1
|
Sinokki A, Miinalainen A, Kivioja S, Kiander W, Vellonen KS, Bhattacharya M, Gynther M, Huttunen KM, Auriola S, Niemi M, Kidron H. In vitro characterization of SLCO2B1 genetic variants. J Pharm Sci 2025; 114:103772. [PMID: 40154787 DOI: 10.1016/j.xphs.2025.103772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 04/01/2025]
Abstract
OATP2B1, encoded by SLCO2B1, is a drug transporter expressed widely throughout the body in tissues such as the intestine and liver. Genetic variation of this transporter may lead to altered disposition of OATP2B1 substrate drugs, but especially the effects of rare variants are poorly understood. The aim of this study was to characterize the effects of naturally occurring missense single nucleotide variants of SLCO2B1 (c.601G>A, c.935G>A, c.953C>T, c.1175C>, c.1457C>T, c.1559G>C, c.1596C>A, and the c.601G>A + c.935G>A haplotype) on the in vitro functionality of OATP2B1. To characterize transport activity, cellular uptake of dibromofluorescein, 5-carboxyfluorescein, estrone sulfate, and rosuvastatin was compared in OATP2B1 reference- and variant-expressing HEK293 cells. The abundance of OATP2B1 variants in HEK293 crude membrane preparations was quantified with LC-MS/MS-based quantitative targeted absolute proteomics analysis. Variant c.1559G>C impaired OATP2B1-mediated uptake of all tested substrates almost completely, but protein abundance was not reduced to the same extent. Other studied variants had comparable or only modestly reduced protein abundance and transport function compared to reference OATP2B1. These results can be utilized to understand findings from clinical pharmacogenetic studies. More importantly, the results can aid in predicting the consequences of rare variants, such as the loss-of-function variant c.1559G>C, which can be difficult to detect in clinical studies.
Collapse
Affiliation(s)
- Alli Sinokki
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki FI-00014, Finland
| | - Annika Miinalainen
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki FI-00014, Finland
| | - Saara Kivioja
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki FI-00014, Finland
| | - Wilma Kiander
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki FI-00014, Finland; Department of Clinical Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Kati-Sisko Vellonen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Madhushree Bhattacharya
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki FI-00014, Finland
| | - Mikko Gynther
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Kristiina M Huttunen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Seppo Auriola
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Mikko Niemi
- Department of Clinical Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Heidi Kidron
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki FI-00014, Finland.
| |
Collapse
|
2
|
Rysz MA, Schäfer AM, Kinzi J, Paloumpis N, In-Albon K, Schmidlin S, Seibert I, Ricklin D, Meyer Zu Schwabedissen HE. Erlotinib-A substrate and inhibitor of OATP2B1: pharmacokinetics and CYP3A-mediated metabolism in rSlco2b1 -/- and SLCO2B1 +/+ rats. Drug Metab Dispos 2025; 53:100069. [PMID: 40239314 DOI: 10.1016/j.dmd.2025.100069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 03/14/2025] [Accepted: 03/14/2025] [Indexed: 04/18/2025] Open
Abstract
The tyrosine kinase inhibitor erlotinib is recognized as a substrate of cytochrome P450 enzymes and drug transporters. Indeed, erlotinib's extensive metabolism to the active metabolite OSI-420 (desmethyl erlotinib) mainly involves CYP3A enzymes. Additionally, erlotinib is assumed to interact with the organic anion transporting polypeptide (OATP)2B1. In this study, we aimed to investigate the role of human OATP2B1 in erlotinib's metabolism through in vitro and in vivo experiments. Using Madin-Darby canine kidney cells expressing human OATP2B1 for competitive counterflow experiments, we confirmed erlotinib as inhibitor and substrate of the transporter. Moreover, in vitro transport experiments revealed higher cellular accumulation of erlotinib at pH 5.5 than that at pH 7.4. Pharmacokinetic evaluation of orally administered erlotinib in male SLCO2B1+/+ and rSlco2b1-/- rats revealed that the human OATP2B1 does not significantly alter serum levels of erlotinib or its main metabolite OSI-420, although we observed a longer mean residence time of the metabolite in humanized rats. Although there was no difference in the OSI-420:erlotinib ratio over time in SLCO2B1+/+ and rSlco2b1-/- rats, we assessed the role of CYP3A1 and CYP3A2 in the metabolism of erlotinib. In vitro experiments showed a contribution of both enzymes to the formation of OSI-420. For CYP3A1, we found significantly higher expression in liver microsomes of male SLCO2B1+/+ rats, while the knockout genotype showed significantly higher levels of CYP3A2. However, these differences did not affect the systemic exposure of erlotinib or OSI-420 in the rats. Our findings provide further insight into the role of OATP2B1 in the disposition of orally administered erlotinib. SIGNIFICANCE STATEMENT: This study confirms that erlotinib is a substrate of the human organic anion transporting polypeptide 2B1 transporter in vitro. In vivo experiments in rat models, however, showed no significant impact of organic anion transporting polypeptide 2B1 on the systemic exposure of erlotinib or its metabolite, OSI-420. Despite variations in CYP3A enzyme expression in SLCO2B1+/+ rats, the OSI-420:erlotinib ratio remained unchanged. Although SLCO2B1+/+ rats exhibited a longer mean residence time for OSI-420, this did not significantly alter overall exposure in orally treated animals.
Collapse
Affiliation(s)
- Marta A Rysz
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Anima M Schäfer
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Jonny Kinzi
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Nikolaos Paloumpis
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Katja In-Albon
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Seraina Schmidlin
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Isabell Seibert
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Daniel Ricklin
- Molecular Pharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | | |
Collapse
|
3
|
Hagenbuch B, Stieger B, Locher KP. Organic anion transporting polypeptides: Pharmacology, toxicology, structure, and transport mechanisms. Pharmacol Rev 2025; 77:100023. [PMID: 40148036 DOI: 10.1016/j.pharmr.2024.100023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 11/12/2024] [Indexed: 03/29/2025] Open
Abstract
Organic anion transporting polypeptides (OATPs) are membrane proteins that mediate the uptake of a wide range of substrates across the plasma membrane of various cells and tissues. They are classified into 6 subfamilies, OATP1 through OATP6. Humans contain 12 OATPs encoded by 11 solute carrier of organic anion transporting polypeptide (SLCO) genes: OATP1A2, OATP1B1, OATP1B3, the splice variant OATP1B3-1B7, OATP1C1, OATP2A1, OATP2B1, OATP3A1, OATP4A1, OATP4C1, OATP5A1, and OATP6A1. Most of these proteins are expressed in epithelial cells, where they mediate the uptake of structurally unrelated organic anions, cations, and even neutral compounds into the cytoplasm. The best-characterized members are OATP1B1 and OATP1B3, which have an important role in drug metabolism by mediating drug uptake into the liver and are involved in drug-drug interactions. In this review, we aimed to (1) provide a historical perspective on the identification of OATPs and their nomenclature and discuss their phylogenic relationships and molecular characteristics; (2) review the current knowledge of the broad substrate specificity and their role in drug disposition and drug-drug interactions, with a special emphasis on human hepatic OATPs; (3) summarize the different experimental systems that are used to study the function of OATPs and discuss their advantages and disadvantages; (4) review the available experimental 3-dimensional structures and examine how they can help elucidate the transport mechanisms of OATPs; and (5) finally, summarize the current knowledge of the regulation of OATP expression, discuss clinically important single-nucleotide polymorphisms, and outline challenges of physiologically based pharmacokinetic modeling and in vitro to in vivo extrapolation. SIGNIFICANCE STATEMENT: Organic anion transporting polypeptides (OATPs) are a family of 12 uptake transporters in the solute carrier superfamily. Several members, particularly the liver-expressed OATP1B1 and OATP1B3, are important drug transporters. They mediate the uptake of several endobiotics and xenobiotics, including statins and numerous other drugs, into hepatocytes, and their inhibition by other drugs or reduced expression due to single-nucleotide polymorphisms can lead to adverse drug effects. Their recently solved 3-dimensional structures should help to elucidate their transport mechanisms and broad substrate specificities.
Collapse
Affiliation(s)
- Bruno Hagenbuch
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas.
| | - Bruno Stieger
- Institute of Molecular Biology and Biophysics, ETH Zürich, Zürich, Switzerland
| | - Kaspar P Locher
- Institute of Molecular Biology and Biophysics, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
4
|
Koishikawa T, Kazuki K, Ohnishi R, Okita K, Mizuno T, Abe S, Nanchi I, Masago Y, Yamazaki K, Ohzeki JI, Kusuhara H, Kazuki Y. Development of an OATP1-humanized transchromosomic mouse model for prediction of hepatic drug uptake in humans. Drug Metab Dispos 2025; 53:100028. [PMID: 40023577 DOI: 10.1016/j.dmd.2024.100028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 11/13/2024] [Indexed: 03/04/2025] Open
Abstract
Transchromosomic technology using mouse artificial chromosomes (MACs) offers a promising approach for transferring gene clusters into host organisms. This study focused on the multispecific organic anion-transporting polypeptides (OATPs) in the liver, which exhibit significant species differences between mice (Oatp1a1/Slco1a1, Oatp1a4/Slco1a4, Oatp1b2/Slco1b2) and humans (OATP1B1/SLCO1B1 and OATP1B3/SLCO1B3). We generated an OATP1-humanized transchromosomic mouse model using a MAC vector (hOATP1-MAC mice) by transferring the human OATP1 gene cluster (SLCO1C1-SLCO1B3-SLCO1B7-SLCO1B1-SLCO1A2, 700 kbp) via an MAC into Slco1a/1b cluster knockout (KO) mice (Oatp1-KO). The human OATP1 genes were expressed in a tissue-specific manner. Plasma concentrations of the OATP1B biomarkers, coproporphyrin I and III, which were 7.2- and 23.3-fold higher in Oatp1-KO mice than in wild-type mice, were decreased by 68% and 96% in hOATP1-MAC mice, respectively. A pharmacokinetics study using pitavastatin revealed greater total body clearance (168 mL/min/kg) in hOATP1-MAC mice than in Oatp1-KO mice (100 mL/min/kg) but lower clearance than in wild-type mice (484 mL/min/kg), with bioavailability ranging from 0.66 to 0.77. In addition, drug-drug interactions were investigated using rifampicin, an OATP1B inhibitor. Rifampicin (60 mg/kg orally) increased the area under the plasma concentration-time curves of orally administered pitavastatin and grazoprevir in hOATP1-MAC mice, but not of asunaprevir. These findings demonstrated the functional expression of OATP1B1 and OATP1B3 in the mouse liver and their significant role in the systemic elimination of substrates. This is the first study to introduce multiple solute carrier drug transporter genes using artificial chromosome technology, highlighting its potential to overcome species differences in drug transport. SIGNIFICANCE STATEMENT: Transchromosomic technology holds promise for addressing species differences by introducing multiple solute carrier drug transporter genes such as OATP1. Mice OATP1-humanized using a mouse artificial chromosome vector demonstrated enhanced clearance of endogenous OATP1B biomarkers and probe drugs.
Collapse
Affiliation(s)
- Tomoki Koishikawa
- Laboratory of Molecular Pharmacokinetics, Department of Pharmacy, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Bunkyo, Tokyo, Japan
| | - Kanako Kazuki
- Chromosome Engineering Research Center (CERC), Tottori University, Yonago, Tottori, Japan
| | - Rina Ohnishi
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Yonago, Tottori, Japan
| | - Koki Okita
- Laboratory of Molecular Pharmacokinetics, Department of Pharmacy, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Bunkyo, Tokyo, Japan
| | - Tadahaya Mizuno
- Laboratory of Molecular Pharmacokinetics, Department of Pharmacy, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Bunkyo, Tokyo, Japan
| | - Satoshi Abe
- Chromosome Engineering Research Center (CERC), Tottori University, Yonago, Tottori, Japan
| | - Isamu Nanchi
- Laboratory for Innovative Therapy Research, Shionogi & Co, Ltd, Osaka, Japan
| | - Yusaku Masago
- Laboratory for Innovative Therapy Research, Shionogi & Co, Ltd, Osaka, Japan
| | - Kyotaro Yamazaki
- Chromosome Engineering Research Group, The Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi, Japan
| | - Jun-Ichiro Ohzeki
- Chromosome Engineering Research Group, The Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi, Japan
| | - Hiroyuki Kusuhara
- Laboratory of Molecular Pharmacokinetics, Department of Pharmacy, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Bunkyo, Tokyo, Japan.
| | - Yasuhiro Kazuki
- Chromosome Engineering Research Center (CERC), Tottori University, Yonago, Tottori, Japan; Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Yonago, Tottori, Japan; Chromosome Engineering Research Group, The Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi, Japan; Department of Chromosome Biomedical Engineering, Integrated Medical Sciences, Graduate School of Medical Sciences, Tottori University, Yonago, Tottori, Japan.
| |
Collapse
|
5
|
Downie CG, Highland HM, Alotaibi M, Welch BM, Howard AG, Cheng S, Miller N, Jain M, Kaplan RC, Lilly AG, Long T, Sofer T, Thyagarajan B, Yu B, North KE, Avery CL. Genome-wide association study reveals shared and distinct genetic architecture of fatty acids and oxylipins in the Hispanic Community Health Study/Study of Latinos. HGG ADVANCES 2025; 6:100390. [PMID: 39644095 PMCID: PMC11751521 DOI: 10.1016/j.xhgg.2024.100390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 12/02/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024] Open
Abstract
Bioactive fatty acid-derived oxylipin molecules play key roles mediating inflammation and oxidative stress. Circulating levels of fatty acids and oxylipins are influenced by environmental and genetic factors; characterizing the genetic architecture of bioactive lipids could yield new insights into underlying biology. We performed a genome-wide association study (GWAS) of 81 fatty acids and oxylipins in 11,584 Hispanic Community Health Study/Study of Latinos (HCHS/SOL) participants with genetic and lipidomic data measured at study baseline (58.6% female, mean age = 46.1 years (standard deviation 13.8)). Additionally, given the effects of central obesity on inflammation, we examined interactions with waist circumference using two-degree-of-freedom joint tests. Thirty-three of the 81 oxylipins and fatty acids were significantly heritable (heritability range: 0-32.7%). Forty (49.4%) oxylipins and fatty acids had at least one genome-wide significant (p < 6.94E-11) variant resulting in 19 independent genetic loci. Six loci (lead variant minor allele frequency [MAF] range: 0.08-0.50), including desaturase-encoding FADS and OATP1B1 transporter protein-encoding SLCO1B1, exhibited associations with two or more fatty acids and oxylipins. At several of these loci, there was evidence of colocalization of the top variant across fatty acids and oxylipins. The remaining loci were only associated with one oxylipin or fatty acid and included several CYP loci. We also identified an additional rare variant (MAF = 0.002) near CARS2 in two-degree-of-freedom tests. Our analyses revealed shared and distinct genetic architecture underlying fatty acids and oxylipins, providing insights into genetic factors and motivating work to characterize these compounds and elucidate their roles in disease.
