1
|
Aberger S, Schreiber N, Pilz S, Eller K, Rosenkranz AR, Kirsch AH. Targeting Calcitriol Metabolism in Acute Vitamin D Toxicity-A Comprehensive Review and Clinical Insight. Int J Mol Sci 2024; 25:10003. [PMID: 39337491 PMCID: PMC11431961 DOI: 10.3390/ijms251810003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/11/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024] Open
Abstract
High-dose vitamin D supplementation is common in the general population, but unsupervised high-dose supplementation in vitamin D-replete individuals poses a risk of severe toxicity. Susceptibility to vitamin D toxicity shows a significant inter-individual variability that may in part be explained by genetic predispositions (i.e., CYP24A1 polymorphism). The classic manifestation of vitamin D toxicity is hypercalcemia, which may be refractory to conventional therapy. Its causes include the endogenous overaction of 1α-hydroxylase, monogenic alterations affecting vitamin D metabolizing enzymes and exogenous vitamin D intoxication. In this manuscript, we include a literature review of potential pharmacological interventions targeting calcitriol metabolism to treat vitamin D intoxication and present a case of severe, exogenous vitamin D intoxication responding to systemic corticosteroids after the failure of conventional therapy. Systemic glucocorticoids alleviate acute hypercalcemia by inhibiting enteric calcium absorption and increasing the degradation of vitamin D metabolites but may cause adverse effects. Inhibitors of 1α-hydroxylase (keto/fluconazole) and inducers of CYP3A4 (rifampicin) may be considered steroid-sparing alternatives for the treatment of vitamin D intoxication.
Collapse
Affiliation(s)
- Simon Aberger
- Division of Nephrology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
- Department of Internal Medicine I-Nephrology, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Nikolaus Schreiber
- Division of Nephrology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
- Division of Anesthesiology and Intensive Care 2, Department of Anesthesiology and Intensive Care, Medical University of Graz, 8036 Graz, Austria
| | - Stefan Pilz
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Kathrin Eller
- Division of Nephrology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Alexander R Rosenkranz
- Division of Nephrology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Alexander H Kirsch
- Division of Nephrology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
| |
Collapse
|
2
|
Slominski RM, Kim TK, Janjetovic Z, Brożyna AA, Podgorska E, Dixon KM, Mason RS, Tuckey RC, Sharma R, Crossman DK, Elmets C, Raman C, Jetten AM, Indra AK, Slominski AT. Malignant Melanoma: An Overview, New Perspectives, and Vitamin D Signaling. Cancers (Basel) 2024; 16:2262. [PMID: 38927967 PMCID: PMC11201527 DOI: 10.3390/cancers16122262] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/09/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Melanoma, originating through malignant transformation of melanin-producing melanocytes, is a formidable malignancy, characterized by local invasiveness, recurrence, early metastasis, resistance to therapy, and a high mortality rate. This review discusses etiologic and risk factors for melanoma, diagnostic and prognostic tools, including recent advances in molecular biology, omics, and bioinformatics, and provides an overview of its therapy. Since the incidence of melanoma is rising and mortality remains unacceptably high, we discuss its inherent properties, including melanogenesis, that make this disease resilient to treatment and propose to use AI to solve the above complex and multidimensional problems. We provide an overview on vitamin D and its anticancerogenic properties, and report recent advances in this field that can provide solutions for the prevention and/or therapy of melanoma. Experimental papers and clinicopathological studies on the role of vitamin D status and signaling pathways initiated by its active metabolites in melanoma prognosis and therapy are reviewed. We conclude that vitamin D signaling, defined by specific nuclear receptors and selective activation by specific vitamin D hydroxyderivatives, can provide a benefit for new or existing therapeutic approaches. We propose to target vitamin D signaling with the use of computational biology and AI tools to provide a solution to the melanoma problem.
Collapse
Affiliation(s)
- Radomir M. Slominski
- Department of Rheumatology and Clinical Immunology, Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Tae-Kang Kim
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Z.J.); (E.P.); (C.E.); (C.R.)
| | - Zorica Janjetovic
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Z.J.); (E.P.); (C.E.); (C.R.)
| | - Anna A. Brożyna
- Department of Human Biology, Institute of Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100 Torun, Poland;
| | - Ewa Podgorska
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Z.J.); (E.P.); (C.E.); (C.R.)
| | - Katie M. Dixon
- School of Medical Sciences, The University of Sydney, Sydney, NSW 2050, Australia; (K.M.D.); (R.S.M.)
| | - Rebecca S. Mason
- School of Medical Sciences, The University of Sydney, Sydney, NSW 2050, Australia; (K.M.D.); (R.S.M.)
| | - Robert C. Tuckey
- School of Molecular Sciences, University of Western Australia, Perth, WA 6009, Australia;
| | - Rahul Sharma
- Department of Biomedical Informatics and Data Science, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - David K. Crossman
- Department of Genetics and Bioinformatics, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Craig Elmets
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Z.J.); (E.P.); (C.E.); (C.R.)
| | - Chander Raman
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Z.J.); (E.P.); (C.E.); (C.R.)
| | - Anton M. Jetten
- Cell Biology Section, NIEHS—National Institutes of Health, Research Triangle Park, NC 27709, USA;
| | - Arup K. Indra
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Andrzej T. Slominski
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Z.J.); (E.P.); (C.E.); (C.R.)
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Pathology and Laboratory Medicine Service, Veteran Administration Medical Center, Birmingham, AL 35233, USA
| |
Collapse
|
3
|
Yin Y, He M, Huang Y, Xie X. Transcriptomic analysis identifies CYP27A1 as a diagnostic marker for the prognosis and immunity in lung adenocarcinoma. BMC Immunol 2023; 24:37. [PMID: 37817081 PMCID: PMC10565965 DOI: 10.1186/s12865-023-00572-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/14/2023] [Indexed: 10/12/2023] Open
Abstract
BACKGROUND The association between lipid metabolism disorder and carcinogenesis is well-established, but there is limited research on the connection between lipid metabolism-related genes (LRGs) and lung adenocarcinoma (LUAD). The objective of our research was to identify LRGs as the potential biomarkers for prognosis and assess their impact on immune cell infiltration in LUAD. METHODS We identified novel prognostic LRGs for LUAD patients via the bioinformatics analysis. CYP27A1 expression level was systematically evaluated via various databases, such as TCGA, UALCAN, and TIMER. Subsequently, LinkedOmics was utilized to perform the CYP27A1 co-expression network and GSEA. ssGSEA was conducted to assess the association between infiltration of immune cells and CYP27A1 expression. CYP27A1's expression level was validated by qRT-PCR analysis. RESULTS CYP27A1 expression was decreased in LUAD. Reduced CYP27A1 expression was linked to unfavorable prognosis in LUAD. Univariate and multivariate analyses indicated that CYP27A1 was an independent prognostic biomarker for LUAD patients. GSEA results revealed a positive correlation between CYP27A1 expression and immune-related pathways. Furthermore, CYP27A1 expression was positively correlated with the infiltration levels of most immune cells. CONCLUSION CYP27A1 is a potential biomarker for LUAD patients, and our findings provided a novel perspective to develop the prognostic marker for LUAD patients.
Collapse
Affiliation(s)
- Yi Yin
- Department of Medical Oncology, Clinical Oncology School of, Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China
| | - Muqun He
- Department of Medical Oncology, Clinical Oncology School of, Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China
| | - Yunjian Huang
- Department of Medical Oncology, Clinical Oncology School of, Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China
| | - Xianhe Xie
- Department of Oncology, Molecular Oncology Research Institute, Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China.
| |
Collapse
|
4
|
Wu D, Nealon G, Liu Y, Kim TK, Slominski AT, Tuckey RC. Metabolism of Lumisterol 2 by CYP27A1. J Steroid Biochem Mol Biol 2023; 233:106370. [PMID: 37499840 DOI: 10.1016/j.jsbmb.2023.106370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/18/2023] [Accepted: 07/22/2023] [Indexed: 07/29/2023]
Abstract
Lumisterol2 (L2) is a photoproduct of UVB action on the fungal membrane sterol, ergosterol. Like vitamin D2, it is present in edible mushrooms, especially after UV irradiation. Lumisterol3 is similarly produced in human skin from 7-dehydrocholesterol by UVB and can be converted to hydroxy-metabolites by CYP27A1 and CYP11A1. These products are biologically active on human cells with actions that include photoprotection and inhibition of proliferation. The aim of this study was to test the ability of CYP11A1 and CYP27A1 to metabolise L2. Purified CYP27A1 was found to efficiently metabolise L2 to three major products and several minor products, whilst CYP11A1 did not act appreciably on L2. The three major products of CYP27A1 action on L2 were identified by mass spectrometry and NMR as 24-hydroxyL2, 27-hydroxyL2 and 28-hydroxyL2. Minor products included two dihydroxy L2 species, one which was identified as 24,27(OH)2L2, and another metabolite with one oxo and one hydroxyl group added. A comparison on the kinetics of the metabolism of L2 by CYP27A1 with that of the structurally similar compounds, L3 and ergosterol, was carried out with substrates incorporated into phospholipid vesicles. CYP27A1 displayed a 12-fold lower Km with L2 as substrate compared to L3 and a 5-fold lower turnover number (kcat), resulting in a 2.2 fold higher catalytic efficiency (kcat/Km) for L2 metabolism. L2 was a much better substrate for CYP27A1 than its precursor, ergosterol, with a catalytic efficiency 18-fold higher. The major CYP27A1-derived hydroxy-L2 products, 24-hydroxyL2, 27-hydroxyL2 and 28-hydroxyL2, inhibited the proliferation of melanoma and epidermoid cancer cell lines. In conclusion, this study shows that L2 is not metabolized appreciably by CYP11A1, but it is a good substrate for CYP27A1 which hydroxylates its side chain to produce 3 major products that display anti-proliferative activity on skin-cancer cell lines.
