1
|
Lynch WB, Miracle SA, Goldstein SI, Beierle JA, Bhandari R, Gerhardt ET, Farnan A, Nguyen BM, Wingfield KK, Kazerani I, Saavedra GA, Averin O, Baskin BM, Ferris MT, Reilly CA, Emili A, Bryant CD. Validation studies and multiomics analysis of Zhx2 as a candidate quantitative trait gene underlying brain oxycodone metabolite (oxymorphone) levels and behavior. J Pharmacol Exp Ther 2025; 392:103557. [PMID: 40215834 DOI: 10.1016/j.jpet.2025.103557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 03/12/2025] [Accepted: 03/14/2025] [Indexed: 04/25/2025] Open
Abstract
Sensitivity to the subjective reinforcing properties of opioids has a genetic component and can predict addiction liability of opioid compounds. We previously identified Zhx2 as a candidate gene underlying increased brain concentration of the oxycodone (OXY) metabolite oxymorphone (OMOR) in BALB/cJ (J) versus BALB/cByJ (By) females that could increase OXY state-dependent reward. A large structural intronic variant is associated with a robust reduction of Zhx2 expression in J mice, which we hypothesized enhances OMOR levels and OXY addiction-like behaviors. We tested this hypothesis by restoring the Zhx2 loss-of-function in J mice (mouse endogenous retroviral element knockout) and modeling the loss-of-function variant through knocking out the Zhx2 coding exon (exon 3 knockout [E3KO]) in By mice and assessing brain OXY metabolite levels and behavior. Consistent with our hypothesis, Zhx2 E3KO females showed an increase in brain OMOR levels and OXY-induced locomotor activity. However, contrary to our hypothesis, state-dependent expression of OXY conditioned place preference decreased in E3KO females and increased in E3KO males. We also overexpressed Zhx2 in the livers and brains of J mice and observed Zhx2 overexpression in select brain regions that was associated with reduced OXY state-dependent learning. Integrative transcriptomic and proteomic analysis of E3KO mice identified astrocyte function, cell adhesion, extracellular matrix properties, and endothelial cell functions as pathways influencing brain OXY metabolite concentration and behavior. These results support Zhx2 as a quantitative trait gene underlying brain OMOR concentration that is associated with changes in OXY behavior and implicate potential quantitative trait mechanisms that together inform our overall understanding of Zhx2 in brain function. SIGNIFICANCE STATEMENT: This study validated Zhx2 as a gene whose dysfunction increases brain levels of a highly potent and addictive metabolite of oxycodone, oxymorphone, in a female-specific manner. This result has broad implications for understanding the role of oxycodone metabolism and brain oxymorphone levels in the addiction liability of oxycodone (the active ingredient in OxyContin) and highlights the need for the study of sex differences in opioid metabolism as it relates to the addiction liability of opioids and opioid use disorder.
Collapse
Affiliation(s)
- William B Lynch
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug Discovery, Northeastern University, Boston, Massachusetts; Graduate Program for Neuroscience, Graduate Medical Sciences, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts; Transformative Training Program in Addiction Science, Boston University, Boston, Massachusetts
| | - Sophia A Miracle
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug Discovery, Northeastern University, Boston, Massachusetts; Graduate Program for Neuroscience, Graduate Medical Sciences, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
| | - Stanley I Goldstein
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug Discovery, Northeastern University, Boston, Massachusetts; Graduate Program in Biomolecular Pharmacology, Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
| | - Jacob A Beierle
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug Discovery, Northeastern University, Boston, Massachusetts; Transformative Training Program in Addiction Science, Boston University, Boston, Massachusetts; Graduate Program in Biomolecular Pharmacology, Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
| | - Rhea Bhandari
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug Discovery, Northeastern University, Boston, Massachusetts
| | - Ethan T Gerhardt
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug Discovery, Northeastern University, Boston, Massachusetts; Undergraduate Research Opportunity Program (UROP), Boston University, Boston, Massachusetts
| | - Ava Farnan
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug Discovery, Northeastern University, Boston, Massachusetts
| | - Binh-Minh Nguyen
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug Discovery, Northeastern University, Boston, Massachusetts
| | - Kelly K Wingfield
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug Discovery, Northeastern University, Boston, Massachusetts; Graduate Program in Biomolecular Pharmacology, Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
| | - Ida Kazerani
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug Discovery, Northeastern University, Boston, Massachusetts; Summer Research Internship Program, National Institute on Drug Abuse, North Bethesda, Maryland
| | - Gabriel A Saavedra
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug Discovery, Northeastern University, Boston, Massachusetts; Research in Science and Engineering Program, Boston University, Boston, Massachusetts
| | - Olga Averin
- Center for Human Toxicology, University of Utah Health, Salt Lake City, Utah
| | - Britahny M Baskin
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug Discovery, Northeastern University, Boston, Massachusetts; Training Program on Development of Medications for Substance Use Disorder, Northeastern University, Boston, Massachusetts
| | - Martin T Ferris
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina
| | | | - Andrew Emili
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| | - Camron D Bryant
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug Discovery, Northeastern University, Boston, Massachusetts.
| |
Collapse
|
2
|
Lynch WB, Miracle SA, Goldstein SI, Beierle JA, Bhandari R, Gerhardt ET, Farnan A, Nguyen BM, Wingfield KK, Kazerani I, Saavedra GA, Averin O, Baskin BM, Ferris MT, Reilly CA, Emili A, Bryant CD. Validation studies and multi-omics analysis of Zhx2 as a candidate quantitative trait gene underlying brain oxycodone metabolite (oxymorphone) levels and behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.30.610534. [PMID: 39257803 PMCID: PMC11383981 DOI: 10.1101/2024.08.30.610534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Sensitivity to the subjective reinforcing properties of opioids has a genetic component and can predict addiction liability of opioid compounds. We previously identified Zhx2 as a candidate gene underlying increased brain concentration of the oxycodone (OXY) metabolite oxymorphone (OMOR) in BALB/cJ (J) versus BALB/cByJ (By) females that could increase OXY state-dependent reward. A large structural intronic variant is associated with a robust reduction of Zhx2 expression in J mice, which we hypothesized enhances OMOR levels and OXY addiction-like behaviors. We tested this hypothesis by restoring the Zhx2 loss-of-function in Js (MVKO) and modeling the loss-of-function variant through knocking out the Zhx2 coding exon (E3KO) in Bys and assessing brain OXY metabolite levels and behavior. Consistent with our hypothesis, Zhx2 E3KO females showed an increase in brain OMOR levels and OXY-induced locomotor activity. However, contrary to our hypothesis, state-dependent expression of OXY-CPP was decreased in E3KO females and increased in E3KO males. We also overexpressed Zhx2 in the livers and brains of Js and observed Zhx2 overexpression in select brain regions that was associated with reduced OXY state-dependent learning. Integrative transcriptomic and proteomic analysis of E3KO mice identified astrocyte function, cell adhesion, extracellular matrix properties, and endothelial cell functions as pathways influencing brain OXY metabolite concentration and behavior. These results support Zhx2 as a quantitative trait gene underlying brain OMOR concentration that is associated with changes in OXY behavior and implicate potential quantitative trait mechanisms that together inform our overall understanding of Zhx2 in brain function.
Collapse
Affiliation(s)
- William B. Lynch
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug Discovery, Northeastern University, Boston, MA USA
- Graduate Program for Neuroscience, Graduate Medical Sciences, Boston University Chobanian and Avedisian School of Medicine, Boston, MA USA
- Transformative Training Program in Addiction Science, Boston University, Boston, MA USA
| | - Sophia A. Miracle
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug Discovery, Northeastern University, Boston, MA USA
- Graduate Program for Neuroscience, Graduate Medical Sciences, Boston University Chobanian and Avedisian School of Medicine, Boston, MA USA
| | - Stanley I. Goldstein
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug Discovery, Northeastern University, Boston, MA USA
- Graduate Program in Biomolecular Pharmacology, Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, MA USA
| | - Jacob A. Beierle
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug Discovery, Northeastern University, Boston, MA USA
- Transformative Training Program in Addiction Science, Boston University, Boston, MA USA
- Graduate Program in Biomolecular Pharmacology, Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, MA USA
| | - Rhea Bhandari
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug Discovery, Northeastern University, Boston, MA USA
| | - Ethan T. Gerhardt
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug Discovery, Northeastern University, Boston, MA USA
- Undergraduate Research Opportunity Program (UROP), Boston University, Boston, MA USA
| | - Ava Farnan
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug Discovery, Northeastern University, Boston, MA USA
| | - Binh-Minh Nguyen
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug Discovery, Northeastern University, Boston, MA USA
| | - Kelly K. Wingfield
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug Discovery, Northeastern University, Boston, MA USA
- Graduate Program in Biomolecular Pharmacology, Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, MA USA
| | - Ida Kazerani
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug Discovery, Northeastern University, Boston, MA USA
- Summer Research Internship Program, National Institute on Drug Abuse, North Bethesda, MD USA
| | - Gabriel A. Saavedra
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug Discovery, Northeastern University, Boston, MA USA
- Research in Science and Engineering Program, Boston University, Boston, MA USA
| | - Olga Averin
- Center for Human Toxicology, University of Utah Health, Salt Lake City, UT USA
| | - Britahny M. Baskin
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug Discovery, Northeastern University, Boston, MA USA
- Training Program on Development of Medications for Substance Use Disorder, Northeastern University, Boston, MA USA
| | - Martin T. Ferris
- Department of Genetics, University of North Carolina, Chapel Hill, NC USA
| | | | - Andrew Emili
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR USA
| | - Camron D. Bryant
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug Discovery, Northeastern University, Boston, MA USA
| |
Collapse
|
3
|
Sarwar MS, Cheng D, Peter RM, Shannar A, Chou P, Wang L, Wu R, Sargsyan D, Goedken M, Wang Y, Su X, Hart RP, Kong AN. Metabolic rewiring and epigenetic reprogramming in leptin receptor-deficient db/db diabetic nephropathy mice. Eur J Pharmacol 2023:175866. [PMID: 37331680 DOI: 10.1016/j.ejphar.2023.175866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/20/2023]
Abstract
BACKGROUND Diabetic nephropathy (DN) is the leading cause of end-stage renal disease in the United States. Emerging evidence suggests that mitochondrial metabolism and epigenetics play an important role in the development and progression of DN and its complications. For the first time, we investigated the regulation of cellular metabolism, DNA methylation, and transcriptome status by high glucose (HG) in the kidney of leptin receptor-deficient db/db mice using multi-omics approaches. METHODS The metabolomics was performed by liquid-chromatography-mass spectrometry (LC-MS), while epigenomic CpG methylation coupled with transcriptomic gene expression was analyzed by next-generation sequencing. RESULTS LC-MS analysis of glomerular and cortex tissue samples of db/db mice showed that HG regulated several cellular metabolites and metabolism-related signaling pathways, including S-adenosylmethionine, S-adenosylhomocysteine, methionine, glutamine, and glutamate. Gene expression study by RNA-seq analysis suggests transforming growth factor beta 1 (TGFβ1) and pro-inflammatory pathways play important roles in early DN. Epigenomic CpG methyl-seq showed HG revoked a list of differentially methylated regions in the promoter region of the genes. Integrated analysis of DNA methylation in the promoter regions of genes and gene expression changes across time points identified several genes persistently altered in DNA methylation and gene expression. Cyp2d22, Slc1a4, and Ddah1 are some identified genes that could reflect dysregulated genes involved in renal function and DN. CONCLUSION Our results suggest that leptin receptor deficiency leading to HG regulates metabolic rewiring, including SAM potentially driving DNA methylation and transcriptomic signaling that could be involved in the progression of DN.