Collapse
Affiliation(s)
- Carolina G Downie
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Heather M Highland
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Mona Alotaibi
- Division of Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego, San Diego, CA, USA
| | - Barrett M Welch
- School of Public Health, University of Nevada, Reno, Reno, NV, USA
| | - Annie Green Howard
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Susan Cheng
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | - Mohit Jain
- Sapient Bioanalytics, San Diego, CA, USA; Departments of Medicine and Pharmacology, University of California, San Diego, San Diego, CA, USA
| | - Robert C Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA; Public Health Sciences Division, Fred Hutchison Cancer Center, Seattle, WA, USA
| | - Adam G Lilly
- Department of Sociology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Tao Long
- Sapient Bioanalytics, San Diego, CA, USA
| | - Tamar Sofer
- CardioVascular Institute (CVI), Beth Israel Deaconess Medical Center, Boston, MA, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Bharat Thyagarajan
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical Center, Minneapolis, MN, USA
| | - Bing Yu
- Department of Epidemiology, Human Genetics, and Environmental Sciences, The University of Texas Health Science Center at Houston, School of Public Health, Houston, TX, USA
| | - Kari E North
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Christy L Avery
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
6
|
Surrer DB, Schüsser S, König J, Fromm MF, Gessner A. Transport of aromatic amino acids l-tryptophan, l-tyrosine, and l-phenylalanine by the organic anion transporting polypeptide (OATP) 3A1. FEBS J 2024; 291:4732-4743. [PMID: 39206635 DOI: 10.1111/febs.17255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/11/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
Amino acids are important for cellular metabolism. Their uptake across the plasma membrane is mediated by transport proteins. Despite the fact that the organic anion transporting polypeptide 4C1 (OATP4C1, Uniprot: Q6ZQN7) mediates transport of l-arginine and l-arginine derivatives, other members of the OATP family have not been characterized as amino acid transporters. The OATP family member OATP3A1 (gene symbol SLCO3A1, Uniprot: Q9UIG8) is ubiquitously expressed in human cells and highly expressed in many cancer tissues and cell lines. However, only a few substrates are known for OATP3A1. Accordingly, knowledge about its biological relevance is restricted. Our aim was to identify new substrates of OATP3A1 to gain insights into its (patho-)physiological function. In an LC-MS-based untargeted metabolomics assay using untreated OATP3A1-overexpressing HEK293 cells and control cells, we identified several amino acids as potential substrates of OATP3A1. Subsequent uptake experiments using exogenously added substrates revealed OATP3A1-mediated transport of l-tryptophan, l-tyrosine, and l-phenylalanine with 194.8 ± 28.7% (P < 0.05), 226.2 ± 18.7% (P < 0.001), and 235.2 ± 13.5% (P < 0.001), respectively, in OATP3A1-overexpressing cells compared to control cells. Furthermore, kinetic transport parameters (Km values) were determined (Trp = 61.5 ± 14.2 μm, Tyr = 220.8 ± 54.5 μm, Phe = 234.7 ± 20.6 μm). In summary, we identified the amino acids l-tryptophan, l-tyrosine, and l-phenylalanine as new substrates of OATP3A1. These findings could be used for a better understanding of (patho-)physiological processes involving increased demand of amino acids, where OATP3A1 should be considered as an important uptake transporter of l-tryptophan, l-tyrosine, and l-phenylalanine.
Collapse
Affiliation(s)
- Daniela B Surrer
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Sarah Schüsser
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Jörg König
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
- FAU NeW - Research Center New Bioactive Compounds, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Martin F Fromm
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
- FAU NeW - Research Center New Bioactive Compounds, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Arne Gessner
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
- FAU NeW - Research Center New Bioactive Compounds, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| |
Collapse
|
7
|
Marin JJG, Cives-Losada C, Macias RIR, Romero MR, Marijuan RP, Hortelano-Hernandez N, Delgado-Calvo K, Villar C, Gonzalez-Santiago JM, Monte MJ, Asensio M. Impact of liver diseases and pharmacological interactions on the transportome involved in hepatic drug disposition. Biochem Pharmacol 2024; 228:116166. [PMID: 38527556 DOI: 10.1016/j.bcp.2024.116166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/14/2024] [Accepted: 03/22/2024] [Indexed: 03/27/2024]
Abstract
The liver plays a pivotal role in drug disposition owing to the expression of transporters accounting for the uptake at the sinusoidal membrane and the efflux across the basolateral and canalicular membranes of hepatocytes of many different compounds. Moreover, intracellular mechanisms of phases I and II biotransformation generate, in general, inactive compounds that are more polar and easier to eliminate into bile or refluxed back toward the blood for their elimination by the kidneys, which becomes crucial when the biliary route is hampered. The set of transporters expressed at a given time, i.e., the so-called transportome, is encoded by genes belonging to two gene superfamilies named Solute Carriers (SLC) and ATP-Binding Cassette (ABC), which account mainly, but not exclusively, for the uptake and efflux of endogenous substances and xenobiotics, which include many different drugs. Besides the existence of genetic variants, which determines a marked interindividual heterogeneity regarding liver drug disposition among patients, prevalent diseases, such as cirrhosis, non-alcoholic steatohepatitis, primary sclerosing cholangitis, primary biliary cirrhosis, viral hepatitis, hepatocellular carcinoma, cholangiocarcinoma, and several cholestatic liver diseases, can alter the transportome and hence affect the pharmacokinetics of drugs used to treat these patients. Moreover, hepatic drug transporters are involved in many drug-drug interactions (DDI) that challenge the safety of using a combination of agents handled by these proteins. Updated information on these questions has been organized in this article by superfamilies and families of members of the transportome involved in hepatic drug disposition.
Collapse
Affiliation(s)
- Jose J G Marin
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain.
| | - Candela Cives-Losada
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Rocio I R Macias
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Marta R Romero
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Rebeca P Marijuan
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain
| | | | - Kevin Delgado-Calvo
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain
| | - Carmen Villar
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain; Department of Gastroenterology and Hepatology, University Hospital of Salamanca, Salamanca, Spain
| | - Jesus M Gonzalez-Santiago
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain; Department of Gastroenterology and Hepatology, University Hospital of Salamanca, Salamanca, Spain
| | - Maria J Monte
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Maitane Asensio
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| |
Collapse
|
8
|
Parida KK, Lahiri M, Ghosh M, Dalal A, Kalia NP. P-glycoprotein inhibitors as an adjunct therapy for TB. Drug Discov Today 2024; 29:104108. [PMID: 39032811 DOI: 10.1016/j.drudis.2024.104108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/08/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
The primary challenge in TB treatment is the emergence of multidrug-resistant TB (MDR-TB). One of the major factors responsible for MDR is the upregulation of efflux pumps. Permeation-glycoprotein (P-gp), an efflux pump, hinders the bioavailability of the administered drugs inside the infected cells. Simultaneously, angiogenesis, the formation of new blood vessels, contributes to drug delivery complexities. TB infection triggers a cascade of events that upregulates the expression of angiogenic factors and P-gp. The combined action of P-gp and angiogenesis foster the emergence of MDR-TB. Understanding these mechanisms is pivotal for developing targeted interventions to overcome MDR in TB. P-gp inhibitors, such as verapamil, and anti-angiogenic drugs, including bevacizumab, have shown improvement in TB drug delivery to granuloma. In this review, we discuss the potential of P-gp inhibitors as an adjunct therapy to shorten TB treatment.
Collapse
Affiliation(s)
- Kishan Kumar Parida
- Department of Biological Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Monali Lahiri
- Department of Biological Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Mainak Ghosh
- Department of Biological Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Aman Dalal
- Department of Biological Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Nitin Pal Kalia
- Department of Biological Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India.
| |
Collapse
|
9
|
Downie CG, Highland HM, Alotaibi M, Welch BM, Howard AG, Cheng S, Miller N, Jain M, Kaplan RC, Lilly AG, Long T, Sofer T, Thyagarajan B, Yu B, North KE, Avery CL. Genome-wide association study reveals shared and distinct genetic architecture underlying fatty acid and bioactive oxylipin metabolites in the Hispanic Community Health Study/Study of Latinos (HCHS/SOL). MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.21.24307719. [PMID: 38826448 PMCID: PMC11142272 DOI: 10.1101/2024.05.21.24307719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Bioactive fatty acid-derived oxylipin molecules play key roles in mediating inflammation and oxidative stress, which underlie many chronic diseases. Circulating levels of fatty acids and oxylipins are influenced by both environmental and genetic factors; characterizing the genetic architecture of bioactive lipids could yield new insights into underlying biological pathways. Thus, we performed a genome wide association study (GWAS) of n=81 fatty acids and oxylipins in n=11,584 Hispanic Community Health Study/Study of Latinos (HCHS/SOL) participants with genetic and lipidomic data measured at study baseline (58.6% female, mean age = 46.1 years, standard deviation = 13.8 years). Additionally, given the effects of central obesity on inflammation, we examined interactions with waist circumference using two-degree-of-freedom joint tests. Heritability estimates ranged from 0% to 47.9%, and 48 of the 81oxylipins and fatty acids were significantly heritable. Moreover, 40 (49.4%) of the 81 oxylipins and fatty acids had at least one genome-wide significant (p< 6.94E-11) variant resulting in 19 independent genetic loci involved in fatty acid and oxylipin synthesis, as well as downstream pathways. Four loci (lead variant minor allele frequency [MAF] range: 0.08-0.50), including the desaturase-encoding FADS and the OATP1B1 transporter protein-encoding SLCO1B1, exhibited associations with four or more fatty acids and oxylipins. The majority of the 15 remaining loci (87.5%) (lead variant MAF range = 0.03-0.45, mean = 0.23) were only associated with one oxylipin or fatty acid, demonstrating evidence of distinct genetic effects. Finally, while most loci identified in two-degree-of-freedom tests were previously identified in our main effects analyses, we also identified an additional rare variant (MAF = 0.002) near CARS2, a locus previously implicated in inflammation. Our analyses revealed shared and distinct genetic architecture underlying fatty acids and oxylipins, providing insights into genetic factors and motivating future multi-omics work to characterize these compounds and elucidate their roles in disease pathways.
Collapse
Affiliation(s)
- Carolina G Downie
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Heather M Highland
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Mona Alotaibi
- Division of Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego, San Diego, CA
| | - Barrett M Welch
- School of Public Health, University of Nevada, Reno, Reno, NV
| | - Annie Green Howard
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Susan Cheng
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | | | - Mohit Jain
- Sapient Bioanalytics, San Diego, CA
- Departments of Medicine and Pharmacology, University of California, San Diego, San Diego, CA
| | - Robert C Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY; Public Health Sciences Division, Fred Hutchison Cancer Center, Seattle, WA
| | - Adam G Lilly
- Department of Sociology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Tao Long
- Sapient Bioanalytics, San Diego, CA
| | - Tamar Sofer
- CardioVascular Institute (CVI), Beth Israel Deaconess Medical Center, Boston, MA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Bharat Thyagarajan
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical Center, Minneapolis, MN
| | - Bing Yu
- Department of Epidemiology, Human Genetics, and Environmental Sciences, The University of Texas Health Science Center at Houston School of Public Health, Houston, TX
| | - Kari E North
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Christy L Avery
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
10
|
Kataoka H, Akiyoshi T, Uchida Y, Imaoka A, Terasaki T, Ohtani H. The Effects of N-Glycosylation on the Expression and Transport Activity of OATP1A2 and OATP2B1. J Pharm Sci 2024; 113:1376-1384. [PMID: 38432624 DOI: 10.1016/j.xphs.2024.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 03/05/2024]
Abstract
Organic anion transporting polypeptide (OATP)1A2 and OATP2B1 have potential N-glycosylation sites, but their influence remains unclear. This study aimed to identify the N-glycosylation sites of OATP1A2/2B1 and investigate their impact on the expression and function of OATP1A2/2B1. Human embryonic kidney cells expressing OATP1A2 or OATP2B1 (HEK293-OATP1A2/2B1) were exposed to tunicamycin, an N-glycosylation inhibitor, and a plasma membrane fraction (PMF) Western blot assay and an estrone 3-sulfate (E3S) uptake study were conducted. HEK293-OATP1A2/OATP2B1 cell lines with mutation(s) at potential N-glycosylation sites were established, and the Western blotting and uptake study were repeated. Tunicamycin reduced the PMF levels and E3S uptake of OATP1A2/OATP2B1. The Asn124Gln, Asn135Gln, and Asn492Gln mutations in OATP1A2 and Asn176Gln and Asn538Gln mutations in OATP2B1 reduced the molecular weights of the OATP molecules and their PMF levels. The PMF levels of OATP1A2 Asn124/135Gln, OATP1A2 Asn124/135/492Gln, and OATP2B1 Asn176/538Gln were further reduced. The maximum transport velocities of OATP1A2 Asn124Gln, OATP1A2 Asn135Gln, and OATP2B1 Asn176/538Gln were markedly reduced to 10 %, 4 %, and 10 % of the wild-type level, respectively. In conclusion, the N-glycans at Asn124 and Asn135 of OATP1A2 and those at Asn176 and Asn538 of OATP2B1 are essential for the plasma membrane expression of these molecules and also affect their transport function.
Collapse
Affiliation(s)
- Hiroki Kataoka
- Division of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30, Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Takeshi Akiyoshi
- Division of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30, Shibakoen, Minato-ku, Tokyo 105-8512, Japan; Department of Clinical Pharmacy, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yasuo Uchida
- Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima city 734-0037, Japan
| | - Ayuko Imaoka
- Division of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30, Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Tetsuya Terasaki
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1 C, 70211 Kuopio, Finland
| | - Hisakazu Ohtani
- Division of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30, Shibakoen, Minato-ku, Tokyo 105-8512, Japan; Department of Clinical Pharmacy, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; Department of Pharmacy, Keio University Hospital, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| |
Collapse
|
11
|
Fukazawa N, Nishimura T, Orii K, Noguchi S, Tomi M. Conversion of Olmesartan to Olmesartan Medoxomil, A Prodrug that Improves Intestinal Absorption, Confers Substrate Recognition by OATP2B1. Pharm Res 2024; 41:849-861. [PMID: 38485855 DOI: 10.1007/s11095-024-03687-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/04/2024] [Indexed: 05/25/2024]
Abstract
PURPOSE Olmesartan medoxomil (olmesartan-MX), an ester-type prodrug of the angiotensin II receptor blocker (ARB) olmesartan, is predominantly anionic at intestinal pH. Human organic anion transporting polypeptide 2B1 (OATP2B1) is expressed in the small intestine and is involved in the absorption of various acidic drugs. This study was designed to test the hypothesis that OATP2B1-mediated uptake contributes to the enhanced intestinal absorption of olmesartan-MX, even though olmesartan itself is not a substrate of OATP2B1. METHODS Tetracycline-inducible human OATP2B1- and rat Oatp2b1-overexpressing HEK 293 cell lines (hOATP2B1/T-REx-293 and rOatp2b1/T-REx-293, respectively) were established to characterize OATP2B1-mediated uptake. Rat jejunal permeability was measured using Ussing chambers. ARBs were quantified by liquid chromatography-tandem mass spectrometry. RESULTS Significant olmesartan-MX uptake was observed in hOATP2B1/T-REx-293 and rOatp2b1/T-REx-293 cells, whereas olmesartan uptake was undetectable or much lower than olmesartan-MX uptake, respectively. Furthermore, olmesartan-MX exhibited several-fold higher uptake in Caco-2 cells and greater permeability in rat jejunum compared to olmesartan. Olmesartan-MX uptake in hOATP2B1/T-REx-293 cells and in Caco-2 cells was significantly decreased by OATP2B1 substrates/inhibitors such as 1 mM estrone-3-sulfate, 100 µM rifamycin SV, and 100 µM fluvastatin. Rat Oatp2b1-mediated uptake and rat jejunal permeability of olmesartan-MX were significantly decreased by 50 µM naringin, an OATP2B1 inhibitor. Oral administration of olmesartan-MX with 50 µM naringin to rats significantly reduced the area under the plasma concentration-time curve of olmesartan to 76.9%. CONCLUSION Olmesartan-MX is a substrate for OATP2B1, and the naringin-sensitive transport system contributes to the improved intestinal absorption of olmesartan-MX compared with its parent drug, olmesartan.
