1
|
Li YN, Zhu CY, Xu CL, Yu S, Huan T, Zhang YW. Cloning, expression, and characterization of a heparinase III coupled with heparinase I for enzymatic depolymerization of heparin. World J Microbiol Biotechnol 2024; 41:15. [PMID: 39710799 DOI: 10.1007/s11274-024-04225-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 12/09/2024] [Indexed: 12/24/2024]
Abstract
A heparinase III (NsHep-III) from Niabella sp. was identified, cloned, and expressed as soluble form in E. coli BL21 (DE3). With heparin as substrate, the maximum activity of NsHep-III of 90.0 U·mg- 1 was achieved at pH 7.1 Tris-HCl (containing 15 mM Mg2+) and 30oC. The half-life of NsHep-III was determined to be 5 h at 30oC. The interactions between NsHep-III and substrates were studied by molecular docking. The combination of NsHep-III and a heparinase I from Bacteroides eggthii (BeHep-I) was employed to cleave heparin. Analysis of the enzymatic products of NsHep-III by SAX-HPLC showed seven different modified disaccharides, indicating that NsHep-III has a wide range of substrate specificity. The results of GPC analysis demonstrated that the average molecular weight of the product of heparin cleavage by the combination of NsHep-III/BeHep-I was reduced to 3969 Da, which accounted for 90% of all the components, and complied with the requirements of the European Pharmacopoeia. NsHep-III has notable activity and efficiency in cleaving heparin, which is potentially useful for the industrial production of low molecular weight heparin.
Collapse
Affiliation(s)
- Yang-Nan Li
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China
| | - Chen-Yuan Zhu
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China
| | - Chen-Lu Xu
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China
| | - Shen Yu
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China
| | - Tong Huan
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China
| | - Ye-Wang Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China.
| |
Collapse
|
2
|
Wei L, Zou R, Du M, Zhang Q, Lu D, Xu Y, Xu X, Wang W, Zhang YZ, Li F. Discovery of a class of glycosaminoglycan lyases with ultrabroad substrate spectrum and their substrate structure preferences. J Biol Chem 2024; 300:107466. [PMID: 38876302 PMCID: PMC11262172 DOI: 10.1016/j.jbc.2024.107466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/23/2024] [Accepted: 06/04/2024] [Indexed: 06/16/2024] Open
Abstract
Glycosaminoglycan (GAG) lyases are often strictly substrate specific, and it is especially difficult to simultaneously degrade GAGs with different types of glycosidic bonds. Herein, we found a new class of GAG lyases (GAGases) from different bacteria. These GAGases belong to polysaccharide lyase 35 family and share quite low homology with the identified GAG lyases. The most surprising thing is that GAGases can not only degrade three types of GAGs: hyaluronan, chondroitin sulfate, and heparan sulfate but also even one of them can also degrade alginate. Further investigation of structural preferences revealed that GAGases selectively act on GAG domains composed of non/6-O-/N-sulfated hexosamines and d-glucoronic acids as well as on alginate domains composed of d-mannuronic acids. In addition, GAG lyases were once speculated to have evolved from alginate lyases, but no transitional enzymes have been found. The discovery of GAGases not only broadens the category of GAG lyases, provides new enzymatic tools for the structural and functional studies of GAGs with specific structures, but also provides candidates for the evolution of GAG lyases.
Collapse
Affiliation(s)
- Lin Wei
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
| | - Ruyi Zou
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
| | - Min Du
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
| | - Qingdong Zhang
- School of Life Science and Technology, Weifang Medical University, Weifang, China
| | - Danrong Lu
- School of Life Science and Technology, Weifang Medical University, Weifang, China
| | - Yingying Xu
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
| | - Xiangyu Xu
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
| | - Wenshuang Wang
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
| | - Yu-Zhong Zhang
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao, China; Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China; Joint Research Center for Marine Microbial Science and Technology, Shandong University and Ocean University of China, Qingdao, China.
| | - Fuchuan Li
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China; Joint Research Center for Marine Microbial Science and Technology, Shandong University and Ocean University of China, Qingdao, China.
| |
Collapse
|
3
|
Choi JW, Kim K, Mukhambetiyar K, Lee NK, Sabaté Del Río J, Joo J, Park CG, Kwon T, Park TE. Organ-on-a-Chip Approach for Accelerating Blood-Brain Barrier Nanoshuttle Discovery. ACS NANO 2024; 18:14388-14402. [PMID: 38775287 DOI: 10.1021/acsnano.4c00994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Organ-on-a-chip, which recapitulates the dynamics of in vivo vasculature, has emerged as a promising platform for studying organ-specific vascular beds. However, its practical advantages in identifying vascular-targeted drug delivery systems (DDS) over traditional in vitro models remain underexplored. This study demonstrates the reliability and efficacy of the organ-on-a-chip in screening efficient DDS by comparing its performance with that of a conventional transwell, both designed to simulate the blood-brain barrier (BBB). The BBB nanoshuttles discovered through BBB Chip-based screening demonstrated superior functionality in vivo compared to those identified using transwell methods. This enhanced effectiveness is attributed to the BBB Chip's accurate replication of the structure and dynamics of the endothelial glycocalyx, a crucial protective layer within blood vessels, especially under shear stress. This capability of the BBB Chip has enabled the identification of molecular shuttles that efficiently exploit the endothelial glycocalyx, thereby enhancing transendothelial transport efficacy. Our findings suggest that organ-on-a-chip technology holds considerable promise for advancing research in vascular-targeted DDS due to its accurate simulation of molecular transport within endothelial systems.
Collapse
Affiliation(s)
- Jeong-Won Choi
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, Massachusetts 02134, United States
| | - Kyungha Kim
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Karakoz Mukhambetiyar
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Na Kyeong Lee
- Department of Biomedical Engineering, Institute for Cross-disciplinary Studies (ICS), Sungkyunkwan University, Suwon, Gyeonggi 16419, Republic of Korea
| | - Jonathan Sabaté Del Río
- Center for Algorithmic and Robotized Synthesis (CARS), Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Jinmyoung Joo
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
- Graduate School of Health Science and Technology, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Chun Gwon Park
- Department of Biomedical Engineering, Institute for Cross-disciplinary Studies (ICS), Sungkyunkwan University, Suwon, Gyeonggi 16419, Republic of Korea
| | - Taejoon Kwon
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
| | - Tae-Eun Park
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
4
|
Production, characteristics and applications of microbial heparinases. Biochimie 2022; 198:109-140. [DOI: 10.1016/j.biochi.2022.03.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/03/2022] [Accepted: 03/28/2022] [Indexed: 12/26/2022]
|
5
|
Clark GT, Yu Y, Urban CA, Fu G, Wang C, Zhang F, Linhardt RJ, Hurley JM. Circadian control of heparan sulfate levels times phagocytosis of amyloid beta aggregates. PLoS Genet 2022; 18:e1009994. [PMID: 35143487 PMCID: PMC8830681 DOI: 10.1371/journal.pgen.1009994] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 12/14/2021] [Indexed: 12/17/2022] Open
Abstract
Alzheimer's Disease (AD) is a neuroinflammatory disease characterized partly by the inability to clear, and subsequent build-up, of amyloid-beta (Aβ). AD has a bi-directional relationship with circadian disruption (CD) with sleep disturbances starting years before disease onset. However, the molecular mechanism underlying the relationship of CD and AD has not been elucidated. Myeloid-based phagocytosis, a key component in the metabolism of Aβ, is circadianly-regulated, presenting a potential link between CD and AD. In this work, we revealed that the phagocytosis of Aβ42 undergoes a daily circadian oscillation. We found the circadian timing of global heparan sulfate proteoglycan (HSPG) biosynthesis was the molecular timer for the clock-controlled phagocytosis of Aβ and that both HSPG binding and aggregation may play a role in this oscillation. These data highlight that circadian regulation in immune cells may play a role in the intricate relationship between the circadian clock and AD.