Collapse
Affiliation(s)
- Md Shahid Sarwar
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - David Cheng
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA; Graduate Program in Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Rebecca Mary Peter
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA; Graduate Program in Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Ahmad Shannar
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA; Graduate Program in Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Pochung Chou
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA; Graduate Program in Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Lujing Wang
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA; Graduate Program in Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Renyi Wu
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Davit Sargsyan
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA; Graduate Program in Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Michael Goedken
- Office of Translational Science, Research Pathology Services, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Yujue Wang
- Metabolomics Shared Resource, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08901, USA
| | - Xiaoyang Su
- Metabolomics Shared Resource, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08901, USA
| | - Ronald P Hart
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Ah-Ng Kong
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA.
| |
Collapse
|
4
|
Siswanto FM, Handayani MDN, Firmasyah RD, Oguro A, Imaoka S. Nrf2 Regulates the Expression of CYP2D6 by Inhibiting the Activity of Krüppel-Like Factor 9 (KLF9). Curr Drug Metab 2023; 24:667-681. [PMID: 37916628 DOI: 10.2174/0113892002271342231013095255] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/13/2023] [Accepted: 09/20/2023] [Indexed: 11/03/2023]
Abstract
AIMS The aim of the present study is to gain insight into the biology of Parkinson's disease (PD) and cancer to drive translational advances enabling more effective prevention and/or potential treatments. BACKGROUND The expression of Cytochrome P450 2D6 (CYP2D6) is correlated with various diseases such as PD and cancer; therefore, exploring its regulatory mechanism at transcriptional levels is of interest. NF-E2-related factor 2 (Nrf2) has been known to be responsible for regulating phase II and phase III drug-metabolizing genes. OBJECTIVES The objectives of this study are to investigate the transcriptional regulation of CYP2D6 by Nrf2 and to analyze its role in PD and cancer. METHODS Nrf2 was transiently expressed in human hepatoma Hep3B cells, and the expression of CYP2D6 was examined by RT-qPCR. The promoter activity of CYP2D6 and the DNA binding of Nrf2 were examined by luciferase and ChIP assay, respectively. We then investigated the expression and correlation of Nrf2 and CYP2D6 in the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) datasets. RESULTS In the present study, we demonstrated that Nrf2 down-regulated CYP2D6 mRNA expression in hepatoma Hep3B cells. Mechanistically, Nrf2 binds to the antioxidant responsive element (ARE) in the proximity of krüppel- like factor 9 (KLF9)-binding site within the -550/+51 of CYP2D6 promoter. The inhibition and activation of Nrf2 enhanced and suppressed KLF9 effects on CYP2D6 expression, respectively. The expression levels of Nrf2 and CYP2D6 were upregulated and downregulated in the PD patient GEO datasets compared to the healthy control tissues, and Nrf2 was negatively correlated with CYP2D6. In liver cancer patients, decreased CYP2D6 levels were apparent and associated with a lower probability of survival. CONCLUSION Our work revealed the inhibitory role of Nrf2 in regulating CYP2D6 expression. Moreover, Nrf2- dependent regulation of CYP2D6 can be used as a prognostic factor and therapeutic strategy in PD and liver cancer.
Collapse
Affiliation(s)
- Ferbian Milas Siswanto
- Department of Chemistry and Biochemistry, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia
- Department of Biomedical Chemistry, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Japan
| | - Maria Dara Novi Handayani
- Department of Chemistry and Biochemistry, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia
| | - Rita Dewi Firmasyah
- Department of Chemistry and Biochemistry, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia
| | - Ami Oguro
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Susumu Imaoka
- Department of Biomedical Chemistry, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Japan
| |
Collapse
|
5
|
Samadi M, Beigi L, Yadegari F, Ansari AM, Majidzadeh-A K, Eskordi M, Farahmand L. Recognition of functional genetic polymorphism using ESE motif definition: a conservative evolutionary approach to CYP2D6/CYP2C19 gene variants. Genetica 2022; 150:289-297. [PMID: 35913522 DOI: 10.1007/s10709-022-00161-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 03/24/2022] [Indexed: 11/04/2022]
Abstract
Although predicting the effects of variants near intron-exon boundaries is relatively straightforward, predicting the functional Exon Splicing Enhancers (ESEs) and the possible effects of variants within ESEs remains a challenge. Considering the essential role of CYP2D6/CYP2C19 genes in drug metabolism, we attempted to identify variants that are most likely to disrupt splicing through their effect on these ESEs. ESEs were predicted in these two genes using ESEfinder 3.0, incorporating a series of filters (increased threshold and evolutionary conservation). Finally, reported mutations were evaluated for their potential to disrupt splicing by affecting these ESEs. Initially, 169 and 243 ESEs were predicted for CYP2C19/CYP2D6, respectively. However, applying the filters, the number of predicted ESEs was reduced to 26 and 19 in CYP2C19/CYP2D6, respectively. Comparing prioritized predicted ESEs with known sequence variants in CYP2C19/CYP2D6 genes highlights 18 variations within conserved ESEs for each gene. We found good agreement in cases where such predictions could be compared to experimental evidence. In total, we prioritized a subset of mutational changes in CYP2C19/CYP2D6 genes that may affect the function of these genes and lead to altered drug responses. Clinical studies and functional analysis for investigating detailed functional consequences of the mentioned mutations and their phenotypic outcomes is mostly recommended.
Collapse
Affiliation(s)
- Mitra Samadi
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Laleh Beigi
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Fatemeh Yadegari
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Alireza Madjid Ansari
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Keivan Majidzadeh-A
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Maryam Eskordi
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Leila Farahmand
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.
| |
Collapse
|
6
|
Zhao L, Chen F, Zhang Y, Yue L, Guo H, Ye G, Shi F, Lv C, Jing B, Tang H, Yin Z, Fu H, Lin J, Li Y, Wang X. Involvement of P450s and nuclear receptors in the hepatoprotective effect of quercetin on liver injury by bacterial lipopolysaccharide. Immunopharmacol Immunotoxicol 2020; 42:211-220. [PMID: 32253952 DOI: 10.1080/08923973.2020.1742154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 03/08/2020] [Indexed: 10/24/2022]
Abstract
Objective: Quercetin (Que), a flavonoid, possesses anti-inflammatory and antioxidant properties. It has been shown to protect against liver injury induced by various factors. This study was designed to investigate the underlying mechanism of its protective effect against lipopolysaccharide (LPS)- induced liver damage.Methods: Mice were pretreated with Que for 7 consecutive days and then exposed to LPS. To study the hepatoprotective effect of Que, oxidative stress parameters, inflammatory cytokine levels in liver and serum liver function indexes were examined. Protein and mRNA expression of nuclear orphan receptors and cytochrome P450 enzymes were measured by Western Blotting and qPCR, respectively.Results: Que significantly reduced circulating ALT, AST, ALP, and ameliorated LPS-induced histological alterations. In addition, Que obviously decreased markers of oxidative stress and pro-inflammatory cytokines. Furthermore, Que carried out the hepatoprotective effect via regulation of the expression of nuclear orphan receptors (CAR, PXR) and cytochrome P450 enzymes (CYP1A2, CYP2E1, CYP2D22, CYP3A11).Conclusions: Our findings suggested that Que pretreatment could ameliorate LPS-induced liver injury.