Collapse
Affiliation(s)
- Naomi Fukazawa
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku 105-8512, Tokyo, Japan
| | - Tomohiro Nishimura
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku 105-8512, Tokyo, Japan
| | - Keisuke Orii
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku 105-8512, Tokyo, Japan
| | - Saki Noguchi
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku 105-8512, Tokyo, Japan
| | - Masatoshi Tomi
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku 105-8512, Tokyo, Japan.
| |
Collapse
|
12
|
Rysz M, Schäfer AM, Paloumpis N, Kinzi J, Brecht K, Seibert I, Schmidlin S, In-Albon K, Ricklin D, Meyer Zu Schwabedissen HE. Humanization of SLCO2B1 in Rats Increases rCYP3A1 Protein Expression but Not the Metabolism of Erlotinib to OSI-420. J Pharmacol Exp Ther 2024; 389:87-95. [PMID: 38448247 DOI: 10.1124/jpet.123.001884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/19/2024] [Accepted: 02/06/2024] [Indexed: 03/08/2024] Open
Abstract
The organic anion transporting polypeptide (OATP)2B1 [(gene: solute carrier organic anion transporter family member 2B1 (SLCO2B1)] is an uptake transporter that facilitates cellular accumulation of its substrates. Comparison of SLCO2B1+/+ knockin and rSlco2b1-/- knockout rats showed a higher expression of rCYP3A1 in the humanized animals. We hypothesize that humanization of OATP2B1 not only affects cellular uptake but also metabolic activity. To further investigate this hypothesis, we used SLCO2B1+/+ and rSlco2b1-/ - rats and the OATP2B1 and rCYP3A1 substrate erlotinib, which is metabolized to OSI-420, for in vivo and ex vivo experiments. One hour after administration of a single dose of erlotinib, the knockin rats exhibited significantly lower erlotinib serum levels, but no change was observed in metabolite concentration or the OSI-420/erlotinib ratio. Similar results were obtained for liver tissue levels comparing SLCO2B1+/+ and rSlco2b1-/- rats. Liver microsomes isolated from the erlotinib-treated animals were characterized ex vivo for rCYP3A activity using testosterone, showing higher activity in the knockin rats. The contrary was observed when microsomes isolated from treatment-naïve animals were assessed for the metabolism of erlotinib to OSI-420. The latter is in contrast to the higher rCYP3A1 protein amount observed by western blot analysis in rat liver lysates and liver microsomes isolated from untreated rats. In summary, rats humanized for OATP2B1 showed higher expression of rCYP3A1 in liver and reduced serum levels of erlotinib but no change in the OSI-420/erlotinib ratio despite a lower OSI-420 formation in isolated liver microsomes. Studies with CYP3A-specific substrates are warranted to evaluate whether humanization affects not only rCYP3A1 expression but also metabolic activity in vivo. SIGNIFICANCE STATEMENT: Humanization of rats for the organic anion transporting polypeptide (OATP)2B1 increases rCYP3A1 expression and activity in liver. Using the OATP2B1/CYP3A-substrate erlotinib to assess the resulting phenotype, we observed lower erlotinib serum and liver concentrations but no impact on the liver/serum ratio. Moreover, there was no difference in the OSI-420/erlotinib ratio comparing humanized and knockout rats, suggesting that OSI-420 is not applicable to monitor differences in rCYP3A1 expression as supported by data from ex vivo experiments with rat liver microsomes.
Collapse
Affiliation(s)
- Marta Rysz
- Biopharmacy, Department of Pharmaceutical Sciences (M.R., A.M.S., N.P., J.K., K.B., I.S., S.S., K.I.-A., H.E.M.Z.S.) and Molecular Pharmacy, Department of Pharmaceutical Sciences (D.R.), University of Basel, Basel, Switzerland
| | - Anima M Schäfer
- Biopharmacy, Department of Pharmaceutical Sciences (M.R., A.M.S., N.P., J.K., K.B., I.S., S.S., K.I.-A., H.E.M.Z.S.) and Molecular Pharmacy, Department of Pharmaceutical Sciences (D.R.), University of Basel, Basel, Switzerland
| | - Nikolaos Paloumpis
- Biopharmacy, Department of Pharmaceutical Sciences (M.R., A.M.S., N.P., J.K., K.B., I.S., S.S., K.I.-A., H.E.M.Z.S.) and Molecular Pharmacy, Department of Pharmaceutical Sciences (D.R.), University of Basel, Basel, Switzerland
| | - Jonny Kinzi
- Biopharmacy, Department of Pharmaceutical Sciences (M.R., A.M.S., N.P., J.K., K.B., I.S., S.S., K.I.-A., H.E.M.Z.S.) and Molecular Pharmacy, Department of Pharmaceutical Sciences (D.R.), University of Basel, Basel, Switzerland
| | - Karin Brecht
- Biopharmacy, Department of Pharmaceutical Sciences (M.R., A.M.S., N.P., J.K., K.B., I.S., S.S., K.I.-A., H.E.M.Z.S.) and Molecular Pharmacy, Department of Pharmaceutical Sciences (D.R.), University of Basel, Basel, Switzerland
| | - Isabell Seibert
- Biopharmacy, Department of Pharmaceutical Sciences (M.R., A.M.S., N.P., J.K., K.B., I.S., S.S., K.I.-A., H.E.M.Z.S.) and Molecular Pharmacy, Department of Pharmaceutical Sciences (D.R.), University of Basel, Basel, Switzerland
| | - Seraina Schmidlin
- Biopharmacy, Department of Pharmaceutical Sciences (M.R., A.M.S., N.P., J.K., K.B., I.S., S.S., K.I.-A., H.E.M.Z.S.) and Molecular Pharmacy, Department of Pharmaceutical Sciences (D.R.), University of Basel, Basel, Switzerland
| | - Katja In-Albon
- Biopharmacy, Department of Pharmaceutical Sciences (M.R., A.M.S., N.P., J.K., K.B., I.S., S.S., K.I.-A., H.E.M.Z.S.) and Molecular Pharmacy, Department of Pharmaceutical Sciences (D.R.), University of Basel, Basel, Switzerland
| | - Daniel Ricklin
- Biopharmacy, Department of Pharmaceutical Sciences (M.R., A.M.S., N.P., J.K., K.B., I.S., S.S., K.I.-A., H.E.M.Z.S.) and Molecular Pharmacy, Department of Pharmaceutical Sciences (D.R.), University of Basel, Basel, Switzerland
| | - Henriette E Meyer Zu Schwabedissen
- Biopharmacy, Department of Pharmaceutical Sciences (M.R., A.M.S., N.P., J.K., K.B., I.S., S.S., K.I.-A., H.E.M.Z.S.) and Molecular Pharmacy, Department of Pharmaceutical Sciences (D.R.), University of Basel, Basel, Switzerland
| |
Collapse
|
13
|
Shan Z, Yang X, Liu H, Yuan Y, Xiao Y, Nan J, Zhang W, Song W, Wang J, Wei F, Zhang Y. Cryo-EM structures of human organic anion transporting polypeptide OATP1B1. Cell Res 2023; 33:940-951. [PMID: 37674011 PMCID: PMC10709409 DOI: 10.1038/s41422-023-00870-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 08/17/2023] [Indexed: 09/08/2023] Open
Abstract
Members of the solute carrier organic anion transporting polypeptide (OATPs) family function as transporters for a large variety of amphipathic organic anions including endogenous metabolites and clinical drugs, such as bile salts, steroids, thyroid hormones, statins, antibiotics, antivirals, and anticancer drugs. OATP1B1 plays a vital role in transporting such substances into the liver for hepatic clearance. FDA and EMA recommend conducting in vitro testing of drug-drug interactions (DDIs) involving OATP1B1. However, the structure and working mechanism of OATPs still remains elusive. In this study, we determined cryo-EM structures of human OATP1B1 bound with representative endogenous metabolites (bilirubin and estrone-3-sulfate), a clinical drug (simeprevir), and a fluorescent indicator (2',7'-dichlorofluorescein), in both outward- and inward-open states. These structures reveal major and minor substrate binding pockets and conformational changes during transport. In combination with mutagenesis studies and molecular dynamics simulations, our work comprehensively elucidates the transport mechanism of OATP1B1 and provides the structural basis for DDI predictions involving OATP1B1, which will greatly promote our understanding of OATPs.
Collapse
Affiliation(s)
- Ziyang Shan
- Shanghai Fifth People's Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xuemei Yang
- Shanghai Fifth People's Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Huihui Liu
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Yafei Yuan
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yuan Xiao
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jing Nan
- Shanghai Fifth People's Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Wei Zhang
- Shanghai Fifth People's Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Wenqi Song
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jufang Wang
- Shanghai Fifth People's Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Feiwen Wei
- Shanghai Fifth People's Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yanqing Zhang
- Shanghai Fifth People's Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
14
|
Li W, Zhou H, Thygesen JH, Heydtmann M, Smith I, Degenhardt F, Nöthen M, Morgan MY, Kranzler HR, Gelernter J, Bass N, McQuillin A. Genome-wide association study of antisocial personality disorder diagnostic criteria provides evidence for shared risk factors across disorders. Psychiatr Genet 2023; 33:233-242. [PMID: 37756443 PMCID: PMC10635348 DOI: 10.1097/ypg.0000000000000352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 06/19/2023] [Indexed: 09/29/2023]
Abstract
INTRODUCTION While progress has been made in determining the genetic basis of antisocial behaviour, little progress has been made for antisocial personality disorder (ASPD), a condition that often co-occurs with other psychiatric conditions including substance use disorders, attention deficit hyperactivity disorder (ADHD), and anxiety disorders. This study aims to improve the understanding of the genetic risk for ASPD and its relationship with other disorders and traits. METHODS We conducted a genome-wide association study (GWAS) of the number of ASPD diagnostic criteria data from 3217 alcohol-dependent participants recruited in the UK (UCL, N = 644) and the USA (Yale-Penn, N = 2573). RESULTS We identified rs9806493, a chromosome 15 variant, that showed a genome-wide significant association ( Z -score = -5.501, P = 3.77 × 10 -8 ) with ASPD criteria. rs9806493 is an eQTL for SLCO3A1 (Solute Carrier Organic Anion Transporter Family Member 3A1), a ubiquitously expressed gene with strong expression in brain regions that include the anterior cingulate and frontal cortices. Polygenic risk score analysis identified positive correlations between ASPD and smoking, ADHD, depression traits, and posttraumatic stress disorder. Negative correlations were observed between ASPD PRS and alcohol intake frequency, reproductive traits, and level of educational attainment. CONCLUSION This study provides evidence for an association between ASPD risk and SLCO3A1 and provides insight into the genetic architecture and pleiotropic associations of ASPD.
Collapse
Affiliation(s)
- Wenqianglong Li
- Molecular Psychiatry Laboratory, Division of Psychiatry, University College London, London, UK
| | - Hang Zhou
- Department of Psychiatry, Yale School of Medicine, New Haven
- Department of Psychiatry, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut, USA
| | - Johan H. Thygesen
- Molecular Psychiatry Laboratory, Division of Psychiatry, University College London, London, UK
- Institute of Health Informatics, University College London, London, UK
| | - Mathis Heydtmann
- Royal Alexandria Hospital, NHS Greater Glasgow and Clyde, Paisley, UK
- Department of Gastroenterology, Dumfries & Galloway Royal Infirmary, Cargenbridge, Dumfries, Scotland
| | - Iain Smith
- Substance misuse service, Mayfield Centre, St Ninians, Stirling, UK
| | - Franziska Degenhardt
- Department of Child and Adolescent Psychiatry, University of Duisburg-Essen, Essen
| | - Markus Nöthen
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Marsha Y. Morgan
- UCL Institute for Liver & Digestive Health, Division of Medicine, Royal Free Campus, University College London, London, UK
| | - Henry R. Kranzler
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine
- Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania
| | - Joel Gelernter
- Department of Psychiatry, Yale School of Medicine, New Haven
- Department of Psychiatry, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut, USA
- Departments of Genetics and Neuroscience, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Nicholas Bass
- Molecular Psychiatry Laboratory, Division of Psychiatry, University College London, London, UK
| | - Andrew McQuillin
- Molecular Psychiatry Laboratory, Division of Psychiatry, University College London, London, UK
| |
Collapse
|
15
|
Ungvári O, Bakos É, Kovacsics D, Özvegy-Laczka C. The fluorescence-based competitive counterflow assay developed for organic anion transporting polypeptides 1A2, 1B1, 1B3 and 2B1 identifies pentamidine as a selective OATP1A2 substrate. FASEB J 2023; 37:e23223. [PMID: 37781971 DOI: 10.1096/fj.202300530rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 10/03/2023]
Abstract
Organic anion transporting polypeptides OATP1A2, OATP1B1, OATP1B3 and OATP2B1 are Na+ - and ATP-independent exchangers of large, organic compounds, encompassing structurally diverse xenobiotics, including various drugs. These OATPs influence intestinal absorption (OATP2B1), hepatic clearance (OATP1B1/3) and blood to brain penetration (OATP1A2, OATP2B1) of their drug substrates. Consequently, OATP-mediated drug or food interactions may lead to altered pharmacokinetics and toxicity. During drug development, investigation of hepatic OATP1B1 and OATP1B3 is recommended by international regulatory agencies. Most frequently, OATP-drug interactions are investigated in an indirect assay, i.e., by examining uptake inhibition of a radioactive or fluorescent probe. However, indirect assays do not distinguish between transported substrates and non-transported OATP inhibitors. To fill this hiatus, a novel assay, termed competitive counterflow (CCF) has been developed and has since been applied for several OATPs to differentiate between substrates and non-transported inhibitors. However, previous OATP CCF assays, with the exception of that for OATP1B1, used radioactive probes. In the current study, we demonstrate that sulforhodamine 101 or pyranine can be used as fluorescent probes in a CCF assay to identify transported substrates of OATP1A2, or OATPs 1B1, 1B3 and 2B1, respectively. With the help of the newly developed fluorescence-based CCF method, we identify the FDA-approved anti-protozoal drug, pentamidine as a unique substrate of OATP1A2. Furthermore, we confirm the selective, OATP1A2-mediated uptake of pentamidine in a cytotoxicity assay. Based on our results, OATP1A2 may be an important determinant of pentamidine transport through the blood-brain barrier.
Collapse
Affiliation(s)
- Orsolya Ungvári
- Institute of Enzymology, RCNS, Eötvös Loránd Research Network, Budapest, Hungary
- Doctoral School of Biology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Éva Bakos
- Institute of Enzymology, RCNS, Eötvös Loránd Research Network, Budapest, Hungary
| | - Daniella Kovacsics
- Institute of Enzymology, RCNS, Eötvös Loránd Research Network, Budapest, Hungary
| | - Csilla Özvegy-Laczka
- Institute of Enzymology, RCNS, Eötvös Loránd Research Network, Budapest, Hungary
| |
Collapse
|
16
|
Parvez MM, Sadighi A, Ahn Y, Keller SF, Enoru JO. Uptake Transporters at the Blood-Brain Barrier and Their Role in Brain Drug Disposition. Pharmaceutics 2023; 15:2473. [PMID: 37896233 PMCID: PMC10610385 DOI: 10.3390/pharmaceutics15102473] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/03/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
Uptake drug transporters play a significant role in the pharmacokinetic of drugs within the brain, facilitating their entry into the central nervous system (CNS). Understanding brain drug disposition is always challenging, especially with respect to preclinical to clinical translation. These transporters are members of the solute carrier (SLC) superfamily, which includes organic anion transporter polypeptides (OATPs), organic anion transporters (OATs), organic cation transporters (OCTs), and amino acid transporters. In this systematic review, we provide an overview of the current knowledge of uptake drug transporters in the brain and their contribution to drug disposition. Here, we also assemble currently available proteomics-based expression levels of uptake transporters in the human brain and their application in translational drug development. Proteomics data suggest that in association with efflux transporters, uptake drug transporters present at the BBB play a significant role in brain drug disposition. It is noteworthy that a significant level of species differences in uptake drug transporters activity exists, and this may contribute toward a disconnect in inter-species scaling. Taken together, uptake drug transporters at the BBB could play a significant role in pharmacokinetics (PK) and pharmacodynamics (PD). Continuous research is crucial for advancing our understanding of active uptake across the BBB.