Collapse
Affiliation(s)
- Gretchen T. Clark
- Rensselaer Polytechnic Institute, Biological Sciences, Troy, New York, United States of America
| | - Yanlei Yu
- Rensselaer Polytechnic Institute, Chemistry and Chemical Biology, Troy, New York, United States of America
| | - Cooper A. Urban
- Rensselaer Polytechnic Institute, Biological Sciences, Troy, New York, United States of America
| | - Guo Fu
- Rensselaer Polytechnic Institute, Biological Sciences, Troy, New York, United States of America
- Now at the Innovation and Integration Center of New Laser Technology, Chinese Academy of Sciences, Shanghai, China
| | - Chunyu Wang
- Rensselaer Polytechnic Institute, Biological Sciences, Troy, New York, United States of America
- Rensselaer Polytechnic Institute, Chemistry and Chemical Biology, Troy, New York, United States of America
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, United States of America
| | - Fuming Zhang
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, United States of America
- Rensselaer Polytechnic Institute, Chemical and Biological Engineering, Troy, New York, United States of America
| | - Robert J. Linhardt
- Rensselaer Polytechnic Institute, Biological Sciences, Troy, New York, United States of America
- Rensselaer Polytechnic Institute, Chemistry and Chemical Biology, Troy, New York, United States of America
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, United States of America
- Rensselaer Polytechnic Institute, Chemical and Biological Engineering, Troy, New York, United States of America
| | - Jennifer M. Hurley
- Rensselaer Polytechnic Institute, Biological Sciences, Troy, New York, United States of America
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, United States of America
| |
Collapse
|
6
|
Shriver Z, Sasisekharan R. Capillary Electrophoretic Analysis of Isolated Sulfated Polysaccharides to Characterize Pharmaceutical Products. Methods Mol Biol 2021; 2303:329-339. [PMID: 34626391 DOI: 10.1007/978-1-0716-1398-6_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Capillary electrophoresis is a powerful methodology for quantification and structural characterization of highly anionic polysaccharides. Separation of saccharides under conditions of electrophoretic flow, typically achieved under low pH (Ampofo et al., Anal Biochem 199: 249-255, 1991; Rhomberg et al., Proc Natl Acad Sci U S A 95: 4176-4181, 1998) is charge-based. Resolution of components is often superior to flow-based techniques, such as liquid chromatography. During the heparin contamination crisis, capillary electrophoresis was one of the key methodologies used to identify whether or not heparin lots were contaminated (Guerrini et al., Nat Biotechnol 26: 669-675, 2008; Ye et al., J Pharm Biomed Anal 85: 99-107, 2013; Volpi et al., Electrophoresis 33: 1531-1537, 2012).Here we describe a method for the isolation of sulfated heparin/heparan sulfate saccharides from urine, their digestion by deployment of heparinase enzymes (Ernst et al., Crit Rev Biochem Mol Biol 30: 387-444, 1995) resolution of species through use of orthogonal digestions, and analysis of the resulting disaccharides by capillary electrophoresis.
Collapse
Affiliation(s)
- Zachary Shriver
- Department of Biological Engineering, Koch Institute of Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ram Sasisekharan
- Department of Biological Engineering, Koch Institute of Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
7
|
Wang H, Zhang L, Wang Y, Li J, Du G, Kang Z. Engineering the heparin-binding pocket to enhance the catalytic efficiency of a thermostable heparinase III from Bacteroides thetaiotaomicron. Enzyme Microb Technol 2020; 137:109549. [DOI: 10.1016/j.enzmictec.2020.109549] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/26/2020] [Accepted: 03/08/2020] [Indexed: 02/06/2023]
|
8
|
Williams A, Gedeon KS, Vaidyanathan D, Yu Y, Collins CH, Dordick JS, Linhardt RJ, Koffas MAG. Metabolic engineering of Bacillus megaterium for heparosan biosynthesis using Pasteurella multocida heparosan synthase, PmHS2. Microb Cell Fact 2019; 18:132. [PMID: 31405374 PMCID: PMC6691538 DOI: 10.1186/s12934-019-1187-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 08/07/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Heparosan is the unsulfated precursor of heparin and heparan sulfate and its synthesis is typically the first step in the production of bioengineered heparin. In addition to its utility as the starting material for this important anticoagulant and anti-inflammatory drug, heparosan is a versatile compound that possesses suitable chemical and physical properties for making a variety of high-quality tissue engineering biomaterials, gels and scaffolds, as well as serving as a drug delivery vehicle. The selected production host was the Gram-positive bacterium Bacillus megaterium, which represents an increasingly used choice for high-yield production of intra- and extracellular biomolecules for scientific and industrial applications. RESULTS We have engineered the metabolism of B. megaterium to produce heparosan, using a T7 RNA polymerase (T7 RNAP) expression system. This system, which allows tightly regulated and efficient induction of genes of interest, has been co-opted for control of Pasteurella multocida heparosan synthase (PmHS2). Specifically, we show that B. megaterium MS941 cells co-transformed with pT7-RNAP and pPT7_PmHS2 plasmids are capable of producing heparosan upon induction with xylose, providing an alternate, safe source of heparosan. Productivities of ~ 250 mg/L of heparosan in shake flasks and ~ 2.74 g/L in fed-batch cultivation were reached. The polydisperse Pasteurella heparosan synthase products from B. megaterium primarily consisted of a relatively high molecular weight (MW) heparosan (~ 200-300 kD) that may be appropriate for producing certain biomaterials; while the less abundant lower MW heparosan fractions (~ 10-40 kD) can be a suitable starting material for heparin synthesis. CONCLUSION We have successfully engineered an asporogenic and non-pathogenic B. megaterium host strain to produce heparosan for various applications, through a combination of genetic manipulation and growth optimization strategies. The heparosan products from B. megaterium display a different range of MW products than traditional E. coli K5 products, diversifying its potential applications and facilitating increased product utility.
Collapse
Affiliation(s)
- Asher Williams
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Kamil S Gedeon
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Deepika Vaidyanathan
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Yanlei Yu
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Cynthia H Collins
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Jonathan S Dordick
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
- Department of Biology, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Robert J Linhardt
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
- Department of Biology, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Mattheos A G Koffas
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
- Department of Biology, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
| |
Collapse
|
9
|
Isolation and characterization of HepP: a virulence-related Pseudomonas aeruginosa heparinase. BMC Microbiol 2017; 17:233. [PMID: 29246112 PMCID: PMC5732420 DOI: 10.1186/s12866-017-1141-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 12/05/2017] [Indexed: 12/15/2022] Open
Abstract
Background Pseudomonas aeruginosa is an opportunistic pathogen that causes serious infections in immunocompromised hosts including severely burned patients. In burn patients, P. aeruginosa infection often leads to septic shock and death. Despite numerous studies, the influence of severe thermal injuries on the pathogenesis of P. aeruginosa during systemic infection is not known. Through RNA-seq analysis, we recently showed that the growth of P. aeruginosa strain UCBPP-PA14 (PA14) in whole blood obtained from severely burned patients significantly altered the expression of the PA14 transcriptome when compared with its growth in blood from healthy volunteers. The expression of PA14_23430 and the adjacent gene, PA14_23420, was enhanced by seven- to eightfold under these conditions. Results Quantitative real-time PCR analysis confirmed the enhancement of expression of both PA14_23420 and PA14_23430 by growth of PA14 in blood from severely burned patients. Computer analysis revealed that PA14_23430 (hepP) encodes a potential heparinase while PA14_23420 (zbdP) codes for a putative zinc-binding dehydrogenase. This analysis further suggested that the two genes form an operon with zbdP first. Presence of the operon was confirmed by RT-PCR experiments. We characterized hepP and its protein product HepP. hepP was cloned from PA14 by PCR and overexpressed in E. coli. The recombinant protein (rHepP) was purified using nickel column chromatography. Heparinase assays using commercially available heparinase as a positive control, revealed that rHepP exhibits heparinase activity. Mutation of hepP resulted in delay of pellicle formation at the air-liquid interface by PA14 under static growth conditions. Biofilm formation by PA14ΔhepP was also significantly reduced. In the Caenorhabditis elegans model of slow killing, mutation of hepP resulted in a significantly lower rate of killing than that of the parent strain PA14. Conclusions Changes within the blood of severely burned patients significantly induced expression of hepP in PA14. The heparinase encoded by hepP is a potential virulence factor for PA14 as HepP influences pellicle formation as well as biofilm development by PA14 and the protein is required for full virulence in the C. elegans model of slow killing. Electronic supplementary material The online version of this article (10.1186/s12866-017-1141-0) contains supplementary material, which is available to authorized users.
