of adaptations can often be detected at the gene expression level. It is astonishing how bark beetles cope with distinct chemical environments while feeding on various conifers. Hence, we aim to disentangle the six-toothed bark beetle (Ips sexdentatus) response against two different conifer defences upon host shift (Scots pine to Norway spruce). We conducted bioassay and metabolomic analysis followed by RNA-seq experiments to comprehend the beetle's ability to surpass two different terpene-based conifer defence systems. Beetle growth rate and fecundity were increased when reared exclusively on spruce logs (alternative host) compared to pine logs (native host). Comparative gene expression analysis identified differentially expressed genes (DEGs) related to digestion, detoxification, transporter activity, growth, signalling, and stress response in the spruce-feeding beetle gut. Transporter genes were highly abundant during spruce feeding, suggesting they could play a role in pumping a wide variety of endogenous and xenobiotic compounds or allelochemicals out. Trehalose transporter (TRET) is also up-regulated in the spruce-fed beetle gut to maintain homeostasis and stress tolerance. RT-qPCR and enzymatic assays further corroborated some of our findings. Taken together, the transcriptional plasticity of key physiological genes plays a crucial role after the host shift and provides vital clues for the adaptive potential of bark beetles on different conifer hosts.
Collapse
Affiliation(s)
- Gothandapani Sellamuthu
- Czech University of Life Sciences Prague, Forest Molecular Entomology Lab, Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic; Czech University of Life Sciences Prague, Excellent Team for Mitigation (ETM), Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic
| | - Aisha Naseer
- Czech University of Life Sciences Prague, Forest Molecular Entomology Lab, Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic; Czech University of Life Sciences Prague, Excellent Team for Mitigation (ETM), Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic
| | - Jaromír Hradecký
- Czech University of Life Sciences Prague, Excellent Team for Mitigation (ETM), Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic
| | - Amrita Chakraborty
- Czech University of Life Sciences Prague, Forest Molecular Entomology Lab, Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic; Czech University of Life Sciences Prague, Forest Microbiome Team, Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic
| | - Jiří Synek
- Czech University of Life Sciences Prague, Excellent Team for Mitigation (ETM), Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic
| | - Roman Modlinger
- Czech University of Life Sciences Prague, Excellent Team for Mitigation (ETM), Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic
| | - Amit Roy
- Czech University of Life Sciences Prague, Forest Molecular Entomology Lab, Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic; Czech University of Life Sciences Prague, Excellent Team for Mitigation (ETM), Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic; Czech University of Life Sciences Prague, Forest Microbiome Team, Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic.
| |
Collapse
|
7
|
Murray M. Mechanisms and Clinical Significance of Pharmacokinetic Drug Interactions Mediated by FDA and EMA-approved Hepatitis C Direct-Acting Antiviral Agents. Clin Pharmacokinet 2023; 62:1365-1392. [PMID: 37731164 DOI: 10.1007/s40262-023-01302-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2023] [Indexed: 09/22/2023]
Abstract
The treatment of patients infected with the hepatitis C virus (HCV) has been revolutionised by the development of direct-acting antiviral agents (DAAs) that target specific HCV proteins involved in viral replication. The first DAAs were associated with clinical problems such as adverse drug reactions and pharmacokinetic drug-drug interactions (DDIs). Current FDA/EMA-approved treatments are combinations of DAAs that simultaneously target the HCV N5A-protein, the HCV N5B-polymerase and the HCV NS3/4A-protease. Adverse events and DDIs are less likely with these DAA combinations but several DDIs of potential clinical significance remain. Much of the available information on the interaction of DAAs with CYP drug-metabolising enzymes and influx and efflux transporters is contained in regulatory summaries and is focused on DDIs of likely clinical importance. Important DDIs perpetrated by current DAAs include increases in the pharmacokinetic exposure to statins and dabigatran. Some mechanistic information can be deduced. Although the free concentrations of DAAs in serum are very low, a number of these DDIs are likely mediated by the inhibition of systemic influx transporters, especially OATP1B1/1B3. Other DDIs may arise by DAA-mediated inhibition of intestinal efflux transporters, which increases the systemic concentrations of some coadministered drugs. Conversely, DAAs are victims of DDIs mediated by cyclosporin, ketoconazole, omeprazole and HIV antiretroviral drug combinations, especially when boosted by ritonavir and, to a lesser extent, cobicistat. In addition, concurrent administration of inducers, such as rifampicin, carbamazepine and efavirenz, decreases exposure to some DAAs. Drug-drug interactions that increase the accumulation of HCV N3/4A-protease inhibitors like grazoprevir may exacerbate hepatic injury in HCV patients.
Collapse
Affiliation(s)
- Michael Murray
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, New South Wales, 2006, Australia.
| |
Collapse
|
8
|
Ye L, Jiang X, Chen L, Chen S, Li H, Du R, You W, Peng J, Guo P, Zhang R, Yu H, Dong G, Li D, Li X, Chen W, Xing X, Xiao Y. Moderate body lipid accumulation in mice attenuated benzene-induced hematotoxicity via acceleration of benzene metabolism and clearance. ENVIRONMENT INTERNATIONAL 2023; 178:108113. [PMID: 37506515 DOI: 10.1016/j.envint.2023.108113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/16/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023]
Abstract
Recent population and animal studies have revealed a correlation between fat content and the severity of benzene-induced hematologic toxicity. However, the precise impact of lipid deposition on benzene-induced hematotoxicity and the underlying mechanisms remain unclear. In this study, we established a mouse model with moderate lipid accumulation by subjecting the mice to an 8-week high-fat diet (45% kcal from fat, HFD), followed by 28-day inhalation of benzene at doses of 0, 1, 10, and 100 ppm. The results showed that benzene exposure caused a dose-dependent reduction of peripheral white blood cell (WBC) counts in both diet groups. Notably, this reduction was less pronounced in the HFD-fed mice, suggesting that moderate lipid accumulation mitigates benzene-related hematotoxicity. To investigate the molecular basis for this effect, we performed bioinformatics analysis of high-throughput transcriptome sequencing data, which revealed that moderate lipid deposition alters mouse metabolism and stress tolerance towards xenobiotics. Consistently, the expression of key metabolic enzymes, such as Cyp2e1 and Gsta1, were upregulated in the HFD-fed mice upon benzene exposure. Furthermore, we utilized a real-time exhaled breath detection technique to monitor exhaled benzene metabolites, and the results indicated that moderate lipid deposition enhanced metabolic activation and increased the elimination of benzene metabolites. Collectively, these findings demonstrate that moderate lipid deposition confers reduced susceptibility to benzene-induced hematotoxicity in mice, at least in part, by accelerating benzene metabolism and clearance.
Collapse
Affiliation(s)
- Lizhu Ye
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xinhang Jiang
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Liping Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Shen Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Huiyao Li
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Rui Du
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Wei You
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Jing Peng
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Ping Guo
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Rui Zhang
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Hongyao Yu
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Guanghui Dong
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Daochuan Li
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xue Li
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou 510632, China
| | - Wen Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiumei Xing
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Yongmei Xiao
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
9
|
Karri K, Waxman DJ. TCDD dysregulation of lncRNA expression, liver zonation and intercellular communication across the liver lobule. Toxicol Appl Pharmacol 2023; 471:116550. [PMID: 37172768 PMCID: PMC10330769 DOI: 10.1016/j.taap.2023.116550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/21/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
The persistent environmental aryl hydrocarbon receptor agonist and hepatotoxin TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin) induces hepatic lipid accumulation (steatosis), inflammation (steatohepatitis) and fibrosis. Thousands of liver-expressed, nuclear-localized lncRNAs with regulatory potential have been identified; however, their roles in TCDD-induced hepatoxicity and liver disease are unknown. We analyzed single nucleus (sn)RNA-seq data from control and subchronic (4 wk) TCDD-exposed mouse liver to determine liver cell-type specificity, zonation and differential expression profiles for thousands of lncRNAs. TCDD dysregulated >4000 of these lncRNAs in one or more liver cell types, including 684 lncRNAs specifically dysregulated in liver non-parenchymal cells. Trajectory inference analysis revealed major disruption by TCDD of hepatocyte zonation, affecting >800 genes, including 121 lncRNAs, with strong enrichment for lipid metabolism genes. TCDD also dysregulated expression of >200 transcription factors, including 19 Nuclear Receptors, most notably in hepatocytes and Kupffer cells. TCDD-induced changes in cell-cell communication patterns included marked decreases in EGF signaling from hepatocytes to non-parenchymal cells and increases in extracellular matrix-receptor interactions central to liver fibrosis. Gene regulatory networks constructed from the snRNA-seq data identified TCDD-exposed liver network-essential lncRNA regulators linked to functions such as fatty acid metabolic process, peroxisome and xenobiotic metabolism. Networks were validated by the striking enrichments that predicted regulatory lncRNAs showed for specific biological pathways. These findings highlight the power of snRNA-seq to discover functional roles for many xenobiotic-responsive lncRNAs in both hepatocytes and liver non-parenchymal cells and to elucidate novel aspects of foreign chemical-induced hepatotoxicity and liver disease, including dysregulation of intercellular communication within the liver lobule.
Collapse
Affiliation(s)
- Kritika Karri
- Department of Biology and Bioinformatics Program, Boston University, Boston, MA 02215, USA
| | - David J Waxman
- Department of Biology and Bioinformatics Program, Boston University, Boston, MA 02215, USA.
| |
Collapse
|
10
|
Karri K, Waxman DJ. TCDD dysregulation of lncRNA expression, liver zonation and intercellular communication across the liver lobule. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.07.523119. [PMID: 36711947 PMCID: PMC9881922 DOI: 10.1101/2023.01.07.523119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The persistent environmental aryl hydrocarbon receptor agonist and hepatotoxin TCDD (2,3,7,8-tetrachlorodibenzo- p -dioxin) induces hepatic lipid accumulation (steatosis), inflammation (steatohepatitis) and fibrosis. Thousands of liver-expressed, nuclear-localized lncRNAs with regulatory potential have been identified; however, their roles in TCDD-induced hepatoxicity and liver disease are unknown. We analyzed single nucleus (sn)RNA-seq data from control and chronic TCDD-exposed mouse liver to determine liver cell-type specificity, zonation and differential expression profiles for thousands of IncRNAs. TCDD dysregulated >4,000 of these lncRNAs in one or more liver cell types, including 684 lncRNAs specifically dysregulated in liver non-parenchymal cells. Trajectory inference analysis revealed major disruption by TCDD of hepatocyte zonation, affecting >800 genes, including 121 IncRNAs, with strong enrichment for lipid metabolism genes. TCDD also dysregulated expression of >200 transcription factors, including 19 Nuclear Receptors, most notably in hepatocytes and Kupffer cells. TCDD-induced changes in cellâ€"cell communication patterns included marked decreases in EGF signaling from hepatocytes to non-parenchymal cells and increases in extracellular matrix-receptor interactions central to liver fibrosis. Gene regulatory networks constructed from the snRNA-seq data identified TCDD-exposed liver network-essential lncRNA regulators linked to functions such as fatty acid metabolic process, peroxisome and xenobiotic metabolic. Networks were validated by the striking enrichments that predicted regulatory IncRNAs showed for specific biological pathways. These findings highlight the power of snRNA-seq to discover functional roles for many xenobiotic-responsive lncRNAs in both hepatocytes and liver non-parenchymal cells and to elucidate novel aspects of foreign chemical-induced hepatotoxicity and liver disease, including dysregulation of intercellular communication within the liver lobule.
Collapse
|
11
|
Ni J, Zhu P, Mo Q, Luo W, Du Z, Jiang J, Yang S, Zhao L, Gong Q, Wang Y. Dynamic Transcriptomic Profiling During Liver Development in Schizothorax Prenanti. Front Physiol 2022; 13:928858. [PMID: 35899028 PMCID: PMC9309550 DOI: 10.3389/fphys.2022.928858] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/21/2022] [Indexed: 11/23/2022] Open
Abstract
Liver is an important organ for glucose and lipid metabolism, immunity, and detoxification in fish. However, the gene regulatory network of postnatal liver development still remains unknown in teleost fish. In this study, we performed transcriptome analysis on the liver of S. prenanti at three stages. A total of 1692 differentially expressed genes (DGEs) were identified across three liver developmental stages. The oil red O staining and PAS staining revealed that the lipid content of liver was increased and the glycogen content of liver was decreased during liver development. The fatty acids biosynthesis related genes were upregulated in adult and young stages compared with juvenile stage, while lipid degradation related genes were downregulated. The genes related to glycolysis, gluconeogenesis and glycogenolysis were upregulated in juvenile or young stages compared with adult stage. Further pathway analysis indicated that the CYP450 pathway, cell cycle and amino acid metabolic pathway were induced in the process of liver maturation. Our study presents the gene expression pattern in different liver development stages of S. prenanti and may guide future studies on metabolism of S. prenanti liver.
