1
|
Chua HH, Kameyama T, Mayeda A, Yeh TH. Epstein-Barr Virus Enhances Cancer-Specific Aberrant Splicing of TSG101 Pre-mRNA. Int J Mol Sci 2022; 23:ijms23052516. [PMID: 35269659 PMCID: PMC8910672 DOI: 10.3390/ijms23052516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/21/2022] [Accepted: 02/21/2022] [Indexed: 11/16/2022] Open
Abstract
Tumor viruses gain control of cellular functions when they infect and transform host cells. Alternative splicing is one of the cellular processes exploited by tumor viruses to benefit viral replication and support oncogenesis. Epstein-Barr virus (EBV) participates in a number of cancers, as reported mostly in nasopharyngeal carcinoma (NPC) and Burkitt lymphoma (BL). Using RT-nested-PCR and Northern blot analysis in NPC and BL cells, here we demonstrate that EBV promotes specific alternative splicing of TSG101 pre-mRNA, which generates the TSG101∆154-1054 variant though the agency of its viral proteins, such as EBNA-1, Zta and Rta. The level of TSG101∆154-1054 is particularly enhanced upon EBV entry into the lytic cycle, increasing protein stability of TSG101 and causing the cumulative synthesis of EBV late lytic proteins, such as VCA and gp350/220. TSG101∆154-1054-mediated production of VCA and gp350/220 is blocked by the overexpression of a translational mutant of TSG101∆154-1054 or by the depletion of full-length TSG101, which is consistent with the known role of the TSG101∆154-1054 protein in stabilizing the TSG101 protein. NPC patients whose tumor tissues express TSG101∆154-1054 have high serum levels of anti-VCA antibodies and high levels of viral DNA in their tumors. Our findings highlight the functional importance of TSG101∆154-1054 in allowing full completion of the EBV lytic cycle to produce viral particles. We propose that targeting EBV-induced TSG101 alternative splicing has broad potential as a therapeutic to treat EBV-associated malignancies.
Collapse
Affiliation(s)
- Huey-Huey Chua
- Department of Pediatrics, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei 100226, Taiwan;
| | - Toshiki Kameyama
- Department of Physiology, School of Medicine, Fujita Health University, Toyoake 470-1192, Aichi, Japan;
| | - Akila Mayeda
- Division of Gene Expression Mechanism, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake 470-1192, Aichi, Japan
- Correspondence: (A.M.); (T.-H.Y.)
| | - Te-Huei Yeh
- Department of Otolaryngology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei 100225, Taiwan
- Correspondence: (A.M.); (T.-H.Y.)
| |
Collapse
|
2
|
White JT, Rives J, Tharp ME, Wrabl JO, Thompson EB, Hilser VJ. Tumor Susceptibility Gene 101 Regulates the Glucocorticoid Receptor through Disorder-Mediated Allostery. Biochemistry 2021; 60:1647-1657. [PMID: 34009973 PMCID: PMC11999013 DOI: 10.1021/acs.biochem.1c00079] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tumor susceptibility gene 101 (TSG101) is involved in endosomal maturation and has been implicated in the transcriptional regulation of several steroid hormone receptors, although a detailed characterization of such regulation has yet to be conducted. Here we directly measure binding of TSG101 to one steroid hormone receptor, the glucocorticoid receptor (GR). Using biophysical and cellular assays, we show that the coiled-coil domain of TSG101 (1) binds and folds the disordered N-terminal domain of the GR, (2) upon binding improves the DNA binding of the GR in vitro, and (3) enhances the transcriptional activity of the GR in vivo. Our findings suggest that TSG101 is a bona fide transcriptional co-regulator of the GR and reveal how the underlying thermodynamics affect the function of the GR.
Collapse
Affiliation(s)
- Jordan T. White
- Department of Biology at Johns Hopkins University, Baltimore, MD 21218
| | - James Rives
- Department of Chemistry at Johns Hopkins University
| | - Marla E. Tharp
- Department of Biology at Johns Hopkins University, Baltimore, MD 21218
| | - James O. Wrabl
- Department of Biology at Johns Hopkins University, Baltimore, MD 21218
| | - E. Brad Thompson
- Department of Biology at Johns Hopkins University, Baltimore, MD 21218
- Sealy Center for Structural Biology and Molecular Biophysics and the Department of Biochemistry and Molecular Biology at Univ. of Texas Medical Branch, Galveston, TX
| | - Vincent J. Hilser
- Department of Biology at Johns Hopkins University, Baltimore, MD 21218
- T. C. Jenkins Department of Biophysics at Johns Hopkins University
| |
Collapse
|
3
|
Why Cells and Viruses Cannot Survive without an ESCRT. Cells 2021; 10:cells10030483. [PMID: 33668191 PMCID: PMC7995964 DOI: 10.3390/cells10030483] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/19/2021] [Accepted: 02/21/2021] [Indexed: 12/15/2022] Open
Abstract
Intracellular organelles enwrapped in membranes along with a complex network of vesicles trafficking in, out and inside the cellular environment are one of the main features of eukaryotic cells. Given their central role in cell life, compartmentalization and mechanisms allowing their maintenance despite continuous crosstalk among different organelles have been deeply investigated over the past years. Here, we review the multiple functions exerted by the endosomal sorting complex required for transport (ESCRT) machinery in driving membrane remodeling and fission, as well as in repairing physiological and pathological membrane damages. In this way, ESCRT machinery enables different fundamental cellular processes, such as cell cytokinesis, biogenesis of organelles and vesicles, maintenance of nuclear–cytoplasmic compartmentalization, endolysosomal activity. Furthermore, we discuss some examples of how viruses, as obligate intracellular parasites, have evolved to hijack the ESCRT machinery or part of it to execute/optimize their replication cycle/infection. A special emphasis is given to the herpes simplex virus type 1 (HSV-1) interaction with the ESCRT proteins, considering the peculiarities of this interplay and the need for HSV-1 to cross both the nuclear-cytoplasmic and the cytoplasmic-extracellular environment compartmentalization to egress from infected cells.
Collapse
|
4
|
White JT, Toptygin D, Cohen R, Murphy N, Hilser VJ. Structural Stability of the Coiled-Coil Domain of Tumor Susceptibility Gene (TSG)-101. Biochemistry 2017; 56:4646-4655. [PMID: 28776372 PMCID: PMC5616090 DOI: 10.1021/acs.biochem.7b00469] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
![]()
The
tumor susceptibility gene-101 coiled coil domain (TSG101cc)
is an integral component of the endosomal maturation machinery and
cytokinesis, and also interacts with several transcription factors.
The TSG101cc has been crystallized as a homotetramer but is known
to interact with two of its binding partners as a heterotrimer. To
investigate this apparent discrepancy, we examined the solution thermodynamics
of the TSG101cc. Here, we use circular dichroism, differential scanning
calorimetry, analytical ultracentrifugation, fluorescence, and structural
thermodynamic analysis to investigate the structural stability and
the unfolding of the TSG101cc. We demonstrate that TSG101cc exists
in solution primarily as a tetramer, which unfolds in a two-state
manner. Surprisingly, no homodimeric or homotrimeric species were
detected. Structural thermodynamic analysis of the homotetrameric
structure and comparison with known oligomeric coiled-coils suggests
that the TSG101cc homotetramer is comparatively unstable on a per
residue basis. Furthermore, the homotrimeric coiled-coil is predicted
to be much less stable than the functional heterotrimeric coiled-coil
in the endosomal sorting complex required for transport 1 (ESCRT1).
These results support a model whereby the tetramer–monomer
equilibrium of TSG101 serves as the cellular reservoir of TSG101,
which is effectively outcompeted when its binding partners are present
and the heteroternary complex can form.
Collapse
Affiliation(s)
- Jordan T White
- Department of Biology, Johns Hopkins University , 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Dmitri Toptygin
- Department of Biology, Johns Hopkins University , 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Randy Cohen
- Department of Biology, Johns Hopkins University , 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Natalie Murphy
- Department of Biology, Johns Hopkins University , 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Vincent J Hilser
- Department of Biology, Johns Hopkins University , 3400 North Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
5
|
TSGΔ154-1054 splice variant increases TSG101 oncogenicity by inhibiting its E3-ligase-mediated proteasomal degradation. Oncotarget 2016; 7:8240-52. [PMID: 26811492 PMCID: PMC4884989 DOI: 10.18632/oncotarget.6973] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 01/12/2016] [Indexed: 01/01/2023] Open
Abstract
Tumor susceptibility gene 101 (TSG101) elicits an array of cellular functions, including promoting cytokinesis, cell cycle progression and proliferation, as well as facilitating endosomal trafficking and viral budding. TSG101 protein is highly and aberrantly expressed in various human cancers. Specifically, a TSG101 splicing variant missing nucleotides 154 to 1054 (TSGΔ154-1054), which is linked to progressive tumor-stage and metastasis, has puzzled investigators for more than a decade. TSG101-associated E3 ligase (Tal)- and MDM2-mediated proteasomal degradation are the two major routes for posttranslational regulation of the total amount of TSG101. We reveal that overabundance of TSG101 results from TSGΔ154-1054 stabilizing the TSG101 protein by competitively binding to Tal, but not MDM2, thereby perturbing the Tal interaction with TSG101 and impeding subsequent polyubiquitination and proteasomal degradation of TSG101. TSGΔ154-1054 therefore specifically enhances TSG101-stimulated cell proliferation, clonogenicity, and tumor growth in nude mice. This finding shows the functional significance of TSGΔ154-1054 in preventing the ubiquitin-proteasome proteolysis of TSG101, which increases tumor malignancy and hints at its potential as a therapeutic target in cancer treatment.
