1
|
Milano S, Saponara I, Gerbino A, Lapi D, Lela L, Carmosino M, Dal Monte M, Bagnoli P, Svelto M, Procino G. β3-Adrenoceptor as a new player in the sympathetic regulation of the renal acid-base homeostasis. Front Physiol 2024; 15:1304375. [PMID: 38455846 PMCID: PMC10917900 DOI: 10.3389/fphys.2024.1304375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/29/2024] [Indexed: 03/09/2024] Open
Abstract
Efferent sympathetic nerve fibers regulate several renal functions activating norepinephrine receptors on tubular epithelial cells. Of the beta-adrenoceptors (β-ARs), we previously demonstrated the renal expression of β3-AR in the thick ascending limb (TAL), the distal convoluted tubule (DCT), and the collecting duct (CD), where it participates in salt and water reabsorption. Here, for the first time, we reported β3-AR expression in the CD intercalated cells (ICCs), where it regulates acid-base homeostasis. Co-localization of β3-AR with either proton pump H+-ATPase or Cl-/HCO3 - exchanger pendrin revealed β3-AR expression in type A, type B, non-A, and non-B ICCs in the mouse kidney. We aimed to unveil the possible regulatory role of β3-AR in renal acid-base homeostasis, in particular in modulating the expression, subcellular localization, and activity of the renal H+-ATPase, a key player in this process. The abundance of H+-ATPase was significantly decreased in the kidneys of β3-AR-/- compared with those of β3-AR+/+ mice. In particular, H+-ATPase reduction was observed not only in the CD but also in the TAL and DCT, which contribute to acid-base transport in the kidney. Interestingly, we found that in in vivo, the absence of β3-AR reduced the kidneys' ability to excrete excess proton in the urine during an acid challenge. Using ex vivo stimulation of mouse kidney slices, we proved that the β3-AR activation promoted H+-ATPase apical expression in the epithelial cells of β3-AR-expressing nephron segments, and this was prevented by β3-AR antagonism or PKA inhibition. Moreover, we assessed the effect of β3-AR stimulation on H+-ATPase activity by measuring the intracellular pH recovery after an acid load in β3-AR-expressing mouse renal cells. Importantly, β3-AR agonism induced a 2.5-fold increase in H+-ATPase activity, and this effect was effectively prevented by β3-AR antagonism or by inhibiting either H+-ATPase or PKA. Of note, in urine samples from patients treated with a β3-AR agonist, we found that β3-AR stimulation increased the urinary excretion of H+-ATPase, likely indicating its apical accumulation in tubular cells. These findings demonstrate that β3-AR activity positively regulates the expression, plasma membrane localization, and activity of H+-ATPase, elucidating a novel physiological role of β3-AR in the sympathetic control of renal acid-base homeostasis.
Collapse
Affiliation(s)
- Serena Milano
- Department of Biosciences, Biotechnologies and Environment, University of Bari, Bari, Italy
| | - Ilenia Saponara
- Department of Biosciences, Biotechnologies and Environment, University of Bari, Bari, Italy
| | - Andrea Gerbino
- Department of Biosciences, Biotechnologies and Environment, University of Bari, Bari, Italy
| | - Dominga Lapi
- Department of Biology, University of Pisa, Pisa, Italy
| | - Ludovica Lela
- Department of Sciences, University of Basilicata, Potenza, Italy
| | - Monica Carmosino
- Department of Sciences, University of Basilicata, Potenza, Italy
| | | | - Paola Bagnoli
- Department of Biology, University of Pisa, Pisa, Italy
| | - Maria Svelto
- Department of Biosciences, Biotechnologies and Environment, University of Bari, Bari, Italy
| | - Giuseppe Procino
- Department of Biosciences, Biotechnologies and Environment, University of Bari, Bari, Italy
| |
Collapse
|
2
|
Ajmal I, Farooq MA, Abbas SQ, Shah J, Majid M, Jiang W. Isoprenaline and salbutamol inhibit pyroptosis and promote mitochondrial biogenesis in arthritic chondrocytes by downregulating β-arrestin and GRK2. Front Pharmacol 2022; 13:996321. [PMID: 36188601 PMCID: PMC9519065 DOI: 10.3389/fphar.2022.996321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
Rheumatoid arthritis and osteoarthritis overlap many molecular mechanisms of cartilage destruction. Wear and tear in cartilage is chondrocyte-mediated, where chondrocytes act both as effector and target cells. In current study, role of β2-AR was studied in chondrocytes both in vitro and in vivo. High grade inflammation in vitro and in vivo disease models led to decline in anti-inflammatory β2-AR signaling and use of β2-AR agonist attenuated arthritis symptoms. Detailed analysis in chondrocytes revealed that Isoprenaline (ISO) and Salbutamol (SBT) increased cell viability and relative Bcl-2 expression, meanwhile, decreased proteins levels of TNF-α, IL-6 and IL-8 in arthritic chondrocytes when compared with control, respectively. SBT preserved physiological concentration of antioxidant enzymes (CAT, POD, SOD and GSH) in cartilage homogenates and ISO inhibited IL-1β-mediated genotoxicity in arthritic chondrocytes. Moreover, β2-AR agonist increased mitochondrial biogenesis and proteoglycan biosynthesis by upregulating the gene expression of PGC1-α, NRF2 and COL2A1, Acan, respectively. ISO and SBT inhibited extracellular matrix (ECM) degradation by downregulating the gene expression of MMP1, MMP3, MMP9 and ADAMTS5 in vitro and in vivo study. In mechanism, β2-AR agonists decreased β-arrestin and GRK2 pathway, and as a result mice receiving SBT did not exhibit severe disease. Hence our data suggest β2-AR agonist administered at disease onset can inhibit receptor internalization by downregulating the expression of β-arrestin and GRK2 in chondrocytes.
Collapse
Affiliation(s)
- Iqra Ajmal
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Muhammad Asad Farooq
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Syed Qamar Abbas
- Department of Pharmacy, Sarhad University of Science and Technology, Peshawar, Pakistan
| | - Jaffer Shah
- Department of Health, New York, NY, United States
- *Correspondence: Jaffer Shah, ; Muhammad Majid, ; Wenzheng Jiang,
| | - Muhammad Majid
- Faculty of Pharmacy, Capital University of Science and Technology Islamabad, Islamabad, Pakistan
- *Correspondence: Jaffer Shah, ; Muhammad Majid, ; Wenzheng Jiang,
| | - Wenzheng Jiang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
- *Correspondence: Jaffer Shah, ; Muhammad Majid, ; Wenzheng Jiang,
| |
Collapse
|
3
|
Milano S, Carmosino M, Gerbino A, Saponara I, Lapi D, Dal Monte M, Bagnoli P, Svelto M, Procino G. Activation of the Thiazide-Sensitive Sodium-Chloride Cotransporter by Beta3-Adrenoreceptor in the Distal Convoluted Tubule. Front Physiol 2021; 12:695824. [PMID: 34483955 PMCID: PMC8414899 DOI: 10.3389/fphys.2021.695824] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/16/2021] [Indexed: 12/02/2022] Open
Abstract
We previously showed that the beta-3 adrenergic receptor (BAR3) is expressed in most segments of the nephron where its agonism promotes a potent antidiuretic effect. We localized BAR3 in distal convoluted tubule (DCT) cells expressing the thiazide-sensitive sodium-chloride cotransporter (NCC). Aim of this study is to investigate the possible functional role of BAR3 on NCC modulation in DCT cells. Here, we found that, in mice, the knockout of BAR3 was paralleled by a significant attenuation of NCC phosphorylation, paralleled by reduced expression and activation of STE-20/SPS1-related proline-alanine-rich kinase (SPAK) and WNKs the main kinases involved in NCC activation. Conversely, in BAR1/2 knockout mice, we found reduced NCC abundance with no changes in the phosphorylation state of NCC. Moreover, selective BAR3 agonism promotes both SPAK and NCC activation in wild-type mouse kidney slices. In conclusion, our findings suggest a novel role for BAR3 in the regulation of NCC in DCT.
Collapse
Affiliation(s)
- Serena Milano
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Monica Carmosino
- Department of Sciences, University of Basilicata, Potenza, Italy
| | - Andrea Gerbino
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Ilenia Saponara
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Dominga Lapi
- Department of Biology, University of Pisa, Pisa, Italy
| | | | - Paola Bagnoli
- Department of Biology, University of Pisa, Pisa, Italy
| | - Maria Svelto
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Giuseppe Procino
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| |
Collapse
|
4
|
Rahman FA, Quadrilatero J. Mitochondrial network remodeling: an important feature of myogenesis and skeletal muscle regeneration. Cell Mol Life Sci 2021; 78:4653-4675. [PMID: 33751143 PMCID: PMC11072563 DOI: 10.1007/s00018-021-03807-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/23/2021] [Accepted: 03/03/2021] [Indexed: 12/13/2022]
Abstract
The remodeling of the mitochondrial network is a critical process in maintaining cellular homeostasis and is intimately related to mitochondrial function. The interplay between the formation of new mitochondria (biogenesis) and the removal of damaged mitochondria (mitophagy) provide a means for the repopulation of the mitochondrial network. Additionally, mitochondrial fission and fusion serve as a bridge between biogenesis and mitophagy. In recent years, the importance of these processes has been characterised in multiple tissue- and cell-types, and under various conditions. In skeletal muscle, the robust remodeling of the mitochondrial network is observed, particularly after injury where large portions of the tissue/cell structures are damaged. The significance of mitochondrial remodeling in regulating skeletal muscle regeneration has been widely studied, with alterations in mitochondrial remodeling processes leading to incomplete regeneration and impaired skeletal muscle function. Needless to say, important questions related to mitochondrial remodeling and skeletal muscle regeneration still remain unanswered and require further investigation. Therefore, this review will discuss the known molecular mechanisms of mitochondrial network remodeling, as well as integrate these mechanisms and discuss their relevance in myogenesis and regenerating skeletal muscle.
Collapse
Affiliation(s)
- Fasih Ahmad Rahman
- Department of Kinesiology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Joe Quadrilatero
- Department of Kinesiology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
| |
Collapse
|
5
|
Kolodziej F, O’Halloran KD. Re-Evaluating the Oxidative Phenotype: Can Endurance Exercise Save the Western World? Antioxidants (Basel) 2021; 10:609. [PMID: 33921022 PMCID: PMC8071436 DOI: 10.3390/antiox10040609] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/06/2021] [Accepted: 04/10/2021] [Indexed: 01/16/2023] Open
Abstract
Mitochondria are popularly called the "powerhouses" of the cell. They promote energy metabolism through the tricarboxylic acid (TCA) cycle and oxidative phosphorylation, which in contrast to cytosolic glycolysis are oxygen-dependent and significantly more substrate efficient. That is, mitochondrial metabolism provides substantially more cellular energy currency (ATP) per macronutrient metabolised. Enhancement of mitochondrial density and metabolism are associated with endurance training, which allows for the attainment of high relative VO2 max values. However, the sedentary lifestyle and diet currently predominant in the Western world lead to mitochondrial dysfunction. Underdeveloped mitochondrial metabolism leads to nutrient-induced reducing pressure caused by energy surplus, as reduced nicotinamide adenine dinucleotide (NADH)-mediated high electron flow at rest leads to "electron leak" and a chronic generation of superoxide radicals (O2-). Chronic overload of these reactive oxygen species (ROS) damages cell components such as DNA, cell membranes, and proteins. Counterintuitively, transiently generated ROS during exercise contributes to adaptive reduction-oxidation (REDOX) signalling through the process of cellular hormesis or "oxidative eustress" defined by Helmut Sies. However, the unaccustomed, chronic oxidative stress is central to the leading causes of mortality in the 21st century-metabolic syndrome and the associated cardiovascular comorbidities. The endurance exercise training that improves mitochondrial capacity and the protective antioxidant cellular system emerges as a universal intervention for mitochondrial dysfunction and resultant comorbidities. Furthermore, exercise might also be a solution to prevent ageing-related degenerative diseases, which are caused by impaired mitochondrial recycling. This review aims to break down the metabolic components of exercise and how they translate to athletic versus metabolically diseased phenotypes. We outline a reciprocal relationship between oxidative metabolism and inflammation, as well as hypoxia. We highlight the importance of oxidative stress for metabolic and antioxidant adaptation. We discuss the relevance of lactate as an indicator of critical exercise intensity, and inferring from its relationship with hypoxia, we suggest the most appropriate mode of exercise for the case of a lost oxidative identity in metabolically inflexible patients. Finally, we propose a reciprocal signalling model that establishes a healthy balance between the glycolytic/proliferative and oxidative/prolonged-ageing phenotypes. This model is malleable to adaptation with oxidative stress in exercise but is also susceptible to maladaptation associated with chronic oxidative stress in disease. Furthermore, mutations of components involved in the transcriptional regulatory mechanisms of mitochondrial metabolism may lead to the development of a cancerous phenotype, which progressively presents as one of the main causes of death, alongside the metabolic syndrome.