Collapse
Affiliation(s)
- Dongxian Wu
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Gareth Nealon
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia; Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Perth, WA 6009, Australia
| | - Yuchen Liu
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Tae-Kang Kim
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Andrzej T Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA; VA Medical Center, Birmingham, AL, USA
| | - Robert C Tuckey
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia.
| |
Collapse
|
5
|
Norlin M, Wikvall K. Enzymatic activation in vitamin D signaling - Past, present and future. Arch Biochem Biophys 2023; 742:109639. [PMID: 37196753 DOI: 10.1016/j.abb.2023.109639] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/10/2023] [Accepted: 05/14/2023] [Indexed: 05/19/2023]
Abstract
Vitamin D signaling is important in regulating calcium homeostasis essential for bone health but also displays other functions in cells of several tissues. Disturbed vitamin D signaling is linked to a large number of diseases. The multiple cytochrome P450 (CYP) enzymes catalyzing the different hydroxylations in bioactivation of vitamin D3 are crucial for vitamin D signaling and function. This review is focused on the progress achieved in identification of the bioactivating enzymes and their genes in production of 1α,25-dihydroxyvitamin D3 and other active metabolites. Results obtained on species- and tissue-specific expression, catalytic reactions, substrate specificity, enzyme kinetics, and consequences of gene mutations are evaluated. Matters of incomplete understanding regarding the physiological roles of some vitamin D hydroxylases are critically discussed and the authors will give their view of the importance of each enzyme for vitamin D signaling. Roles of different vitamin D receptors and an alternative bioactivation pathway, leading to 20-hydroxylated vitamin D3 metabolites, are also discussed. Considerable progress has been achieved in knowledge of the vitamin D3 bioactivating enzymes. Nevertheless, several intriguing areas deserve further attention to understand the pleiotropic and diverse activities elicited by vitamin D signaling and the mechanisms of enzymatic activation necessary for vitamin D-induced responses.
Collapse
Affiliation(s)
- Maria Norlin
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden.
| | - Kjell Wikvall
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
6
|
Shang S, He Z, Hou W, Chen X, Zhao X, Han H, Chen S, Yang S, Tai F. Molecular cloning, expression analysis and functional characterization of chicken cytochrome P450 27A1: A novel mitochondrial vitamin D 3 25-hydroxylase. Poult Sci 2023; 102:102747. [PMID: 37276702 PMCID: PMC10258509 DOI: 10.1016/j.psj.2023.102747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 04/05/2023] [Accepted: 04/19/2023] [Indexed: 06/07/2023] Open
Abstract
Vitamin D3 is hydroxylated by cytochrome P450 (CYP) before exerting biological effects. The chicken CYP involved in vitamin D3 25-hydroxylation has yet to be cloned, and little is known about its functional characteristics, tissue distribution, and cellular expression. We identified a novel, full-length CYP27A1 gene cloned from chicken hepatocyte cDNA that encodes a putative protein of 518 amino acids. Swiss modeling revealed that chicken CYP27A1 has a classic open-fold form. Multisequence homology alignment determined that CYP27A1 contains conserved motifs for substrate recognition and binding. Quantitative real-time PCR analysis in 2-mo-old Partridge Shank broilers demonstrated that CYP27A1 mRNA levels were highest in the liver, followed by the thigh muscles, the breast muscles, and kidneys. The transcripts of CYP27A1 in breast muscles were significantly higher in males than in females. A subcellular localization analysis demonstrated that CYP27A1 was mainly expressed in the mitochondria. In vitro enzyme assays suggested that recombinant CYP27A1 hydroxylates vitamin D3 at the C-25 position to form 25-hydroxyvitamin D3 (25(OH)D3). The Km and Vmax values for CYP27A1-dependent vitamin D3 25-hydroxylation were estimated to be 4.929 μM and 0.389 mol min-1 mg-1 protein, respectively. In summary, these results suggest that CYP27A1 encodes a mitochondrial CYP that plays an important physiologic role in the 25-hydroxylation of vitamin D3 in chickens, providing novel insights into vitamin D3 metabolism in this species.
Collapse
Affiliation(s)
- S Shang
- Shaanxi Province Key Laboratory of Bio-Resources, Shaanxi University of Technology, Hanzhong, China; Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, China; Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), Hanzhong, China; Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, China
| | - Z He
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - W Hou
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - X Chen
- Shaanxi Province Key Laboratory of Bio-Resources, Shaanxi University of Technology, Hanzhong, China
| | - X Zhao
- Hanzhong Central Hospital, Hanzhong, China
| | - H Han
- Shaanxi Province Key Laboratory of Bio-Resources, Shaanxi University of Technology, Hanzhong, China
| | - S Chen
- Shaanxi Province Key Laboratory of Bio-Resources, Shaanxi University of Technology, Hanzhong, China
| | - S Yang
- Shaanxi Province Key Laboratory of Bio-Resources, Shaanxi University of Technology, Hanzhong, China
| | - F Tai
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, China.
| |
Collapse
|
7
|
Yang J, Li Q, Feng Y, Zeng Y. Iron Deficiency and Iron Deficiency Anemia: Potential Risk Factors in Bone Loss. Int J Mol Sci 2023; 24:ijms24086891. [PMID: 37108056 PMCID: PMC10138976 DOI: 10.3390/ijms24086891] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/01/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
Iron is one of the essential mineral elements for the human body and this nutrient deficiency is a worldwide public health problem. Iron is essential in oxygen transport, participates in many enzyme systems in the body, and is an important trace element in maintaining basic cellular life activities. Iron also plays an important role in collagen synthesis and vitamin D metabolism. Therefore, decrease in intracellular iron can lead to disturbance in the activity and function of osteoblasts and osteoclasts, resulting in imbalance in bone homeostasis and ultimately bone loss. Indeed, iron deficiency, with or without anemia, leads to osteopenia or osteoporosis, which has been revealed by numerous clinical observations and animal studies. This review presents current knowledge on iron metabolism under iron deficiency states and the diagnosis and prevention of iron deficiency and iron deficiency anemia (IDA). With emphasis, studies related to iron deficiency and bone loss are discussed, and the potential mechanisms of iron deficiency leading to bone loss are analyzed. Finally, several measures to promote complete recovery and prevention of iron deficiency are listed to improve quality of life, including bone health.
Collapse
Affiliation(s)
- Jiancheng Yang
- Department of Osteoporosis, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China
| | - Qingmei Li
- Department of Osteoporosis, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China
| | - Yan Feng
- Department of Osteoporosis, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China
| | - Yuhong Zeng
- Department of Osteoporosis, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China
| |
Collapse
|
8
|
Tuckey RC, Cheng CYS, Li L, Jiang Y. Analysis of the ability of vitamin D3-metabolizing cytochromes P450 to act on vitamin D3 sulfate and 25-hydroxyvitamin D3 3-sulfate. J Steroid Biochem Mol Biol 2023; 227:106229. [PMID: 36455719 DOI: 10.1016/j.jsbmb.2022.106229] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/08/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022]
Abstract
25-Hydroxyvitamin D3 (25(OH)D3) is present in the human circulation esterified to sulfate with some studies showing that 25(OH)D3 3-sulfate levels are almost as high as unconjugated 25(OH)D3. Vitamin D3 is also present in human serum in the sulfated form as are other metabolites. Our aim was to determine whether sulfated forms of vitamin D3 and vitamin D3 metabolites can be acted on by vitamin D-metabolizing cytochromes P450 (CYPs), one of which (CYP11A1) is known to act on cholesterol sulfate. We used purified, bacterially expressed CYPs to test if they could act on the sulfated forms of their natural substrates. Purified CYP27A1 converted vitamin D3 sulfate to 25(OH)D3 3-sulfate with a catalytic efficiency (kcat/Km) approximately half that for the conversion of vitamin D3 to 25(OH)D3. Similarly, the rate of metabolism of vitamin D3 sulfate was half that of vitamin D3 for CYP27A1 in rat liver mitochondria. CYP2R1 which is also a vitamin D 25-hydroxylase did not act on vitamin D3 sulfate. CYP11A1 was able to convert vitamin D3 sulfate to 20(OH)D3 3-sulfate but at a considerably lower rate than for conversion of vitamin D3 to 20(OH)D3. 25(OH)D3 3-sulfate was not metabolized by the activating enzyme, CYP27B1, nor by the inactivating enzyme, CYP24A1. Thus, we conclude that 25(OH)D3 3-sulfate in the circulation may act as a pool of metabolically inactive vitamin D3 to be released by hydrolysis at times of need whereas vitamin D3 sulfate can be metabolized in a similar manner to free vitamin D3 by CYP27A1 and to a lesser degree by CYP11A1.