Collapse
|
6
|
Sai XB, Makiyama T, Sakane H, Horii Y, Hiraishi H, Shirataki H. TSG101, a tumor susceptibility gene, bidirectionally modulates cell invasion through regulating MMP-9 mRNA expression. BMC Cancer 2015; 15:933. [PMID: 26608825 PMCID: PMC4660656 DOI: 10.1186/s12885-015-1942-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 11/19/2015] [Indexed: 11/23/2022] Open
Abstract
Background Tumor susceptibility gene 101 (TSG101) was initially identified in fibroblasts as a tumor suppressor gene but subsequent studies show that TSG101 also functions as a tumor-enhancing gene in some epithelial tumor cells. Although previous studies have unraveled diverse biological functions of TSG101, the precise mechanism by which TSG101 is involved in carcinogenesis and tumor progression in a bidirectional and multifaceted manner remains unclear. Methods To reveal the mechanism underlying bidirectional modulation of cell invasion by TSG101, we used RNA interference to examine whether TSG101 depletion bidirectionally modulated matrix metalloproteinase (MMP)-9 expression in different cell types. Results TSG101 depletion promoted cell invasion of HT1080 cells but contrarily reduced cell invasion of HeLaS3 cells. In HT1080 cells, TSG101 depletion increased both baseline and phorbol 12-myristate 13-acetate (PMA)-induced MMP-9 secretion through enhancing MMP-9 mRNA expression, but did not affect the expression or activation of MMP-2. In contrast, TSG101 depletion decreased PMA-induced MMP-9 secretion through reducing MMP-9 mRNA expression in HeLaS3 cells. TSG101 depletion had little impact on the signaling pathways required for the activation of transcription of MMP-9 or MMP-9 mRNA stability in either cell line. Conclusion TSG101 bidirectionally modulates cell invasion through regulating MMP-9 mRNA expression in different cell types. Our results provide a mechanistic context for the role of TSG101 in cell invasion as a multifaceted gene. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1942-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xu Bin Sai
- Department of Molecular and Cell Biology, Graduate School of Medicine, Dokkyo Medical University, 880 Kitakobayashi, Mibu-cho, Tochigi, 321-0293, Japan. .,Department of Gastroenterology, Graduate School of Medicine, Dokkyo Medical University, 880 Kitakobayashi, Mibu-cho, Tochigi, 321-0293, Japan.
| | - Tomohiko Makiyama
- Department of Molecular and Cell Biology, Graduate School of Medicine, Dokkyo Medical University, 880 Kitakobayashi, Mibu-cho, Tochigi, 321-0293, Japan.
| | - Hiroshi Sakane
- Department of Molecular and Cell Biology, Graduate School of Medicine, Dokkyo Medical University, 880 Kitakobayashi, Mibu-cho, Tochigi, 321-0293, Japan. .,Present Address: Laboratory of Immunobiology, Faculty of Pharmaceutical Sciences, Fukuyama University, Sanzo Ichibanchi, Gakuencho, Fukuyama, Hiroshima, 729-0292, Japan.
| | - Yukimi Horii
- Department of Molecular and Cell Biology, Graduate School of Medicine, Dokkyo Medical University, 880 Kitakobayashi, Mibu-cho, Tochigi, 321-0293, Japan.
| | - Hideyuki Hiraishi
- Department of Gastroenterology, Graduate School of Medicine, Dokkyo Medical University, 880 Kitakobayashi, Mibu-cho, Tochigi, 321-0293, Japan.
| | - Hiromichi Shirataki
- Department of Molecular and Cell Biology, Graduate School of Medicine, Dokkyo Medical University, 880 Kitakobayashi, Mibu-cho, Tochigi, 321-0293, Japan.
| |
Collapse
|
7
|
Shao Z, Ji W, Liu A, Qin A, Shen L, Li G, Zhou Y, Hu X, Yu E, Jin G. TSG101 Silencing Suppresses Hepatocellular Carcinoma Cell Growth by Inducing Cell Cycle Arrest and Autophagic Cell Death. Med Sci Monit 2015; 21:3371-9. [PMID: 26537625 PMCID: PMC4654595 DOI: 10.12659/msm.894447] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background The tumor susceptibility gene 101 (TSG101) was originally identified as a tumor-suppressor gene that mediates many molecular and biological processes, such as ubiquitination, endosomal trafficking, cell survival, and virus budding, but its role in hepatocellular carcinoma (HCC) is currently unknown. Material/Methods We assessed the expression of TSG101 in HCC and paracancerous tissues using qPCR. Then, we used the TSG101-specific siRNA mix to disrupt the expression of TSG101 to investigate the subsequent effect on human hepatoma-7 (Huh7) cells. Western blot was used to detect the protein expression of TSG101 and other molecules. Cell growth assay was performed using CCK8. Transwell assay was used to investigate the migration and invasion ability of Huh7 cells after transfection with of TSG101 siRNA. Flow cytometry was used to estimate the effect of TSG101 knockdown on cell cycle and apoptosis. Confocal laser scanning microscopy was used to observe the actin filaments change and the formation of autophagy. Results TSG101 was over-expressed in HCC tissues. TSG101 silence was able to suppress Huh7 cell proliferation, migration, and invasion. Furthermore, silencing of TSG101 could induce cell cycle arrest at G1 phase and inhibit the expression of cyclin A and cyclin D, while up-regulating the expression of CDK2. The mechanism might be induction of autophagic cell death and inactivation of Akt and ERK1/2. Conclusions TSG101 plays an important role in the development of HCC and may be a target for molecular therapy.
Collapse
Affiliation(s)
- Zhuo Shao
- Department of General Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China (mainland)
| | - Weiping Ji
- Department of General Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China (mainland)
| | - Anan Liu
- Department of General Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China (mainland)
| | - Ancheng Qin
- Department of General Surgery, Suzhou Municipal Hospital, Suzhou, Jiangsu, China (mainland)
| | - Li Shen
- Department of General Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China (mainland)
| | - Gang Li
- Department of General Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China (mainland)
| | - Yingqi Zhou
- Department of General Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China (mainland)
| | - Xiangui Hu
- Department of General Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China (mainland)
| | - Enda Yu
- Department of General Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China (mainland)
| | - Gang Jin
- Department of General Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China (mainland)
| |
Collapse
|
8
|
|
9
|
Broniarczyk JK, Warowicka A, Kwaśniewska A, Wohuń-Cholewa M, Kwaśniewski W, Goździcka-Józefiak A. Expression of TSG101 protein and LSF transcription factor in HPV-positive cervical cancer cells. Oncol Lett 2014; 7:1409-1413. [PMID: 24765146 PMCID: PMC3997686 DOI: 10.3892/ol.2014.1967] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 01/07/2014] [Indexed: 11/23/2022] Open
Abstract
Our previous study demonstrated a decreased expression of tumor susceptibility gene 101 (TSG101) in cervical cancer cells. To identify the mechanism responsible for TSG101 downregulation during cervical cancer development, we analyzed the TSG101 promoter using cis-element cluster finder software. One of the transcription factors whose binding site was detected in the TSG101 promoter was late SV40 factor (LSF). The aim of this study was to analyze the TSG101 protein and LSF expression levels during cervical cancer development. Immunohistochemical analysis confirmed a previously observed decreased expression of TSG101, whereas quantitative polymerase chain reaction (qPCR) and immunohistochemistry analysis revealed high expression of LSF in cervical, precancer and cancer cells compared with human papillomavirus (HPV)-negative non-cancer samples. High expression of LSF in cervical cancer HPV-positive cells suggests that this protein may be important in the regulation of TSG101 expression, as well as in cervical carcinogenesis. The role of LSF as a mediator in cervical cancer development must be confirmed in future studies.
Collapse
Affiliation(s)
| | - Alicja Warowicka
- NanoBioMedical Centre, Adam Mickiewicz University, Poznań 61-614, Poland
| | - Anna Kwaśniewska
- Department of Obstetrics and Gynecology, Medical University of Lublin, Lublin 20-081, Poland
| | - Maria Wohuń-Cholewa
- Department of Cell Biology, University of Medical Science, Poznan 60-806, Poland
| | - Wojciech Kwaśniewski
- First Department of Oncological Gynecology and Gynecology, Medical University of Lublin, Lublin 20-081, Poland
| | | |
Collapse
|
10
|
Lin YS, Chen YJ, Cohen SN, Cheng TH. Identification of TSG101 functional domains and p21 loci required for TSG101-mediated p21 gene regulation. PLoS One 2013; 8:e79674. [PMID: 24244542 PMCID: PMC3823576 DOI: 10.1371/journal.pone.0079674] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 10/02/2013] [Indexed: 11/25/2022] Open
Abstract
TSG101 (tumor susceptibility gene 101) is a multi-domain protein known to act in the cell nucleus, cytoplasm, and periplasmic membrane. Remarkably, TSG101, whose location within cells varies with the stage of the cell cycle, affects biological events as diverse as cell growth and proliferation, gene expression, cytokinesis, and endosomal trafficking. The functions of TSG101 additionally are recruited for viral and microvesicle budding and for intracellular survival of invading bacteria. Here we report that the TSG101 protein also interacts with and down-regulates the promoter of the p21CIP1/WAF1tumor suppressor gene, and identify a p21 locus and TSG101 domains that mediate this interaction. TSG101 deficiency in Saos-2 human osteosarcoma cells was accompanied by an increased abundance of p21 mRNA and protein and the retardation of cell proliferation. A cis-acting element in the p21 promoter that interacts with TSG101 and is required for promoter repression was located using chromatin immunoprecipitation (ChIP) analysis and p21-driven luciferase reporter gene expression, respectively. Additional analysis of TSG101 deletion mutants lacking specific domains established the role of the central TSG101 domains in binding to the p21 promoter and demonstrated the additional essentiality of the TSG101 C-terminal steadiness box (SB) in the repression of p21 promoter activity. Neither binding of TSG101 to the p21 promoter nor repression of this promoter required the TSG101 N-terminal UEV domain, which mediates the ubiquitin-recognition functions of TSG101 and its actions as a member of ESCRT endocytic trafficking complexes, indicating that regulation of the p21 promoter by TSG101 is independent of its role in such trafficking.