Collapse
Affiliation(s)
- Filip Kolodziej
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, T12 XF62 Cork, Ireland;
| | | |
Collapse
|
6
|
Han JC, Weiss R. Obesity, Metabolic Syndrome and Disorders of Energy Balance. SPERLING PEDIATRIC ENDOCRINOLOGY 2021:939-1003. [DOI: 10.1016/b978-0-323-62520-3.00024-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
7
|
Chambers JM, Wingert RA. PGC-1α in Disease: Recent Renal Insights into a Versatile Metabolic Regulator. Cells 2020; 9:E2234. [PMID: 33022986 PMCID: PMC7601329 DOI: 10.3390/cells9102234] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 12/14/2022] Open
Abstract
Peroxisome proliferator-activated receptor gamma co-activator 1 alpha (PGC-1α) is perhaps best known as a master regulator of mitochondrial biogenesis and function. However, by virtue of its interactions as a coactivator for numerous nuclear receptors and transcription factors, PGC-1α also regulates many tissue-specific tasks that include adipogenesis, angiogenesis, gluconeogenesis, heme biosynthesis, thermogenesis, and cellular protection against degeneration. Knowledge about these functions continue to be discovered with ongoing research. Unsurprisingly, alterations in PGC-1α expression lead to a range of deleterious outcomes. In this review, we provide a brief background on the PGC-1 family with an overview of PGC-1α's roles as an adaptive link to meet cellular needs and its pathological consequences in several organ contexts. Among the latter, kidney health is especially reliant on PGC-1α. Thus, we discuss here at length how changes in PGC-1α function impact the states of renal cancer, acute kidney injury (AKI) and chronic kidney disease (CKD), as well as emerging data that illuminate pivotal roles for PGC-1α during renal development. We survey a new intriguing association of PGC-1α function with ciliogenesis and polycystic kidney disease (PKD), where recent animal studies revealed that embryonic renal cyst formation can occur in the context of PGC-1α deficiency. Finally, we explore future prospects for PGC-1α research and therapeutic implications for this multifaceted coactivator.
Collapse
Affiliation(s)
- Joseph M. Chambers
- College of Pharmacy, Natural and Health Sciences, Manchester University, Fort Wayne, IN 46845, USA
| | - Rebecca A. Wingert
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
8
|
Eskilsson A, Shionoya K, Enerbäck S, Engblom D, Blomqvist A. The generation of immune-induced fever and emotional stress-induced hyperthermia in mice does not involve brown adipose tissue thermogenesis. FASEB J 2020; 34:5863-5876. [PMID: 32144818 DOI: 10.1096/fj.201902945r] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/19/2020] [Accepted: 02/22/2020] [Indexed: 11/11/2022]
Abstract
We examined the role of brown adipose tissue (BAT) for fever and emotional stress-induced hyperthermia. Wild-type and uncoupling protein-1 (UCP-1) knockout mice were injected with lipopolysaccharide intraperitoneally or intravenously, or subjected to cage exchange, and body temperature monitored by telemetry. Both genotypes showed similar febrile responses to immune challenge and both displayed hyperthermia to emotional stress. Neither procedure resulted in the activation of BAT, such as the induction of UCP-1 or peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) mRNA, or reduced BAT weight and triglyceride content. In contrast, in mice injected with a β3 agonist, UCP-1 and PGC-1α were strongly induced, and BAT weight and triglyceride content reduced. Both lipopolysaccharide and the β3 agonist, and emotional stress, induced UCP-3 mRNA in skeletal muscle. A β3 antagonist did not attenuate lipopolysaccharide-induced fever, but augmented body temperature decrease and inhibited BAT activation when mice were exposed to cold. An α1 /α2b antagonist or a 5HT1A agonist, which inhibit vasoconstriction, abolished lipopolysaccharide-induced fever, but had no effect on emotional stress-induced hyperthermia. These findings demonstrate that in mice, UCP-1-mediated BAT thermogenesis does not take part in inflammation-induced fever, which is dependent on peripheral vasoconstriction, nor in stress-induced hyperthermia. However, both phenomena may involve UCP-3-mediated muscle thermogenesis.
Collapse
Affiliation(s)
- Anna Eskilsson
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Kiseko Shionoya
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Sven Enerbäck
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - David Engblom
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Anders Blomqvist
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
9
|
Gureev AP, Shaforostova EA, Popov VN. Regulation of Mitochondrial Biogenesis as a Way for Active Longevity: Interaction Between the Nrf2 and PGC-1α Signaling Pathways. Front Genet 2019; 10:435. [PMID: 31139208 PMCID: PMC6527603 DOI: 10.3389/fgene.2019.00435] [Citation(s) in RCA: 441] [Impact Index Per Article: 73.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 04/24/2019] [Indexed: 12/12/2022] Open
Abstract
Aging is a general degenerative process related to deterioration of cell functions in the entire organism. Mitochondria, which play a key role in energy homeostasis and metabolism of reactive oxygen species (ROS), require lifetime control and constant renewal. This explains recently peaked interest in the processes of mitochondrial biogenesis and mitophagy. The principal event of mitochondrial metabolism is regulation of mitochondrial DNA (mtDNA) transcription and translation, which is a complex coordinated process that involves at least two systems of transcription factors. It is commonly believed that its major regulatory proteins are PGC-1α and PGC-1β, which act as key factors connecting several regulator cascades involved in the control of mitochondrial metabolism. In recent years, the number of publications on the essential role of Nrf2/ARE signaling in the regulation of mitochondrial biogenesis has grown exponentially. Nrf2 is induced by various xenobiotics and oxidants that oxidize some Nrf2 negative regulators. Thus, ROS, in particular H2O2, were found to be strong Nrf2 activators. At present, there are two major concepts of mitochondrial biogenesis. Some authors suggest direct involvement of Nrf2 in the regulation of this process. Others believe that Nrf2 regulates expression of the antioxidant genes, while the major and only regulator of mitochondrial biogenesis is PGC-1α. Several studies have demonstrated the existence of the regulatory loop involving both PGC-1α and Nrf2. In this review, we summarized recent data on the Nrf2 role in mitochondrial biogenesis and its interaction with PGC-1α in the context of extending longevity.
Collapse
Affiliation(s)
- Artem P Gureev
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia
| | - Ekaterina A Shaforostova
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia
| | - Vasily N Popov
- Voronezh State University of Engineering Technologies, Voronezh, Russia
| |
Collapse
|
10
|
Shute RJ, Heesch MW, Zak RB, Kreiling JL, Slivka DR. Effects of exercise in a cold environment on transcriptional control of PGC-1α. Am J Physiol Regul Integr Comp Physiol 2018. [PMID: 29537859 DOI: 10.1152/ajpregu.00425.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Peroxisome proliferator-activated receptor-α coactivator-1α (PGC-1α) mRNA is increased with both exercise and exposure to cold temperature. However, transcriptional control has yet to be examined during exercise in the cold. Additionally, the need for environmental cold exposure after exercise may not be a practical recovery modality. The purpose of this study was to determine mitochondrial-related gene expression and transcriptional control of PGC-1α following exercise in a cold compared with room temperature environment. Eleven recreationally trained males completed two 1-h cycling bouts in a cold (7°C) or room temperature (20°C) environment, followed by 3 h of supine recovery in standard room conditions. Muscle biopsies were taken from the vastus lateralis preexercise, postexercise, and after a 3-h recovery. Gene expression and transcription factor binding to the PGC-1α promoter were analyzed. PGC-1α mRNA increased from preexercise to 3 h of recovery, but there was no difference between trials. Estrogen-related receptor-α (ERRα), myocyte enhancer factor-2 (MEF2A), and nuclear respiratory factor-1 (NRF-1) mRNA were lower in cold than at room temperature. Forkhead box class-O (FOXO1) and cAMP response element-binding protein (CREB) binding to the PGC-1α promoter were increased postexercise and at 3 h of recovery. MEF2A binding increased postexercise, and activating transcription factor 2 (ATF2) binding increased at 3 h of recovery. These data indicate no difference in PGC-1α mRNA or transcriptional control after exercise in cold versus room temperature and 3 h of recovery. However, the observed reductions in the mRNA of select transcription factors downstream of PGC-1α indicate a potential influence of exercise in the cold on the transcriptional response related to mitochondrial biogenesis.
Collapse
Affiliation(s)
- Robert J Shute
- Department of Health and Kinesiology, University of Nebraska at Omaha , Omaha, Nebraska
| | - Matthew W Heesch
- Department of Health and Kinesiology, University of Nebraska at Omaha , Omaha, Nebraska
| | - Roksana B Zak
- Department of Health and Kinesiology, University of Nebraska at Omaha , Omaha, Nebraska
| | - Jodi L Kreiling
- Department of Chemistry, University of Nebraska at Omaha , Omaha, Nebraska
| | - Dustin R Slivka
- Department of Health and Kinesiology, University of Nebraska at Omaha , Omaha, Nebraska
| |
Collapse
|
11
|
Local muscle cooling does not impact expression of mitochondrial-related genes. J Therm Biol 2017; 67:35-39. [PMID: 28558935 DOI: 10.1016/j.jtherbio.2017.04.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 04/18/2017] [Accepted: 04/19/2017] [Indexed: 11/21/2022]
Abstract
Recovery that takes place in a cold environment after endurance exercise elevates PGC-1α mRNA whereas ERRα and NRF2 mRNA expression are inhibited. However, the effect of local skeletal muscle cooling on mitochondrial-related gene expression is unknown. PURPOSE To determine the impact of local skeletal muscle cooling during recovery from an acute bout of exercise on mitochondrial-related gene expression. METHODS Recreationally-trained male cyclists (n=8, age 25±3 y, height 181±6cm, weight 79±8kg, 12.8±3.6% body fat, VO2peak 4.52±0.88L·min-1 protocol) completed a 90-min variable intensity cycling protocol followed by 4h of recovery. During recovery, ice was applied intermittently to one leg (ICE) while the other leg served as a control (CON). Intramuscular temperature was recorded continuously. Muscle biopsies were taken from each vastus lateralis at 4h post-exercise for the analysis of mitochondrial-related gene expression. RESULTS Intramuscular temperature was colder in ICE (26.7±1.1°C) than CON (35.5±0.1°C) throughout the 4h recovery period (p<0.001). There were no differences in expression of PGC-1α, TFAM, NRF1, NRF2, or ERRα mRNA between ICE and CON after the 4h recovery period. CONCLUSION Local muscle cooling after exercise does not impact the expression of mitochondrial biogenesis-related genes compared to recovery from exercise in control conditions. When these data are considered with previous research, the stimuli for cold-induced gene expression alterations may be related to factors other than local muscle temperature. Additionally, different intramuscular temperatures should be examined to determine dose-response of mitochondrial-related gene expression.