Collapse
|
10
|
Hu G, Shao M, Gao X, Wang F, Liu C. Probing cleavage promiscuity of heparinase III towards chemoenzymatically synthetic heparan sulfate oligosaccharides. Carbohydr Polym 2017; 173:276-285. [DOI: 10.1016/j.carbpol.2017.05.071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/10/2017] [Accepted: 05/23/2017] [Indexed: 01/07/2023]
|
11
|
Gu Y, Lu M, Wang Z, Wu X, Chen Y. Expanding the Catalytic Promiscuity of Heparinase III from Pedobacter heparinus. Chemistry 2017; 23:2548-2551. [DOI: 10.1002/chem.201605929] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Indexed: 01/23/2023]
Affiliation(s)
- Yayun Gu
- State Key Laboratory of Natural Medicines and Laboratory of Chemical Biology; China Pharmaceutical University; 24 Tongjia St. Nanjing Jiangsu Province 210009 P. R. China
| | - Meiling Lu
- State Key Laboratory of Natural Medicines and Laboratory of Chemical Biology; China Pharmaceutical University; 24 Tongjia St. Nanjing Jiangsu Province 210009 P. R. China
| | - Zongqiang Wang
- State Key Laboratory of Natural Medicines and Laboratory of Chemical Biology; China Pharmaceutical University; 24 Tongjia St. Nanjing Jiangsu Province 210009 P. R. China
| | - Xuri Wu
- State Key Laboratory of Natural Medicines and Laboratory of Chemical Biology; China Pharmaceutical University; 24 Tongjia St. Nanjing Jiangsu Province 210009 P. R. China
| | - Yijun Chen
- State Key Laboratory of Natural Medicines and Laboratory of Chemical Biology; China Pharmaceutical University; 24 Tongjia St. Nanjing Jiangsu Province 210009 P. R. China
| |
Collapse
|
12
|
Su G, Li L, Huang H, Zhong W, Yu P, Zhang F, Linhardt RJ. Production of a low molecular weight heparin production using recombinant glycuronidase. Carbohydr Polym 2015; 134:151-7. [DOI: 10.1016/j.carbpol.2015.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 08/02/2015] [Accepted: 08/03/2015] [Indexed: 10/23/2022]
|
13
|
Shriver Z, Sasisekharan R. Capillary electrophoretic analysis of isolated sulfated polysaccharides to characterize pharmaceutical products. Methods Mol Biol 2015; 1229:161-71. [PMID: 25325952 PMCID: PMC5460761 DOI: 10.1007/978-1-4939-1714-3_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Capillary electrophoresis is a powerful methodology for quantification and structural characterization of highly anionic polysaccharides. Separation of saccharides under conditions of electrophoretic flow, typically achieved under low pH (Ampofo et al., Anal Biochem 199:249-255, 1991; Rhomberg et al., Proc Natl Acad Sci U S A 95:4176-4181, 1998), is charge-based. Resolution of components is often superior to flow-based techniques, such as liquid chromatography. During the heparin contamination crisis, capillary electrophoresis was one of the key methodologies used to identify whether or not heparin lots were contaminated (Guerrini et al., Nat Biotechnol 26:669-675, 2008). Here we describe a method for isolation of sulfated heparin/heparan sulfate saccharides from urine, their digestion by deployment of heparinase enzymes (Ernst et al., Crit Rev Biochem Mol Biol 30:387-444, 1995), resolution of species through use of orthogonal digestions, and analysis of the resulting disaccharides by capillary electrophoresis.
Collapse
Affiliation(s)
- Z Shriver
- Department of Biological Engineering, Koch Institute of Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - R Sasisekharan
- Department of Biological Engineering, Koch Institute of Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| |
Collapse
|
14
|
Hashimoto W, Maruyama Y, Nakamichi Y, Mikami B, Murata K. Crystal structure of Pedobacter heparinus heparin lyase Hep III with the active site in a deep cleft. Biochemistry 2014; 53:777-86. [PMID: 24437462 DOI: 10.1021/bi4012463] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pedobacter heparinus (formerly known as Flavobacterium heparinum) is a typical glycosaminoglycan-degrading bacterium that produces three heparin lyases, Hep I, Hep II, and Hep III, which act on heparins with 1,4-glycoside bonds between uronate and amino sugar residues. Being different from Hep I and Hep II, Hep III is specific for heparan sulfate. Here we describe the crystal structure of Hep III with the active site located in a deep cleft. The X-ray crystallographic structure of Hep III was determined at 2.20 Å resolution using single-wavelength anomalous diffraction. This enzyme comprised an N-terminal α/α-barrel domain and a C-terminal antiparallel β-sheet domain as its basic scaffold. Overall structures of Hep II and Hep III were similar, although Hep III exhibited an open form compared with the closed form of Hep II. Superimposition of Hep III and heparin tetrasaccharide-bound Hep II suggested that an active site of Hep III was located in the deep cleft at the interface between its two domains. Three mutants (N240A, Y294F, and H424A) with mutations at the active site had significantly reduced enzyme activity. This is the first report of the structure-function relationship of P. heparinus Hep III.
Collapse
Affiliation(s)
- Wataru Hashimoto
- Laboratory of Basic and Applied Molecular Biotechnology, Graduate School of Agriculture, Kyoto University , Uji, Kyoto 611-0011, Japan
| | | | | | | | | |
Collapse
|
15
|
Beaudet JM, Mansur L, Joo EJ, Kamhi E, Yang B, Clausen TM, Salanti A, Zhang F, Linhardt RJ. Characterization of human placental glycosaminoglycans and regional binding to VAR2CSA in malaria infected erythrocytes. Glycoconj J 2013; 31:109-16. [PMID: 24158546 DOI: 10.1007/s10719-013-9506-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 10/04/2013] [Accepted: 10/07/2013] [Indexed: 10/26/2022]
Abstract
Placental malaria is a serious problem in sub-Saharan Africa. Young women are particular susceptible to contracting this form of malaria during their first or second pregnancy despite previously acquired immunity from past infections. Placental malaria is caused by Plasmodium falciparum parasites expressing VAR2CSA on the erythrocyte surface. This protein adheres to a low-sulfated chondroitin sulfate-A found in placental tissue causing great harm to both mother and developing fetus. In rare cases, the localization of infected erythrocytes to the placenta can even result in the vertical transmission of malaria. In an effort to better understand this infection, chondroitin sulfate was isolated from the cotyledon part of the placenta, which should be accessible for parasite adhesion, as well as two non-accessible parts of the placenta to serve as controls. The placental chondroitin sulfate structures and their VAR2CSA binding were characterized. All portions of human placenta contained sufficient amounts of the appropriate low-sulfated chondroitin sulfate-A to display high-affinity binding to a recombinant truncated VAR2CSA construct, as determined using surface plasmon resonance. The cotyledon is the only placental tissue accessible to parasites in the bloodstream, suggesting it is the primary receptor for parasite infected red blood cells.
Collapse
Affiliation(s)
- Julie M Beaudet
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic, Troy, NY, 12180, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Weyers A, Yang B, Park JH, Kim YS, Kim SM, Lee SE, Zhang F, Lee KB, Linhardt RJ. Microanalysis of stomach cancer glycosaminoglycans. Glycoconj J 2013; 30:701-7. [PMID: 23604988 DOI: 10.1007/s10719-013-9476-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Revised: 03/17/2013] [Accepted: 04/08/2013] [Indexed: 11/27/2022]
Abstract
Glycosaminoglycans (GAGS) are anionic, linear, polysaccharides involved in cell signaling. The GAG content, composition and structure of human tissue have been suggested to play a role in cancer and might provide useful diagnostic or prognostic markers. The current study examines 17 stomach tissue biopsy samples taken from normal individuals and from patients with gastric cancers. An ultrasensitive liquid chromatography (LC) - mass spectrometry assay was applied to individual biopsy samples as small 250 μg providing GAG content and disaccharide composition. The results of these analyses show a significant increase in non-sulfated chondroitin/dermatan sulfate concentration in all cancer samples when compared to normal tissues. In addition in advanced gastric cancer, a significant decrease is observed in hyaluronan.
Collapse
Affiliation(s)
- Amanda Weyers
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY, 12180, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Weyers A, Yang B, Solakyildirim K, Yee V, Li L, Zhang F, Linhardt RJ. Isolation of bovine corneal keratan sulfate and its growth factor and morphogen binding. FEBS J 2013; 280:2285-93. [PMID: 23402351 DOI: 10.1111/febs.12165] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Revised: 01/24/2013] [Accepted: 01/28/2013] [Indexed: 02/05/2023]
Abstract
Keratan sulfate (KS) is an important glycosaminoglycan that is found in cartilage, reproductive tissues, and neural tissues. Corneal KS glycosaminoglycan is found N-linked to lumican, keratocan and mimecan proteoglycans, and has been widely studied by investigators interested in corneal development and diseases. Recently, the availability of corneal KS has become severely limited, owing to restrictions on the shipment of bovine central nervous system byproducts across international borders in an effort to prevent additional cases of mad cow disease. We report a simple method for the purification of multi-milligram quantities of bovine corneal KS, and characterize its structural properties. We also examined its protein-binding properties, and discovered that corneal KS bound with high affinity to fibroblast growth factor-2 and sonic hedgehog, a growth factor and a morphogen involved in corneal development and healing.