Collapse
Affiliation(s)
- Yu-Shiuan Lin
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
| | - Yin-Ju Chen
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
| | - Stanley N. Cohen
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Tzu-Hao Cheng
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
11
|
Li DQ, Nair SS, Kumar R. The MORC family: new epigenetic regulators of transcription and DNA damage response. Epigenetics 2013; 8:685-93. [PMID: 23804034 DOI: 10.4161/epi.24976] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Microrchidia (MORC) is a highly conserved nuclear protein superfamily with widespread domain architectures that intimately link MORCs with signaling-dependent chromatin remodeling and epigenetic regulation. Accumulating structural and biochemical evidence has shed new light on the mechanistic action and emerging role of MORCs as epigenetic regulators in diverse nuclear processes. In this Point of View, we focus on discussing recent advances in our understanding of the unique domain architectures of MORC family of chromatin remodelers and their potential contribution to epigenetic control of DNA template-dependent processes such as transcription and DNA damage response. Given that the deregulation of MORCs has been linked with human cancer and other diseases, further efforts to uncover the structure and function of MORCs may ultimately lead to the development of new approaches to intersect with the functionality of MORC family of chromatin remodeling proteins to correct associated pathogenesis.
Collapse
Affiliation(s)
- Da-Qiang Li
- Department of Biochemistry and Molecular Medicine; School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA
| | | | | |
Collapse
|
12
|
Morris CR, Stanton MJ, Manthey KC, Oh KB, Wagner KU. A knockout of the Tsg101 gene leads to decreased expression of ErbB receptor tyrosine kinases and induction of autophagy prior to cell death. PLoS One 2012; 7:e34308. [PMID: 22479596 PMCID: PMC3316634 DOI: 10.1371/journal.pone.0034308] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 02/25/2012] [Indexed: 11/18/2022] Open
Abstract
The Tumor Susceptibility Gene 101 (Tsg101) encodes a multi-domain protein that mediates a variety of molecular and biological processes including the trafficking and lysosomal degradation of cell surface receptors. Conventional and conditional knockout models have demonstrated an essential requirement of this gene for cell cycle progression and cell viability, but the consequences of a complete ablation of Tsg101 on intracellular processes have not been examined to date. In this study, we employed mouse embryonic fibroblasts that carry two Tsg101 conditional knockout alleles to investigate the expression of ErbB receptor tyrosine kinases as well as stress-induced intracellular processes that are known to be associated with a defect in growth and cell survival. The conditional deletion of the Tsg101 gene in this well-controlled experimental model resulted in a significant reduction in the steady-state levels of the EGFR and ErbB2 but a stress-induced elevation in the phosphorylation of mitogen activated protein (MAP) kinases independent of growth factor stimulation. As part of an integrated stress response, Tsg101-deficient cells exhibited extensive remodeling of actin filaments and greatly enlarged lysosomes that were enriched with the autophagy-related protein LC3. The increase in the transcriptional activation and expression of LC3 and its association with Lamp1-positive lysosomes in a PI3K-dependent manner suggest that Tsg101 knockout cells utilize autophagy as a survival mechanism prior to their ultimate death. Collectively, this study shows that a knockout of the Tsg101 gene causes complex intracellular changes associated with stress response and cell death. These multifaceted alterations need to be recognized as they have an impact on defining particular functions for Tsg101 in processes such as signal transduction and lysosomal/endosomal trafficking.
Collapse
Affiliation(s)
- Chantey R. Morris
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Marissa J. Stanton
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Karoline C. Manthey
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Keon Bong Oh
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Kay-Uwe Wagner
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- * E-mail:
| |
Collapse
|
13
|
An upstream regulatory element confers orientation-independent enhancement of the TSG101 promoter activity in transformed cells. Mol Biol Rep 2011; 39:517-25. [DOI: 10.1007/s11033-011-0766-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 04/27/2011] [Indexed: 11/26/2022]
|
14
|
TSG101, identified by screening a cancer cDNA library and soft agar assay, promotes cell proliferation in human lung cancer. Mol Biol Rep 2009; 37:2829-38. [PMID: 19787439 DOI: 10.1007/s11033-009-9835-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Accepted: 09/08/2009] [Indexed: 10/20/2022]
Abstract
Understanding the genesis and development of tumors is an essential component in cancer research. It is of interest to discover unknown genes that are responsible for cellular transformation. A cDNA library of a highly metastatic lung adenocarcinoma cell line was constructed. This library was introduced into the NIH3T3 mouse embryonic fibroblast cell line to screen for cDNAs that increase anchorage-independent colony formation in soft agar. The expression of TSG101 in lung cancer cell lines and specimens was confirmed using reverse transcription-polymerase chain reaction. The level of TSG101 protein in transfected A549 cells was determined by western blotting. Cell-cycle distribution was analyzed using a FACStar Plus flow cytometer. One of the candidate cDNAs that increases anchorage-independent colony formation was shown to correspond to the TSG101 cDNA sequence. Levels of TSG101 mRNA were higher in lung cancer cell lines and specimens compared to matched normal lung tissues. Ectopic expression of TSG101 in the A549 lung adenocarcinoma cell line increased the numbers of cells in S phase, suggesting an increased cell proliferation rate. These results indicate that TSG101 may induce the malignant phenotype of cells.
Collapse
|
15
|
Schlundt A, Sticht J, Piotukh K, Kosslick D, Jahnke N, Keller S, Schuemann M, Krause E, Freund C. Proline-rich sequence recognition: II. Proteomics analysis of Tsg101 ubiquitin-E2-like variant (UEV) interactions. Mol Cell Proteomics 2009; 8:2474-86. [PMID: 19542561 DOI: 10.1074/mcp.m800337-mcp200] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The tumor maintenance protein Tsg101 has recently gained much attention because of its involvement in endosomal sorting, virus release, cytokinesis, and cancerogenesis. The ubiquitin-E2-like variant (UEV) domain of the protein interacts with proline-rich sequences of target proteins that contain P(S/T)AP amino acid motifs and weakly binds to the ubiquitin moiety of proteins committed to sorting or degradation. Here we performed peptide spot analysis and phage display to refine the peptide binding specificity of the Tsg101 UEV domain. A mass spectrometric proteomics approach that combines domain-based pulldown experiments, binding site inactivation, and stable isotope labeling by amino acids in cell culture (SILAC) was then used to delineate the relative importance of the peptide and ubiquitin binding sites. Clearly "PTAP" interactions dominate target recognition, and we identified several novel binders as for example the poly(A)-binding protein 1 (PABP1), Sec24b, NFkappaB2, and eIF4b. For PABP1 and eIF4b the interactions were confirmed in the context of the corresponding full-length proteins in cellular lysates. Therefore, our results strongly suggest additional roles of Tsg101 in cellular regulation of mRNA translation. Regulation of Tsg101 itself by the ubiquitin ligase TAL (Tsg101-associated ligase) is most likely conferred by a single PSAP binding motif that enables the interaction with Tsg101 UEV. Together with the results from the accompanying article (Kofler, M., Schuemann, M., Merz, C., Kosslick, D., Schlundt, A., Tannert, A., Schaefer, M., Lührmann, R., Krause, E., and Freund, C. (2009) Proline-rich sequence recognition: I. Marking GYF and WW domain assembly sites in early spliceosomal complexes. Mol. Cell. Proteomics 8, 2461-2473) on GYF and WW domain pathways our work defines major proline-rich sequence-mediated interaction networks that contribute to the modular assembly of physiologically relevant protein complexes.
Collapse
Affiliation(s)
- Andreas Schlundt
- Protein Engineering Group, Leibniz Institute for Molecular Pharmacology and Freie Universität Berlin, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Pyrzynska B, Pilecka I, Miaczynska M. Endocytic proteins in the regulation of nuclear signaling, transcription and tumorigenesis. Mol Oncol 2009; 3:321-38. [PMID: 19577966 DOI: 10.1016/j.molonc.2009.06.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Revised: 06/01/2009] [Accepted: 06/02/2009] [Indexed: 01/14/2023] Open
Abstract
Accumulating evidence argues that many proteins governing membrane sorting during endocytosis participate also in nuclear signaling and transcriptional regulation, mostly by modulating the activity of various nuclear factors. Some adaptors and accessory proteins acting in clathrin-mediated internalization, as well as endosomal sorting proteins can undergo nuclear translocation and affect gene expression directly, while for others the effects may be more indirect. Although it is often unclear to what extent the endocytic and nuclear functions are interrelated, several of such proteins are implicated in the regulation of cell proliferation and tumorigenesis, arguing that their dual-function nature may be of physiological importance.