Collapse
|
12
|
Heesch MW, Shute RJ, Kreiling JL, Slivka DR. Transcriptional control, but not subcellular location, of PGC-1α is altered following exercise in a hot environment. J Appl Physiol (1985) 2016; 121:741-9. [PMID: 27445305 PMCID: PMC5142252 DOI: 10.1152/japplphysiol.01065.2015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 07/19/2016] [Indexed: 12/18/2022] Open
Abstract
The purpose of this study was to determine mitochondrial biogenesis-related mRNA expression, binding of transcription factors to the peroxisome proliferator-activated receptor-γ coactivator 1-α (PGC-1α) promoter, and subcellular location of PGC-1α protein in human skeletal muscle following exercise in a hot environment compared with a room temperature environment. Recreationally trained males (n = 11) completed two trials in a temperature- and humidity-controlled environmental chamber. Each trial consisted of cycling in either a hot (H) or room temperature (C) environment (33 and 20°C, respectively) for 1 h at 60% of maximum wattage (Wmax) followed by 3 h of supine recovery at room temperature. Muscle biopsies were taken from the vastus lateralis pre-, post-, and 3 h postexercise. PGC-1α mRNA increased post (P = 0.039)- and 3 h postexercise in C (P = 0.002). PGC-1α, estrogen-related receptor-α (ERRα), and nuclear respiratory factor 1 (NRF-1) mRNA was all lower in H than C post (P = 0.038, P < 0.001, and P = 0.030, respectively)- and 3 h postexercise (P = 0.035, P = 0.007, and P < 0.001, respectively). Binding of cAMP response element-binding protein (CREB) (P = 0.005), myocyte enhancer factor 2 (MEF2) (P = 0.047), and FoxO forkhead box class-O1 (FoxO1) (P = 0.010) to the promoter region of the PGC-1α gene was lower in H than C. Nuclear PGC-1α protein increased postexercise in both H and C (P = 0.029) but was not different between trials (P = 0.602). These data indicate that acute exercise in a hot environment blunts expression of mitochondrial biogenesis-related mRNA, due to decreased binding of CREB, MEF2, and FoxO1 to the PGC-1α promoter.
Collapse
Affiliation(s)
| | - Robert J Shute
- School of Health, Physical Education, and Recreation, University of Nebraska at Omaha, Omaha, Nebraska; and
| | - Jodi L Kreiling
- Department of Chemistry, University of Nebraska at Omaha, Omaha, Nebraska
| | - Dustin R Slivka
- School of Health, Physical Education, and Recreation, University of Nebraska at Omaha, Omaha, Nebraska; and
| |
Collapse
|
13
|
Procino G, Carmosino M, Milano S, Dal Monte M, Schena G, Mastrodonato M, Gerbino A, Bagnoli P, Svelto M. β3 adrenergic receptor in the kidney may be a new player in sympathetic regulation of renal function. Kidney Int 2016; 90:555-67. [PMID: 27206969 PMCID: PMC4996630 DOI: 10.1016/j.kint.2016.03.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/04/2016] [Accepted: 03/10/2016] [Indexed: 12/28/2022]
Abstract
To date, the study of the sympathetic regulation of renal function has been restricted to the important contribution of β1- and β2-adrenergic receptors (ARs). Here we investigate the expression and the possible physiologic role of β3-adrenergic receptor (β3-AR) in mouse kidney. The β3-AR is expressed in most of the nephron segments that also express the type 2 vasopressin receptor (AVPR2), including the thick ascending limb and the cortical and outer medullary collecting duct. Ex vivo experiments in mouse kidney tubules showed that β3-AR stimulation with the selective agonist BRL37344 increased intracellular cAMP levels and promoted 2 key processes in the urine concentrating mechanism. These are accumulation of the water channel aquaporin 2 at the apical plasma membrane in the collecting duct and activation of the Na-K-2Cl symporter in the thick ascending limb. Both effects were prevented by the β3-AR antagonist L748,337 or by the protein kinase A inhibitor H89. Interestingly, genetic inactivation of β3-AR in mice was associated with significantly increased urine excretion of water, sodium, potassium, and chloride. Stimulation of β3-AR significantly reduced urine excretion of water and the same electrolytes. Moreover, BRL37344 promoted a potent antidiuretic effect in AVPR2-null mice. Thus, our findings are of potential physiologic importance as they uncover the antidiuretic effect of β3-AR stimulation in the kidney. Hence, β3-AR agonism might be useful to bypass AVPR2-inactivating mutations.
Collapse
Affiliation(s)
- Giuseppe Procino
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy.
| | - Monica Carmosino
- Department of Sciences, University of Basilicata, Potenza, Italy
| | - Serena Milano
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | | | - Giorgia Schena
- Department of Sciences, University of Basilicata, Potenza, Italy
| | | | - Andrea Gerbino
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Paola Bagnoli
- Department of Biology, University of Pisa, Pisa, Italy
| | - Maria Svelto
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy; Institute of Biomembranes and Bioenergetics, National Research Council, Bari, Italy; National Institute of Biostructures and Biosystems (INBB), Rome, Italy
| |
Collapse
|
14
|
Zhou X, He L, Wan D, Yang H, Yao K, Wu G, Wu X, Yin Y. Methionine restriction on lipid metabolism and its possible mechanisms. Amino Acids 2016; 48:1533-40. [DOI: 10.1007/s00726-016-2247-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 04/29/2016] [Indexed: 12/26/2022]
|
15
|
Weiss R, Lustig RH. Obesity, metabolic syndrome, and disorders of energy balance. PEDIATRIC ENDOCRINOLOGY 2014:956-1014.e1. [DOI: 10.1016/b978-1-4557-4858-7.00031-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
16
|
Bombardi C, Grandis A, Gardini A, Sorteni C, Clavenzani P, Chiocchetti R. Expression of β2 adrenoceptors within enteric neurons of the horse ileum. Res Vet Sci 2013; 95:837-45. [PMID: 23941962 DOI: 10.1016/j.rvsc.2013.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 05/10/2013] [Accepted: 07/08/2013] [Indexed: 12/31/2022]
Abstract
The activity of the gastrointestinal tract is regulated through the activation of adrenergic receptors (ARs). Since data concerning the distribution of ARs in the horse intestine is virtually absent, we investigated the distribution of β2-AR in the horse ileum using double-immunofluorescence. The β2-AR-immunoreactivity (IR) was observed in most (95%) neurons located in submucosal plexus (SMP) and in few (8%) neurons of the myenteric plexus (MP). Tyrosine hydroxylase (TH)-IR fibers were observed close to neurons expressing β2-AR-IR. Since β2-AR is virtually expressed in most neurons located in the horse SMP and in a lower percentage of neurons in the MP, it is reasonable to retain that this adrenergic receptor could regulate the activity of both secretomotor neurons and motor neurons innervating muscle layers and blood vessels. The high density of TH-IR fibers near β2-AR-IR enteric neurons indicates that the excitability of these cells could be directly modulated by the sympathetic system.
Collapse
Affiliation(s)
- Cristiano Bombardi
- Department of Veterinary Medical Science, University of Bologna, 40064 Ozzano dell'Emilia, Bologna, Italy.
| | | | | | | | | | | |
Collapse
|
17
|
Abstract
Transcription factors of the FoxO (forkhead box O) family regulate a wide range of cellular physiological processes, including metabolic adaptation and myogenic differentiation. The transcriptional activity of most FoxO members is inhibitory to myogenic differentiation and overexpression of FoxO1 inhibits the development of oxidative type I fibres in vivo. In this study, we found that FoxO6, the last discovered FoxO family member, is expressed ubiquitously in various tissues but with higher expression levels in oxidative tissues, such as brain and oxidative muscles. Both the expression level and promoter activity of FoxO6 were found to be enhanced by PGC-1α (peroxisome-proliferator-activated receptor γ co-activator 1α), thus explained its enriched expression in oxidative tissues. We further demonstrated that FoxO6 represses the expression of PGC-1α via direct binding to an upstream A/T-rich element (AAGATATCAAAACA,−2228–2215) in the PGC-1α promoter. Oxidative low-intensity exercise induced PGC-1α but reduced FoxO6 expression levels in hind leg muscles, and the binding of FoxO6 to PGC-1α promoter was also prevented by exercise. As FoxO6 promoter can be co-activated by PGC-1α and its promoter in turn can be repressed by FoxO6, it suggests that FoxO6 and PGC-1α form a regulatory loop for setting oxidative metabolism level in the skeletal muscle, which can be entrained by exercise.
Collapse
|
18
|
Chang JS, Fernand V, Zhang Y, Shin J, Jun HJ, Joshi Y, Gettys TW. NT-PGC-1α protein is sufficient to link β3-adrenergic receptor activation to transcriptional and physiological components of adaptive thermogenesis. J Biol Chem 2012; 287:9100-11. [PMID: 22282499 DOI: 10.1074/jbc.m111.320200] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
PGC-1α is an inducible transcriptional coactivator that regulates cellular energy metabolism and adaptation to environmental and nutritional stimuli. In tissues expressing PGC-1α, alternative splicing produces a truncated protein (NT-PGC-1α) corresponding to the first 267 amino acids of PGC-1α. Brown adipose tissue also expresses two novel exon 1b-derived isoforms of PGC-1α and NT-PGC-1α, which are 4 and 13 amino acids shorter in the N termini than canonical PGC-1α and NT-PGC-1α, respectively. To evaluate the ability of NT-PGC-1α to substitute for PGC-1α and assess the isoform-specific role of NT-PGC-1α, adaptive thermogenic responses of adipose tissue were evaluated in mice lacking full-length PGC-1α (FL-PGC-1(-/-)) but expressing slightly shorter but functionally equivalent forms of NT-PGC-1α (NT-PGC-1α(254)). At room temperature, NT-PGC-1α and NT-PGC-1α(254) were produced from conventional exon 1a-derived transcripts in brown adipose tissue of wild type and FL-PGC-1α(-/-) mice, respectively. However, cold exposure shifted transcription to exon 1b, increasing exon 1b-derived mRNA levels. The resulting transcriptional responses produced comparable increases in energy expenditure and maintenance of core body temperature in WT and FL-PGC-1α(-/-) mice. Moreover, treatment of the two genotypes with a selective β(3)-adrenergic receptor agonist produced similar increases in energy expenditure, mitochondrial DNA, and reductions in adiposity. Collectively, these findings illustrate that the transcriptional and physiological responses to sympathetic input are unabridged in FL-PGC-1α(-/-) mice, and that NT-PGC-1α is sufficient to link β(3)-androgenic receptor activation to adaptive thermogenesis in adipose tissue. Furthermore, the transcriptional shift from exon 1a to 1b supports isoform-specific roles for NT-PGC-1α in basal and adaptive thermogenesis.