Collapse
Affiliation(s)
- Amanda Weyers
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Capillary electrophoresis is a common technique used for glycosaminoglycan-derived disaccharide analysis because of its high resolving power, high separation efficiency, high sensitivity, short analysis time, and straightforward operation. CE coupled to laser-induced fluorescence (LIF) detection shows an approximately 100 times higher sensitivity than traditional UV detection at 232 nm. 2-Aminoacridone (AMAC) is a widely used fluorophore for labeling unsaturated disaccharides by deductive amination, which is one of the most important method of derivatization of disaccharides for CE-LIF detection. Outlined in this chapter is a protocol of analyzing glycosaminoglycan-derived disaccharides by CE-LIF with AMAC derivatization.
Collapse
|
19
|
Weyers A, Yang B, Yoon DS, Park JH, Zhang F, Lee KB, Linhardt RJ. A structural analysis of glycosaminoglycans from lethal and nonlethal breast cancer tissues: toward a novel class of theragnostics for personalized medicine in oncology? OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2012; 16:79-89. [PMID: 22401653 DOI: 10.1089/omi.2011.0102] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Cancer is one of the leading noncommunicable diseases that vastly impacts both developed and developing countries. Truly innovative diagnostics that inform disease susceptibility, prognosis, and/or response to treatment (theragnostics) are seriously needed for global public health and personalized medicine for patients with cancer. This study examined the structure and content of glycosaminoglycans (GAGs) in lethal and nonlethal breast cancer tissues from six patients. The glycosaminoglycan content isolated from tissue containing lethal cancer tumors was approximately twice that of other tissues. Molecular weight analysis showed that glycosaminoglycans from cancerous tissue had a longer weight average chain length by an average of five disaccharide units, an increase of approximately 15%. Dissacharide analysis found differences in sulfation patterns between cancerous and normal tissues, as well as sulfation differences in GAG chains isolated from patients with lethal and nonlethal cancer. Specifically, cancerous tissue showed an increase in sulfation at the "6S" position of CS chains and an increase in the levels of the HS disaccharide NSCS. Patients with lethal cancer showed a decrease in HS sulfation, with lower levels of "6S" and higher levels of the unsulfated "0S" disaccharide. Although these findings come from a limited sample size, they indicate that structural changes in GAGs exist between cancerous and noncancerous tissues and between tissues from patients with highly metastatic cancer and cancer that was successfully treated by chemotherapy. Based on these findings, we hypothesize that (1) there are putative changes in the body's construction of GAGs as tissue becomes cancerous; (2) there may be innate structural person-to-person variations in GAG composition that facilitate the metastasis of tumors in some patients when they develop cancer.
Collapse
Affiliation(s)
- Amanda Weyers
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Tripathi CKM, Banga J, Mishra V. Microbial heparin/heparan sulphate lyases: potential and applications. Appl Microbiol Biotechnol 2012; 94:307-21. [DOI: 10.1007/s00253-012-3967-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 12/30/2011] [Accepted: 01/02/2012] [Indexed: 10/28/2022]
|
21
|
Yang B, Chang Y, Weyers AM, Sterner E, Linhardt RJ. Disaccharide analysis of glycosaminoglycan mixtures by ultra-high-performance liquid chromatography-mass spectrometry. J Chromatogr A 2012; 1225:91-8. [PMID: 22236563 PMCID: PMC3268819 DOI: 10.1016/j.chroma.2011.12.063] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 12/13/2011] [Accepted: 12/17/2011] [Indexed: 11/26/2022]
Abstract
Glycosaminoglycans are a family of polysaccharides widely distributed in all eukaryotic cells. These polyanionic, linear chain polysaccharides are composed of repeating disaccharide units that are often differentially substituted with sulfo groups. The diversity of glycosaminoglycan structures in cells, tissues and among different organisms reflect their functional an evolutionary importance. Glycosaminoglycan composition and structure also changes in development, aging and in disease progression, making their accurate and reliable analysis a critical, albeit, challenging endeavor. Quantitative disaccharide compositional analysis is one of the primary ways to characterize glycosaminoglycan composition and structure and has a direct relationship with glycosaminoglycan biological functions. In this study, glycosaminoglycan disaccharides, prepared from heparan sulfate/heparin, chondroitin sulfate/dermatan sulfate and neutral hyaluronic acid using multiple polysaccharide lyases, were fluorescently labeled with 2-aminoacridone, fractionated into 17 well-resolved components by reverse-phase ultra-performance liquid chromatography, and analyzed by electrospray ionization mass spectrometry. This analysis was successfully applied to cell, tissue, and biological fluid samples for the picomole level detection of glycosaminoglycan composition and structure.
Collapse
Affiliation(s)
- Bo Yang
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | | | | | | | | |
Collapse
|
22
|
Baik JY, Gasimli L, Yang B, Datta P, Zhang F, Glass CA, Esko JD, Linhardt RJ, Sharfstein ST. Metabolic engineering of Chinese hamster ovary cells: towards a bioengineered heparin. Metab Eng 2012; 14:81-90. [PMID: 22326251 DOI: 10.1016/j.ymben.2012.01.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 12/09/2011] [Accepted: 01/30/2012] [Indexed: 10/14/2022]
Abstract
Heparin is the most widely used pharmaceutical to control blood coagulation in modern medicine. A health crisis that took place in 2008 led to a demand for production of heparin from non-animal sources. Chinese hamster ovary (CHO) cells, commonly used mammalian host cells for production of foreign pharmaceutical proteins in the biopharmaceutical industry, are capable of producing heparan sulfate (HS), a related polysaccharide naturally. Since heparin and HS share the same biosynthetic pathway, we hypothesized that heparin could be produced in CHO cells by metabolic engineering. Based on the expression of endogenous enzymes in the HS/heparin pathways of CHO-S cells, human N-deacetylase/N-sulfotransferase (NDST2) and mouse heparan sulfate 3-O-sulfotransferase 1 (Hs3st1) genes were transfected sequentially into CHO host cells growing in suspension culture. Transfectants were screened using quantitative RT-PCR and Western blotting. Out of 120 clones expressing NDST2 and Hs3st1, 2 clones, Dual-3 and Dual-29, were selected for further analysis. An antithrombin III (ATIII) binding assay using flow cytometry, designed to recognize a key sugar structure characteristic of heparin, indicated that Hs3st1 transfection was capable of increasing ATIII binding. An anti-factor Xa assay, which affords a measure of anticoagulant activity, showed a significant increase in activity in the dual-expressing cell lines. Disaccharide analysis of the engineered HS showed a substantial increase in N-sulfo groups, but did not show a pattern consistent with pharmacological heparin, suggesting that further balancing the expression of transgenes with the expression levels of endogenous enzymes involved in HS/heparin biosynthesis might be necessary.
Collapse
Affiliation(s)
- Jong Youn Baik
- College of Nanoscale Science and Engineering, University at Albany-State University of New York, 257 Fuller Road, Albany, NY 12203, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Aich U, Shriver Z, Tharakaraman K, Raman R, Sasisekharan R. Competitive inhibition of heparinase by persulfonated glycosaminoglycans: a tool to detect heparin contamination. Anal Chem 2011; 83:7815-22. [PMID: 21863856 DOI: 10.1021/ac201498a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Heparin and the low molecular weight heparins are extensively used as medicinal products to prevent and treat the formation of venous and arterial thrombi. In early 2008, administration of some heparin lots was associated with the advent of severe adverse effects, indicative of an anaphylactoid-like response. Application of orthogonal analytical tools enabled detection and identification of the contaminant as oversulfated chondroitin sulfate (OSCS) was reported in our earlier report. Herein, we investigate whether enzymatic depolymerization using the bacterially derived heparinases, given the structural understanding of their substrate specificity, can be used to identify the presence of OSCS in heparin. We also extend this analysis to examine the effect of other persulfonated glycosaminoglycans (GAGs) on the action of the heparinases. We find that all persulfonated GAGs examined were effective inhibitors of heparinase I, with IC(50) values ranging from approximately 0.5-2 μg/mL. Finally, using this biochemical understanding, we develop a rapid, simple assay to assess the purity of heparin using heparinase digestion followed by size-exclusion HPLC analysis to identify and quantify digestion products. In the context of the assay, we demonstrate that less than 0.1% (w/w) of OSCS (and other persulfonated polysaccharides) can routinely be detected in heparin.