Collapse
Affiliation(s)
- Jiahui Ni
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Peng Zhu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Qilang Mo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Wei Luo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Zongjun Du
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Jun Jiang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Song Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Liulan Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Quan Gong
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Yan Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Yan Wang,
| |
Collapse
|
12
|
Jacobs MN, Kubickova B, Boshoff E. Candidate Proficiency Test Chemicals to Address Industrial Chemical Applicability Domains for in vitro Human Cytochrome P450 Enzyme Induction. FRONTIERS IN TOXICOLOGY 2022; 4:880818. [PMID: 35795225 PMCID: PMC9252529 DOI: 10.3389/ftox.2022.880818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/25/2022] [Indexed: 12/14/2022] Open
Abstract
Cytochrome P450 (CYP) enzymes play a key role in the metabolism of both xenobiotics and endogenous chemicals, and the activity of some CYP isoforms are susceptible to induction and/or inhibition by certain chemicals. As CYP induction/inhibition can bring about significant alterations in the level of in vivo exposure to CYP substrates and metabolites, CYP induction/inhibition data is needed for regulatory chemical toxicity hazard assessment. On the basis of available human in vivo pharmaceutical data, a draft Organisation for Economic Co-operation and Development Test Guideline (TG) for an in vitro CYP HepaRG test method that is capable of detecting the induction of four human CYPs (CYP1A1/1A2, 2B6, and 3A4), has been developed and validated for a set of pharmaceutical proficiency chemicals. However to support TG adoption, further validation data was requested to demonstrate the ability of the test method to also accurately detect CYP induction mediated by industrial and pesticidal chemicals, together with an indication on regulatory uses of the test method. As part of "GOLIATH", a European Union Horizon-2020 funded research project on metabolic disrupting chemical testing approaches, work is underway to generate supplemental validated data for an additional set of chemicals with sufficient diversity to allow for the approval of the guideline. Here we report on the process of proficiency chemical selection based on a targeted literature review, the selection criteria and considerations required for acceptance of proficiency chemical selection for OECD TG development (i.e. structural diversity, range of activity, relevant chemical sectors, global restrictions etc). The following 13 proposed proficiency chemicals were reviewed and selected as a suitable set for use in the additional validation experiments: tebuconazole, benfuracarb, atrazine, cypermethrin, chlorpyrifos, perfluorooctanoic acid, bisphenol A, N,N-diethyl-m-toluamide, benzo-[a]-pyrene, fludioxonil, malathion, triclosan, and caffeine. Illustrations of applications of the test method in relation to endocrine disruption and non-genotoxic carcinogenicity are provided.
Collapse
Affiliation(s)
- Miriam Naomi Jacobs
- Centre for Radiation, Chemical and Environmental Hazards (CRCE), Department of Toxicology, Public Health England (PHE), Harwell Science and Innovation Campus, Chilton, United Kingdom
| | - Barbara Kubickova
- Centre for Radiation, Chemical and Environmental Hazards (CRCE), Department of Toxicology, Public Health England (PHE), Harwell Science and Innovation Campus, Chilton, United Kingdom
| | - Eugene Boshoff
- Centre for Radiation, Chemical and Environmental Hazards (CRCE), Department of Toxicology, Public Health England (PHE), Harwell Science and Innovation Campus, Chilton, United Kingdom
| |
Collapse
|
13
|
Induction by Phenobarbital of Phase I and II Xenobiotic-Metabolizing Enzymes in Bovine Liver: An Overall Catalytic and Immunochemical Characterization. Int J Mol Sci 2022; 23:ijms23073564. [PMID: 35408925 PMCID: PMC8998613 DOI: 10.3390/ijms23073564] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/14/2022] [Accepted: 03/21/2022] [Indexed: 12/15/2022] Open
Abstract
In cattle, phenobarbital (PB) upregulates target drug-metabolizing enzyme (DME) mRNA levels. However, few data about PB's post-transcriptional effects are actually available. This work provides the first, and an almost complete, characterization of PB-dependent changes in DME catalytic activities in bovine liver using common probe substrates and confirmatory immunoblotting investigations. As expected, PB increased the total cytochrome P450 (CYP) content and the extent of metyrapone binding; moreover, an augmentation of protein amounts and related enzyme activities was observed for known PB targets such as CYP2B, 2C, and 3A, but also CYP2E1. However, contradictory results were obtained for CYP1A, while a decreased catalytic activity was observed for flavin-containing monooxygenases 1 and 3. The barbiturate had no effect on the chosen hydrolytic and conjugative DMEs. For the first time, we also measured the 26S proteasome activity, and the increase observed in PB-treated cattle would suggest this post-translational event might contribute to cattle DME regulation. Overall, this study increased the knowledge of cattle hepatic drug metabolism, and further confirmed the presence of species differences in DME expression and activity between cattle, humans, and rodents. This reinforced the need for an extensive characterization and understanding of comparative molecular mechanisms involved in expression, regulation, and function of DMEs.
Collapse
|
14
|
Daniel WA, Bromek E, Danek PJ, Haduch A. The mechanisms of interactions of psychotropic drugs with liver and brain cytochrome P450 and their significance for drug effect and drug-drug interactions. Biochem Pharmacol 2022; 199:115006. [PMID: 35314167 DOI: 10.1016/j.bcp.2022.115006] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 02/08/2023]
Abstract
Cytochrome P450 (CYP) plays an important role in psychopharmacology. While liver CYP enzymes are responsible for the biotransformation of psychotropic drugs, brain CYP enzymes are involved in the local metabolism of these drugs and endogenous neuroactive substances, such as neurosteroids, and in alternative pathways of neurotransmitter biosynthesis including dopamine and serotonin. Recent studies have revealed a relation between the brain nervous system and cytochrome P450, indicating that CYP enzymes metabolize endogenous neuroactive substances in the brain, while the brain nervous system is engaged in the central neuroendocrine and neuroimmune regulation of cytochrome P450 in the liver. Therefore, the effect of neuroactive drugs on cytochrome P450 should be investigated not only in vitro, but also at in vivo conditions, since only in vivo all mechanisms of drug-enzyme interaction can be observed, including neuroendocrine and neuroimmune modulation. Psychotropic drugs can potentially affect cytochrome P450 via a number of mechanisms operating at the level of the nervous, hormonal and immune systems, and the liver. Their effect on cytochrome P450 in the brain is often different than in the liver and region-dependent. Since psychotropic drugs can affect cytochrome P450 both in the liver and brain, they can modify their own pharmacological effect at both pharmacokinetic and pharmacodynamic level. The article describes the mechanisms by which psychotropic drugs can change the expression/activity of cytochrome P450 in the liver and brain, and discusses the significance of those mechanisms for drug action and drug-drug interactions. Moreover, the brain CYP2D6 is considered as a potential target for psychotropics.
Collapse
Affiliation(s)
- Władysława A Daniel
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland.
| | - Ewa Bromek
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| | - Przemysław J Danek
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| | - Anna Haduch
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| |
Collapse
|
15
|
Shin A, Waxman DJ. Impact of neonatal activation of nuclear receptor CAR (Nr1i3) on Cyp2 gene expression in adult mouse liver. Toxicol Sci 2022; 187:298-310. [PMID: 35285501 DOI: 10.1093/toxsci/kfac032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Perinatal exposure to environmental chemicals is proposed to reprogram development and alter disease susceptibility later in life. Supporting this, neonatal activation of the nuclear receptor CAR (Nr1i3) by TCPOBOP induces persistent expression of mouse hepatic Cyp2 genes into adulthood, attributed to long-term epigenetic memory of the early life exposure [Hepatology (2012) 56:1499-1509]. Here, we confirm that the same high-dose (15x ED50) neonatal TCPOBOP exposure used in that work induces prolonged (12 weeks) increases in hepatic Cyp2 expression; however, we show that the persistence of expression can be fully explained by the persistence of residual TCPOBOP in liver tissue. When the long-term presence of TCPOBOP in tissue was eliminated by decreasing the neonatal TCPOBOP dose 22-fold (0.67x ED50), strong neonatal increases in hepatic Cyp2 expression were still obtained but did not persist into adulthood. Furthermore, the neonatal ED50-range TCPOBOP exposure did not sensitize mice to a subsequent, low-dose TCPOBOP treatment. In contrast, neonatal treatment with phenobarbital, a short half-life (t1/2=8 h) agonist of CAR and of PXR (Nr1i2), induced high-level neonatal activation of Cyp2 genes and also altered their responsiveness to low-dose phenobarbital exposure at adulthood by either increasing (Cyp2b10) or decreasing (Cyp2c55) expression. Thus, neonatal xenobiotic exposure can reprogram hepatic Cyp2 genes and alter their responsiveness to exposures later in life. These findings highlight the need to carefully consider xenobiotic dose, half-life and persistence in tissue when evaluating the long-term effects of early life environmental chemical exposures.
Collapse
Affiliation(s)
- Aram Shin
- Department of Biology and Bioinformatics Program, Boston University, Boston, Massachusetts 02215, USA
| | - David J Waxman
- Department of Biology and Bioinformatics Program, Boston University, Boston, Massachusetts 02215, USA
| |
Collapse
|
16
|
Quality Related Safety Evaluation of a South African Traditional Formulation (PHELA®) as Novel Anti-Biofilm Candidate. Molecules 2022; 27:molecules27041219. [PMID: 35209008 PMCID: PMC8877180 DOI: 10.3390/molecules27041219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/04/2022] [Indexed: 11/16/2022] Open
Abstract
A South African traditional formulation, PHELA®, is consumed by the traditional people for severe chest problems with coughing, diarrhea, oral ulcers etc. The present study focused on establishing the anti-infective properties of a safe and standardized poly-herbal formulation through a series of criteria and specifications.
Collapse
|
17
|
Kodama S, Yoshii N, Ota A, Takeshita JI, Yoshinari K, Ono A. Association between in vitro nuclear receptor-activating profiles of chemical compounds and their in vivo hepatotoxicity in rats. J Toxicol Sci 2021; 46:569-587. [PMID: 34853243 DOI: 10.2131/jts.46.569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The liver plays critical roles to maintain homeostasis of living organisms and is also a major target organ of chemical toxicity. Meanwhile, nuclear receptors (NRs) are known to regulate major liver functions and also as a critical target for hepatotoxic compounds. In this study, we established mammalian one-hybrid assay systems for five rat-derived NRs, namely PXR, PPARα, LXRα, FXR and RXRα, and evaluated a total of 326 compounds for their NR-activating profiles. Then, we assessed the association between their NR-activating profile and hepatotoxic endpoints in repeated-dose toxicity data of male rats from Hazard Evaluation Support System. In the in vitro cell-based assays, 68, 38, 20, 17 and 17 compounds were identified as positives for PXR, PPARα, LXRα, FXR and RXRα, respectively. The association analyses demonstrated that the PXR-positive compounds showed high frequency of endpoints related to liver hypertrophy, such as centrilobular hepatocellular hypertrophy, suggesting that PXR activation is involved in chemical-induced liver hypertrophy in rats. It is intriguing to note that the PXR-positive compounds also showed statistically significant associations with both prolonged activated partial thromboplastin time and prolonged prothrombin time, suggesting a possible involvement of PXR in the regulation of blood clotting factors. Collectively, our approach may be useful for discovering new functions of NRs as well as understanding the complex mechanism for hepatotoxicity caused by chemical compounds.
Collapse
Affiliation(s)
- Susumu Kodama
- Laboratory of Toxicology, Division of Pharmaceutical Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| | - Nao Yoshii
- Laboratory of Toxicology, Division of Pharmaceutical Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| | - Akihiro Ota
- Laboratory of Toxicology, Division of Pharmaceutical Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| | - Jun-Ichi Takeshita
- Reserach Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Kouichi Yoshinari
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka
| | - Atsushi Ono
- Laboratory of Toxicology, Division of Pharmaceutical Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| |
Collapse
|
18
|
Oesch F, Fruth D, Hengstler JG, Fabian E, Berger FI, Landsiedel R. Enigmatic mechanism of the N-vinylpyrrolidone hepatocarcinogenicity in the rat. Arch Toxicol 2021; 95:3717-3744. [PMID: 34595563 PMCID: PMC8536644 DOI: 10.1007/s00204-021-03151-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/26/2021] [Indexed: 11/24/2022]
Abstract
N-vinyl pyrrolidone (NVP) is produced up to several thousand tons per year as starting material for the production of polymers to be used in pharmaceutics, cosmetics and food technology. Upon inhalation NVP was carcinogenic in the rat, liver tumor formation is starting already at the rather low concentration of 5 ppm. Hence, differentiation whether NVP is a genotoxic carcinogen (presumed to generally have no dose threshold for the carcinogenic activity) or a non-genotoxic carcinogen (with a potentially definable threshold) is highly important. In the present study, therefore, the existing genotoxicity investigations on NVP (all showing consistently negative results) were extended and complemented with investigations on possible alternative mechanisms, which also all proved negative. All tests were performed in the same species (rat) using the same route of exposure (inhalation) and the same doses of NVP (5, 10 and 20 ppm) as had been used in the positive carcinogenicity test. Specifically, the tests included an ex vivo Comet assay (so far not available) and an ex vivo micronucleus test (in contrast to the already available micronucleus test in mice here in the same species and by the same route of application as in the bioassay which had shown the carcinogenicity), tests on oxidative stress (non-protein-bound sulfhydryls and glutathione recycling test), mechanisms mediated by hepatic receptors, the activation of which had been shown earlier to lead to carcinogenicity in some instances (Ah receptor, CAR, PXR, PPARα). No indications were obtained for any of the investigated mechanisms to be responsible for or to contribute to the observed carcinogenicity of NVP. The most important of these exclusions is genotoxicity. Thus, NVP can rightfully be regarded and treated as a non-genotoxic carcinogen and threshold approaches to the assessment of this chemical are supported. However, the mechanism underlying the carcinogenicity of NVP in rats remains unclear.