Collapse
Affiliation(s)
- Robert C Tuckey
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia.
| | - Chloe Y S Cheng
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Lei Li
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Yuhan Jiang
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
9
|
Lan Y, Shao R, Zhang J, Liu J, Liao X, Liang S, Mai K, Ai Q, Wan M. Vitamin D 3 enhances the antibacterial ability in head-kidney macrophages of turbot (Scophthalmus maximus L.) through C-type lectin receptors. FISH & SHELLFISH IMMUNOLOGY 2023; 132:108491. [PMID: 36503059 DOI: 10.1016/j.fsi.2022.108491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
It has been known that vitamin D3 (VD3) not only plays an important role in regulating calcium and phosphorus metabolism in animals, but also has extensive effects on immune functions. In this study, the mechanism how VD3 influences bactericidal ability in turbot was explored. The transcriptomic analysis identified that dietary VD3 significantly upregulated the gene expression of C-type lectin receptors (CLRs), including mannose receptors (mrc1, mrc2, pla2r1) and collectins (collectin 11 and collectin 12) in turbot intestine. Further results obtained from in vitro experiments confirmed that the gene expression of mannose receptors and collectins in head-kidney macrophages (HKMs) of turbot was induced after the cells were incubated with different concentrations of VD3 (0, 1, 10 nM) or 1,25(OH)2D3 (0, 10, 100 pM). Meanwhile, both phagocytosis and bactericidal functions of HKMs were significantly improved in VD3 or 1,25(OH)2D3-incubated HKMs. Furthermore, phagocytosis and bacterial killing of HKMs decreased after collectin 11 was knocked down. Moreover, VD3-enhanced antibacterial activities diminished in collectin 11-interfered cells. Interestingly, the evidence was provided in the present study that inactive VD3 could be metabolized into active 1,25(OH)2D3 via hydroxylases encoded by cyp27a1 and cyp27b1 in fish macrophages. In conclusion, VD3 could be metabolized to 1,25(OH)2D3 in HKMs, which promoted the expression of CLRs in macrophages, leading to enhanced bacterial clearance.
Collapse
Affiliation(s)
- Yawen Lan
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, China
| | - Rui Shao
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, China
| | - Jinjin Zhang
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, China
| | - Jiayu Liu
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, China
| | - Xinmeng Liao
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, China
| | - Shufei Liang
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, China; Pilot National Laboratory of Marine Science and Technology, Qingdao, China
| | - Qinghui Ai
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, China; Pilot National Laboratory of Marine Science and Technology, Qingdao, China
| | - Min Wan
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, China; Pilot National Laboratory of Marine Science and Technology, Qingdao, China.
| |
Collapse
|
10
|
Wang Z, Zeng Y, Jia H, Yang N, Liu M, Jiang M, Zheng Y. Bioconversion of vitamin D 3 to bioactive calcifediol and calcitriol as high-value compounds. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:109. [PMID: 36229827 PMCID: PMC9563128 DOI: 10.1186/s13068-022-02209-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 10/04/2022] [Indexed: 11/07/2022]
Abstract
Biological catalysis is an important approach for the production of high-value-added compounds, especially for products with complex structures. Limited by the complex steps of chemical synthesis and low yields, the bioconversion of vitamin D3 (VD3) to calcifediol and calcitriol, which are natural steroid products with high added value and significantly higher biological activity compared to VD3, is probably the most promising strategy for calcifediol and calcitriol production, and can be used as an alternative method for chemical synthesis. The conversion efficiency of VD3 to calcifediol and calcitriol has continued to rise in the past few decades with the help of several different VD3 hydroxylases, mostly cytochrome P450s (CYPs), and newly isolated strains. The production of calcifediol and calcitriol can be systematically increased in different ways. Specific CYPs and steroid C25 dehydrogenase (S25DH), as VD3 hydroxylases, are capable of converting VD3 to calcifediol and calcitriol. Some isolated actinomycetes have also been exploited for fermentative production of calcifediol and calcitriol, although the VD3 hydroxylases of these strains have not been elucidated. With the rapid development of synthetic biology and enzyme engineering, quite a lot of advances in bioproduction of calcifediol and calcitriol has been achieved in recent years. Therefore, here we review the successful strategies of promoting VD3 hydroxylation and provide some perspective on how to further improve the bioconversion of VD3 to calcifediol and calcitriol.
Collapse
Affiliation(s)
- Zheyi Wang
- grid.9227.e0000000119573309State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichen West Road, Chaoyang District, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049 China
| | - Yan Zeng
- grid.9227.e0000000119573309State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichen West Road, Chaoyang District, Beijing, 100101 China
| | - Hongmin Jia
- China Animal Husbandry Industry Co. Ltd, Beijing, 100095 China
| | - Niping Yang
- grid.256885.40000 0004 1791 4722School of Life Sciences, Hebei University, No. 180 Wusi Dong Road, Baoding, 071002 China
| | - Mengshuang Liu
- grid.9227.e0000000119573309State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichen West Road, Chaoyang District, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049 China
| | - Mingyue Jiang
- grid.9227.e0000000119573309State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichen West Road, Chaoyang District, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049 China
| | - Yanning Zheng
- grid.9227.e0000000119573309State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichen West Road, Chaoyang District, Beijing, 100101 China
| |
Collapse
|
11
|
Abdalkareem Jasim S, Kzar HH, Haider Hamad M, Ahmad I, Al-Gazally ME, Ziyadullaev S, Sivaraman R, Abed Jawad M, Thaeer Hammid A, Oudaha KH, Karampoor S, Mirzaei R. The emerging role of 27-hydroxycholesterol in cancer development and progression: An update. Int Immunopharmacol 2022; 110:109074. [PMID: 35978522 DOI: 10.1016/j.intimp.2022.109074] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/09/2022] [Accepted: 07/17/2022] [Indexed: 02/07/2023]
Abstract
Oxysterols are cholesterol metabolites generated in the liver and other peripheral tissues as a mechanism of removing excess cholesterol. Oxysterols have a wide range of biological functions, including the regulation of sphingolipid metabolism, platelet aggregation, and apoptosis. However, it has been found that metabolites derived from cholesterol play essential functions in cancer development and immunological suppression. In this regard, research indicates that 27-hydroxycholesterol (27-HC) might act as an estrogen, promoting the growth of estrogen receptor (ER) positive breast cancer cells. The capacity of cholesterol to dynamically modulate signaling molecules inside the membrane and particular metabolites serving as signaling molecules are two possible contributory processes. 27-HC is a significant metabolite produced mainly through the CYP27A1 (Cytochrome P450 27A1) enzyme. 27-HC maintains cholesterol balance biologically by promoting cholesterol efflux via the liver X receptor (LXR) and suppressing de novo cholesterol production through the Insulin-induced Genes (INSIGs). It has been demonstrated that 27-HC is able to function as a selective ER regulator. Moreover, enhanced 27-HC production is in favor of the growth of end-stage malignancies in the brain, thyroid organs, and colon, as shown in breast cancer, probably due to pro-survival and pro-inflammatory signaling induced by unbalanced levels of oxysterols. However, the actual role of 27-HC in cancer promotion and progression remains debatable, and many studies are warranted to be performed to unravel the precise function of these molecules. This review article will summarize the latest evidence on the deleterious or beneficial functions of 27-HC in various types of cancer, such as breast cancer, prostate cancer, colon cancer, gastric cancer, ovarian cancer, endometrial cancer, lung cancer, melanoma, glioblastoma, thyroid cancer, adrenocortical cancer, and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Saade Abdalkareem Jasim
- Medical Laboratory Techniques Department, Al-maarif University College, Al-anbar-Ramadi, Iraq
| | - Hamzah H Kzar
- Veterinary medicine college, Al-Qasim green University, Al-Qasim, Iraq
| | - Mohammed Haider Hamad
- Medical Laboratory Techniques Department, Al Mustaqbal University college, Babylon, Iraq
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | | | - Shukhrat Ziyadullaev
- Professor, Doctor of Medical Sciences, No.1 Department of Internal Diseases, Vice-rector for Scientific Affairs and Innovations, Samarkand State Medical University, Amir Temur Street 18, Samarkand, Uzbekistan
| | - R Sivaraman
- Department of Mathematics, Institution of Dwaraka Doss Goverdhan Doss Vaishnav College, Arumbakkam, Chennai, University of Madras, Chennai, India
| | | | - Ali Thaeer Hammid
- Computer Engineering Techniques Department, Faculty of Information Technology, Imam Ja'afar Al-Sadiq University, Baghdad, Iraq
| | - Khulood H Oudaha
- Pharmaceutical Chemistry Department, College of Pharmacy, Al-Ayen University Thi-Qar, Iraq
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
12
|
St-Arnaud R, Arabian A, Kavame D, Kaufmann M, Jones G. Vitamin D and Diseases of Mineral Homeostasis: A Cyp24a1 R396W Humanized Preclinical Model of Infantile Hypercalcemia Type 1. Nutrients 2022; 14:nu14153221. [PMID: 35956396 PMCID: PMC9370611 DOI: 10.3390/nu14153221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 11/17/2022] Open
Abstract
Infantile hypercalcemia type 1 (HCINF1), previously known as idiopathic infantile hypercalcemia, is caused by mutations in the 25-hydroxyvitamin D 24-hydroxylase gene, CYP24A1. The R396W loss-of-function mutation in CYP24A1 is the second most frequent mutated allele observed in affected HCINF1 patients. We have introduced the site-specific R396W mutation within the murine Cyp24a1 gene in knock-in mice to generate a humanized model of HCINF1. On the C57Bl6 inbred background, homozygous mutant mice exhibited high perinatal lethality with 17% survival past weaning. This was corrected by crossbreeding to the CD1 outbred background. Mutant animals had hypercalcemia in the first week of life, developed nephrolithiasis, and had a very high 25(OH)D3 to 24,25(OH)2D3 ratio which is a diagnostic hallmark of the HCINF1 condition. Expression of the mutant Cyp24a1 allele was highly elevated while Cyp27b1 expression was abrogated. Impaired bone fracture healing was detected in CD1-R396w/w mutant animals. The augmented lethality of the C57Bl6-R396W strain suggests an influence of distinct genetic backgrounds. Our data point to the utility of unique knock-in mice to probe the physiological ramifications of CYP24A1 variants in isolation from other biological and environmental factors.