Collapse
Affiliation(s)
- Udayanath Aich
- Harvard-MIT Division of Health Sciences and Technology, the Koch Institute for Integrative, Cancer Research and the Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | |
Collapse
|
24
|
Yang B, Weyers A, Baik JY, Sterner E, Sharfstein S, Mousa SA, Zhang F, Dordick JS, Linhardt RJ. Ultra-performance ion-pairing liquid chromatography with on-line electrospray ion trap mass spectrometry for heparin disaccharide analysis. Anal Biochem 2011; 415:59-66. [PMID: 21530482 PMCID: PMC3108029 DOI: 10.1016/j.ab.2011.04.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 04/01/2011] [Accepted: 04/04/2011] [Indexed: 11/29/2022]
Abstract
A high-resolution method for the separation and analysis of disaccharides prepared from heparin and heparan sulfate (HS) using heparin lyases is described. Ultra-performance liquid chromatography in a reverse-phase ion-pairing mode efficiently separates eight heparin/HS disaccharides. The disaccharides can then be detected and quantified using electrospray ionization mass spectrometry. This method is particularly useful in the analysis of small amounts of biological samples, including cells, tissues, and biological fluids, because it provides high sensitivity without being subject to interference from proteins, peptides, and other sample impurities.
Collapse
Affiliation(s)
- Bo Yang
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Xiao Z, Tappen BR, Ly M, Zhao W, Canova LP, Guan H, Linhardt RJ. Heparin mapping using heparin lyases and the generation of a novel low molecular weight heparin. J Med Chem 2011; 54:603-10. [PMID: 21166465 PMCID: PMC3024469 DOI: 10.1021/jm101381k] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Seven pharmaceutical heparins were investigated by oligosaccharide mapping by digestion with heparin lyase 1, 2, or 3, followed by high performance liquid chromatography analysis. The structure of one of the prepared mapping standards, ΔUA-Gal-Gal-Xyl-O-CH(2)CONHCH(2)COOH (where ΔUA is 4-deoxy-α-l-threo-hex-4-eno-pyranosyluronic acid, Gal is β-d-galactpyranose, and Xyl is β-d-xylopyranose) released from the linkage region using either heparin lyase 2 or heparin lyase 3 digestion, is reported for the first time. A size-dependent susceptibility of site cleaved by heparin lyase 3 was also observed. Heparin lyase 3 acts on the undersulfated domains of the heparin chain and does not cleave the linkages within heparin's antithrombin III binding site. Thus, a novel low molecular weight heparin (LMWH) is afforded on heparin lyase 3 digestion of heparin due to this unique substrate specificity, which has anticoagulant activity comparable to that of currently available LMWH.
Collapse
Affiliation(s)
- Zhongping Xiao
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, Institute of Marine Drug and Food, Ocean University of China, Qingdao, 266003, China
- Departments of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Britney R. Tappen
- Department of Biochemistry and Biophysics, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Mellisa Ly
- Departments of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Wenjing Zhao
- Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Lauren P. Canova
- Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Huashi Guan
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, Institute of Marine Drug and Food, Ocean University of China, Qingdao, 266003, China
| | - Robert J. Linhardt
- Departments of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
- Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| |
Collapse
|
26
|
Hyun YJ, Lee JH, Kim DH. Cloning, overexpression, and characterization of recombinant heparinase III from Bacteroides stercoris HJ-15. Appl Microbiol Biotechnol 2009; 86:879-90. [PMID: 19908038 DOI: 10.1007/s00253-009-2327-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2009] [Revised: 10/23/2009] [Accepted: 10/24/2009] [Indexed: 10/20/2022]
Abstract
Recombinant heparinase III (rHepIII) from Bacteroides stercoris HJ-15 was cloned, expressed, and characterized. The full-length heparinase III gene from B. stercoris HJ-15 was identified by Southern blotting, and the sequence was deposited in GenBank. The heparinase III gene, which is 2,001-bp long, was cloned and overexpressed in Escherichia coli; highly active rHepIII was easily purified using only one step of immobilized Ni(2+) affinity column chromatography. Enzymatic properties and substrate specificities of rHepIII were assessed, and its kinetic constants were calculated. rHepIII was most active in 50 mM sodium phosphate buffer with 350 mM NaCl (pH 6.6) at 45 degrees C. Through amino acid modification studies and site-directed mutagenesis assay, cysteines and histidines were identified as crucial residues for enzymatic activity. Moreover, this enzyme digested not only heparan sulfate but also heparin and hyaluronic acid, and their degradation products were verified by strong anion exchange/high-performance liquid chromatography. These characteristics, including active residues and substrate specificities were interesting compared with those of existing heparinase III from other species. We anticipate that the convenience of purification and the characteristics of this enzyme will make it a powerful tool for studies of glycosaminoglycans and their lyases.
Collapse
Affiliation(s)
- Yang-Jin Hyun
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, South Korea
| | | | | |
Collapse
|
27
|
Myette JR, Soundararajan V, Shriver Z, Raman R, Sasisekharan R. Heparin/heparan sulfate 6-O-sulfatase from Flavobacterium heparinum: integrated structural and biochemical investigation of enzyme active site and substrate specificity. J Biol Chem 2009; 284:35177-88. [PMID: 19726671 DOI: 10.1074/jbc.m109.053801] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Heparin and heparan sulfate glycosaminoglycans (HSGAGs) comprise a chemically heterogeneous class of sulfated polysaccharides. The development of structure-activity relationships for this class of polysaccharides requires the identification and characterization of degrading enzymes with defined substrate specificity and enzymatic activity. Toward this end, we report here the molecular cloning and extensive structure-function analysis of a 6-O-sulfatase from the Gram-negative bacterium Flavobacterium heparinum. In addition, we report the recombinant expression of this enzyme in Escherichia coli in a soluble, active form and identify it as a specific HSGAG sulfatase. We further define the mechanism of action of the enzyme through biochemical and structural studies. Through the use of defined substrates, we investigate the kinetic properties of the enzyme. This analysis was complemented by homology-based molecular modeling studies that sought to rationalize the substrate specificity of the enzyme and mode of action through an analysis of the active-site topology of the enzyme including identifying key enzyme-substrate interactions and assigning key amino acids within the active site of the enzyme. Taken together, our structural and biochemical studies indicate that 6-O-sulfatase is a predominantly exolytic enzyme that specifically acts on N-sulfated or N-acetylated 6-O-sulfated glucosamines present at the non-reducing end of HSGAG oligosaccharide substrates. This requirement for the N-acetyl or N-sulfo groups on the glucosamine substrate can be explained through eliciting favorable interactions with key residues within the active site of the enzyme. These findings provide a framework that enables the use of 6-O-sulfatase as a tool for HSGAG structure-activity studies as well as expand our biochemical and structural understanding of this important class of enzymes.
Collapse
Affiliation(s)
- James R Myette
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Koch Institute for Integrative Cancer Research, and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | |
Collapse
|
28
|
Babu P, Kuberan B. Fluorescent-tagged heparan sulfate precursor oligosaccharides to probe the enzymatic action of heparitinase I. Anal Biochem 2009; 396:124-32. [PMID: 19732739 DOI: 10.1016/j.ab.2009.08.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Revised: 08/21/2009] [Accepted: 08/25/2009] [Indexed: 11/30/2022]
Abstract
Heparitinase I, a key lyase enzyme essential for structural analysis of heparan sulfate (HS), degrades HS domains that are undersulfated at glucuronyl residues through an elimination mechanism. Earlier studies employed viscosimetric measurements and electrophoresis to deduce the mechanism of action of heparitinase I and two other related lyases, heparitinase II and heparitinase III. However, these findings lack molecular evidence for the intermediates formed and could not distinguish whether the cleavage occurred from the reducing end or the nonreducing end. In the current study, 2-aminoacridone (2-AMAC)-labeled HS precursor oligosaccharides of various sizes were prepared to investigate the mechanism of heparitinase I-mediated depolymerization using sensitive and quantitative methodologies. Furthermore, fluorescent (2-AMAC) tagging of HS precursor oligosaccharides allowed us to distinguish fragments that result from cleavage of the substrates at various time intervals and sites farther away from the reducing and nonreducing ends of oligosaccharide substrates. This study provides the first direct molecular evidence for a predominantly random endolytic mechanism of cleavage of HS precursor oligosaccharides by heparitinase I. This robust strategy can be adapted to deduce the mechanism of action of other heparitinases and also to deduce structural information of complex HS oligosaccharides of biological importance.
Collapse
Affiliation(s)
- Ponnusamy Babu
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | | |
Collapse
|
29
|
Abstract
There is accumulating evidence of the importance of linear polysaccharides in modulating biological phenomena in both the normal and the diseased states. This layer of regulation results from interactions between polysaccharides and other biomolecules, such as proteins, at the cell-extracellular matrix interface. The specific sequence of chemical modifications within the polymer backbone imparts a potential for interaction with other molecular species, and thus there exists important information within the various sulfation, acetylation, and epimerization states of such complex carbohydrates. A variety of factors have made the deciphering of this chemical code elusive. To this end, this report describes several techniques to elucidate the structural information inherent in glycosaminoglycan species. First, the use of depolymerizing enzymes that cleave polysaccharides at specific sites is described. Then, capillary electrophoretic (CE) techniques are employed to characterize the disaccharide species present in an enzymatically-cleaved polysaccharide sample. Mass spectrometry (MS) procedures can further be used to establish the length of an oligosaccharide chain and the presence of specific functional groups.