Collapse
Affiliation(s)
- Ji Suk Chang
- Laboratory of Nutrient Sensing and Adipocyte Signaling, Pennington Biomedical Research Center, Baton Rouge, Louisiana 70808, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Glanville EJ, Murray SA, Seebacher F. Thermal adaptation in endotherms: climate and phylogeny interact to determine population-level responses in a wild rat. Funct Ecol 2011. [DOI: 10.1111/j.1365-2435.2011.01933.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Lustig RH. Hypothalamic obesity after craniopharyngioma: mechanisms, diagnosis, and treatment. Front Endocrinol (Lausanne) 2011; 2:60. [PMID: 22654817 PMCID: PMC3356006 DOI: 10.3389/fendo.2011.00060] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 10/06/2011] [Indexed: 12/17/2022] Open
Abstract
Obesity is a common complication after craniopharyngioma therapy, occurring in up to 75% of survivors. Its weight gain is unlike that of normal obesity, in that it occurs even with caloric restriction, and attempts at lifestyle modification are useless to prevent or treat the obesity. The pathogenesis of this condition involves the inability to transduce afferent hormonal signals of adiposity, in effect mimicking a state of CNS starvation. Efferent sympathetic activity drops, resulting in malaise and reduced energy expenditure, and vagal activity increases, resulting in increased insulin secretion and adipogenesis. Lifestyle intervention is essentially useless in this syndrome, termed "hypothalamic obesity." Pharmacologic treatment is also difficult, consisting of adrenergics to mimic sympathetic activity, or suppression of insulin secretion with octreotide, or both. Recently, bariatric surgery (Roux-en-Y gastric bypass, laparoscopic gastric banding, truncal vagotomy) have also been attempted with variable results. Early and intensive management is required to mitigate the obesity and its negative consequences.
Collapse
Affiliation(s)
- Robert H. Lustig
- Department of Pediatrics, University of California San FranciscoSan Francisco, CA, USA
| |
Collapse
|
21
|
Abstract
Mechanisms responsible for energy management in the cell and in the whole organism require a complex network of transcription factors and cofactors. Peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) has emerged as a master regulator of mitochondrial biogenesis and function, thus becoming a crucial metabolic node. We present an overview of the mechanisms by which PGC-1α is regulated, including the transcriptional regulation of PGC-1α expression and the fine-tuning of its final activity via posttranslational modifications.
Collapse
Affiliation(s)
- Pablo J Fernandez-Marcos
- Laboratory for Integrative and Systems Physiology, Ecole Polytechnique Fédérale de Lausanne, Switzerland
| | | |
Collapse
|
22
|
Chartoumpekis DV, Habeos IG, Ziros PG, Psyrogiannis AI, Kyriazopoulou VE, Papavassiliou AG. Brown adipose tissue responds to cold and adrenergic stimulation by induction of FGF21. Mol Med 2011; 17:736-740. [PMID: 21373720 PMCID: PMC3146611 DOI: 10.2119/molmed.2011.00075] [Citation(s) in RCA: 195] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 02/25/2011] [Indexed: 12/30/2022] Open
Abstract
Fibroblast growth factor-21 (FGF21) is a pleiotropic protein involved in glucose, lipid metabolism and energy homeostasis, with main tissues of expression being the liver and adipose tissue. Brown adipose tissue (BAT) is responsible for cold-induced thermogenesis in rodents. The role of FGF21 in BAT biology has not been investigated. In the present study, wild-type C57BL/6J mice as well as a brown adipocyte cell line were used to explore the potential role of cold exposure and β3-adrenergic stimulation in the expression of FGF21 in BAT. Our results demonstrate that short-term exposure to cold, as well as β3-adrenergic stimulation, causes a significant induction of FGF21 mRNA levels in BAT, without a concomitant increase in FGF21 plasma levels. This finding opens new routes for the potential use of pharmaceuticals that could induce FGF21 and, hence, activate BAT thermogenesis.
Collapse
Affiliation(s)
- Dionysios V Chartoumpekis
- Department of Internal Medicine, Division of Endocrinology, Medical School, University of Patras, Patras, Greece
| | - Ioannis G Habeos
- Department of Internal Medicine, Division of Endocrinology, Medical School, University of Patras, Patras, Greece
| | - Panos G Ziros
- Department of Internal Medicine, Division of Endocrinology, Medical School, University of Patras, Patras, Greece
| | - Agathoklis I Psyrogiannis
- Department of Internal Medicine, Division of Endocrinology, Medical School, University of Patras, Patras, Greece
| | - Venetsana E Kyriazopoulou
- Department of Internal Medicine, Division of Endocrinology, Medical School, University of Patras, Patras, Greece
| | | |
Collapse
|
23
|
Fernandez-Marcos PJ, Auwerx J. Regulation of PGC-1α, a nodal regulator of mitochondrial biogenesis. THE AMERICAN JOURNAL OF CLINICAL NUTRITION 2011. [PMID: 21289221 DOI: 10.3945/jcn.110.001917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mechanisms responsible for energy management in the cell and in the whole organism require a complex network of transcription factors and cofactors. Peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) has emerged as a master regulator of mitochondrial biogenesis and function, thus becoming a crucial metabolic node. We present an overview of the mechanisms by which PGC-1α is regulated, including the transcriptional regulation of PGC-1α expression and the fine-tuning of its final activity via posttranslational modifications.
Collapse
Affiliation(s)
- Pablo J Fernandez-Marcos
- Laboratory for Integrative and Systems Physiology, Ecole Polytechnique Fédérale de Lausanne, Switzerland
| | | |
Collapse
|
24
|
Perrone CE, Mattocks DAL, Jarvis-Morar M, Plummer JD, Orentreich N. Methionine restriction effects on mitochondrial biogenesis and aerobic capacity in white adipose tissue, liver, and skeletal muscle of F344 rats. Metabolism 2010; 59:1000-11. [PMID: 20045141 DOI: 10.1016/j.metabol.2009.10.023] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 10/23/2009] [Accepted: 10/26/2009] [Indexed: 01/11/2023]
Abstract
Methionine restriction increases life span in rats and mice and reduces age-related accretion of adipose tissue in Fischer 344 rats. Recent reports have shown that adipose tissue mitochondrial content and function are associated with adiposity; therefore, the expression of genes involved in mitochondrial biogenesis and oxidative capacity was examined in white adipose tissue, liver, and skeletal muscle from Fischer 344 rats fed control (0.86% methionine) or methionine-restricted (0.17% methionine) diets for 3 months. Methionine restriction induced transcriptional changes of peroxisome proliferator-activated receptors, peroxisome proliferator-activated receptor coactivators 1alpha and 1beta, and some of their known target genes in all of these tissues. In addition, tissue-specific responses were elicited at the protein level. In inguinal adipose tissue, methionine restriction increased protein levels of peroxisome proliferator-activated receptor and peroxisome proliferator-activated receptor coactivator target genes. It also induced mitochondrial DNA copy number, suggesting mitochondrial biogenesis and corresponding with the up-regulation of citrate synthase activity. In contrast, methionine restriction induced changes in mitochondrial glycerol-3-phosphate dehydrogenase activity and stearoyl-coenzyme A desaturase 1 protein levels only in liver and uncoupling protein 3 and cytochrome c oxidase subunit IV protein levels only in skeletal muscle. No increase in mitochondrial DNA copy number was observed in liver and skeletal muscle despite an increase in mitochondrial citrate synthase activity. The results indicate that adiposity resistance in methionine-restricted rats is associated with mitochondrial biogenesis in inguinal adipose tissue and increased mitochondrial aerobic capacity in liver and skeletal muscle.
Collapse
MESH Headings
- Adipose Tissue, White/growth & development
- Adipose Tissue, White/metabolism
- Adipose Tissue, White/physiology
- Adiposity/physiology
- Aerobiosis/physiology
- Animals
- Blotting, Western
- Body Weight/physiology
- Citrate (si)-Synthase/metabolism
- DNA, Mitochondrial/metabolism
- Gene Expression/genetics
- Gene Expression/physiology
- Glycerol-3-Phosphate Dehydrogenase (NAD+)/metabolism
- Liver/growth & development
- Liver/metabolism
- Liver/physiology
- Male
- Methionine/physiology
- Mitochondria/physiology
- Mitochondria, Liver/metabolism
- Mitochondria, Liver/physiology
- Mitochondria, Muscle/metabolism
- Mitochondria, Muscle/physiology
- Muscle, Skeletal/growth & development
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/physiology
- Organ Size/physiology
- Rats
- Rats, Inbred F344
- Reverse Transcriptase Polymerase Chain Reaction
- Stearoyl-CoA Desaturase/metabolism
Collapse
Affiliation(s)
- Carmen E Perrone
- Cell Biology Laboratory, Biomedical Research Station, Orentreich Foundation for the Advancement of Science, Inc., Cold Spring-on-Hudson, NY 10516, USA.
| | | | | | | | | |
Collapse
|
25
|
Role of mitochondrial dynamics proteins in the pathophysiology of obesity and type 2 diabetes. Int J Biochem Cell Biol 2009; 41:1846-54. [DOI: 10.1016/j.biocel.2009.02.004] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2008] [Revised: 02/03/2009] [Accepted: 02/10/2009] [Indexed: 02/08/2023]
|
26
|
Pearen MA, Ryall JG, Lynch GS, Muscat GE. Expression profiling of skeletal muscle following acute and chronic beta2-adrenergic stimulation: implications for hypertrophy, metabolism and circadian rhythm. BMC Genomics 2009; 10:448. [PMID: 19772666 PMCID: PMC2758907 DOI: 10.1186/1471-2164-10-448] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Accepted: 09/23/2009] [Indexed: 02/08/2023] Open
Abstract
Background Systemic administration of β-adrenoceptor (β-AR) agonists has been found to induce skeletal muscle hypertrophy and significant metabolic changes. In the context of energy homeostasis, the importance of β-AR signaling has been highlighted by the inability of β1-3-AR-deficient mice to regulate energy expenditure and susceptibility to diet induced obesity. However, the molecular pathways and gene expression changes that initiate and maintain these phenotypic modulations are poorly understood. Therefore, the aim of this study was to identify differential changes in gene expression in murine skeletal muscle associated with systemic (acute and chronic) administration of the β2-AR agonist formoterol. Results Skeletal muscle gene expression (from murine tibialis anterior) was profiled at both 1 and 4 hours following systemic administration of the β2-AR agonist formoterol, using Illumina 46K mouse BeadArrays. Illumina expression profiling revealed significant expression changes in genes associated with skeletal muscle hypertrophy, myoblast differentiation, metabolism, circadian rhythm, transcription, histones, and oxidative stress. Differentially expressed genes relevant to the regulation of muscle mass and metabolism (in the context of the hypertrophic phenotype) were further validated by quantitative RT-PCR to examine gene expression in response to both acute (1-24 h) and chronic administration (1-28 days) of formoterol at multiple timepoints. In terms of skeletal muscle hypertrophy, attenuation of myostatin signaling (including differential expression of myostatin, activin receptor IIB, phospho-Smad3 etc) was observed following acute and chronic administration of formoterol. Acute (but not chronic) administration of formoterol also significantly induced the expression of genes involved in oxidative metabolism, including hexokinase 2, sorbin and SH3 domain containing 1, and uncoupling protein 3. Interestingly, formoterol administration also appeared to influence some genes associated with the peripheral regulation of circadian rhythm (including nuclear factor interleukin 3 regulated, D site albumin promoter binding protein, and cryptochrome 2). Conclusion This is the first study to utilize gene expression profiling to examine global gene expression in response to acute β2-AR agonist treatment of skeletal muscle. In summary, systemic administration of a β2-AR agonist had a profound effect on global gene expression in skeletal muscle. In terms of hypertrophy, β2-AR agonist treatment altered the expression of several genes associated with myostatin signaling, a previously unreported effect of β-AR signaling in skeletal muscle. This study also demonstrates a β2-AR agonist regulation of circadian rhythm genes, indicating crosstalk between β-AR signaling and circadian cycling in skeletal muscle. Gene expression alterations discovered in this study provides insight into many of the underlying changes in gene expression that mediate β-AR induced skeletal muscle hypertrophy and altered metabolism.