Collapse
Affiliation(s)
- René St-Arnaud
- Research Centre, Shriners Hospital for Children-Canada, Montreal, QC H4A 0A9, Canada
- Department of Human Genetics, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 0C7, Canada
- Department of Surgery, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3G 1A4, Canada
- Department of Medicine, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 1A1, Canada
- Correspondence: ; Tel.: +1-514-282-7155; Fax: +1-514-842-5581
| | - Alice Arabian
- Research Centre, Shriners Hospital for Children-Canada, Montreal, QC H4A 0A9, Canada
| | - Dila Kavame
- Research Centre, Shriners Hospital for Children-Canada, Montreal, QC H4A 0A9, Canada
- Department of Human Genetics, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 0C7, Canada
| | - Martin Kaufmann
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada
- Department of Surgery, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Glenville Jones
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
13
|
Hasan M, Oster M, Reyer H, Ponsuksili S, Murani E, Wolf P, Fischer DC, Wimmers K. Tissue-Wide Expression of Genes Related to Vitamin D Metabolism and FGF23 Signaling following Variable Phosphorus Intake in Pigs. Metabolites 2022; 12:metabo12080729. [PMID: 36005601 PMCID: PMC9413461 DOI: 10.3390/metabo12080729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 11/16/2022] Open
Abstract
Calcium (Ca) and phosphorus (P) homeostasis is maintained by several regulators, including vitamin D and fibroblast growth factor 23 (FGF23), and their tissue-specific activation and signaling cascades. In this study, the tissue-wide expression of key genes linked to vitamin D metabolism (CYP2R1, CYP27A1, CYP27B1, CYP24A1, GC, VDR) and FGF23 signaling (FGF23, FGFR1-4, KL) were investigated in pigs fed conventional (trial 1) and divergent P diets (trial 2). The tissue set comprised kidney, liver, bone, lung, aorta, and gastrointestinal tract sections. Expression patterns revealed that non-renal tissues and cells (NRTC) express genes to form active vitamin D [1,25(OH)2D3] according to site-specific requirements. A low P diet resulted in higher serum calcitriol and increased CYP24A1 expression in the small intestine, indicating local suppression of vitamin D signaling. A high P diet prompted increased mRNA abundances of CYP27B1 for local vitamin D synthesis, specifically in bone. For FGF23 signaling, analyses revealed ubiquitous expression of FGFR1-4, whereas KL was expressed in a tissue-specific manner. Dietary P supply did not affect skeletal FGF23; however, FGFR4 and KL showed increased expression in bone at high P supply, suggesting regulation to balance mineralization. Specific NRTC responses influence vitamin D metabolism and P homeostasis, which should be considered for a thrifty but healthy P supply.
Collapse
Affiliation(s)
- Maruf Hasan
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Michael Oster
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Henry Reyer
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Siriluck Ponsuksili
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Eduard Murani
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Petra Wolf
- Faculty of Agricultural and Environmental Sciences, University of Rostock, Justus-von-Liebig-Weg 6b, 18059 Rostock, Germany
| | - Dagmar-Christiane Fischer
- Department of Pediatrics, Rostock University Hospital, Ernst-Heydemann-Str. 8, 18057 Rostock, Germany
| | - Klaus Wimmers
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
- Faculty of Agricultural and Environmental Sciences, University of Rostock, Justus-von-Liebig-Weg 6b, 18059 Rostock, Germany
- Correspondence: ; Tel.: +49-38208-68600
| |
Collapse
|
14
|
Quintero-Fabián S, Bandala C, Pichardo-Macías LA, Contreras-García IJ, Gómez-Manzo S, Hernández-Ochoa B, Martínez-Orozco JA, Ignacio- Mejía I, Cárdenas-Rodríguez N. Vitamin D and its possible relationship to neuroprotection in COVID-19: evidence in the literature. Curr Top Med Chem 2022; 22:1346-1368. [PMID: 35366776 DOI: 10.2174/1568026622666220401140737] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 01/30/2022] [Accepted: 02/03/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Vitamin D is a hormone involved in the regulation of important biological processes such as signal transduction, immune response, metabolic regulation and also in the nervous and vascular systems. To date, coronavirus disease 2019 (COVID-19) infection does not have a specific treatment, however various drugs have been proposed, including those that attenuate the intense inflammatory response and recently the use of vitamin D, in clinical trials, as part of the treatment of COVID-19 has provided promising results. It has been observed in some clinical studies that the use of cholecalciferol (vitamin D3) and its two metabolites the circulating form, calcidiol or calcifediol (25-hydroxycalciferol, 25-(OH)-D) and the active form, calcitriol (1,25-(OH)2-D), in different doses, improve the clinical manifestations, prognosis and survival of patients infected with COVID-19 probably because of its anti-inflammatory, antiviral and lung-protective action. In relation to the central nervous system (CNS) it has been shown, in clinical studies, that vitamin D is beneficial in some neurological and psychiatric conditions because of its anti-inflammatory and antioxidant properties, modulation of neurotransmitters actions, regulation of calcium homeostasis between other mechanisms. It has been showed that COVID-19 infection induces CNS complications such as headache, anosmia, ageusia, neuropathy, encephalitis, stroke, thrombosis, cerebral hemorrhages, cytotoxic lesions and psychiatric conditions and it has been proposed that the use of dietary supplements, as vitamin and minerals, can be adjuvants in this disease. In this review the evidence of possible role of vitamin D, and its metabolites, as protector against the neurological manifestations of COVID-19 was summarized.
Collapse
Affiliation(s)
- Saray Quintero-Fabián
- Laboratorio de Medicina Traslacional, Escuela Militar de Graduados de Sanidad, UDEFA, Mexico City, 11200, Mexico
| | - Cindy Bandala
- Division de Neurociencias, Instituto Nacional de Rehabilitación, Secretaría de Salud, Mexico City, 14389, Mexico
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, 11340, Mexico
| | - Luz Adriana Pichardo-Macías
- Departamento de Fisiología, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Mexico City, 07738, Mexico
| | | | - Saúl Gómez-Manzo
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City, 04530, Mexico
| | - Beatriz Hernández-Ochoa
- Laboratorio de Inmunoquímica, Hospital Infantil de México Federico Gómez, Secretaría de Salud, Mexico City, 06720, Mexico
| | - José Arturo Martínez-Orozco
- Departmento de Infectología, Instituto Nacional de Enfermedades Respiratorias, Ismael Cosío Villegas, Secretaría de Salud, Mexico City, 14080, Mexico
| | - Iván Ignacio- Mejía
- Laboratorio de Medicina Traslacional, Escuela Militar de Graduados de Sanidad, UDEFA, Mexico City, 11200, Mexico
| | - Noemí Cárdenas-Rodríguez
- Laboratorio de Neurociencias, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City, 04530, Mexico
| |
Collapse
|
15
|
Jarosz AC, Noori D, Zeitoun T, Garcia-Bailo B, El-Sohemy A. Variation in the vitamin D receptor gene, plasma 25-hydroxyvitamin D, and risk of premenstrual symptoms. GENES & NUTRITION 2021; 16:15. [PMID: 34551710 PMCID: PMC8459465 DOI: 10.1186/s12263-021-00696-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/06/2021] [Indexed: 11/10/2022]
Abstract
Background Vitamin D status has been associated with the presence and severity of several premenstrual symptoms (PMSx) in some, but not all studies. Inconsistencies among findings may be explained by unaccounted genetic variation in the vitamin D receptor (VDR). Objective To determine whether associations between vitamin D status and individual PMSx are influenced by VDR genotype. Methods Seven hundred sixteen women aged 20-29 years old from the Toronto Nutrigenomics and Health study provided plasma samples and completed a questionnaire on the presence and severity of 15 common PMSx. Plasma 25-hydroxyvitamin D (25(OH)D) concentration was measured and participants were categorized into sufficient (≥ 50 nmol/L) and insufficient (< 50 nmol/L) vitamin D status groups. DNA was obtained from blood samples to genotype for a common VDR single nucleotide variant, rs796858. Using logistic regression, odds of experiencing PMSx were compared between vitamin D-sufficient and insufficient women, stratified by genotype. Results Among CC homozygotes, insufficient vitamin D status was associated with higher odds of experiencing premenstrual fatigue (OR, 2.53; 95% CI, 1.40, 4.56) and nausea (OR, 2.44; 95% CI, 1.00, 5.95). Among TT homozygotes, insufficient vitamin D status was associated with lower odds of experiencing fatigue (OR, 0.44; 95% CI, 0.20, 0.97) and increased appetite (OR, 0.48; 95% CI, 0.22, 1.04). Insufficient vitamin D status was associated with higher odds of increased appetite in women with the CT genotype (OR, 1.78; 95% CI, 1.03, 3.07). VDR genotype modified the association between vitamin D status and the following PMSx: increased appetite (interaction p = 0.027), fatigue (interaction p = 0.016), and nausea (interaction p = 0.039). Conclusion We found evidence that VDR genotype may modify the association between 25(OH)D and some PMSx. Insufficient 25(OH)D was associated with a higher risk of premenstrual fatigue in those with the CC genotype, but lower risk in those with the TT genotype. Supplementary Information The online version contains supplementary material available at 10.1186/s12263-021-00696-2.