Collapse
Affiliation(s)
- Md Masud Parvez
- Department of Quantitative, Translational & ADME Sciences (QTAS), AbbVie Biotherapeutics, San Francisco, CA 94080, USA; (M.M.P.)
| | - Armin Sadighi
- Department of Quantitative, Translational & ADME Sciences (QTAS), AbbVie Biotherapeutics, San Francisco, CA 94080, USA; (M.M.P.)
| | - Yeseul Ahn
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S Coulter St., Amarillo, TX 79106, USA
- Center for Blood-Brain Barrier Research, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Steve F. Keller
- Department of Quantitative, Translational & ADME Sciences (QTAS), AbbVie Biotherapeutics, San Francisco, CA 94080, USA; (M.M.P.)
| | - Julius O. Enoru
- Department of Quantitative, Translational & ADME Sciences (QTAS), AbbVie Biotherapeutics, San Francisco, CA 94080, USA; (M.M.P.)
| |
Collapse
|
17
|
Ontsouka E, Schroeder M, Albrecht C. Revisited role of the placenta in bile acid homeostasis. Front Physiol 2023; 14:1213757. [PMID: 37546542 PMCID: PMC10402276 DOI: 10.3389/fphys.2023.1213757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023] Open
Abstract
To date, the discussion concerning bile acids (BAs) during gestation is almost exclusively linked to pregnancy complications such as intrahepatic cholestasis of pregnancy (ICP) when maternal serum BA levels reach very high concentrations (>100 μM). Generally, the placenta is believed to serve as a protective barrier avoiding exposure of the growing fetus to excessive amounts of maternal BAs that might cause detrimental effects (e.g., intrauterine growth restriction and/or increased vulnerability to metabolic diseases). However, little is known about the precise role of the placenta in BA biosynthesis, transport, and metabolism in healthy pregnancies when serum BAs are at physiological levels (i.e., low maternal and high fetal BA concentrations). It is well known that primary BAs are synthesized from cholesterol in the liver and are later modified to secondary BA species by colonic bacteria. Besides the liver, BA synthesis in extrahepatic sites such as the brain elicits neuroprotective actions through inhibition of apoptosis as well as oxidative and endoplasmic reticulum stress. Even though historically BAs were thought to be only "detergent molecules" required for intestinal absorption of dietary fats, they are nowadays acknowledged as full signaling molecules. They modulate a myriad of signaling pathways with functional consequences on essential processes such as gluconeogenesis -one of the principal energy sources of the fetus- and cellular proliferation. The current manuscript discusses the potential multipotent roles of physiologically circulating BAs on developmental processes during gestation and provides a novel perspective in terms of the importance of the placenta as a previously unknown source of BAs. Since the principle "not too much, not too little" applicable to other signaling molecules may be also true for BAs, the risks associated with fetal exposure to excessive levels of BAs are discussed.
Collapse
|
18
|
Butranova OI, Ushkalova EA, Zyryanov SK, Chenkurov MS, Baybulatova EA. Pharmacokinetics of Antibacterial Agents in the Elderly: The Body of Evidence. Biomedicines 2023; 11:1633. [PMID: 37371728 DOI: 10.3390/biomedicines11061633] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Infections are important factors contributing to the morbidity and mortality among elderly patients. High rates of consumption of antimicrobial agents by the elderly may result in increased risk of toxic reactions, deteriorating functions of various organs and systems and leading to the prolongation of hospital stay, admission to the intensive care unit, disability, and lethal outcome. Both safety and efficacy of antibiotics are determined by the values of their plasma concentrations, widely affected by physiologic and pathologic age-related changes specific for the elderly population. Drug absorption, distribution, metabolism, and excretion are altered in different extents depending on functional and morphological changes in the cardiovascular system, gastrointestinal tract, liver, and kidneys. Water and fat content, skeletal muscle mass, nutritional status, use of concomitant drugs are other determinants of pharmacokinetics changes observed in the elderly. The choice of a proper dosing regimen is essential to provide effective and safe antibiotic therapy in terms of attainment of certain pharmacodynamic targets. The objective of this review is to perform a structure of evidence on the age-related changes contributing to the alteration of pharmacokinetic parameters in the elderly.
Collapse
Affiliation(s)
- Olga I Butranova
- Department of General and Clinical Pharmacology, Peoples' Friendship University of Russia named after Patrice Lumumba (RUDN University), 6 Miklukho-Maklaya St., 117198 Moscow, Russia
| | - Elena A Ushkalova
- Department of General and Clinical Pharmacology, Peoples' Friendship University of Russia named after Patrice Lumumba (RUDN University), 6 Miklukho-Maklaya St., 117198 Moscow, Russia
| | - Sergey K Zyryanov
- Department of General and Clinical Pharmacology, Peoples' Friendship University of Russia named after Patrice Lumumba (RUDN University), 6 Miklukho-Maklaya St., 117198 Moscow, Russia
- State Budgetary Institution of Healthcare of the City of Moscow "City Clinical Hospital No. 24 of the Moscow City Health Department", Pistzovaya Srt. 10, 127015 Moscow, Russia
| | - Mikhail S Chenkurov
- Department of General and Clinical Pharmacology, Peoples' Friendship University of Russia named after Patrice Lumumba (RUDN University), 6 Miklukho-Maklaya St., 117198 Moscow, Russia
| | - Elena A Baybulatova
- Department of General and Clinical Pharmacology, Peoples' Friendship University of Russia named after Patrice Lumumba (RUDN University), 6 Miklukho-Maklaya St., 117198 Moscow, Russia
| |
Collapse
|
19
|
Hau RK, Wright SH, Cherrington NJ. Drug Transporters at the Human Blood-Testis Barrier. Drug Metab Dispos 2023; 51:560-571. [PMID: 36732077 PMCID: PMC10158500 DOI: 10.1124/dmd.122.001186] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/06/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
Transporters are involved in the movement of many physiologically important molecules across cell membranes and have a substantial impact on the pharmacological and toxicological effect of xenobiotics. Many transporters have been studied in the context of disposition to, or toxicity in, organs such as the kidney and liver; however, transporters in the testes are increasingly gaining recognition for their role in drug transport across the blood-testis barrier (BTB). The BTB is an epithelial membrane barrier formed by adjacent Sertoli cells (SCs) in the seminiferous tubules that form intercellular junctional complexes to protect developing germ cells from the external environment. Consequently, many charged or large polar molecules cannot cross this barrier without assistance from a transporter. SCs express a variety of drug uptake and efflux transporters to control the flux of endogenous and exogenous molecules across the BTB. Recent studies have identified several transport pathways in SCs that allow certain drugs to circumvent the human BTB. These pathways may exist in other species, such as rodents and nonhuman primates; however, there is (1) a lack of information on their expression and/or localization in these species, and (2) conflicting reports on localization of some transporters that have been evaluated in rodents compared with humans. This review outlines the current knowledge on the expression and localization of pharmacologically relevant drug transporters in human testes and calls attention to the insufficient and contradictory understanding of testicular transporters in other species that are commonly used in drug disposition and toxicity studies. SIGNIFICANCE STATEMENT: While the expression, localization, and function of many xenobiotic transporters have been studied in organs such as the kidney and liver, the characterization of transporters in the testes is scarce. This review summarizes the expression and localization of common pharmacologically-relevant transporters in human testes that have significant implications for the development of drugs that can cross the blood-testis barrier. Potential expression differences between humans and rodents highlighted here suggest rodents may be inappropriate for some testicular disposition and toxicity studies.
Collapse
Affiliation(s)
- Raymond K Hau
- College of Pharmacy, Department of Pharmacology & Toxicology (R.K.H., N.J.C.) and College of Medicine, Department of Physiology (S.H.W.), The University of Arizona, Tucson, Arizona
| | - Stephen H Wright
- College of Pharmacy, Department of Pharmacology & Toxicology (R.K.H., N.J.C.) and College of Medicine, Department of Physiology (S.H.W.), The University of Arizona, Tucson, Arizona
| | - Nathan J Cherrington
- College of Pharmacy, Department of Pharmacology & Toxicology (R.K.H., N.J.C.) and College of Medicine, Department of Physiology (S.H.W.), The University of Arizona, Tucson, Arizona
| |
Collapse
|
20
|
Martha L, Nakata A, Furuya S, Liu W, Zhang X, Mizoi K, Ogihara T. Transporter and metabolic enzyme-mediated intra-enteric circulation of SN-38, an active metabolite of irinotecan: A new concept. Biochem Biophys Res Commun 2023; 665:19-25. [PMID: 37148742 DOI: 10.1016/j.bbrc.2023.04.109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/18/2023] [Accepted: 04/28/2023] [Indexed: 05/08/2023]
Abstract
SN-38, an active metabolite of irinotecan (CPT-11), is thought to circulate enterohepatically via organic anion-transporting polypeptides (OATPs), UDP-glucuronyl transferases (UGTs), multidrug resistance-related protein 2 (MRP2), and breast cancer resistance protein (BCRP). These transporters and enzymes are expressed in not only hepatocytes but also enterocytes. Therefore, we hypothesized that SN-38 circulates between the intestinal lumen and the enterocytes via these transporters and metabolic enzymes. To test this hypothesis, metabolic and transport studies of SN-38 and its glucuronide (SN-38G) were conducted in Caco-2 cells. The mRNA levels of UGTs, MRP2, BCRP, and OATP2B1 were confirmed in Caco-2 cells. SN-38 was converted to SN-38G in Caco-2 cells. The efflux of intracellularly generated SN-38G across the apical (digestive tract) membranes was significantly higher than the efflux across the basolateral (blood, portal vein) membranes of Caco-2 cells cultured on polycarbonate membranes. SN-38G efflux to the apical side was significantly reduced in the presence of MRP2 and BCRP inhibitors, suggesting that SN-38G is transported across the apical membrane by MRP2 and BCRP. Treatment of Caco-2 cells with OATP2B1 siRNA increased the SN-38 residue on the apical side, confirming that OATP2B1 is involved in the uptake of SN-38 into enterocytes. No SN-38 was detected on the basolateral side with or without siRNA treatment, suggesting that the enterohepatic circulation of SN-38 is limited, contrary to previous reports. These results suggest that SN-38 is absorbed into the enterocytes via OATP2B1, glucuronidated by UGTs to SN-38G, and excreted into the digestive tract lumen by MRP2 and BCRP. SN-38G can be deconjugated by β-glucuronidase from intestinal bacteria in the digestive tract lumen to regenerate SN-38. We named this new concept of local drug circulation "intra-enteric circulation." This mechanism may allow SN-38 to circulate in the intestine and cause the development of delayed diarrhea, a serious side effect of CPT-11.
Collapse
Affiliation(s)
- Larasati Martha
- Laboratory of Biopharmaceutics, Department of Pharmacology, Faculty of Pharmacy, Takasaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki-shi, Gunma, 370-0033, Japan; Kendai Translational Research Center (KTRC), 60 Nakaorui-machi, Takasaki-shi, Gunma, 370-0033, Japan.
| | - Akane Nakata
- Laboratory of Biopharmaceutics, Department of Pharmacology, Faculty of Pharmacy, Takasaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki-shi, Gunma, 370-0033, Japan
| | - Shinnosuke Furuya
- Laboratory of Biopharmaceutics, Department of Pharmacology, Faculty of Pharmacy, Takasaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki-shi, Gunma, 370-0033, Japan
| | - Wangyang Liu
- Laboratory of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Takasaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki-shi, Gunma, 370-0033, Japan
| | - Xieyi Zhang
- Laboratory of Biopharmaceutics, Department of Pharmacology, Faculty of Pharmacy, Takasaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki-shi, Gunma, 370-0033, Japan; Kendai Translational Research Center (KTRC), 60 Nakaorui-machi, Takasaki-shi, Gunma, 370-0033, Japan
| | - Kenta Mizoi
- Laboratory of Biopharmaceutics, Department of Pharmacology, Faculty of Pharmacy, Takasaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki-shi, Gunma, 370-0033, Japan; Laboratory of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Takasaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki-shi, Gunma, 370-0033, Japan
| | - Takuo Ogihara
- Laboratory of Biopharmaceutics, Department of Pharmacology, Faculty of Pharmacy, Takasaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki-shi, Gunma, 370-0033, Japan; Kendai Translational Research Center (KTRC), 60 Nakaorui-machi, Takasaki-shi, Gunma, 370-0033, Japan; Laboratory of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Takasaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki-shi, Gunma, 370-0033, Japan
| |
Collapse
|
21
|
Jang JH, Jeong SH, Lee YB. Quantitative assessment of the relevance of organic-anion-transporting-polypeptide 1B1 and 2B1 polymorphisms in fexofenadine pharmacokinetic variants via pharmacometrics. J Pharm Anal 2023. [DOI: 10.1016/j.jpha.2023.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
|
22
|
Developmental Pharmacokinetics of Antibiotics Used in Neonatal ICU: Focus on Preterm Infants. Biomedicines 2023; 11:biomedicines11030940. [PMID: 36979919 PMCID: PMC10046592 DOI: 10.3390/biomedicines11030940] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/22/2023] Open
Abstract
Neonatal Infections are among the most common reasons for admission to the intensive care unit. Neonatal sepsis (NS) significantly contributes to mortality rates. Empiric antibiotic therapy of NS recommended by current international guidelines includes benzylpenicillin, ampicillin/amoxicillin, and aminoglycosides (gentamicin). The rise of antibacterial resistance precipitates the growth of the use of antibiotics of the Watch (second, third, and fourth generations of cephalosporines, carbapenems, macrolides, glycopeptides, rifamycins, fluoroquinolones) and Reserve groups (fifth generation of cephalosporines, oxazolidinones, lipoglycopeptides, fosfomycin), which are associated with a less clinical experience and higher risks of toxic reactions. A proper dosing regimen is essential for effective and safe antibiotic therapy, but its choice in neonates is complicated with high variability in the maturation of organ systems affecting drug absorption, distribution, metabolism, and excretion. Changes in antibiotic pharmacokinetic parameters result in altered efficacy and safety. Population pharmacokinetics can help to prognosis outcomes of antibiotic therapy, but it should be considered that the neonatal population is heterogeneous, and this heterogeneity is mainly determined by gestational and postnatal age. Preterm neonates are common in clinical practice, and due to the different physiology compared to the full terms, constitute a specific neonatal subpopulation. The objective of this review is to summarize the evidence about the developmental changes (specific for preterm and full-term infants, separately) of pharmacokinetic parameters of antibiotics used in neonatal intensive care units.