Collapse
Affiliation(s)
- Beata Pyrzynska
- International Institute of Molecular and Cell Biology, Laboratory of Cell Biology, 02-109 Warsaw, Poland
| | | | | |
Collapse
|
17
|
Young TW, Rosen DG, Mei FC, Li N, Liu J, Wang XF, Cheng X. Up-regulation of tumor susceptibility gene 101 conveys poor prognosis through suppression of p21 expression in ovarian cancer. Clin Cancer Res 2007; 13:3848-54. [PMID: 17606716 DOI: 10.1158/1078-0432.ccr-07-0337] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The function of tumor susceptibility gene 101 (TSG101) in ovarian carcinogenesis is largely unexplored. The aim of this study is to investigate the role of TSG101 in human ovarian cancer development, to examine the expression levels of TSG101 in ovarian carcinomas, and to correlate the results with clinicopathologic variables and survival. EXPERIMENTAL DESIGN Human ovarian cancer tissue arrays that contain duplicates of 422 cases of primary ovarian carcinoma were used to probe the expression levels of TSG101 and p21 in epithelial ovarian cancer. In vitro studies in ovarian cancer cells using TSG101-specific small interfering RNA (siRNA) were done to further elucidate the mechanism of TSG101-mediated p21 regulation. RESULTS We show that TSG101 is increasingly overexpressed in borderline tumors and low-grade and high-grade carcinomas. Patients with low expression of TSG101 survive longer than those with high expression. Suppressing TSG101 by siRNA in ovarian cancer cells led to growth inhibition, cell cycle arrest, and apoptosis with concurrent increases in p21 mRNA and protein. Consistent with this negative association between TSG101 and p21, expression levels of these two markers are inversely correlated in ovarian cancer. CONCLUSIONS TSG101 negatively regulates p21 levels, and up-regulation of TSG101 is associated with poor prognosis in ovarian cancer.
Collapse
Affiliation(s)
- Travis W Young
- Department of Pharmacology and Toxicology, Sealy Center for Cancer Cell Biology, The University of Texas Medical Branch, Galveston, Texas 77555-1031, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Pilecka I, Banach-Orlowska M, Miaczynska M. Nuclear functions of endocytic proteins. Eur J Cell Biol 2007; 86:533-47. [PMID: 17583371 DOI: 10.1016/j.ejcb.2007.04.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Revised: 04/19/2007] [Accepted: 04/19/2007] [Indexed: 01/14/2023] Open
Abstract
An increasing number of proteins appear to perform multiple, sometimes unrelated functions in the cell. Such moonlighting properties have been recently demonstrated for proteins involved in clathrin-mediated endocytosis. Some clathrin adaptors and endosomal proteins can undergo nucleocytoplasmic shuttling, which is often based on intrinsic sequence motifs and requires active transport mechanisms. Endocytic proteins can associate with nuclear molecules, changing their localization and/or activity and may modulate the levels and specificity of gene transcription. It is not clear how the nuclear and cytoplasmic pools of endocytic proteins are interconnected, or whether these molecules act as nuclear second messengers upon extracellular stimuli, but alike in endocytosis, they seem to form multi-component scaffolding platforms in the nucleus. Added to their endocytic functions, the nuclear roles of Eps15, Epsin1, CALM, HIP1, Dab1/2, beta-arrestins, APPL1/2 and the components of ESCRTs clearly increase the complexity of signaling networks affecting cellular growth, proliferation and homeostasis.
Collapse
Affiliation(s)
- Iwona Pilecka
- International Institute of Molecular and Cell Biology, Laboratory of Cell Biology, 4 Ks. Trojdena Street, 02-109 Warsaw, Poland
| | | | | |
Collapse
|
19
|
Oh KB, Stanton MJ, West WW, Todd GL, Wagner KU. Tsg101 is upregulated in a subset of invasive human breast cancers and its targeted overexpression in transgenic mice reveals weak oncogenic properties for mammary cancer initiation. Oncogene 2007; 26:5950-9. [PMID: 17369844 DOI: 10.1038/sj.onc.1210401] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Previous studies reported that the Tumor Susceptibility Gene 101 (TSG101) is upregulated in selected human malignancies, and the expression of exogenous Tsg101 was suggested to transform immortalized fibroblasts in culture. To date, the potential oncogenic properties of Tsg101 have not been examined in vivo owing to the lack of appropriate model systems. In this study, we show that Tsg101 is highly expressed in a subset of invasive human breast cancers. Based on this observation, we generated the first transgenic mouse model with a targeted overexpression of Tsg101 in the developing mammary gland to test whether exogenous Tsg101 is capable of initiating tumorigenesis. Normal functionality of exogenous Tsg101 was tested by rescuing the survival of Tsg101-deficient mammary epithelial cells in conditional knockout mice. The overexpression of Tsg101 resulted in increased phosphorylation of the epidermal growth factor receptor and downstream activation of MAP kinases. Despite an increase in the activation of these signal transducers, the mammary gland of females expressing exogenous Tsg101 developed normally throughout the reproductive cycle. In aging females, the overexpression of Tsg101 seemed to increase the susceptibility of mammary epithelia toward malignant transformation. However, owing to the long latency of tumor formation and the sporadic occurrence of bona fide mammary cancers, we conclude that the Tsg101 protein has only weak oncogenic properties. Instead of cancer initiation, it is therefore likely that Tsg101 plays a more predominant role in the progression of a subset of spontaneously arising breast cancers.
Collapse
Affiliation(s)
- K B Oh
- Eppley Institute for Research in Cancer and Allied Diseases, 986805 University of Nebraska Medical Center, Omaha, NE 68198, USA
| | | | | | | | | |
Collapse
|
20
|
Chua HH, Lee HH, Chang SS, Lu CC, Yeh TH, Hsu TY, Cheng TH, Cheng JT, Chen MR, Tsai CH. Role of the TSG101 gene in Epstein-Barr virus late gene transcription. J Virol 2006; 81:2459-71. [PMID: 17182691 PMCID: PMC1865947 DOI: 10.1128/jvi.02289-06] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Rta, an Epstein-Barr virus (EBV)-encoded immediate-early protein, governs the reactivation of the viral lytic program by transactivating a cascade of lytic gene expression. Cellular transcription factors such as Sp1, ATF2, E2F, and Akt have been demonstrated to mediate Rta transactivation of lytic genes. We report herein that Rta associates with another potent transcription factor, tumor susceptibility gene 101 (TSG101), to promote the activation of EBV late genes. Results from an EBV cDNA array reveal that depletion of TSG101 by siRNA potently inhibits the transcription of five Rta-responsive EBV late genes, BcLF1, BDLF3, BILF2, BLLF1, and BLRF2. Depletion of TSG101 impairs the Rta transactivation of these late promoters severely. Moreover, a concordant augmentation of Rta transactivating activity is observed when TSG101 is overexpressed following ectopic transfection. Mechanistically, Rta interaction with TSG101 causes the latter to accumulate principally in the nuclei, wherein the proteins colocalize and are recruited to the viral promoters. Of note, TSG101 is crucial for the efficient binding of Rta to these late promoters. As a result, cells with defective TSG101 fail to express late viral proteins, leading to a decrease in the yield of virus particles. Thus, the contribution of TSG101 to Rta-mediated late gene activation is of great importance for completion of the EBV productive lytic cycle. These observations consolidate a role for TSG101 in the replication of EBV, a DNA virus, that differs from what is observed for RNA viruses, where TSG101 aids mainly in the endosomal sorting of enveloped late viral proteins for assembly at the plasma membrane.
Collapse
MESH Headings
- Base Sequence
- Cell Line, Tumor
- DNA, Viral/genetics
- DNA, Viral/metabolism
- DNA-Binding Proteins/antagonists & inhibitors
- DNA-Binding Proteins/genetics
- Endosomal Sorting Complexes Required for Transport
- Epstein-Barr Virus Infections/genetics
- Epstein-Barr Virus Infections/metabolism
- Epstein-Barr Virus Infections/virology
- Genes, Viral
- Herpesvirus 4, Human/genetics
- Herpesvirus 4, Human/pathogenicity
- Herpesvirus 4, Human/physiology
- Humans
- Immediate-Early Proteins/genetics
- Immediate-Early Proteins/metabolism
- Promoter Regions, Genetic
- RNA, Small Interfering/genetics
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Transcription Factors/antagonists & inhibitors
- Transcription Factors/genetics
- Transcription, Genetic
- Transcriptional Activation
- Ubiquitin-Conjugating Enzymes/metabolism
- Viral Proteins/genetics
- Viral Proteins/metabolism
- Virus Replication
Collapse
Affiliation(s)
- Huey-Huey Chua
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, No. 1 Jen-Ai Road 1st section, Taipei 10051, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Olabisi OO, Mahon GM, Kostenko EV, Liu Z, Ozer HL, Whitehead IP. Bcr interacts with components of the endosomal sorting complex required for transport-I and is required for epidermal growth factor receptor turnover. Cancer Res 2006; 66:6250-7. [PMID: 16778200 DOI: 10.1158/0008-5472.can-06-0536] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Virtually all patients with chronic myelogenous leukemia (CML) express an aberrant protein (p210 Bcr-Abl) that contains NH2-terminal sequences from Bcr fused to COOH-terminal sequences from Abl. In a yeast two-hybrid screen, we have identified TSG101 as a binding partner for Bcr. Because TSG101 is a subunit of the mammalian endosomal sorting complex required for transport (ESCRT), which regulates protein sorting during endosomal trafficking, this association suggests that Bcr may have a related cellular function. The docking site for TSG101 has been mapped to the COOH terminus of Bcr, indicating that this interaction may be disrupted in CML. Overexpression studies with full-length TSG101 and Bcr reveal that this interaction can be recapitulated in mammalian cells. The association can also be observed between natively expressed proteins in a panel of hematopoietic and nonhematopoietic cell lines, where a second subunit of the ESCRT complex, vacuolar sorting protein 28 (Vps28), was also found to interact with Bcr. Both Bcr and TSG101 exhibit a punctate cytoplasmic distribution and seem to colocalize in HeLa cells, which would be consistent with an in vivo association. Bacterially purified Bcr and TSG101 also bind, suggesting that the interaction is direct and is not dependent on ubiquitination. Disruption of the endosomal pathway with an ATPase-defective Vps4 mutant results in the cellular redistribution of Bcr, and suppression of Bcr in HeLa cells by small interfering RNA impairs epidermal growth factor receptor turnover. Taken together, these observations suggest that Bcr is a component of the mammalian ESCRT complexes and plays an important role in cellular trafficking of growth factor receptors.