Collapse
|
16
|
Sakamoto R, Nagata A, Ohshita H, Mizumoto Y, Iwaki M, Yasuda K, Sakaki T, Nagasawa K. Chemical Synthesis of Side-Chain-Hydroxylated Vitamin D 3 Derivatives and Their Metabolism by CYP27B1. Chembiochem 2021; 22:2896-2900. [PMID: 34250710 DOI: 10.1002/cbic.202100250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/07/2021] [Indexed: 11/09/2022]
Abstract
1α,25-Dihydroxyvitamin D3 (abbreviated here as 1,25D3 ) is a hormonally active form of vitamin D3 (D3 ), and is produced from D3 by CYP27 A1-mediated hydroxylation at C25, followed by CYP27B1-mediated hydroxylation at C1. Further hydroxylation of 25D3 and 1,25D3 occurs at C23, C24 and C26 to generate corresponding metabolites, except for 1,25R,26D3 . Since the capability of CYP27B1 to hydroxylate C1 of side-chain-hydroxylated metabolites other than 23S,25D3 and 24R,25D3 has not been examined, we have here explored the role of CYP27B1 in the C1 hydroxylation of a series of side-chain-hydroxylated D3 derivatives. We found that CYP27B1 hydroxylates the R diastereomers of 24,25D3 and 25,26D3 more effectively than the S diastereomers, but shows almost no activity towards either diastereomer of 23,25D3 . This is the first report to show that CYP27B1 metabolizes 25,26D3 to the corresponding 1α-hydroxylated derivative, 1,25,26D3 . It will be interesting to examine the physiological relevance of this finding.
Collapse
Affiliation(s)
- Ryota Sakamoto
- Department of Biotechnology and Life Science, Graduate School of Technology, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, 184-8588, Tokyo, Japan
| | - Akiko Nagata
- Department of Biotechnology and Life Science, Graduate School of Technology, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, 184-8588, Tokyo, Japan
| | - Haruki Ohshita
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Yuka Mizumoto
- Department of Biotechnology and Life Science, Graduate School of Technology, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, 184-8588, Tokyo, Japan
| | - Miho Iwaki
- Department of Biotechnology and Life Science, Graduate School of Technology, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, 184-8588, Tokyo, Japan
| | - Kaori Yasuda
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Toshiyuki Sakaki
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Kazuo Nagasawa
- Department of Biotechnology and Life Science, Graduate School of Technology, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, 184-8588, Tokyo, Japan
| |
Collapse
|
17
|
Lemke D, Klement RJ, Schweiger F, Schweiger B, Spitz J. Vitamin D Resistance as a Possible Cause of Autoimmune Diseases: A Hypothesis Confirmed by a Therapeutic High-Dose Vitamin D Protocol. Front Immunol 2021; 12:655739. [PMID: 33897704 PMCID: PMC8058406 DOI: 10.3389/fimmu.2021.655739] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/19/2021] [Indexed: 01/02/2023] Open
Abstract
Vitamin D3 (cholecalciferol) is a secosteroid and prohormone which is metabolized in various tissues to the biologically most active vitamin D hormone 1,25(OH)2D3 (calcitriol). 1,25(OH)2D3 has multiple pleiotropic effects, particularly within the immune system, and is increasingly utilized not only within prophylaxis, but also within therapy of various diseases. In this context, the latest research has revealed clinical benefits of high dose vitamin D3 therapy in autoimmune diseases. The necessity of high doses of vitamin D3 for treatment success can be explained by the concept of an acquired form of vitamin D resistance. Its etiology is based on the one hand on polymorphisms within genes affecting the vitamin D system, causing susceptibility towards developing low vitamin D responsiveness and autoimmune diseases; on the other hand it is based on a blockade of vitamin D receptor signaling, e.g. through pathogen infections. In this paper, we review observational and mechanistic evidence for the acquired vitamin D resistance hypothesis. We particularly focus on its clinical confirmation from our experience of treating multiple sclerosis patients with the so-called Coimbra protocol, in which daily doses up to 1000 I.U. vitamin D3 per kg body weight can be administered safely. Parathyroid hormone levels in serum thereby provide the key information for finding the right dose. We argue that acquired vitamin D resistance provides a plausible pathomechanism for the development of autoimmune diseases, which could be treated using high-dose vitamin D3 therapy.
Collapse
Affiliation(s)
- Dirk Lemke
- Praxis Dr. Beatrix Schweiger, Bensheim, Germany
| | - Rainer Johannes Klement
- Department of Radiotherapy and Radiation Oncology, Leopoldina Hospital Schweinfurt, Schweinfurt, Germany
| | | | | | - Jörg Spitz
- Akademie für menschliche Medizin und evolutionäre Gesundheit, Schlangenbad, Germany
| |
Collapse
|
18
|
Zhang P, Zhao J, Peng XM, Qian YY, Zhao XM, Zhou WH, Wang JS, Wu BB, Wang HJ. Cholestasis as a dominating symptom of patients with CYP27A1 mutations: An analysis of 17 Chinese infants. J Clin Lipidol 2021; 15:116-123. [PMID: 33414089 DOI: 10.1016/j.jacl.2020.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/28/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND CYP27A1 is the disease-causing gene of cerebrotendinous xanthomatosis (CTX). As a treatable lipid storage disease, early treatment can improve the prognosis. However, CTX patients reported in the literature are mostly adult patients; the phenotype spectrum of CTX in the infantile population remains elusive. OBJECTIVE We aimed to investigate the phenotype spectrum of infants who carried pathogenic or likely pathogenic variants in the CYP27A1 gene and were suspected of having CTX. METHODS From June 2014 to May 2020, infants with pathogenic or likely pathogenic variants in CYP27A1 gene were enrolled, who underwent next-generation sequencing or Sanger sequencing in Children's Hospital of Fudan University. Patient characteristics, clinical treatments and outcomes were extracted from electronic medical records. RESULTS A total of 17 patients with an average onset age of 8 (1-42) days were found. The average diagnosis age was ten months. Cholestasis was the dominant symptom of these infants. Thirteen variants were detected, of which c.379C > T was a hotspot variant (26.5% alleles, 9/34). Cholestatic CTX is usually underestimated, but it could be severe or even fatal in infancy. For outcomes, 5 suffered from liver failure (36%, 5/14), 1 still showed cholestasis (7%, 1/14), 7 were asymptomatic (50%, 7/14), and 1 presented seizure and developmental delay in later childhood (7%, 1/14). CONCLUSION Based on this infantile cohort, we concluded that it is necessary to consider the possibility of CTX caused by CYP27A1 gene variants for infants with cholestasis.
Collapse
Affiliation(s)
- Ping Zhang
- Center for Molecular Medicine and Key Laboratory of Birth Defects, Pediatrics Research Institute, Children's Hospital of Fudan University, Shanghai, China
| | - Jing Zhao
- Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Xiao-Min Peng
- Center for Molecular Medicine and Key Laboratory of Birth Defects, Pediatrics Research Institute, Children's Hospital of Fudan University, Shanghai, China
| | - Yan-Yan Qian
- Center for Molecular Medicine and Key Laboratory of Birth Defects, Pediatrics Research Institute, Children's Hospital of Fudan University, Shanghai, China
| | - Xue-Mei Zhao
- Center for Molecular Medicine and Key Laboratory of Birth Defects, Pediatrics Research Institute, Children's Hospital of Fudan University, Shanghai, China
| | - Wen-Hao Zhou
- Center for Molecular Medicine and Key Laboratory of Birth Defects, Pediatrics Research Institute, Children's Hospital of Fudan University, Shanghai, China; Department of Neonates, Key Laboratory of Neonatal Diseases, Ministry of Health, Children's Hospital of Fudan University, Shanghai, China
| | - Jian-She Wang
- Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Bing-Bing Wu
- Center for Molecular Medicine and Key Laboratory of Birth Defects, Pediatrics Research Institute, Children's Hospital of Fudan University, Shanghai, China.
| | - Hui-Jun Wang
- Center for Molecular Medicine and Key Laboratory of Birth Defects, Pediatrics Research Institute, Children's Hospital of Fudan University, Shanghai, China.
| |
Collapse
|
19
|
Baur AC, Kühn J, Brandsch C, Hirche F, Stangl GI. Intake of ergosterol increases the vitamin D concentrations in serum and liver of mice. J Steroid Biochem Mol Biol 2019; 194:105435. [PMID: 31352023 DOI: 10.1016/j.jsbmb.2019.105435] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/18/2019] [Accepted: 07/24/2019] [Indexed: 12/26/2022]
Abstract
Factors that can modify the bioavailability of orally administered vitamin D are not yet widely known. Ergosterol is a common fungal sterol found in food which has a chemical structure comparable to that of vitamin D. This study aimed to investigate the effect of ergosterol on vitamin D metabolism. Therefore, 36 male wild type-mice were randomly subdivided into three groups (n = 12) and received a diet containing 25 μg vitamin D3 and either 0 mg (control), 2 mg or 7 mg ergosterol per kg diet for 6 weeks. To elucidate the impact of ergosterol on hepatic hydroxylation of vitamin D, human hepatoma cells (HepG2) were treated with different concentrations of ergosterol. Concentrations of vitamin D3 and 25-hydroxyvitamin D3 (25(OH)D3) in cells, livers and kidneys of mice and additionally 24,25-dihydroxyvitamin D3 (24,25(OH)2D3) in serum were quantified by LC-MS/MS. The concentration of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) in serum was analyzed by commercially-available enzyme immuno assay. The concentrations of cholesterol and triglycerides were analyzed in livers of mice by photometric assays. Analyses revealed that mice receiving 7 mg/kg ergosterol with their diet had 1.3-, 1.7- and 1.5-times higher concentrations of vitamin D3 in serum, liver and kidney, respectively, than control mice (P < 0.05), whereas no significant effects were observed in mice fed 2 mg/kg ergosterol. The hydroxylation of vitamin D remained unaffected by dietary ergosterol, since the concentration of 25-hydroxyvitamin D3 in serum and tissues and the concentrations of 1,25(OH)2D3 and 24,25(OH)2D3 in serum were not different between the three groups of mice. The lipid concentrations in liver were also not affected by dietary ergosterol. Data from the cell culture studies showed that ergosterol did not influence the conversion of vitamin D3 to 25(OH)D3. To conclude, ergosterol appears to be a modulator of vitamin D3 concentrations in the body of mice, without modulating the hydroxylation of vitamin D3 in liver.