Collapse
|
23
|
Li W, Iusuf D, Sparidans RW, Wagenaar E, Wang Y, de Waart DR, Martins MLF, van Hoppe S, Lebre MC, van Tellingen O, Beijnen JH, Schinkel AH. Organic anion-transporting polypeptide 2B1 knockout and humanized mice; insights into the handling of bilirubin and drugs. Pharmacol Res 2023; 190:106724. [PMID: 36907287 DOI: 10.1016/j.phrs.2023.106724] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/25/2023] [Accepted: 03/09/2023] [Indexed: 03/12/2023]
Abstract
Organic anion transporting polypeptide 2B1 (OATP2B1/SLCO2B1) facilitates uptake transport of structurally diverse endogenous and exogenous compounds. To investigate the roles of OATP2B1 in physiology and pharmacology, we established and characterized Oatp2b1 knockout (single Slco2b1-/- and combination Slco1a/1b/2b1-/-) and humanized hepatic and intestinal OATP2B1 transgenic mouse models. While viable and fertile, these strains exhibited a modestly increased body weight. In males, unconjugated bilirubin levels were markedly reduced in Slco2b1-/- compared to wild-type mice, whereas bilirubin monoglucuronide levels were modestly increased in Slco1a/1b/2b1-/- compared to Slco1a/1b-/- mice. Single Slco2b1-/- mice showed no significant changes in oral pharmacokinetics of several tested drugs. However, markedly higher or lower plasma exposure of pravastatin and the erlotinib metabolite OSI-420, respectively, were found in Slco1a/1b/2b1-/- compared to Slco1a/1b-/- mice, while oral rosuvastatin and fluvastatin behaved similarly between the strains. In males, humanized OATP2B1 strains showed lower conjugated and unconjugated bilirubin levels than control Slco1a/1b/2b1-deficient mice. Moreover, hepatic expression of human OATP2B1 partially or completely rescued the impaired hepatic uptake of OSI-420, rosuvastatin, pravastatin, and fluvastatin in Slco1a/1b/2b1-/- mice, establishing an important role in hepatic uptake. Expression of human OATP2B1 in the intestine was basolateral and markedly reduced the oral availability of rosuvastatin and pravastatin, but not of OSI-420 and fluvastatin. Neither lack of Oatp2b1, nor overexpression of human OATP2B1 had any effect on fexofenadine oral pharmacokinetics. While these mouse models still have limitations for human translation, with additional work we expect they will provide powerful tools to further understand the physiological and pharmacological roles of OATP2B1.
Collapse
Affiliation(s)
- Wenlong Li
- The Netherlands Cancer Institute, Division of Pharmacology, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Dilek Iusuf
- The Netherlands Cancer Institute, Division of Pharmacology, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Rolf W Sparidans
- Utrecht University, Faculty of Science, Department of Pharmaceutical Sciences, Division of Pharmacology, Universiteitsweg 99, 3584 CG, Utrecht, the Netherlands
| | - Els Wagenaar
- The Netherlands Cancer Institute, Division of Pharmacology, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Yaogeng Wang
- The Netherlands Cancer Institute, Division of Pharmacology, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Dirk R de Waart
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Meibergdreef 71, 1105 BK, Amsterdam, the Netherlands
| | - Margarida L F Martins
- The Netherlands Cancer Institute, Division of Pharmacology, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Stéphanie van Hoppe
- The Netherlands Cancer Institute, Division of Pharmacology, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Maria C Lebre
- The Netherlands Cancer Institute, Division of Pharmacology, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Olaf van Tellingen
- The Netherlands Cancer Institute, Division of Pharmacology, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Jos H Beijnen
- The Netherlands Cancer Institute, Division of Pharmacology, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands; Utrecht University, Faculty of Science, Department of Pharmaceutical Sciences, Division of Pharmacoepidemiology & Clinical Pharmacology, Universiteitsweg 99, 3584 CG Utrecht, the Netherlands; The Netherlands Cancer Institute, Department of Pharmacy & Pharmacology, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Alfred H Schinkel
- The Netherlands Cancer Institute, Division of Pharmacology, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands.
| |
Collapse
|
24
|
Németh K, László Z, Biró A, Szatmári Á, Cserép GB, Várady G, Bakos É, Özvegy-Laczka C, Kele P. Organic Anion Transporting Polypeptide 3A1 (OATP3A1)-Gated Bio-Orthogonal Labeling of Intracellular Proteins. Molecules 2023; 28:molecules28062521. [PMID: 36985493 PMCID: PMC10055104 DOI: 10.3390/molecules28062521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
Organic anion transporting polypeptides (OATPs) were found to readily deliver membrane impermeable, tetrazine bearing fluorescent probes into cells. This feature was explored in OATP3A1 conditioned bio-orthogonal labeling schemes of various intracellular proteins in live cells. Confocal microscopy and super-resolution microscopy (STED) studies have shown that highly specific and efficient staining of the selected intracellular proteins can be achieved with the otherwise non-permeable probes when OATP3A1 is present in the cell membrane of cells. Such a transport protein linked bio-orthogonal labeling scheme is believed to be useful in OATP3A1 activity-controlled protein expression studies in the future.
Collapse
Affiliation(s)
- Krisztina Németh
- Chemical Biology Research Group, Institute of Organic Chemistry, RCNS, Magyar Tudósok Krt. 2., H-1117 Budapest, Hungary
- Correspondence: (K.N.); (P.K.)
| | - Zsófia László
- Chemical Biology Research Group, Institute of Organic Chemistry, RCNS, Magyar Tudósok Krt. 2., H-1117 Budapest, Hungary
| | - Adrienn Biró
- Chemical Biology Research Group, Institute of Organic Chemistry, RCNS, Magyar Tudósok Krt. 2., H-1117 Budapest, Hungary
| | - Ágnes Szatmári
- Chemical Biology Research Group, Institute of Organic Chemistry, RCNS, Magyar Tudósok Krt. 2., H-1117 Budapest, Hungary
| | - Gergely B. Cserép
- Chemical Biology Research Group, Institute of Organic Chemistry, RCNS, Magyar Tudósok Krt. 2., H-1117 Budapest, Hungary
| | - György Várady
- Molecular Cell Biology Research Group, Institute of Enzymology, RCNS, Magyar Tudósok Krt. 2., H-1117 Budapest, Hungary
| | - Éva Bakos
- Membrane Protein Research Group, Institute of Enzymology, RCNS, Magyar Tudósok Krt. 2., H-1117 Budapest, Hungary
| | - Csilla Özvegy-Laczka
- Membrane Protein Research Group, Institute of Enzymology, RCNS, Magyar Tudósok Krt. 2., H-1117 Budapest, Hungary
| | - Péter Kele
- Chemical Biology Research Group, Institute of Organic Chemistry, RCNS, Magyar Tudósok Krt. 2., H-1117 Budapest, Hungary
- Correspondence: (K.N.); (P.K.)
| |
Collapse
|
25
|
Kambayashi A, Shirasaka Y. Food effects on gastrointestinal physiology and drug absorption. Drug Metab Pharmacokinet 2023; 48:100488. [PMID: 36737277 DOI: 10.1016/j.dmpk.2022.100488] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/01/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
Food ingestion affects the oral absorption of many drugs in humans. In this review article, we summarize the physiological factors in the gastrointestinal (GI) tract that affect the in vivo performance of orally administered solid dosage forms in fasted and fed states in humans. In particular, we discuss the effects of food ingestion on fluid characteristics (pH, bile concentration, and volume) in the stomach and small intestine, GI transit of water and dosage forms, and microbiota. Additionally, case examples of food effects on GI physiology and subsequent changes in oral drug absorption are provided. Furthermore, the effects of food, especially fruit juices (e.g., grapefruit, orange, apple) and green tea, on transporter-mediated permeation and enzyme-catalyzed metabolism of drugs in intestinal epithelial cells are also summarized comprehensively.
Collapse
Affiliation(s)
- Atsushi Kambayashi
- Pharmaceutical Research and Technology Labs, Astellas Pharma Inc., 180 Ozumi, Yaizu, Shizuoka, 425-0072, Japan; School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Yoshiyuki Shirasaka
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan.
| |
Collapse
|
26
|
Tomabechi R, Miyasato M, Sato T, Takada T, Higuchi K, Kishimoto H, Shirasaka Y, Inoue K. Identification of 5-Carboxyfluorescein as a Probe Substrate of SLC46A3 and Its Application in a Fluorescence-Based In Vitro Assay Evaluating the Interaction with SLC46A3. Mol Pharm 2023; 20:491-499. [PMID: 36458938 DOI: 10.1021/acs.molpharmaceut.2c00741] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The therapeutic modalities that involve the endocytosis pathway, including antibody-drug conjugates (ADCs), have recently been developed. Since the drug escape from endosomes/lysosomes is a determinant of their efficacy, it is important to optimize the escape, and the cellular evaluation system is needed. SLC46A3, a lysosomal membrane protein, has been implicated in the pharmacological efficacy of trastuzumab emtansine (T-DM1), a noncleavable ADC used for the treatment of breast cancer, and the cellular uptake efficacy of lipid-based nanoparticles. Recently, we identified the SLC46A3 function as a proton-coupled steroid conjugate and bile acid transporter, which can directly transport active catabolites of T-DM1. Thus, the rapid and convenient assay systems for evaluating the SLC46A3 function may help to facilitate ADC development and to clarify the physiological roles in endocytosis. Here, we show that SLC46A3 dC, which localizes to the plasma membrane owing to lacking a lysosomal-sorting motif, has a great ability to transport 5-carboxyfluorescein (5-CF), a fluorescent probe, in a pH-dependent manner. 5-CF uptake mediated by SLC46A3 was significantly inhibited by compounds reported to be SLC46A3 substrates/inhibitors and competitively inhibited by estrone 3-sulfate, a typical SLC46A3 substrate. The inhibition assays followed by uptake studies revealed that SG3199, a pyrrolobenzodiazepine dimer, which has been used as an ADC payload, is a substrate of SLC46A3. Accordingly, the fluorescence-based assay system for the SLC46A3 function using 5-CF can provide a valuable tool to evaluate the interaction of drugs/drug candidates with SLC46A3.
Collapse
Affiliation(s)
- Ryuto Tomabechi
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo192-0392, Japan
| | - Miki Miyasato
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo192-0392, Japan
| | - Taeka Sato
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo192-0392, Japan
| | - Tappei Takada
- Department of Pharmacy, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo113-8655, Japan
| | - Kei Higuchi
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo192-0392, Japan
| | - Hisanao Kishimoto
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo192-0392, Japan
| | - Yoshiyuki Shirasaka
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa920-1192, Japan
| | - Katsuhisa Inoue
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo192-0392, Japan
| |
Collapse
|
27
|
Pivarcsik T, Pósa V, Kovács H, May NV, Spengler G, Pósa SP, Tóth S, Nezafat Yazdi Z, Özvegy-Laczka C, Ugrai I, Szatmári I, Szakács G, Enyedy ÉA. Metal Complexes of a 5-Nitro-8-Hydroxyquinoline-Proline Hybrid with Enhanced Water Solubility Targeting Multidrug Resistant Cancer Cells. Int J Mol Sci 2022; 24:ijms24010593. [PMID: 36614037 PMCID: PMC9820345 DOI: 10.3390/ijms24010593] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
Multidrug resistance (MDR) in cancer is one of the major obstacles of chemotherapy. We have recently identified a series of 8-hydroxyquinoline Mannich base derivatives with MDR-selective toxicity, however with limited solubility. In this work, a novel 5-nitro-8-hydroxyquinoline-proline hybrid and its Rh(η5-C5Me5) and Ru(η6-p-cymene) complexes with excellent aqueous solubility were developed, characterized, and tested against sensitive and MDR cells. Complex formation of the ligand with essential metal ions was also investigated using UV-visible, circular dichroism, 1H NMR (Zn(II)), and electron paramagnetic resonance (Cu(II)) spectroscopic methods. Formation of mono and bis complexes was found in all cases with versatile coordination modes, while tris complexes were also formed with Fe(II) and Fe(III) ions, revealing the metal binding affinity of the ligand at pH 7.4: Cu(II) > Zn(II) > Fe(II) > Fe(III). The ligand and its Rh(III) complex displayed enhanced cytotoxicity against the resistant MES-SA/Dx5 and Colo320 human cancer cell lines compared to their chemosensitive counterparts. Both organometallic complexes possess high stability in solution, however the Ru(II) complex has lower chloride ion affinity and slower ligand exchange processes, along with the readiness to lose the arene ring that is likely connected to its inactivity.
Collapse
Affiliation(s)
- Tamás Pivarcsik
- MTA-SZTE Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary
- Department of Inorganic and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary
| | - Vivien Pósa
- MTA-SZTE Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary
- Department of Inorganic and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary
| | - Hilda Kovács
- MTA-SZTE Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary
- Department of Inorganic and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary
| | - Nóra V. May
- Centre for Structural Science, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Magyar Tudósok krt. 2, H-1117 Budapest, Hungary
| | - Gabriella Spengler
- MTA-SZTE Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary
- Department of Medical Microbiology, Albert Szent-Györgyi Health Center, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| | - Szonja P. Pósa
- Drug Resistance Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Magyar Tudósok krt. 2, H-1117 Budapest, Hungary
- National Laboratory for Drug Research and Development, Magyar Tudósok krt. 2, H-1117 Budapest, Hungary
| | - Szilárd Tóth
- Drug Resistance Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Magyar Tudósok krt. 2, H-1117 Budapest, Hungary
- National Laboratory for Drug Research and Development, Magyar Tudósok krt. 2, H-1117 Budapest, Hungary
| | - Zeinab Nezafat Yazdi
- Drug Resistance Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Magyar Tudósok krt. 2, H-1117 Budapest, Hungary
| | - Csilla Özvegy-Laczka
- Drug Resistance Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Magyar Tudósok krt. 2, H-1117 Budapest, Hungary
| | - Imre Ugrai
- Institute of Pharmaceutical Chemistry and Stereochemistry Research Group, Eötvös Loránd Research Network, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
| | - István Szatmári
- Institute of Pharmaceutical Chemistry and Stereochemistry Research Group, Eötvös Loránd Research Network, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
| | - Gergely Szakács
- Drug Resistance Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Magyar Tudósok krt. 2, H-1117 Budapest, Hungary
- Institute of Cancer Research, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Éva A. Enyedy
- MTA-SZTE Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary
- Department of Inorganic and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary
- Correspondence:
| |
Collapse
|
28
|
Comparative Modelling of Organic Anion Transporting Polypeptides: Structural Insights and Comparison of Binding Modes. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238531. [PMID: 36500622 PMCID: PMC9738416 DOI: 10.3390/molecules27238531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
To better understand the functionality of organic anion transporting polypeptides (OATPs) and to design new ligands, reliable structural data of each OATP is needed. In this work, we used a combination of homology model with molecular dynamics simulations to generate a comprehensive structural dataset, that encompasses a diverse set of OATPs but also their relevant conformations. Our OATP models share a conserved transmembrane helix folding harbouring a druggable binding pocket in the shape of an inner pore. Our simulations suggest that the conserved salt bridges at the extracellular region between residues on TM1 and TM7 might influence the entrance of substrates. Interactions between residues on TM1 and TM4 within OATP1 family shown their importance in transport of substrates. Additionally, in transmembrane (TM) 1/2, a known conserved element, interact with two identified motifs in the TM7 and TM11. Our simulations suggest that TM1/2-TM7 interaction influence the inner pocket accessibility, while TM1/2-TM11 salt bridges control the substrate binding stability.