Collapse
Affiliation(s)
- Ling Zhao
- Institute of Animal Veterinary, Sichuan Agricultural University, Chengdu, P. R. China
| | - Fang Chen
- Institute of Animal Veterinary, Sichuan Agricultural University, Chengdu, P. R. China
| | - Yuanli Zhang
- Institute of Animal Veterinary, Sichuan Agricultural University, Chengdu, P. R. China
| | - Ling Yue
- Institute of Animal Veterinary, Sichuan Agricultural University, Chengdu, P. R. China
| | - Hongrui Guo
- Institute of Animal Veterinary, Sichuan Agricultural University, Chengdu, P. R. China
| | - Gang Ye
- Institute of Animal Veterinary, Sichuan Agricultural University, Chengdu, P. R. China
| | - Fei Shi
- Institute of Animal Veterinary, Sichuan Agricultural University, Chengdu, P. R. China
| | - Cheng Lv
- Institute of Animal Veterinary, Sichuan Agricultural University, Chengdu, P. R. China
| | - Bo Jing
- Institute of Animal Veterinary, Sichuan Agricultural University, Chengdu, P. R. China
| | - Huaqiao Tang
- Institute of Animal Veterinary, Sichuan Agricultural University, Chengdu, P. R. China
| | - Zhongqiong Yin
- Institute of Animal Veterinary, Sichuan Agricultural University, Chengdu, P. R. China
| | - Hualin Fu
- Institute of Animal Veterinary, Sichuan Agricultural University, Chengdu, P. R. China
| | - Jvchun Lin
- Institute of Animal Veterinary, Sichuan Agricultural University, Chengdu, P. R. China
| | - Yinglun Li
- Institute of Animal Veterinary, Sichuan Agricultural University, Chengdu, P. R. China
| | - Xun Wang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P. R. China
| |
Collapse
|
7
|
Tolledo C, Stocco MR, Miksys S, Gonzalez FJ, Tyndale RF. Human CYP2D6 Is Functional in Brain In Vivo: Evidence from Humanized CYP2D6 Transgenic Mice. Mol Neurobiol 2020; 57:2509-2520. [PMID: 32189192 DOI: 10.1007/s12035-020-01896-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 03/02/2020] [Indexed: 01/08/2023]
Abstract
CYP2D metabolizes many drugs that act within the brain, and variable expression of CYP2D in the brain may alter local drug and metabolite levels sufficiently to affect behavioral responses. Transgenic mice that express human CYP2D6 (TG) were compared to wild type mice (WT). Following selective inhibition of human CYP2D6 in TG brain, we demonstrated in vivo that human CYP2D6 in the brain was sufficient to alter a drug-induced behavioral response. After a 4-h pre-treatment with intracerebroventricular (i.c.v.) propranolol, CYP2D activity in vivo and in vitro was reduced in TG brain, whereas CYP2D activity in vivo, but not in vitro, was reduced in WT brain. After a 24-h pre-treatment with i.c.v. propranolol, CYP2D activity in vivo and in vitro was reduced in TG brain, whereas CYP2D activity in vivo and in vitro was not changed in WT brain. These results indicate that i.c.v. propranolol irreversibly inhibited human CYP2D6 in TG brain but not mouse CYP2D in TG and WT brain. Pre-treatments with propranolol did not change liver CYP2D activity in vivo or in vitro. Furthermore, 24-h pre-treatment with i.c.v. propranolol resulted in a significant decrease of the haloperidol-induced catalepsy response in TG, but not in WT, without changing serum haloperidol levels in either mouse line. These studies reveal a new tool to selectively and irreversibly inhibit human CYP2D6 in TG brain and indicate that human CYP2D6 has a functional role within the brain sufficient to impact the central nervous system response from peripherally administered drugs.
Collapse
Affiliation(s)
- Cole Tolledo
- Department of Pharmacology and Toxicology, University of Toronto, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada
| | - Marlaina R Stocco
- Department of Pharmacology and Toxicology, University of Toronto, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada
| | - Sharon Miksys
- Department of Pharmacology and Toxicology, University of Toronto, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Rachel F Tyndale
- Department of Pharmacology and Toxicology, University of Toronto, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada. .,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
8
|
Gabel F, Aubry AS, Hovhannisyan V, Chavant V, Weinsanto I, Maduna T, Darbon P, Goumon Y. Unveiling the Impact of Morphine on Tamoxifen Metabolism in Mice in vivo. Front Oncol 2020; 10:25. [PMID: 32154159 PMCID: PMC7046683 DOI: 10.3389/fonc.2020.00025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 01/08/2020] [Indexed: 11/13/2022] Open
Abstract
Background: Tamoxifen is used to treat breast cancer and cancer recurrences. After administration, tamoxifen is converted into two more potent antitumor compounds, 4OH-tamoxifen and endoxifen by the CYP3A4/5 and 2D6 enzymes in human. These active compounds are inactivated by the same UDP-glucuronosyltransferase isoforms as those involved in the metabolism of morphine. Importantly, cancer-associated pain can be treated with morphine, and the common metabolic pathway of morphine and tamoxifen suggests potential clinically relevant interactions. Methods: Mouse liver microsomes were used to determine the impact of morphine on 4OH-tamoxifen metabolism in vitro. For in vivo experiments, female mice were first injected with tamoxifen alone and then with tamoxifen and morphine. Blood was collected, and LC-MS/MS was used to quantify tamoxifen, 4OH-tamoxifen, N-desmethyltamoxifen, endoxifen, 4OH-tamoxifen-glucuronide, and endoxifen-glucuronide. Results:In vitro, we found increased Km values for the production of 4OH-tamoxifen-glucuronide in the presence of morphine, suggesting an inhibitory effect on 4OH-tamoxifen glucuronidation. Conversely, in vivo morphine treatment decreased 4OH-tamoxifen levels in the blood while dramatically increasing the formation of inactive metabolites 4OH-tamoxifen-glucuronide and endoxifen-glucuronide. Conclusions: Our findings emphasize the need for caution when extrapolating results from in vitro metabolic assays to in vivo drug metabolism interactions. Importantly, morphine strongly impacts tamoxifen metabolism in mice. It suggests that tamoxifen efficiency could be reduced when both drugs are co-administered in a clinical setting, e.g., to relieve pain in breast cancer patients. Further studies are needed to assess the potential for tamoxifen-morphine metabolic interactions in humans.
Collapse
Affiliation(s)
- Florian Gabel
- CNRS UPR3212, Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, University of Strasbourg, Strasbourg, France
| | - Anne-Sophie Aubry
- CNRS UPR3212, Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, University of Strasbourg, Strasbourg, France
| | - Volodya Hovhannisyan
- CNRS UPR3212, Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, University of Strasbourg, Strasbourg, France
| | - Virginie Chavant
- CNRS UPR3212, Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, University of Strasbourg, Strasbourg, France.,Mass Spectrometry Facilities of the CNRS UPR3212, Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Strasbourg, France
| | - Ivan Weinsanto
- CNRS UPR3212, Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, University of Strasbourg, Strasbourg, France
| | - Tando Maduna
- CNRS UPR3212, Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, University of Strasbourg, Strasbourg, France
| | - Pascal Darbon
- CNRS UPR3212, Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, University of Strasbourg, Strasbourg, France
| | - Yannick Goumon
- CNRS UPR3212, Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, University of Strasbourg, Strasbourg, France.,Mass Spectrometry Facilities of the CNRS UPR3212, Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Strasbourg, France
| |
Collapse
|
9
|
Zhang Y, Li S, Wang Y, Deng G, Cao N, Wu C, Ding W, Wang Y, Cheng X, Wang C. Potential Pharmacokinetic Drug⁻Drug Interaction Between Harmine, a Cholinesterase Inhibitor, and Memantine, a Non-Competitive N-Methyl-d-Aspartate Receptor Antagonist. Molecules 2019; 24:E1430. [PMID: 30978991 PMCID: PMC6479946 DOI: 10.3390/molecules24071430] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 12/26/2022] Open
Abstract
Harmine (HAR) is a beta-carboline alkaloid widely distributed in nature. It exhibits psychopharmacological effects of improving learning and memory. However, excessive dose of HAR can cause central tremor toxicity, which may be related to the glutamate system. Memantine (MEM) is a non-competitive N-methyl-d-aspartate receptor antagonist. It can be used for the treatment of Alzheimer's disease and also can block the neurotoxicity caused by glutamate. Therefore, combination of HAR and MEM would be meaningful and the pharmacokinetics investigation of HAR and MEM in combination is necessary. A ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method was established and validated for the simultaneous quantitative determination of MEM, HAR and harmol (HOL), a main metabolite of HAR, in rat plasma after oral administration of HAR and MEM in combination (5.0 mg/kg of MEM combined with 20.0, 40.0, 80.0 mg/kg of HAR). The contents of HAR and HOL were determined after oral administration of HAR (20.0, 40.0 and 80.0 mg/kg), and the content of MEM was determined after oral administration of MEM (5.0 mg/kg). Blood samples were collected from each rat at 0 (pre-dose), 0.08, 0.17, 0.25, 0.33, 0.50, 0.75, 1.0, 2.0, 4.0, 8.0, 12.0 and 24.0 h after administration. The maximum peak concentration (Cmax) of MEM was obviously decreased, and the area under the plasma concentration versus time curve from zero to time t (AUC(0-t)) and mean residence time (MRT) were significantly increased after combination with HAR. The Cmax and AUC(0-t) of HAR and its metabolite HOL were increased after combination with MEM. These findings suggested that co-administration of HAR and MEM could extend their residence time in rats, and then might increase the efficacy for treatment of Alzheimer's disease. Therefore, this study will provide a basis for the rational combined application of HAR and MEM.
Collapse
Affiliation(s)
- Yunpeng Zhang
- The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Rood, Shanghai 201203, China.
| | - Shuping Li
- The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Rood, Shanghai 201203, China.
| | - Youxu Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Rood, Shanghai 201203, China.
| | - Gang Deng
- The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Rood, Shanghai 201203, China.
| | - Ning Cao
- The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Rood, Shanghai 201203, China.
| | - Chao Wu
- The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Rood, Shanghai 201203, China.
| | - Wenzheng Ding
- The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Rood, Shanghai 201203, China.
| | - Yuwen Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Rood, Shanghai 201203, China.
| | - Xuemei Cheng
- The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Rood, Shanghai 201203, China.
- Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Rood, Shanghai 201203, China.
| | - Changhong Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Rood, Shanghai 201203, China.
- Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Rood, Shanghai 201203, China.
| |
Collapse
|
10
|
Chen JM, Zhang QS, Li XY, Gong X, Ruan YJ, Zeng SJ, Lu LL, Qi XX, Wang Y, Hu M, Zhu LJ, Liu ZQ. Tissue Distribution and Gender-Specific Protein Expression of Cytochrome P450 in five Mouse Genotypes with a Background of FVB. Pharm Res 2018; 35:114. [DOI: 10.1007/s11095-018-2389-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 03/14/2018] [Indexed: 01/21/2023]
|
11
|
Zhang F, Li J, Na S, Wu J, Yang Z, Xie X, Wan Y, Li K, Yue J. The Involvement of PPARs in the Selective Regulation of Brain CYP2D by Growth Hormone. Neuroscience 2018; 379:115-125. [PMID: 29555426 DOI: 10.1016/j.neuroscience.2018.03.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 03/06/2018] [Accepted: 03/08/2018] [Indexed: 10/17/2022]
Abstract
Brain CYP2D is responsible for the synthesis of endogenous neurotransmitters such as dopamine and serotonin. This study is to investigate the effects of cerebral CYP2D on mouse behavior and the mechanism whereby growth hormone regulates brain CYP2D. The inhibition of cerebellar CYP2D significantly affected the spatial learning and exploratory behavior of mice. CYP2D expression was lower in the brain in GHR-/- mice than that in WT mice; however, hepatic CYP2D levels were similar. Brain PPARα expression in male GHR-/- mice were markedly higher than those in WT mice, while brain PPARγ levels were decreased or unchanged in different regions. However, both hepatic PPARα and PPARγ in male GHR-/- mice were markedly higher than those in WT mice. Pulsatile GH decreased the PPARα mRNA level and increased the mRNA levels of CYP2D6 and PPARγ in SH-SY5Y cells. A luciferase assay showed that PPARγ activated the CYP2D6 gene promoter while PPARα inhibited its function. Pulsatile GH decreased the binding of PPARα to the CYP2D6 promoter by 40% and promoted the binding of PPARγ to the CYP2D6 promoter by approximately 60%. The male GH secretory pattern altered PPAR expression and the binding of PPARs to the CYP2D promoter, leading to the elevation of brain CYP2D in a tissue-specific manner. Growth hormone may alter the learning and memory functions in patients receiving GH replacement therapy via brain CYP2D.
Collapse
Affiliation(s)
- Furong Zhang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Jie Li
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Shufang Na
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Juan Wu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Zheqiong Yang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Xianfei Xie
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Yu Wan
- Department of Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Ke Li
- Demonstration Center for Experimental Basic Medicine Education, Wuhan University, Wuhan 430071, China
| | - Jiang Yue
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Hubei Province Key Laboratory of Allergy and Immunology, Wuhan 430060, China.
| |
Collapse
|
12
|
Chen J, Zhu L, Li X, Zheng H, Yan T, Xie C, Zeng S, Yu J, Jiang H, Lu L, Qi X, Wang Y, Hu M, Liu Z. High-Throughput and Reliable Isotope Label-free Approach for Profiling 24 Metabolic Enzymes in FVB Mice and Sex Differences. Drug Metab Dispos 2017; 45:624-634. [PMID: 28356314 DOI: 10.1124/dmd.116.074682] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/22/2017] [Indexed: 02/13/2025] Open
Abstract
FVB mice are extensively used in transgenic and pharmacokinetic research. In this study, a validated isotope label-free method was constructed using ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) to quantify 24 drug-metabolizing enzymes (DMEs) in FVB mice. The DMEs include cytochrome P450s (CYP450s/Cyp450s), UDP-glucuronsyltransferases (UGTs/Ugts), and sulfotransferases (SULTs/Sults), which catalyze a variety of reactions to detoxify xenobiotics and endobiotics. The proposed UHPLC-MS/MS method exhibited good range and high sensitivity for signature peptides, as well as acceptable accuracy, precision, and recovery. The protein expression profiles of the DMEs were determined in male and female mice. Overall, the major Cyps, Ugts, and Sults were expressed in male mice followed the rank order: Cyp2c29 > 2e1 > 3a11 > 1a2 > 2d22 > 27a1 > 2c39; Ugt2b5 > 2b1 > 1a6a > 1a9 > 1a1 > 2a3 > 1a2 > 1a5; and Sult1a1 > 3a > 1d1. In contrast, the rank order in female mice was Cyp2c29 > 2e1 > 2c39 > 2d22 > 3a11 > 1a2 > 27a1; Ugt1a6a > 2b5 > 1a1 > 2b1 > 2a3 > 1a9 > 1a5 > 1a2; and Sult1a1 > 3a1 > 1d1. Cyp2c29, Cyp1a2, Cyp27a1, Ugt2b1, Ugt2b5 and Ugt2b36 were male predominant, whereas Cyp2c39, Cyp2d22, Cyp7a1, Ugt1a1, Ugt1a5, Sult1a1, Sult3a1, and Sult1d1 were female predominant. This work could serve as a useful reference for the metabolic study of new drugs and for elucidating the effectiveness and toxicity of drugs. The method is stable, simple, and rapid for determining the expression of DMEs in animals.
Collapse
Affiliation(s)
- Jiamei Chen
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China (J.C., L.Z., X.L., H.Z., S.Z., J.Y., H.J., L.L., X.Q., Y.W., M.H., Z.L.); State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China (T.Y.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (M.H.); and Department of Pharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China (C.X.)
| | - Lijun Zhu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China (J.C., L.Z., X.L., H.Z., S.Z., J.Y., H.J., L.L., X.Q., Y.W., M.H., Z.L.); State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China (T.Y.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (M.H.); and Department of Pharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China (C.X.)
| | - Xiaoyan Li
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China (J.C., L.Z., X.L., H.Z., S.Z., J.Y., H.J., L.L., X.Q., Y.W., M.H., Z.L.); State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China (T.Y.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (M.H.); and Department of Pharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China (C.X.)
| | - Haihui Zheng
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China (J.C., L.Z., X.L., H.Z., S.Z., J.Y., H.J., L.L., X.Q., Y.W., M.H., Z.L.); State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China (T.Y.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (M.H.); and Department of Pharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China (C.X.)
| | - Tongmeng Yan
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China (J.C., L.Z., X.L., H.Z., S.Z., J.Y., H.J., L.L., X.Q., Y.W., M.H., Z.L.); State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China (T.Y.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (M.H.); and Department of Pharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China (C.X.)
| | - Cong Xie
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China (J.C., L.Z., X.L., H.Z., S.Z., J.Y., H.J., L.L., X.Q., Y.W., M.H., Z.L.); State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China (T.Y.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (M.H.); and Department of Pharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China (C.X.)
| | - Sijing Zeng
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China (J.C., L.Z., X.L., H.Z., S.Z., J.Y., H.J., L.L., X.Q., Y.W., M.H., Z.L.); State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China (T.Y.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (M.H.); and Department of Pharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China (C.X.)
| | - Jia Yu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China (J.C., L.Z., X.L., H.Z., S.Z., J.Y., H.J., L.L., X.Q., Y.W., M.H., Z.L.); State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China (T.Y.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (M.H.); and Department of Pharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China (C.X.)
| | - Huangyu Jiang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China (J.C., L.Z., X.L., H.Z., S.Z., J.Y., H.J., L.L., X.Q., Y.W., M.H., Z.L.); State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China (T.Y.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (M.H.); and Department of Pharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China (C.X.)
| | - Linlin Lu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China (J.C., L.Z., X.L., H.Z., S.Z., J.Y., H.J., L.L., X.Q., Y.W., M.H., Z.L.); State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China (T.Y.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (M.H.); and Department of Pharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China (C.X.)
| | - Xiaoxiao Qi
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China (J.C., L.Z., X.L., H.Z., S.Z., J.Y., H.J., L.L., X.Q., Y.W., M.H., Z.L.); State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China (T.Y.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (M.H.); and Department of Pharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China (C.X.)
| | - Ying Wang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China (J.C., L.Z., X.L., H.Z., S.Z., J.Y., H.J., L.L., X.Q., Y.W., M.H., Z.L.); State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China (T.Y.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (M.H.); and Department of Pharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China (C.X.)
| | - Ming Hu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China (J.C., L.Z., X.L., H.Z., S.Z., J.Y., H.J., L.L., X.Q., Y.W., M.H., Z.L.); State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China (T.Y.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (M.H.); and Department of Pharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China (C.X.)
| | - Zhongqiu Liu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China (J.C., L.Z., X.L., H.Z., S.Z., J.Y., H.J., L.L., X.Q., Y.W., M.H., Z.L.); State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China (T.Y.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (M.H.); and Department of Pharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China (C.X.)
| |
Collapse
|
13
|
Rioux N, Duncan KW, Lantz RJ, Miao X, Chan-Penebre E, Moyer MP, Munchhof MJ, Copeland RA, Chesworth R, Waters NJ. Species differences in metabolism of EPZ015666, an oxetane-containing protein arginine methyltransferase-5 (PRMT5) inhibitor. Xenobiotica 2016; 46:268-77. [PMID: 26294260 DOI: 10.3109/00498254.2015.1072253] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
1. Metabolite profiling and identification studies were conducted to understand the cross-species differences in the metabolic clearance of EPZ015666, a first-in-class protein arginine methyltransferase-5 (PRMT5) inhibitor, with anti-proliferative effects in preclinical models of Mantle Cell Lymphoma. EPZ015666 exhibited low clearance in human, mouse and rat liver microsomes, in part by introduction of a 3-substituted oxetane ring on the molecule. In contrast, a higher clearance was observed in dog liver microsomes (DLM) that translated to a higher in vivo clearance in dog compared with rodent. 2. Structure elucidation via high resolution, accurate mass LC-MS(n) revealed that the prominent metabolites of EPZ015666 were present in hepatocytes from all species, with the highest turnover rate in dogs. M1 and M2 resulted from oxidative oxetane ring scission, whereas M3 resulted from loss of the oxetane ring via an N-dealkylation reaction. 3. The formation of M1 and M2 in DLM was significantly abrogated in the presence of the specific CYP2D inhibitor, quinidine, and to a lesser extent by the CYP3A inhibitor, ketoconazole, corroborating data from human recombinant isozymes. 4. Our data indicate a marked species difference in the metabolism of the PRMT5 inhibitor EPZ015666, with oxetane ring scission the predominant metabolic pathway in dog mediated largely by CYP2D.