Collapse
Affiliation(s)
- Anja C Baur
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 2, 06120, Halle (Saale), Germany; Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Germany.
| | - Julia Kühn
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 2, 06120, Halle (Saale), Germany; Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Germany.
| | - Corinna Brandsch
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 2, 06120, Halle (Saale), Germany.
| | - Frank Hirche
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 2, 06120, Halle (Saale), Germany.
| | - Gabriele I Stangl
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 2, 06120, Halle (Saale), Germany; Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Germany.
| |
Collapse
|
20
|
Tuckey RC, Cheng CYS, Slominski AT. The serum vitamin D metabolome: What we know and what is still to discover. J Steroid Biochem Mol Biol 2019; 186:4-21. [PMID: 30205156 PMCID: PMC6342654 DOI: 10.1016/j.jsbmb.2018.09.003] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 09/04/2018] [Accepted: 09/04/2018] [Indexed: 01/08/2023]
Abstract
Vitamin D, referring to the two forms, D2 from the diet and D3 primarily derived from phototransformation in the skin, is a prohormone important in human health. The most hormonally active form, 1α,25-dihydroxyvitamin D (1α,25(OH)2D), formed from vitamin D via 25-hydroxyvitamin D (25(OH)D), is not only important for regulating calcium metabolism, but has many pleiotropic effects including regulation of the immune system and has anti-cancer properties. The major circulating form of vitamin D is 25(OH)D and both D2 and D3 forms are routinely measured by LC/MS/MS to assess vitamin D status, due to their relatively long half-lives and much higher concentrations compared to 1α,25(OH)2D. Inactivation of both 25(OH)D and 1α,25(OH)2D is catalyzed by CYP24A1 and 25-hydroxyvitamin D3 3-epimerase. Initial products from these enzymes acting on 25(OH)D3 are 24R,25(OH)2D3 and 3-epi-25(OH)D3, respectively, and both of these can also be measured routinely in some clinical laboratories to further document vitamin D status. With advances in LC/MS/MS and its increased availability, and with the help of studies with recombinant vitamin D-metabolizing enzymes, many other vitamin D metabolites have now been detected and in some cases quantitated, in human serum. CYP11A1 which catalyzes the first step in steroidogenesis, has been found to also act on vitamins D3 and D2 hydroxylating both at C20, but with some secondary metabolites produced by subsequent hydroxylations at other positions on the side chain. The major vitamin D3 metabolite, 20S-hydroxyvitamin D3 (20S(OH)D3), shows biological activity, often similar to 1α,25(OH)2D3 but without calcemic effects. Using standards produced enzymatically by purified CYP11A1 and characterized by NMR, many of these new metabolites have been detected in human serum, with semi-quantitative measurement of 20S(OH)D3 indicating it is present at comparable concentrations to 24R,25(OH)2D3 and 3-epi-25(OH)D3. Recently, vitamin D-related hydroxylumisterols derived from lumisterol3, a previtamin D3 photoproduct, have also been measured in human serum and displayed biological activity in initial in vitro studies. With the current extensive knowledge on the reactions and pathways of metabolism of vitamin D, especially those catalyzed by CYP24A1, CYP27A1, CYP27B1, CYP3A4 and CYP11A1, it is likely that many other of the resulting hydroxyvitamin D metabolites will be measured in human serum in the future, some contributing to a more detailed understanding of vitamin D status in health and disease.
Collapse
Affiliation(s)
- Robert C Tuckey
- School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia.
| | - Chloe Y S Cheng
- School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Andrzej T Slominski
- Department of Dermatology, University of Alabama at Birmingham, AL, 35294, USA; Comprehensive Cancer Center Cancer Chemoprevention Program, University of Alabama at Birmingham, AL, 35294, USA; VA Medical Center, Birmingham, AL, 35294, USA
| |
Collapse
|
21
|
Nishikawa M, Yasuda K, Takamatsu M, Abe K, Nakagawa K, Tsugawa N, Hirota Y, Tanaka K, Yamashita S, Ikushiro S, Suda T, Okano T, Sakaki T. Generation of 1,25-dihydroxyvitamin D 3 in Cyp27b1 knockout mice by treatment with 25-hydroxyvitamin D 3 rescued their rachitic phenotypes. J Steroid Biochem Mol Biol 2019; 185:71-79. [PMID: 30031146 DOI: 10.1016/j.jsbmb.2018.07.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 07/02/2018] [Accepted: 07/16/2018] [Indexed: 12/27/2022]
Abstract
We have reported that 25-hydroxyvitamin D3 [25(OH)D3] binds to vitamin D receptor and exhibits several biological functions directly in vitro. To evaluate the direct effect of 25(OH)D3 in vivo, we used Cyp27b1 knockout (KO) mice, which had no detectable plasma 1α,25-dihydroxyvitamin D3 [1,25(OH)2D3] when fed a diet containing normal Ca and vitamin D. Daily treatment with 25(OH)D3 at 250 μg kg-1 day-1 rescued rachitic phenotypes in the Cyp27b1 KO mice. Bone mineral density, female sexual cycles, and plasma levels of Ca, P, and PTH were all normalized following 25(OH)D3 administration. An elevated Cyp24a1 mRNA expression was observed in the kidneys, and plasma concentrations of Cyp24a1-dependent metabolites of 25(OH)D3 were increased. To our surprise, 1,25(OH)2D3 was detected at a normal level in the plasma of Cyp27b1 KO mice. The F1 to F4 generations of Cyp27b1 KO mice fed 25(OH)D3 showed normal growth, normal plasma levels of Ca, P, and parathyroid hormone, and normal bone mineral density. The curative effect of 25(OH)D3 was considered to depend on the de novo synthesis of 1,25(OH)2D3 in the Cyp27b1 KO mice. This suggests that another enzyme than Cyp27b1 is present for the 1,25(OH)2D3 synthesis. Interestingly, the liver mitochondrial fraction prepared from Cyp27b1 KO mice converted 25(OH)D3 to 1,25(OH)2D3. The most probable candidate is Cyp27a1. Our findings suggest that 25(OH)D3 may be useful for the treatment and prevention of osteoporosis for patients with chronic kidney disease.
Collapse
Affiliation(s)
- Miyu Nishikawa
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Kaori Yasuda
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Masashi Takamatsu
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Keisuke Abe
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Kimie Nakagawa
- Department of Hygienic Sciences, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe 658-8558, Japan
| | - Naoko Tsugawa
- Department of Health and Nutrition, Faculty of Health and Nutrition, Osaka Shoin Women's University, 4-2-26 Hishiya-nishi, Higashi, Osaka 577-8550, Japan
| | - Yoshihisa Hirota
- Laboratory of Biochemistry, Faculty of Bioscience and Engineering, College of Systems Engineering and Science, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama 337-8570, Japan
| | - Kazuma Tanaka
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Shigeaki Yamashita
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Shinichi Ikushiro
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Tatsuo Suda
- Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka, Saitama 350-1241, Japan
| | - Toshio Okano
- Department of Hygienic Sciences, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe 658-8558, Japan
| | - Toshiyuki Sakaki
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan.
| |
Collapse
|
22
|
Liang Z, Chen Y, Wang L, Li D, Yang X, Ma G, Wang Y, Li Y, Zhao H, Liang Y, Niu H. CYP27A1 inhibits bladder cancer cells proliferation by regulating cholesterol homeostasis. Cell Cycle 2018; 18:34-45. [PMID: 30563407 DOI: 10.1080/15384101.2018.1558868] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
CYP27A1, an enzyme involved in regulating cellular cholesterol homeostasis, converts cholesterol into 27-hydroxycholesterol (27-HC). The relationship between CYP27A1 and cell proliferation was studied to determine the role of CYP27A1 in bladder cancer. The expression of CYP27A1 in three bladder cancer cell lines (T24, UM-UC-3 and 5637) were assessed by qRT-PCR and Western blotting, and cells with stable CYP27A1 expression were generated by lentiviral infection. Cell proliferation was detected by MTT assays, colony formation assays and a tumor xenograft model in vitro and in vivo, and the intracellular 27-HC and cholesterol secretion levels were detected by enzyme-linked immunosorbent assays (ELISA). The results revealed that CYP27A1 expression was downregulated in androgen receptor (AR)-positive T24/UM-UC-3 cells compared with AR-negative 5637 cell. After CYP27A1 expression was restored, cell proliferation was inhibited in vitro and in vivo because much more intracellular 27-HC was produced in the CYP27A1-overexpressing cells than in the control cells. Both T24 and UM-UC-3 cells treated with 27-HC showed similar results. In addition, CYP27A1/27HC could reduce the cellular cholesterol level in both T24 and UM-UC-3 cells by upregulating ATP-binding cassette transporters G1 and A1 (ABCG1 and ABCA1) through Liver X receptors (LXRs) pathway and downregulating low-density lipoprotein receptor (LDLR) expression. These findings all suggest that CYP27A1 is a critical cholesterol sensor in bladder cancer cells that may contribute significantly to bladder cancer proliferation.