Collapse
|
29
|
Nies AT, Schaeffeler E, Schwab M. Hepatic solute carrier transporters and drug therapy: Regulation of expression and impact of genetic variation. Pharmacol Ther 2022; 238:108268. [DOI: 10.1016/j.pharmthera.2022.108268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/25/2022] [Accepted: 08/15/2022] [Indexed: 11/30/2022]
|
30
|
Bakos É, Német O, Kucsma N, Tőkési N, Stieger B, Rushing E, Tőkés AM, Kele P, Tusnády GE, Özvegy-Laczka C. Cloning and characterization of a novel functional organic anion transporting polypeptide 3A1 isoform highly expressed in the human brain and testis. Front Pharmacol 2022; 13:958023. [PMID: 36120371 PMCID: PMC9479004 DOI: 10.3389/fphar.2022.958023] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/01/2022] [Indexed: 12/05/2022] Open
Abstract
Organic anion transporting polypeptide 3A1 (OATP3A1, encoded by the SLCO3A1 gene) is a prostaglandin, oligopeptide, and steroid/thyroid hormone transporter with wide tissue distribution, expressed, e.g., in the human brain and testis. Although the physiological importance of OATP3A1 has not yet been clarified, based on its expression pattern, substrate recognition, and evolutionary conservation, OATP3A1 is a potential pharmacological target. Previously, two isoforms of OATP3A1, termed as V1 and V2, have been characterized. Here, we describe the cloning and functional characterization of a third isoform, OATP3A1_V3. The mRNA of isoform V3 is formed by alternative splicing and results in an OATP3A1 protein with an altered C-terminus compared to isoforms V1 and V2. Based on quantitative PCR, we demonstrate the widespread expression of SLCO3A1_V3 mRNA in human organs, with the highest expression in the brain and testis. By generation of an isoform V3-specific antibody and immunostaining, we show that the encoded protein is expressed in the human choroid plexus, neurons, and both germ and Sertoli cells of the testis. Moreover, we demonstrate that in contrast to isoform V1, OATP3A1_V3 localizes to the apical membrane of polarized MDCKII cells. Using HEK-293 cells engineered to overexpress OATP3A1_V3, we verify the protein’s functionality and identify dehydroepiandrosterone sulfate as a novel OATP3A1 substrate. Based on their distinct expression patterns but overlapping functions, OATP3A1 isoforms may contribute to transcellular (neuro)steroid transport in the central nervous system.
Collapse
Affiliation(s)
- Éva Bakos
- Institute of Enzymology, RCNS, Budapest, Hungary
| | | | - Nóra Kucsma
- Institute of Enzymology, RCNS, Budapest, Hungary
| | | | - Bruno Stieger
- University Hospital Zürich, University of Zurich, Zürich, Switzerland
| | - Elisabeth Rushing
- University Hospital Zürich, University of Zurich, Zürich, Switzerland
| | - Anna-Mária Tőkés
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Budapest, Hungary
| | - Péter Kele
- Institute of Organic Chemistry, RCNS, Budapest, Hungary
| | | | - Csilla Özvegy-Laczka
- Institute of Enzymology, RCNS, Budapest, Hungary
- *Correspondence: Csilla Özvegy-Laczka,
| |
Collapse
|
31
|
Cacialli P, Mailhe MP, Wagner I, Merkler D, Golub R, Bertrand JY. Synergistic prostaglandin E synthesis by myeloid and endothelial cells promotes fetal hematopoietic stem cell expansion in vertebrates. EMBO J 2022; 41:e108536. [PMID: 35924455 PMCID: PMC9531293 DOI: 10.15252/embj.2021108536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 11/21/2022] Open
Abstract
During development, hematopoietic stem cells (HSCs) are produced from the hemogenic endothelium and will expand in a transient hematopoietic niche. Prostaglandin E2 (PGE2) is essential during vertebrate development and HSC specification, but its precise source in the embryo remains elusive. Here, we show that in the zebrafish embryo, PGE2 synthesis genes are expressed by distinct stromal cell populations, myeloid (neutrophils, macrophages), and endothelial cells of the caudal hematopoietic tissue. Ablation of myeloid cells, which produce the PGE2 precursor prostaglandin H2 (PGH2), results in loss of HSCs in the caudal hematopoietic tissue, which could be rescued by exogeneous PGE2 or PGH2 supplementation. Endothelial cells contribute by expressing the PGH2 import transporter slco2b1 and ptges3, the enzyme converting PGH2 into PGE2. Of note, differential niche cell expression of PGE2 biosynthesis enzymes is also observed in the mouse fetal liver. Taken altogether, our data suggest that the triad composed of neutrophils, macrophages, and endothelial cells sequentially and synergistically contributes to blood stem cell expansion during vertebrate development.
Collapse
Affiliation(s)
- Pietro Cacialli
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva 4, Switzerland
| | | | - Ingrid Wagner
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva 4, Switzerland
| | - Doron Merkler
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva 4, Switzerland.,Division of Clinical Pathology, Department of Diagnostic, University Hospitals of Geneva, Geneva, Switzerland
| | - Rachel Golub
- Unité Lymphocytes et Immunité, Pasteur Institute, Paris Cedex 15, France.,Université de Paris, Paris, France
| | - Julien Y Bertrand
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva 4, Switzerland
| |
Collapse
|
32
|
Durník R, Šindlerová L, Babica P, Jurček O. Bile Acids Transporters of Enterohepatic Circulation for Targeted Drug Delivery. Molecules 2022; 27:molecules27092961. [PMID: 35566302 PMCID: PMC9103499 DOI: 10.3390/molecules27092961] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/24/2022] [Accepted: 05/02/2022] [Indexed: 12/29/2022] Open
Abstract
Bile acids (BAs) are important steroidal molecules with a rapidly growing span of applications across a variety of fields such as supramolecular chemistry, pharmacy, and biomedicine. This work provides a systematic review on their transport processes within the enterohepatic circulation and related processes. The focus is laid on the description of specific or less-specific BA transport proteins and their localization. Initially, the reader is provided with essential information about BAs′ properties, their systemic flow, metabolism, and functions. Later, the transport processes are described in detail and schematically illustrated, moving step by step from the liver via bile ducts to the gallbladder, small intestine, and colon; this description is accompanied by descriptions of major proteins known to be involved in BA transport. Spillage of BAs into systemic circulation and urine excretion are also discussed. Finally, the review also points out some of the less-studied areas of the enterohepatic circulation, which can be crucial for the development of BA-related drugs, prodrugs, and drug carrier systems.
Collapse
Affiliation(s)
- Robin Durník
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic;
| | - Lenka Šindlerová
- Department of Biophysics of Immune System, Institute of Biophysics, Czech Academy of Sciences, Královopolská 135, 61265 Brno, Czech Republic;
| | - Pavel Babica
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic;
| | - Ondřej Jurček
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
- CEITEC—Central European Institute of Technology, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
- Department of Natural Drugs, Faculty of Pharmacy, Masaryk University, Palackého 1946/1, 61200 Brno, Czech Republic
- Correspondence:
| |
Collapse
|
33
|
Lin H, Lin WH, Lin F, Liu CY, Che CH, Huang HP. Potential Pleiotropic Genes and Shared Biological Pathways in Epilepsy and Depression Based on GWAS Summary Statistics. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:6799285. [PMID: 35463244 PMCID: PMC9019309 DOI: 10.1155/2022/6799285] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/01/2022] [Accepted: 03/08/2022] [Indexed: 11/17/2022]
Abstract
Current epidemiological and experimental studies have indicated the overlapping genetic foundation of epilepsy and depression. However, the detailed pleiotropic genetic etiology and neurobiological pathways have not been well understood, and there are many variants with underestimated effect on the comorbidity of the two diseases. Utilizing genome-wide association study (GWAS) summary statistics of epilepsy (15,212 cases and 29,677 controls) and depression (170,756 cases and 329,443 controls) from large consortia, we assessed the integrated gene-based association with both diseases by Multimarker Analysis of Genomic Annotation (MAGMA) and Fisher's meta-analysis. On the one hand, shared genes with significantly altered transcripts in Gene Expression Omnibus (GEO) data sets were considered as possible pleiotropic genes. On the other hand, the pathway enrichment analysis was conducted based on the gene lists with nominal significance in the gene-based association test of each disease. We identified a total of two pleiotropic genes (CD3G and SLCO3A1) with gene expression analysis validated and interpreted twenty-five common biological process supported with literature mining. This study indicates the potentially shared genes associated with both epilepsy and depression based on gene expression, meta-data analysis, and pathway enrichment strategy along with traditional GWAS and provides insights into the possible intersecting pathways that were not previously reported.
Collapse
Affiliation(s)
- Han Lin
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Wan-Hui Lin
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China
- Intensive Care Unit, Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China
- Fujian Key Laboratory of Molecular Neurology, Fuzhou 350001, China
| | - Feng Lin
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Chang-Yun Liu
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Chun-Hui Che
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Hua-Pin Huang
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China
- Intensive Care Unit, Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China
- Fujian Key Laboratory of Molecular Neurology, Fuzhou 350001, China
- Department of Geriatrics, Fujian Medical University Union Hospital, Fuzhou 350001, China
| |
Collapse
|
34
|
Wang Z, Fang X, Zhang S, Song J. Pulmonary inflammation caused by cigarette smoke combined with lipopolysaccharide up-regulated OATP2B1 in rat lung tissue and pulmonary epithelial cells. Exp Lung Res 2022; 48:114-125. [PMID: 35441577 DOI: 10.1080/01902148.2022.2066223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/09/2022] [Accepted: 04/11/2022] [Indexed: 11/04/2022]
Abstract
Organic anion transport polypeptide 2B1 (OATP2B1), as an uptake transporter, is involved in the transport of many related substrate drugs and endogenous substances in the lungs. A large amount of data shows that cigarette smoke plays an important role in the occurrence and development of lung diseases such as chronic obstructive pulmonary disease (COPD), asthma and bronchitis. However, the effect of cigarette smoke combined with lipopolysaccharide-induced pulmonary inflammation on the expression of OATP2B1 is not clear. In this study, we used cigarette smoke combined with lipopolysaccharide to establish a lung inflammation model in vivo and in vitro to explore the effect of inflammation on the expression of OATP2B1. Our study found that cigarette smoke combined with lipopolysaccharide-induced pulmonary inflammation upregulated the mRNA and protein expression of OATP2B1 and related inflammatory factors, and the expression level of related proteins was higher with the aggravation of inflammation. The experimental results of animals in vivo were consistent with those of cells in vitro. In summary, these findings provide a model and basis for a follow-up study of the mechanism of OATP2B1 in pulmonary inflammation.
Collapse
Affiliation(s)
- Zihao Wang
- Institute for Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- Institute for the Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Xin Fang
- Institute for Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- Institute for the Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Shuyi Zhang
- Institute for Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- Institute for the Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Jue Song
- Institute for Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- Institute for the Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| |
Collapse
|
35
|
Merćep I, Radman I, Trkulja V, Božina T, Šimičević L, Budimir E, Ganoci L, Božina N. Loss of function polymorphisms in SLCO1B1 (c.521T>C, rs4149056) and ABCG2 (c.421C>A, rs2231142) genes are associated with adverse events of rosuvastatin: a case-control study. Eur J Clin Pharmacol 2022; 78:227-236. [PMID: 34668025 DOI: 10.1007/s00228-021-03233-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/11/2021] [Indexed: 12/12/2022]
Abstract
PURPOSE The study aims to evaluate relationship between polymorphisms associated with a reduced function of two transporter proteins resulting in increased exposure to rosuvastatin - organic anion transporter 1B1 (OATP1B1) (SLCO1B1 c.521T>C) and ATP binding cassette subfamily G member 2 (ABCG2) (ABCG2 c.421C>A) and occurrence of rosuvastatin related myotoxicity/hepatotoxicity. METHODS In a case-control study, cases (rosuvastatin treated patients developing myotoxicity or hepatotoxicity) and controls (concurrent rosuvastatin treated patients free of adverse events) were prospectively recruited over a 2 year period in a single tertiary center specialized in treatment of metabolic disorders. Subjects were evaluated for clinical, comorbidity, and comedication characteristics and for genotype predicted metabolizing phenotypes regarding cytochrome P450 enzymes CYP2C9 and CYP2C19. Standard regression analysis and analysis in matched sets of cases and controls (optimal full matching) were undertaken by fitting frequentist and Bayesian models (covariates/matching variables: age, sex, diabetes, liver/renal disease, hypertension, CYP2C9 and C19 phenotype, use of CYP or transporter inhibitors, non evaluated transporter genotype). RESULTS A total of 88 cases (81 with myotoxicity, 6 with hepatotoxicity, 1 with both) and 129 controls were recruited. Odds of variant SLCO1B1 c.521T>C allele were 2.2-2.5 times higher in cases than in controls (OR = 2.45, 95% CI 1.34-4.48; Bayesian OR = 2.59, 95% CrI 1.42-4.90 in regression analysis; OR = 2.20, 1.10-4.42; Bayesian OR = 2.26, 1.28-4.41 in matched analysis). Odds of variant ABCG2 c.421C>A allele were 2.1-2.3 times higher in cases than in controls (OR = 2.24, 1.04-4.83; Bayesian OR = 2.35, 1.09-4.31 in regression analysis; OR = 2.10, 0.83-5.31; Bayesian OR = 2.17, 1.07-4.35 in matched analysis). CONCLUSION Loss of function polymorphisms in SLCO1B1 c.521T>C and ABCG2 c.421C>A genes are associated with the presence of rosuvastatin related myotoxicity and/or hepatotoxicity.
Collapse
Affiliation(s)
- Iveta Merćep
- Department of Internal Medicine, University Hospital Centre Zagreb, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Ivana Radman
- University Department of Ophthalmology, University Hospital Centre Sestre Milosrdnice, Zagreb, Croatia
| | - Vladimir Trkulja
- Department of Pharmacology, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Tamara Božina
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Livija Šimičević
- Division of Pharmacogenomics and Therapy Individualization, Department of Laboratory Diagnostics, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Ema Budimir
- University of Zagreb School of Medicine, Zagreb, Croatia
| | - Lana Ganoci
- Division of Pharmacogenomics and Therapy Individualization, Department of Laboratory Diagnostics, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Nada Božina
- Department of Pharmacology, University of Zagreb School of Medicine, Zagreb, Croatia.
- Division of Pharmacogenomics and Therapy Individualization, Department of Laboratory Diagnostics, University Hospital Centre Zagreb, Zagreb, Croatia.
| |
Collapse
|
36
|
Järvinen E, Deng F, Kiander W, Sinokki A, Kidron H, Sjöstedt N. The Role of Uptake and Efflux Transporters in the Disposition of Glucuronide and Sulfate Conjugates. Front Pharmacol 2022; 12:802539. [PMID: 35095509 PMCID: PMC8793843 DOI: 10.3389/fphar.2021.802539] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/06/2021] [Indexed: 12/11/2022] Open
Abstract
Glucuronidation and sulfation are the most typical phase II metabolic reactions of drugs. The resulting glucuronide and sulfate conjugates are generally considered inactive and safe. They may, however, be the most prominent drug-related material in the circulation and excreta of humans. The glucuronide and sulfate metabolites of drugs typically have limited cell membrane permeability and subsequently, their distribution and excretion from the human body requires transport proteins. Uptake transporters, such as organic anion transporters (OATs and OATPs), mediate the uptake of conjugates into the liver and kidney, while efflux transporters, such as multidrug resistance proteins (MRPs) and breast cancer resistance protein (BCRP), mediate expulsion of conjugates into bile, urine and the intestinal lumen. Understanding the active transport of conjugated drug metabolites is important for predicting the fate of a drug in the body and its safety and efficacy. The aim of this review is to compile the understanding of transporter-mediated disposition of phase II conjugates. We review the literature on hepatic, intestinal and renal uptake transporters participating in the transport of glucuronide and sulfate metabolites of drugs, other xenobiotics and endobiotics. In addition, we provide an update on the involvement of efflux transporters in the disposition of glucuronide and sulfate metabolites. Finally, we discuss the interplay between uptake and efflux transport in the intestine, liver and kidneys as well as the role of transporters in glucuronide and sulfate conjugate toxicity, drug interactions, pharmacogenetics and species differences.
