1
|
Shukla S, Dalai P, Agrawal-Rajput R. Metabolic crosstalk: Extracellular ATP and the tumor microenvironment in cancer progression and therapy. Cell Signal 2024; 121:111281. [PMID: 38945420 DOI: 10.1016/j.cellsig.2024.111281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
Adenosine 5'-triphosphate (ATP) is a vital element in energy information. It plays a critical role in transmitting signals inside the body, which is necessary for controlling the life activities of all cells, including tumor cells [1]. Its significance extends from intracellular signaling pathways to tumor regression. Purinergic signaling, a form of extracellular paracrine signaling, relies on purine nucleotides. Extracellular ectonucleotidases convert these purine nucleotides to their respective di and mono-phosphate nucleoside forms, contributing significantly to immune biology, cancer biology, and inflammation studies. ATP functions as a mighty damage-linked molecular pattern when released outside the cell, accumulating in inflammatory areas. In the tumor microenvironment (TME), purinergic receptors such as ATP-gated ion channels P2X1-5 and G protein-coupled receptors (GPCR) (P2Y) interact with ATP and other nucleotides, influencing diverse immune cell activities. CD39 and CD73-mediated extracellular ATP degradation contributes to immunosuppression by diminishing ATP-dependent activation and generating adenosine (ADO), potentially hindering antitumor immunity and promoting tumor development. Unraveling the complexities of extracellular ATP (e-ATP) and ADO effects on the TME poses challenges in identifying optimal treatment targets, yet ongoing investigations aim to devise strategies combating e-ATP/ADO-induced immunosuppression, ultimately enhancing anti-tumor immunity. This review explores e-ATP metabolism, its purinergic signaling, and therapeutic strategies targeting associated receptors and enzymes.
Collapse
Affiliation(s)
- Sourav Shukla
- Immunology Lab, Biotechnology and Bioengineering, Indian Institute of Advanced Research, Gandhinagar 382426, Gujarat, India
| | - Parameswar Dalai
- Immunology Lab, Biotechnology and Bioengineering, Indian Institute of Advanced Research, Gandhinagar 382426, Gujarat, India
| | - Reena Agrawal-Rajput
- Immunology Lab, Biotechnology and Bioengineering, Indian Institute of Advanced Research, Gandhinagar 382426, Gujarat, India.
| |
Collapse
|
2
|
Jacobson KA, Pradhan B, Wen Z, Pramanik A. New paradigms in purinergic receptor ligand discovery. Neuropharmacology 2023; 230:109503. [PMID: 36921890 PMCID: PMC10233512 DOI: 10.1016/j.neuropharm.2023.109503] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/28/2023] [Accepted: 03/11/2023] [Indexed: 03/14/2023]
Abstract
The discovery and clinical implementation of modulators of adenosine, P2Y and P2X receptors (comprising nineteen subtypes) have progressed dramatically in ∼50 years since Burnstock's definition of purinergic signaling. Although most clinical trials of selective ligands (agonists and antagonists) of certain purinergic receptors failed, there is a renewed impetus to redirect efforts to new disease conditions and the discovery of more selective or targeted compounds with potentially reduced side effects, such as biased GPCR agonists. The elucidation of new receptor and enzyme structures is steering rational design of potent and selective agonists, antagonists, allosteric modulators and inhibitors. A2A adenosine receptor (AR) antagonists are being applied to neurodegenerative conditions and cancer immunotherapy. A3AR agonists have potential for treating chronic inflammation (e.g. psoriasis), stroke and pain, as well as cancer. P2YR modulators are being considered for treating inflammation, metabolic disorders, acute kidney injury, cancer, pain and other conditions, often with an immune mechanism. ADP-activated P2Y12R antagonists are widely used as antithrombotic drugs, while their repurposing toward neuroinflammation is considered. P2X3 antagonists have been in clinical trials for chronic cough. P2X7 antagonists have been in clinical trials for inflammatory diseases and depression (compounds that penetrate the blood-brain barrier). Thus, purinergic signaling is now recognized as an immense regulatory system in the body for rebalancing tissues and organs under stress, which can be adjusted by drug intervention for therapeutic purposes. The lack of success of many previous clinical trials can be overcome given more advanced pharmacokinetic and pharmacodynamic approaches, including structure-based drug design, prodrugs and biased signaling. This article is part of the Special Issue on "Purinergic Signaling: 50 years".
Collapse
Affiliation(s)
- Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA.
| | - Balaram Pradhan
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA.
| | - Zhiwei Wen
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA.
| | - Asmita Pramanik
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA.
| |
Collapse
|
3
|
Guo X, Li Q, Pi S, Xia Y, Mao L. G protein-coupled purinergic P2Y receptor oligomerization: Pharmacological changes and dynamic regulation. Biochem Pharmacol 2021; 192:114689. [PMID: 34274353 DOI: 10.1016/j.bcp.2021.114689] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 12/12/2022]
Abstract
P2Y receptors (P2YRs) are a δ group of rhodopsin-like G protein-coupled receptors (GPCRs) with many essential functions in physiology and pathology, such as platelet aggregation, immune responses, neuroprotective effects, inflammation, and cellular proliferation. Thus, they are among the most researched therapeutic targets used for the clinical treatment of diseases (e.g., the antithrombotic drug clopidogrel and the dry eye treatment drug diquafosol). GPCRs transmit signals as dimers to increase the diversity of signalling pathways and pharmacological activities. Many studies have frequently confirmed dimerization between P2YRs and other GPCRs due to their functions in cardiovascular and cerebrovascular processes in vivo and in vitro. Recently, some P2YR dimers that dynamically balance physiological functions in the body were shown to be involved in effective signal transduction and exert pathological responses. In this review, we summarize the types, pharmacological changes, and active regulators of P2YR-related dimerization, and delineate new functions and pharmacological activities of P2YR-related dimers, which may be a novel direction to improve the effectiveness of medications.
Collapse
Affiliation(s)
- Xiaoqing Guo
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qin Li
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shulan Pi
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yuanpeng Xia
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Ling Mao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
4
|
Shinohara Y, Tsukimoto M. Adenine Nucleotides Attenuate Murine T Cell Activation Induced by Concanavalin A or T Cell Receptor Stimulation. Front Pharmacol 2018; 8:986. [PMID: 29375385 PMCID: PMC5767601 DOI: 10.3389/fphar.2017.00986] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 12/22/2017] [Indexed: 11/29/2022] Open
Abstract
Extracellular ATP and its metabolites affect various cellular immune responses, including T cell function, but there are apparently conflicting reports concerning the effects of adenine nucleotides on T cells. For example, it has been reported that ATP-mediated activation of P2 receptor is involved in T cell activation; activation of adenosine receptors suppresses T cell function; and 1 mM ATP induces T cell death via activation of P2X7 receptor. Therefore, in this work we investigated in detail the effects of 100–250 μM ATP, ADP, or AMP on murine T cell activation. First, an in vitro study showed that pretreatment of murine splenic T cells with 100–250 μM ATP, ADP, or AMP significantly suppressed the concanavalin A (ConA)-induced release of cytokines, including IL-2. This suppression was not due to induction of cell death via the P2X7 receptor or to an immunosuppressive effect of adenosine. ATP attenuated the expression of CD25, and decreased the cell proliferation ability of activated T cells. The release of IL-2 by ConA-stimulated lymphocytes was suppressed by post-treatment with ATP, as well as by pretreatment. These results suggest that exogenous ATP suppresses the activation of T cells. Secondly, we evaluated the effect of ATP in a ConA-treated mice. Treatment with ATP attenuated the increase of IL-2 concentration in the blood. Overall, these results suggest that adenine nucleotides might have potential as supplemental therapeutic agents for T cell-mediated immune diseases, by suppressing T cell activation.
Collapse
Affiliation(s)
- Yuria Shinohara
- Department of Radiation Biosciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Mitsutoshi Tsukimoto
- Department of Radiation Biosciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| |
Collapse
|
5
|
Guerra AN, Fisette PL, Pfeiffer ZA, Quinchia-Rios BH, Prabhu U, Aga M, Denlinger LC, Guadarrama AG, Abozeid S, Sommer JA, Proctor RA, Bertics PJ. Purinergic receptor regulation of LPS-induced signaling and pathophysiology. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519030090040701] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Macrophages express several lipopolysaccharide (LPS) binding proteins and are potently activated by LPS to produce inflammatory mediators. Recent studies have shown that receptors for exogenous nucleotides (P2X and P2Y purinergic receptors) can modulate macrophage production of TNF-α , IL-1β and nitric oxide (NO) following LPS exposure. Macrophages and LPS-stimulated monocytes express elevated levels of P2Y1, P2Y2 and P2X7 mRNA, suggesting that both P2Y and P2X receptors can contribute to LPS-induced pathophysiology. In addition, oxidized-ATP treatment (which inhibits P2X7) of macrophages blocks LPS-induced NO production, NF-κB and ERK-1/2 activation. Also, an LPS-binding domain located in the P2X7 C-terminus appears important for receptor trafficking/function. Moreover, the purinergic receptor ligand 2-MeS-ATP attenuates LPS-induced cytokine and NO production in vivo and ex vivo. These data suggest that P2X7 and certain P2Ys are linked to LPS effects, although their relative contribution in vivo is unclear. Accordingly, we tested the capacity of several adenine nucleotides to modulate LPS-induced mortality in mice. We found that the P2X7-directed ligand BzATP was unable to prevent LPS-induced death, whereas 2-MeS-ATP and 2-Cl-ATP, which bind to multiple P2X and P2Y receptors were able to protect mice from LPS-induced death. These data suggest that the co-ordinate action of P2Y and P2X7 receptors are critical for controlling LPS responses in vivo and that agents directed against both receptor classes may provide the greatest therapeutic advantage.
Collapse
Affiliation(s)
- Alma N. Guerra
- Department of Biomolecular Chemistry, University of Wisconsin Medical School, Madison, Wisconsin, USA
| | - Philip L. Fisette
- Department of Biomolecular Chemistry, University of Wisconsin Medical School, Madison, Wisconsin, USA
| | - Zachary A. Pfeiffer
- Department of Biomolecular Chemistry, University of Wisconsin Medical School, Madison, Wisconsin, USA
| | - Beatriz H. Quinchia-Rios
- Department of Biomolecular Chemistry, University of Wisconsin Medical School, Madison, Wisconsin, USA
| | - Usha Prabhu
- Department of Biomolecular Chemistry, University of Wisconsin Medical School, Madison, Wisconsin, USA
| | - Mini Aga
- Department of Biomolecular Chemistry, University of Wisconsin Medical School, Madison, Wisconsin, USA
| | - Loren C. Denlinger
- Department of Biomolecular Chemistry, University of Wisconsin Medical School, Madison, Wisconsin, USA
| | - Arturo G. Guadarrama
- Department of Biomolecular Chemistry, University of Wisconsin Medical School, Madison, Wisconsin, USA
| | - Sara Abozeid
- Department of Biomolecular Chemistry, University of Wisconsin Medical School, Madison, Wisconsin, USA
| | - Julie A. Sommer
- Department of Biomolecular Chemistry, University of Wisconsin Medical School, Madison, Wisconsin, USA
| | - Richard A. Proctor
- Department of Medicine, University of Wisconsin Medical School, Madison, Wisconsin, USA, Department of Medical Microbiology and Immunology, University of Wisconsin Medical School, Madison, Wisconsin, USA
| | - Paul J. Bertics
- Department of Biomolecular Chemistry, University of Wisconsin Medical School, Madison, Wisconsin, USA,
| |
Collapse
|
6
|
P2Y receptor-mediated transient relaxation of rat longitudinal ileum preparations involves phospholipase C activation, intracellular Ca(2+) release and SK channel activation. Acta Pharmacol Sin 2016; 37:617-28. [PMID: 27018177 DOI: 10.1038/aps.2015.137] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 12/10/2015] [Indexed: 12/13/2022]
Abstract
AIM Purinergic signaling plays a major role in the enteric nervous system, where it governs gut motility through a number of P2X and P2Y receptors. The aim of this study was to investigate the P2Y receptor-mediated motility in rat longitudinal ileum preparations. METHODS Ileum smooth muscle strips were prepared from rats, and fixed in an organ bath. Isometric contraction and relaxation responses of the muscle strips were measured with force transducers. Drugs were applied by adding of stock solutions to the organ bath to yield the individual final concentrations. RESULTS Application of the non-hydrolyzable P2 receptor agonists α,β-Me-ATP or 2-Me-S-ADP (10, 100 μmol/L) dose-dependently elicited a transient relaxation response followed by a sustained contraction. The relaxation response was largely blocked by SK channel blockers apamin (500 nmol/L) and UCL1684 (10 μmol/L), PLC inhibitor U73122 (100 μmol/L), IP3 receptor blocker 2-APB (100 μmol/L) or sarcoendoplasmic Ca(2+) ATPase inhibitor thapsigargin (1 μmol/L), but not affected by atropine, NO synthase blocker L-NAME or tetrodotoxin. Furthermore, α,β-Me-ATP-induced relaxation was suppressed by P2Y1 receptor antagonist MRS2179 (50 μmol/L) or P2Y13 receptor antagonist MRS2211 (100 μmol/L), and was abolished by co-application of the two antagonists, whereas 2-Me-S-ADP-induced relaxation was abolished by P2Y6 receptor antagonist MRS2578 (50 μmol/L). In addition, P2Y1 receptor antagonist MRS2500 (1 μmol/L) not only abolished α,β-Me-ATP-induced relaxation, but also suppressed 2-Me-S-ADP-induced relaxation. CONCLUSION P2Y receptor agonist-induced transient relaxation of rat ileum smooth muscle strips is mediated predominantly by P2Y1 receptor, but also by P2Y6 and P2Y13 receptors, and involves PLC, IP3, Ca(2+) release and SK channel activation, but is independent of acetylcholine and NO release.