Collapse
Affiliation(s)
- Zhijuan Liang
- a Key Laboratory, Department of Urology and Andrology , Affiliated Hospital of Qingdao University , Qingdao , China
| | - Yuanbin Chen
- a Key Laboratory, Department of Urology and Andrology , Affiliated Hospital of Qingdao University , Qingdao , China
| | - Liping Wang
- a Key Laboratory, Department of Urology and Andrology , Affiliated Hospital of Qingdao University , Qingdao , China
| | - Dan Li
- a Key Laboratory, Department of Urology and Andrology , Affiliated Hospital of Qingdao University , Qingdao , China
| | - Xuecheng Yang
- b Department of Urology , Affiliated Hospital of Qingdao University , Qingdao , China
| | - Guofeng Ma
- b Department of Urology , Affiliated Hospital of Qingdao University , Qingdao , China
| | - Yonghua Wang
- b Department of Urology , Affiliated Hospital of Qingdao University , Qingdao , China
| | - Yongxin Li
- c Department of Vascular Surgery , Affiliated Hospital of Qingdao University , Qingdao , China
| | - Han Zhao
- d Department of Pathology , Affiliated Hospital of Qingdao University , Qingdao , China
| | - Ye Liang
- a Key Laboratory, Department of Urology and Andrology , Affiliated Hospital of Qingdao University , Qingdao , China
| | - Haitao Niu
- a Key Laboratory, Department of Urology and Andrology , Affiliated Hospital of Qingdao University , Qingdao , China.,b Department of Urology , Affiliated Hospital of Qingdao University , Qingdao , China
| |
Collapse
|
23
|
Chen X, Mayne CG. The Role of Micronutrients in Graft-VS.-Host Disease: Immunomodulatory Effects of Vitamins A and D. Front Immunol 2018; 9:2853. [PMID: 30574143 PMCID: PMC6291446 DOI: 10.3389/fimmu.2018.02853] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 11/20/2018] [Indexed: 01/15/2023] Open
Abstract
Graft-vs.-host disease (GVHD) remains a major obstacle to the success of allogeneic hematopoietic stem cell transplantation (HSCT). GVHD occurs because donor T cells in the allograft recognize the genetically disparate host as foreign and attack the transplant recipient's tissues. While genetic incompatibility between donor and recipient is the primary determinant for the extent of alloimmune response, GVHD incidence and severity are also influenced by non-genetic factors. Recent advances in immunology establish that environmental factors, including dietary micronutrients, contribute significantly to modulating various immune responses and may influence the susceptibility to autoimmune and inflammatory diseases of experimental animals and humans. Emerging clinical and preclinical evidence indicates that certain micronutrients may participate in regulating GVHD risk after allogeneic HSCT. In this review, we summarize recent advances in our understanding with respect to the potential role of micronutrients in the pathogenesis of acute and chronic GVHD, focusing on vitamins A and D.
Collapse
Affiliation(s)
- Xiao Chen
- Division of Hematology & Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | | |
Collapse
|
24
|
Fader KA, Nault R, Raehtz S, McCabe LR, Zacharewski TR. 2,3,7,8-Tetrachlorodibenzo-p-dioxin dose-dependently increases bone mass and decreases marrow adiposity in juvenile mice. Toxicol Appl Pharmacol 2018; 348:85-98. [PMID: 29673856 PMCID: PMC5984050 DOI: 10.1016/j.taap.2018.04.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/03/2018] [Accepted: 04/11/2018] [Indexed: 12/20/2022]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) and other aryl hydrocarbon receptor (AhR) agonists have been shown to regulate bone development and remodeling in a species-, ligand-, and age-specific manner, however the underlying mechanisms remain poorly understood. In this study, we characterized the effect of 0.01-30 μg/kg TCDD on the femoral morphology of male and female juvenile mice orally gavaged every 4 days for 28 days and used RNA-Seq to investigate gene expression changes associated with the resultant phenotype. Micro-computed tomography revealed that TCDD dose-dependently increased trabecular bone volume fraction (BVF) 2.9- and 3.3-fold in male and female femurs, respectively. Decreased serum tartrate-resistant acid phosphatase (TRAP) levels, combined with a reduced osteoclast surface to bone surface ratio and repression of femoral proteases (cathepsin K, matrix metallopeptidase 13), suggests that TCDD impaired bone resorption. Increased osteoblast counts at the trabecular bone surface were consistent with a reciprocal reduction in the number of bone marrow adipocytes, suggesting AhR activation may direct mesenchymal stem cell differentiation towards osteoblasts rather than adipocytes. Notably, femoral expression of transmembrane glycoprotein NMB (Gpnmb; osteoactivin), a positive regulator of osteoblast differentiation and mineralization, was dose-dependently induced up to 18.8-fold by TCDD. Moreover, increased serum levels of 1,25-dihydroxyvitamin D3 were in accordance with the renal induction of 1α-hydroxylase Cyp27b1 and may contribute to impaired bone resorption. Collectively, the data suggest AhR activation tipped the bone remodeling balance towards bone formation, resulting in increased bone mass with reduced marrow adiposity.
Collapse
Affiliation(s)
- Kelly A Fader
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, United States; Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, United States
| | - Rance Nault
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, United States; Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, United States
| | - Sandi Raehtz
- Department of Physiology, Michigan State University, East Lansing, MI 48824, United States
| | - Laura R McCabe
- Department of Physiology, Michigan State University, East Lansing, MI 48824, United States; Department of Radiology, Michigan State University, East Lansing, MI 48824, United States
| | - Timothy R Zacharewski
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, United States; Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, United States.
| |
Collapse
|
25
|
Wang P, Qin X, Liu M, Wang X. The burgeoning role of cytochrome P450-mediated vitamin D metabolites against colorectal cancer. Pharmacol Res 2018; 133:9-20. [PMID: 29719203 DOI: 10.1016/j.phrs.2018.04.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/28/2018] [Accepted: 04/27/2018] [Indexed: 02/07/2023]
Abstract
The metabolites of vitamin D3 (VD3) mediated by different cytochrome P450 (CYP) enzymes, play fundamental roles in many physiological processes in relation to human health. These metabolites regulate a variety of cellular signal pathways through the direct binding of activated vitamin D receptor/retinoic X receptor (VDR/RXR) heterodimeric complex to specific DNA sequences. Thus, the polymorphisms of VDR and VD3 metabolizing enzymes lead to differentiated efficiency of VD3 and further affect serum VD3 levels. Moreover, VDR activation is demonstrated to inhibit the growth of various cancers, including colorectal cancer. However, excessive intake of vitamin D may lead to hypercalcemia, which limits the application of vitamin D tremendously. In this review, we have summarized the advances in VD3 research, especially the metabolism map of VD3 and the molecular mechanisms of inhibiting growth and inducing differentiation in colorectal cancer mediated by VDR-associated cellular signal pathways. The relationship between VDR polymorphism and the risk of colorectal cancer is also illustrated. In particular, novel pathways of the activation of VD3 started by CYP11A1 and CYP3A4 are highlighted, which produce several noncalcemic and antiproliferative metabolites. At last, the hypothesis is put forward that further research of CYP-mediated VD3 metabolites may develop therapeutic agents for colorectal cancer without resulting in hypercalcemia.
Collapse
Affiliation(s)
- Peili Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Xuan Qin
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China; Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Department of Molecular and Cellular Medicine, Texas A&M University Health Sciences Center, Houston, TX, USA
| | - Xin Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.
| |
Collapse
|
26
|
Vitamin D supplementation decreases serum 27-hydroxycholesterol in a pilot breast cancer trial. Breast Cancer Res Treat 2017; 167:797-802. [PMID: 29116467 DOI: 10.1007/s10549-017-4562-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 11/01/2017] [Indexed: 12/18/2022]
Abstract
PURPOSE 27-hydroxycholesterol (27HC), an endogenous selective estrogen receptor modulator (SERM), drives the growth of estrogen receptor-positive (ER+) breast cancer. 1,25-dihydroxyvitamin D (1,25(OH)2D), the active metabolite of vitamin D, is known to inhibit expression of CYP27B1, which is very similar in structure and function to CYP27A1, the synthesizing enzyme of 27HC. Therefore, we hypothesized that 1,25(OH)2D may also inhibit expression of CYP27A1, thereby reducing 27HC concentrations in the blood and tissues that express CYP27A1, including breast cancer tissue. METHODS 27HC, 25-hydroxyvitamin D (25OHD), and 1,25(OH)2D were measured in sera from 29 breast cancer patients before and after supplementation with low-dose (400 IU/day) or high-dose (10,000 IU/day) vitamin D in the interval between biopsy and surgery. RESULTS A significant increase (p = 4.3E-5) in 25OHD and a decrease (p = 1.7E-1) in 27HC was observed in high-dose versus low-dose vitamin D subjects. Excluding two statistical outliers, 25OHD and 27HC levels were inversely correlated (p = 7.0E-3). CONCLUSIONS Vitamin D supplementation can decrease circulating 27HC of breast cancer patients, likely by CYP27A1 inhibition. This suggests a new and additional modality by which vitamin D can inhibit ER+ breast cancer growth, though a larger study is needed for verification.