Collapse
Affiliation(s)
- Vikas Prabhakar
- Division of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | | |
Collapse
|
30
|
Michaud P, Da Costa A, Courtois B, Courtois J. Polysaccharide Lyases: Recent Developments as Biotechnological Tools. Crit Rev Biotechnol 2008; 23:233-66. [PMID: 15224891 DOI: 10.1080/07388550390447043] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Polysaccharide lyases, which are polysaccharide cleavage enzymes, act mainly on anionic polysaccharides. Produced by prokaryote and eukaryote organisms, these enzymes degrade (1,4) glycosidic bond by a beta elimination mechanism and have unsaturated oligosaccharides as major products. New polysaccharides are cleaved only by their specific polysaccharide lyases. From anionic polysaccharides controlled degradations, various biotechnological applications were investigated. This review catalogues the degradation of bacterial, plant and animal polysaccharides (neutral and anionic) by this family of carbohydrate acting enzymes.
Collapse
Affiliation(s)
- P Michaud
- Laboratoire des Glucides--LPMV, IUT/Génie Biologique, Université de Picardie Jules Verne, Avenue des Facultés, Le Bailly, 80025 Amiens Cedex, France.
| | | | | | | |
Collapse
|
31
|
Sasisekharan R, Raman R, Prabhakar V. GLYCOMICS APPROACH TO STRUCTURE-FUNCTION RELATIONSHIPS OF GLYCOSAMINOGLYCANS. Annu Rev Biomed Eng 2006; 8:181-231. [PMID: 16834555 DOI: 10.1146/annurev.bioeng.8.061505.095745] [Citation(s) in RCA: 219] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Extracellular modulation of phenotype is an emerging paradigm in this current postgenomics age of molecular and cell biology. Glycosaminoglycans (GAGs) are primary components of the cell surface and the cell-extracellular matrix (ECM) interface. Advances in the technology to analyze GAGs and in whole-organism genetics have led to a dramatic increase in the known important biological role of these complex polysaccharides. Owing to their ubiquitous distribution at the cell-ECM interface, GAGs interact with numerous proteins and modulate their activity, thus impinging on fundamental biological processes such as cell growth and development. Many recent reviews have captured important aspects of GAG structure and biosynthesis, GAG-protein interactions, and GAG biology. GAG research is currently at a stage where there is a need for an integrated systems or glycomics approach, which involves an integration of all of the above concepts to define their structure-function relationships. Focusing on heparin/heparan (HSGAGs) and chondroitin/dermatan sulfate (CSGAGs), this review highlights the important aspects of GAGs and summarizes these aspects in the context of taking a glycomics approach that integrates the different technologies to define structure-function relationships of GAGs.
Collapse
Affiliation(s)
- Ram Sasisekharan
- Biological Engineering Division, Center for Biomedical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| | | | | |
Collapse
|
32
|
Kim WS, Kim BT, Kim DH, Kim YS. Purification and characterization of heparin lyase I from Bacteroides stercoris HJ-15. BMB Rep 2005; 37:684-90. [PMID: 15607027 DOI: 10.5483/bmbrep.2004.37.6.684] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Heparin lyase I was purified to homogeneity from Bacteroides stercoris HJ-15 isolated from human intestine, by a combination of DEAE-Sepharose, gel-filtration, hydroxyapatite, and CM-Sephadex C-50 column chromatography. This enzyme preferred heparin to heparan sulfate, but was inactive at cleaving acharan sulfate. The apparent molecular mass of heparin lyase I was estimated as 48,000 daltons by SDS-PAGE and its isoelectric point was determined as 9.0 by IEF. The purified enzyme required 500 mM NaCl in the reaction mixture for maximal activity and the optimal activity was obtained at pH 7.0 and 50 degrees C. It was rather stable within the range of 25 to 50 degrees C but lost activity rapidly above 50 degrees C. The enzyme was activated by Co(2+) or EDTA and stabilized by dithiothreitol. The kinetic constants, K(m) and V(max) for heparin were 1.3 10(-5) M and 8.8 micromol/min.mg. The purified heparin lyase I was an eliminase that acted best on porcine intestinal heparin, and to a lesser extent on porcine intestinal mucosa heparan sulfate. It was inactive in the cleavage of N-desulfated heparin and acharan sulfate. In conclusion, heparin lyase I from Bacteroides stercoris was specific to heparin rather than heparan sulfate and its biochemical properties showed a substrate specificity similar to that of Flavobacterial heparin lyase I.
Collapse
Affiliation(s)
- Wan-Seok Kim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 110-460, Korea
| | | | | | | |
Collapse
|
33
|
Prabhakar V, Capila I, Bosques C, Pojasek K, Sasisekharan R. Chondroitinase ABC I from Proteus vulgaris: cloning, recombinant expression and active site identification. Biochem J 2005; 386:103-12. [PMID: 15691229 PMCID: PMC1134771 DOI: 10.1042/bj20041222] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
GalAGs (galactosaminoglycans) are one subset of the GAG (glycosaminoglycan) family of chemically heterogeneous polysaccharides that are involved in a wide range of biological processes. These complex biomacromolecules are believed to be responsible for the inhibition of nerve regeneration following injury to the central nervous system. The enzymic degradation of GAG chains in damaged nervous tissue by cABC I (chondroitinase ABC I), a broad-specificity lyase that degrades GalAGs, promotes neural recovery. In the present paper, we report the subcloning of cABC I from Proteus vulgaris, and discuss a simple methodology for the recombinant expression and purification of this enzyme. The originally expressed cABC I clone resulted in an enzyme with negligible activity against a variety of GalAG substrates. Sequencing of the cABC I clone revealed four point mutations at issue with the electron-density data of the cABC I crystal structure. Site-directed mutagenesis produced a clone with restored GalAG-degrading function. We have characterized this enzyme biochemically, including an analysis of its substrate specificity. By coupling structural inspections of cABC I and an evaluation of sequence homology against other GAG-degrading lyases, a set of amino acids was chosen for further study. Mutagenesis studies of these residues resulted in the first experimental evidence of cABC I's active site. This work will facilitate the structure-function characterization of biomedically relevant GalAGs and further the development of therapeutics for nerve regeneration.
Collapse
Affiliation(s)
- Vikas Prabhakar
- Division of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, U.S.A
| | - Ishan Capila
- Division of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, U.S.A
| | - Carlos J. Bosques
- Division of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, U.S.A
| | - Kevin Pojasek
- Division of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, U.S.A
| | - Ram Sasisekharan
- Division of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
34
|
Silver PJ. IBT 9302 (Heparinase III): a novel enzyme for the management of reperfusion injury-related vascular damage, restenosis and wound healing. Expert Opin Investig Drugs 2005; 7:1003-14. [PMID: 15992012 DOI: 10.1517/13543784.7.6.1003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
IBT 9302 (heparinase III, EC 4.2.2.8), purified from Flavobacterium heparinum, selectively cleaves heparan sulfate proteoglycans (HSPGs) from cellular surfaces and extracellular matrices. HSPGs serve as binding sites for P- and L-selectins, as well as for pro-inflammatory chemokines, such as interleukin (IL)-8. IBT 9302 reversibly removes these binding sites and inflammatory mediators, thereby limiting tissue damage following reperfusion of ischaemic areas by reducing leukocyte rolling, adhesion and extravasation. In models of myocardial ischaemia/reperfusion injury, infusion of IBT 9302 the time of transport and reperfusions, reduces the area of necrosis/area at risk ratios relative to vehicle-treated animals. Cardioprotection is accompanied by a reduction in serum creatine kinase levels and neutrophil adherence to coronary vessels, and the preservation of endothelial relaxation responsiveness to acetylcholine. HSPGs also serve as accumulation sites for most growth factors and IBT 9302 limits both proliferation and migration of vascular smooth muscle cells to platelet-derived growth factor (PDGF), basic fibroblast growth factor (bFGF) and endothelial growth factor (EGF). In vivo, the application of IBT 9302 at the time of vascular injury significantly reduces arterial medial proliferation. External application of IBT 9302 to wounds in a steroid-impaired wound healing model increases tensile strength by releasing mitogenic growth factors and HSPGs from the surrounding extracellular matrix. Pharmacokinetic studies show a simple monoexponential decay following iv. bolus dosing of IBT 9302, with a half-life of 5 - 6 min. The majority of [(125)I]-IBT 9302 goes to the liver (60%) and kidneys (25%), following iv. dosing. Preliminary toxicology studies in rats following single iv. bolus (10 mg/kg) or infusion (10 mug/kg/min) dosing show no untoward effects. These results suggest that IBT 9302 may have therapeutic utility in treating myocardial ischaemia/reperfusion injury, ischaemic stroke, restenosis or in healing diabetic ulcer wounds, by virtue of its ability to selectively cleave HSPGs.