Collapse
|
7
|
Infection by Toxoplasma gondii, a severe parasite in neonates and AIDS patients, causes impaired anion secretion in airway epithelia. Proc Natl Acad Sci U S A 2015; 112:4435-40. [PMID: 25831498 DOI: 10.1073/pnas.1503474112] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The airway epithelia initiate and modulate the inflammatory responses to various pathogens. The cystic fibrosis transmembrane conductance regulator-mediated Cl(-) secretion system plays a key role in mucociliary clearance of inhaled pathogens. We have explored the effects of Toxoplasma gondii, an opportunistic intracellular protozoan parasite, on Cl(-) secretion of the mouse tracheal epithelia. In this study, ATP-induced Cl(-) secretion indicated the presence of a biphasic short-circuit current (Isc) response, which was mediated by a Ca(2+)-activated Cl(-) channel (CaCC) and the cystic fibrosis transmembrane conductance regulator. However, the ATP-evoked Cl(-) secretion in T. gondii-infected mouse tracheal epithelia and the elevation of [Ca(2+)]i in T. gondii-infected human airway epithelial cells were suppressed. Quantitative reverse transcription-PCR revealed that the mRNA expression level of the P2Y2 receptor (P2Y2-R) increased significantly in T. gondii-infected mouse tracheal cells. This revealed the influence that pathological changes in P2Y2-R had on the downstream signal, suggesting that P2Y2-R was involved in the mechanism underlying T. gondii infection in airways. These results link T. gondii infection as well as other pathogen infections to Cl(-) secretion, via P2Y2-R, which may provide new insights for the treatment of pneumonia caused by pathogens including T. gondii.
Collapse
|
8
|
Yang G, Zhang S, Zhang Y, Zhou Q, Peng S, Zhang T, Yang C, Zhu Z, Zhang F. The inhibitory effects of extracellular ATP on the growth of nasopharyngeal carcinoma cells via P2Y2 receptor and osteopontin. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2014; 33:53. [PMID: 24961145 PMCID: PMC4078358 DOI: 10.1186/1756-9966-33-53] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 06/17/2014] [Indexed: 12/15/2022]
Abstract
Background Nasopharyngeal carcinoma (NPC) is a common malignant tumor observed in the populations of southern China and Southeast Asia. However, little is known about the effects of purinergic signal on the behavior of NPC cells. This study analyzed the effects of ATP on the growth and migration of NPC cells, and further investigated the potential mechanisms during the effects. Methods Cell viability was estimated by MTT assay. Transwell assay was utilized to assess the motility of NPC cells. Cell cycle and apoptosis were detected by flow cytometry analysis. Changes in OPN, P2Y2 and p65 expression were assessed by western blotting analysis or immunofluorescence. The effects of ATP and P2Y2 on promoter activity of OPN were analyzed by luciferase activity assay. The binding of p65 to the promoter region of OPN was examined by ChIP assay. Results An MTT assay indicated that ATP inhibited the proliferation of NPC cells in time- and dose-dependent manners, and a Transwell assay showed that extracellular ATP inhibited the motility of NPC cells. We further investigated the potential mechanisms involved in the inhibitory effect of extracellular ATP on the growth of NPC cells and found that extracellular ATP could reduce Bcl-2 and p-AKT levels while elevating Bax and cleaved caspase-3 levels in NPC cells. Decreased levels of p65 and osteopontin were also detected in the ATP-treated NPC cells. We demonstrated that extracellular ATP inhibited the growth of NPC cells via p65 and osteopontin and verified that P2Y2 overexpression elevated the inhibitory effect of extracellular ATP on the proliferation of NPC cells. Moreover, a dual luciferase reporter assay showed that the level of osteopontin transcription was inhibited by extracellular ATP and P2Y2. ATP decreased the binding of p65 to potential sites in the OPN promoter region in NPC cells. Conclusion This study indicated that extracellular ATP inhibited the growth of NPC cells via P2Y2, p65 and OPN. ATP could be a promising agent serving as an adjuvant in the treatment of NPC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Fujun Zhang
- State Key Laboratory of Oncology in South China, Department of Imaging and Interventional Radiology, Cancer Center, Sun Yat-sen University, Guangzhou Guangdong 510060, China.
| |
Collapse
|
9
|
Ilatovskaya DV, Palygin O, Levchenko V, Staruschenko A. Pharmacological characterization of the P2 receptors profile in the podocytes of the freshly isolated rat glomeruli. Am J Physiol Cell Physiol 2013; 305:C1050-9. [PMID: 24048730 DOI: 10.1152/ajpcell.00138.2013] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Calcium flux in the podocytes is critical for normal and pathophysiological regulation of these types of cells, and excessive calcium signaling results in podocytes damage and improper glomeruli function. Purinergic activation of P2 receptors is a powerful and rapid signaling process; however, the exact physiological identity of P2 receptors subtypes in podocytes remains essentially unknown. The goal of this study was to determine the P2 receptor profile in podocytes of the intact Sprague-Dawley rat glomeruli using available pharmacological tools. Glomeruli were isolated by differential sieving and loaded with Fluo-4/Fura Red cell permeable calcium indicators, and the purinergic response in the podocytes was analyzed with ratiometric confocal fluorescence measurements. Various P2 receptors activators were tested and compared with the effect of ATP, specifically, UDP, MRS 2365, bzATP, αβ-methylene, 2-meSADP, MRS 4062, and MRS 2768, were analyzed. Antagonists (MRS 2500, 5-BDBD, A438079, and NF 449) were tested when 10 μM ATP was applied as the EC50 for ATP activation of the calcium influx in the podocytes was determined to be 10.7 ± 1.5 μM. Several agonists including MRS 2365 and 2-meSADP caused calcium flux. Importantly, only the P2Y1-specific antagonist MRS 2500 (1 nM) precluded the effects of ATP concentrations of the physiological range. Immunohistochemical analysis confirmed that P2Y1 receptors are highly expressed in the podocytes. We conclude that P2Y1 receptor signaling is the predominant P2Y purinergic pathway in the glomeruli podocytes and P2Y1 might be involved in the pathogenesis of glomerular injury and could be a target for treatment of kidney diseases.
Collapse
Affiliation(s)
- Daria V Ilatovskaya
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | | | | | |
Collapse
|
10
|
Weisman GA, Woods LT, Erb L, Seye CI. P2Y receptors in the mammalian nervous system: pharmacology, ligands and therapeutic potential. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2013; 11:722-38. [PMID: 22963441 DOI: 10.2174/187152712803581047] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 06/14/2012] [Accepted: 06/14/2012] [Indexed: 11/22/2022]
Abstract
P2Y receptors for extracellular nucleotides are coupled to activation of a variety of G proteins and stimulate diverse intracellular signaling pathways that regulate functions of cell types that comprise the central nervous system (CNS). There are 8 different subtypes of P2Y receptor expressed in cells of the CNS that are activated by a select group of nucleotide agonists. Here, the agonist selectivity of these 8 P2Y receptor subtypes is reviewed with an emphasis on synthetic agonists with high potency and resistance to degradation by extracellular nucleotidases that have potential applications as therapeutic agents. In addition, the recent identification of a wide variety of subtype-selective antagonists is discussed, since these compounds are critical for discerning cellular responses mediated by activation of individual P2Y receptor subtypes. The functional expression of P2Y receptor subtypes in cells that comprise the CNS is also reviewed and the role of each subtype in the regulation of physiological and pathophysiological responses is considered. Other topics include the role of P2Y receptors in the regulation of blood-brain barrier integrity and potential interactions between different P2Y receptor subtypes that likely impact tissue responses to extracellular nucleotides in the CNS. Overall, current research suggests that P2Y receptors in the CNS regulate repair mechanisms that are triggered by tissue damage, inflammation and disease and thus P2Y receptors represent promising targets for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Gary A Weisman
- Department of Biochemistry, 540E Life Sciences Center, 1201 Rollins Road, University of Missouri, Columbia, MO 65211-7310, USA.
| | | | | | | |
Collapse
|
11
|
Stroke neuroprotection: targeting mitochondria. Brain Sci 2013; 3:540-60. [PMID: 24961414 PMCID: PMC4061853 DOI: 10.3390/brainsci3020540] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 04/08/2013] [Accepted: 04/09/2013] [Indexed: 11/17/2022] Open
Abstract
Stroke is the fourth leading cause of death and the leading cause of long-term disability in the United States. Blood flow deficit results in an expanding infarct core with a time-sensitive peri-infarct penumbra that is considered salvageable and is the primary target for treatment strategies. The only current FDA-approved drug for treating ischemic stroke is recombinant tissue plasminogen activator (rt-PA). However, this treatment is limited to within 4.5 h of stroke onset in a small subset of patients. The goal of this review is to focus on mitochondrial-dependent therapeutic agents that could provide neuroprotection following stroke. Dysfunctional mitochondria are linked to neurodegeneration in many disease processes including stroke. The mechanisms reviewed include: (1) increasing ATP production by purinergic receptor stimulation, (2) decreasing the production of ROS by superoxide dismutase, or (3) increasing antioxidant defenses by methylene blue, and their benefits in providing neuroprotection following a stroke.
Collapse
|
12
|
Ito G, Suekawa Y, Watanabe M, Takahashi K, Inubushi T, Murasaki K, Hirose N, Hiyama S, Uchida T, Tanne K. P2X7receptor in the trigeminal sensory nuclear complex contributes to tactile allodynia/hyperalgesia following trigeminal nerve injury. Eur J Pain 2012; 17:185-99. [DOI: 10.1002/j.1532-2149.2012.00174.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2012] [Indexed: 12/29/2022]
Affiliation(s)
- G. Ito
- Department of Orthodontics and Craniofacial Developmental Biology; Hiroshima University Graduate School of Biomedical Sciences; Japan
| | - Y. Suekawa
- Department of Orthodontics and Craniofacial Developmental Biology; Hiroshima University Graduate School of Biomedical Sciences; Japan
| | - M. Watanabe
- Department of Oral Biology; Division of Molecular Medical Science; Hiroshima University Graduate School of Biomedical Science; Japan
| | - K. Takahashi
- Department of Orthodontics and Craniofacial Developmental Biology; Hiroshima University Graduate School of Biomedical Sciences; Japan
| | - T. Inubushi
- Department of Orthodontics and Craniofacial Developmental Biology; Hiroshima University Graduate School of Biomedical Sciences; Japan
| | - K. Murasaki
- Department of Orthodontics and Craniofacial Developmental Biology; Hiroshima University Graduate School of Biomedical Sciences; Japan
| | - N. Hirose
- Department of Orthodontics and Craniofacial Developmental Biology; Hiroshima University Graduate School of Biomedical Sciences; Japan
| | - S. Hiyama
- Department of Oral Biology; Division of Molecular Medical Science; Hiroshima University Graduate School of Biomedical Science; Japan
| | - T. Uchida
- Department of Oral Biology; Division of Molecular Medical Science; Hiroshima University Graduate School of Biomedical Science; Japan
| | - K. Tanne
- Department of Orthodontics and Craniofacial Developmental Biology; Hiroshima University Graduate School of Biomedical Sciences; Japan
| |
Collapse
|
13
|
Weisman GA, Ajit D, Garrad R, Peterson TS, Woods LT, Thebeau C, Camden JM, Erb L. Neuroprotective roles of the P2Y(2) receptor. Purinergic Signal 2012; 8:559-78. [PMID: 22528682 DOI: 10.1007/s11302-012-9307-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 10/04/2011] [Indexed: 02/07/2023] Open
Abstract
Purinergic signaling plays a unique role in the brain by integrating neuronal and glial cellular circuits. The metabotropic P1 adenosine receptors and P2Y nucleotide receptors and ionotropic P2X receptors control numerous physiological functions of neuronal and glial cells and have been implicated in a wide variety of neuropathologies. Emerging research suggests that purinergic receptor interactions between cells of the central nervous system (CNS) have relevance in the prevention and attenuation of neurodegenerative diseases resulting from chronic inflammation. CNS responses to chronic inflammation are largely dependent on interactions between different cell types (i.e., neurons and glia) and activation of signaling molecules including P2X and P2Y receptors. Whereas numerous P2 receptors contribute to functions of the CNS, the P2Y(2) receptor is believed to play an important role in neuroprotection under inflammatory conditions. While acute inflammation is necessary for tissue repair due to injury, chronic inflammation contributes to neurodegeneration in Alzheimer's disease and occurs when glial cells undergo prolonged activation resulting in extended release of proinflammatory cytokines and nucleotides. This review describes cell-specific and tissue-integrated functions of P2 receptors in the CNS with an emphasis on P2Y(2) receptor signaling pathways in neurons, glia, and endothelium and their role in neuroprotection.