Collapse
Affiliation(s)
- Franz Oesch
- Oesch-Tox Toxicological Consulting and Expert Opinions GmbH&CoKG, Rheinblick 21, 55263, Ingelheim, Germany.,Institute of Toxicology, Johannes Gutenberg University, 55131, Mainz, Germany
| | - Daniela Fruth
- Experimental Toxicology and Ecology, BASF SE, 67056, Ludwigshafen am Rhein, Germany.,Knoell Germany GmbH, Eastsite XII, Konrad-Zuse-Ring 25, 68163, Mannheim, Germany
| | - Jan G Hengstler
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), University of Dortmund, Dortmund, Germany
| | - Eric Fabian
- Experimental Toxicology and Ecology, BASF SE, 67056, Ludwigshafen am Rhein, Germany
| | - Franz Ingo Berger
- Regulatory Toxicology Chemicals, BASF SE, 67056, Ludwigshafen am Rhein, Germany
| | - Robert Landsiedel
- Experimental Toxicology and Ecology, BASF SE, 67056, Ludwigshafen am Rhein, Germany.
| |
Collapse
|
19
|
Chen A, Han Y, Poss KD. Regulation of zebrafish fin regeneration by vitamin D signaling. Dev Dyn 2021; 250:1330-1339. [PMID: 33064344 PMCID: PMC8050121 DOI: 10.1002/dvdy.261] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/10/2020] [Accepted: 10/12/2020] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Vitamin D is an essential nutrient that has long been known to regulate skeletal growth and integrity. In models of major appendage regeneration, treatment with vitamin D analogs has been reported to improve aspects of zebrafish fin regeneration in specific disease or gene misexpression contexts, but also to disrupt pattern in regenerating salamander limbs. Recently, we reported strong mitogenic roles for vitamin D signaling in several zebrafish tissues throughout life stages, including epidermal cells and osteoblasts of adult fins. To our knowledge, molecular genetic approaches to dissect vitamin D function in appendage regeneration have not been described. RESULTS Using a knock-in GFP reporter for the expression of the vitamin D target gene and negative regulator cyp24a1, we identified active vitamin D signaling in adult zebrafish fins during tissue homeostasis and regeneration. Transgenic expression of cyp24a1 or a dominant-negative vitamin D receptor (VDR) inhibited regeneration of amputated fins, whereas global vitamin D treatment accelerated regeneration. Using tissue regeneration enhancer elements, we found that local enhancement of VDR expression could improve regeneration with low doses of a vitamin D analog. CONCLUSIONS Vitamin D signaling enhances the efficacy of fin regeneration in zebrafish.
Collapse
Affiliation(s)
- Anzhi Chen
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, 27710, USA
- Regeneration Next, Duke University, Durham, North Carolina, 27710, USA
| | - Yanchao Han
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, 27710, USA
- Regeneration Next, Duke University, Durham, North Carolina, 27710, USA
- Institute for Cardiovascular Science, Medical College, Soochow University, Suzhou, China
| | - Kenneth D. Poss
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, 27710, USA
- Regeneration Next, Duke University, Durham, North Carolina, 27710, USA
| |
Collapse
|
20
|
Alvarez DA, Corsi SR, De Cicco LA, Villeneuve DL, Baldwin AK. Identifying Chemicals and Mixtures of Potential Biological Concern Detected in Passive Samplers from Great Lakes Tributaries Using High-Throughput Data and Biological Pathways. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:2165-2182. [PMID: 34003517 PMCID: PMC8361951 DOI: 10.1002/etc.5118] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/09/2021] [Accepted: 05/12/2021] [Indexed: 05/24/2023]
Abstract
Waterborne contaminants were monitored in 69 tributaries of the Laurentian Great Lakes in 2010 and 2014 using semipermeable membrane devices (SPMDs) and polar organic chemical integrative samplers (POCIS). A risk-based screening approach was used to prioritize chemicals and chemical mixtures, identify sites at greatest risk for biological impacts, and identify potential hazards to monitor at those sites. Analyses included 185 chemicals (143 detected) including polycyclic aromatic hydrocarbons (PAHs), legacy and current-use pesticides, fire retardants, pharmaceuticals, and fragrances. Hazard quotients were calculated by dividing detected concentrations by biological effect concentrations reported in the ECOTOX Knowledgebase (toxicity quotients) or ToxCast database (exposure-activity ratios [EARs]). Mixture effects were estimated by summation of EAR values for chemicals that influence ToxCast assays with common gene targets. Nineteen chemicals-atrazine, N,N-diethyltoluamide, di(2-ethylhexyl)phthalate, dl-menthol, galaxolide, p-tert-octylphenol, 3 organochlorine pesticides, 3 PAHs, 4 pharmaceuticals, and 3 phosphate flame retardants-had toxicity quotients >0.1 or EARs for individual chemicals >10-3 at 10% or more of the sites monitored. An additional 4 chemicals (tributyl phosphate, triethyl citrate, benz[a]anthracene, and benzo[b]fluoranthene) were present in mixtures with EARs >10-3 . To evaluate potential apical effects and biological endpoints to monitor in exposed wildlife, in vitro bioactivity data were compared to adverse outcome pathway gene ontology information. Endpoints and effects associated with endocrine disruption, alterations in xenobiotic metabolism, and potentially neuronal development would be relevant to monitor at the priority sites. The EAR threshold exceedance for many chemical classes was correlated with urban land cover and wastewater effluent influence, whereas herbicides and fire retardants were also correlated to agricultural land cover. Environ Toxicol Chem 2021;40:2165-2182. Published 2021. This article is a U.S. Government work and is in the public domain in the USA. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- David A. Alvarez
- Columbia Environmental Research CenterUS Geological SurveyColumbiaMissouri
| | - Steven R. Corsi
- Upper Midwest Science CenterUS Geological SurveyMiddletonWisconsin
| | | | - Daniel L. Villeneuve
- Center for Computational Toxicology and Exposure, Great Lakes Toxicology and Ecology DivisionUS Environmental Protection AgencyDuluthMinnesota
| | | |
Collapse
|
21
|
Johanson SM, Ropstad E, Østby GC, Aleksandersen M, Zamaratskaia G, Boge GS, Halsne R, Trangerud C, Lyche JL, Berntsen HF, Zimmer KE, Verhaegen S. Perinatal exposure to a human relevant mixture of persistent organic pollutants: Effects on mammary gland development, ovarian folliculogenesis and liver in CD-1 mice. PLoS One 2021; 16:e0252954. [PMID: 34111182 PMCID: PMC8191980 DOI: 10.1371/journal.pone.0252954] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 05/25/2021] [Indexed: 01/09/2023] Open
Abstract
The ability of persistent organic pollutants (POPs) with endocrine disrupting properties to interfere with the developing reproductive system is of increasing concern. POPs are transferred from dams to offspring and the high sensitivity of neonates to endocrine disturbances may be caused by underdeveloped systems of metabolism and excretion. The present study aimed to characterize the effect of in utero and lactational exposure to a human relevant mixture of POPs on the female mammary gland, ovarian folliculogenesis and liver function in CD-1 offspring mice. Dams were exposed to the mixture through the diet at Control, Low or High doses (representing 0x, 5000x and 100 000x human estimated daily intake levels, respectively) from weaning and throughout mating, gestation, and lactation. Perinatally exposed female offspring exhibited altered mammary gland development and a suppressed ovarian follicle maturation. Increased hepatic cytochrome P450 enzymatic activities indirectly indicated activation of nuclear receptors and potential generation of reactive products. Hepatocellular hypertrophy was observed from weaning until 30 weeks of age and could potentially lead to hepatotoxicity. Further studies should investigate the effects of human relevant mixtures of POPs on several hormones combined with female reproductive ability and liver function.
Collapse
Affiliation(s)
- Silje Modahl Johanson
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Erik Ropstad
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Gunn Charlotte Østby
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Mona Aleksandersen
- Department of Preclinical Sciences and Pathology, Norwegian University of Life Sciences, Ås, Norway
| | - Galia Zamaratskaia
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Gudrun Seeberg Boge
- Department of Companion Animal Clinical Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Ruth Halsne
- Division of Laboratory Medicine, Department of Forensic Sciences, Oslo University Hospital, Oslo, Norway
| | - Cathrine Trangerud
- Department of Companion Animal Clinical Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Jan Ludvig Lyche
- Department of Paraclinical Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Hanne Friis Berntsen
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, Ås, Norway
- National Institute of Occupational Health, Oslo, Norway
| | - Karin Elisabeth Zimmer
- Department of Preclinical Sciences and Pathology, Norwegian University of Life Sciences, Ås, Norway
| | - Steven Verhaegen
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
22
|
Negi CK, Khan S, Dirven H, Bajard L, Bláha L. Flame Retardants-Mediated Interferon Signaling in the Pathogenesis of Nonalcoholic Fatty Liver Disease. Int J Mol Sci 2021; 22:ijms22084282. [PMID: 33924165 PMCID: PMC8074384 DOI: 10.3390/ijms22084282] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a growing concern worldwide, affecting 25% of the global population. NAFLD is a multifactorial disease with a broad spectrum of pathology includes steatosis, which gradually progresses to a more severe condition such as nonalcoholic steatohepatitis (NASH), fibrosis, cirrhosis, and eventually leads to hepatic cancer. Several risk factors, including exposure to environmental toxicants, are involved in the development and progression of NAFLD. Environmental factors may promote the development and progression of NAFLD by various biological alterations, including mitochondrial dysfunction, reactive oxygen species production, nuclear receptors dysregulation, and interference in inflammatory and immune-mediated signaling. Moreover, environmental contaminants can influence immune responses by impairing the immune system’s components and, ultimately, disease susceptibility. Flame retardants (FRs) are anthropogenic chemicals or mixtures that are being used to inhibit or delay the spread of fire. FRs have been employed in several household and outdoor products; therefore, human exposure is unavoidable. In this review, we summarized the potential mechanisms of FRs-associated immune and inflammatory signaling and their possible contribution to the development and progression of NAFLD, with an emphasis on FRs-mediated interferon signaling. Knowledge gaps are identified, and emerging pharmacotherapeutic molecules targeting the immune and inflammatory signaling for NAFLD are also discussed.
Collapse
Affiliation(s)
- Chander K. Negi
- Faculty of Science, RECETOX, Masaryk University, Kamenice 5, CZ62500 Brno, Czech Republic; (L.B.); (L.B.)
- Correspondence: or
| | - Sabbir Khan
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA;
| | - Hubert Dirven
- Department of Environmental Health, Section for Toxicology and Risk Assessment, Norwegian Institute of Public Health, 0456 Oslo, Norway;
| | - Lola Bajard
- Faculty of Science, RECETOX, Masaryk University, Kamenice 5, CZ62500 Brno, Czech Republic; (L.B.); (L.B.)
| | - Luděk Bláha
- Faculty of Science, RECETOX, Masaryk University, Kamenice 5, CZ62500 Brno, Czech Republic; (L.B.); (L.B.)
| |
Collapse
|
23
|
Wang B, Wu L, Chen J, Dong L, Chen C, Wen Z, Hu J, Fleming I, Wang DW. Metabolism pathways of arachidonic acids: mechanisms and potential therapeutic targets. Signal Transduct Target Ther 2021; 6:94. [PMID: 33637672 PMCID: PMC7910446 DOI: 10.1038/s41392-020-00443-w] [Citation(s) in RCA: 592] [Impact Index Per Article: 148.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/04/2020] [Accepted: 10/15/2020] [Indexed: 01/31/2023] Open
Abstract
The arachidonic acid (AA) pathway plays a key role in cardiovascular biology, carcinogenesis, and many inflammatory diseases, such as asthma, arthritis, etc. Esterified AA on the inner surface of the cell membrane is hydrolyzed to its free form by phospholipase A2 (PLA2), which is in turn further metabolized by cyclooxygenases (COXs) and lipoxygenases (LOXs) and cytochrome P450 (CYP) enzymes to a spectrum of bioactive mediators that includes prostanoids, leukotrienes (LTs), epoxyeicosatrienoic acids (EETs), dihydroxyeicosatetraenoic acid (diHETEs), eicosatetraenoic acids (ETEs), and lipoxins (LXs). Many of the latter mediators are considered to be novel preventive and therapeutic targets for cardiovascular diseases (CVD), cancers, and inflammatory diseases. This review sets out to summarize the physiological and pathophysiological importance of the AA metabolizing pathways and outline the molecular mechanisms underlying the actions of AA related to its three main metabolic pathways in CVD and cancer progression will provide valuable insight for developing new therapeutic drugs for CVD and anti-cancer agents such as inhibitors of EETs or 2J2. Thus, we herein present a synopsis of AA metabolism in human health, cardiovascular and cancer biology, and the signaling pathways involved in these processes. To explore the role of the AA metabolism and potential therapies, we also introduce the current newly clinical studies targeting AA metabolisms in the different disease conditions.
Collapse
Affiliation(s)
- Bei Wang
- Division of Cardiology, Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Hubei Province, Wuhan, China
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, Wuhan, China
| | - Lujin Wu
- Division of Cardiology, Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Hubei Province, Wuhan, China
| | - Jing Chen
- Division of Cardiology, Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Hubei Province, Wuhan, China
| | - Lingli Dong
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, Wuhan, China
| | - Chen Chen
- Division of Cardiology, Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Hubei Province, Wuhan, China
| | - Zheng Wen
- Division of Cardiology, Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Hubei Province, Wuhan, China
| | - Jiong Hu
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany
| | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Hubei Province, Wuhan, China.
| |
Collapse
|
24
|
Suzuki T, Hidaka T, Kumagai Y, Yamamoto M. Environmental pollutants and the immune response. Nat Immunol 2020; 21:1486-1495. [PMID: 33046888 DOI: 10.1038/s41590-020-0802-6] [Citation(s) in RCA: 160] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/01/2020] [Indexed: 12/13/2022]
Abstract
Environmental pollution is one of the most serious challenges to health in the modern world. Pollutants alter immune responses and can provoke immunotoxicity. In this Review, we summarize the major environmental pollutants that are attracting wide-ranging concern and the molecular basis underlying their effects on the immune system. Xenobiotic receptors, including the aryl hydrocarbon receptor (AHR), sense and respond to a subset of environmental pollutants by activating the expression of detoxification enzymes to protect the body. However, chronic activation of the AHR leads to immunotoxicity. KEAP1-NRF2 is another important system that protects the body against environmental pollutants. KEAP1 is a sensor protein that detects environmental pollutants, leading to activation of the transcription factor NRF2. NRF2 protects the body from immunotoxicity by inducing the expression of genes involved in detoxification, antioxidant and anti-inflammatory activities. Intervening in these sensor-response systems could protect the body from the devastating immunotoxicity that can be induced by environmental pollutants.