Collapse
|
14
|
de Vries EM, Lammers LA, Achterbergh R, Klümpen HJ, Mathot RAA, Boelen A, Romijn JA. Fasting-Induced Changes in Hepatic P450 Mediated Drug Metabolism Are Largely Independent of the Constitutive Androstane Receptor CAR. PLoS One 2016; 11:e0159552. [PMID: 27434302 PMCID: PMC4951123 DOI: 10.1371/journal.pone.0159552] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 07/04/2016] [Indexed: 12/25/2022] Open
Abstract
Introduction Hepatic drug metabolism by cytochrome P450 enzymes is altered by the nutritional status of patients. The expression of P450 enzymes is partly regulated by the constitutive androstane receptor (CAR). Fasting regulates the expression of both P450 enzymes and CAR and affects hepatic drug clearance. We hypothesized that the fasting-induced alterations in P450 mediated drug clearance are mediated by CAR. Methods To investigate this we used a drug cocktail validated in humans consisting of five widely prescribed drugs as probes for specific P450 enzymes: caffeine (CYP1A2), metoprolol (CYP2D6), omeprazole (CYP2C19), midazolam (CYP3A4) and s-warfarin (CYP2C9). This cocktail was administered to wild type (WT, C57Bl/6) mice or mice deficient for CAR (CAR-/-) that were either fed ad libitum or fasted for 24 hours. Blood was sampled at predefined intervals and drug concentrations were measured as well as hepatic mRNA expression of homologous/orthologous P450 enzymes (Cyp1a2, Cyp2d22, Cyp3a11, Cyp2c37, Cyp2c38 and Cyp2c65). Results Fasting decreased Cyp1a2 and Cyp2d22 expression and increased Cyp3a11 and Cyp2c38 expression in both WT and CAR-/- mice. The decrease in Cyp1a2 was diminished in CAR-/- in comparison with WT mice. Basal Cyp2c37 expression was lower in CAR-/- compared to WT mice. Fasting decreased the clearance of all drugs tested in both WT and CAR-/- mice. The absence of CAR was associated with an decrease in the clearance of omeprazole, metoprolol and midazolam in fed mice. The fasting-induced reduction in clearance of s-warfarin was greater in WT than in CAR-/-. The changes in drug clearance correlated with the expression pattern of the specific P450 enzymes in case of Cyp1a2-caffeine and Cyp2c37-omeprazole. Conclusion We conclude that CAR is important for hepatic clearance of several widely prescribed drugs metabolized by P450 enzymes. However the fasting-induced alterations in P450 mediated drug clearance are largely independent of CAR.
Collapse
Affiliation(s)
- E. M. de Vries
- Department of Medicine, Academic Medical Center, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands
- * E-mail:
| | - L. A. Lammers
- Department of Hospital Pharmacy, Academic Medical Center, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands
| | - R. Achterbergh
- Department of Medical Oncology, Academic Medical Center, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands
| | - H-J Klümpen
- Department of Medical Oncology, Academic Medical Center, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands
| | - R. A. A. Mathot
- Department of Hospital Pharmacy, Academic Medical Center, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands
| | - A. Boelen
- Department of Endocrinology and Metabolism, Academic Medical Center, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands
| | - J. A. Romijn
- Department of Medicine, Academic Medical Center, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands
| |
Collapse
|
15
|
Schwen LO, Homeyer A, Schwier M, Dahmen U, Dirsch O, Schenk A, Kuepfer L, Preusser T, Schenk A. Zonated quantification of steatosis in an entire mouse liver. Comput Biol Med 2016; 73:108-18. [PMID: 27104496 DOI: 10.1016/j.compbiomed.2016.04.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/06/2016] [Accepted: 04/09/2016] [Indexed: 12/16/2022]
Abstract
Many physiological processes and pathological conditions in livers are spatially heterogeneous, forming patterns at the lobular length scale or varying across the organ. Steatosis, a common liver disease characterized by lipids accumulating in hepatocytes, exhibits heterogeneity at both these spatial scales. The main goal of the present study was to provide a method for zonated quantification of the steatosis patterns found in an entire mouse liver. As an example application, the results were employed in a pharmacokinetics simulation. For the analysis, an automatic detection of the lipid vacuoles was used in multiple slides of histological serial sections covering an entire mouse liver. Lobuli were determined semi-automatically and zones were defined within the lobuli. Subsequently, the lipid content of each zone was computed. The steatosis patterns were found to be predominantly periportal, with a notable organ-scale heterogeneity. The analysis provides a quantitative description of the extent of steatosis in unprecedented detail. The resulting steatosis patterns were successfully used as a perturbation to the liver as part of an exemplary whole-body pharmacokinetics simulation for the antitussive drug dextromethorphan. The zonated quantification is also applicable to other pathological conditions that can be detected in histological images. Besides being a descriptive research tool, this quantification could perspectively complement diagnosis based on visual assessment of histological images.
Collapse
Affiliation(s)
- Lars Ole Schwen
- Fraunhofer MEVIS, Universitätsallee 29, 28359 Bremen, Germany.
| | - André Homeyer
- Fraunhofer MEVIS, Universitätsallee 29, 28359 Bremen, Germany.
| | - Michael Schwier
- Fraunhofer MEVIS, Universitätsallee 29, 28359 Bremen, Germany; Jacobs University, Campus Ring 1, 28759 Bremen, Germany.
| | - Uta Dahmen
- Experimental Transplantation Surgery, Department of General, Visceral and Vascular Surgery, University Hospital Jena, Drackendorfer Str. 1, 07747 Jena, Germany.
| | - Olaf Dirsch
- Institute of Pathology, Klinikum Chemitz, Flemmingstraße 2, 09116 Chemnitz, Germany.
| | - Arne Schenk
- Computational Systems Biology, Bayer Technology Services, Kaiser-Wilhelm-Allee 1, 51368 Leverkusen, Germany; Aachen Institute for Advanced Study in Computational Engineering Sciences, RWTH Aachen University, Schinkelstr. 2, 52062 Aachen, Germany.
| | - Lars Kuepfer
- Computational Systems Biology, Bayer Technology Services, Kaiser-Wilhelm-Allee 1, 51368 Leverkusen, Germany; Institute of Applied Microbiology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany.
| | - Tobias Preusser
- Fraunhofer MEVIS, Universitätsallee 29, 28359 Bremen, Germany; Jacobs University, Campus Ring 1, 28759 Bremen, Germany.
| | - Andrea Schenk
- Fraunhofer MEVIS, Universitätsallee 29, 28359 Bremen, Germany.
| |
Collapse
|
16
|
Thiel C, Schneckener S, Krauss M, Ghallab A, Hofmann U, Kanacher T, Zellmer S, Gebhardt R, Hengstler JG, Kuepfer L. A Systematic Evaluation of the Use of Physiologically Based Pharmacokinetic Modeling for Cross-Species Extrapolation. J Pharm Sci 2015; 104:191-206. [DOI: 10.1002/jps.24214] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 09/22/2014] [Accepted: 09/22/2014] [Indexed: 01/06/2023]
|
17
|
Repression of multiple CYP2D genes in mouse primary hepatocytes with a single siRNA construct. In Vitro Cell Dev Biol Anim 2014; 51:9-14. [PMID: 25124873 DOI: 10.1007/s11626-014-9803-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 07/22/2014] [Indexed: 10/24/2022]
Abstract
The Cyp2d subfamily is the second most abun-dant subfamily of hepatic drug-metabolizing CYPs. In mice, there are nine Cyp2d members that are believed to have redundant catalytic activity. We are testing and optimizing the ability of one short interfering RNA (siRNA) construct to knockdown the expression of multiple mouse Cyp2ds in primary hepatocytes. Expression of Cyp2d10, Cyp2d11, Cyp2d22, and Cyp2d26 was observed in the primary male mouse hepatocytes. Cyp2d9, which is male-specific and growth hormone-dependent, was not expressed in male primary hepatocytes, potentially because of its dependence on pulsatile growth hormone release from the anterior pituitary. Several different siRNAs at different concentrations and with different reagents were used to knockdown Cyp2d expression. siRNA constructs designed to repress only one construct often mildly repressed several Cyp2d isoforms. A construct designed to knockdown every Cyp2d isoform provided the best results, especially when incubated with transfection reagents designed specifically for primary cell culture. Interestingly, a construct designed to knockdown all Cyp2d isoforms, except Cyp2d10, caused a 2.5× increase in Cyp2d10 expression, presumably because of a compensatory response. However, while RNA expression is repressed 24 h after siRNA treatment, associated changes in Cyp2d-mediated metabolism are tenuous. Overall, this study provides data on the expression of murine Cyp2ds in primary cell lines, valuable information on designing siRNAs for silencing multiple murine CYPs, and potential pros and cons of using siRNA as a tool for repressing Cyp2d and estimating Cyp2d's role in murine xenobiotic metabolism.