Collapse
Affiliation(s)
- Gary A Weisman
- Department of Biochemistry, University of Missouri, 540E Life Sciences Center, 1201 Rollins Road, Columbia, MO 65211-7310, USA.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Weisman GA, Camden JM, Peterson TS, Ajit D, Woods LT, Erb L. P2 receptors for extracellular nucleotides in the central nervous system: role of P2X7 and P2Y₂ receptor interactions in neuroinflammation. Mol Neurobiol 2012; 46:96-113. [PMID: 22467178 DOI: 10.1007/s12035-012-8263-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 03/21/2012] [Indexed: 12/16/2022]
Abstract
Extracellular nucleotides induce cellular responses in the central nervous system (CNS) through the activation of ionotropic P2X and metabotropic P2Y nucleotide receptors. Activation of these receptors regulates a wide range of physiological and pathological processes. In this review, we present an overview of the current literature regarding P2X and P2Y receptors in the CNS with a focus on the contribution of P2X7 and P2Y(2) receptor-mediated responses to neuroinflammatory and neuroprotective mechanisms.
Collapse
Affiliation(s)
- Gary A Weisman
- Department of Biochemistry, University of Missouri, 540E Life Sciences Center, 1201 Rollins Road, Columbia, MO 65211-7310, USA.
| | | | | | | | | | | |
Collapse
|
15
|
Lechner SG, Boehm S. Regulation of neuronal ion channels via P2Y receptors. Purinergic Signal 2011; 1:31-41. [PMID: 18404398 PMCID: PMC2096562 DOI: 10.1007/s11302-004-4746-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2004] [Revised: 10/11/2004] [Accepted: 10/12/2004] [Indexed: 11/25/2022] Open
Abstract
Within the last 15 years, at least 8 different G protein-coupled P2Y receptors have been characterized. These mediate slow metabotropic effects of nucleotides in neurons as well as non-neural cells, as opposed to the fast ionotropic effects which are mediated by P2X receptors. One class of effector systems regulated by various G protein-coupled receptors are voltage-gated and ligand-gated ion channels. This review summarizes the current knowledge about the modulation of such neuronal ion channels via P2Y receptors. The regulated proteins include voltage-gated Ca2+ and K+ channels, as well as N-methyl-d-aspartate, vanilloid, and P2X receptors, and the regulating entities include most of the known P2Y receptor subtypes. The functional consequences of the modulation of ion channels by nucleotides acting at pre- or postsynaptic P2Y receptors are changes in the strength of synaptic transmission. Accordingly, ATP and related nucleotides may act not only as fast transmitters (via P2X receptors) in the nervous system, but also as neuromodulators (via P2Y receptors). Hence, nucleotides are as universal transmitters as, for instance, acetylcholine, glutamate, or γ-aminobutyric acid.
Collapse
Affiliation(s)
- Stefan G Lechner
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | | |
Collapse
|
16
|
Lee SY, Nicholas RA, O’Grady SM. P2Y(1) receptor modulation of endogenous ion channel function in Xenopus oocytes: Involvement of transmembrane domains. Purinergic Signal 2011; 1:75-81. [PMID: 18404403 PMCID: PMC2096563 DOI: 10.1007/s11302-004-4744-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2004] [Revised: 10/12/2004] [Accepted: 10/14/2004] [Indexed: 11/25/2022] Open
Abstract
Agonist activation of the hP2Y(1) receptor expressed in Xenopus oocytes stimulated an endogenous voltage-gated ion channel, previously identified as the transient inward (T(in)) channel. When human P2Y(1) (hP2Y(1)) and skate P2Y (sP2Y) receptors were expressed in Xenopus oocytes, time-to-peak values (a measure of the response to membrane hyperpolarization) of the T(in) channel were significantly reduced compared to oocytes expressing the hB(1)-bradykinin receptor or the rat M(1)-muscarinic (rM(1)) receptor. Differences in activation were also observed in the T(in) currents elicited by various P2Y receptor subtypes. The time-to-peak values of the T(in) channel in oocytes expressing the hP2Y(4), hP2Y(11), or hB(1)-bradykinin receptors were similar, whereas the channel had significantly shorter time-to-peak values in oocytes expressing either the hP2Y(1) or sP2Y receptor. Amino acid substitutions at His-132, located in the third transmembrane domain (TM3) of the hP2Y(1) receptor, delayed the onset of channel opening, but not the kinetics of the activation process. In addition, Zn(2+) sensitivity was also dependent on the subtype of P2Y receptor expressed. Replacement of His-132 in the hP2Y(1) receptor with either Ala or Phe increased Zn(2+) sensitivity of the T(in) current. In contrast, truncation of the C-terminal region of the hP2Y(1) receptor had no affect on activation or Zn(2+) sensitivity of the T(in) channel. These results suggested that TM3 in the hP2Y(1) receptor was involved in modulating ion channel function and blocker pharmacology of the T(in) channel.
Collapse
Affiliation(s)
- So Yeong Lee
- Department of Physiology and Molecular Veterinary Biosciences Graduate Program, University of Minnesota, St. Paul, Minnesota USA
- Department of Pharmacology, College of Veterinary Science, Seoul National University, Seoul, Korea
| | - Robert A. Nicholas
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina USA
| | - Scott M. O’Grady
- Department of Physiology and Animal Science, University of Minnesota, 495 Animal Science/Veterinary Medicine Bldg, 1988 Fitch Ave., St. Paul, MN 55108 USA
| |
Collapse
|
17
|
Ando K, Obara Y, Sugama J, Kotani A, Koike N, Ohkubo S, Nakahata N. P2Y2 receptor-Gq/11 signaling at lipid rafts is required for UTP-induced cell migration in NG 108-15 cells. J Pharmacol Exp Ther 2010; 334:809-19. [PMID: 20511347 DOI: 10.1124/jpet.110.167528] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Lipid rafts, formed by sphingolipids and cholesterol within the membrane bilayer, are believed to have a critical role in signal transduction. P2Y(2) receptors are known to couple with G(q) family G proteins, causing the activation of phospholipase C (PLC) and an increase in intracellular Ca(2+) ([Ca(2+)](i)) levels. In the present study, we investigated the involvement of lipid rafts in P2Y(2) receptor-mediated signaling and cell migration in NG 108-15 cells. When NG 108-15 cell lysates were fractionated by sucrose density gradient centrifugation, Galpha(q/11) and a part of P2Y(2) receptors were distributed in a fraction where the lipid raft markers, cholesterol, flotillin-1, and ganglioside GM1 were abundant. Methyl-beta-cyclodextrin (CD) disrupted not only lipid raft markers but also Galpha(q/11) and P2Y(2) receptors in this fraction. In the presence of CD, P2Y(2) receptor-mediated phosphoinositide hydrolysis and [Ca(2+)](i) elevation were inhibited. It is noteworthy that UTP-induced cell migration was inhibited by CD or the G(q/11)-selective inhibitor YM254890 [(1R)-1-{(3S,6S,9S,12S,18R,21S,22R)-21-acetamido-18-benzyl-3-[(1R)-1-methoxyethyl]-4,9,10,12,16, 22-hexamethyl-15-methylene-2,5,8,11,14,17,-20-heptaoxo-1,19-dioxa-4,7,10,13,16-pentaazacyclodocosan-6-yl}-2-methylpropyl rel-(2S,3R)-2-acetamido-3-hydroxy-4-methylpentanoate]. Moreover CD and YM254890 completely inhibited Rho-A activation. Downstream of Rho-A signaling, stress fiber formation and phosphorylation of cofilin were also inhibited by CD or YM254890. However, UTP-induced phosphorylation of cofilin was not affected by the expression of p115-regulator of G protein signaling, which inhibits the G(12/13) signaling pathway. This implies that UTP-induced Rho-A activation was relatively regulated by the G(q/11) signaling pathway. These results suggest that lipid rafts are critical for P2Y(2) receptor-mediated G(q/11)-PLC-Ca(2+) signaling and this cascade is important for cell migration in NG 108-15 cells.
Collapse
Affiliation(s)
- Koji Ando
- Department of Cellular Signaling, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | | | | | | | | | | | | |
Collapse
|
18
|
Peterson TS, Camden JM, Wang Y, Seye CI, Wood WG, Sun GY, Erb L, Petris MJ, Weisman GA. P2Y2 nucleotide receptor-mediated responses in brain cells. Mol Neurobiol 2010; 41:356-66. [PMID: 20387013 PMCID: PMC3086510 DOI: 10.1007/s12035-010-8115-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Accepted: 03/01/2010] [Indexed: 01/14/2023]
Abstract
Acute inflammation is important for tissue repair; however, chronic inflammation contributes to neurodegeneration in Alzheimer's disease (AD) and occurs when glial cells undergo prolonged activation. In the brain, stress or damage causes the release of nucleotides and activation of the G(q) protein-coupled P2Y(2) nucleotide receptor subtype (P2Y(2)R) leading to pro-inflammatory responses that can protect neurons from injury, including the stimulation and recruitment of glial cells. P2Y(2)R activation induces the phosphorylation of the epidermal growth factor receptor (EGFR), a response dependent upon the presence of a SH3 binding domain in the intracellular C terminus of the P2Y(2)R that promotes Src binding and transactivation of EGFR, a pathway that regulates the proliferation of cortical astrocytes. Other studies indicate that P2Y(2)R activation increases astrocyte migration. P2Y(2)R activation by UTP increases the expression in astrocytes of alpha(V)beta(3/5) integrins that bind directly to the P2Y(2)R via an Arg-Gly-Asp (RGD) motif in the first extracellular loop of the P2Y(2)R, an interaction required for G(o) and G(12) protein-dependent astrocyte migration. In rat primary cortical neurons (rPCNs) P2Y(2)R expression is increased by stimulation with interleukin-1beta (IL-1beta), a pro-inflammatory cytokine whose levels are elevated in AD, in part due to nucleotide-stimulated release from glial cells. Other results indicate that oligomeric beta-amyloid peptide (Abeta(1-42)), a contributor to AD, increases nucleotide release from astrocytes, which would serve to activate upregulated P2Y(2)Rs in neurons. Data with rPCNs suggest that P2Y(2)R upregulation by IL-1beta and subsequent activation by UTP are neuroprotective, since this increases the non-amyloidogenic cleavage of amyloid precursor protein. Furthermore, activation of IL-1beta-upregulated P2Y(2)Rs in rPCNs increases the phosphorylation of cofilin, a cytoskeletal protein that stabilizes neurite outgrowths. Thus, activation of pro-inflammatory P2Y(2)Rs in glial cells can promote neuroprotective responses, suggesting that P2Y(2)Rs represent a novel pharmacological target in neurodegenerative and other pro-inflammatory diseases.