Collapse
Affiliation(s)
- Takafumi Suzuki
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takanori Hidaka
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoshito Kumagai
- Environmental Biology Laboratory, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan.
| |
Collapse
|
25
|
Moghadam ER, Ang HL, Asnaf SE, Zabolian A, Saleki H, Yavari M, Esmaeili H, Zarrabi A, Ashrafizadeh M, Kumar AP. Broad-Spectrum Preclinical Antitumor Activity of Chrysin: Current Trends and Future Perspectives. Biomolecules 2020; 10:E1374. [PMID: 32992587 PMCID: PMC7600196 DOI: 10.3390/biom10101374] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023] Open
Abstract
Pharmacological profile of phytochemicals has attracted much attention to their use in disease therapy. Since cancer is a major problem for public health with high mortality and morbidity worldwide, experiments have focused on revealing the anti-tumor activity of natural products. Flavonoids comprise a large family of natural products with different categories. Chrysin is a hydroxylated flavonoid belonging to the flavone category. Chrysin has demonstrated great potential in treating different disorders, due to possessing biological and therapeutic activities, such as antioxidant, anti-inflammatory, hepatoprotective, neuroprotective, etc. Over recent years, the anti-tumor activity of chrysin has been investigated, and in the present review, we provide a mechanistic discussion of the inhibitory effect of chrysin on proliferation and invasion of different cancer cells. Molecular pathways, such as Notch1, microRNAs, signal transducer and activator of transcription 3 (STAT3), nuclear factor-kappaB (NF-κB), PI3K/Akt, MAPK, etc., as targets of chrysin are discussed. The efficiency of chrysin in promoting anti-tumor activity of chemotherapeutic agents and suppressing drug resistance is described. Moreover, poor bioavailability, as one of the drawbacks of chrysin, is improved using various nanocarriers, such as micelles, polymeric nanoparticles, etc. This updated review will provide a direction for further studies in evaluating the anti-tumor activity of chrysin.
Collapse
Affiliation(s)
- Ebrahim Rahmani Moghadam
- Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz 7134814336, Iran;
| | - Hui Li Ang
- Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore;
| | - Sholeh Etehad Asnaf
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, North Tehran Branch, IslamicAzad University, Tehran 165115331, Iran;
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1916893813, Iran; (A.Z.); (H.S.); (H.E.)
| | - Hossein Saleki
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1916893813, Iran; (A.Z.); (H.S.); (H.E.)
| | - Mohammad Yavari
- Nursing and Midwifery Department, Islamic Azad University, Tehran Medical Sciences Branch, Tehran 1916893813, Iran;
| | - Hossein Esmaeili
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1916893813, Iran; (A.Z.); (H.S.); (H.E.)
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey
| | - Milad Ashrafizadeh
- Faculty of Veterinary Medicine, University of Tabriz, Tabriz 5166616471, Iran
| | - Alan Prem Kumar
- Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore;
| |
Collapse
|
26
|
Choudhary M, Malek G. The Aryl Hydrocarbon Receptor: A Mediator and Potential Therapeutic Target for Ocular and Non-Ocular Neurodegenerative Diseases. Int J Mol Sci 2020; 21:ijms21186777. [PMID: 32947781 PMCID: PMC7555571 DOI: 10.3390/ijms21186777] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 02/06/2023] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor, which senses environmental, dietary or metabolic signals to mount a transcriptional response, vital in health and disease. As environmental stimuli and metabolic products have been shown to impact the central nervous system (CNS), a burgeoning area of research has been on the role of the AHR in ocular and non-ocular neurodegenerative diseases. Herein, we summarize our current knowledge, of AHR-controlled cellular processes and their impact on regulating pathobiology of select ocular and neurodegenerative diseases. We catalogue animal models generated to study the role of the AHR in tissue homeostasis and disease pathogenesis. Finally, we discuss the potential of targeting the AHR pathway as a therapeutic strategy, in the context of the maladies of the eye and brain.
Collapse
Affiliation(s)
- Mayur Choudhary
- Department of Ophthalmology, Duke University School of Medicine, 2351 Erwin Road, P.O. Box 3802, Durham, NC 27705, USA
- Correspondence: (M.C.); (G.M.)
| | - Goldis Malek
- Department of Ophthalmology, Duke University School of Medicine, 2351 Erwin Road, P.O. Box 3802, Durham, NC 27705, USA
- Department of Pathology, Duke University School of Medicine, Durham, NC 27705, USA
- Correspondence: (M.C.); (G.M.)
| |
Collapse
|
27
|
Loerracher AK, Braunbeck T. Inducibility of cytochrome P450-mediated 7-methoxycoumarin-O-demethylase activity in zebrafish (Danio rerio) embryos. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 225:105540. [PMID: 32569997 DOI: 10.1016/j.aquatox.2020.105540] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/31/2020] [Accepted: 06/07/2020] [Indexed: 06/11/2023]
Abstract
The zebrafish (Danio rerio) embryo has increasingly been used as an alternative model in human and environmental toxicology. Since the cytochrome P450 (CYP) system is of fundamental importance for the understanding and correct interpretation of the outcome of toxicological studies, constitutive and xenobiotic-induced 7-methoxycoumarin-O-demethylase (MCOD), i.e. 'mammalian CYP2-like', activities were monitored in vivo in zebrafish embryos via confocal laser scanning microscopy. In order to elucidate molecular mechanisms underlying the MCOD induction, dose-dependent effects of the prototypical CYP inducers β-naphthoflavone (aryl hydrocarbon receptor (AhR) agonist), rifampicin (pregnane X receptor (PXR) agonist), carbamazepine and phenobarbital (constitutive androstane receptor (CAR) agonists) were analyzed in zebrafish embryos of varying age. Starting from 36 h of age, all embryonic stages of zebrafish could be shown to have constitutive MCOD activity, albeit with spatial variation and at distinct levels. Whereas carbamazepine, phenobarbital and rifampicin had no effect on in vivo MCOD activity in 96 h old zebrafish embryos, the model aryl hydrocarbon receptor agonist β-naphthoflavone significantly induced MCOD activity in 96 h old zebrafish embryos at 46-734 nM, however, without a clear concentration-effect relationship. Induction of MCOD activity by β-naphthoflavone gradually decreased with progression of embryonic development. By in vivo characterization of constitutive and xenobiotic-induced MCOD activity patterns in 36, 60, 84 and 108 h old zebrafish embryos, this decrease could primarily be attributed to an age-related decline in the induction of MCOD activity in the cardiovascular system. Results of this study provide novel insights into the mechanism and extent, by which specific CYP activities in early life-stages of zebrafish can be influenced by exposure to xenobiotics. The study thus lends further support to the view that zebrafish embryos- at least from an age of 36 h - have an elaborate and inducible biotransformation system.
Collapse
Affiliation(s)
- Ann-Kathrin Loerracher
- Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, D-69120, Heidelberg, Germany.
| | - Thomas Braunbeck
- Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, D-69120, Heidelberg, Germany
| |
Collapse
|
28
|
Zhao L, Chen F, Zhang Y, Yue L, Guo H, Ye G, Shi F, Lv C, Jing B, Tang H, Yin Z, Fu H, Lin J, Li Y, Wang X. Involvement of P450s and nuclear receptors in the hepatoprotective effect of quercetin on liver injury by bacterial lipopolysaccharide. Immunopharmacol Immunotoxicol 2020; 42:211-220. [PMID: 32253952 DOI: 10.1080/08923973.2020.1742154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 03/08/2020] [Indexed: 10/24/2022]
Abstract
Objective: Quercetin (Que), a flavonoid, possesses anti-inflammatory and antioxidant properties. It has been shown to protect against liver injury induced by various factors. This study was designed to investigate the underlying mechanism of its protective effect against lipopolysaccharide (LPS)- induced liver damage.Methods: Mice were pretreated with Que for 7 consecutive days and then exposed to LPS. To study the hepatoprotective effect of Que, oxidative stress parameters, inflammatory cytokine levels in liver and serum liver function indexes were examined. Protein and mRNA expression of nuclear orphan receptors and cytochrome P450 enzymes were measured by Western Blotting and qPCR, respectively.Results: Que significantly reduced circulating ALT, AST, ALP, and ameliorated LPS-induced histological alterations. In addition, Que obviously decreased markers of oxidative stress and pro-inflammatory cytokines. Furthermore, Que carried out the hepatoprotective effect via regulation of the expression of nuclear orphan receptors (CAR, PXR) and cytochrome P450 enzymes (CYP1A2, CYP2E1, CYP2D22, CYP3A11).Conclusions: Our findings suggested that Que pretreatment could ameliorate LPS-induced liver injury.
Collapse
Affiliation(s)
- Ling Zhao
- Institute of Animal Veterinary, Sichuan Agricultural University, Chengdu, P. R. China
| | - Fang Chen
- Institute of Animal Veterinary, Sichuan Agricultural University, Chengdu, P. R. China
| | - Yuanli Zhang
- Institute of Animal Veterinary, Sichuan Agricultural University, Chengdu, P. R. China
| | - Ling Yue
- Institute of Animal Veterinary, Sichuan Agricultural University, Chengdu, P. R. China
| | - Hongrui Guo
- Institute of Animal Veterinary, Sichuan Agricultural University, Chengdu, P. R. China
| | - Gang Ye
- Institute of Animal Veterinary, Sichuan Agricultural University, Chengdu, P. R. China
| | - Fei Shi
- Institute of Animal Veterinary, Sichuan Agricultural University, Chengdu, P. R. China
| | - Cheng Lv
- Institute of Animal Veterinary, Sichuan Agricultural University, Chengdu, P. R. China
| | - Bo Jing
- Institute of Animal Veterinary, Sichuan Agricultural University, Chengdu, P. R. China
| | - Huaqiao Tang
- Institute of Animal Veterinary, Sichuan Agricultural University, Chengdu, P. R. China
| | - Zhongqiong Yin
- Institute of Animal Veterinary, Sichuan Agricultural University, Chengdu, P. R. China
| | - Hualin Fu
- Institute of Animal Veterinary, Sichuan Agricultural University, Chengdu, P. R. China
| | - Jvchun Lin
- Institute of Animal Veterinary, Sichuan Agricultural University, Chengdu, P. R. China
| | - Yinglun Li
- Institute of Animal Veterinary, Sichuan Agricultural University, Chengdu, P. R. China
| | - Xun Wang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P. R. China
| |
Collapse
|
29
|
Bower MJ, Aronov AM, Cleveland T, Hariparsad N, McGaughey GB, McMasters DR, Zhang X, Goldman B. Smallest Maximum Intramolecular Distance: A Novel Method to Mitigate Pregnane Xenobiotic Receptor Activation. J Chem Inf Model 2020; 60:2091-2099. [DOI: 10.1021/acs.jcim.9b00692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Michael J. Bower
- Vertex Pharmaceuticals, 50 Northern Avenue, Boston, Massachusetts 02210, United States
| | - Alex M. Aronov
- Vertex Pharmaceuticals, 50 Northern Avenue, Boston, Massachusetts 02210, United States
| | - Thomas Cleveland
- Vertex Pharmaceuticals, 50 Northern Avenue, Boston, Massachusetts 02210, United States
| | - Niresh Hariparsad
- Vertex Pharmaceuticals, 50 Northern Avenue, Boston, Massachusetts 02210, United States
| | - Georgia B. McGaughey
- Vertex Pharmaceuticals, 50 Northern Avenue, Boston, Massachusetts 02210, United States
| | - Daniel R. McMasters
- Vertex Pharmaceuticals, 50 Northern Avenue, Boston, Massachusetts 02210, United States
| | - Xiaodan Zhang
- Vertex Pharmaceuticals, 50 Northern Avenue, Boston, Massachusetts 02210, United States
| | - Brian Goldman
- Vertex Pharmaceuticals, 50 Northern Avenue, Boston, Massachusetts 02210, United States
| |
Collapse
|
30
|
Tao Y, Liu X, Cui L, Liu X, Chen Y, He Z, Ji M, Gao Z, Li N, Wan Z, Yu Z. Oct4 plays a role in 2, 3, 7, 8 - tetrachlorobenzo-p-dioxin (TCDD) inducing cleft palate and inhibiting mesenchymal proliferation. Toxicology 2020; 438:152444. [PMID: 32283119 DOI: 10.1016/j.tox.2020.152444] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/17/2020] [Accepted: 03/25/2020] [Indexed: 02/07/2023]
Abstract
As a common birth defect, Cleft palate can be caused by the disturbance during the developmental process of the palatal shelves. The 2,3,7,8-tetrachlorodibenzo- p-dioxin (TCDD) is a well-known environmental teratogenic agent for cleft palate and Aryl hydrocarbon receptor (AhR) pathway can be activated by dioxins. Oct4 as a pluripotent stem cell transcription factor is also involved in the process of embryonic development. The AHR and retinoid receptors have cross-talk at CYP1A1 (cytochrome P450, family 1, subfamily A, polypeptide 1) promoter. There are also bidirectional talk between AhR and Oct4. In this study, we used C57/BL6 N mice and TCDD (64 μg/Kg body weight) to establish a model of fetal cleft palate to observe the effects of dioxin on fetal mesenchymal proliferation and apoptosis, and explore the role of Oct4 in inducing cleft palate. The results showed that dioxin inhibited mesenchymal proliferation and promoted apoptosis. In addition, dioxin inhibited Oct4 expression, and preliminary data suggest that hypermethylation of the Oct4 promoter may be a putative mechanism, suggesting that TCDD might induce cleft palate by inhibiting the proliferation of palatal mesenchymal cells mediated by Oct4.