Collapse
|
18
|
Ehser J, Holdener M, Christen S, Bayer M, Pfeilschifter JM, Hintermann E, Bogdanos D, Christen U. Molecular mimicry rather than identity breaks T-cell tolerance in the CYP2D6 mouse model for human autoimmune hepatitis. J Autoimmun 2012. [PMID: 23200317 DOI: 10.1016/j.jaut.2012.11.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In our novel mouse model for autoimmune hepatitis (AIH), wildtype FVB mice infected with an Adenovirus (Ad) expressing the major AIH autoantigen human cytochrome P450 2D6 (hCYP2D6) show persistent histological and immunological features associated with AIH, including the generation of anti-hCYP2D6 antibodies with an epitope specificity identical to LKM-1 autoantibodies in AIH-patients. Since FVB mice do not express hCYP2D6, the immune response was directed against mouse CYP (mCYP) homologues. Additional expression of hCYP2D6 in transgenic mice resulted in amelioration of the liver disease. In the present study we used the CYP2D6 model to assess why tolerance breakdown and induction of autoimmune liver disease is more efficient if the triggering antigen is similar but not identical to the target autoantigen. We found that in contrast to the specificity and magnitude of anti-hCYP2D6 antibody responses, T-cell responses differ profoundly between wildtype and transgenic mice. Detailed T-cell epitope mapping studies show a robust, antigen-specific T-cell reactivity in FVB mice largely directed against one CD4 and three CD8 epitopes, activating a total of approximately 1% CD4 and 10% CD8 T-cells, respectively, while infected hCYP2D6 mice generated almost no hCYP2D6-specific T-cells. The frequency of hCYP2D6-specific T-cells was approximately 3-fold higher in the liver compared with the spleen. Amino acid sequence comparison revealed that the immunodominant epitopes were located in hCYP2D6-segments of intermediate homology between hCYP2D6 and its mCYP homologues. Our data indicate that self/non-self molecular mimicry, rather than molecular identity, is a prerequisite for breaking T-cell tolerance in the liver.
Collapse
Affiliation(s)
- Janine Ehser
- Pharmazentrum Frankfurt/ZAFES, Klinikum der Johann Wolfgang Goethe Universität, Theodor-Stern Kai 7, 60590 Frankfurt am Main, Germany
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Liu SP, Li YS, Lee CM, Yen CH, Liao YJ, Huang SF, Chien CH, Chen YMA. Higher susceptibility to aflatoxin B(1)-related hepatocellular carcinoma in glycine N-methyltransferase knockout mice. Int J Cancer 2011; 128:511-23. [PMID: 20473876 DOI: 10.1002/ijc.25386] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In both humans and rodents, males are known to be more susceptible than females to hepatocarcinogenesis. We have previously reported that glycine N-methyltransferase (GNMT) interacts with aflatoxin B(1) (AFB(1)) and reduces both AFB(1)-DNA adduct formation and hepatocellular carcinoma (HCC) in mice. We also reported that 50% of the males and 100% of the females in a small group of Gnmt null (Gnmt-/-) mice developed HCC, with first dysplastic hepatocellular nodules detected at mean ages of 17 and 16.5 months, respectively. In our study, we tested our hypothesis that male and female Gnmt-/- mice are susceptible to AFB(1) carcinogenesis, and that the absence of Gnmt expression may accelerate AFB(1)-induced liver tumorigenesis. We inoculated Gnmt-/- and wild-type mice intraperitoneally with AFB(1) at 7 days and 9 weeks of age and periodically examined them using ultrasound. Dysplastic hepatocellular nodules were detected in six of eight males and five of five females at 12.7 and 12 months of ages, respectively. Dysplastic hepatocellular nodules from 5/8 (62.5%) male and 4/5 (80%) female Gnmt-/- mice were diagnosed as having HCC, ∼6 months earlier than AFB(1)-treated wild-type mice. Results from microarray and real-time PCR analyses indicate that five detoxification pathway-related genes were downregulated in AFB(1)-treated Gnmt-/- mice: Cyp1a2, Cyp3a44, Cyp2d22, Gsta4 and Abca8a. In summary, we observed overall higher susceptibility to AFB(1)-related HCC in Gnmt-/- mice, further evidence that GNMT overexpression is an important contributing factor to liver cancer resistance.
Collapse
Affiliation(s)
- Shih-Ping Liu
- AIDS Prevention and Research Center, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Cytochrome P450 2D6 (CYP2D6) has been identified as the major autoantigen in type 2 autoimmune hepatitis (AIH). However, because of a lack of appropriate animal models, the etiology of AIH is still poorly understood. We generated a mouse model for AIH using the human CYP2D6 as a triggering molecule for autoimmunity. We infected wild-type FVB mice with an adenovirus expressing human CYP2D6 (Ad-2D6) to break self-tolerance to the mouse CYP2D6 homologues. Ad-2D6-infected mice showed persistent features of liver damage including hepatic fibrosis, cellular infiltrations, focal-to-confluent necrosis and generation of anti-CYP2D6 antibodies, which predominantly recognized the identical immunodominant epitope recognized by LKM-1 antibodies from AIH patients. Interestingly, Ad-2D6 infection of transgenic mice expressing the human CYP2D6 (CYP2D6 mice) resulted in delayed kinetics and reduced severity of liver damage. However, the quantity and quality of anti-CYP2D6 antibodies was only moderately reduced in CYP2D6 mice. In contrast, the frequency of CYP2D6-specific CD4 and CD8 T cells was dramatically decreased in CYP2D6 mice, indicating the presence of a strong T cell tolerance to human CYP2D6 established in CYP2D6 mice, but not in wild-type mice. CYP2D6-specific T cells reacted to human CYP2D6 peptides with intermediate homology to the mouse homologues, but not to those with high homology, indicating that molecular mimicry rather than molecular identity breaks tolerance and subsequently causes severe persistent autoimmune liver damage. The CYP2D6 model provides a platform to investigate mechanisms involved in the immunopathogenesis of autoimmune-mediated chronic hepatic injury and evaluate possible ways of therapeutic interference.
Collapse
Affiliation(s)
- Urs Christen
- *Urs Christen, PhD, Pharmazentrum Frankfurt, Klinikum der Goethe-Universität Frankfurt am Main, Theodor-Stern-Kai 7, DE–60590 Frankfurt am Main (Germany), Tel. +49 69 6301 83105, Fax +49 69 6301 7663, E-Mail
| | | | | |
Collapse
|
21
|
Singh S, Singh K, Patel DK, Singh C, Nath C, Singh VK, Singh RK, Singh MP. The expression of CYP2D22, an ortholog of human CYP2D6, in mouse striatum and its modulation in 1-methyl 4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinson's disease phenotype and nicotine-mediated neuroprotection. Rejuvenation Res 2009; 12:185-97. [PMID: 19594327 DOI: 10.1089/rej.2009.0850] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The main contributory factors of Parkinson's disease (PD) are aging, genetic factors, and environmental exposure to pesticides and heavy metals. CYP2D22, a mouse ortholog of human CYP2D6, is expected to participate in a chemically induced PD phenotype due to its structural resemblance with CYP2D6. Despite its expected participation in PD, its expression in the nigrostriatal tissues and modulation by the chemicals that induce PD or offer neuroprotection have not yet been investigated. The present study was undertaken to investigate CYP2D22 expression in mouse striatum and to assess its involvement in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD phenotype and nicotine-mediated neuroprotection. The animals were treated intraperitoneally daily with nicotine (1 mg/kg) for 8 weeks, followed by MPTP (20 mg/kg) + nicotine (1 mg/kg) for 2-4 weeks and vice versa, along with respective controls. In some sets of experiments, the animals were treated with ketoconazole (300 mg/kg), a CYP3AH/CYP2D22 inhibitor, along with nicotine and/or MPTP. Tyrosine hydroxylase (TH)-immunoreactivity in the substantia nigra, the expression of nicotinic acetylcholine receptors (nAChRs) alpha6 and alpha4, dopamine content, and 1-methyl-4-phenylpyridinium ion (MPP(+)) level in the striatum were measured to confirm the MPTP-induced PD phenotype and nicotine-mediated neuroprotection. CYP2D22 and nAChRs expressions were measured in the striatum by RT-PCR/western blotting and dopamine level; CYP2D22 catalytic activity and MPP(+) content were determined by high-performance liquid chromatography (HPLC). MPTP increased dopaminergic neuronal degeneration and the striatal MPP(+) level and reduced striatal dopamine content; it attenuated expression/activity of CYP2D22 and nAChRs that were significantly restored in nicotine-treated animals. Ketoconazole reduced the nicotine-mediated increase in CYP2D22 expression and activity, dopamine content, and TH-immunoreactivity. The results indicate the expression of CYP2D22 in mouse striatum and its possible role in the MPTP-induced PD phenotype and nicotine-mediated neuroprotection.
Collapse
Affiliation(s)
- Seema Singh
- Indian Institute of Toxicology Research (Council of Scientific and Industrial Research), Lucknow, India
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Chaluvadi MR, Kinloch RD, Nyagode BA, Richardson TA, Raynor MJ, Sherman M, Antonovic L, Strobel HW, Dillehay DL, Morgan ET. Regulation of hepatic cytochrome P450 expression in mice with intestinal or systemic infections of citrobacter rodentium. Drug Metab Dispos 2009; 37:366-74. [PMID: 18971315 PMCID: PMC2631938 DOI: 10.1124/dmd.108.024240] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Accepted: 10/23/2008] [Indexed: 11/22/2022] Open
Abstract
We reported previously that infection of C3H/HeOuJ (HeOu) mice with the murine intestinal pathogen Citrobacter rodentium caused a selective modulation of hepatic cytochrome P450 (P450) gene expression in the liver that was independent of the Toll-like receptor 4. However, HeOu mice are much more sensitive to the pathogenic effects of C. rodentium infection, and the P450 down-regulation was associated with significant morbidity in the animals. Here, we report that oral infection of C57BL/6 mice with C. rodentium, which produced only mild clinical signs and symptoms, produced very similar effects on hepatic P450 expression in this strain. As in HeOu mice, CYP4A mRNAs and proteins were among the most sensitive to down-regulation, whereas CYP4F18 was induced. CYP2D9 mRNA was also induced 8- to 9-fold in the C57BL/6 mice. The time course of P450 regulation followed that of colonic inflammation and bacterial colonization, peaking at 7 to 10 days after infection and returning to normal at 15 to 24 days as the infection resolved. These changes also correlated with the time course of significant elevations in the serum of the proinflammatory cytokines interleukin (IL)-6 and tumor necrosis factor-alpha, as well as of interferon-gamma and IL-2, with serum levels of IL-6 being markedly higher than those of the other cytokines. Intraperitoneal administration of C. rodentium produced a rapid down-regulation of P450 enzymes that was quantitatively and qualitatively different from that of oral infection, although CYP2D9 was induced in both models, suggesting that the effects of oral infection on the liver are not due to bacterial translocation.