Collapse
Affiliation(s)
- Troy S Peterson
- Department of Biochemistry, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Santini E, Cuccato S, Madec S, Chimenti D, Ferrannini E, Solini A. Extracellular adenosine 5'-triphosphate modulates insulin secretion via functionally active purinergic receptors of X and Y subtype. Endocrinology 2009; 150:2596-602. [PMID: 19196799 DOI: 10.1210/en.2008-1486] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Extracellular nucleotides modulate several cell functions via specific receptors, P2X and P2Y. We explored the differential role of these receptors in the control of insulin secretion (InSec). In INS-1e cells grown in 11 mm glucose and then acutely exposed to 3.3, 7.5, 11, or 20 mm, coincubation with ATP, the global agonist of both P2X and P2Y receptors, induced a dose-dependent (P < 0.0001) reduction in insulin release (P < 0.0001) that was more marked at higher glucose concentrations (P < 0.0001 for the interaction). This effect was fully prevented (P < 0.0001) by incubating ATP-treated cells in the presence of apyrase, an ecto-ATP/ADPase. Uridine 5'-triphosphate (UTP), preferential agonist of P2Y receptors, significantly stimulated InSec at all glucose concentrations tested, whereas benzoyl-benzoyl ATP (BzATP), a strong and highly selective P2X(7) agonist, did not influence InSec. Oxidized ATP, which completely suppresses P2X activity, abolished the inhibitory effect of ATP on InSec. Similar results were obtained in MIN-6 cells. Stimulation with ATP, BzATP, and UTP dose-dependently increased Intracellular free Ca(2+) concentrations. By small interfering RNA we show P2X(3) and P2Y(4) as the main responsible inhibitory and promoting effect on InSec, respectively. Because P2X(7) is not directly involved in InSec, we tested whether the effect of ATP on hormone synthesis might be mediated by apoptosis. However, neither ATP nor BzATP induced either early or late apoptosis. We conclude that: 1) INS-1e cells express multiple purinergic receptors, 2) ATP reduces glucose-induced InSec as a net effect of inhibition through P2X and stimulation through P2Y receptors, and 3) P2X-mediated apoptosis is not involved in the inhibition of InSec.
Collapse
Affiliation(s)
- Eleonora Santini
- Department of Internal Medicine, University of Pisa, Pisa, Italy
| | | | | | | | | | | |
Collapse
|
20
|
Talasila A, Germack R, Dickenson JM. Characterization of P2Y receptor subtypes functionally expressed on neonatal rat cardiac myofibroblasts. Br J Pharmacol 2009; 158:339-53. [PMID: 19422377 DOI: 10.1111/j.1476-5381.2009.00172.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND PURPOSE Little is known about P2Y receptors in cardiac fibroblasts, which represent the predominant cell type in the heart and differentiate into myofibroblasts under certain conditions. Therefore, we have characterized the phenotype of the cells and the different P2Y receptors at the expression and functional levels in neonatal rat non-cardiomyocytes. EXPERIMENTAL APPROACH Non-cardiomyocyte phenotype was determined by confocal microscopy by using discoidin domain receptor 2, alpha-actin and desmin antibodies. P2Y receptor expression was investigated by reverse transcription-polymerase chain reaction and immunocytochemistry, and receptor function by cAMP and inositol phosphate (IP) accumulation induced by adenine or uracil nucleotides in the presence or absence of selective antagonists of P2Y(1) (MRS 2179, 2-deoxy-N(6)-methyl adenosine 3',5'-diphosphate diammonium salt), P2Y(6) (MRS 2578) and P2Y(11) (NF 157, 8,8'-[carbonylbis[imino-3,1-phenylenecarbonylimino(4-fluoro-3,1-phenylene)carbonylimino]]bis-1,3,5-naphthalene trisulphonic acid hexasodium salt) receptors. G(i/o) and G(q/11) pathways were evaluated by using Pertussis toxin and YM-254890 respectively. KEY RESULTS The cells (>95%) were alpha-actin and discoidin domain receptor 2-positive and desmin-negative. P2Y(1), P2Y(2), P2Y(4), P2Y(6) were detected by reverse transcription-polymerase chain reaction and immunocytochemistry, and P2Y(11)-like receptors at protein level. All di- or tri-phosphate nucleotides stimulated IP production in an YM-254890-sensitive manner. AMP, ADPbetaS, ATP and ATPgammaS increased cAMP accumulation, whereas UDP and UTP inhibited cAMP response, which was abolished by Pertussis toxin. MRS 2179 and NF 157 inhibited ADPbetaS-induced IP production. MRS 2578 blocked UDP- and UTP-mediated IP responses. CONCLUSION AND IMPLICATIONS P2Y(1)-, P2Y(2)-, P2Y(4)-, P2Y(6)-, P2Y(11)-like receptors were co-expressed and induced function through G(q/11) protein coupling in myofibroblasts. Furthermore, P2Y(2) and P2Y(4) receptor subtypes were also coupled to G(i/o). The G(s) response to adenine nucleotides suggests a possible expression of a new P2Y receptor subtype.
Collapse
Affiliation(s)
- Amarnath Talasila
- Biomedical Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | | | | |
Collapse
|
21
|
Buvinic S, Bravo-Zehnder M, Boyer JL, Huidobro-Toro JP, González A. Nucleotide P2Y1 receptor regulates EGF receptor mitogenic signaling and expression in epithelial cells. J Cell Sci 2008; 120:4289-301. [PMID: 18057028 DOI: 10.1242/jcs.03490] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) function is transregulated by a variety of stimuli, including agonists of certain G-protein-coupled receptors (GPCRs). One of the most ubiquitous GPCRs is the P2Y(1) receptor (P2RY1, hereafter referred to as P2Y(1)R) for extracellular nucleotides, mainly ADP. Here, we show in tumoral HeLa cells and normal FRT epithelial cells that P2Y(1)R broadcasts mitogenic signals by transactivating the EGFR. The pathway involves PKC, Src and cell surface metalloproteases. Stimulation of P2Y(1)R for as little as 15-60 minutes triggers mitogenesis, mirroring the half-life of extracellular ADP. Apyrase degradation of extracellular nucleotides and drug inhibition of P2Y(1)R, both reduced basal cell proliferation of HeLa and FRT cells, but not MDCK cells, which do not express P2Y(1)R. Thus, cell-released nucleotides constitute strong mitogenic stimuli, which act via P2Y(1)R. Strikingly, MDCK cells ectopically expressing P2Y(1)R display a highly proliferative phenotype that depends on EGFR activity associated with an increased level of EGFR, thus disclosing a novel aspect of GPCR-mediated regulation of EGFR function. These results highlight a role of P2Y(1)R in EGFR-dependent epithelial cell proliferation. P2Y(1)R could potentially mediate both trophic stimuli of basally released nucleotides and first-line mitogenic stimulation upon tissue damage. It could also contribute to carcinogenesis and serve as target for antitumor therapies.
Collapse
Affiliation(s)
- Sonja Buvinic
- Centro de Regulación Celular y Patología JV Luco, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8330033, Santiago, Chile
| | | | | | | | | |
Collapse
|
22
|
Markovskaya A, Crooke A, Guzmán-Aranguez AI, Peral A, Ziganshin AU, Pintor J. Hypotensive effect of UDP on intraocular pressure in rabbits. Eur J Pharmacol 2007; 579:93-7. [PMID: 18031728 DOI: 10.1016/j.ejphar.2007.10.040] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Revised: 10/11/2007] [Accepted: 10/16/2007] [Indexed: 11/30/2022]
Abstract
Nucleotides can modify intraocular pressure (IOP). We have tested the ability of uridine-5'-diphosphate, UDP, for modulating IOP in New Zealand white rabbits. Uridine 5' diphosphate, UDP, reduced IOP by 82.9+/-2.6% compared to control. Dose-response analysis demonstrated a concentration dependent pattern which presented a pD(2) value of 7.57+/-1.45, equivalent to an EC(50) of 26.91 nM. Of all the tested P2 receptor antagonists, suramin, pyridoxalphosphate-6-azophenyl-2, 4-disulfonic acid (PPADS) and Reactive Blue 2 (RB-2), only the last two were able to reverse the action triggered by UDP. Altogether, UDP acting probably on P2Y(6) receptors present on the ciliary processes, can reduce intraocular pressure, indicating that this substance may be used for the treatment of ocular hypertension and glaucoma.
Collapse
Affiliation(s)
- Anna Markovskaya
- Department of Pharmacology, Kazan State Medical University, Kazan, Russia
| | | | | | | | | | | |
Collapse
|
23
|
Comparative analysis of P2Y4 and P2Y6 receptor architecture in native and transfected neuronal systems. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:1592-9. [PMID: 17481575 DOI: 10.1016/j.bbamem.2007.03.020] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2006] [Revised: 02/28/2007] [Accepted: 03/21/2007] [Indexed: 10/23/2022]
Abstract
Although extensive studies provided molecular and pharmacological characterization of metabotropic P2Y receptors for extracellular nucleotides, little is still known about their quaternary structure. By the use of transfected cellular systems and SDS-PAGE, in our previous work we established the propensity of P2Y(4) receptor to form dimeric interactions. Here we focused on endogenously expressed P2Y(4) and P2Y(6) subtypes, comparing their oligomeric complexes under Blue Native (BN) gel electrophoresis. We provided evidence that P2Y(4) and P2Y(6) receptors form high order complexes in native neuronal phenotypes and that the oligomers can be disaggregated down to the dimeric P2Y(4) or to the dimeric and monomeric P2Y(6) receptor. Moreover, dimeric P2Y(4) and monomeric P2Y(6) proteins display selective microdomain partitioning in lipid rafts from specialized subcellular compartments such as synaptosomes. Ligand activation by UTP shifted the oligomerization of P2Y(6) but not of P2Y(4) receptor, as analysed by BN electrophoresis. Finally, whereas transfected P2Y(4) and P2Y(6) proteins homo-interact and posses the appropriate domains to associate with all P2Y(1,2,4,6,11) subtypes, in naive PC12 cells the endogenous P2Y(4) forms hetero-oligomers only with the P2Y(6) subunit. In conclusion, our results indicate that quaternary structure distinguishing P2Y(4) from P2Y(6) receptors might be crucial for specific ligand activation, membrane partitioning and consequent functional regulation.
Collapse
|
24
|
Rivera I, Zhang S, Fuller BS, Edwards B, Seki T, Wang MH, Marrero MB, Inscho EW. P2 receptor regulation of [Ca2+]i in cultured mouse mesangial cells. Am J Physiol Renal Physiol 2007; 292:F1380-9. [PMID: 17213463 DOI: 10.1152/ajprenal.00349.2006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Experiments were performed to establish the pharmacological profile of purinoceptors and to identify the signal transduction pathways responsible for increases in intracellular calcium concentration ([Ca(2+)](i)) for cultured mouse mesangial cells. Mouse mesangial cells were loaded with fura 2 and examined using fluorescent spectrophotometry. Basal [Ca(2+)](i) averaged 102 +/- 2 nM (n = 346). One hundred micromolar concentrations of ATP, ADP, 2',3'-(benzoyl-4-benzoyl)-ATP (BzATP), ATP-gamma-S, and UTP in normal Ca(2+) medium evoked peak increases in [Ca(2+)](i) of 866 +/- 111, 236 +/- 18, 316 +/- 26, 427 +/- 37, and 808 +/- 73 nM, respectively. UDP or 2-methylthio-ATP (2MeSATP) failed to elicit significant increases in [Ca(2+)](i), whereas identical concentrations of adenosine, AMP, and alpha,beta-methylene ATP (alpha,beta-MeATP) had no detectable effect on [Ca(2+)](i). Removal of Ca(2+) from the extracellular medium had no significant effect on the peak increase in [Ca(2+)](i) induced by ATP, ADP, BzATP, ATP-gamma-S, or UTP compared with normal Ca(2+); however, Ca(2+)-free conditions did accelerate the rate of decline in [Ca(2+)](i) in cells treated with ATP and UTP. [Ca(2+)](i) was unaffected by membrane depolarization with 143 mM KCl. Western blot analysis for P2 receptors revealed expression of P2X(2), P2X(4), P2X(7), P2Y(2), and P2Y(4) receptors. No evidence of P2X(1) and P2X(3) receptor expression was detected, whereas RT-PCR analysis reveals mRNA expression for P2X(1), P2X(2), P2X(3), P2X(4), P2X(7), P2Y(2), and P2Y(4) receptors. These data indicate that receptor-specific P2 receptor activation increases [Ca(2+)](i) by stimulating calcium influx from the extracellular medium and through mobilization of Ca(2+) from intracellular stores in cultured mouse mesangial cells.
Collapse
Affiliation(s)
- Ian Rivera
- Department of Physiology, Medical College of Georgia, Augusta, Georgia 30912-3000, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Nucleotide receptor signalling and the generation of reactive oxygen species. Purinergic Signal 2007; 3:39-51. [PMID: 18404417 PMCID: PMC2096761 DOI: 10.1007/s11302-006-9035-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2006] [Accepted: 03/15/2006] [Indexed: 12/21/2022] Open
Abstract
Elevated levels of extracellular nucleotides are present at sites of inflammation, platelet degranulation and cellular damage or lysis. These extracellular nucleotides can lead to the activation of purinergic (nucleotide) receptors on various leukocytes, including monocytes, macrophages, eosinophils, and neutrophils. In turn, nucleotide receptor activation has been linked to increased cellular production and release of multiple inflammatory mediators, including superoxide anion, nitric oxide and other reactive oxygen species (ROS). In the present review, we will summarize the evidence that extracellular nucleotides can facilitate the generation of multiple ROS by leukocytes. In addition, we will discuss several potential mechanisms by which nucleotide-enhanced ROS production may occur. Delineation of these mechanisms is important for understanding the processes associated with nucleotide-induced antimicrobial activities, cell signalling, apoptosis, and pathology.