Collapse
Affiliation(s)
- Yuchang Tao
- School of Public Health, Zhengzhou University, No. 100 of Science Road, Zhengzhou, 450001, China
| | - Xiaozhuan Liu
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, No. 7 of Weiwu Road, Zhengzhou, 450001, China
| | - Lingling Cui
- School of Public Health, Zhengzhou University, No. 100 of Science Road, Zhengzhou, 450001, China
| | - Xinxin Liu
- School of Public Health, Zhengzhou University, No. 100 of Science Road, Zhengzhou, 450001, China
| | - Yao Chen
- School of Public Health, Zhengzhou University, No. 100 of Science Road, Zhengzhou, 450001, China
| | - Zhidong He
- School of Public Health, Zhengzhou University, No. 100 of Science Road, Zhengzhou, 450001, China
| | - Mengmeng Ji
- School of Public Health, Zhengzhou University, No. 100 of Science Road, Zhengzhou, 450001, China
| | - Zhan Gao
- The Fifth Affiliated Hospital of Zhengzhou University, No. 3 of Kangfu Front Street, Zhengzhou, 450052, China
| | - Ning Li
- Henan Agricultural University, No. 63 of Agricultural Road, Zhengzhou, 450002, China
| | - Zhongxiao Wan
- School of Public Health, Zhengzhou University, No. 100 of Science Road, Zhengzhou, 450001, China.
| | - Zengli Yu
- School of Public Health, Zhengzhou University, No. 100 of Science Road, Zhengzhou, 450001, China.
| |
Collapse
|
31
|
Valodara AM, SR KJ. Sexual Dimorphism in Drug Metabolism and Pharmacokinetics. Curr Drug Metab 2020; 20:1154-1166. [DOI: 10.2174/1389200220666191021094906] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/27/2019] [Accepted: 10/04/2019] [Indexed: 12/11/2022]
Abstract
Background:Sex and gender-based differences are observed well beyond the sex organs and affect several physiological and biochemical processes involved in the metabolism of drug molecules. It is essential to understand not only the sex and gender-based differences in the metabolism of the drug but also the molecular mechanisms involved in the regulation of drug metabolism for avoiding sex-related adverse effects of drugs in the human.Method:The articles on the sex and gender-based differences in the metabolism of drug molecules were retrieved from the Pub Med database. The articles were classified into the metabolism of the drug molecule, gene expression regulation of drug-metabolizing enzymes, the effect of sex hormones on the metabolism of drug, expression of drugmetabolizing enzymes, etc.Result:Several drug molecules are known, which are metabolized differently in males and females. These differences in metabolism may be due to the genomic and non-genomic action of sex hormones. Several other drug molecules still require further evaluation at the molecular level regarding the sex and gender-based differences in their metabolism. Attention is also required at the effect of signaling cascades associated with the metabolism of drug molecules.Conclusion:Sex and gender-based differences in the metabolism of drugs exist at various levels and it may be due to the genomic and non-genomic action of sex hormones. Detailed understanding of the effect of sex and related condition on the metabolism of drug molecules will help clinicians to determine the effective therapeutic doses of drugs dependingon the condition of patient and disease.
Collapse
Affiliation(s)
- Askhi M. Valodara
- Department of Zoology, Biomedical Technology and Human Genetics, School of Sciences, Gujarat University, Ahmedabad, India
| | - Kaid Johar SR
- Department of Zoology, Biomedical Technology and Human Genetics, School of Sciences, Gujarat University, Ahmedabad, India
| |
Collapse
|
32
|
Nicolussi S, Drewe J, Butterweck V, Meyer Zu Schwabedissen HE. Clinical relevance of St. John's wort drug interactions revisited. Br J Pharmacol 2020; 177:1212-1226. [PMID: 31742659 PMCID: PMC7056460 DOI: 10.1111/bph.14936] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 11/01/2019] [Accepted: 11/10/2019] [Indexed: 12/22/2022] Open
Abstract
The first clinically relevant reports of preparations of St. John's wort (SJW), a herbal medicine with anti‐depressant effects, interacting with other drugs, altering their bioavailability and efficacy, were published about 20 years ago. In 2000, a pharmacokinetic interaction between SJW and cyclosporine caused acute rejection in two heart transplant patients. Since then, subsequent research has shown that SJW altered the pharmacokinetics of drugs such as digoxin, tacrolimus, indinavir, warfarin, alprazolam, simvastatin, or oral contraceptives. These interactions were caused by pregnane‐X‐receptor (PXR) activation. Preparations of SJW are potent activators of PXR and hence inducers of cytochrome P450 enzymes (most importantly CYP3A4) and P‐glycoprotein. The degree of CYP3A4 induction correlates significantly with the hyperforin content in the preparation. Twenty years after the first occurrence of clinically relevant pharmacokinetic drug interactions with SJW, this review revisits the current knowledge of the mechanisms of action and on how pharmacokinetic drug interactions with SJW could be avoided. Linked Articles This article is part of a themed section on The Pharmacology of Nutraceuticals. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.6/issuetoc
Collapse
Affiliation(s)
- Simon Nicolussi
- Medical Research, Max Zeller Söhne AG, Romanshorn, Switzerland
| | - Jürgen Drewe
- Medical Research, Max Zeller Söhne AG, Romanshorn, Switzerland
| | | | | |
Collapse
|
33
|
Braeuning A, Mentz A, Schmidt FF, Albaum SP, Planatscher H, Kalinowski J, Joos TO, Poetz O, Lichtenstein D. RNA-protein correlation of liver toxicity markers in HepaRG cells. EXCLI JOURNAL 2020; 19:135-153. [PMID: 32194361 PMCID: PMC7068204 DOI: 10.17179/excli2019-2005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 01/15/2020] [Indexed: 12/23/2022]
Abstract
The liver is a main target organ for the toxicity of many different compounds. While in general, in vivo testing is still routinely used for assessing the hepatotoxic potential of test chemicals, the use of in vitro models offers advantages with regard to throughput, consumption of resources, and animal welfare aspects. Using the human hepatoma cell line HepaRG, we performed a comparative evaluation of a panel of hepatotoxicity marker mRNAs and proteins after exposure of the cells to 30 different pesticidal active compounds comprising herbizides, fungicides, insecticides, and others. The panel of hepatotoxicity markers included nuclear receptor target genes, key players of fatty acid and bile acid metabolism-related pathways, as well as recently identified biomarkers of drug-induced liver injury. Moreover, marker genes and proteins were identified, for example, S100P, ANXA10, CYP1A1, and CYP7A1. These markers respond with high sensitivity to stimulation with chemically diverse test compounds already at non-cytotoxic concentrations. The potency of the test compounds, determined as an overall parameter of their ability to deregulate marker expression in vitro, was very similar between the mRNA and protein levels. Thus, this study does not only characterize the response of human liver cells to 30 different pesticides but also demonstrates that hepatotoxicity testing in human HepaRG cells yields well comparable results at the mRNA and protein levels. Furthermore, robust hepatotoxicity marker genes and proteins were identified in HepaRG cells.
Collapse
Affiliation(s)
- Albert Braeuning
- German Federal Institute for Risk Assessment, Dept. Food Safety, Berlin, Germany
| | - Almut Mentz
- Center for Biotechnology (CeBiTec), Universität Bielefeld, Bielefeld, Germany
| | | | - Stefan P. Albaum
- Center for Biotechnology (CeBiTec), Universität Bielefeld, Bielefeld, Germany
| | | | - Jörn Kalinowski
- Center for Biotechnology (CeBiTec), Universität Bielefeld, Bielefeld, Germany
| | - Thomas O. Joos
- Signatope GmbH, Reutlingen, Germany
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Tübingen,Germany
| | - Oliver Poetz
- Signatope GmbH, Reutlingen, Germany
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Tübingen,Germany
| | - Dajana Lichtenstein
- German Federal Institute for Risk Assessment, Dept. Food Safety, Berlin, Germany
| |
Collapse
|
34
|
Panaxadiol saponins treatment caused the subtle variations in the global transcriptional state of Asiatic corn borer, Ostrinia furnacalis. J Ginseng Res 2020; 44:123-134. [PMID: 32148395 PMCID: PMC7033338 DOI: 10.1016/j.jgr.2017.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 09/28/2017] [Accepted: 12/05/2017] [Indexed: 11/22/2022] Open
Abstract
Background Methods Results Conclusion
Collapse
|
35
|
Lv C, Huang L. Xenobiotic receptors in mediating the effect of sepsis on drug metabolism. Acta Pharm Sin B 2020; 10:33-41. [PMID: 31993305 PMCID: PMC6977532 DOI: 10.1016/j.apsb.2019.12.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/28/2019] [Accepted: 10/31/2019] [Indexed: 12/20/2022] Open
Abstract
Sepsis is an infection-induced systemic inflammatory syndrome. The immune response in sepsis is characterized by the activation of both proinflammatory and anti-inflammatory pathways. When sepsis occurs, the expression and activity of many inflammatory cytokines are markedly affected. Xenobiotic receptors are chemical-sensing transcription factors that play essential roles in the transcriptional regulation of drug-metabolizing enzymes (DMEs). Xenobiotic receptors mediate the functional crosstalk between sepsis and drug metabolism because the inflammatory cytokines released during sepsis can affect the expression and activity of xenobiotic receptors and thus impact the expression and activity of DMEs. Xenobiotic receptors in turn may affect the clinical outcomes of sepsis. This review focuses on the sepsis-induced inflammatory response and xenobiotic receptors such as pregnane X receptor (PXR), aryl hydrocarbon receptor (AHR), glucocorticoid receptor (GR), and constitutive androstane receptor (CAR), DMEs such as CYP1A, CYP2B6, CYP2C9, and CYP3A4, and drug transporters such as p-glycoprotein (P-gp), and multidrug resistance-associated protein (MRPs) that are affected by sepsis. Understanding the xenobiotic receptor-mediated effect of sepsis on drug metabolism will help to improve the safe use of drugs in sepsis patients and the development of new xenobiotic receptor-based therapeutic strategies for sepsis.
Collapse
Key Words
- AHR, aryl hydrocarbon receptor
- AP-1, adaptor protein 1
- ARNT, AHR nuclear translocator
- CLP, cecum ligation and puncture
- COX-2, cyclooxygenase 2
- CYPs, cytochrome P450s
- DMEs, drug-metabolizing enzymes
- DREs, dioxin response elements
- Drug metabolism
- Drug transporters
- Drug-metabolizing enzymes
- GC, glucocorticoid
- GR, glucocorticoid receptor
- GREs, glucocorticoid receptor response elements
- Gsts, phase II glutathione S-transferase
- HSP90, heat shock protein 90
- IBD, inflammatory bowel disease
- IL-1β, interleukin-1β
- IRF3, interferon regulatory factor 3
- IRF7, interferon regulatory factor 7
- Inflammatory cytokines
- LPS, lipopolysaccharide
- Mrp, phase III multidrug-resistant protein
- NF-κB, nuclear factor-kappa B
- NOS, nitric oxide synthase
- NR, nuclear receptor
- Oatp2, organic anion transport polypeptide 2
- P-gp, p-glycoprotein
- PAS, Per/ARNT/Sim
- PCN, pregnenolone-16α-carbonitrile
- PKC, protein kinase C
- PLA2, phospholipase A2
- PRRs, pattern recognition receptors
- PXR, pregnane X receptor
- SRC1, steroid receptor coactivator 1
- STAT3, signal transducers and activators of transcription 3
- Sepsis
- Sult, sulfonyl transferase
- TNF-α, tumor necrosis factor
- Ugts, UDP-glucuronic transferase
- Xenobiotic receptors
Collapse
|
36
|
Yoshioka M, Takenouchi T, Kitani H, Guruge KS, Yamanaka N. Synergistic induction of drug-metabolizing enzymes in co-cultures of bovine hepatocytic and sinusoidal cell lines. In Vitro Cell Dev Biol Anim 2019; 56:2-9. [PMID: 31722089 DOI: 10.1007/s11626-019-00408-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 09/25/2019] [Indexed: 11/26/2022]
Abstract
Hepatocyte-derived cell lines provide useful experimental systems for studying liver metabolism. Unlike human and rodents, few hepatocyte-derived cell lines have been generated from cattle. Here, we established two immortalized bovine hepatocyte-derived cell lines (BH4 and BH5) via transfection with a SV40 large T-antigen construct. Morphological and immunocytochemical analyses revealed that BH4 and BH5 originated from hepatocytes and biliary-epithelial cells, respectively. A potent carcinogen, 3-methylcholanthrene (3-MC), upregulated gene expression of cytochrome P450 (CYP)1A1, CYP1A2, and CYP1B1 in BH4 and BH5, but only to levels less than one-fifteenth of those in primary cultured bovine hepatocytes. Phenobarbital (PB) also increased expression levels of CYP2B6, CYP2C18, and CYP3A4 in BH4 and BH, but at a lower level than 3-MC. By contrast, when BH4 or BH5 was co-cultured with previously established bovine liver sinusoidal cell lines and treated with 3-MC, the gene expression levels of CYP1A1, CYP1A2, and CYP1B1 increased by 38~290%, compared with those in BH4 or BH5 cells cultured alone. PB-treated co-cultures of BH4 or BH5 cells and liver sinusoidal cell lines also showed synergistic increases in CYP2B6 and CYP2C18 expression. Together, the results suggest that these co-cultures could provide an in vitro model for investigations into pharmacological and toxicological properties of drugs in cattle liver.