Collapse
Affiliation(s)
- Madhusudana R Chaluvadi
- Department of Pharmacology, Emory University School of Medicine, 5119 Rollins Research Center, 1510 Clifton Road, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Martignoni M, Groothuis GMM, de Kanter R. Species differences between mouse, rat, dog, monkey and human CYP-mediated drug metabolism, inhibition and induction. Expert Opin Drug Metab Toxicol 2007; 2:875-94. [PMID: 17125407 DOI: 10.1517/17425255.2.6.875] [Citation(s) in RCA: 1039] [Impact Index Per Article: 57.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Animal models are commonly used in the preclinical development of new drugs to predict the metabolic behaviour of new compounds in humans. It is, however, important to realise that humans differ from animals with regards to isoform composition, expression and catalytic activities of drug-metabolising enzymes. In this review the authors describe similarities and differences in this respect among the different species, including man. This may be helpful for drug researchers to choose the most relevant animal species in which the metabolism of a compound can be studied for extrapolating the results to humans. The authors focus on CYPs, which are the main enzymes involved in numerous oxidative reactions and often play a critical role in the metabolism and pharmacokinetics of xenobiotics. In addition, induction and inhibition of CYPs are compared among species. The authors conclude that CYP2E1 shows no large differences between species, and extrapolation between species appears to hold quite well. In contrast, the species-specific isoforms of CYP1A, -2C, -2D and -3A show appreciable interspecies differences in terms of catalytic activity and some caution should be applied when extrapolating metabolism data from animal models to humans.
Collapse
Affiliation(s)
- Marcella Martignoni
- Nerviano Medical Sciences, Preclinical Development, Viale Pasteur 10, Nerviano (MI), Italy.
| | | | | |
Collapse
|
24
|
Bhave SV, Hoffman PL, Lassen N, Vasiliou V, Saba L, Deitrich RA, Tabakoff B. Gene array profiles of alcohol and aldehyde metabolizing enzymes in brains of C57BL/6 and DBA/2 mice. Alcohol Clin Exp Res 2006; 30:1659-69. [PMID: 17010133 DOI: 10.1111/j.1530-0277.2006.00201.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Differences in ethanol metabolizing enzymes expressed in brain have been suggested to contribute to the significant differences in ethanol (alcohol) preference between inbred C57BL/6 and DBA/2 mouse strains. METHODS We have utilized 2 different platforms of oligonucleotide microarray technology (CodeLink UniSet I BioArray from G.E. Healthcare and MG U74A v2.0 from Affymetrix) to simultaneously assess expression of alcohol and acetaldehyde metabolizing enzymes in the whole brain of naïve (no exposure to alcohol) C57BL/6 and DBA/2 mice. RESULTS There were no significant differences between the 2 strains of mice in gene expression intensity for alcohol dehydrogenases (ADH), catalase, and a number of the cytochrome P450 family of genes, which can be involved in ethanol catabolism. However, significantly higher expression of mRNA for aldehyde dehydrogenase 2 (ALDH2), an isoform mainly responsible for the catabolism of acetaldehyde, was observed in whole brains of DBA/2 mice with both platforms. Aldehyde dehydrogenase 2 protein was also higher in DBA/2 brain. Expression of aldehyde dehydrogenase 1A1 (ALDH1A1) mRNA was found to be higher in brains of DBA/2 mice, when measured with the CodeLink platform, but not when measured with Affymetrix arrays or quantitative reverse transcriptase-real-time polymerase chain reaction (qRT-PCR). The ALDH1A1 protein, however, reflected the results obtained with the CodeLink arrays and was higher in DBA/2 brain, compared with brains of C57BL/6 mice. In contrast, the expression intensity for the aldehyde dehydrogenase 7A1 (ALDH7A1) mRNA and protein was significantly higher in C57BL/6 mice than DBA/2 mice. These expression differences are consistent with more rapid metabolism of acetaldehyde in brains of DBA/2 mice. CONCLUSIONS The use of 2 different microarray platforms provides important cross-validation of many results, and some discrepancies can be resolved with qRT-PCR and immunoblotting. The expression differences that were validated may affect alcohol/aldehyde metabolism in brain and/or alcohol preference in the 2 strains of mice.
Collapse
Affiliation(s)
- Sanjiv V Bhave
- Department of Pharmacology, University of Colorado at Denver and Health Sciences Center, Aurora, Colorado 80045-0511, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Metabolism of the prototype human CYP2D6 substrates debrisoquine and bufuralol proceeds at a much slower rate in mice; therefore, the mouse has been proposed as an animal model for the human CYP2D6 genetic deficiency. To interpret the molecular mechanism of this deficiency, a cDNA belonging to the CYP2D gene subfamily (Cyp2d22) has been cloned and sequenced from a mouse mammary tumor-derived cell line. In the current study, Cyp2d22 enzyme was overexpressed and purified from insect cells using a baculovirus-mediated system. The activity of this purified enzyme was directly compared with purified human CYP2D6 toward codeine, dextromethorphan, and methadone as substrates. Purified Cyp2d22 was found to catalyze the O-demethylation of dextromethorphan with significantly higher K(m) values (250 microM) than that (4.2 microM) exhibited by purified human CYP2D6. The K(m) for dextromethorphan N-demethylation by Cyp2d22 was found to be 418 microM, much lower than that observed with human CYP2D6 and near the K(m) for dextromethorphan N-demethylation catalyzed by CYP3A4. CYP2D6 catalyzed codeine O-demethylation, whereas Cyp2d22 and CYP3A4 mediated codeine N-demethylation. Furthermore, methadone, a known CYP3A4 substrate and CYP2D6 inhibitor, was N-demethylated by Cyp2d22 with a K(m) of 517 microM and V(max) of 4.9 pmol/pmol/min. Quinidine and ketoconazole, potent inhibitors to CYP2D6 and CYP3A4, respectively, did not show strong inhibition toward Cyp2d22-mediated dextromethorphan O- or N-demethylation. These results suggest that mouse Cyp2d22 has its own substrate specificity beyond CYP2D6-like-deficient activity.
Collapse
Affiliation(s)
- Ai-Ming Yu
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV 26506-9530, USA
| | | |
Collapse
|
26
|
Miksys SL, Cheung C, Gonzalez FJ, Tyndale RF. Human CYP2D6 and mouse CYP2Ds: organ distribution in a humanized mouse model. Drug Metab Dispos 2005; 33:1495-502. [PMID: 16033950 DOI: 10.1124/dmd.105.005488] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Polymorphic cytochrome P450 (P450) 2D6 (CYP2D6) metabolizes several classes of therapeutic drugs, endogenous neurochemicals, and toxins. A CYP2D6-humanized transgenic mouse line was previously developed to model CYP2D6-poor and -extensive metabolizer phenotypes. Human CYP2D6 was detected in the liver, kidney, and intestine of these animals. In this study, we investigated further the cellular expression and relative tissue levels of human CYP2D6 in these transgenic mice in liver, intestine, kidney, and brain. In addition, we compared this with the expression of mouse CYP2D enzymes in these organs. In humans, these organs are of interest with respect to P450-mediated drug metabolism, toxicity, and disease. The expression of human CYP2D6 and mouse CYP2D enzymes in humanized and wild-type mice was quantified by immunoblotting and detected at the cellular level by immunocytochemistry. The cell-specific expression of human CYP2D6 in liver, kidney, and intestine in humanized mice was similar to that reported in humans. The expression patterns of mouse CYP2D proteins were similar to those in humans in liver and kidney but substantially different in intestine. Human CYP2D6 was not detected in brain of transgenic mice. Mouse CYP2D proteins were detected in brain, allowing, for the first time, a direct comparison of CYP2D expression among mouse, rat, and human brain. This transgenic mouse model is useful for investigating CYP2D6-mediated metabolism in liver, kidney, and especially the intestine, where expression patterns demonstrated substantial species differences.
Collapse
Affiliation(s)
- Sharon L Miksys
- Department of Pharmacology, 1 King's College Circle, Toronto, ON, Canada, M5S 1A8.
| | | | | | | |
Collapse
|
27
|
Johnson EA, O'Callaghan JP, Miller DB. Brain concentrations of d-MDMA are increased after stress. Psychopharmacology (Berl) 2004; 173:278-86. [PMID: 14735292 DOI: 10.1007/s00213-003-1740-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2003] [Accepted: 11/26/2003] [Indexed: 11/24/2022]
Abstract
RATIONALE In the mouse but not the rat, d-3,4-methylenedioxymethamphetamine (d-MDMA) is a dopaminergic neurotoxicant. Various stressors and hypothermia protect against d-MDMA-induced neurotoxicity through unknown mechanisms, one of which could be a reduction in the distribution of d-MDMA to the brain. OBJECTIVES We determined striatal levels of d-MDMA in relation to body temperature in mice exposed to a neurotoxic regimen of d-MDMA in the presence or absence of various stressors. METHODS Female C57BL6/J mice received a neurotoxic regimen of d-MDMA (15.0 mg/kg s.c. as the base every 2 hx4) alone or in combination with manipulations with a known neuroprotective status. d-MDMA levels were determined by HPLC with fluorometric detection while rectal temperature provided core temperature status. Levels of dopamine, tyrosine hydroxylase and GFAP were used to assess neurotoxicity. RESULTS Restraint, ethanol co-treatment and cold stress were neuroprotective, caused hypothermia and increased striatal d-MDMA levels by 4- to 7-fold. Corticosterone treatment, as a stress mimic, did not alter striatal d-MDMA or temperature and was not protective. The protective glutamate receptor antagonist, MK-801, doubled striatal d-MDMA levels and caused hypothermia. CONCLUSIONS Although stress and other protective manipulations can alter the striatal concentration of d-MDMA their hypothermia-inducing properties appear a more likely determinant of their neuroprotection against the striatal dopaminergic neurotoxicity of d-MDMA.