Collapse
Affiliation(s)
- P J Silver
- IBEX Technologies, Inc., 5 Geat Valley Parkway, Suite 300, Malvern, PA 19355, USA
| |
Collapse
|
35
|
Hong SW, Shin HY, Kim YS, Kim DH. Purification and characterization of novel salt-active acharan sulfate lyase from Bacteroides stercoris HJ-15. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:3168-73. [PMID: 12869191 DOI: 10.1046/j.1432-1033.2003.03696.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Salt-active acharan sulfate lyase (no EC number) has been purified from Bacteroides stercoris HJ-15, which was isolated from human intestinal bacteria with GAG degrading enzymes. The enzyme was purified to apparent homogeneity by a combination of QAE-cellulose, diethylaminoethyl (DEAE)-cellulose, CM-Sephadex C-50, HA ultrogel and phosphocellulose column chromatography with the final specific activity of 81.33 micro mol x min-1 x mg-1. The purified salt-active acharan sulfate lyase was activated to 5.3-fold by salts (KCl and NaCl). The molecular weight of salt-active acharan sulfate lyase was 94 kDa by SDS/PAGE and gel filtration. The salt-active acharan sulfate lyase showed optimal activity at pH 7.2 and 40 degrees C. Salt-active acharan sulfate lyase activity was potently inhibited by Cu2+, Ni2+ and Zn2+. This enzyme was inhibited by some agents, butanediol and p-chloromercuric sulfonic acid, which modify arginine and cysteine residues. The purified Bacteroidal salt-active acharan sulfate lyase acted to the greatest extent on acharan sulfate, to a lesser extent on heparan sulfate and heparin. The biochemical properties of the purified salt-active acharan sulfate lyase are different from those of the previously purified heparin lyases. However, these findings suggest that the purified salt-active acharan sulfate lyase may belong to heparin lyase II.
Collapse
|
36
|
Abstract
It is well known that microbial pathogens are able to subvert the host immune system in order to increase microbial replication and propagation. Recent research indicates that another arm of the immune response, that of the chemokine system, is also subject to this sabotage, and is undermined by a range of microbial pathogens, including viruses, bacteria, and parasites. Currently, it is known that the chemokine system is being challenged by a number of mechanisms, and still more are likely to be discovered with further research. Here we first review the general mechanisms by which microbial pathogens bypass mammalian chemokine defences. Broadly, these can be grouped as viral chemokine interacting proteins, microbial manipulation of host chemokine and chemokine receptor expression, microbial blockade of host chemokine receptor signalling, and the largely hypothetical mechanisms of microbial enhancement of host anti-chemokine networks (including digestion, antagonism, and neutralisation of host chemokines and chemokine receptors). We then discuss the potential results of these interactions in terms of outcome of infection.
Collapse
Affiliation(s)
- Adrian Liston
- Immunogenomics Laboratory, The John Curtin School of Medical Research, Australian National University, Australia
| | | |
Collapse
|
37
|
Yoshida E, Arakawa S, Matsunaga T, Toriumi S, Tokuyama S, Morikawa K, Tahara Y. Cloning, sequencing, and expression of the gene from bacillus circulans that codes for a heparinase that degrades both heparin and heparan sulfate. Biosci Biotechnol Biochem 2002; 66:1873-9. [PMID: 12400686 DOI: 10.1271/bbb.66.1873] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The gene, designated hep, coding for a heparinase that degrades both heparin and heparan sulfate, was cloned from Bacillus circulans HpT298. Nucleotide sequence analysis showed that the open reading frame of the hep gene consists of 3,150 bp, encoding a precursor protein of 1,050 amino acids with a molecular mass of 116.5 kDa. A homology search found that the deduced amino acid sequence has partial similarity with enzymes belonging to the family of acidic polysaccharide lyases that degrade chondroitin sulfate and hyaluronic acid. Recombinant mature heparinase (111.2 kDa) was produced by the addition of IPTG from Escherichia coli harboring pETHEP with an open reading frame of the mature hep gene and was purified to homogeneity by SDS-polyacrylamide gel electrophoresis. Analyses of substrate specificity and degraded disaccharides indicated that the recombinant enzyme acts on both heparin and HS, as does heparinase purified from the wild-type strain.
Collapse
Affiliation(s)
- Eiichi Yoshida
- Department of Applied Biological Chemistry, Faculty of Agriculture, Shizuoka University, Japan
| | | | | | | | | | | | | |
Collapse
|
38
|
Yoshida E, Sakai K, Tokuyama S, Miyazono H, Maruyama H, Morikawa K, Yoshida K, Tahara Y. Purification and characterization of heparinase that degrades both heparin and heparan sulfate from Bacillus circulans. Biosci Biotechnol Biochem 2002; 66:1181-4. [PMID: 12092842 DOI: 10.1271/bbb.66.1181] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A heparinase that degrades both heparin and heparan sulfate (HS) was purified to homogeneity from the cell-free extract of Bacillus circulans HpT298. The purified enzyme had a single band on SDS-polyacrylamide gel electrophoresis with an estimated molecular mass of 111,000. The enzyme showed optimal activity at pH 7.5 and 45 degrees C, and its activity was stimulated in the presence of 5 mM CaCl2, BaCl2, or MgCl2. Analysis of substrate specificity and degraded disaccharides demonstrated that the enzyme acts on both heparin and HS, similar to heparinase II from Flavobacterium heparinum.
Collapse
Affiliation(s)
- Eiichi Yoshida
- Department of Applied Biological Chemistry, Faculty of Agriculture, Shizuoka University, Japan
| | | | | | | | | | | | | | | |
Collapse
|
39
|
|
40
|
Abstract
Heparin, a sulfated polysaccharide belonging to the family of glycosaminoglycans, has numerous important biological activities, associated with its interaction with diverse proteins. Heparin is widely used as an anticoagulant drug based on its ability to accelerate the rate at which antithrombin inhibits serine proteases in the blood coagulation cascade. Heparin and the structurally related heparan sulfate are complex linear polymers comprised of a mixture of chains of different length, having variable sequences. Heparan sulfate is ubiquitously distributed on the surfaces of animal cells and in the extracellular matrix. It also mediates various physiologic and pathophysiologic processes. Difficulties in evaluating the role of heparin and heparan sulfate in vivo may be partly ascribed to ignorance of the detailed structure and sequence of these polysaccharides. In addition, the understanding of carbohydrate-protein interactions has lagged behind that of the more thoroughly studied protein-protein and protein-nucleic acid interactions. The recent extensive studies on the structural, kinetic, and thermodynamic aspects of the protein binding of heparin and heparan sulfate have led to an improved understanding of heparin-protein interactions. A high degree of specificity could be identified in many of these interactions. An understanding of these interactions at the molecular level is of fundamental importance in the design of new highly specific therapeutic agents. This review focuses on aspects of heparin structure and conformation, which are important for its interactions with proteins. It also describes the interaction of heparin and heparan sulfate with selected families of heparin-binding proteins.
Collapse
Affiliation(s)
- Ishan Capila
- S328 College of Pharmacy, University of Iowa, 115 S. Grand Avenue, Iowa City 52242, USA
| | | |
Collapse
|
41
|
|
42
|
|
43
|
Kim BT, Hong SW, Kim WS, Kim YS, Kim DH. Purification and characterization of acharan sulfate lyases, two novel heparinases, from Bacteroides stercoris HJ-15. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:2635-41. [PMID: 11322884 DOI: 10.1046/j.1432-1327.2001.02156.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Two novel acharan sulfate lyases (ASL1 and ASL2: no EC number) have been purified from Bacteroides stercoris HJ-15 which was isolated from human intestinal bacteria with glycosaminoglycan (GAG) degrading enzymes. These enzymes were purified to apparent homogeneity by a combination of QAE-cellulose, DEAE-cellulose, carboxymethyl-Sephadex C-50, hydroxyapatite and HiTrap SP Sephadex C-25 column chromatography with the final specific activity of 50.5 and 76.7 micromol.min-1.mg-1, respectively. Both acharan sulfate lyases are single subunits of 83 kDa by SDS/PAGE and gel filtration. ASL1 showed optimal activity at pH 7.2 and 45 degrees C. ASL1 activity was inhibited by Cu2+, Ni2+ and Co2+, but ASL2 activity was inhibited by Cu2+, Ni2+and Pb2. Both enzymes were slightly inhibited by some agents that modify histidine and cysteine residues, but activated by reducing agents such as DL-dithiothreitol and 2-mercaptoethanol. Both purified bacteroidal acharan sulfate lyases acted to the greatest extent on acharan sulfate, and to a lesser extents on heparan sulfate and heparin. They did not act on de-O-sulfated acharan sulfate. These findings suggest that the biochemical properties of these purified acharan sulfate lyases are different from those of the previously purified heparin lyases, but these enzymes belong to heparinase II.