Collapse
Affiliation(s)
- Erkka Järvinen
- Clinical Pharmacology, Pharmacy, and Environmental Medicine, Department of Public Health, University of Southern Denmark, Odense, Denmark
| | - Feng Deng
- Department of Clinical Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Wilma Kiander
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Alli Sinokki
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Heidi Kidron
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Noora Sjöstedt
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| |
Collapse
|
37
|
Dragojević J, Marakovic N, Popović M, Smital T. Zebrafish (Danio rerio) Oatp2b1 as a functional ortholog of the human OATP2B1 transporter. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:1837-1849. [PMID: 34546486 DOI: 10.1007/s10695-021-01015-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
OATP2B1 belongs to a highly conserved organic anion transporting polypeptide (OATP) family of transporters, involved in the cellular uptake of both endogenous and exogenous compounds. The reported substrates of human OATP2B1 include steroid conjugates, bile salts, and thyroid hormones, as well as pharmaceuticals. Human OATP2B1 has orthologous genes in other vertebrate species, including zebrafish (Danio rerio), a widely used model organism in biomedical and environmental research. Our previous studies showed that zebrafish Oatp2b1 was phylogenetically closest to mammalian OATP2B1/Oatp2b1 and that it shares a similar tissue expression pattern. In this study, we aimed at discovering whether zebrafish Oatp2b1 could be a functional ortholog of human and rodent OATP2B1. To test this hypothesis, our primary goal was to obtain the first in vitro and in silico insights related to the structure and potential substrate preferences of zebrafish Oatp2b1. We generated cells transiently and stably transfected with zebrafish Oatp2b1 cloned from zebrafish liver, constructed an Oatp2b1 homology model, developed transport activity assays with model fluorescent substrate Lucifer yellow, and finally utilized this assay to analyze the interaction of zebrafish Oatp2b1 with both physiological and xenobiotic substances. Apart from structure similarities, our data revealed the strongest interaction of zebrafish Oatp2b1 with bile acids, steroid sulfates, thyroid hormones, and bilirubin, as well as xenobiotics bromosulfophthalein and sulfasalazine, which indicates its functional orthology with human OATP2B1.
Collapse
Affiliation(s)
- Jelena Dragojević
- Laboratory for Molecular Ecotoxicology, Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička cesta 54, 10000, Zagreb, Croatia
| | - Nikola Marakovic
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000, Zagreb, Croatia
| | - Marta Popović
- Laboratory for Molecular Ecotoxicology, Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička cesta 54, 10000, Zagreb, Croatia
| | - Tvrtko Smital
- Laboratory for Molecular Ecotoxicology, Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička cesta 54, 10000, Zagreb, Croatia.
| |
Collapse
|
38
|
Zheng X, Zhang JV, Bai Y, Wang J, Jiang M, Zeng S, Wang L. Upregulation of OATP1A2 in human oesophageal squamous cell carcinoma cells via the HDAC6-GCN5/PCAF-H3K9Ac axis. Xenobiotica 2021; 51:1453-1462. [PMID: 34823432 DOI: 10.1080/00498254.2021.2001076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
1. OATP1A2 overexpressed is involved in chemotherapy disposition, indicating its role in tumour development and progression.2. CHIP and siRNA were used to evaluate the status of histone acetylation at the OATP1A2 promoter. The role of OATP1A2 was analysed by gene-set enrichment and overall survival analysis.3. OATP1A2 expression levels in ESCC was notably higher than that in para-cancer tissues. OATP1A2 high expression are associated with bile salt metabolic pathway and poor prognosis. Furthermore, HDAC6 was repressed in ESCC, increasing the levels of H3K9Ac catalysed by GCN5/PCAF at the OATP1A2 promoter region.4. Abnormal histone hyperacetylation mediated by the HDAC6-GCN5/PCAF-H3K9Ac axis resulted in increased OATP1A2 expression in ESCC, and OATP1A2 may serve as a promising prognostic biomarker for ESCC.5. In conclusion, this study indicated that suppression of OATP1A2 would inhibit the progression and prognosis in ESCC.
Collapse
Affiliation(s)
- Xiaoli Zheng
- Center for Energy Metabolism and Reproduction, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China.,Department of Clinical Pharmacy and Translational Medicine, School of Pharmacy and Biomedicine, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Jian V Zhang
- Center for Energy Metabolism and Reproduction, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China.,Department of Clinical Pharmacy and Translational Medicine, School of Pharmacy and Biomedicine, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yanfeng Bai
- Department of Pathology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jiaqi Wang
- Zhejiang Province Key Laboratory of Anti-cancer Drug Research, Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Mingfeng Jiang
- Department of Clinical Lab, Hangzhou Cancer Hospital, Hangzhou, China
| | - Su Zeng
- Zhejiang Province Key Laboratory of Anti-cancer Drug Research, Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Lvhua Wang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| |
Collapse
|
39
|
Hussner J, Foletti A, Seibert I, Fuchs A, Schuler E, Malagnino V, Grube M, Meyer Zu Schwabedissen HE. Differences in transport function of the human and rat orthologue of the Organic Anion Transporting Polypeptide 2B1 (OATP2B1). Drug Metab Pharmacokinet 2021; 41:100418. [PMID: 34628357 DOI: 10.1016/j.dmpk.2021.100418] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/30/2021] [Accepted: 08/17/2021] [Indexed: 01/02/2023]
Abstract
The human drug transporter Organic Anion Transporting Polypeptide (hOATP)2B1 facilitates cellular uptake of its substrates. Various studies suggest that hOATP2B1 is involved in intestinal absorption, but preclinical evaluations performed in rodents do not support this. Thus, our study aimed to compare the expression and function of hOATP2B1 with its orthologue in rats (rOatp2b1). Even if the general expression pattern was comparable, the transporters exhibited substantial differences on functional level. While bromosulfophthalein and atorvastatin were substrates of both transporters, the steroid sulfate conjugates estrone 3-sulfate (E1S), progesterone sulfate and dehydroepiandrosterone sulfate were only transported by hOATP2B1. To further elucidate these functional differences, experiments searching for the E1S substrate recognition site were conducted generating human-rat chimera as well as partly humanized variants of rOatp2b1. The rOatp2b1-329-hOATP2B1 chimera led to a significant increase in E1S uptake suggesting the C-terminal part of the human transporter is involved. However, humanization of various regions within this part, namely of the transmembrane domain (TMD)-9, TMD-10 or the extracellular loop-5 did not significantly change E1S transport function. Replacement of the intracellular loop-3, slightly enhanced cellular accumulation of sulfated steroids. Taken together, we report that OATP2B1 exhibited differences in recognition of steroid sulfate conjugates comparing the rat and human orthologues.
Collapse
Affiliation(s)
- Janine Hussner
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Annalise Foletti
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Isabell Seibert
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Anja Fuchs
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Eveline Schuler
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Vanessa Malagnino
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Markus Grube
- Institute of Pharmacology, C_DAT Center of Drug Absorption and Transport, University Medicine Greifswald, Greifswald, Germany
| | | |
Collapse
|
40
|
Medwid S, Price HR, Taylor DP, Mailloux J, Schwarz UI, Kim RB, Tirona RG. Organic Anion Transporting Polypeptide 2B1 (OATP2B1) Genetic Variants: In Vitro Functional Characterization and Association With Circulating Concentrations of Endogenous Substrates. Front Pharmacol 2021; 12:713567. [PMID: 34594217 PMCID: PMC8476882 DOI: 10.3389/fphar.2021.713567] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022] Open
Abstract
Organic anion transporting polypeptide 2B1 (OATP2B1, gene SLCO2B1) is an uptake transporter that is thought to determine drug disposition and in particular, the oral absorption of medications. At present, the clinical relevance of SLCO2B1 genetic variation on pharmacokinetics is poorly understood. We sought to determine the functional activity of 5 of the most common missense OATP2B1 variants (c.76_84del, c.601G>A, c.917G>A, c.935G>A, and c.1457C>T) and a predicted dysfunctional variant (c.332G>A) in vitro. Furthermore, we measured the basal plasma concentrations of endogenous OATP2B1 substrates, namely estrone sulfate, dehydroepiandrosterone sulfate (DHEAS), pregnenolone sulfate, coproporphyrin I (CPI), and CPIII, and assessed their relationships with SLCO2B1 genotypes in 93 healthy participants. Compared to reference OATP2B1, the transport activities of the c.332G>A, c.601G>A and c.1457C>T variants were reduced among the substrates examined (estrone sulfate, DHEAS, CPI, CPIII and rosuvastatin), although there were substrate-dependent effects. Lower transport function of OATP2B1 variants could be explained by diminished cell surface expression. Other OATP2B1 variants (c.76-84del, c.917G>A and c.935G>A) had similar activity to the reference transporter. In the clinical cohort, the SLCO2B1 c.935G>A allele was associated with both higher plasma CPI (42%) and CPIII (31%) concentrations, while SLCO2B1 c.917G>A was linked to lower plasma CPIII by 28% after accounting for the effects of age, sex, and SLCO1B1 genotypes. No association was observed between SLCO2B1 variant alleles and estrone sulfate or DHEAS plasma concentrations, however 45% higher plasma pregnenolone sulfate level was associated with SLCO2B1 c.1457C>T. Taken together, we found that the impacts of OATP2B1 variants on transport activities in vitro were not fully aligned with their associations to plasma concentrations of endogenous substrates in vivo. Additional studies are required to determine whether circulating endogenous substrates reflect OATP2B1 activity.
Collapse
Affiliation(s)
- Samantha Medwid
- Department of Physiology & Pharmacology, University of Western Ontario, London, ON, Canada.,Division of Clinical Pharmacology, Department of Medicine, University of Western Ontario, London, ON, Canada
| | - Hayley R Price
- Department of Physiology & Pharmacology, University of Western Ontario, London, ON, Canada
| | - Daniel P Taylor
- Department of Physiology & Pharmacology, University of Western Ontario, London, ON, Canada
| | - Jaymie Mailloux
- Department of Physiology & Pharmacology, University of Western Ontario, London, ON, Canada.,Division of Clinical Pharmacology, Department of Medicine, University of Western Ontario, London, ON, Canada
| | - Ute I Schwarz
- Department of Physiology & Pharmacology, University of Western Ontario, London, ON, Canada.,Division of Clinical Pharmacology, Department of Medicine, University of Western Ontario, London, ON, Canada
| | - Richard B Kim
- Department of Physiology & Pharmacology, University of Western Ontario, London, ON, Canada.,Division of Clinical Pharmacology, Department of Medicine, University of Western Ontario, London, ON, Canada.,Department of Oncology, Schulich School of Medicine, University of Western Ontario, London, ON, Canada
| | - Rommel G Tirona
- Department of Physiology & Pharmacology, University of Western Ontario, London, ON, Canada.,Division of Clinical Pharmacology, Department of Medicine, University of Western Ontario, London, ON, Canada
| |
Collapse
|
41
|
Ontsouka E, Epstein A, Kallol S, Zaugg J, Baumann M, Schneider H, Albrecht C. Placental Expression of Bile Acid Transporters in Intrahepatic Cholestasis of Pregnancy. Int J Mol Sci 2021; 22:ijms221910434. [PMID: 34638773 PMCID: PMC8508908 DOI: 10.3390/ijms221910434] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/17/2021] [Accepted: 09/22/2021] [Indexed: 11/20/2022] Open
Abstract
Intrahepatic cholestasis of pregnancy (ICP) is a pregnancy-related condition characterized by increased maternal circulating bile acids (BAs) having adverse fetal effects. We investigated whether the human placenta expresses specific regulation patterns to prevent fetal exposition to harmful amounts of BAs during ICP. Using real-time quantitative PCR, we screened placentae from healthy pregnancies (n = 12) and corresponding trophoblast cells (n = 3) for the expression of 21 solute carriers and ATP-binding cassette transporter proteins, all acknowledged as BA- and/or cholestasis-related genes. The placental gene expression pattern was compared between healthy women and ICP patients (n = 12 each). Placental SLCO3A1 (OATP3A1) gene expression was significantly altered in ICP compared with controls. The other 20 genes, including SLC10A2 (ASBT) and EPHX1 (EPOX, mEH) reported for the first time in trophoblasts, were comparably abundant in healthy and ICP placentae. ABCG5 was undetectable in all placentae. Placental SLC10A2 (ASBT), SLCO4A1 (OATP4A1), and ABCC2 mRNA levels were positively correlated with BA concentrations in ICP. Placental SLC10A2 (ASBT) mRNA was also correlated with maternal body mass index. We conclude that at the transcriptional level only a limited response of BA transport systems is found under ICP conditions. However, the extent of the transcriptional response may also depend on the severity of the ICP condition and the magnitude by which the maternal BA levels are increased.
Collapse
Affiliation(s)
- Edgar Ontsouka
- Institute of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland; (E.O.); (A.E.); (S.K.); (J.Z.)
| | - Alessandra Epstein
- Institute of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland; (E.O.); (A.E.); (S.K.); (J.Z.)
| | - Sampada Kallol
- Institute of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland; (E.O.); (A.E.); (S.K.); (J.Z.)
| | - Jonas Zaugg
- Institute of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland; (E.O.); (A.E.); (S.K.); (J.Z.)
| | - Marc Baumann
- Department of Obstetrics and Gyneacology, University Hospital, Effingerstrasse 102, 3010 Bern, Switzerland; (M.B.); (H.S.)
| | - Henning Schneider
- Department of Obstetrics and Gyneacology, University Hospital, Effingerstrasse 102, 3010 Bern, Switzerland; (M.B.); (H.S.)
| | - Christiane Albrecht
- Institute of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland; (E.O.); (A.E.); (S.K.); (J.Z.)
- Correspondence: ; Tel.: +41-31-684-48-57
| |
Collapse
|
42
|
Marie S, Hernández-Lozano I, Breuil L, Truillet C, Hu S, Sparreboom A, Tournier N, Langer O. Imaging-Based Characterization of a Slco2b1(-/-) Mouse Model Using [ 11C]Erlotinib and [ 99mTc]Mebrofenin as Probe Substrates. Pharmaceutics 2021; 13:918. [PMID: 34205780 PMCID: PMC8233734 DOI: 10.3390/pharmaceutics13060918] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/09/2021] [Accepted: 06/17/2021] [Indexed: 01/19/2023] Open
Abstract
Organic anion-transporting polypeptide 2B1 (OATP2B1) is co-localized with OATP1B1 and OATP1B3 in the basolateral hepatocyte membrane, where it is thought to contribute to the hepatic uptake of drugs. We characterized a novel Slco2b1(-/-) mouse model using positron emission tomography (PET) imaging with [11C]erlotinib (a putative OATP2B1-selective substrate) and planar scintigraphic imaging with [99mTc]mebrofenin (an OATP1B1/1B3 substrate, which is not transported by OATP2B1). Dynamic 40-min scans were performed after intravenous injection of either [11C]erlotinib or [99mTc]mebrofenin in wild-type and Slco2b1(-/-) mice. A pharmacokinetic model was used to estimate the hepatic uptake clearance (CL1) and the rate constants for transfer of radioactivity from the liver to the blood (k2) and excreted bile (k3). CL1 was significantly reduced in Slco2b1(-/-) mice for both radiotracers (p < 0.05), and k2 was significantly lower (p < 0.01) in Slco2b1(-/-) mice for [11C]erlotinib, but not for [99mTc]mebrofenin. Our data support previous evidence that OATP transporters may contribute to the hepatic uptake of [11C]erlotinib. However, the decreased hepatic uptake of the OATP1B1/1B3 substrate [99mTc]mebrofenin in Slco2b1(-/-) mice questions the utility of this mouse model to assess the relative contribution of OATP2B1 to the liver uptake of drugs which are substrates of multiple OATPs.
Collapse
Affiliation(s)
- Solène Marie
- Laboratoire d’Imagerie Biomédicale Multimodale, BIOMAPS, Service Hospitalier Frédéric Joliot, Université Paris-Saclay, CEA, CNRS, Inserm, 4 Place du Général Leclerc, 91401 Orsay, France; (S.M.); (L.B.); (C.T.)