Collapse
|
26
|
Kim YH, Kim DR, Chun KI, Lee JH, Kong ID. Identification of P2Y11 Receptor Expressed in Human Retinoblastoma Cells. JOURNAL OF THE KOREAN OPHTHALMOLOGICAL SOCIETY 2007. [DOI: 10.3341/jkos.2007.48.8.1134-1142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
| | - Dae Ran Kim
- Department of Basic Nursing Science Keimyung University College of Nursing, Daegu, Korea
| | - Ko I Chun
- Department of Ophthalmology, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Jong Hyuck Lee
- Department of Ophthalmology, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - In Deok Kong
- Department of Physiology and Institute of Basic Medical Science, Wonju, Korea
| |
Collapse
|
27
|
Hussl S, Boehm S. Functions of neuronal P2Y receptors. Pflugers Arch 2006; 452:538-51. [PMID: 16691392 DOI: 10.1007/s00424-006-0063-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2006] [Accepted: 03/06/2006] [Indexed: 01/05/2023]
Abstract
Within the last 15 years, at least eight different G protein-coupled nucleotide receptors, i.e., P2Y receptors, have been characterized by molecular means. While ionotropic P2X receptors are mainly involved in fast synaptic neurotransmission, P2Y receptors rather mediate slower neuromodulatory effects. This P2Y receptor-dependent neuromodulation relies on changes in synaptic transmission via either pre- or postsynaptic sites of action. At both sites, the regulation of voltage-gated or transmitter-gated ion channels via G protein-linked signaling cascades has been identified as the predominant underlying mechanisms. In addition, neuronal P2Y receptors have been found to be involved in neurotoxic and neurotrophic effects of extracellular adenosine 5-triphosphate. This review provides an overview of the most prominent actions mediated by neuronal P2Y receptors and describes the signaling cascades involved.
Collapse
Affiliation(s)
- Simon Hussl
- Center of Biomolecular Medicine and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Waehringerstrasse 13a, Vienna, 1090, Austria
| | | |
Collapse
|
28
|
|
29
|
Buvinic S, Poblete MI, Donoso MV, Delpiano AM, Briones R, Miranda R, Huidobro-Toro JP. P2Y1 and P2Y2 receptor distribution varies along the human placental vascular tree: role of nucleotides in vascular tone regulation. J Physiol 2006; 573:427-43. [PMID: 16543271 PMCID: PMC1779721 DOI: 10.1113/jphysiol.2006.105882] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The expression of purinergic P2Y receptors (P2YRs) along the cord, superficial chorionic vessels and cotyledons of the human placenta was analysed and functional assays were performed to determine their vasomotor activity. Immunoblots for the P2Y(1)R and P2Y(2)R revealed a 6- to 8-fold increase in receptor expression from the cord to the chorionic or cotyledon vessels. In the cord and chorionic vessels the receptor distribution was mainly in the smooth muscle, whereas in the cotyledon vessels these receptors were equally distributed between the endothelium and smooth muscle cells. An exception was the P2Y(2)R at the umbilical artery, which was distributed as in the cotyledon. mRNA coding for the P2Y(1)R and P2Y(2)R were detected by RT-PCR and the mRNA coding for the P2Y(4)R, P2Y(6)R and P2Y(11)R was also identified. Application of 2-MeSADP and uridine triphosphate (UTP), preferential P2Y(1)R and P2Y(2)R ligands, respectively, resulted in contraction of isolated rings from umbilical and chorionic vessels. The vasoconstriction was blocked in a concentration-dependent manner by 10-100 nm indomethacin or 10 nm GR32191, suggesting the involvement of thromboxane receptors. MRS 2179, a selective P2Y(1)R antagonist, reduced the 2-MeSADP- but not the UTP-evoked contractions. Perfusion of cotyledons with 2-MeSADP or UTP evoked concentration-dependent reductions in perfusion pressure mediated by the NO-cGMP pathway. Blockade of NO synthase abolished the vasodilatation and the rise in luminal NO elicited by either agonist. MRS 2179 antagonized the dilatation and rise in luminal NO evoked by 2-MeSADP but not by UTP. In summary, P2Y(1)R and P2Y(2)R are unevenly distributed along the human placental vascular tree; both receptors are coupled to different signalling pathways in the cord/chorionic vessels versus the cotyledon leading to opposing vasomotor responses.
Collapse
Affiliation(s)
- Sonja Buvinic
- Centro de Regulación Celular y Patología J.V.Luco, Instituto Milenio de Biología Fundamental y Aplicada MIFAB, Departmento de Fisiología, Facultad de Ciencias Biológicas, P.Universidad Católica de Chile, Santiago, Chile
| | | | | | | | | | | | | |
Collapse
|
30
|
Weisman GA, Wang M, Kong Q, Chorna NE, Neary JT, Sun GY, González FA, Seye CI, Erb L. Molecular determinants of P2Y2 nucleotide receptor function: implications for proliferative and inflammatory pathways in astrocytes. Mol Neurobiol 2006; 31:169-83. [PMID: 15953819 DOI: 10.1385/mn:31:1-3:169] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2004] [Accepted: 11/15/2004] [Indexed: 01/05/2023]
Abstract
In the mammalian nervous system, P2 nucleotide receptors mediate neurotransmission, release of proinflammatory cytokines, and reactive astrogliosis. Extracellular nucleotides activate multiple P2 receptors in neurons and glial cells, including G protein-coupled P2Y receptors and P2X receptors, which are ligand-gated ion channels. In glial cells, the P2Y2 receptor subtype, distinguished by its ability to be equipotently activated by ATP and UTP, is coupled to pro-inflammatory signaling pathways. In situ hybridization studies with rodent brain slices indicate that P2Y2 receptors are expressed primarily in the hippocampus and cerebellum. Astrocytes express several P2 receptor subtypes, including P2Y2 receptors whose activation stimulates cell proliferation and migration. P2Y2 receptors, via an RGD (Arg-Gly-Asp) motif in their first extracellular loop, bind to alphavbeta3/beta5 integrins, whereupon P2Y2 receptor activation stimulates integrin signaling pathways that regulate cytoskeletal reorganization and cell motility. The C-terminus of the P2Y2 receptor contains two Src-homology-3 (SH3)-binding domains that upon receptor activation, promote association with Src and transactivation of growth factor receptors. Together, our results indicate that P2Y2 receptors complex with both integrins and growth factor receptors to activate multiple signaling pathways. Thus, P2Y2 receptors present novel targets to control reactive astrogliosis in neurodegenerative diseases.
Collapse
Affiliation(s)
- Gary A Weisman
- Department of Biochemistry and Neuroscience Program, University of Missouri-Columbia, Columbia, MO, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Draid M, Shiina T, El-Mahmoudy A, Boudaka A, Shimizu Y, Takewaki T. Neurally released ATP mediates endothelium-dependent hyperpolarization in the circular smooth muscle cells of chicken anterior mesenteric artery. Br J Pharmacol 2006; 146:983-9. [PMID: 16231006 PMCID: PMC1751223 DOI: 10.1038/sj.bjp.0706413] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The object of the present study was to clarify the neurotransmitter(s) controlling membrane responses to electrical field stimulation (EFS) in the circular smooth muscle cells of first-order branches of chicken anterior mesenteric artery.EFS (five pulses at 20 Hz, 1 ms) evoked a hyperpolarization of amplitude--21.6+/-1.2 mV, total duration 21.8+/-1.2 s and latency 641.7+/-81.9 ms. The response was tetrodotoxin-sensitive and nonadrenergic noncholinergic (NANC) in nature. The NANC response was blocked by the nonspecific purinergic antagonist, suramin, indicating that the response is mediated by the neurotransmitter adenosine 5'-triphosphate (ATP). Either desensitization or blockade of P2Y receptor with its putative agonist 2-methylthioATP (1 microM for 30 min) or with its antagonist cibacron blue F3GA (10 microM), respectively, abolished the purinergic hyperpolarization. PPADS at concentrations up to 100 microM had no effect on the EFS-induced response, indicating that this response is mediated through P2Y, but not P2X, receptor. In addition, the response was completely abolished by two specific P2Y1 receptor antagonists, namely, MRS 2179 (300 nM) and A3P5PS (10 microM). Removal of the endothelium abolished the purinergic hyperpolarization, which was converted, in some preparations, to a small depolarization, indicating that the hyperpolarizing response is endothelium-dependent. The present study suggests that in first-order branches of chicken anterior mesenteric artery, ATP released from perivascular nerves may diffuse to the endothelium-activating P2Y1 receptor to induce release of an inhibitory substance that mediates hyperpolarization in the circular smooth muscle.
Collapse
Affiliation(s)
- Marwan Draid
- Department of Basic Veterinary Science, Laboratory of Physiology, The United Graduate School, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Takahiko Shiina
- Department of Basic Veterinary Science, Laboratory of Physiology, The United Graduate School, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - AbuBakr El-Mahmoudy
- Department of Basic Veterinary Science, Laboratory of Physiology, The United Graduate School, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Ammar Boudaka
- Department of Basic Veterinary Science, Laboratory of Physiology, The United Graduate School, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Yasutake Shimizu
- Department of Basic Veterinary Science, Laboratory of Physiology, The United Graduate School, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Tadashi Takewaki
- Department of Basic Veterinary Science, Laboratory of Physiology, The United Graduate School, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
- Author for correspondence:
| |
Collapse
|
32
|
Inoue K, Tsuda M. [The role of microglia and ATP receptors in a mechanism of neuropathic pain]. Nihon Yakurigaku Zasshi 2006; 127:14-7. [PMID: 16508218 DOI: 10.1254/fpj.127.14] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
|
33
|
Sabirov RZ, Okada Y. ATP release via anion channels. Purinergic Signal 2005; 1:311-28. [PMID: 18404516 PMCID: PMC2096548 DOI: 10.1007/s11302-005-1557-0] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2005] [Revised: 07/19/2005] [Accepted: 07/26/2005] [Indexed: 11/30/2022] Open
Abstract
ATP serves not only as an energy source for all cell types but as an 'extracellular messenger' for autocrine and paracrine signalling. It is released from the cell via several different purinergic signal efflux pathways. ATP and its Mg(2+) and/or H(+) salts exist in anionic forms at physiological pH and may exit cells via some anion channel if the pore physically permits this. In this review we survey experimental data providing evidence for and against the release of ATP through anion channels. CFTR has long been considered a probable pathway for ATP release in airway epithelium and other types of cells expressing this protein, although non-CFTR ATP currents have also been observed. Volume-sensitive outwardly rectifying (VSOR) chloride channels are found in virtually all cell types and can physically accommodate or even permeate ATP(4-) in certain experimental conditions. However, pharmacological studies are controversial and argue against the actual involvement of the VSOR channel in significant release of ATP. A large-conductance anion channel whose open probability exhibits a bell-shaped voltage dependence is also ubiquitously expressed and represents a putative pathway for ATP release. This channel, called a maxi-anion channel, has a wide nanoscopic pore suitable for nucleotide transport and possesses an ATP-binding site in the middle of the pore lumen to facilitate the passage of the nucleotide. The maxi-anion channel conducts ATP and displays a pharmacological profile similar to that of ATP release in response to osmotic, ischemic, hypoxic and salt stresses. The relation of some other channels and transporters to the regulated release of ATP is also discussed.
Collapse
Affiliation(s)
- Ravshan Z. Sabirov
- Department of Cell Physiology, National Institute for Physiological Sciences, Okazaki, 444-8585 Japan
| | - Yasunobu Okada
- Department of Cell Physiology, National Institute for Physiological Sciences, Okazaki, 444-8585 Japan
| |
Collapse
|
34
|
Hayashida M, Fukuda KI, Fukunaga A. Clinical application of adenosine and ATP for pain control. J Anesth 2005; 19:225-35. [PMID: 16032451 DOI: 10.1007/s00540-005-0310-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2004] [Accepted: 02/02/2005] [Indexed: 11/24/2022]
Abstract
This review summarizes clinical application of adenosine and adenosine 5'-triphosphate (ATP) in pain conditions. Investigations have been performed in patients with acute perioperative pain or chronic neuropathic pain treated with intravenous adenosine or ATP, or intrathecal adenosine. Characteristic central adenosine A1 receptor-mediated pain-relieving effects have been observed after intravenous adenosine infusion in human inflammation/sensitization pain models and in patients with chronic neuropathic pain. Adenosine compounds, in low doses, can reduce allodynia/hyperalgesia more consistently than spontaneous pain, suggesting that these compounds affect neuronal pathophysiological mechanisms involved in central sensitization. Such pain-relieving effects, which are mostly mediated via central adenosine A1 receptor activation, have a slow onset and long duration of action, lasting usually for hours or days and occasionally for months. With acute perioperative pain, treatment with a low-dose infusion of adenosine compounds and the A1 receptor-mediated central antisensitization mechanisms may play only a minor part in the total perioperative pain experience. By administering sufficient doses of adenosine compounds during surgery, however, significant and long-lasting perioperative pain relief can be achieved via central A1 receptor-mediated antinociceptive/analgesic actions as well as via peripheral A2a or A3 receptor-mediated antiinflammatory actions. Thus, adenosine compounds have significant potential for alleviating various types of pain.