Collapse
Affiliation(s)
- Michael A Pearen
- Institute for Molecular Bioscience, The University of Queensland, Queensland 4072, Australia.
| | | | | | | |
Collapse
|
27
|
Liesa M, Palacín M, Zorzano A. Mitochondrial dynamics in mammalian health and disease. Physiol Rev 2009; 89:799-845. [PMID: 19584314 DOI: 10.1152/physrev.00030.2008] [Citation(s) in RCA: 714] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The meaning of the word mitochondrion (from the Greek mitos, meaning thread, and chondros, grain) illustrates that the heterogeneity of mitochondrial morphology has been known since the first descriptions of this organelle. Such a heterogeneous morphology is explained by the dynamic nature of mitochondria. Mitochondrial dynamics is a concept that includes the movement of mitochondria along the cytoskeleton, the regulation of mitochondrial architecture (morphology and distribution), and connectivity mediated by tethering and fusion/fission events. The relevance of these events in mitochondrial and cell physiology has been partially unraveled after the identification of the genes responsible for mitochondrial fusion and fission. Furthermore, during the last decade, it has been identified that mutations in two mitochondrial fusion genes (MFN2 and OPA1) cause prevalent neurodegenerative diseases (Charcot-Marie Tooth type 2A and Kjer disease/autosomal dominant optic atrophy). In addition, other diseases such as type 2 diabetes or vascular proliferative disorders show impaired MFN2 expression. Altogether, these findings have established mitochondrial dynamics as a consolidated area in cellular physiology. Here we review the most significant findings in the field of mitochondrial dynamics in mammalian cells and their implication in human pathologies.
Collapse
Affiliation(s)
- Marc Liesa
- Institute for Research in Biomedicine (IRB Barcelona), CIBER de Diabetes y Enfermedades Metabólicas Asociadas, and Departament de Bioquímica i Biologia Molecular, Universitat de Barcelona, Barcelona 08028, Spain
| | | | | |
Collapse
|
28
|
|
29
|
Miura S, Kawanaka K, Kai Y, Tamura M, Goto M, Shiuchi T, Minokoshi Y, Ezaki O. An increase in murine skeletal muscle peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha) mRNA in response to exercise is mediated by beta-adrenergic receptor activation. Endocrinology 2007; 148:3441-8. [PMID: 17446185 DOI: 10.1210/en.2006-1646] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A single bout of exercise increases expression of peroxisome proliferator-activated receptor-gamma coactivator (PGC)-1alpha mRNA, which may promote mitochondrial biogenesis in skeletal muscle. In brown adipose tissue, cold exposure up-regulates PGC-1alpha expression via adrenergic receptor (AR) activation. Because exercise also activates the sympathetic nervous system, we examined whether exercise-induced increase in PGC-1alpha mRNA expression in skeletal muscle was mediated via AR activation. In C57BL/6J mice, injection of the beta2-AR agonist clenbuterol, but not alpha-, beta1-, or beta3-AR agonists, increased PGC-1alpha mRNA expression more than 30-fold in skeletal muscle. The clenbuterol-induced increase in PGC-1alpha mRNA expression in mice was inhibited by pretreatment with the beta-AR antagonist propranolol. In ex vivo experiments, direct exposure of rat epitrochlearis to beta2-AR agonist, but not alpha-, beta1-, and beta3-AR agonist, led to an increase in levels of PGC-1alpha mRNA. Injection of beta2-AR agonist did not increase PGC-1alpha mRNA expression in beta1-, beta2-, and beta3-AR knockout mice (beta-less mice). PGC-1alpha mRNA in gastrocnemius was increased 3.5-fold in response to running on a treadmill for 45 min. The exercise-induced increase in PGC-1alpha mRNA was inhibited by approximately 70% by propranolol or the beta2-AR-specific inhibitor ICI 118,551. The exercise-induced increase in PGC-1alpha mRNA in beta-less mice was also 36% lower than that in wild-type mice. These data indicate that up-regulation of PGC-1alpha expression in skeletal muscle by exercise is mediated, at least in part, by beta-ARs activation. Among ARs, beta2-AR may mediate an increase in PGC-1alpha by exercise.
Collapse
MESH Headings
- Adrenergic alpha-Agonists/pharmacology
- Adrenergic beta-1 Receptor Agonists
- Adrenergic beta-2 Receptor Agonists
- Adrenergic beta-3 Receptor Agonists
- Adrenergic beta-Agonists/pharmacology
- Animals
- Blotting, Northern
- Clenbuterol/pharmacology
- Dioxoles/pharmacology
- Dobutamine/pharmacology
- Gene Expression Regulation/drug effects
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha
- Phenylephrine/pharmacology
- Physical Conditioning, Animal/physiology
- Propranolol/pharmacology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Adrenergic, alpha/metabolism
- Receptors, Adrenergic, beta/genetics
- Receptors, Adrenergic, beta/metabolism
- Receptors, Adrenergic, beta-1/genetics
- Receptors, Adrenergic, beta-1/metabolism
- Receptors, Adrenergic, beta-2/genetics
- Receptors, Adrenergic, beta-2/metabolism
- Receptors, Adrenergic, beta-3/genetics
- Receptors, Adrenergic, beta-3/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Trans-Activators/genetics
- Transcription Factors
Collapse
Affiliation(s)
- Shinji Miura
- Nutritional Science Program, National Institute of Health and Nutrition, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8636, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Finck BN, Kelly DP. Peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1) regulatory cascade in cardiac physiology and disease. Circulation 2007; 115:2540-8. [PMID: 17502589 DOI: 10.1161/circulationaha.107.670588] [Citation(s) in RCA: 215] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Brian N Finck
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | |
Collapse
|
31
|
Baar K. Involvement of PPARγ co-activator-1, nuclear respiratory factors 1 and 2, and PPARα in the adaptive response to endurance exercise. Proc Nutr Soc 2007; 63:269-73. [PMID: 15294042 DOI: 10.1079/pns2004334] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Endurance exercise training induces an increase in the respiratory capacity of muscle, resulting in an increased capacity to generate ATP as well as improved efficiency of muscle contraction. Such adaptations are largely the result of a coordinated genetic response that increases mitochondrial proteins, fatty acid oxidation enzymes and the exercise- and insulin-stimulated glucose transporter GLUT4, and shifts the contractile and regulatory proteins to their more efficient isoforms. In recent years a number of the transcriptional regulators involved in this genetic response have been identified and these factors can be classified into two different groups. The first group comprises transcription factors such as nuclear respiratory factors (NRF) 1 and 2 and PPARα that bind DNA in a sequence-specific manner. The second group, referred to as transcriptional co-activators, alter transcription without directly binding to DNA. The PPARγ co-activator (PGC) family of proteins have been identified as the central family of transcriptional co-activators for induction of mitochondrial biogenesis. PGC-1α is activated by exercise, and is sufficient to produce the endurance phenotype through direct interactions with NRF-1 and PPARα, and potentially NRF-2. Furthering the understanding of the activation of PGC proteins following exercise has implications beyond improving athletic performance, including the possibility of providing targets for the treatment of frailty in the elderly, obesity and diseases such as mitochondrial myopathies and diabetes.
Collapse
Affiliation(s)
- Keith Baar
- Department of Mechanical Engineering and Institute of Gerontology, University of Michigan, Ann Arbor, MI 48109-2007, USA.
| |
Collapse
|
32
|
Ramsay TG, Richards MP. Beta-adrenergic regulation of uncoupling protein expression in swine. Comp Biochem Physiol A Mol Integr Physiol 2007; 147:395-403. [PMID: 17383207 DOI: 10.1016/j.cbpa.2007.01.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Revised: 01/11/2007] [Accepted: 01/11/2007] [Indexed: 11/28/2022]
Abstract
This study examined the beta-adrenergic regulation of uncoupling protein (UCP) 2 and UCP3 gene expression in porcine tissues. In vitro experiments examined changes in UCP2 and UCP3 gene expression in middle (MSQ) and outer (OSQ) subcutaneous adipose tissues from crossbred neutered male pigs. Incubation of tissue slices (24 h) with 0 to 1000 nM isoproterenol increased UCP2 and UCP3 mRNA abundance in MSQ and OSQ, relative to 18S rRNA (P<0.05). For the in vivo experiment, nine randomly selected pigs (80 kg) were presented with a diet supplemented with 10.0 ppm ractopamine for 2 weeks. Another eight pigs were maintained on a control diet. Dietary ractopamine did not affect adipose UCP2 or UCP3 gene expression (P>0.05). However, UCP2 mRNA abundance was depressed in semitendinosus white (STW, P<0.05) and semitendinosus red (STR, P<0.001) by ractopamine feeding. Also, ractopamine decreased UCP3 mRNA abundance by 28% in STW (P<0.05). The in vitro data suggest that beta-adrenergic agonists directly affect adipose tissue UCP expression, although these adipose effects can be masked by the in vivo physiology. The in vivo data indicate that beta-adrenergic agonists may function in regulating UCP2 and UCP3 expression in selected muscles.
Collapse
Affiliation(s)
- T G Ramsay
- Growth Biology Laboratory, USDA-ARS, Beltsville, MD 20705, USA.
| | | |
Collapse
|
33
|
Kodde IF, van der Stok J, Smolenski RT, de Jong JW. Metabolic and genetic regulation of cardiac energy substrate preference. Comp Biochem Physiol A Mol Integr Physiol 2006; 146:26-39. [PMID: 17081788 DOI: 10.1016/j.cbpa.2006.09.014] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Revised: 09/19/2006] [Accepted: 09/23/2006] [Indexed: 01/13/2023]
Abstract
Proper heart function relies on high efficiency of energy conversion. Mitochondrial oxygen-dependent processes transfer most of the chemical energy from metabolic substrates into ATP. Healthy myocardium uses mainly fatty acids as its major energy source, with little contribution of glucose. However, lactate, ketone bodies, amino acids or even acetate can be oxidized under certain circumstances. A complex interplay exists between various substrates responding to energy needs and substrate availability. The relative substrate concentration is the prime factor defining preference and utilization rate. Allosteric enzyme regulation and protein phosphorylation cascades, partially controlled by hormones such as insulin, modulate the concentration effect; together they provide short-term adjustments of cardiac energy metabolism. The expression of metabolic machinery genes is also dynamically regulated in response to developmental and (patho)physiological conditions, leading to long-term adjustments. Specific nuclear receptor transcription factors and co-activators regulate the expression of these genes. These include peroxisome proliferator-activated receptors and their nuclear receptor co-activator, estrogen-related receptor and hypoxia-inducible transcription factor 1. Increasing glucose and reducing fatty acid oxidation by metabolic regulation is already a target for effective drugs used in ischemic heart disease and heart failure. Interaction with genetic factors that control energy metabolism could provide even more powerful pharmacological tools.