Collapse
Affiliation(s)
- Oyenike O Olabisi
- Department of Microbiology and Molecular Genetics and University Hospital Cancer Center, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, New Jersey 07103, USA
| | | | | | | | | | | |
Collapse
|
22
|
Ismaili N, Blind R, Garabedian MJ. Stabilization of the unliganded glucocorticoid receptor by TSG101. J Biol Chem 2005; 280:11120-6. [PMID: 15657031 DOI: 10.1074/jbc.m500059200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The glucocorticoid receptor (GR) has been shown to undergo hormone-dependent down-regulation via transcriptional, post-transcriptional, and posttranslational mechanisms. However, the mechanisms involved in modulating GR levels in the absence of hormone remain enigmatic. Here we demonstrate that TSG101, a previously identified GR-interacting protein, stabilizes the hypophosphorylated form of GR in the absence of ligand. We found that a non-phosphorylated version of GR (S203A/S211A) showed enhanced interaction with TSG101 as compared with the wild type GR, suggesting that TSG101 interacts more favorably with GR when it is not phosphorylated. A significant accumulation of GR S203A/S211A protein is detected in the absence of ligand when TSG101 is overexpressed, whereas no increase in the wild type phosphorylated GR or phosphomimetic GR S203E/S211E was observed in mammalian cells. In contrast, down-regulation of TSG101 expression by siRNA renders the hypophosphorylated form of GR unstable. We further show that TSG101 stabilizes GR by impeding its degradation by the proteasome and extending receptor half-life. Thus, in absence of a ligand, TSG101 binds GR and protects the non-phosphorylated receptor from degradation.
Collapse
Affiliation(s)
- Naima Ismaili
- Department of Microbiology, New York Univeristy Cancer Institute, New York University School of Medicine, New York, New York 10016, USA
| | | | | |
Collapse
|
23
|
Carstens MJ, Krempler A, Triplett AA, van Lohuizen M, Wagner KU. Cell cycle arrest and cell death are controlled by p53-dependent and p53-independent mechanisms in Tsg101-deficient cells. J Biol Chem 2004; 279:35984-94. [PMID: 15210712 PMCID: PMC1201394 DOI: 10.1074/jbc.m400408200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Our previous studies have shown that cells conditionally deficient in Tsg101 arrested at the G(1)/S cell cycle checkpoint and died. We created a series of Tsg101 conditional knock-out cell lines that lack p53, p21(Cip1), or p19(Arf) to determine the involvement of the Mdm2-p53 circuit as a regulator for G(1)/S progression and cell death. In this new report we show that the cell cycle arrest in Tsg101-deficient cells is p53-dependent, but a null mutation of the p53 gene is unable to maintain cell survival. The deletion of the Cdkn1a gene in Tsg101 conditional knock-out cells resulted in G(1)/S progression, suggesting that the p53-dependent G(1) arrest in the Tsg101 knock-out is mediated by p21(Cip1). The Cre-mediated excision of Tsg101 in immortalized fibroblasts that lack p19(Arf) seemed not to alter the ability of Mdm2 to sequester p53, and the p21-mediated G(1) arrest was not restored. Based on these findings, we propose that the p21-dependent cell cycle arrest in Tsg101-deficient cells is an indirect consequence of cellular stress and not caused by a direct effect of Tsg101 on Mdm2 function as previously suggested. Finally, the deletion of Tsg101 from primary tumor cells that express mutant p53 and that lack p21(Cip1) expression results in cell death, suggesting that additional transforming mutations during tumorigenesis do not affect the important role of Tsg101 for cell survival.
Collapse
Affiliation(s)
- Marissa J. Carstens
- From the Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, Nebraska 68198-6805 and
| | - Andrea Krempler
- From the Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, Nebraska 68198-6805 and
| | - Aleata A. Triplett
- From the Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, Nebraska 68198-6805 and
| | - Maarten van Lohuizen
- The Netherlands Cancer Institute, Department of Molecular Genetics, H5, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Kay-Uwe Wagner
- From the Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, Nebraska 68198-6805 and
| |
Collapse
|
24
|
Ismaili N, Garabedian MJ. Modulation of glucocorticoid receptor function via phosphorylation. Ann N Y Acad Sci 2004; 1024:86-101. [PMID: 15265775 DOI: 10.1196/annals.1321.007] [Citation(s) in RCA: 213] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The glucocorticoid receptor (GR) is phosphorylated at multiple serine residues in a hormone-dependent manner. It has been suggested that GR phosphorylation affects turnover, subcellular trafficking, or the transcriptional regulatory functions of the receptor, yet the contribution of individual GR phosphorylation sites to the modulation of GR activity remains enigmatic. This review critically evaluates the literature on GR phosphorylation and presents more recent work on the mechanism of GR phosphorylation from studies using antibodies that recognize GR only when it is phosphorylated. In addition, we present support for the notion that GR phosphorylation modifies protein-protein interactions, which can stabilize the hypophosphorylated form of the receptor in the absence of ligand, as well as facilitate transcriptional activation by the hyperphosphorylation of GR via cofactor recruitment upon ligand binding. Finally, we propose that GR phosphorylation also participates in the nongenomic activation of cytoplasmic signaling pathways evoked by GR. Thus, GR phosphorylation is a versatile mechanism for modulating and integrating multiple receptor functions.
Collapse
Affiliation(s)
- Naima Ismaili
- Department of Microbiology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | | |
Collapse
|
25
|
Muromoto R, Sugiyama K, Yamamoto T, Oritani K, Shimoda K, Matsuda T. Physical and functional interactions between Daxx and TSG101. Biochem Biophys Res Commun 2004; 316:827-33. [PMID: 15033475 DOI: 10.1016/j.bbrc.2004.02.126] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2004] [Indexed: 11/23/2022]
Abstract
Daxx has been reported to mediate the Fas/JNK-dependent signals in the cytoplasm. However, several evidences have suggested that Daxx is located mainly in the nucleus and functions as a transcriptional regulator. Recently, we identified DMAP1, a TSG101-interacting protein as a Daxx binding partner by yeast two-hybrid screening. TSG101 has been shown to act as transcriptional co-repressor of nuclear hormone receptors. Here we examined whether TSG101also interacts with Daxx directly. The association of Daxx and TSG101 was confirmed using co-expressed tagged proteins. The interaction regions in both proteins were also mapped, and the cellular localization of the interaction was examined. TSG101 formed a complex with Daxx through its coiled-coil domain and co-localized in the nucleus. Furthermore, TSG101 enhanced Daxx-mediated repression of glucocorticoid receptor transcriptional activity. These results provide the novel molecular interactions between Daxx and TSG101, which establish an efficient repressive transcription complex in the nucleus.
Collapse
Affiliation(s)
- Ryuta Muromoto
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-Ku Kita 12 Nishi 6, Sapporo 060-0812, Japan
| | | | | | | | | | | |
Collapse
|
26
|
Burgdorf S, Leister P, Scheidtmann KH. TSG101 interacts with apoptosis-antagonizing transcription factor and enhances androgen receptor-mediated transcription by promoting its monoubiquitination. J Biol Chem 2004; 279:17524-34. [PMID: 14761944 DOI: 10.1074/jbc.m313703200] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Apoptosis-antagonizing transcription factor (AATF), also termed Che-1, was identified as interacting protein of Dlk/ZIP kinase and RNA polymerase II, respectively. Che-1 has additionally been shown to bind Rb, thereby activating transcription factor E2F and promoting cell cycle progression. Moreover, AATF enhances steroid receptor-mediated transactivation in a hormone- and dose-dependent manner (Leister, P., Burgdorf, S., and Scheidtmann, K. H., (2003) Signal Transduction 3, 18-25). These data suggest that AATF exerts its functions through interaction with different transcription factors. In search of novel interaction partners of AATF, we identified the tumor susceptibility gene product TSG101, which had also been recognized as a co-regulator of nuclear hormone receptors. Interestingly, TSG101 and AATF functioned as cooperative coactivators in androgen receptor-mediated transcription. Because TSG101 was also shown to play a role in regulation of ubiquitin conjugation, we asked whether its coactivating function might be linked to ubiquitination. Indeed, TSG101 enhanced monoubiquitination of the androgen receptor in a ligand-dependent manner, and this correlated with enhanced transactivating capacity. Furthermore, a dominant-negative mutant of ubiquitin preventing polyubiquitination also stimulated androgen receptor-mediated transcription, which in this case could not be enhanced by TSG101. We propose that TSG101 activates androgen receptor-induced transcription by transient stabilization of the monoubiquitinated state, thus revealing a novel regulatory mechanism for nuclear receptors.