Collapse
Affiliation(s)
- Masakazu Hayashida
- Surgical Center Research Hospital, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shiroganedai, Minato-ku, Tokyo, 108-8639, Japan
| | | | | |
Collapse
|
35
|
Sak K, Illes P. Neuronal and glial cell lines as model systems for studying P2Y receptor pharmacology. Neurochem Int 2005; 47:401-412. [PMID: 16081187 DOI: 10.1016/j.neuint.2005.05.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2005] [Accepted: 05/31/2005] [Indexed: 11/18/2022]
Abstract
Investigation of the role of extracellular nucleotides in nervous system has been one of the main topics of the P2Y receptor research throughout the years. In parallel to numerous studies on primary culture systems, various neuronal and non-neuronal cell lines have been used to model in vitro the processes mediated by extracellular nucleotides. In this review article, a survey of expression profiles of G protein-coupled P2Y receptor subtypes in nervous-system-derived cell lines is presented, by analysing the receptor expression at the mRNA, protein, and functional level. The variability of receptor expression profiles in established cell lines is further discussed, bringing forward some general properties for neuronal and glial malignant cell lines.
Collapse
Affiliation(s)
- Katrin Sak
- Rudolf-Boehm Institute of Pharmacology and Toxicology, and Interdisciplinary Center for Clinical Research, Medical Faculty, University of Leipzig, D-04107 Leipzig, Germany.
| | | |
Collapse
|
36
|
Kochukov MY, Ritchie AK. P2X7 receptor stimulation of membrane internalization in a thyrocyte cell line. J Membr Biol 2005; 204:11-21. [PMID: 16007499 DOI: 10.1007/s00232-005-0742-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2004] [Revised: 03/10/2005] [Indexed: 01/30/2023]
Abstract
Using fluorescent membrane markers, we have previously shown that extracellular ATP stimulates both exocytosis and membrane internalization in the Fisher rat thyroid cell line FRTL. In this study, we examine the actions of ATP using whole-cell recording conditions that favor stimulation of membrane internalization. ATP stimulation of the P2X(7) receptor activated a reversible, Ca(2+)-permeable, cation conductance that slowly increased in size without changes in ion selectivity. ATP also induced a delayed irreversible decrease in cell capacitance (C(m)) that was equivalent to an 8% decrease in membrane surface area. Addition of guanosine 5'-0-2-thiodiphosphate to the pipette solution inhibited the ATP-induced decrease in C(m) without affecting channel activation. The effects of ATP on membrane conductance were mimicked by 2',3'-O-(4-benzoylbenzoyl)-ATP, but not by UTP, adenosine, or 2-methylthio-ATP, and were inhibited by pyridoxal phosphate-6-azophenyl-2'4'-disulfonic acid, adenosine 5'-triphosphate-2'3'-dialdehyde, and Cu(2+). The capacitance decrease persisted in Na(+)-, Ca(2+)- and Cl(-)-free external saline or with Ca(2+)-free pipette solution. It is concluded that ATP activation of the inotropic P2X(7) receptor stimulates membrane internalization by a mechanism that involves intracellular GTP, but does not require internal Ca(2+) or influx of Na(+) or Ca(2+) through the receptor-gated channel.
Collapse
Affiliation(s)
- M Y Kochukov
- Department of Physiology and Biophysics, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-0641, USA
| | | |
Collapse
|
37
|
Wang ECY, Lee JM, Ruiz WG, Balestreire EM, von Bodungen M, Barrick S, Cockayne DA, Birder LA, Apodaca G. ATP and purinergic receptor-dependent membrane traffic in bladder umbrella cells. J Clin Invest 2005; 115:2412-22. [PMID: 16110327 PMCID: PMC1187935 DOI: 10.1172/jci24086] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2004] [Accepted: 06/07/2005] [Indexed: 01/08/2023] Open
Abstract
The umbrella cells that line the bladder are mechanosensitive, and bladder filling increases the apical surface area of these cells; however, the upstream signals that regulate this process are unknown. Increased pressure stimulated ATP release from the isolated uroepithelium of rabbit bladders, which was blocked by inhibitors of vesicular transport, connexin hemichannels, ABC protein family members, and nucleoside transporters. Pressure-induced increases in membrane capacitance (a measure of apical plasma membrane surface area where 1 microF approximately equals 1 cm2) were inhibited by the serosal, but not mucosal, addition of apyrase or the purinergic receptor antagonist PPADS. Upon addition of purinergic receptor agonists, increased capacitance was observed even in the absence of pressure. Moreover, knockout mice lacking expression of P2X2 and/or P2X3 receptors failed to show increases in apical surface area when exposed to hydrostatic pressure. Treatments that prevented release of Ca2+ from intracellular stores or activation of PKA blocked ATPgammaS-stimulated changes in capacitance. These results indicate that increased hydrostatic pressure stimulates release of ATP from the uroepithelium and that upon binding to P2X and possibly P2Y receptors on the umbrella cell, downstream Ca2+ and PKA second messenger cascades may act to stimulate membrane insertion at the apical pole of these cells.
Collapse
Affiliation(s)
- Edward C Y Wang
- Renal-Electrolyte Division and Laboratory of Epithelial Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Fischer W, Franke H, Gröger-Arndt H, Illes P. Evidence for the existence of P2Y1,2,4 receptor subtypes in HEK-293 cells: reactivation of P2Y1 receptors after repetitive agonist application. Naunyn Schmiedebergs Arch Pharmacol 2005; 371:466-72. [PMID: 16025270 DOI: 10.1007/s00210-005-1070-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2005] [Accepted: 04/27/2005] [Indexed: 10/25/2022]
Abstract
ATP, ADPbetaS and UTP induced a comparable rise in the intracellular Ca2+ concentration ([Ca2+]i) in HEK-293 cells using fura-2 microfluorimetry. The responses persisted in Ca2+-free medium, but were abolished following depletion of intracellular Ca2+ stores by cyclopiazonic acid. Cross-desensitisation experiments demonstrated that exposure to ADPbetaS has no marked effect on UTP-induced [Ca2+]i transients and vice versa. Whereas the P2Y1 receptor-selective antagonist 2'-deoxy-N6-methyladenosine 3',5'-diphosphate (MRS 2179) abolished the responses to ADPbetaS, it decreased and did not alter the responses to ATP and UTP respectively. Although the P2Y1/P2Y4 receptor-preferential antagonist pyridoxalphosphate-6-azophenyl-2',4'-disulphonic acid (PPADS) abolished the responses to ADPbetaS, and decreased those to ATP, it also depressed the UTP-induced [Ca2+]i transients. Suramin, an antagonist with preference for P2Y2 receptors decreased both the ATP- and UTP-induced [Ca2+]i reactions. After numerous splittings, HEK-293 cells failed to react to ADPbetaS; however, repeated superfusion with this P2Y1 receptor agonist restored the [Ca2+]i signals. In agreement with the functional data, real-time polymerase chain reaction and immunocytochemical studies indicated the presence of P2Y1, P2Y2 and P2Y4 receptors. Our findings raise doubt with respect to the reliability of HEK-293 cells as expression systems for recombinant P2X receptors, because of a possible functional interaction with endogenous P2Y receptors.
Collapse
Affiliation(s)
- Wolfgang Fischer
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, Haertelstrasse 16-18, 04107 Leipzig, Germany.
| | | | | | | |
Collapse
|
39
|
Kim YC, Lee JS, Sak K, Marteau F, Mamedova L, Boeynaems JM, Jacobson KA. Synthesis of pyridoxal phosphate derivatives with antagonist activity at the P2Y13 receptor. Biochem Pharmacol 2005; 70:266-274. [PMID: 15913566 PMCID: PMC3401943 DOI: 10.1016/j.bcp.2005.04.021] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2005] [Revised: 04/21/2005] [Accepted: 04/21/2005] [Indexed: 11/26/2022]
Abstract
We have synthesized a series of derivatives of the known P2 receptor antagonist PPADS (pyridoxal-5'-phosphate-6-azo-phenyl-2,4-disulfonate) and examined their ability to inhibit functional activity of the recombinant human P2Y13 nucleotide receptor expressed in 1321N1 human astrocytoma cells co-expressing G(alpha)16 protein (AG32). Analogues of PPADS modified through substitution of the phenylazo ring, including halo and nitro substitution, and 5'-alkyl phosphonate analogues were synthesized and tested. A 6-benzyl-5'-methyl phosphonate analogue was prepared to examine the effect of stable replacement of the azo linkage. The highest antagonistic potency was observed for 6-(3-nitrophenylazo) derivatives of pyridoxal-5'-phosphate. The 2-chloro-5-nitro analogue (MRS 2211) and 4-chloro-3-nitro analogue (MRS 2603) inhibited ADP (100 nM)-induced inositol trisphosphate (IP3) formation with pIC50 values of 5.97 and 6.18, respectively, being 45- and 74-fold more potent than PPADS. The antagonism of MRS 2211 was competitive with a pA2 value of 6.3. MRS2211 and MRS2603 inhibited phospholipase C (PLC) responses to 30 nM 2-methylthio-ADP in human P2Y1 receptor-mediated 1321N1 astrocytoma cells with IC50 values of >10 and 0.245 microM, respectively. Both analogues were inactive (IC50>10 microM) as antagonists of human P2Y12 receptor-mediated PLC responses in 1321N1 astrocytoma cells. Thus, MRS2211 displayed >20-fold selectivity as antagonist of the P2Y13 receptor in comparison to P2Y1 and P2Y12 receptors, while MRS2603 antagonized both P2Y1 and P2Y13 receptors.
Collapse
Affiliation(s)
- Yong-Chul Kim
- Laboratory of Drug Discovery, Department of Life Science, Gwangju Institute of Science and Technology, 1 Oryong-dong, Buk-gu, Gwangju 500-712, Republic of Korea
| | - Jung-Sun Lee
- Laboratory of Drug Discovery, Department of Life Science, Gwangju Institute of Science and Technology, 1 Oryong-dong, Buk-gu, Gwangju 500-712, Republic of Korea
| | - Katrin Sak
- Institute of Interdisciplinary Research, Free University of Brussels, Route de Lennik 808, Brussels 1070, Belgium
| | - Frederic Marteau
- Institute of Interdisciplinary Research, Free University of Brussels, Route de Lennik 808, Brussels 1070, Belgium
| | - Liaman Mamedova
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0810, USA
| | - Jean-Marie Boeynaems
- Institute of Interdisciplinary Research, Free University of Brussels, Route de Lennik 808, Brussels 1070, Belgium
- Laboratory of Medical Chemistry, Department of Clinical Pathology, Erasme Hospital, Route de Lennik 808, Brussels 1070, Belgium
| | - Kenneth A. Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0810, USA
| |
Collapse
|
40
|
Khalifa M, El-Mahmoudy A, Shiina T, Shimizu Y, Nikami H, El-Sayed M, Kobayashi H, Takewaki T. An electrophysiological study of excitatory purinergic neuromuscular transmission in longitudinal smooth muscle of chicken anterior mesenteric artery. Br J Pharmacol 2005; 144:830-9. [PMID: 15685211 PMCID: PMC1576065 DOI: 10.1038/sj.bjp.0706076] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1. The object of the present study was to clarify the neurotransmitters controlling membrane responses to electrical field stimulation (EFS) in the longitudinal smooth muscle cells of the chicken anterior mesenteric artery. 2. EFS (5 pulses at 20 Hz) evoked a depolarization of amplitude 19.7+/-2.1 mV, total duration 29.6+/-3.1 s and latency 413.0+/-67.8 ms. This depolarization was tetrodotoxin (TTX)-sensitive and its amplitude was partially decreased by atropine (0.5 microM); however, its duration was shortened by further addition of prazosin (10 microM). 3. Atropine/prazosin-resistant component was blocked by the nonspecific purinergic antagonist, suramin, in a dose-dependent manner, indicating that this component is mediated by the neurotransmitter adenosine 5'-triphosphate (ATP). 4. Neither desensitization nor blocking of P2X receptor with its putative receptor agonist alpha,beta-methylene ATP (alpha,beta-MeATP, 1 microM) and its antagonist pyridoxalphosphate-6-azophenyl-2',4'-disulfonic (PPADS, up to 50 microM), had significant effect on the purinergic depolarization. In contrast, either desensitization or blocking of P2Y receptor with its putative agonist 2-methylthioATP (2-MeSATP, 1 microM) and its antagonist Cibacron blue F3GA (CBF3GA, 10 microM) abolished the purinergic depolarization, indicating that this response is mediated through P2Y but not P2X receptor. 5. The purinergic depolarization was inhibited by pertussis toxin (PTX, 600 ng ml(-1)). Furthermore, it was significantly inhibited by a phospholipase C (PLC) inhibitor, U-73122 (10 microM), indicating that the receptors involved in mediating the purinergic depolarization are linked to a PTX-sensitive G-protein, which is involved in a PLC-mediated signaling pathway. 6. Data of the present study suggest that the EFS-induced excitatory membrane response occurring in the longitudinal smooth muscle of the chicken anterior mesenteric artery is mainly purinergic in nature and is mediated via P2Y purinoceptors.