Collapse
|
34
|
Wu Z, Huang X, Feng Y, Handschin C, Feng Y, Gullicksen PS, Bare O, Labow M, Spiegelman B, Stevenson SC. Transducer of regulated CREB-binding proteins (TORCs) induce PGC-1alpha transcription and mitochondrial biogenesis in muscle cells. Proc Natl Acad Sci U S A 2006; 103:14379-84. [PMID: 16980408 PMCID: PMC1569674 DOI: 10.1073/pnas.0606714103] [Citation(s) in RCA: 238] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
PGC-1alpha (peroxisome proliferator-activated receptor gamma coactivator 1alpha) is a master regulator of mitochondrial biogenesis and plays an important role in several other aspects of energy metabolism. To identify upstream regulators of PGC-1alpha gene transcription, 10,000 human full-length cDNAs were screened for induction of the PGC-1alpha promoter. A number of activators of PGC-1alpha transcription were found; the most potent activator was the transducer of regulated CREB (cAMP response element-binding protein) binding protein (TORC) 1, a coactivator of CREB. The other two members of the TORC family, TORC2 and TORC3, also strongly activated PGC-1alpha transcription. TORCs dramatically induced PGC-1alpha gene transcription through CREB. Forced expression of TORCs in primary muscle cells induced the endogenous mRNA of PGC-1alpha and its downstream target genes in the mitochondrial respiratory chain and TCA cycle. Importantly, these changes in gene expression resulted in increased mitochondrial oxidative capacity measured by cellular respiration and fatty acid oxidation. Finally, we demonstrated that the action of TORCs in promoting mitochondrial gene expression and function requires PGC-1alpha. Previous studies had indicated that TORCs function as a calcium- and cAMP-sensitive coincidence detector and mediate individual and synergistic effects of these two pathways. Our results, together with previous findings, strongly suggest that TORCs play a key role in linking these external signals to the transcriptional program of adaptive mitochondrial biogenesis by activating PGC-1alpha gene transcription.
Collapse
Affiliation(s)
- Zhidan Wu
- *Diabetes and Metabolism Disease Area, Novartis Institutes for BioMedical Research, 100 Technology Square, Cambridge, MA 02139
- To whom correspondence may be addressed. E-mail:
or
| | - Xueming Huang
- *Diabetes and Metabolism Disease Area, Novartis Institutes for BioMedical Research, 100 Technology Square, Cambridge, MA 02139
| | - Yajun Feng
- *Diabetes and Metabolism Disease Area, Novartis Institutes for BioMedical Research, 100 Technology Square, Cambridge, MA 02139
| | - Christoph Handschin
- Dana–Farber Cancer Institute and Department of Cell Biology, Harvard Medical School, Boston, MA 02215
| | - Yan Feng
- Genome and Proteome Sciences, Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, MA 02139; and
| | - P. Scott Gullicksen
- *Diabetes and Metabolism Disease Area, Novartis Institutes for BioMedical Research, 100 Technology Square, Cambridge, MA 02139
| | - Olivia Bare
- *Diabetes and Metabolism Disease Area, Novartis Institutes for BioMedical Research, 100 Technology Square, Cambridge, MA 02139
| | - Mark Labow
- Genome and Proteome Sciences, Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, MA 02139; and
| | - Bruce Spiegelman
- Dana–Farber Cancer Institute and Department of Cell Biology, Harvard Medical School, Boston, MA 02215
- To whom correspondence may be addressed. E-mail:
or
| | - Susan C. Stevenson
- *Diabetes and Metabolism Disease Area, Novartis Institutes for BioMedical Research, 100 Technology Square, Cambridge, MA 02139
| |
Collapse
|
35
|
Borniquel S, Valle I, Cadenas S, Lamas S, Monsalve M. Nitric oxide regulates mitochondrial oxidative stress protection via the transcriptional coactivator PGC-1alpha. FASEB J 2006; 20:1889-91. [PMID: 16891621 DOI: 10.1096/fj.05-5189fje] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nitric oxide (NO) has both prooxidant and antioxidant activities in the endothelium; however, the molecular mechanisms involved are still a matter of controversy. PGC-1alpha [peroxisome proliferators-activated receptor (PPAR) gamma coactivator 1-alpha] induces the expression of several members of the mitochondrial reactive oxygen species (ROS) detoxification system. Here, we show that NO regulates this system through the modulation of PGC-1alpha expression. Short-term (<12 h) treatment of endothelial cells with NO donors down-regulates PGC-1alpha expression, whereas long-term (>24 h) treatment up-regulates it. Treatment with the NOS inhibitor l-NAME has the opposite effect. Down-regulation of PGC-1alpha by NO is mediated by protein kinase G (PKG). It is blocked by the soluble guanylate cyclase (sGC) inhibitor ODQ and the PKG inhibitor KT5823, and mimicked by the cGMP analog 8-Br-cGMP. Changes in PGC-1alpha expression are in all cases paralleled by corresponding variations in the mitochondrial ROS detoxification system. Cells that transiently overexpress PGC-1alpha from the cytomeglovirus (CMV) promoter respond poorly to NO donors. Analysis of tissues from eNOS(-/-) mice showed reduced levels of PGC-1alpha and the mitochondrial ROS detoxification system. These data suggest that NO can regulate the mitochondrial ROS detoxification system both positively and negatively through PGC-1alpha.
Collapse
Affiliation(s)
- Sara Borniquel
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernandez Almagro 3, Madrid 28029, Spain
| | | | | | | | | |
Collapse
|
36
|
Soriano FX, Liesa M, Bach D, Chan DC, Palacín M, Zorzano A. Evidence for a mitochondrial regulatory pathway defined by peroxisome proliferator-activated receptor-gamma coactivator-1 alpha, estrogen-related receptor-alpha, and mitofusin 2. Diabetes 2006; 55:1783-91. [PMID: 16731843 DOI: 10.2337/db05-0509] [Citation(s) in RCA: 286] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Mitofusin 2 (Mfn2) is a mitochondrial membrane protein that participates in mitochondrial fusion and regulates mitochondrial metabolism in mammalian cells. Here, we show that Mfn2 gene expression is induced in skeletal muscle and brown adipose tissue by conditions associated with enhanced energy expenditure, such as cold exposure or beta(3)-adrenergic agonist treatment. In keeping with the role of peroxisome proliferator-activated receptor-gamma coactivator (PGC)-1 alpha on energy expenditure, we demonstrate a stimulatory effect of PGC-1 alpha on Mfn2 mRNA and protein expression in muscle cells. PGC-1 alpha also stimulated the activity of the Mfn2 promoter, which required the integrity of estrogen-related receptor-alpha (ERR alpha)-binding elements located at -413/-398. ERR alpha also activated the transcriptional activity of the Mfn2 promoter, and the effects were synergic with those of PGC-1 alpha. Mfn2 loss of function reduced the stimulatory effect of PGC-1 alpha on mitochondrial membrane potential. Exposure to cold substantially increased Mfn2 gene expression in skeletal muscle from heterozygous Mfn2 knock-out mice, which occurred in the presence of higher levels of PGC-1 alpha mRNA compared with control mice. Our results indicate the existence of a regulatory pathway involving PGC-1 alpha, ERR alpha, and Mfn2. Alterations in this regulatory pathway may participate in the pathophysiology of insulin-resistant conditions and type 2 diabetes.
Collapse
MESH Headings
- Adipose Tissue, Brown/drug effects
- Adipose Tissue, Brown/metabolism
- Animals
- Blotting, Western
- Cells, Cultured
- Chromatin Immunoprecipitation
- Cold Temperature
- Dioxoles/pharmacology
- Electrophoretic Mobility Shift Assay
- Estrogen Receptor alpha/genetics
- Estrogen Receptor alpha/metabolism
- GTP Phosphohydrolases
- Gene Expression/drug effects
- HeLa Cells
- Heat-Shock Proteins/genetics
- Heat-Shock Proteins/metabolism
- Humans
- Male
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mice
- Mitochondria, Muscle/metabolism
- Mitochondrial Proteins/genetics
- Mitochondrial Proteins/metabolism
- Muscle, Skeletal/cytology
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha
- Protein Binding
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Rats, Wistar
- Signal Transduction/drug effects
- Signal Transduction/genetics
- Signal Transduction/physiology
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transfection
Collapse
Affiliation(s)
- Francesc X Soriano
- Institute for Research in Biomedicine (IRB), Scientífic Park of Barcelona, Departament of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barelona, Spain
| | | | | | | | | | | |
Collapse
|
37
|
Jacobs K, Rohrer G, Van Poucke M, Piumi F, Yerle M, Barthenschlager H, Mattheeuws M, Van Zeveren A, Peelman LJ. Porcine PPARGC1A (peroxisome proliferative activated receptor gamma coactivator 1A): coding sequence, genomic organization, polymorphisms and mapping. Cytogenet Genome Res 2006; 112:106-13. [PMID: 16276098 DOI: 10.1159/000087521] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2004] [Accepted: 02/25/2005] [Indexed: 01/12/2023] Open
Abstract
We report here the characterisation of porcine PPARGC1A. Primers based on human PPARGC1A were used to isolate two porcine BAC clones. Porcine coding sequences of PPARGC1A were sequenced together with the splice site regions and the 5' and 3' regions. Using direct sequencing nine SNPs were found. Allele frequencies were determined in unrelated animals of five different pig breeds. In the MARC Meishan-White Composite resource population, the polymorphism in exon 9 was significantly associated with leaf fat weight. PPARGC1A has been mapped by FISH to SSC8p21. A (CA)n microsatellite (SGU0001) has been localised near marker SWR1101 on chromosome 8 by RH mapping and at the same position as marker KS195 (32.5 cM) by linkage mapping. The AseI (nt857, Asn/Asn489) polymorphism in exon 8 was used to perform linkage analysis in the Hohenheim pedigrees and located the gene in the same genomic region. Transcription of the gene was detected in adipose, muscle, kidney, liver, brain, heart and adrenal gland tissues, which is in agreement with the function of PPARGC1A in adaptive thermogenesis.
Collapse
Affiliation(s)
- K Jacobs
- Department of Animal Nutrition, Genetics, Breeding and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Silvestri E, Schiavo L, Lombardi A, Goglia F. Thyroid hormones as molecular determinants of thermogenesis. ACTA ACUST UNITED AC 2006; 184:265-83. [PMID: 16026419 DOI: 10.1111/j.1365-201x.2005.01463.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Thyroid hormones (TH) are major modulators of energy metabolism and thermogenesis. It is generally believed that 3,5,3'-triiodo-l-thyronine (T3) is the only active form of TH, and that most of its effects are mediated by nuclear T3 receptors, which chiefly affect the transcription of target genes. Some of these genes encode for the proteins involved in energy metabolism. However, a growing volume of evidence now indicates that other iodothyronines may be biologically active. Several mechanisms have been proposed to explain the calorigenic effect of TH, but none has received universal acceptance. Cold acclimation/exposure and altered nutritional status are physiological conditions in which a modulation of energy expenditure is particularly important. TH seem to be deeply involved in this modulation, and this article will review some aspects of their possible influence in these conditions.
Collapse
Affiliation(s)
- E Silvestri
- Dipartimento di Scienze Biologiche ed Ambientali, Università degli Studi del Sannio, Benevento, Italy
| | | | | | | |
Collapse
|
39
|
Affiliation(s)
- Robert H Lustig
- Division of Endocrinology, University of California San Francisco, 94143, USA.
| |
Collapse
|
40
|
Ojaimi C, Li W, Kinugawa S, Post H, Csiszar A, Pacher P, Kaley G, Hintze TH. Transcriptional basis for exercise limitation in male eNOS-knockout mice with age: heart failure and the fetal phenotype. Am J Physiol Heart Circ Physiol 2005; 289:H1399-H1407. [PMID: 15879487 DOI: 10.1152/ajpheart.00170.2005] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Endothelium-derived nitric oxide (NO) is pivotal in regulating mitochondrial O(2) consumption (Vo(2)) and glucose uptake in mice. The aim of this study was to investigate the mechanism of age- and genotype-related exercise limitation in male endothelial NO synthase (eNOS)-knockout (KO, n = 16) and wild-type (WT, n = 19) mice. Treadmill testing was performed at 12, 14, 16, 18, and 21 mo of age. Vo(2), CO(2) production, respiratory exchange ratio, and maximal running distance were determined during treadmill running. There were good linear correlations for increase of speed with increase of Vo(2). The difference between KO and WT mice was not significant at 12 mo but was significant at 18 mo. Linear regression showed that KO mice consumed more O(2) at the same absolute and relative workloads, suggesting that Vo(2) was not inhibited by NO in KO mice. KO mice performed 30-50% less work than WT mice at each age (work = vertical distance x weight). In contrast to WT mice, the work performed by KO mice significantly decreased from 17 +/- 1.4 m.kg at 12 mo to 9.4 +/- 1.7 m.kg at 21 mo. Running distance was significantly decreased from 334 +/- 27 m at 12 mo to 178 +/- 38 m at 21 mo, and maximal Vo(2), CO(2) production, and respiratory exchange ratio per work unit were significantly higher in KO than in WT mice. Gene arrays showed evidence of a fetal phenotype in KO mice at 21 mo. In conclusion, age- and genotype-related exercise limitations in maximal work performed and maximal running distance in male eNOS-KO mice indicated that fetal phenotype and age were related to onset of heart failure.