Collapse
MESH Headings
- Amino Acid Motifs
- Animals
- Apoptosis
- Apoptosis Regulatory Proteins
- Blotting, Western
- Cell Line, Tumor
- Cell Nucleus/metabolism
- DNA, Complementary/metabolism
- DNA-Binding Proteins/chemistry
- DNA-Binding Proteins/metabolism
- Dose-Response Relationship, Drug
- Endosomal Sorting Complexes Required for Transport
- Gene Deletion
- Gene Library
- Genes, Dominant
- Hormones/metabolism
- Humans
- Ligands
- Microscopy, Fluorescence
- Models, Biological
- Models, Genetic
- Plasmids/metabolism
- Promoter Regions, Genetic
- Protein Binding
- Protein Structure, Tertiary
- Rats
- Receptors, Androgen/metabolism
- Repressor Proteins/metabolism
- Transcription Factors/chemistry
- Transcription Factors/metabolism
- Transcription, Genetic
- Transcriptional Activation
- Transfection
- Two-Hybrid System Techniques
- Ubiquitin/metabolism
Collapse
Affiliation(s)
- Sven Burgdorf
- Institute of Genetics, University of Bonn, D-53117 Bonn, Germany
| | | | | |
Collapse
|
27
|
Togashi M, Ozawa S, Abe S, Nishimura T, Tsuruga M, Ando K, Tamura G, Kuwahara S, Ubukata M, Magae J. Ascochlorin derivatives as ligands for nuclear hormone receptors. J Med Chem 2003; 46:4113-23. [PMID: 12954063 DOI: 10.1021/jm0205649] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nuclear receptor family proteins are structurally related transcription factors activated by specific lipophilic compounds. Because they are activated by a variety of hormonal molecules, including retinoic acid, vitamin D, and steroid hormones, they are assumed to be promising targets for clinical drugs. We previously found that one ascochlorin (1) derivative, 4-O-carboxymethyl-ascochlorin (2), is a potent agonist of peroxisome proliferator activated receptor gamma (PPARgamma). Here, we synthesized derivatives of 1, designated as a lead compound, to create new modulators of nuclear hormone receptors. Two derivatives, 4-O-carboxymethyl-2-O-methylascochlorin (9) and 4-O-isonicotinoyl-2-O-methylascochlorin (10), showed improved agonistic activity for PPARgamma and induced differentiation of a progenitor cell line, C3H10T1/2. We also found that 1, dehydroascofuranon (29), and a 2,4-O-diacetyl-1-carboxylic acid derivative of 1 (5) specifically activated estrogen receptors, PPARalpha, and an androgen receptor. All of the derivatives (1-29) activated the pregnane X receptor. These results suggest that the chemical structure of 1 is useful in designing novel modulators of nuclear receptors.
Collapse
Affiliation(s)
- Marie Togashi
- Department of Biotechnology, Institute of Research and Innovation, 1201 Takada, Kashiwa 277-0861, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Goff A, Ehrlich LS, Cohen SN, Carter CA. Tsg101 control of human immunodeficiency virus type 1 Gag trafficking and release. J Virol 2003; 77:9173-82. [PMID: 12915533 PMCID: PMC187429 DOI: 10.1128/jvi.77.17.9173-9182.2003] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The structural precursor polyprotein of human immunodeficiency virus type 1, Pr55(gag), contains a proline-rich motif (PTAP) called the "late domain" in its C-terminal p6 region that directs release of mature virus-like particles (VLPs) from the plasma membranes of gag-transfected COS-1 cells. The motif binds Tsg101 (vacuolar protein-sorting protein 23, or Vps23), which functions in endocytic trafficking. Here, we show that accumulation of the wild-type (wt) Gag precursor in a fraction of COS-1 cytoplasm enriched in multivesicular bodies and small particulate components of the plasma membrane (P100) is p6 dependent. Cleavage intermediates and mature CA mainly partitioned with more rapidly sedimenting larger material enriched in components of lysosomes and early endosomes (P27), and this also was p6 dependent. Expression of truncated or full-length Tsg101 proteins interfered with VLP assembly and Gag accumulation in the P100 fraction. This correlated with reduced accumulation of Gag tagged with green fluorescent protein (Gag-GFP) at the plasma membrane and colocalization with the tagged Tsg101 in perinuclear early endosomes, as visualized by confocal microscopy. Fractionation analysis and confocal examination both indicated that the N-terminal region of Tsg101, which contains binding sites for PTAP and ubiquitin (Ub), was required for Gag trafficking to the plasma membrane. Expression of FLAG-tagged Tsg101 with a deletion in the Ub-binding pocket inhibited VLP release almost completely and to a significantly greater extent than expression of the wt tagged Tsg101 protein or Tsg101-FLAG containing a deletion in the PTAP-binding region. The results demonstrate that Gag associates with endosomal trafficking compartments and indicate that efficient release of virus particles from the plasma membrane requires both the PTAP- and Ub-binding functions of Tsg101 to recruit the cellular machinery required for budding.
Collapse
Affiliation(s)
- A Goff
- Department of Molecular Genetics and Microbiology, State University of New York at Stony Brook, Stony Brook, New York 11794-5222, USA
| | | | | | | |
Collapse
|
29
|
Lu Q, Hope LW, Brasch M, Reinhard C, Cohen SN. TSG101 interaction with HRS mediates endosomal trafficking and receptor down-regulation. Proc Natl Acad Sci U S A 2003; 100:7626-31. [PMID: 12802020 PMCID: PMC164637 DOI: 10.1073/pnas.0932599100] [Citation(s) in RCA: 252] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Down-regulation of mitogenic signaling in mammalian cells relies in part on endosomal trafficking of activated receptors into lysosomes, where the receptors are degraded. These events are mediated by ubiquitination of the endosomal cargo and its consequent sorting into multivesicular bodies that form at the surfaces of late endosomes. Tumor susceptibility gene 101 (tsg101) recently was found to be centrally involved in this process. Here we report that TSG101 interacts with hepatocyte growth factor-regulated tyrosine kinase substrate (HRS), an early endosomal protein, and that disruption of this interaction impedes endosomal trafficking and endocytosis-mediated degradation of mitogenic receptors. TSG101/HRS interaction occurs between a ubiquitin-binding domain of TSG101 and two distinct proline-rich regions of HRS, and is modulated by a C-terminal TSG101 sequence that resembles a motif targeted in HRS. Mutational perturbation of TSG101/HRS interaction prevented delivery of epidermal growth factor receptor (EGFR) to late endosomes, resulted in the cellular accumulation of ubiquitinated EGFR in early endosomes, and inhibited ligand-induced down-regulation of EGFR. Our results reveal the TSG101 interaction with HRS as a crucial step in endocytic down-regulation of mitogenic signaling and suggest a role for this interaction in linking the functions of early and late endosomes.
Collapse
Affiliation(s)
- Quan Lu
- Department of Genetics, Program in Cancer Biology, Stanford University School of Medicine, Stanford, CA 94305-5120, USA
| | | | | | | | | |
Collapse
|
30
|
Wagner KU, Krempler A, Qi Y, Park K, Henry MD, Triplett AA, Riedlinger G, Rucker III EB, Hennighausen L. Tsg101 is essential for cell growth, proliferation, and cell survival of embryonic and adult tissues. Mol Cell Biol 2003; 23:150-62. [PMID: 12482969 PMCID: PMC140677 DOI: 10.1128/mcb.23.1.150-162.2003] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tumor susceptibility gene 101 (Tsg101) was identified in a random mutagenesis screen for potential tumor suppressors in NIH 3T3 cells. Altered transcripts of this gene have been detected in sporadic breast cancers and many other human malignancies. However, the involvement of this gene in neoplastic transformation and tumorigenesis is still elusive. Using gene targeting, we generated genetically engineered mice with a floxed allele of Tsg101. We investigated essential functions of this gene in vivo and examined whether the loss of function of Tsg101 results in tumorigenesis. Conventional knockout mice were generated through Cre-mediated excision of the first coding exon in the germ line of mouse mammary tumor virus (MMTV)-Cre transgenic mice. The complete ablation of Tsg101 in the developing embryo resulted in death around implantation. In contrast, mammary gland-specific knockout mice developed normally but were unable to nurse their young as a result of impaired mammogenesis during late pregnancy. Neither heterozygous null mutants nor somatic knockout mice developed mammary tumors after a latency of 2 years. The Cre-mediated deletion of Tsg101 in primary cells demonstrated that this gene is essential for the growth, proliferation, and survival of mammary epithelial cells. In summary, our results suggest that Tsg101 is required for normal cell function of embryonic and adult tissues but that this gene is not a tumor suppressor for sporadic forms of breast cancer.
Collapse
Affiliation(s)
- Kay-Uwe Wagner
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha 68198-6805, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Krempler A, Henry MD, Triplett AA, Wagner KU. Targeted deletion of the Tsg101 gene results in cell cycle arrest at G1/S and p53-independent cell death. J Biol Chem 2002; 277:43216-23. [PMID: 12205095 PMCID: PMC1201509 DOI: 10.1074/jbc.m207662200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The tumor susceptibility gene 101 (Tsg101) was originally discovered in a screen for potential tumor suppressors using insertional mutagenesis in immortalized fibroblasts. To investigate essential functions of this gene in cell growth and neoplastic transformation, we derived primary mouse embryonic fibroblasts from Tsg101 conditional knockout mice. Expression of Cre recombinase from a retroviral vector efficiently down-regulated Tsg101. The deletion of Tsg101 caused growth arrest and cell death but did not result in increased proliferation and cellular transformation. Inactivation of p53 had no influence on the deleterious phenotype, but Tsg101(-/-) cells were rescued through expression of exogenous Tsg101. Fluorescence-activated cell sorting, proliferation assays, and Western blot analysis of crucial regulators of the cell cycle revealed that Tsg101 deficiency resulted in growth arrest at the G(1)/S transition through inactivation of cyclin-dependent kinase 2. As a consequence, DNA replication was not initiated in Tsg101-deficient cells. Our results clearly demonstrate that Tsg101 is not a primary tumor suppressor in mouse embryonic fibroblasts. However, the protein is crucial for cell proliferation and cell survival.