Collapse
Affiliation(s)
- Maisa Khalifa
- Department of Basic Veterinary Science, Laboratory of Physiology, The United Graduate School, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - AbuBakr El-Mahmoudy
- Department of Basic Veterinary Science, Laboratory of Physiology, The United Graduate School, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University-Benha Branch, 13736 Moshtohor, Egypt
| | - Takahiko Shiina
- Department of Basic Veterinary Science, Laboratory of Physiology, The United Graduate School, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Yasutake Shimizu
- Department of Basic Veterinary Science, Laboratory of Physiology, The United Graduate School, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
- Author for correspondence:
| | - Hideki Nikami
- Division of Animal Experiment, Life Science Research Center, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Mossad El-Sayed
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University-Benha Branch, 13736 Moshtohor, Egypt
| | - Haruo Kobayashi
- Department of Veterinary medicine, Faculty of Agriculture, Iwate University, Morioka 020-8550, Japan
| | - Tadashi Takewaki
- Department of Basic Veterinary Science, Laboratory of Physiology, The United Graduate School, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| |
Collapse
|
41
|
Solini A, Iacobini C, Ricci C, Chiozzi P, Amadio L, Pricci F, Di Mario U, Di Virgilio F, Pugliese G. Purinergic modulation of mesangial extracellular matrix production: role in diabetic and other glomerular diseases. Kidney Int 2005; 67:875-85. [PMID: 15698427 DOI: 10.1111/j.1523-1755.2005.00152.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Extracellular adenosine triphosphate (ATP) (eATP) mediates several biologic activities via purinergic P2 receptors (P2Rs). This study aimed at (1) evaluating the role of the purinergic system in modulating mesangial extracellular matrix (ECM) and transforming growth factor-beta (TGF-beta) production and (2) its contribution to diabetes-induced mesangial ECM accumulation. METHODS Rat mesangial cells were grown in normal glucose (5.5 mmol/L) or high glucose (30 mmol/L) containing media and probed with purinergic agonists and antagonists for the assessment of the expression pattern and function of P2Rs; release of ATP and activity of ectoATPases; and changes in ECM and TGF-beta expression. RESULTS Cells cultured in normal glucose and high glucose expressed similar amounts of functional P2Rs of the P2X(2), P2X(3), P2X(4), P2X(5), P2X(7), P2Y(1), P2Y(2), P2Y(4), and P2Y(6) subtypes. Levels of eATP were higher in high glucose vs. normal glucose, with unchanged ectoATPase activity. The ATP-hydrolyzing enzymes hexokinase or apyrase reduced ECM and TGF-beta production from cells grown in high glucose, but not normal glucose. Under both normal glucose and high glucose conditions, ATP and the P2X(7) agonist benzoylbenzoylATP increased dose-dependently ECM and TGF-beta production, whereas the P2Y agonist uridine triphosphate (UTP) produced the opposite effect. The P2X(7) inhibitor oxidized ATP attenuated the ECM and TGF-beta up-regulation induced by ATP and, to a lesser extent, that caused by high glucose. A TGF-beta neutralizing antibody also prevented ATP-induced ECM up-regulation. CONCLUSION These data indicate a role for eATP in regulating ECM production via TGF-beta and suggest that P2XRs and P2YRs differentially modulate this process. An increased ATP release induced by hyperglycemia might contribute to mesangial matrix expansion occurring in diabetes.
Collapse
Affiliation(s)
- Anna Solini
- Department of Internal Medicine, University of Pisa, Pisa, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Klepeis VE, Weinger I, Kaczmarek E, Trinkaus-Randall V. P2Y receptors play a critical role in epithelial cell communication and migration. J Cell Biochem 2005; 93:1115-33. [PMID: 15449317 DOI: 10.1002/jcb.20258] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Cellular injury induces a complex series of events that involves Ca2+ signaling, cell communication, and migration. One of the first responses following mechanical injury is the propagation of a Ca2+ wave (Klepeis et al. [2001] J Cell Sci 114(Pt 23):4185-4195). The wave is generated by the extracellular release of ATP, which also induces phosphorylation of ERK (Yang et al. [2004] J Cell Biochem 91(5):938-950). ATP and other nucleotides, which bind to and activate specific purinergic receptors were used to mimic injury. Our goal was to determine which of the P2Y purinergic receptors are expressed and stimulated in corneal epithelial cells and which signaling pathways are activated leading to changes in cell migration, an event critical for wound closure. In this study, we demonstrated that the P2Y1, P2Y2, P2Y4, P2Y6, and P2Y11 receptors were present in corneal epithelial cells. A potency profile was determined by Ca2+ imaging for nucleotide agonists as follows: ATP > or = UTP > ADP > or = UDP. In contrast, negligible responses were seen for beta,gamma-meATP, a general P2X receptor agonist and adenosine, a P1 receptor agonist. Homologous desensitization of the Ca2+ response was observed for the four nucleotides. However, P2Y receptor internalization and degradation was not detected following stimulation with ATP, which is in contrast to EGFR internalization observed in response to EGF. ATP induced cell migration was comparable to that of EGF and was maximal at 1 microM. Cells exposed to ATP, UTP, ADP, and UDP demonstrated a rapid twofold increase in phosphorylation of paxillin at Y31 and Y118, however, there was no activation elicited by beta,gamma-meATP or adenosine. Additional studies demonstrated that wound closure was inhibited by reactive blue 2. These results indicate that P2Y receptors play a critical role in the injury repair process.
Collapse
Affiliation(s)
- Veronica E Klepeis
- Department of Pathology, Boston University School of Medicine, Boston, MA, 02118
| | | | | | | |
Collapse
|
43
|
Sylte MJ, Kuckleburg CJ, Inzana TJ, Bertics PJ, Czuprynski CJ. Stimulation of P2X receptors enhances lipooligosaccharide-mediated apoptosis of endothelial cells. J Leukoc Biol 2005; 77:958-65. [PMID: 15728716 DOI: 10.1189/jlb.1004597] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Exposure of endothelial cells to lipid A-containing molecules, such as lipopolysaccharide (LPS) or lipooligosaccharide (LOS), causes the release of purinergic compounds [e.g., adenosine 5'-triphosphate (ATP)] and can lead to apoptosis. The P2X family of purinergic receptors (e.g., P2X(7)) has been reported to modulate LPS signaling events and to participate in apoptosis. We investigated the role that P2X receptors play in the apoptosis that follows exposure of bovine endothelial cells to Haemophilus somnus LOS. Addition of P2X inhibitors, such as periodate-oxidized ATP (oATP) or pyridoxal-phosphate-6-azophenyl-2',4'-disulfonic acid tetrasodium, significantly reduced LOS-induced apoptosis. Incubation of endothelial cells with apyrase, which degrades ATP, diminished LOS-induced apoptosis of endothelial cells. Concomitant addition of P2X agonists [e.g., 2',3'-(4-benzoyl)-benzoyl ATP or ATP] to LOS-treated endothelial cells significantly enhanced caspase-3 activation. The P2X antagonist oATP significantly blocked caspase-8 but not caspase-9 activation in LOS-treated endothelial cells. Together, these data indicate that stimulation of P2X receptors enhances LOS-induced apoptosis of endothelial cells, possibly as a result of endogenous release of ATP, which results in caspase-8 activation.
Collapse
Affiliation(s)
- Matt J Sylte
- Department of Pathobiological Sciences, School of Veterinary Medicine, Madison, WI 63706, USA
| | | | | | | | | |
Collapse
|
44
|
Scheibler P, Pesic M, Franke H, Reinhardt R, Wirkner K, Illes P, Nörenberg W. P2X2 and P2Y1 immunofluorescence in rat neostriatal medium-spiny projection neurones and cholinergic interneurones is not linked to respective purinergic receptor function. Br J Pharmacol 2005; 143:119-31. [PMID: 15345659 PMCID: PMC1575277 DOI: 10.1038/sj.bjp.0705916] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1. The presence of ionotropic P2X receptors, targets of ATP in fast synaptic transmission, as well as metabotropic P2Y receptors, known to activate K(+) currents in cultured neostriatal neurones, was investigated in medium-spiny neurones and cholinergic interneurones contained in neostriatal brain slices from 5-26-day-old rats. 2. In these cells, adenosine-5'-triphosphate (ATP) (100-1000 microm), 2-methylthioadenosine-5'-triphosphate (2MeSATP), alpha,beta-methyleneadenosine-5'-triphosphate (alpha,betameATP, 30-300 microm, each) and adenosine-5'-O-(3-thiotriphosphate (ATPgammaS) (100 microm) failed to evoke P2X receptor currents even when 8-cyclopentyl-1,3-dipropylxanthine (DPCPX, 0.1 microm), apyrase (10 U ml(-1)) or intracellular Cs(+) was used to prevent occluding effects of the ATP breakdown product adenosine, desensitisation of P2X receptors by endogenous ATP and an interference with the activation of K(+) channels, respectively. P2X receptor agonists were also ineffective in outside-out patches withdrawn from the brain slice tissue. Muscimol (10 microm) evoked GABA(A) receptor-mediated currents under all these conditions. 3. When used as a control, locus coeruleus neurones responded with P2X receptor-mediated currents to ATP (300 microm), 2MeSATP and alpha,betameATP (100 microm, each). 4. ATP and adenosine-5'-diphosphate (ADP) (100 microm, each) did not activate K(+) currents in the neostriatal neurones. 5. Despite the observed lack of function, P2X(2) and P2Y(1) immunofluorescence was found in roughly 50% of the medium-spiny neurones and cholinergic interneurones. 6. A role of ATP in synaptic transmission to striatal medium-spiny neurones and cholinergic interneurones appears unlikely, however, the otherwise silent P2X and P2Y receptors may gain functionality under certain yet unknown conditions.
Collapse
Affiliation(s)
- Peter Scheibler
- Rudolf-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, Härtelstraße 16-18, D-04107, Germany
| | - Mihail Pesic
- Rudolf-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, Härtelstraße 16-18, D-04107, Germany
| | - Heike Franke
- Rudolf-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, Härtelstraße 16-18, D-04107, Germany
| | - Robert Reinhardt
- Rudolf-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, Härtelstraße 16-18, D-04107, Germany
| | - Kerstin Wirkner
- Rudolf-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, Härtelstraße 16-18, D-04107, Germany
| | - Peter Illes
- Rudolf-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, Härtelstraße 16-18, D-04107, Germany
| | - Wolfgang Nörenberg
- Rudolf-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, Härtelstraße 16-18, D-04107, Germany
- Author for correspondence:
| |
Collapse
|
45
|
Fries JE, Wheeler-Schilling TH, Kohler K, Guenther E. Distribution of metabotropic P2Y receptors in the rat retina: a single-cell RT-PCR study. ACTA ACUST UNITED AC 2004; 130:1-6. [PMID: 15519670 DOI: 10.1016/j.molbrainres.2004.06.041] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2004] [Indexed: 11/21/2022]
Abstract
P2Y receptors are metabotropic G-protein linked purinergic receptors, which are especially widespread in the central nervous system. The purpose of the present study was to determine the distribution patterns of P2Y receptors in distinct retinal cell types in the adult retina. Retinal ganglion cells (RGC), bipolar cells (BPC) and Muller cells (MC) of adult pigmented rats were analyzed for their expression of P2Y-receptor subtypes P2Y1, P2Y2, P2Y4, and P2Y6 by single-cell reverse transcription polymerase chain reaction (SC-RT-PCR). SC-RT-PCR resulted in a positive amplification signal for all P2Y-receptor subtype mRNAs in all cell types examined. However, subtype distribution differed among the different cell types. The percentage of cells expressing a distinct P2Y subtype was: (a) for RGCs: 80% with P2Y1, 100% with P2Y2, 30% with P2Y4 and 50% with P2Y6, (b) for BPCs: 60% with P2Y1, 40% with P2Y2, 20% with P2Y4 and 80% with P2Y6, and (c) for MCs: 60% with P2Y1, 80% with P2Y2, 60% with P2Y4 and 100% with P2Y6. Our data show that different subtypes of P2Y receptors (P2Y1, P2Y2, P2Y4 and P2Y6) are expressed in various retinal cells and indicate that extracellular purines and pyrimidines act on RGCs, BPCs and MCs via different P2Y receptors.