- Département de Pharmacie Clinique, Faculté de Pharmacie, Université Paris-Saclay, 92296 Châtenay-Malabry, France
- AP-HP, Université Paris-Saclay, Hôpital Bicêtre, Pharmacie Clinique, 94270 Le Kremlin Bicêtre, France
| | - Irene Hernández-Lozano
- Department of Clinical Pharmacology, Medical University of Vienna, 1090 Vienna, Austria; (I.H.-L.); (O.L.)
| | - Louise Breuil
- Laboratoire d’Imagerie Biomédicale Multimodale, BIOMAPS, Service Hospitalier Frédéric Joliot, Université Paris-Saclay, CEA, CNRS, Inserm, 4 Place du Général Leclerc, 91401 Orsay, France; (S.M.); (L.B.); (C.T.)
| | - Charles Truillet
- Laboratoire d’Imagerie Biomédicale Multimodale, BIOMAPS, Service Hospitalier Frédéric Joliot, Université Paris-Saclay, CEA, CNRS, Inserm, 4 Place du Général Leclerc, 91401 Orsay, France; (S.M.); (L.B.); (C.T.)
| | - Shuiying Hu
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (S.H.); (A.S.)
| | - Alex Sparreboom
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (S.H.); (A.S.)
| | - Nicolas Tournier
- Laboratoire d’Imagerie Biomédicale Multimodale, BIOMAPS, Service Hospitalier Frédéric Joliot, Université Paris-Saclay, CEA, CNRS, Inserm, 4 Place du Général Leclerc, 91401 Orsay, France; (S.M.); (L.B.); (C.T.)
| | - Oliver Langer
- Department of Clinical Pharmacology, Medical University of Vienna, 1090 Vienna, Austria; (I.H.-L.); (O.L.)
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
43
|
Schäfer AM, Meyer zu Schwabedissen HE, Grube M. Expression and Function of Organic Anion Transporting Polypeptides in the Human Brain: Physiological and Pharmacological Implications. Pharmaceutics 2021; 13:pharmaceutics13060834. [PMID: 34199715 PMCID: PMC8226904 DOI: 10.3390/pharmaceutics13060834] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/30/2021] [Accepted: 05/31/2021] [Indexed: 12/17/2022] Open
Abstract
The central nervous system (CNS) is an important pharmacological target, but it is very effectively protected by the blood–brain barrier (BBB), thereby impairing the efficacy of many potential active compounds as they are unable to cross this barrier. Among others, membranous efflux transporters like P-Glycoprotein are involved in the integrity of this barrier. In addition to these, however, uptake transporters have also been found to selectively uptake certain compounds into the CNS. These transporters are localized in the BBB as well as in neurons or in the choroid plexus. Among them, from a pharmacological point of view, representatives of the organic anion transporting polypeptides (OATPs) are of particular interest, as they mediate the cellular entry of a variety of different pharmaceutical compounds. Thus, OATPs in the BBB potentially offer the possibility of CNS targeting approaches. For these purposes, a profound understanding of the expression and localization of these transporters is crucial. This review therefore summarizes the current state of knowledge of the expression and localization of OATPs in the CNS, gives an overview of their possible physiological role, and outlines their possible pharmacological relevance using selected examples.
Collapse
Affiliation(s)
- Anima M. Schäfer
- Biopharmacy, Department Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland; (A.M.S.); (H.E.M.z.S.)
| | - Henriette E. Meyer zu Schwabedissen
- Biopharmacy, Department Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland; (A.M.S.); (H.E.M.z.S.)
| | - Markus Grube
- Center of Drug Absorption and Transport (C_DAT), Department of Pharmacology, University Medicine of Greifswald, 17489 Greifswald, Germany
- Correspondence: ; Tel./Fax: +49-3834-865636
| |
Collapse
|
44
|
Kinzi J, Grube M, Meyer Zu Schwabedissen HE. OATP2B1 - The underrated member of the organic anion transporting polypeptide family of drug transporters? Biochem Pharmacol 2021; 188:114534. [PMID: 33794186 DOI: 10.1016/j.bcp.2021.114534] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/21/2021] [Accepted: 03/23/2021] [Indexed: 12/28/2022]
Abstract
The organic anion transporting polypeptide 2B1 (OATP2B1) was one of the first cloned members of the SLCO family. However, its physiological and pharmacological role is still poorly understood, and object of a current debate on the transporter's relevance. Within this commentary, we summarize the data currently available on the transporter's expression and its substrates and highlight the strength and difficulties of the methods that have been applied to gather these data. The conclusion drawn from these findings was that OATP2B1 due to its intestinal expression is most likely involved in oral drug absorption of its substrate and therefore prone for interactions. This has been tested in in vivo drug interaction and/or pharmacogenetic studies. While some of these support the notion of OATP2B1 being of relevance in drug absorption, the pharmacogenetic findings are rather inconclusive. We will explain our thoughts why OATP2B1 may not influence the general systemic pharmacokinetic of certain substrates, but possibly local distribution processes, like the transfer across the blood-brain-barrier. Besides the pharmacokinetic aspects, there are data on endogenous molecules like coproporphyrins and sulfated steroids. Therefore, we will also highlight possible physiological roles of OATP2B1, which are driven by its expression pattern in the tubular cells of the kidney as well as its expression in the blood brain barrier. Finally we also deal with the advantages and disadvantages in the use of animal models to decipher the role of OATP2B1 in pharmacokinetics of its substrates and beyond.
Collapse
Affiliation(s)
- Jonny Kinzi
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Markus Grube
- Center of Drug Absorption and Transport, University Medicine Greifswald, Greifswald, Germany
| | | |
Collapse
|
45
|
Fernandes JO, Tella SOC, Ferraz IS, Ciampo LAD, Tanus-Santos JE. Assessment of nitric oxide metabolites concentrations in plasma, saliva, and breast milk and their relationship in lactating women. Mol Cell Biochem 2021; 476:1293-1302. [PMID: 33237454 DOI: 10.1007/s11010-020-03994-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/16/2020] [Indexed: 12/18/2022]
Abstract
Nitric oxide (NO) plays a role in many biological mechanisms. The amounts of physiologically produced NO are associated with the concentrations of its metabolites nitrate and nitrite. This study investigated whether there is any association between the concentrations of NO metabolites nitrate, nitrite, and nitrosylated species (RXNO) in mature breast milk, saliva, and plasma in healthy lactating women (N = 30). We hypothesized that the NO metabolites concentrations in plasma are associated with those found in saliva and in breast milk. NO metabolites concentrations were measured using chemiluminensce-based assays. Nitrate concentrations in breast milk are twice as much as plasma concentrations, whereas nitrate concentrations in saliva are about eightfold higher (both P < 0.001). Similar differences were found when nitrite concentrations were taken into consideration. RXNO concentrations in breast milk were negligible, and RXNO concentrations in saliva were approximately sixfold higher than those found in plasma samples (P < 0.0001). Nitrate concentrations in plasma are associated with nitrate concentrations in saliva (rs = 0.474, P = 0.004). However, no significant association was found between nitrate concentrations in breast milk and in plasma (P > 0.05). Our results show a significant association between nitrate concentrations in plasma with those found in saliva, whereas all other relationships were not significant. In conclusion, this report shows for the first time that the physiological concentrations of NO metabolites in human breast milk are probably independent of circulating NO metabolites concentrations and may depend mostly on endogenous NO synthesis in the breast. These findings may have clinical implications for newborns and lactating women.
Collapse
Affiliation(s)
- Juliana O Fernandes
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas, Campinas, São Paulo, Brazil
| | - Sandra O C Tella
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Av. Bandeirantes, 3900, 14049-900, Ribeirao Preto, SP, Brazil
| | - Ivan S Ferraz
- Department of Puericulture and Pediatrics, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Luiz A D Ciampo
- Department of Puericulture and Pediatrics, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Jose E Tanus-Santos
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Av. Bandeirantes, 3900, 14049-900, Ribeirao Preto, SP, Brazil.
| |
Collapse
|
46
|
Sutherland R, Meeson A, Lowes S. Solute transporters and malignancy: establishing the role of uptake transporters in breast cancer and breast cancer metastasis. Cancer Metastasis Rev 2021; 39:919-932. [PMID: 32388639 PMCID: PMC7497311 DOI: 10.1007/s10555-020-09879-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The solute carrier (SLC) superfamily encompasses a large variety of membrane-bound transporters required to transport a diverse array of substrates over biological membranes. Physiologically, they are essential for nutrient uptake, ion transport and waste removal. However, accumulating evidence suggest that up- and/or downregulation of SLCs may play a pivotal role in the pathogenesis of human malignancy. Endogenous substrates of SLCs include oestrogen and its conjugates, the handling of which may be of importance in hormone-dependent cancers. The SLCs play a significant role in the handling of therapeutic agents including anticancer drugs. Differential SLC expression in cancers may, therefore, impact on the efficacy of treatments. However, there is also a small body of evidence to suggest the dysregulated expression of some of these transporters may be linked to cancer metastasis. This review draws on the current knowledge of the roles of SLC transporters in human cancers in order to highlight the potential significance of these solute carriers in breast cancer pathogenesis and treatment. Graphical abstract ![]()
Collapse
Affiliation(s)
- Rachel Sutherland
- Biosciences Institute, Newcastle University, International Centre for Life, Central Parkway, Newcastle Upon Tyne, UK. .,Translational and Clinical Research Institute, Medical School, Newcastle University, Framlington Place, Newcastle Upon Tyne, UK.
| | - Annette Meeson
- Biosciences Institute, Newcastle University, International Centre for Life, Central Parkway, Newcastle Upon Tyne, UK
| | - Simon Lowes
- Translational and Clinical Research Institute, Medical School, Newcastle University, Framlington Place, Newcastle Upon Tyne, UK.,Breast Screening and Assessment Unit, Queen Elizabeth Hospital, Gateshead Health NHS Foundation Trust, Gateshead, Sheriff Hill, UK
| |
Collapse
|
47
|
Nakanishi T, Nakamura Y, Umeno J. Recent advances in studies of SLCO2A1 as a key regulator of the delivery of prostaglandins to their sites of action. Pharmacol Ther 2021; 223:107803. [PMID: 33465398 DOI: 10.1016/j.pharmthera.2021.107803] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/18/2020] [Indexed: 02/08/2023]
Abstract
Solute carrier organic anion transporter family member 2A1 (SLCO2A1, also known as PGT, OATP2A1, PHOAR2, or SLC21A2) is a plasma membrane transporter consisting of 12 transmembrane domains. It is ubiquitously expressed in tissues, and mediates the membrane transport of prostaglandins (PGs, mainly PGE2, PGF2α, PGD2) and thromboxanes (e.g., TxB2). SLCO2A1-mediated transport is electrogenic and is facilitated by an outwardly directed gradient of lactate. PGs imported by SLCO2A1 are rapidly oxidized by cytoplasmic 15-hydroxyprostaglandin dehydrogenase (15-PGDH, encoded by HPGD). Accumulated evidence suggests that SLCO2A1 plays critical roles in many physiological processes in mammals, and it is considered a potential pharmacological target for diabetic foot ulcer treatment, antipyresis, and non-hormonal contraception. Furthermore, whole-exome analyses suggest that recessive inheritance of SLCO2A1 mutations is associated with two refractory diseases, primary hypertrophic osteoarthropathy (PHO) and chronic enteropathy associated with SLCO2A1 (CEAS). Intriguingly, SLCO2A1 is also a key component of the Maxi-Cl channel, which regulates fluxes of inorganic and organic anions, including ATP. Further study of the bimodal function of SLCO2A1 as a transporter and ion channel is expected to throw new light on the complex pathology of human diseases. Here, we review and summarize recent information on the molecular functions of SLCO2A1, and we discuss its pathophysiological significance.
Collapse
Affiliation(s)
- Takeo Nakanishi
- Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki, Gunma 370-0033, Japan.
| | - Yoshinobu Nakamura
- Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki, Gunma 370-0033, Japan
| | - Junji Umeno
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
| |
Collapse
|
48
|
Engin A. Bile Acid Toxicity and Protein Kinases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1275:229-258. [PMID: 33539018 DOI: 10.1007/978-3-030-49844-3_9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
If the bile acids reach to pathological concentrations due to cholestasis, accumulation of hydrophobic bile acids within the hepatocyte may result in cell death. Thus, hydrophobic bile acids induce apoptosis in hepatocytes, while hydrophilic bile acids increase intracellular adenosine 3',5'-monophosphate (cAMP) levels and activate mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K) pathways to protect hepatocytes from apoptosis.Two apoptotic pathways have been described in bile acids-induced death. Both are controlled by multiple protein kinase signaling pathways. In mitochondria-controlled pathway, caspase-8 is activated with death domain-independent manner, whereas, Fas-dependent classical pathway involves ligand-independent oligomerization of Fas.Hydrophobic bile acids dose-dependently upregulate the inflammatory response by further stimulating production of inflammatory cytokines. Death receptor-mediated apoptosis is regulated at the cell surface by the receptor expression, at the death-inducing signaling complex (DISC) by expression of procaspase-8, the death receptors Fas-associated death domain (FADD), and cellular FADD-like interleukin 1-beta (IL-1β)-converting enzyme (FLICE) inhibitory protein (cFLIP). Bile acids prevent cFLIP recruitment to the DISC and thereby enhance initiator caspase activation and lead to cholestatic apoptosis. At mitochondria, the expression of B-cell leukemia/lymphoma-2 (Bcl-2) family proteins contribute to apoptosis by regulating mitochondrial cytochrome c release via Bcl-2, Bcl-2 homology 3 (BH3) interacting domain death agonist (Bid), or Bcl-2 associated protein x (Bax). Fas receptor CD95 activation by hydrophobic bile acids is initiated by reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-dependent reactive oxygen species (ROS) signaling. However, activation of necroptosis by ligands of death receptors requires the kinase activity of receptor interacting protein1 (RIP1), which mediates the activation of RIP3 and mixed lineage kinase domain-like protein (MLKL). In this chapter, mainly the effect of protein kinases signal transduction on the mechanisms of hydrophobic bile acids-induced inflammation, apoptosis, necroptosis and necrosis are discussed.
Collapse
Affiliation(s)
- Atilla Engin
- Department of General Surgery, Faculty of Medicine, Gazi University, Ankara, Turkey.
| |
Collapse
|
49
|
Liu W, Nakano M, Nakanishi T, Nakajima M, Tamai I. Post-transcriptional regulation of OATP2B1 transporter by a microRNA, miR-24. Drug Metab Pharmacokinet 2020; 35:515-521. [DOI: 10.1016/j.dmpk.2020.07.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/17/2020] [Accepted: 07/30/2020] [Indexed: 12/26/2022]
|
50
|
Rosa B. Equine Drug Transporters: A Mini-Review and Veterinary Perspective. Pharmaceutics 2020; 12:pharmaceutics12111064. [PMID: 33171593 PMCID: PMC7695171 DOI: 10.3390/pharmaceutics12111064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 11/16/2022] Open
Abstract
Xenobiotic transport proteins play an important role in determining drug disposition and pharmacokinetics. Our understanding of the role of these important proteins in humans and pre-clinical animal species has increased substantially over the past few decades, and has had an important impact on human medicine; however, veterinary medicine has not benefitted from the same quantity of research into drug transporters in species of veterinary interest. Differences in transporter expression cause difficulties in extrapolation of drug pharmacokinetic parameters between species, and lack of knowledge of species-specific transporter distribution and function can lead to drug–drug interactions and adverse effects. Horses are one species in which little is known about drug transport and transporter protein expression. The purpose of this mini-review is to stimulate interest in equine drug transport proteins and comparative transporter physiology.
Collapse
Affiliation(s)
- Brielle Rosa
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, 3280 Hospital Drive NW, TRW 2D01, Calgary, Alberta T2N 4Z6, Canada
| |
Collapse
|