Collapse
Affiliation(s)
- Miyako Yoshioka
- Pathology and Pathophysiology Research Division, National Institute of Animal Health, NARO, Kannondai 3-1-5, Tsukuba, Ibaraki, 305-0856, Japan.
| | - Takato Takenouchi
- Division of Animal Sciences, Institute of Agrobiological Sciences, NARO, 1-2 Ohwashi, Tsukuba, Ibaraki, 305-8634, Japan
| | - Hiroshi Kitani
- Division of Animal Sciences, Institute of Agrobiological Sciences, NARO, 1-2 Ohwashi, Tsukuba, Ibaraki, 305-8634, Japan
| | - Keerthi S Guruge
- Pathology and Pathophysiology Research Division, National Institute of Animal Health, NARO, Kannondai 3-1-5, Tsukuba, Ibaraki, 305-0856, Japan
| | - Noriko Yamanaka
- Pathology and Pathophysiology Research Division, National Institute of Animal Health, NARO, Kannondai 3-1-5, Tsukuba, Ibaraki, 305-0856, Japan
| |
Collapse
|
37
|
Bulutoglu B, Mert S, Rey-Bedón C, Deng SL, Yarmush ML, Usta OB. Rapid maturation of the hepatic cell line Huh7 via CDK inhibition for PXR dependent CYP450 metabolism and induction. Sci Rep 2019; 9:15848. [PMID: 31676845 PMCID: PMC6825149 DOI: 10.1038/s41598-019-52174-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 10/12/2019] [Indexed: 12/26/2022] Open
Abstract
CYP3A4, a cytochrome P450 enzyme regulated by the nuclear receptor PXR, is involved in most of the drug metabolizing pathways. Studying the regulation/induction of CYP3A4 and PXR is critical in toxicology and drug-drug interaction (DDI) studies. Primary human hepatocytes constitute the preferred in vitro platform for drug development efforts. However, they are expensive, scarce and heterogeneous. Hepatic cell lines, such as Huh7, could provide a cost-effective alternative, however, they express negligible amounts of CYP450s and PXR. In this study, we show that dinaciclib, a potent cyclin dependent kinase inhibitor, significantly increases the basal CYP3A4 and PXR levels in 24 hours. We also demonstrated that matured Huh7s can be used for drug induction studies, where CYP3A4, CYP1A2, CYP2C9, and CYP2C19 inductions were achieved following rifampicin treatment. More importantly, through a direct demonstration using amiodarone and rifampicin as model drugs, we showed that matured Huh7s present a suitable platform for DDI studies.
Collapse
Affiliation(s)
- Beyza Bulutoglu
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School and Shriners Hospitals for Children, Boston, MA, 02114, USA
| | - Safak Mert
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School and Shriners Hospitals for Children, Boston, MA, 02114, USA
| | - Camilo Rey-Bedón
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School and Shriners Hospitals for Children, Boston, MA, 02114, USA
| | - Sarah L Deng
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School and Shriners Hospitals for Children, Boston, MA, 02114, USA
| | - Martin L Yarmush
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School and Shriners Hospitals for Children, Boston, MA, 02114, USA.
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, 08854, USA.
| | - O Berk Usta
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School and Shriners Hospitals for Children, Boston, MA, 02114, USA.
| |
Collapse
|
38
|
Xenobiotica-metabolizing enzymes in the lung of experimental animals, man and in human lung models. Arch Toxicol 2019; 93:3419-3489. [PMID: 31673725 DOI: 10.1007/s00204-019-02602-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/15/2019] [Indexed: 12/15/2022]
Abstract
The xenobiotic metabolism in the lung, an organ of first entry of xenobiotics into the organism, is crucial for inhaled compounds entering this organ intentionally (e.g. drugs) and unintentionally (e.g. work place and environmental compounds). Additionally, local metabolism by enzymes preferentially or exclusively occurring in the lung is important for favorable or toxic effects of xenobiotics entering the organism also by routes other than by inhalation. The data collected in this review show that generally activities of cytochromes P450 are low in the lung of all investigated species and in vitro models. Other oxidoreductases may turn out to be more important, but are largely not investigated. Phase II enzymes are generally much higher with the exception of UGT glucuronosyltransferases which are generally very low. Insofar as data are available the xenobiotic metabolism in the lung of monkeys comes closed to that in the human lung; however, very few data are available for this comparison. Second best rate the mouse and rat lung, followed by the rabbit. Of the human in vitro model primary cells in culture, such as alveolar macrophages and alveolar type II cells as well as the A549 cell line appear quite acceptable. However, (1) this generalization represents a temporary oversimplification born from the lack of more comparable data; (2) the relative suitability of individual species/models is different for different enzymes; (3) when more data become available, the conclusions derived from these comparisons quite possibly may change.
Collapse
|
39
|
Feltrin C, Oliveira Simões CM. Reviewing the mechanisms of natural product-drug interactions involving efflux transporters and metabolic enzymes. Chem Biol Interact 2019; 314:108825. [PMID: 31553897 DOI: 10.1016/j.cbi.2019.108825] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/28/2019] [Accepted: 09/19/2019] [Indexed: 12/20/2022]
Abstract
The World Health Organization (WHO) and other worldwide health agencies have recently taken initiatives to encourage the use of traditional medicine and/or complementary/alternative medicine in order to promote well-being and public health. In this way, one of the WHO's concerns is the safe use of these therapies. Phytotherapy is a strategy consisting of the use of medicinal plants (MP) and/or herbal medicinal products (HMP) for medicinal purposes. The use of phytotherapy concomitantly with drugs may cause interactions compromising the expected pharmacological action or generating toxic effects. These interactions are complex processes that may occur with multiple medications targeting different metabolic pathways, and involving different compounds present in MP and HMP. Thus, the aim of this review was to summarize the main MP- and HMP-drug interactions that involve specific transporters (P-glycoprotein and BCRP) and CYP450 enzymes (CYP3A4 and CYP2D6), which play relevant roles in the mechanisms of interactions. Firstly, multiple databases were used to search studies describing in vitro or in vivo MP and HMP-drug interactions and, after that, a systematic note-taking and appraisal of the literature was conducted. It was observed that several MP and HMP, metabolic pathways and transcription factors are involved in the transporters and enzymes expression or in the modulation of their activity having the potential to provide such interactions. Thus, the knowledge of MP- and HMP-drug interaction mechanisms could contribute to prevent harmful interactions and can ensure the safe use of these products to help the establishment of the therapeutic planning in order to certify the best treatment strategy to be used.
Collapse
Affiliation(s)
- Clarissa Feltrin
- Programa de Pós-Graduação em Farmácia, Centro de Ciências da Saúde, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Cláudia Maria Oliveira Simões
- Programa de Pós-Graduação em Farmácia, Centro de Ciências da Saúde, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil.
| |
Collapse
|
40
|
Yen CC, Liu YT, Lin YJ, Yang YC, Chen CC, Yao HT, Chen HW, Lii CK. Bioavailability of the diterpenoid 14-deoxy-11,12-didehydroandrographolide in rats and up-regulation of hepatic drug-metabolizing enzyme and drug transporter expression. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 61:152841. [PMID: 31035043 DOI: 10.1016/j.phymed.2019.152841] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 01/09/2019] [Accepted: 01/12/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND 14-Deoxy-11,12-didehydroandrographolide (deAND) is the second most abundant diterpenoid in Andrographis paniculata (Burm. f.) Nees, a traditional medicine used in Asia. To date, the biological activity of deAND has not been clearly investigated. PURPOSE In this study, we intended to examine the modulatory effect of deAND on hepatic drug metabolism as well as its bioavailability. STUDY DESIGN deAND prepared from A. paniculata was orally given to Sprague-Dawley rats and changes in plasma deNAD were determined by HPLC-MS. Modulation of deAND on drug-metabolizing enzyme and drug transporter expression as well as the possible mechanism involved was examined in primary rat hepatocytes. RESULTS After a single oral administration of 50 mg/kg deAND to rats, the maximum plasma concentration (Cmax), time to reach the Cmax, area under the curve (AUC0-24h), mean retention time, and half-life (t1/2) of deAND were 2.65 ± 0.68 μg/ml, 0.29 ± 0.15 h, 6.30 ± 1.66 μg/ml•h, 5.55 ± 2.52 h, and 3.56 ± 1.05 h, respectively. The oral bioavailability was 3.42%. In primary rat hepatocytes treated with up to 10 μM deAND, a dose-dependent increase was noted in the expression of cytochrome P450 (CYP) 1A1/2, CYP2C6, and CYP3A1/2; UDP-glucuronosyltransferase (UGT) 1A1, NAD(P)H:quinone oxidoreductase (NQO1), π form of GSH S-transferase (GSTP), multidrug resistance-associated protein 2, p-glycoprotein, and organic anion transporter protein 2B1. Immunoblotting assay and EMSA revealed that deAND increases the nuclear translocation and DNA binding activity of aryl hydrocarbon receptor (AhR), pregnane X receptor (PXR), and nuclear factor erythroid-derived 2-related factor 2 (Nrf2). Knockdown of AhR and Nrf2 expression abolished deAND induction of CYP isozymes and UGT1A1, NQO1, and GSTP expression, respectively. CONCLUSION These results indicate that deAND quickly passes through enterocytes in rats and effectively up-regulates hepatic drug-metabolizing enzyme and drug transporter expression in an AhR-, PXR-, and Nrf2-dependent manner.
Collapse
Affiliation(s)
- Chih-Ching Yen
- Department of Respiratory Therapy, China Medical University, Taichung 404, Taiwan; Department of Internal Medicine, China Medical University Hospital, Taichung 404, Taiwan
| | - Yun-Ta Liu
- Department of Nutrition, China Medical University, Taichung 404, Taiwan
| | - Ying-Jyan Lin
- Department of Nutrition, China Medical University, Taichung 404, Taiwan
| | - Ya-Chen Yang
- Department of Health and Nutrition Biotechnology, Asia University, Taichung 413, Taiwan
| | - Chien-Chih Chen
- Department of Cosmetic Science, Chang Gung University of Science and Technology, Kweishan, Taoyuan 333, Taiwan
| | - Hsien-Tsung Yao
- Department of Nutrition, China Medical University, Taichung 404, Taiwan
| | - Haw-Wen Chen
- Department of Nutrition, China Medical University, Taichung 404, Taiwan.
| | - Chong-Kuei Lii
- Department of Nutrition, China Medical University, Taichung 404, Taiwan; Department of Health and Nutrition Biotechnology, Asia University, Taichung 413, Taiwan.
| |
Collapse
|
41
|
Wang Y, Tang H, Xu M, Luo J, Zhao L, Shi F, Ye G, Lv C, Li Y. Effect of copper nanoparticles on brain cytochrome P450 enzymes in rats. Mol Med Rep 2019; 20:771-778. [PMID: 31180561 DOI: 10.3892/mmr.2019.10302] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 03/28/2019] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to evaluate the long‑term effect of copper nanoparticles (CuNPs) on cytochrome P450 (CYP450) enzymes in the rat brain. Rats were repeatedly gavaged with different forms of copper sources for 28 days, and the levels of oxidative stress and CYP450 mRNA and protein expression in the rat brain were subsequently analyzed. The results demonstrated that a high dose of CuNPs (200 mg/kg) induced severe oxidative stress in the rat brain along with a decrease in the levels of total superoxide dismutase and glutathione, and an increase in hydroxyl radicals and malondialdehyde. A medium dose of CuNPs reduced CYP450 2C11 and CYP450 3A1 protein expression in the rat brain, whereas high doses of CuNPs resulted in decreased expression of most CYP450 enzyme proteins, and inhibition of pregnane X receptor and constitutive androstane receptor expression. The results suggested that CuNPs may inhibit CYP450 enzyme expression by increasing the levels of oxidative stress and decreasing the expression of nuclear receptors in the rat brain, which affects the metabolism of drugs and endogenous hormones in the brain.
Collapse
Affiliation(s)
- Yanyan Wang
- Department of Pharmacy, School of Animal Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - Huaqiao Tang
- Department of Pharmacy, School of Animal Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - Min Xu
- Department of Pharmacy, School of Animal Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - Jie Luo
- Department of Pharmacy, School of Animal Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - Ling Zhao
- Department of Pharmacy, School of Animal Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - Fei Shi
- Department of Pharmacy, School of Animal Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - Gang Ye
- Department of Pharmacy, School of Animal Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - Cheng Lv
- Department of Pharmacy, School of Animal Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - Yinglun Li
- Department of Pharmacy, School of Animal Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| |
Collapse
|
42
|
Rampersaud A, Lodato NJ, Shin A, Waxman DJ. Widespread epigenetic changes to the enhancer landscape of mouse liver induced by a specific xenobiotic agonist ligand of the nuclear receptor CAR. Toxicol Sci 2019; 171:315-338. [PMID: 31236583 PMCID: PMC6760311 DOI: 10.1093/toxsci/kfz148] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/13/2019] [Accepted: 06/17/2019] [Indexed: 12/13/2022] Open
Abstract
CAR (Nr1i3), a liver nuclear receptor and xenobiotic sensor, induces drug, steroid and lipid metabolism and dysregulates genes linked to hepatocellular carcinogenesis, but its impact on the liver epigenome is poorly understood. TCPOBOP, a halogenated xenochemical and highly specific CAR agonist ligand, induces localized chromatin opening or closing at several thousand mouse liver genomic regions, discovered as differential DNase-hypersensitive sites (ΔDHS). Active enhancer and promoter histone marks induced by TCPOBOP were enriched at opening DHS and TCPOBOP-inducible genes. Enrichment of CAR binding and CAR motifs was seen at opening DHS and their inducible drug/lipid metabolism gene targets, and at many constitutively open DHS located nearby. TCPOBOP-responsive cell cycle and DNA replication genes co-dependent on MET/EGFR signaling for induction were also enriched for CAR binding. A subset of opening DHS and many closing DHS mapping to TCPOBOP-responsive target genes did not bind CAR, indicating an indirect mechanism for their changes in chromatin accessibility. TCPOBOP-responsive DHS were also enriched for induced binding of RXRA, CEBPA and CEBPB, and for motifs for liver-enriched factors that may contribute to liver-specific transcriptional responses to TCPOBOP exposure. These studies elucidate the enhancer landscape of TCPOBOP-exposed liver and the widespread epigenetic changes that are induced by both direct and indirect mechanisms linked to CAR activation. The global maps of thousands of environmental chemical-induced epigenetic changes described here constitute a rich resource for further research on xenochemical effects on liver chromatin states and the epigenome.