Collapse
Affiliation(s)
- Julia E Fries
- Experimental Ophthalmology, University Eye Hospital, Tübingen, Germany
| | | | | | | |
Collapse
|
46
|
Muscella A, Greco S, Elia MG, Storelli C, Marsigliante S. Differential signalling of purinoceptors in HeLa cells through the extracellular signal-regulated kinase and protein kinase C pathways. J Cell Physiol 2004; 200:428-39. [PMID: 15254971 DOI: 10.1002/jcp.20033] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We have previously shown that HeLa cells express P2Y2 and P2Y6 receptors endogenously and determined the pathways by which the P2Y2 controls proliferation and Na+/K+ATPase activity. Our objective in this study was to investigate the hypothesis that P2Y6 also controls proliferation and Na+/K+ATPase activity; the pathways used in these actions were partially characterised. We found that P2Y6 activation controlled cell proliferation but not the activity of the Na+/K+ATPase. UDP activation of P2Y6 provoked: (a) an increase in free cytosolic calcium; (b) the activation of protein kinase C-alpha, -beta, -delta, -epsilon, and -zeta but not of PKC-iota and -eta; (c) the phosphorylation of the extracellular signal-regulated protein kinases 1 and 2 (ERK1/2); (d) the expression of c-Fos protein. The P2Y6 induced cell proliferation was blocked by the mitogen-activated protein kinase kinase (MAPKK) inhibitor PD098059, thereby indicating that the ERK pathway mediates the mitogenic signalling of P2Y6. PKC and phosphoinositide 3-kinase (PI3K) inhibitors were tested at two different time points of ERK1/2 phosphorylation (10 and 60 min). The results suggest that novel PKCs and PI3K initiate the response but both conventional and atypical PKCs are required for the maintenance of the UDP-induced phosphorylation of ERK1/2. The induction of c-Fos was greatly diminished by conventional or atypical PKC-zeta inhibition, suggesting that it may be due to PKC-alpha/beta and -zeta activity. These observations demonstrate that UDP acts as a proliferative agent in HeLa cells activating multiple signalling pathways involving conventional, novel, and atypical PKCs, PI3K, and ERK. Of these pathways, conventional and atypical PKCs appear responsible for the induction of c-Fos, while ERK is responsible for cell proliferation and depends upon both novel and atypical PKCs and PI3K activities.
Collapse
Affiliation(s)
- Antonella Muscella
- Laboratorio di Fisiologia Cellulare, Dipartimento di Scienze e Tecnologie Biologiche e Ambientali, Università di Lecce, Ecotekne, Lecce, Italia
| | | | | | | | | |
Collapse
|
47
|
Ennion SJ, Powell AD, Seward EP. Identification of the P2Y(12) receptor in nucleotide inhibition of exocytosis from bovine chromaffin cells. Mol Pharmacol 2004; 66:601-11. [PMID: 15322252 DOI: 10.1124/mol.104.000224] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nucleotides are released from bovine chromaffin cells and take part in a feedback loop to inhibit further exocytosis. To identify the nucleotide receptors involved, we measured the effects of a range of exogenous nucleotides and related antagonists on voltage-operated calcium currents (I(Ca)), intracellular calcium concentration ([Ca(2+)](i)), and membrane capacitance changes. In comparative parallel studies, we also cloned the bovine P2Y(12) receptor from chromaffin cells and determined its properties by coexpression in Xenopus laevis oocytes with inward-rectifier potassium channels made up of Kir3.1 and Kir3.4. In both systems, the agonist order of potency was essentially identical (2-methylthio-ATP approximately 2-methylthio-ADP >> ATP approximately ADP > UDP). alphabeta-Methylene-ATP and adenosine were inactive. UTP inhibited I(Ca) in chromaffin cells (pEC(50) = 4.89 +/- 0.11) but was essentially inactive at the cloned P2Y(12) receptor. The relatively nonselective P2 antagonist pyridoxal-phosphate-6-azophenyl-2',4' disulfonic acid blocked nucleotide responses in both chromaffin cells and X. laevis oocytes, whereas the P2Y(12)- and P2Y(13)-selective antagonist N(6)-(2-methylthioethyl)-2-(3,3,3-trifluoropropylthio)-beta,gamma-dichloromethylene ATP (ARC69931MX) blocked responses to ATP in both chromaffin cells and X. laevis oocytes but not to UTP in chromaffin cells. These results identify the P2Y(12) purine receptor as a key component of the nucleotide inhibitory pathway and also demonstrate the involvement of a UTP-sensitive G(i/o) -coupled pyrimidine receptor.
Collapse
Affiliation(s)
- Steven J Ennion
- Department of Biomedical Sciences, University of Sheffield, Alfred Denny Building, Western Bank, Sheffield, S10 2TN, United Kingdom
| | | | | |
Collapse
|
48
|
Kochukov MY, Ritchie AK. A P2X7 receptor stimulates plasma membrane trafficking in the FRTL rat thyrocyte cell line. Am J Physiol Cell Physiol 2004; 287:C992-C1002. [PMID: 15189815 DOI: 10.1152/ajpcell.00538.2003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Thyroid cells express a variety of P2Y and P2X purinergic receptor subtypes. G protein-coupled P2Y receptors influence a wide variety of thyrocyte-specific functions; however, functional P2X receptor-gated channels have not been observed. In this study, we used whole cell patch-clamp recording and fluorescence imaging of the plasma membrane marker FM1-43 to examine the effects of extracellular ATP on membrane permeability and trafficking in the Fisher rat thyroid cell line FRTL. We found a cation-selective current that was gated by ATP and 2',3'-O-(4-benzoylbenzoyl)-ATP but not by UTP. The ATP-evoked currents were inhibited by pyridoxal phosphate 6-azophenyl-2',4'-disulfonic acid, adenosine 5'-triphosphate-2',3'-dialdehyde, 100 microM Zn(2+), and 50 microM Cu(2+). Fluorescence imaging revealed pronounced, temperature-sensitive stimulation of exocytosis and membrane internalization by ATP with the same pharmacological profile as observed for activation of current. The EC(50) for ATP stimulation of internalization was 440 microM in saline containing 2 mM Ca(2+) and 2 mM Mg(2+), and 33 microM in low-Mg(2+), nominally Ca(2+)-free saline. Overall, the results are most consistent with activation of a P2X(7) receptor by ATP(4-). However, low permeability to N-methyl-d-glucamine(+) and the propidium cation YO-PRO-1 indicates absence of the cytolytic pore that often accompanies P2X(7) receptor activation. ATP stimulation of internalization occurs in Na(+)-free, Ca(2+)-free, or low-Mg(2+) saline and therefore does not depend on cation influx through the ATP-gated channel. We conclude that ATP activation of a P2X(7) receptor stimulates membrane internalization in FRTL cells via a transduction pathway that does not depend on cation influx.
Collapse
Affiliation(s)
- M Y Kochukov
- Department of Physiology and Biophysics, University of Texas Medical Branch, 301 Univ. Boulevard, Galveston, TX 77555-0641, USA
| | | |
Collapse
|
49
|
Suzuki T, Hide I, Ido K, Kohsaka S, Inoue K, Nakata Y. Production and release of neuroprotective tumor necrosis factor by P2X7 receptor-activated microglia. J Neurosci 2004; 24:1-7. [PMID: 14715932 PMCID: PMC6729576 DOI: 10.1523/jneurosci.3792-03.2004] [Citation(s) in RCA: 320] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
After a brain insult, ATP is released from injured cells and activates microglia. The microglia that are activated in this way then release a range of bioactive substances, one of which is tumor necrosis factor (TNF). The release of TNF appears to be dependent on the P2X7 receptor. The inhibitors 1,4-diamino-2,3-dicyano-1,4-bis[2-amino-phenylthio]butadiene (U0126), anthra[1,9-cd]pyrazol-6(2H)-one (SP600125), and 4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)IH-imidazole (SB203580), which target MEK (mitogen-activated protein kinase kinase), JNK (c-Jun N-terminal kinase), and p38, respectively, all potently suppress the production of TNF in ATP-stimulated microglia, whereas the production of TNF mRNA is strongly inhibited by U0126 and SP600125. SB203580 did not affect the increased levels of TNF mRNA but did prevent TNF mRNA from accumulating in the cytoplasm. The ATP-provoked activation of JNK and p38 [but not extracellular signal-regulated kinase (ERK)] could be inhibited by brilliant blue G, a P2X7 receptor blocker, and by genistein and 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine, which are general and src-family-specific tyrosine kinase inhibitors, respectively. Most important, we found that treatment of the microglia in neuron-microglia cocultures with the P2X7 agonist 2'-3'-O-(benzoyl-benzoyl) ATP led to significant reductions in glutamate-induced neuronal cell death, and that either TNF-alpha converting enzyme inhibitor or anti-TNF readily suppressed the protective effect implied by this result. Together, these findings indicate that both ERK and JNK are involved in the regulation of TNF mRNA expression, that p38 is involved in the nucleocytoplasmic transport of TNF mRNA, and that a PTK (protein tyrosine kinase), possibly a member of the src family, acts downstream of the P2X7 receptor to activate JNK and p38. Finally, our data suggest that P2X7 receptor-activated microglia protect neurons against glutamate toxicity primarily because they are able to release TNF.
Collapse
Affiliation(s)
- Tomohisa Suzuki
- Department of Pharmacology, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | | | | | | | | | | |
Collapse
|
50
|
Bowler JW, Jayne Bailey R, Alan North R, Surprenant A. P2X4, P2Y1 and P2Y2 receptors on rat alveolar macrophages. Br J Pharmacol 2003; 140:567-75. [PMID: 12970084 PMCID: PMC1574050 DOI: 10.1038/sj.bjp.0705459] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
ATP receptors present on rat alveolar macrophages (NR8383 cells) were identified by recordings of membrane current, measurements of intracellular calcium, RT-PCR and immunocytochemistry. In whole-cell recordings with a sodium-based internal solution, ATP evoked an inward current at -60 mV. This reversed at 0 mV. The EC50 for ATP was 18 microM in normal external solution (calcium 2 mm, magnesium 1 mm). The currents evoked by 2',3-O-(4-benzoyl)benzoyl-ATP were about five-fold smaller than those observed with ATP. ADP, UTP and alphabeta-methylene-ATP (alphabetameATP) (up to 100 microM) had no effect. ATP-evoked currents were potentiated up to ten-fold by ivermectin and were unaffected by suramin (30-100 microM), pyridoxal-phosphate-6-azophenyl-(2,4-sulphonic acid) (30-100 microM), and brilliant blue G (1 microM). In whole-cell recordings with a potassium-based internal solution and low EGTA (0.01 mm), ATP evoked an inward current at -60 mV that was followed by larger outward current. ADP and UTP (1-100 microM) evoked only outward currents; these reversed polarity at the potassium equilibrium potential and were blocked by apamin (10 nm). Outward currents were also blocked by the phospholipase C inhibitor U73122 (1 microM), and they were not seen with higher intracellular EGTA (10 mm). Suramin (30 microM) blocked the outward currents evoked by ATP and UTP, but not that evoked by ADP. PPADS (10 microM) blocked the ADP-evoked outward current without altering the ATP or UTP currents. RT-PCR showed transcripts for P2X subunits 1, 4 and 7 (not 2, 3, 5, 6) and P2Y receptors 1, 2, 4 and 12 (not 6). Immunocytochemistry showed strong P2X4 receptor expression partly associated with the membrane, weak P2X7 staining that was not associated with the cell membrane, and no P2X1 receptor immunoreactivity. We conclude that rat alveolar macrophages express (probably homomeric) P2X4 receptors, but find no evidence for other functional P2X subtypes. The P2Y receptors are most likely P2Y1 and P2Y2 and these couple through phospholipase C to an increase in intracellular calcium and the opening of SK type potassium channels.
Collapse
Affiliation(s)
- Jonathan W Bowler
- Institute of Molecular Physiology, University of Sheffield, Western Bank, Sheffield S10 2TN
| | - R Jayne Bailey
- Institute of Molecular Physiology, University of Sheffield, Western Bank, Sheffield S10 2TN
| | - R Alan North
- Institute of Molecular Physiology, University of Sheffield, Western Bank, Sheffield S10 2TN
| | - Annmarie Surprenant
- Institute of Molecular Physiology, University of Sheffield, Western Bank, Sheffield S10 2TN
- Author for correspondence:
| |
Collapse
|