Collapse
Affiliation(s)
- Caroline Ojaimi
- Department of Physiology, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Badino P, Odore R, Re G. Are so many adrenergic receptor subtypes really present in domestic animal tissues? A pharmacological perspective. Vet J 2005; 170:163-74. [PMID: 16129337 DOI: 10.1016/j.tvjl.2004.05.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2004] [Indexed: 11/17/2022]
Abstract
Adrenergic receptors (ARs) are the cellular membrane binding sites through which natural catecholamines and sympathomimetic drugs exert their physiological and pharmacological effects. In recent decades, studies to clarify the distribution and function of ARs have been performed mostly on cultured cells, laboratory animals and human target tissues, but little is known about these aspects in domestic animals. This review focuses on AR structure, classification and signalling pathways and on AR subtype distribution in target tissues of some domestic animals, namely dogs, horses and bovines. In these species, different alpha- and beta-AR subtypes have been characterized and the functions controlled by the adrenergic systems have been studied. In the dog, the role played by the adrenergic system in the pathogenesis of cardiovascular disorders and in the modulation of canine aggression has roused particular interest. In dogs affected by dilated cardiomyopathy a significant down-regulation of beta-ARs has been observed both in the heart and circulating lymphocytes. This finding confirms the involvement of the adrenergic system in the pathogenesis and progression of the disorder and suggests new therapeutic strategies. In the horse, AR distribution has been studied in the cardiac, respiratory and gastrointestinal systems as well as in digital veins and arteries. The cardiac beta-ARs in healthy horses seem to be predominantly represented by the beta(1) subtype. In this species, heart failure may increase the expression of the beta(2) subtype, rather than causing AR down-regulation. Different beta- and alpha-AR subtypes have been characterized in the smooth muscle of equine ileum. The sympathetic relaxation of equine ileum smooth muscle seems to depend mainly on beta(3)-AR subtype activation, with minor involvement of the beta(2) subtype. In the respiratory tract, regional differences have been evidenced in the functionality of beta-AR subtype. The beta(2) subtype predominates in all segments but the beta(2) subtype-mediated adenyl cyclase response is tissue-dependent, with higher activity in tracheal membranes than bronchial or pulmonary ones. Both alpha- and beta-AR subtypes are present in the genital tract of cows. Bovine ovarian and myometrial cell membranes express higher concentrations of beta(2)-ARs than the beta(1) subtype, whereas as far as alpha-ARs are concerned, a single class of alpha(1)-ARs and two distinct classes of alpha(2)-AR binding sites have been discriminated. Interestingly, it has been observed that the activation of the sympathetic system could play an important role in the pathogenesis of bovine ovarian cysts as suggested by the modifications in beta-AR levels in the hypophysis and ovary of cows affected by ovarian cysts. In this species, the phenomenon of down-regulation has been well studied in different organs of veal calves treated with clenbuterol as a "partitioning agent". Since differences exist in AR distribution among species, data obtained in laboratory animals or in human beings cannot be extrapolated to domestic animals and further investigation on AR subtypes in domestic animal tissues is necessary.
Collapse
Affiliation(s)
- P Badino
- Department of Animal Pathology, Division of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Torino, via L. da Vinci 44, I-10095 Grugliasco, Torino, Italy
| | | | | |
Collapse
|
42
|
Teyssier C, Ma H, Emter R, Kralli A, Stallcup MR. Activation of nuclear receptor coactivator PGC-1alpha by arginine methylation. Genes Dev 2005; 19:1466-73. [PMID: 15964996 PMCID: PMC1151663 DOI: 10.1101/gad.1295005] [Citation(s) in RCA: 197] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Peroxisome proliferator-activated receptor gamma coactivator 1alpha (PGC-1alpha), a tissue-specific and inducible transcriptional coactivator for several nuclear receptors, plays a key role in energy metabolism. We report here that PGC-1alpha coactivator activity is potentiated by arginine methylation by protein arginine methyltransferase 1 (PRMT1), another nuclear receptor coactivator. Mutation of three substrate arginines in the C-terminal region of PGC-1alpha abolished the cooperative coactivator function of PGC-1alpha and PRMT1, and compromised the ability of PGC-1alpha to induce endogenous target genes. Finally, endogenous PRMT1 contributes to PGC-1alpha coactivator activity, and to the induction of genes important for mitochondrial biogenesis.
Collapse
Affiliation(s)
- Catherine Teyssier
- Department of Pathology, University of Southern California, Los Angeles, California 90089, USA
| | | | | | | | | |
Collapse
|
43
|
Huss JM, Kelly DP. Mitochondrial energy metabolism in heart failure: a question of balance. J Clin Invest 2005; 115:547-55. [PMID: 15765136 PMCID: PMC1052011 DOI: 10.1172/jci24405] [Citation(s) in RCA: 394] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The mitochondrion serves a critical role as a platform for energy transduction, signaling, and cell death pathways relevant to common diseases of the myocardium such as heart failure. This review focuses on the molecular regulatory events and downstream effector pathways involved in mitochondrial energy metabolic derangements known to occur during the development of heart failure.
Collapse
Affiliation(s)
- Janice M Huss
- Center for Cardiovascular Research, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
44
|
Huss JM, Kelly DP. Mitochondrial energy metabolism in heart failure: a question of balance. J Clin Invest 2005. [PMID: 15765136 DOI: 10.1172/jci200524405] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The mitochondrion serves a critical role as a platform for energy transduction, signaling, and cell death pathways relevant to common diseases of the myocardium such as heart failure. This review focuses on the molecular regulatory events and downstream effector pathways involved in mitochondrial energy metabolic derangements known to occur during the development of heart failure.
Collapse
Affiliation(s)
- Janice M Huss
- Center for Cardiovascular Research, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
45
|
Leone TC, Lehman JJ, Finck BN, Schaeffer PJ, Wende AR, Boudina S, Courtois M, Wozniak DF, Sambandam N, Bernal-Mizrachi C, Chen Z, O. Holloszy J, Medeiros DM, Schmidt RE, Saffitz JE, Abel ED, Semenkovich CF, Kelly DP. PGC-1alpha deficiency causes multi-system energy metabolic derangements: muscle dysfunction, abnormal weight control and hepatic steatosis. PLoS Biol 2005; 3:e101. [PMID: 15760270 PMCID: PMC1064854 DOI: 10.1371/journal.pbio.0030101] [Citation(s) in RCA: 777] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2004] [Accepted: 01/21/2005] [Indexed: 02/07/2023] Open
Abstract
The gene encoding the transcriptional coactivator peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) was targeted in mice. PGC-1α null (PGC-1α−/−) mice were viable. However, extensive phenotyping revealed multi-system abnormalities indicative of an abnormal energy metabolic phenotype. The postnatal growth of heart and slow-twitch skeletal muscle, organs with high mitochondrial energy demands, is blunted in PGC-1α−/− mice. With age, the PGC-1α−/− mice develop abnormally increased body fat, a phenotype that is more severe in females. Mitochondrial number and respiratory capacity is diminished in slow-twitch skeletal muscle of PGC-1α−/− mice, leading to reduced muscle performance and exercise capacity. PGC-1α−/− mice exhibit a modest diminution in cardiac function related largely to abnormal control of heart rate. The PGC-1α−/− mice were unable to maintain core body temperature following exposure to cold, consistent with an altered thermogenic response. Following short-term starvation, PGC-1α−/− mice develop hepatic steatosis due to a combination of reduced mitochondrial respiratory capacity and an increased expression of lipogenic genes. Surprisingly, PGC-1α−/− mice were less susceptible to diet-induced insulin resistance than wild-type controls. Lastly, vacuolar lesions were detected in the central nervous system of PGC-1α−/− mice. These results demonstrate that PGC-1α is necessary for appropriate adaptation to the metabolic and physiologic stressors of postnatal life. Eliminating the activity of the gene PGC-1 α in mice reveals its role in post-natal metabolism and provides a link to obesity and some intriguing differences with another report of this knockout
Collapse
Affiliation(s)
- Teresa C Leone
- 1Center for Cardiovascular Research, Washington University School of MedicineSt Louis, MissouriUnited States of America
- 2Department of Medicine, Washington University School of MedicineSt Louis, MissouriUnited States of America
| | - John J Lehman
- 1Center for Cardiovascular Research, Washington University School of MedicineSt Louis, MissouriUnited States of America
- 2Department of Medicine, Washington University School of MedicineSt Louis, MissouriUnited States of America
| | - Brian N Finck
- 1Center for Cardiovascular Research, Washington University School of MedicineSt Louis, MissouriUnited States of America
- 2Department of Medicine, Washington University School of MedicineSt Louis, MissouriUnited States of America
| | - Paul J Schaeffer
- 1Center for Cardiovascular Research, Washington University School of MedicineSt Louis, MissouriUnited States of America
- 2Department of Medicine, Washington University School of MedicineSt Louis, MissouriUnited States of America
| | - Adam R Wende
- 1Center for Cardiovascular Research, Washington University School of MedicineSt Louis, MissouriUnited States of America
- 2Department of Medicine, Washington University School of MedicineSt Louis, MissouriUnited States of America
| | - Sihem Boudina
- 3Program in Human Molecular Biology and Genetics, Division of EndocrinologyMetabolism and Diabetes, University of Utah, Salt Lake City, UtahUnited States of America
| | - Michael Courtois
- 1Center for Cardiovascular Research, Washington University School of MedicineSt Louis, MissouriUnited States of America
- 2Department of Medicine, Washington University School of MedicineSt Louis, MissouriUnited States of America
| | - David F Wozniak
- 4Department of Psychiatry, Washington University School of MedicineSt Louis, MissouriUnited States of America
| | - Nandakumar Sambandam
- 1Center for Cardiovascular Research, Washington University School of MedicineSt Louis, MissouriUnited States of America
- 2Department of Medicine, Washington University School of MedicineSt Louis, MissouriUnited States of America
| | - Carlos Bernal-Mizrachi
- 1Center for Cardiovascular Research, Washington University School of MedicineSt Louis, MissouriUnited States of America
- 2Department of Medicine, Washington University School of MedicineSt Louis, MissouriUnited States of America
| | - Zhouji Chen
- 2Department of Medicine, Washington University School of MedicineSt Louis, MissouriUnited States of America
| | - John O. Holloszy
- 2Department of Medicine, Washington University School of MedicineSt Louis, MissouriUnited States of America
| | - Denis M Medeiros
- 5Department of Human Nutrition, Kansas State UniversityManhattan, KansasUnited States of America
| | - Robert E Schmidt
- 6Department of Pathology, Washington University School of MedicineSt Louis, MissouriUnited States of America
| | - Jeffrey E Saffitz
- 1Center for Cardiovascular Research, Washington University School of MedicineSt Louis, MissouriUnited States of America
- 6Department of Pathology, Washington University School of MedicineSt Louis, MissouriUnited States of America
| | - E. Dale Abel