Collapse
Affiliation(s)
- Andy Rampersaud
- Department of Biology and Bioinformatics Program, Boston University, Boston, MA USA
| | - Nicholas J Lodato
- Department of Biology and Bioinformatics Program, Boston University, Boston, MA USA
| | - Aram Shin
- Department of Biology and Bioinformatics Program, Boston University, Boston, MA USA
| | - David J Waxman
- Department of Biology and Bioinformatics Program, Boston University, Boston, MA USA
| |
Collapse
|
43
|
Wang Y, Yan L, Liu J, Chen S, Liu G, Nie Y, Wang P, Yang W, Chen L, Zhong X, Han S, Zhang L. The HNF1 α-Regulated LncRNA HNF1 α-AS1 Is Involved in the Regulation of Cytochrome P450 Expression in Human Liver Tissues and Huh7 Cells. J Pharmacol Exp Ther 2019; 368:353-362. [PMID: 30602592 PMCID: PMC6367688 DOI: 10.1124/jpet.118.252940] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 12/04/2018] [Indexed: 12/20/2022] Open
Abstract
Expression of cytochrome P450s (P450s) is regulated by epigenetic factors, such as DNA methylation, histone modifications, and noncoding RNAs through different mechanisms. Among these factors, long noncoding RNAs (lncRNAs) have been shown to play important roles in the regulation of gene expression; however, little is known about the effects of lncRNAs on the regulation of P450 expression. The aim of this study was to explore the role of lncRNAs in the regulation of P450 expression by using human liver tissues and hepatoma Huh7 cells. Through lncRNA microarray analysis and quantitative polymerase chain reaction in human liver tissues, we found that the lncRNA hepatocyte nuclear factor 1 alpha antisense 1 (HNF1α-AS1), an antisense RNA of HNF1α, is positively correlated with the mRNA expression of CYP2C8, 2C9, 2C19, 2D6, 2E1, and 3A4 as well as pregnane X receptor (PXR) and constitutive androstane receptor (CAR). Gain- and loss-of-function studies in Huh7 cells transfected with small interfering RNAs or overexpression plasmids showed that HNF1α not only regulated the expression of HNF1α-AS1 and P450s, but also regulated the expression of CAR, PXR, and aryl hydrocarbon receptor (AhR). In turn, HNF1α-AS1 regulated the expression of PXR and most P450s without affecting the expression of HNF1α, AhR, and CAR. Moreover, the rifampicin-induced expression of P450s was also affected by HNF1α and HNF1α-AS1. In summary, the results of this study suggested that HNF1α-AS1 is involved in the HNF1α-mediated regulation of P450s in the liver at both basal and drug-induced levels.
Collapse
Affiliation(s)
- Yiting Wang
- Department of Pharmacology (Y.W., L.Y., J.L., S.C., G.L., Y.N., P.W., S.H., L.Z.) and Forensic Medicine (W.Y.), School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China; Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (L.Y.); and Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (L.C., X.Z.)
| | - Liang Yan
- Department of Pharmacology (Y.W., L.Y., J.L., S.C., G.L., Y.N., P.W., S.H., L.Z.) and Forensic Medicine (W.Y.), School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China; Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (L.Y.); and Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (L.C., X.Z.)
| | - Jingyang Liu
- Department of Pharmacology (Y.W., L.Y., J.L., S.C., G.L., Y.N., P.W., S.H., L.Z.) and Forensic Medicine (W.Y.), School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China; Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (L.Y.); and Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (L.C., X.Z.)
| | - Shitong Chen
- Department of Pharmacology (Y.W., L.Y., J.L., S.C., G.L., Y.N., P.W., S.H., L.Z.) and Forensic Medicine (W.Y.), School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China; Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (L.Y.); and Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (L.C., X.Z.)
| | - Guangming Liu
- Department of Pharmacology (Y.W., L.Y., J.L., S.C., G.L., Y.N., P.W., S.H., L.Z.) and Forensic Medicine (W.Y.), School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China; Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (L.Y.); and Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (L.C., X.Z.)
| | - Yali Nie
- Department of Pharmacology (Y.W., L.Y., J.L., S.C., G.L., Y.N., P.W., S.H., L.Z.) and Forensic Medicine (W.Y.), School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China; Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (L.Y.); and Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (L.C., X.Z.)
| | - Pei Wang
- Department of Pharmacology (Y.W., L.Y., J.L., S.C., G.L., Y.N., P.W., S.H., L.Z.) and Forensic Medicine (W.Y.), School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China; Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (L.Y.); and Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (L.C., X.Z.)
| | - Weihong Yang
- Department of Pharmacology (Y.W., L.Y., J.L., S.C., G.L., Y.N., P.W., S.H., L.Z.) and Forensic Medicine (W.Y.), School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China; Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (L.Y.); and Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (L.C., X.Z.)
| | - Liming Chen
- Department of Pharmacology (Y.W., L.Y., J.L., S.C., G.L., Y.N., P.W., S.H., L.Z.) and Forensic Medicine (W.Y.), School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China; Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (L.Y.); and Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (L.C., X.Z.)
| | - Xiaobo Zhong
- Department of Pharmacology (Y.W., L.Y., J.L., S.C., G.L., Y.N., P.W., S.H., L.Z.) and Forensic Medicine (W.Y.), School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China; Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (L.Y.); and Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (L.C., X.Z.)
| | - Shengna Han
- Department of Pharmacology (Y.W., L.Y., J.L., S.C., G.L., Y.N., P.W., S.H., L.Z.) and Forensic Medicine (W.Y.), School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China; Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (L.Y.); and Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (L.C., X.Z.)
| | - Lirong Zhang
- Department of Pharmacology (Y.W., L.Y., J.L., S.C., G.L., Y.N., P.W., S.H., L.Z.) and Forensic Medicine (W.Y.), School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China; Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (L.Y.); and Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (L.C., X.Z.)
| |
Collapse
|
44
|
Ishibashi H, Hirano M, Kim EY, Iwata H. In Vitro and In Silico Evaluations of Binding Affinities of Perfluoroalkyl Substances to Baikal Seal and Human Peroxisome Proliferator-Activated Receptor α. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:2181-2188. [PMID: 30649875 DOI: 10.1021/acs.est.8b07273] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this study, we assessed the binding affinities of perfluoroalkyl substances (PFASs), including perfluoroalkyl carboxylates (PFCAs) and perfluoroalkyl sulfonates (PFSAs), to the ligand-binding domains (LBDs) of Baikal seal ( Pusa sibirica; bs) and human (h) peroxisome proliferator-activated receptor alpha (PPARα). An in vitro competitive binding assay showed that six PFCAs and two PFSAs could bind to recombinant bs and hPPARα LBD proteins in a dose-dependent manner. The relative binding affinities (RBAs) of PFASs to bsPPARα were as follows: PFOS > PFDA > PFNA > PFUnDA > PFOA > PFHxS > PFHpA > PFHxA. The RBAs to bsPPARα showed a significant positive correlation with those to hPPARα. In silico PPARα homology modeling predicted that there were two ligand-binding pockets (LBPs) in the bsPPARα and hPPARα LBDs. Structure-activity relationship analyses suggested that the binding potencies of PFASs to PPARα might depend on LBP binding cavity volume, hydrogen bond interactions, the number of perfluorinated carbons, and the hydrophobicity of PFASs. Interspecies comparison of the in vitro binding affinities revealed that bsPPARα had higher preference for PFASs with long carbon chains than hPPARα. The in silico docking simulations suggested that the first LBP of bsPPARα had higher affinities than that of hPPARα; however, the second LBP of bsPPARα had lower affinities than that of hPPARα. To our knowledge, this is the first evidence showing interspecies differences in the binding of PFASs to PPARαs and their structure-activity relationships.
Collapse
Affiliation(s)
- Hiroshi Ishibashi
- Center for Marine Environmental Studies (CMES) , Ehime University , Bunkyo-cho 2-5 , Matsuyama 790-8577 , Japan
- Graduate School of Agriculture , Ehime University , 3-5-7 Tarumi , Matsuyama 790-8566 , Japan
| | - Masashi Hirano
- Department of Biological and Chemical Systems Engineering , National Institute of Technology, Kumamoto College , 2627 Hirayama-shinmachi , Yatsushiro , Kumamoto 866-8501 , Japan
| | - Eun-Young Kim
- Department of Life and Nanopharmaceutical Science and Department of Biology , Kyung Hee University , Hoegi-Dong , Dongdaemun-Gu , Seoul 130-701 , Korea
| | - Hisato Iwata
- Center for Marine Environmental Studies (CMES) , Ehime University , Bunkyo-cho 2-5 , Matsuyama 790-8577 , Japan
| |
Collapse
|
45
|
Ishibashi H, Kim EY, Arizono K, Iwata H. In Vitro Assessment of Activation of Baikal Seal ( Pusa sibirica) Peroxisome Proliferator-Activated Receptor α by Polybrominated Diphenyl Ethers. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:11831-11837. [PMID: 30212190 DOI: 10.1021/acs.est.8b02501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We investigated the Baikal seal ( Pusa sibirica) peroxisome proliferator-activated receptor α (bsPPARα) transactivation potencies of polybrominated diphenyl ethers (PBDEs) using an in vitro bsPPARα reporter gene assay. BDE47, BDE99, and BDE153 induced bsPPARα-mediated transcriptional activities in a dose-dependent manner. To compare bsPPARα transactivation potencies of PBDEs, perfluorooctanoic acid (PFOA)-based relative potencies (REPs), a ratio of 50% effective concentration of PFOA to the test chemical, were determined. The order of REPs of PBDEs was BDE153 (13) > BDE99 (8.1) > BDE47 (6.6) > PFOA (1.0) > BDE100, BDE154, and BDE183 (not activated). PBDEs with two bromine atoms at the ortho position showed higher bsPPARα transactivation potencies than those with three bromine atoms. Comparison of the lowest-observed-effect concentration in bsPPARα reporter gene assays revealed that BDE99 was 7-fold more potent than CB99, a polychlorinated biphenyl congener with the same IUPAC number, indicating that brominated congeners could more efficiently activate bsPPARα than chlorinated congeners. The REPs of PBDEs for bsPPARα transactivation were approximately 7- to 13-fold higher than those of perfluorochemicals (PFCs), suggesting that the effects of PBDEs on the bsPPARα signaling pathway may be superior to those of PFCs. This study provides the first evidence that PBDE congeners activate PPARα in vitro.
Collapse
Affiliation(s)
- Hiroshi Ishibashi
- Center for Marine Environmental Studies (CMES) , Ehime University , Bunkyo-cho 2-5 , Matsuyama 790-8577 , Japan
- Graduate School of Agriculture , Ehime University , 3-5-7 Tarumi , Matsuyama 790-8566 , Japan
| | - Eun-Young Kim
- Department of Life and Nanopharmaceutical Science and Department of Biology , Kyung Hee University , Hoegi-Dong, Dongdaemun-Gu , Seoul 130-701 , Korea
| | - Koji Arizono
- Faculty of Environmental and Symbiotic Sciences , Prefectural University of Kumamoto , 3-1-100 Tsukide, Higashi-ku , Kumamoto 862-8502 , Japan
| | - Hisato Iwata
- Center for Marine Environmental Studies (CMES) , Ehime University , Bunkyo-cho 2-5 , Matsuyama 790-8577 , Japan
| |
Collapse
|
46
|
Bartsch R, Brinkmann B, Jahnke G, Laube B, Lohmann R, Michaelsen S, Neumann I, Greim H. Human relevance of follicular thyroid tumors in rodents caused by non-genotoxic substances. Regul Toxicol Pharmacol 2018; 98:199-208. [PMID: 30076866 DOI: 10.1016/j.yrtph.2018.07.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/27/2018] [Accepted: 07/28/2018] [Indexed: 12/31/2022]
Abstract
Chronic stimulation of the thyroid gland of rodents by TSH leads to thyroid follicular hyperplasia and subsequently to thyroid follicular adenomas and carcinomas. However, the interpretations of rodent thyroid tumors are contradictory. The U.S. Food and Drug Administration (FDA) concluded that findings with drugs that lead to increased levels of thyroid-stimulating hormone (TSH) in rats are not relevant to humans, whereas the U.S. Environmental Protection Agency (US EPA) concluded that chemicals that produce rodent thyroid tumors may pose a carcinogenic hazard for humans although the thyroid of rodents appears to be more sensitive to a carcinogenic stimulus than that of humans. Meanwhile, based on the CLP Criteria of the European Chemicals Agency (ECHA), rodent thyroid tumors caused by the induction of uridine-diphosphate-glucuronosyl transferases (UDGT) were assessed as not relevant to humans. To clarify these discrepant positions, the function and regulation of the thyroid gland are described and the types of thyroid tumors and the causes of their development in humans and animals are examined. Based on these data and the evidence that so far, except radiation, no chemical is known to increase the incidence of thyroid tumors in humans, it is concluded that rodent thyroid tumors resulting from continuous stimulation of the thyroid gland by increased TSH levels are not relevant to humans. Consequently, compounds that induce such tumors do not warrant classification as carcinogenic.