Collapse
Affiliation(s)
- B T Kim
- College of Pharmacy, Kyung Hee University, Seoul, Korea; Natural Products Research Institute, Seoul National University, Seoul, Korea
| | | | | | | | | |
Collapse
|
44
|
Liu D, Shriver Z, Godavarti R, Venkataraman G, Sasisekharan R. The calcium-binding sites of heparinase I from Flavobacterium heparinum are essential for enzymatic activity. J Biol Chem 1999; 274:4089-95. [PMID: 9933602 DOI: 10.1074/jbc.274.7.4089] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the accompanying paper (Shriver, Z., Liu, D., Hu, Y., and Sasisekharan, R. (1999) J. Biol. Chem. 274, 4082-4088), we have shown that calcium binds specifically to heparinase I and have identified two major calcium-binding sites (CB-1 and CB-2) that partly conform to the EF-hand calcium-binding motif. In this study, through systematic site-directed mutagenesis, we have confirmed the accompanying biochemical studies and have shown that both CB-1 and CB-2 are involved in calcium binding and enzymatic activity. More specifically, we identified critical residues (viz. Asp210, Asp212, Gly213, and Thr216 in CB-1 and Asn375, Tyr379, and Glu381 in CB-2) that are important for calcium binding and heparinase I enzymatic activity. Mutations in CB-1 resulted in a lower kcat, but did not change the product profile of heparinase I action on heparin; conversely, mutations in CB-2 not only altered the kcat for heparinase I, but also resulted in incomplete degradation, leading to longer saccharides. Fluorescence competition experiments along with heparin affinity chromatography suggested that mutations in CB-1 alter heparinase I activity primarily through decreasing the enzyme's affinity for its calcium cofactor without altering heparin binding to heparinase I. Compared with CB-1 mutations, mutations in CB-2 affected calcium binding to a lesser extent, but they had a more pronounced effect on heparinase I activity, suggesting a different role for CB-2 in the enzymatic action of heparinase I. These results, taken together with our accompanying study, led us to propose a model for calcium binding to heparinase I that includes both CB-1 and CB-2 providing critical interactions, albeit via a different mechanism. Through binding to CB-1 and/or CB-2, we propose that calcium may play a role in the catalytic mechanism and/or in the exolytic processive mechanism of heparin-like glycosaminoglycan depolymerization by heparinase I.
Collapse
Affiliation(s)
- D Liu
- Division of Bioengineering and Environmental Health, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | |
Collapse
|
45
|
Shriver Z, Hu Y, Pojasek K, Sasisekharan R. Heparinase II from Flavobacterium heparinum. Role of cysteine in enzymatic activity as probed by chemical modification and site- directed mutagenesis. J Biol Chem 1998; 273:22904-12. [PMID: 9722510 DOI: 10.1074/jbc.273.36.22904] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Heparinase II (no EC number) is one of three lyases isolated from Flavobacterium heparinum that degrade heparin-like complex polysaccharides. Heparinase II is unique among the heparinases in that it has broad substrate requirements and possesses the ability to degrade both heparin and heparan sulfate-like regions of glycosaminoglycans. This study set out to investigate the role of cysteines in heparinase II activity. Through a series of chemical modification experiments, it was found that one of the three cysteines in heparinase II is surface-accessible and possesses unusual chemical reactivity toward cysteine-specific chemical modifying reagents. Substrate protection experiments suggest that this surface-accessible cysteine is proximate to the active site, since addition of substrate shields the cysteine from modifying reagents. The cysteine, present in an ionic environment, was mapped by radiolabeling with N-[3H]ethylmaleimide and identified as cysteine 348. Site-directed mutagenesis of cysteine 348 to an alanine resulted in loss of activity toward heparin but not heparan sulfate, indicating that cysteine 348 is required for heparinase II activity toward heparin but is not essential for the breakdown of heparan sulfate. Furthermore, we show in this study that cysteine 164 and cysteine 189 are functionally unimportant for heparinase II.
Collapse
Affiliation(s)
- Z Shriver
- Division of Bioengineering and Environmental Health, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | |
Collapse
|
46
|
Shriver Z, Hu Y, Sasisekharan R. Heparinase II from Flavobacterium heparinum. Role of histidine residues in enzymatic activity as probed by chemical modification and site-directed mutagenesis. J Biol Chem 1998; 273:10160-7. [PMID: 9553064 DOI: 10.1074/jbc.273.17.10160] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The three heparinases derived from Flavobacterium heparinum are powerful tools for studying heparin-like glycosaminoglycans in major biological processes, including angiogenesis and development. Heparinase II is unique among the three enzymes because it is able to catalytically cleave both heparin and heparan sulfate-like regions of heparin-like glycosaminoglycans. Toward understanding the catalytic mechanism of heparin-like glycosaminoglycan degradation by heparinase II, we set out to investigate the role of the histidines of heparinase II in catalysis. We observe concentration-dependent inactivation of heparinase II in the presence of the reversible histidine-modifying reagent diethylpyrocarbonate (DEPC). With heparin as the substrate, the rate constant of inactivation was found to be 0.16 min-1 mM-1; with heparan sulfate as the substrate, the rate constant was determined to be 0.24 min-1 mM-1. Heparinase II activity is restored following hydroxylamine treatment. This, along with other experiments, strongly suggests that the inactivation of heparinase II by DEPC is specific for histidine residues and that three histidines are modified by DEPC. Substrate protection experiments show that heparinase II preincubation with heparin followed by the addition of DEPC resulted in a loss of enzymatic activity toward heparan sulfate but not heparin. However, heparinase II preincubation with heparan sulfate was unable to protect heparinase II from DEPC inactivation for either of the substrates. Proteolytic mapping studies with Lys-C were consistent with the chemical modification experiments and identified histidines 238, 451, and 579 as being important for heparinase II activity. Further mapping studies identified histidine 451 as being essential for heparin degradation. Site-directed mutagenesis experiments on the 13 histidines of heparinase II corroborated the chemical modification and the peptide mapping studies, establishing the importance of histidines 238, 451 and 579 in heparinase II activity.
Collapse
Affiliation(s)
- Z Shriver
- Whitaker College of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | |
Collapse
|
47
|
Godavarti R, Sasisekharan R. Heparinase I from Flavobacterium heparinum. Role of positive charge in enzymatic activity. J Biol Chem 1998; 273:248-55. [PMID: 9417072 DOI: 10.1074/jbc.273.1.248] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Heparinases are bacterial enzymes that are powerful tools to study the physiological roles of heparin-like complex polysaccharides. In addition, heparinases have significant therapeutic applications. We had proposed earlier that cysteine 135 and histidine 203 together form the catalytic domain in heparinase I. We had also identified a heparin binding domain in heparinase I containing two positively charged clusters HB-1 and HB-2 in a primary heparin binding site and other positively charged residues in the vicinity of cysteine 135. In this study, through systematic site-directed mutagenesis studies, we show that the alteration of the positive charge of the HB-1 region has a pronounced effect on heparinase I activity. More specifically, site-directed mutagenesis of K199A (contained in HB-1) results in a 15-fold reduction in catalytic activity, whereas a K198A mutation (also in HB-1) results in only a 2- to 3-fold reduction in heparinase I activity. A K132A mutation, in close proximity to cysteine 135, also resulted in reduced (8-fold) activity. Heparin affinity chromatography experiments indicated moderately lowered binding affinities for the K132A, K198A, and the K199A mutant enzymes. The above results, taken together with our previous observations, lead us to propose that the positively charged heparin binding domain provides the necessary microenvironment for the catalytic domain of heparinase I. The dominant effect of lysine 199 suggests an additional, more direct, role in catalysis for this residue.
Collapse
Affiliation(s)
- R Godavarti
- Whitaker College of Health Sciences and Technology, Division of Toxicology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | |
Collapse
|