Collapse
Affiliation(s)
| | | | | | - Kay-Uwe Wagner
- § To whom correspondence should be addressed: Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Rm. 8009, Omaha, NE 68198-6805. Tel.: 402-559-3288; Fax: 402-559-4651; E-mail:
| |
Collapse
|
32
|
Liu RT, Huang CC, You HL, Chou FF, Hu CCA, Chao FP, Chen CM, Cheng JT. Overexpression of tumor susceptibility gene TSG101 in human papillary thyroid carcinomas. Oncogene 2002; 21:4830-7. [PMID: 12101421 DOI: 10.1038/sj.onc.1205612] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2001] [Revised: 04/17/2002] [Accepted: 04/26/2002] [Indexed: 11/08/2022]
Abstract
Functional inactivation of tumor susceptibility gene tsg101 leads to cellular transformation and tumorigenesis in mice. While human TSG101 is located in a region where frequent loss of heterozygosity can be detected in a variety of cancers, no genomic deletion in TSG101 gene has been reported, casting a doubt on the role of TSG101 as a classical tumor suppressor. Some studies have revealed that TSG101 is a frequent target of splicing defects, which correlate with cellular stress and p53 status. Furthermore, recent reports have identified TSG101 as a part of the MDM2/p53 regulatory circuitry, a well-recognized circuitry that upon deregulation results in tumorigenesis. Interestingly, overexpression of tsg101 from an adventitious promoter also leads to neoplastic transformation. On the basis of this information, we have analysed TSG101 gene expression in 20 human papillary thyroid carcinomas (PTCs) by immunohistochemistry and demonstrated that the overexpression of TSG101 protein is closely associated with human PTCs. Further sequence analysis reveals no mutation in cDNA region encoding steadiness box in these PTC specimens, indicating that the upregulation of TSG101 protein is not caused by the alteration of this region. In situ hybridization analysis confirms that overexpression of TSG101 also occurs at the transcriptional level. In addition, semi-quantitative RT-PCR and subsequent Southern hybridization verify that the amounts of TSG101 transcripts are indeed lower in three normal thyroid tissues than in PTC specimens. Here we report the upregulation of TSG101 expression in PTC cells, providing the first evidence of the association of TSG101 overexpression with human tumors and suggesting that upregulation of TSG101 steady-state level might play a role in mediating tumorigenesis of human PTC.
Collapse
Affiliation(s)
- Rue-Tsuan Liu
- Division of Metabolism, Chang Gung Memorial Hospital, Kaohsiung, Taiwan 833, Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Oh H, Mammucari C, Nenci A, Cabodi S, Cohen SN, Dotto GP. Negative regulation of cell growth and differentiation by TSG101 through association with p21(Cip1/WAF1). Proc Natl Acad Sci U S A 2002; 99:5430-5. [PMID: 11943869 PMCID: PMC122786 DOI: 10.1073/pnas.082123999] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
TSG101 was discovered in a screen for tumor susceptibility genes and has since been shown to have a multiplicity of biological effects. However, the basis for TSG101's ability to regulate cell growth has not been elucidated. We report here that the TSG101 protein binds to the cyclin/cyclin-dependent kinase (CDK) inhibitor (CKI) p21(Cip1/WAF1) and increases stability of the p21 protein in HEK293F cells and differentiating primary keratinocytes, suppressing differentiation in a p21-dependent manner. In proliferating keratinocytes where the p21 protein is relatively stable, TSG101 does not affect the stability or expression of p21 but shows p21-dependent recruitment to cyclin/CDK complexes, inhibits cyclin/CDK activity, and causes strong growth suppression to a much greater extent in p21+/+ than in p21-/- cells. Conversely, suppression of endogenous TSG101 expression by an antisense TSG101 cDNA causes doubling of the fraction of keratinocytes in the S phase of the cell cycle as occurs during p21 deficiency. Our results indicate that TSG101 has a direct role in the control of growth and differentiation in primary epithelial cells, and that p21 is an important mediator of these TSG101 functions.
Collapse
Affiliation(s)
- Hyesun Oh
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | | | | | | | | | | |
Collapse
|
34
|
Grossmann ME, Huang H, Tindall DJ. Androgen receptor signaling in androgen-refractory prostate cancer. J Natl Cancer Inst 2001; 93:1687-97. [PMID: 11717329 DOI: 10.1093/jnci/93.22.1687] [Citation(s) in RCA: 373] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Prostate cancer is the second most prevalent cancer in males in the United States. Standard therapy relies on removing, or blocking the actions of, androgens. In most cases, this therapy results in a regression of the cancer because the prostate and most primary prostate tumors depend on androgens for growth and the avoidance of apoptosis. However, a portion of the cancers eventually relapse, at which point they are termed "androgen refractory" and can no longer be cured by conventional therapy of any type. The precise molecular events that lead from androgen-sensitive prostate cancer to androgen-refractory prostate cancer are, therefore, of great interest. This review seeks to identify specific molecular events that may be linked directly to the progression to androgen-refractory cancer. Some of the mechanisms appear to involve the androgen receptor (AR) directly and include mutations in, or amplification of, the AR gene in a manner that allows the AR to respond to low doses of androgens, other steroids, or antiandrogens. In a less direct manner, coactivators may increase the sensitivity of the AR to androgens and even other nonandrogenic substances through a number of mechanisms. Additional indirect mechanisms that do not result from mutation of the AR may involve activation of the AR by peptide growth factors or cytokines or may involve bypassing the AR entirely via other cellular pathways. Identification of the role of these mechanisms in the progression to androgen-refractory prostate cancer is critical for developing therapies capable of curing this disease.
Collapse
Affiliation(s)
- M E Grossmann
- Department of Urology, Mayo Clinic, Rochester, MN, USA
| | | | | |
Collapse
|
35
|
Stauffer DR, Howard TL, Nyun T, Hollenberg SM. CHMP1 is a novel nuclear matrix protein affecting chromatin structure and cell-cycle progression. J Cell Sci 2001; 114:2383-93. [PMID: 11559747 DOI: 10.1242/jcs.114.13.2383] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Polycomb-group (PcG) is a diverse set of proteins required for maintenance of gene silencing during development. In a screen for conserved partners of the PcG protein Polycomblike (Pcl), we have identified a new protein, human CHMP1 (CHromatin Modifying Protein; CHarged Multivesicular body Protein), which is encoded by an alternative open reading frame in the PRSM1 gene and is conserved in both complex and simple eukaryotes. CHMP1 contains a predicted bipartite nuclear localization signal and distributes as distinct forms to the cytoplasm and the nuclear matrix in all cell lines tested. We have constructed a stable HEK293 cell line that inducibly overexpresses CHMP1 under ecdysone control. Overexpressed CHMP1 localizes to a punctate subnuclear pattern, encapsulating regions of nuclease-resistant, condensed chromatin. These novel structures are also frequently surrounded by increased histone H3 phosphorylation and acetylation. CHMP1 can recruit a PcG protein, BMI1, to these regions of condensed chromatin and can cooperate with co-expressed vertebrate Pcl in a Xenopus embryo PcG assay; this is consistent with a role in PcG function. In combination, these observations suggest that CHMP1 plays a role in stable gene silencing within the nucleus.
Collapse
Affiliation(s)
- D R Stauffer
- Vollum Institute, L474, Oregon Health Sciences University, 3181 S. W. Sam Jackson Park Rd, Portland, OR 97201-3098, USA.
| | | | | | | |
Collapse
|
36
|
Kamura T, Burian D, Khalili H, Schmidt SL, Sato S, Liu WJ, Conrad MN, Conaway RC, Conaway JW, Shilatifard A. Cloning and characterization of ELL-associated proteins EAP45 and EAP20. a role for yeast EAP-like proteins in regulation of gene expression by glucose. J Biol Chem 2001; 276:16528-33. [PMID: 11278625 DOI: 10.1074/jbc.m010142200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RNA polymerase II elongation factor ELL was recently purified from rat liver as a component of a multiprotein complex containing ELL and three ELL-associated proteins (EAPs) of approximately 45 (EAP45), approximately 30 (EAP30), and approximately 20 (EAP20) kDa (Shilatifard, A. (1998) J. Biol. Chem. 273, 11212-11217). Cloning of cDNA encoding the EAP30 protein revealed that it shares significant sequence similarity with the product of the Saccharomyces cerevisiae SNF8 gene (Schmidt, A. E., Miller, T., Schmidt, S. L., Shiekhattar, R., and Shilatifard, A. (1999) J. Biol. Chem. 274, 21981-21985), which is required for efficient derepression of glucose-repressed genes. Here we report the cloning of cDNAs encoding the EAP45 and EAP20 proteins. In addition, we identify the S. cerevisiae VPS36 and YJR102c genes as potential orthologs of EAP45 and EAP20 and show that they are previously uncharacterized SNF genes with properties very similar to SNF8.
Collapse
Affiliation(s)
- T Kamura
- Program in Molecular and Cell Biology, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Ruland J, Sirard C, Elia A, MacPherson D, Wakeham A, Li L, de la Pompa JL, Cohen SN, Mak TW. p53 accumulation, defective cell proliferation, and early embryonic lethality in mice lacking tsg101. Proc Natl Acad Sci U S A 2001; 98:1859-64. [PMID: 11172041 PMCID: PMC29347 DOI: 10.1073/pnas.98.4.1859] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2000] [Indexed: 11/18/2022] Open
Abstract
Functional inactivation of the tumor susceptibility gene tsg101 in NIH 3T3 fibroblasts results in cellular transformation and the ability to form metastatic tumors in nude mice. The N-terminal region of tsg101 protein is structurally similar to the catalytic domain of ubiquitin-conjugating enzymes, suggesting a potential role of tsg101 in ubiquitin-mediated protein degradation. The C-terminal domain of TSG101 can function as a repressor of transcription. To investigate the physiological function of tsg101, we generated a null mutation of the mouse gene by gene targeting. Homozygous tsg101-/- embryos fail to develop past day 6.5 of embryogenesis (E6.5), are reduced in size, and do not form mesoderm. Mutant embryos show a decrease in cellular proliferation in vivo and in vitro but no increase in apoptosis. Although levels of p53 transcripts were not affected in tsg101-/- embryos, p53 protein accumulated dramatically, implying altered posttranscriptional control of p53. In addition, transcription of the p53 effector, cyclin-dependent kinase inhibitor p21(WAF-1/CIP-1), was increased 5- to 10-fold, whereas activation of MDM2 transcription secondary to p53 elevation was not observed. Introduction of a p53 null mutation into tsg101-/- embryos rescued the gastrulation defect and prolonged survival until E8.5. These results demonstrate that tsg101 is essential for the proliferative burst before the onset of gastrulation and establish a functional connection between tsg101 and the p53 pathway in vivo.