- 3Program in Human Molecular Biology and Genetics, Division of EndocrinologyMetabolism and Diabetes, University of Utah, Salt Lake City, UtahUnited States of America
| | - Clay F Semenkovich
- 1Center for Cardiovascular Research, Washington University School of MedicineSt Louis, MissouriUnited States of America
- 2Department of Medicine, Washington University School of MedicineSt Louis, MissouriUnited States of America
| | - Daniel P Kelly
- 1Center for Cardiovascular Research, Washington University School of MedicineSt Louis, MissouriUnited States of America
- 2Department of Medicine, Washington University School of MedicineSt Louis, MissouriUnited States of America
- 7Department of Molecular Biology and Pharmacology, Washington University School of MedicineSt Louis, MissouriUnited States of America
- 8Department of Pediatrics, Washington University School of MedicineSt Louis, MissouriUnited States of America
| |
Collapse
|
46
|
Ueda M, Watanabe K, Sato K, Akiba Y, Toyomizu M. Possible role for avPGC-1alpha in the control of expression of fiber type, along with avUCP and avANT mRNAs in the skeletal muscles of cold-exposed chickens. FEBS Lett 2005; 579:11-7. [PMID: 15620684 DOI: 10.1016/j.febslet.2004.11.039] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2004] [Revised: 10/06/2004] [Accepted: 11/17/2004] [Indexed: 11/19/2022]
Abstract
Peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC-1alpha), a transcriptional coactivator, plays a role in mitochondrial biogenesis, muscle fiber specialization, and adaptive thermogenesis. Because of an absence of brown adipose tissue, the skeletal muscle tissue in chickens serves as an important source of thermogenesis to counter the cold. The present experiments were conducted (i) to clone the cDNA of PGC-1alpha homologs from chicken skeletal muscle and to examine alterations to PGC-1alpha mRNA expression in the skeletal muscles of cold-exposed chickens, (ii) to study the effect of cold-acclimation on the metabolic fiber phenotype of typically fast-glycolytic (type IIB) pectoralis muscles, and (iii) to compare avANT and avUCP mRNA expression in control and cold-exposed chickens. Results show that the cloned avPGC-1alpha cDNA encodes a 796 amino-acid protein (GenBank Accession No. AB170013) showing 84% identity with rodent PGC-1alpha cDNA. Exposure of chickens to a cold environment resulted in the prompt upregulation of avPGC-1alpha expression, which preceded increments in avUCP and avANT expression in skeletal muscle mitochondria. Consistent with the morphological appearance of muscles, an increase in the number of fast-oxidative-glycolytic (type IIA) fibers in the pectoralis muscle, which contains exclusively type IIB fibers in control chickens, was observed in cold-acclimated chickens. These findings provide novel information about possible regulatory pathways in avian skeletal muscle during thermogenesis.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Avian Proteins/genetics
- Avian Proteins/metabolism
- Base Sequence
- Chickens/genetics
- Chickens/metabolism
- Chickens/physiology
- Cloning, Molecular
- Cold Temperature
- DNA, Complementary/genetics
- Fatty Acids, Nonesterified/blood
- Fatty Acids, Nonesterified/metabolism
- Gene Expression Regulation
- Membrane Potentials/physiology
- Mitochondria/metabolism
- Mitochondrial ADP, ATP Translocases/genetics
- Mitochondrial ADP, ATP Translocases/metabolism
- Mitochondrial Proteins/genetics
- Mitochondrial Proteins/metabolism
- Mitochondrial Uncoupling Proteins
- Molecular Sequence Data
- Muscle Fibers, Fast-Twitch/chemistry
- Muscle Fibers, Fast-Twitch/cytology
- Muscle Fibers, Fast-Twitch/metabolism
- Muscle, Skeletal/cytology
- Muscle, Skeletal/metabolism
- RNA, Messenger/analysis
- RNA, Messenger/metabolism
- Thermogenesis/genetics
- Thermogenesis/physiology
- Transcription Factors/chemistry
- Transcription Factors/genetics
- Transcription Factors/physiology
Collapse
Affiliation(s)
- Masatoshi Ueda
- Science of Biological Function, Life Science, Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai 981-8555, Japan
| | | | | | | | | |
Collapse
|
47
|
Abstract
The heart has a tremendous capacity for ATP generation, allowing it to function as an efficient pump throughout the life of the organism. The adult myocardium uses either fatty acid or glucose oxidation as its main energy source. Under normal conditions, the adult heart derives most of its energy through oxidation of fatty acids in mitochondria. However, the myocardium has a remarkable ability to switch between carbohydrate and fat fuel sources so that ATP production is maintained at a constant rate in diverse physiological and dietary conditions. This fuel selection flexibility is important for normal cardiac function. Although cardiac energy conversion capacity and metabolic flux is modulated at many levels, an important mechanism of regulation occurs at the level of gene expression. The expression of genes involved in multiple energy transduction pathways is dynamically regulated in response to developmental, physiological, and pathophysiological cues. This review is focused on gene transcription pathways involved in short- and long-term regulation of myocardial energy metabolism. Much of our knowledge about cardiac metabolic regulation comes from studies focused on mitochondrial fatty acid oxidation. The genes involved in this key energy metabolic pathway are transcriptionally regulated by members of the nuclear receptor superfamily, specifically the fatty acid-activated peroxisome proliferator-activated receptors (PPARs) and the nuclear receptor coactivator, PPARgamma coactivator-1alpha (PGC-1alpha). The dynamic regulation of the cardiac PPAR/PGC-1 complex in accordance with physiological and pathophysiological states will be described.
Collapse
Affiliation(s)
- Janice M Huss
- Center for Cardiovascular Research and Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | |
Collapse
|
48
|
Valverde AM, Mur C, Brownlee M, Benito M. Susceptibility to apoptosis in insulin-like growth factor-I receptor-deficient brown adipocytes. Mol Biol Cell 2004; 15:5101-17. [PMID: 15356271 PMCID: PMC524782 DOI: 10.1091/mbc.e03-11-0853] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Fetal brown adipocytes are insulin-like growth factor-I (IGF-I) target cells. To assess the importance of the IGF-I receptor (IGF-IR) in brown adipocytes during fetal life, we have generated immortalized brown adipocyte cell lines from the IGF-IR(-/-) mice. Using this experimental model, we demonstrate that the lack of IGF-IR in fetal brown adipocytes increased the susceptibility to apoptosis induced by serum withdrawal. Culture of cells in the absence of serum and growth factors produced rapid DNA fragmentation (4 h) in IGF-IR(-/-) brown adipocytes, compared with the wild type (16 h). Consequently, cell viability was decreased more rapidly in fetal brown adipocytes in the absence of IGF-IR. Furthermore, caspase-3 activity was induced much earlier in cells lacking IGF-IR. At the molecular level, IGF-IR deficiency in fetal brown adipocytes altered the balance of the expression of several proapoptotic (Bcl-xS and Bim) and antiapoptotic (Bcl-2 and Bcl-xL) members of the Bcl-2 family. This imbalance was irreversible even though in IGF-IR-reconstituted cells. Likewise, cytosolic cytochrome c levels increased rapidly in IGF-IR-deficient cells compared with the wild type. A rapid entry of Foxo1 into the nucleus accompanied by a rapid exit from the cytosol and an earlier activation of caspase-8 were observed in brown adipocytes lacking IGF-IR upon serum deprivation. Activation of caspase-8 was inhibited by 50% in both cell types by neutralizing anti-Fas-ligand antibody. Adenoviral infection of wild-type brown adipocytes with constitutively active Foxol (ADA) increased the expression of antiapoptotic genes, decreased Bcl-xL and induced caspase-8 and -3 activities, with the final outcome of DNA fragmentation. Up-regulation of uncoupling protein-1 (UCP-1) expression in IGF-IR-deficient cells by transduction with PGC-1alpha or UCP-1 ameliorated caspase-3 activation, thereby retarding apoptosis. Finally, insulin treatment prevented apoptosis in both cell types. However, the survival effect of insulin on IGF-IR(-/-) brown adipocytes was elicited even in the absence of phosphatidylinositol 3-kinase/Akt signaling. Thus, our results demonstrate for the first time the unique role of IGF-IR in maintaining the balance of death and survival in fetal brown adipocytes.
Collapse
Affiliation(s)
- Angela M Valverde
- Departamento de Bioquímica y Biología Molecular II, Centro Mixto Consejo Superior de Investigaciones Cientificas, Universidad Complutense de Madrid, Facultad de Farmacia, Ciudad Universitaria, 28040-Madrid, Spain.
| | | | | | | |
Collapse
|
49
|
Schmitz G, Heimerl S, Langmann T. Zinc finger protein ZNF202 structure and function in transcriptional control of HDL metabolism. Curr Opin Lipidol 2004; 15:199-208. [PMID: 15017363 DOI: 10.1097/00041433-200404000-00013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW The zinc finger protein ZNF202 is a transcriptional repressor controlling promoter elements predominantly found in genes involved in lipid metabolism and energy homeostasis. Here we summarize the structure, regulation and modulation of ZNF202 function by protein interactions. RECENT FINDINGS We review recent data and discuss the importance of the steadily growing list of ZNF202 target genes, defining a central role for ZNF202 as a key transcriptional regulator in metabolic disorders. Furthermore, we provide an interlink between transcriptional repression by ZNF202 and enhancement of gene activation via nuclear receptor coactivation by SCAN domain protein 1. SUMMARY The novel findings suggest that ZNF202 together with other SCAN domain proteins orchestrates a complex transcriptional regulatory network, which justifies a further exploration of its potential as a therapeutic target in lipid disorders such as atherosclerosis and associated metabolic syndromes.
Collapse
Affiliation(s)
- Gerd Schmitz
- Institute of Clinical Chemistry and Laboratory Medicine, University of Regensburg, Regensburg, Germany.
| | | | | |
Collapse
|
50
|
Kim CH, Kim MS, Youn JY, Park HS, Song HS, Song KH, Park JY, Lee KU. Lipolysis in skeletal muscle is decreased in high-fat-fed rats. Metabolism 2003; 52:1586-92. [PMID: 14669160 DOI: 10.1016/s0026-0495(03)00328-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The intracellular triglyceride content in skeletal muscle is increased in insulin-resistant states such as obesity or high-fat feeding. It has been hypothesized that increased fatty acid oxidation resulting from increased lipolysis of intramyocellular triglycerides may be responsible for this insulin resistance. This study was undertaken to examine whether insulin resistance is associated with increased lipolysis in skeletal muscle in rats fed a high-fat diet. Sprague-Dawley rats were fed a high-fat diet for 5 weeks. Lipolysis in skeletal muscle and adipose tissue was determined by measuring the interstitial glycerol concentrations using a microdialysis method in basal and hyperinsulinemic-euglycemic clamp conditions. In the basal state, plasma free fatty acid (FFA) levels were higher in high-fat-fed rats than in low fat-fed rats (P <.05). In contrast, plasma glycerol levels (P <.001) and interstitial glycerol concentrations of skeletal muscle (P <.05) and adipose tissue (P <.01) were lower in high fat-fed rats than in low fat-fed rats. Plasma (P <.05) and interstitial glycerol concentrations (P <.05 for skeletal muscle, P <.01 for adipose tissue) during the hyperinsulinemic euglycemic clamps were also lower in the high-fat diet group. These results do not support the idea that increased fatty acid oxidation resulting from increased lipolysis of intramyocellular triglycerides is responsible for the insulin resistance in high fat-fed rats.
Collapse
Affiliation(s)
- Chul-Hee Kim
- Department of Internal Medicine, Soonchunhyang University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|