Collapse
Affiliation(s)
- Elizabeth Anne Johnson
- Chronic Stress Laboratory, Toxicology and Molecular Biology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health/Centers for Disease Control, 1095 Willowdale Road, Morgantown, VA 26505, USA.
| | | | | |
Collapse
|
28
|
Nagar S, Remmel RP, Hebbel RP, Zimmerman CL. Metabolism of opioids is altered in liver microsomes of sickle cell transgenic mice. Drug Metab Dispos 2004; 32:98-104. [PMID: 14709626 DOI: 10.1124/dmd.32.1.98] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Pain in sickle cell anemia (SCA) is clinically managed with opioid analgesics. There are reports that SCA patients tolerate high doses of these drugs without adequate pain relief. The current study investigated the in vitro hepatic metabolism of opioids in mouse models of sickle cell anemia, with the hypothesis that higher dose requirements in SCA could be explained by an increased metabolism rate of opioids. Various rodent cytochrome P450 substrates, i.e., buprenorphine and codeine, and rodent uridine glucuronosyltransferase substrates, i.e., morphine, buprenorphine, and estradiol, were studied. The three groups used were: 1) control C57BL mice, 2) mice with the human alpha-globin and sickle beta-globin transgenes (SC), and 3) mice with the human alpha-globin and sickle beta-globin transgenes, and homozygous for the murine alpha-globin and heterozygous for the beta(major)-gene knockout (SCKO). In vitro hepatic microsomal incubations were carried out for each substrate, and data were fit to the Michaelis-Menten equation. Morphine formation had a higher V(max) in SCKO microsomes (0.4 +/- 0.009 nmol/min. mg; estimate +/- S.E.) than controls (0.25 +/- 0.007). Morphine-3-glucuronide formation had V(max) estimates of 18.9 +/- 0.6, 25.1 +/- 0.4, and 27.06 +/- 1.1 nmol/min. mg in control, SC, and SCKO microsomes, respectively. The control V(max) for estradiol-3-glucuronide formation was 2-fold greater than in SCKO microsomes. The control V(max) for estradiol 17-glucuronide formation was 3.4- and 2.2-fold greater than in SC and SCKO microsomes. Thus, in vitro metabolism of opioids is altered in SCA mouse models, which may lead to altered clearances of these drugs.
Collapse
Affiliation(s)
- Swati Nagar
- Department of Pharmaceutics, University of Minnesota, 308 Harvard St. S.E, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
29
|
Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF, Agarwal P, Agarwala R, Ainscough R, Alexandersson M, An P, Antonarakis SE, Attwood J, Baertsch R, Bailey J, Barlow K, Beck S, Berry E, Birren B, Bloom T, Bork P, Botcherby M, Bray N, Brent MR, Brown DG, Brown SD, Bult C, Burton J, Butler J, Campbell RD, Carninci P, Cawley S, Chiaromonte F, Chinwalla AT, Church DM, Clamp M, Clee C, Collins FS, Cook LL, Copley RR, Coulson A, Couronne O, Cuff J, Curwen V, Cutts T, Daly M, David R, Davies J, Delehaunty KD, Deri J, Dermitzakis ET, Dewey C, Dickens NJ, Diekhans M, Dodge S, Dubchak I, Dunn DM, Eddy SR, Elnitski L, Emes RD, Eswara P, Eyras E, Felsenfeld A, Fewell GA, Flicek P, Foley K, Frankel WN, Fulton LA, Fulton RS, Furey TS, Gage D, Gibbs RA, Glusman G, Gnerre S, Goldman N, Goodstadt L, Grafham D, Graves TA, Green ED, Gregory S, Guigó R, Guyer M, Hardison RC, Haussler D, Hayashizaki Y, Hillier LW, Hinrichs A, Hlavina W, Holzer T, Hsu F, Hua A, Hubbard T, Hunt A, Jackson I, Jaffe DB, Johnson LS, Jones M, Jones TA, Joy A, Kamal M, Karlsson EK, et alWaterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF, Agarwal P, Agarwala R, Ainscough R, Alexandersson M, An P, Antonarakis SE, Attwood J, Baertsch R, Bailey J, Barlow K, Beck S, Berry E, Birren B, Bloom T, Bork P, Botcherby M, Bray N, Brent MR, Brown DG, Brown SD, Bult C, Burton J, Butler J, Campbell RD, Carninci P, Cawley S, Chiaromonte F, Chinwalla AT, Church DM, Clamp M, Clee C, Collins FS, Cook LL, Copley RR, Coulson A, Couronne O, Cuff J, Curwen V, Cutts T, Daly M, David R, Davies J, Delehaunty KD, Deri J, Dermitzakis ET, Dewey C, Dickens NJ, Diekhans M, Dodge S, Dubchak I, Dunn DM, Eddy SR, Elnitski L, Emes RD, Eswara P, Eyras E, Felsenfeld A, Fewell GA, Flicek P, Foley K, Frankel WN, Fulton LA, Fulton RS, Furey TS, Gage D, Gibbs RA, Glusman G, Gnerre S, Goldman N, Goodstadt L, Grafham D, Graves TA, Green ED, Gregory S, Guigó R, Guyer M, Hardison RC, Haussler D, Hayashizaki Y, Hillier LW, Hinrichs A, Hlavina W, Holzer T, Hsu F, Hua A, Hubbard T, Hunt A, Jackson I, Jaffe DB, Johnson LS, Jones M, Jones TA, Joy A, Kamal M, Karlsson EK, Karolchik D, Kasprzyk A, Kawai J, Keibler E, Kells C, Kent WJ, Kirby A, Kolbe DL, Korf I, Kucherlapati RS, Kulbokas EJ, Kulp D, Landers T, Leger JP, Leonard S, Letunic I, Levine R, Li J, Li M, Lloyd C, Lucas S, Ma B, Maglott DR, Mardis ER, Matthews L, Mauceli E, Mayer JH, McCarthy M, McCombie WR, McLaren S, McLay K, McPherson JD, Meldrim J, Meredith B, Mesirov JP, Miller W, Miner TL, Mongin E, Montgomery KT, Morgan M, Mott R, Mullikin JC, Muzny DM, Nash WE, Nelson JO, Nhan MN, Nicol R, Ning Z, Nusbaum C, O'Connor MJ, Okazaki Y, Oliver K, Overton-Larty E, Pachter L, Parra G, Pepin KH, Peterson J, Pevzner P, Plumb R, Pohl CS, Poliakov A, Ponce TC, Ponting CP, Potter S, Quail M, Reymond A, Roe BA, Roskin KM, Rubin EM, Rust AG, Santos R, Sapojnikov V, Schultz B, Schultz J, Schwartz MS, Schwartz S, Scott C, Seaman S, Searle S, Sharpe T, Sheridan A, Shownkeen R, Sims S, Singer JB, Slater G, Smit A, Smith DR, Spencer B, Stabenau A, Stange-Thomann N, Sugnet C, Suyama M, Tesler G, Thompson J, Torrents D, Trevaskis E, Tromp J, Ucla C, Ureta-Vidal A, Vinson JP, Von Niederhausern AC, Wade CM, Wall M, Weber RJ, Weiss RB, Wendl MC, West AP, Wetterstrand K, Wheeler R, Whelan S, Wierzbowski J, Willey D, Williams S, Wilson RK, Winter E, Worley KC, Wyman D, Yang S, Yang SP, Zdobnov EM, Zody MC, Lander ES. Initial sequencing and comparative analysis of the mouse genome. Nature 2002; 420:520-62. [PMID: 12466850 DOI: 10.1038/nature01262] [Show More Authors] [Citation(s) in RCA: 4930] [Impact Index Per Article: 214.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2002] [Accepted: 10/31/2002] [Indexed: 12/18/2022]
Abstract
The sequence of the mouse genome is a key informational tool for understanding the contents of the human genome and a key experimental tool for biomedical research. Here, we report the results of an international collaboration to produce a high-quality draft sequence of the mouse genome. We also present an initial comparative analysis of the mouse and human genomes, describing some of the insights that can be gleaned from the two sequences. We discuss topics including the analysis of the evolutionary forces shaping the size, structure and sequence of the genomes; the conservation of large-scale synteny across most of the genomes; the much lower extent of sequence orthology covering less than half of the genomes; the proportions of the genomes under selection; the number of protein-coding genes; the expansion of gene families related to reproduction and immunity; the evolution of proteins; and the identification of intraspecies polymorphism.
Collapse
MESH Headings
- Animals
- Base Composition
- Chromosomes, Mammalian/genetics
- Conserved Sequence/genetics
- CpG Islands/genetics
- Evolution, Molecular
- Gene Expression Regulation
- Genes/genetics
- Genetic Variation/genetics
- Genome
- Genome, Human
- Genomics
- Humans
- Mice/classification
- Mice/genetics
- Mice, Knockout
- Mice, Transgenic
- Models, Animal
- Multigene Family/genetics
- Mutagenesis
- Neoplasms/genetics
- Physical Chromosome Mapping
- Proteome/genetics
- Pseudogenes/genetics
- Quantitative Trait Loci/genetics
- RNA, Untranslated/genetics
- Repetitive Sequences, Nucleic Acid/genetics
- Selection, Genetic
- Sequence Analysis, DNA
- Sex Chromosomes/genetics
- Species Specificity
- Synteny
Collapse
|