Collapse
Affiliation(s)
- J Ruland
- Amgen Institute, 620 University Avenue, Toronto, ON, Canada M5G 2C1
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Li L, Liao J, Ruland J, Mak TW, Cohen SN. A TSG101/MDM2 regulatory loop modulates MDM2 degradation and MDM2/p53 feedback control. Proc Natl Acad Sci U S A 2001; 98:1619-24. [PMID: 11172000 PMCID: PMC29306 DOI: 10.1073/pnas.98.4.1619] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The p53 tumor suppressor protein and the MDM2 oncoprotein form a feedback-control loop that up-regulates cellular MDM2 production, blocks p53 activity, and promotes p53 decay. tsg101 was discovered as a gene whose deficiency results in neoplastic transformation of NIH 3T3 cells and the ability to generate metastatic tumors in nude mice. Its protein product contains a domain, Ubc, characteristic of the catalytic domain of ubiquitin conjugase (E2) enzymes but lacking an active-site cysteine crucial for ubiquitin conjugase activity. Here we report that TSG101 participates with MDM2 in an autoregulatory loop that modulates the cellular levels of both proteins, and also of p53, by affecting protein decay. We show that the Ubc domain of TSG101 interferes with ubiquitination of MDM2, that TSG101 inhibits MDM2 decay and elevates its steady-state level, and that these events are associated with down-regulation of p53 protein. Conversely, pulse-chase and Western blot experiments in wild-type and mutant fibroblasts indicate that elevation of MDM2 by overexpression of wild-type p53, by amplification of the endogenous MDM2 gene, or by transfection of MDM2-expressing constructs promotes TSG101 loss, which we show occurs by 26S proteasome-dependent decay. Our results identify TSG101 as both a regulator of, and target of, MDM2/p53 circuitry.
Collapse
Affiliation(s)
- L Li
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
39
|
Ferrer M, Hernández S, Campo E, Lazo PA. Loss of the TSG101 leucine zipper domain in aggressive non-Hodgkin's lymphomas. Leukemia 2000; 14:2014-6. [PMID: 11069041 DOI: 10.1038/sj.leu.2401920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
40
|
Rountree MR, Bachman KE, Baylin SB. DNMT1 binds HDAC2 and a new co-repressor, DMAP1, to form a complex at replication foci. Nat Genet 2000; 25:269-77. [PMID: 10888872 DOI: 10.1038/77023] [Citation(s) in RCA: 763] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
DNA methylation can contribute to transcriptional silencing through several transcriptionally repressive complexes, which include methyl-CpG binding domain proteins (MBDs) and histone deacetylases (HDACs). We show here that the chief enzyme that maintains mammalian DNA methylation, DNMT1, can also establish a repressive transcription complex. The non-catalytic amino terminus of DNMT1 binds to HDAC2 and a new protein, DMAP1 (for DNMT1 associated protein), and can mediate transcriptional repression. DMAP1 has intrinsic transcription repressive activity, and binds to the transcriptional co-repressor TSG101. DMAP1 is targeted to replication foci through interaction with the far N terminus of DNMT1 throughout S phase, whereas HDAC2 joins DNMT1 and DMAP1 only during late S phase, providing a platform for how histones may become deacetylated in heterochromatin following replication. Thus, DNMT1 not only maintains DNA methylation, but also may directly target, in a heritable manner, transcriptionally repressive chromatin to the genome during DNA replication.
Collapse
Affiliation(s)
- M R Rountree
- The Johns Hopkins Oncology Center, Tumor Biology Laboratory, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | | | | |
Collapse
|
41
|
O'Boyle JD, Proctor ML, Fong KM, Lin WM, Miller DS, Muller CY. Role of TSG101 in uterine cervix cancer. Gynecol Oncol 1999; 75:401-5. [PMID: 10600297 DOI: 10.1006/gyno.1999.5612] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
OBJECTIVE TSG101 was first described as a possible tumor suppressor gene in breast cancer. To determine whether TSG101 might play a role in cervical carcinogenesis, we examined a panel of cervical cancer cell lines and primary tumor specimens for transcript abnormalities and mutations in TSG101. METHODS Total RNA was derived from cell line cultures or primary tumor specimens. We performed nested reverse transcription polymerase chain reaction (RT-PCR) with eight overlapping primer sets, followed by single-strand conformational polymorphism (SSCP) analysis, to screen for mutations in the TSG101 open reading frame. Representative normal and shifted SSCP bands were sequenced. To identify abnormal-sized transcripts, we performed RT-PCR with primers flanking the open reading frame followed by gel electrophoresis. RESULTS Mutational analysis was performed on cDNAs from 20 primary cervical tumors and 8 cervical carcinoma cell lines. Two polymorphisms were identified, neither of which resulted in an altered amino acid sequence. Transcript analysis was performed on a subset of 16 primary cervix tumors and 6 cervix carcinoma cell lines. The wild-type transcript (1228 bp) was the dominant transcript expressed in all samples. A transcript measuring 330 bp was detected in 5 of 6 cell lines and 11 of 16 primary tumor specimens. CONCLUSION Our results suggest that mutations in TSG101 rarely occur in carcinomas of the uterine cervix. However, the presence of minor aberrant TSG101 transcripts is a common feature. The relationship between aberrant transcription and carcinogenesis should be further investigated.
Collapse
Affiliation(s)
- J D O'Boyle
- Department of Obstetrics and Gynecology, The Nancy B. and Jake L. Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75235, USA
| | | | | | | | | | | |
Collapse
|
42
|
Sun Z, Pan J, Hope WX, Cohen SN, Balk SP. Tumor susceptibility gene 101 protein represses androgen receptor transactivation and interacts with p300. Cancer 1999; 86:689-96. [PMID: 10440698 DOI: 10.1002/(sici)1097-0142(19990815)86:4<689::aid-cncr19>3.0.co;2-p] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Functional inactivation of the tsg101 gene in mouse fibroblasts leads to cell transformation and the ability to form metastatic tumors in nude mice. Abnormal TSG101 transcripts with highly-specific deletions in the protein-coding region have been identified in human tumor samples and cancer cell lines, including prostate and breast carcinomas, and have been attributed to alternative splicing of TSG101 mRNA. The function of the TSG101 protein is not known, although its predicted sequence has suggested that it may function as a transcription factor. METHODS Human TSG101 N-terminal (encoding amino acids 10-240) and C-terminal (encoding amino acids 230-391) fragments were cloned and used in both transient transfection and protein binding experiments. The transient transfections were carried in CV-1 cells. Protein-protein interactions were determined by both glutathione-S-transferase fusion protein binding and co-immunoprecipitation. RESULTS The N-terminal region of TSG101, when fused to the GAL4 DNA binding domain, can activate transcription; whereas the C-terminal region mediates transcriptional repression. Full-length TSG101 or its separated regions repressed ligand-dependent transcriptional activation by nuclear receptors, including androgen receptor and estrogen receptor, which play central roles in prostate carcinoma and breast carcinoma, respectively. In addition, a direct association between TSG101 and the transcriptional co-factor p300 was demonstrated in vitro and in vivo. CONCLUSIONS These results indicate that TSG101 can function as a transcription modulator to affect nuclear receptor-mediated transcriptional activation, which raises the possibility that the tumor suppression by TSG101 observed previously may be mediated at least in part by its effects on nuclear receptor function.
Collapse
Affiliation(s)
- Z Sun
- Liem Sioe Liong Molecular Biology Laboratory, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | | | | | | | | |
Collapse
|
43
|
Ferrer M, López-Borges S, Lazo PA. Expression of a new isoform of the tumor susceptibility TSG101 protein lacking a leucine zipper domain in Burkitt lymphoma cell lines. Oncogene 1999; 18:2253-9. [PMID: 10327071 DOI: 10.1038/sj.onc.1202551] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The tumor susceptibility gene, TSG101, has been identified as a candidate tumor suppressor gene. We have examined the expression of TSG101 in Burkitt lymphoma cell lines. Several aberrant messages were detected in all cell lines. Aberrant splice donor sites are located within exon 1 at positions 132, 154, 172 and 284. Splice acceptors are located at positions 847 and 1054 within exon 5. The aberrant messages are coexpressed with a normal message and could be the result of additional splicing reactions of the mature message that behaves as an intermediate. The normal message codes for 46 kDa protein (TSG101A). One aberrant message joins in frame nucleotides 283-1055 and codes for a protein isoform of 17 kDa (TSG101B), as demonstrated by in vitro translation assays. The TSG101B isoform lacks the leucine zipper near the C-terminus, a transcriptional repressor domain, and retains most of the N-terminal region which has homology to E2 ubiquitin regulatory enzymes and the CROC-1 transcriptional regulator. The TSG101B isoform was detected in sixteen out of twenty-two (72%) BL cell lines, but not in normal lymphoid populations. The presence of two TSG101 isoforms with different dimerization potential opens up a new level of regulation of the TSG101 proteins possibly affecting cell cycle regulation.
Collapse
Affiliation(s)
- M Ferrer
- Unidad de Genética y Medicina Molecular, Centro Nacional de Biología Fundamental, Instituto de Salud Carlos III, Majadahonda, Spain
| | | | | |
Collapse
|