Collapse
Affiliation(s)
- Ruediger Bartsch
- Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT), Department of Food Chemistry and Toxicology, Karlsruhe, Germany
| | - Britta Brinkmann
- Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT), Department of Food Chemistry and Toxicology, Karlsruhe, Germany
| | - Gunnar Jahnke
- Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT), Department of Food Chemistry and Toxicology, Karlsruhe, Germany
| | - Britta Laube
- Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT), Department of Food Chemistry and Toxicology, Karlsruhe, Germany
| | - Ruth Lohmann
- Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT), Department of Food Chemistry and Toxicology, Karlsruhe, Germany
| | - Sandra Michaelsen
- Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT), Department of Food Chemistry and Toxicology, Karlsruhe, Germany
| | - Ingrid Neumann
- Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT), Department of Food Chemistry and Toxicology, Karlsruhe, Germany
| | - Helmut Greim
- Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT), Department of Food Chemistry and Toxicology, Karlsruhe, Germany.
| |
Collapse
|
47
|
Chen L, Bao Y, Piekos SC, Zhu K, Zhang L, Zhong XB. A Transcriptional Regulatory Network Containing Nuclear Receptors and Long Noncoding RNAs Controls Basal and Drug-Induced Expression of Cytochrome P450s in HepaRG Cells. Mol Pharmacol 2018; 94:749-759. [PMID: 29691280 PMCID: PMC5988030 DOI: 10.1124/mol.118.112235] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 04/18/2018] [Indexed: 12/20/2022] Open
Abstract
Cytochrome P450 (P450) enzymes are responsible for metabolizing drugs. Expression of P450s can directly affect drug metabolism, resulting in various outcomes in therapeutic efficacy and adverse effects. Several nuclear receptors are transcription factors that can regulate expression of P450s at both basal and drug-induced levels. Some long noncoding RNAs (lncRNAs) near a transcription factor are found to participate in the regulatory functions of the transcription factors. The aim of this study is to determine whether there is a transcriptional regulatory network containing nuclear receptors and lncRNAs controlling both basal and drug-induced expression of P450s in HepaRG cells. Small interfering RNAs or small hairpin RNAs were applied to knock down four nuclear receptors [hepatocyte nuclear factor 1α (HNF1α), hepatocyte nuclear factor 4α (HNF4α), pregnane X receptor (PXR), and constitutive androstane receptor (CAR)] as well as two lncRNAs [HNF1α antisense RNA 1 (HNF1α-AS1) and HNF4α antisense RNA 1 (HNF4α-AS1)] in HepaRG cells with or without treatment of phenobarbital or rifampicin. Expression of eight P450 enzymes was examined in both basal and drug-induced levels. CAR and PXR mainly regulated expression of specific P450s. HNF1α and HNF4α affected expression of a wide range of P450s as well as other transcription factors. HNF1α and HNF4α controlled the expression of their neighborhood lncRNAs, HNF1α-AS1 and HNF4α-AS1, respectively. HNF1α-AS1 and HNF4α-AS1 was also involved in the regulation of P450s and transcription factors in diverse manners. Altogether, our study concludes that a transcription regulatory network containing the nuclear receptors and lncRNAs controls both basal and drug-induced expression of P450s in HepaRG cells.
Collapse
Affiliation(s)
- Liming Chen
- Department of Pharmaceutical Sciences, School of Pharmacy (L.C., Y.B., S.C.P., X.-b.Z.), and Department of Physiology and Neurobiology (K.Z.), University of Connecticut, Storrs, Connecticut; and Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, Henan, China (L.Z.)
| | - Yifan Bao
- Department of Pharmaceutical Sciences, School of Pharmacy (L.C., Y.B., S.C.P., X.-b.Z.), and Department of Physiology and Neurobiology (K.Z.), University of Connecticut, Storrs, Connecticut; and Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, Henan, China (L.Z.)
| | - Stephanie C Piekos
- Department of Pharmaceutical Sciences, School of Pharmacy (L.C., Y.B., S.C.P., X.-b.Z.), and Department of Physiology and Neurobiology (K.Z.), University of Connecticut, Storrs, Connecticut; and Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, Henan, China (L.Z.)
| | - Kexin Zhu
- Department of Pharmaceutical Sciences, School of Pharmacy (L.C., Y.B., S.C.P., X.-b.Z.), and Department of Physiology and Neurobiology (K.Z.), University of Connecticut, Storrs, Connecticut; and Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, Henan, China (L.Z.)
| | - Lirong Zhang
- Department of Pharmaceutical Sciences, School of Pharmacy (L.C., Y.B., S.C.P., X.-b.Z.), and Department of Physiology and Neurobiology (K.Z.), University of Connecticut, Storrs, Connecticut; and Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, Henan, China (L.Z.)
| | - Xiao-Bo Zhong
- Department of Pharmaceutical Sciences, School of Pharmacy (L.C., Y.B., S.C.P., X.-b.Z.), and Department of Physiology and Neurobiology (K.Z.), University of Connecticut, Storrs, Connecticut; and Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, Henan, China (L.Z.)
| |
Collapse
|
48
|
Lin J, Zhao HS, Qin L, Li XN, Zhang C, Xia J, Li JL. Atrazine Triggers Mitochondrial Dysfunction and Oxidative Stress in Quail ( Coturnix C. coturnix) Cerebrum via Activating Xenobiotic-Sensing Nuclear Receptors and Modulating Cytochrome P450 Systems. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:6402-6413. [PMID: 29865786 DOI: 10.1021/acs.jafc.8b01413] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The residues from the widely used broad-spectrum environmental herbicide, atrazine (ATR), result in the exposure of nontarget organisms and persist as a global major public health hazard. ATR is neurotoxic and may cause adverse health effects in mammals, birds, and fishes. Nevertheless, the molecular mechanism of ATR induced neurotoxicity remains unclear. To assess the molecular mechanisms of ATR-induced cerebral toxicity through potential oxidative damage, quail were treated with ATR by oral gavage administration at doses of 0, 50, 250, and 500 mg/kg body weight daily for 45 days. Markedly, increases in the amount of swelling of neuronal cells, the percentage of mean damaged mitochondria, mitochondrial malformation, and mitochondrial vacuolar degeneration as well as decreases in the mitochondrial cristae and mitochondrial volume density were observed by light and electron microscopy in the cerebrum of quail. ATR induced toxicities in the expression of mitochondrial function-related genes and promoted oxidative damage, as indicated by effects on oxidative stress indices. These results indicated that ATR exposure can cause neurological disorders and cerebral injury. ATR may initiate apoptosis by activating Bcl-2, Bax, and Caspase3 protein expression but failed to induce autophagy (LC3B has not cleaved to LC3BI/II). Furthermore, ATR induced CYP-related enzymes metabolism disorders by activating the nuclear xenobiotic receptors response (NXRs including AHR, CAR, and PXR) and increased expression of several CYP isoforms (including CYP1B1 and CYP2C18) and thereby producing mitochondrial dysfunction. In this study, we observed ATR exposure resulted in oxidative stress and mitochondrial dysfunction by activating the NXR response and interfering the CYP450s homeostasis in quail cerebrum that supported the molecular mechanism of ATR induced cerebrum toxicity. In conclusion, these results provided new evidence on molecular mechanism of ATR induced neurotoxicity.
Collapse
Affiliation(s)
| | | | - Lei Qin
- Laboratory Animal Centre , Qiqihar Medical University , Qiqihar 161006 , P.R. China
| | | | | | | | | |
Collapse
|
49
|
Larigot L, Juricek L, Dairou J, Coumoul X. AhR signaling pathways and regulatory functions. BIOCHIMIE OPEN 2018; 7:1-9. [PMID: 30003042 PMCID: PMC6039966 DOI: 10.1016/j.biopen.2018.05.001] [Citation(s) in RCA: 397] [Impact Index Per Article: 56.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 05/28/2018] [Indexed: 12/12/2022]
Abstract
Animals and humans are exposed each day to a multitude of chemicals in the air, water and food. They have developed a battery of enzymes and transporters that facilitate the biotransformation and elimination of these compounds. Moreover, a majority of these enzymes and transporters are inducible due to the activation of xenobiotic receptors which act as transcription factors for the regulation of their target genes (such as xenobiotic metabolizing enzymes, see below §4 for the AhR). These receptors include several members of the nuclear/steroid receptor family (CAR for Constitutive Androstane Receptor, PXR for Pregnane X Receptor) but also the Aryl hydrocarbon Receptor or AhR, a member of the bHLH-PAS family (basic Helix-Loop-Helix - Period/ARNT/Single minded). In addition to the regulation of xenobiotic metabolism, numerous alternative functions have been characterized for the AhR since its discovery. These alternative functions will be described in this review along with its endogenous functions as revealed by experiments performed on knock-out animals.
Collapse
Affiliation(s)
- Lucie Larigot
- INSERM UMR-S 1124, Toxicologie Pharmacologie et Signalisation Cellulaire, 45 rue des Saints-Pères, 75006 Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Saints-Pères, 75006 Paris, France
| | - Ludmila Juricek
- INSERM UMR-S 1124, Toxicologie Pharmacologie et Signalisation Cellulaire, 45 rue des Saints-Pères, 75006 Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Saints-Pères, 75006 Paris, France
| | - Julien Dairou
- CNRS 8601, 45 rue des Saints-Pères, 75006 Paris, France
| | - Xavier Coumoul
- INSERM UMR-S 1124, Toxicologie Pharmacologie et Signalisation Cellulaire, 45 rue des Saints-Pères, 75006 Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Saints-Pères, 75006 Paris, France
| |
Collapse
|
50
|
Huang CS, Chen HW, Lin TY, Lin AH, Lii CK. Shikonin upregulates the expression of drug-metabolizing enzymes and drug transporters in primary rat hepatocytes. JOURNAL OF ETHNOPHARMACOLOGY 2018; 216:18-25. [PMID: 29414119 DOI: 10.1016/j.jep.2018.01.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 01/17/2018] [Accepted: 01/19/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shikonin, a naphthoquinone pigment abundant in the root of the Chinese herb Lithospermum erythrorhizon, has been widely used to treat inflammatory diseases for thousands of years. Whether shikonin changes drug metabolism remains unclear. AIM OF THE STUDY We investigated whether shikonin modulates the expression of hepatic drug-metabolizing enzymes and transporters as well as the possible mechanisms of this action. MATERIALS AND METHODS Primary hepatocytes isolated from Sprague-Dawley rats were treated with 0-2 μM shikonin and the protein and mRNA levels of drug-metabolizing enzymes and transporters as well as the activation of aryl hydrocarbon receptor (AhR) and NF-E2-related factor 2 (Nrf2) were determined. RESULTS Shikonin dose-dependently increased the protein and RNA expression of phase I enzymes, i.e., cytochrome P450 (CYP) 1A1/2, CYP3A2, CYP2D1, and CYP2C6; phase II enzymes, i.e., glutathione S-transferase (GST), NADP(H) quinone oxidoreductase 1 (NQO1), and UDP glucuronosyltransferase 1A1; and phase III drug transporters, i.e., P-glycoprotein, multidrug resistance-associated protein 2/3, organic anion transporting polypeptide (OATP) 1B1, and OATP2B1. Immunoblot analysis and EMSA revealed that shikonin increased AhR and Nrf2 nuclear contents and DNA binding activity. AhR and Nrf2 knockdown by siRNA attenuated the ability of shikonin to induce drug-metabolizing enzyme expression. In addition, shikonin increased p38, JNK, and ERK1/2 phosphorylation, and inhibitors of the respective kinases inhibited shikonin-induced Nrf2 nuclear translocation. CONCLUSIONS Shikonin effectively upregulates the transcription of CYP isozymes, phase II detoxification enzymes, and phase III membrane transporters and this function is at least partially through activation of AhR and Nrf2. Moreover, Nrf2 activation is dependent on mitogen-activated protein kinases.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents/pharmacology
- Basic Helix-Loop-Helix Transcription Factors/agonists
- Basic Helix-Loop-Helix Transcription Factors/genetics
- Basic Helix-Loop-Helix Transcription Factors/metabolism
- Biotransformation
- Cells, Cultured
- Dose-Response Relationship, Drug
- Drugs, Chinese Herbal/pharmacology
- Extracellular Signal-Regulated MAP Kinases
- Gene Expression Regulation, Enzymologic/drug effects
- Hepatocytes/drug effects
- Hepatocytes/enzymology
- JNK Mitogen-Activated Protein Kinases
- Male
- Membrane Transport Proteins/drug effects
- Membrane Transport Proteins/genetics
- Membrane Transport Proteins/metabolism
- NF-E2-Related Factor 2/genetics
- NF-E2-Related Factor 2/metabolism
- Naphthoquinones/pharmacology
- Phosphorylation
- Primary Cell Culture
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats, Sprague-Dawley
- Receptors, Aryl Hydrocarbon/agonists
- Receptors, Aryl Hydrocarbon/genetics
- Receptors, Aryl Hydrocarbon/metabolism
- Transcriptional Activation/drug effects
- p38 Mitogen-Activated Protein Kinases/metabolism
Collapse
Affiliation(s)
- Chin-Shiu Huang
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Haw-Wen Chen
- Department of Nutrition, China Medical University, No. 91, Hsueh-Shih Road, Taichung 404, Taiwan
| | - Tzu-Yu Lin
- Department of Nutrition, China Medical University, No. 91, Hsueh-Shih Road, Taichung 404, Taiwan
| | - Ai-Hsuan Lin
- Department of Nutrition, China Medical University, No. 91, Hsueh-Shih Road, Taichung 404, Taiwan
| | - Chong-Kuei Lii
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan; Department of Nutrition, China Medical University, No. 91, Hsueh-Shih Road, Taichung 404, Taiwan.
| |
Collapse
|