Collapse
|
27
|
Alfaqih MA, Nelson ER, Liu W, Safi R, Jasper JS, Macias E, Geradts J, Thompson JW, Dubois LG, Freeman MR, Chang CY, Chi JT, McDonnell DP, Freedland SJ. CYP27A1 Loss Dysregulates Cholesterol Homeostasis in Prostate Cancer. Cancer Res 2017; 77:1662-1673. [PMID: 28130224 PMCID: PMC5687884 DOI: 10.1158/0008-5472.can-16-2738] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 01/10/2017] [Accepted: 01/10/2017] [Indexed: 11/16/2022]
Abstract
In this study, we used a bioinformatic approach to identify genes whose expression is dysregulated in human prostate cancers. One of the most dramatically downregulated genes identified encodes CYP27A1, an enzyme involved in regulating cellular cholesterol homeostasis. Importantly, lower CYP27A1 transcript levels were associated with shorter disease-free survival and higher tumor grade. Loss of CYP27A1 in prostate cancer was confirmed at the protein level by immunostaining for CYP27A1 in annotated tissue microarrays. Restoration of CYP27A1 expression in cells where its gene was silenced attenuated their growth in vitro and in tumor xenografts. Studies performed in vitro revealed that treatment of prostate cancer cells with 27-hydroxycholesterol (27HC), an enzymatic product of CYP27A1, reduced cellular cholesterol content in prostate cancer cell lines by inhibiting the activation of sterol regulatory-element binding protein 2 and downregulating low-density lipoprotein receptor expression. Our findings suggest that CYP27A1 is a critical cellular cholesterol sensor in prostate cells and that dysregulation of the CYP27A1/27HC axis contributes significantly to prostate cancer pathogenesis. Cancer Res; 77(7); 1662-73. ©2017 AACR.
Collapse
Affiliation(s)
- Mahmoud A Alfaqih
- Department of Surgery, Duke University, Durham, North Carolina
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina
| | - Erik R Nelson
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign; and University of Illinois Cancer Center, Chicago, Illinois
| | - Wen Liu
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina
| | - Rachid Safi
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina
| | - Jeffery S Jasper
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina
| | - Everardo Macias
- Department of Surgery, Duke University, Durham, North Carolina
- Department of Surgery and Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Joseph Geradts
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - J Will Thompson
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina
- Department of Proteomics and Metabolomics Shared Resource, Duke University, Durham, North Carolina
| | - Laura G Dubois
- Department of Proteomics and Metabolomics Shared Resource, Duke University, Durham, North Carolina
| | - Michael R Freeman
- Department of Surgery and Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Ching-Yi Chang
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina
| | - Jen-Tsan Chi
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina
| | - Donald P McDonnell
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina.
| | - Stephen J Freedland
- Department of Surgery and Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California.
- Surgery Section, Durham VA Medical Center, Durham, North Carolina
| |
Collapse
|
28
|
Brand B, Scheinhardt MO, Friedrich J, Zimmer D, Reinsch N, Ponsuksili S, Schwerin M, Ziegler A. Adrenal cortex expression quantitative trait loci in a German Holstein × Charolais cross. BMC Genet 2016; 17:135. [PMID: 27716033 PMCID: PMC5053117 DOI: 10.1186/s12863-016-0442-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 09/28/2016] [Indexed: 12/30/2022] Open
Abstract
Background The importance of the adrenal gland in regard to lactation and reproduction in cattle has been recognized early. Caused by interest in animal welfare and the impact of stress on economically important traits in farm animals the adrenal gland and its function within the stress response is of increasing interest. However, the molecular mechanisms and pathways involved in stress-related effects on economically important traits in farm animals are not fully understood. Gene expression is an important mechanism underlying complex traits, and genetic variants affecting the transcript abundance are thought to influence the manifestation of an expressed phenotype. We therefore investigated the genetic background of adrenocortical gene expression by applying an adaptive linear rank test to identify genome-wide expression quantitative trait loci (eQTL) for adrenal cortex transcripts in cattle. Results A total of 10,986 adrenal cortex transcripts and 37,204 single nucleotide polymorphisms (SNPs) were analysed in 145 F2 cows of a Charolais × German Holstein cross. We identified 505 SNPs that were associated with the abundance of 129 transcripts, comprising 482 cis effects and 17 trans effects. These SNPs were located on all chromosomes but X, 16, 24 and 28. Associated genes are mainly involved in molecular and cellular functions comprising free radical scavenging, cellular compromise, cell morphology and lipid metabolism, including genes such as CYP27A1 and LHCGR that have been shown to affect economically important traits in cattle. Conclusions In this study we showed that adrenocortical eQTL affect the expression of genes known to contribute to the phenotypic manifestation in cattle. Furthermore, some of the identified genes and related molecular pathways were previously shown to contribute to the phenotypic variation of behaviour, temperament and growth at the onset of puberty in the same population investigated here. We conclude that eQTL analysis appears to be a useful approach providing insight into the molecular and genetic background of complex traits in cattle and will help to understand molecular networks involved. Electronic supplementary material The online version of this article (doi:10.1186/s12863-016-0442-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bodo Brand
- Institute for Genome Biology, Leibniz Institute for Farm Animal Biology, Wilhelm-Stahl-Allee, Dummerstorf, Germany.,Current affiliation: Institute for Farm Animal Research and Technology, University of Rostock, Justus-von-Liebig-Weg, 18059, Rostock, Germany
| | - Markus O Scheinhardt
- Institute of Medical Biometry and Statistics, University of Lübeck, Ratzeburger Allee, Lübeck, Germany
| | - Juliane Friedrich
- Institute for Farm Animal Research and Technology, University of Rostock, Justus-von-Liebig-Weg, Rostock, Germany
| | - Daisy Zimmer
- Institute for Farm Animal Research and Technology, University of Rostock, Justus-von-Liebig-Weg, Rostock, Germany
| | - Norbert Reinsch
- Institute for Genetics and Biometry, Leibniz Institute for Farm Animal Biology, Wilhelm-Stahl-Allee, Dummerstorf, Germany
| | - Siriluck Ponsuksili
- Institute for Genome Biology, Leibniz Institute for Farm Animal Biology, Wilhelm-Stahl-Allee, Dummerstorf, Germany
| | - Manfred Schwerin
- Institute for Genome Biology, Leibniz Institute for Farm Animal Biology, Wilhelm-Stahl-Allee, Dummerstorf, Germany.,Institute for Farm Animal Research and Technology, University of Rostock, Justus-von-Liebig-Weg, Rostock, Germany
| | - Andreas Ziegler
- Institute of Medical Biometry and Statistics, University of Lübeck, Ratzeburger Allee, Lübeck, Germany. .,Center for Clinical Trials, University of Lübeck, Ratzeburger Allee, Lübeck, Germany. .,School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Pietermaritzburg, South Africa.
| |
Collapse
|
29
|
Suzuki H, Makino Y, Nagata M, Furuta J, Enomoto H, Hirota T, Tamari M, Noguchi E. A rare variant in CYP27A1 and its association with atopic dermatitis with high serum total IgE. Allergy 2016; 71:1486-9. [PMID: 27259383 DOI: 10.1111/all.12950] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2016] [Indexed: 02/01/2023]
Abstract
This study investigated rare variants associated with atopic dermatitis. We performed exome analyses on 37 patients who were diagnosed with atopic dermatitis by board-certified dermatologists and had total serum IgE levels greater than 1000 IU/ml. The exome analysis identified seven variants with <1% allele frequency in Asian (ASN) population of 1000 Genomes Project phase 1 data and >5% allele frequency in the atopic dermatitis exome samples. We then conducted a replication study using 469 atopic dermatitis patients with total serum IgE ≥1000 IU/ml and 935 Japanese controls to assess the presence of these 7 candidate variants. The replication study confirmed that CYP27A1 rs199691576 (A/G) was associated with atopic dermatitis with high serum IgE levels (P = 0.012, odds ratio = 2.1). CYP27A1 is involved in the metabolism of vitamin D3, which plays important roles in modulating immune function. Previous studies have reported polymorphisms in vitamin D pathway genes that are associated with allergy-related phenotypes. Our data confirm the importance of genes regulating the vitamin D pathway in the development of atopic dermatitis.
Collapse
Affiliation(s)
- H. Suzuki
- Department of Medical Genetics; Faculty of Medicine; University of Tsukuba; Ibaraki Japan
- Department of Pediatrics; University of Tsukuba Hospital; Ibaraki Japan
| | - Y. Makino
- Department of Medical Genetics; Faculty of Medicine; University of Tsukuba; Ibaraki Japan
| | - M. Nagata
- Department of Medical Genetics; Faculty of Medicine; University of Tsukuba; Ibaraki Japan
| | - J. Furuta
- Department of Dermatology; Faculty of Medicine; University of Tsukuba; Ibaraki Japan
| | - H. Enomoto
- Department of Dermatology; Moriya Daiichi General Hospital; Ibaraki Japan
| | - T. Hirota
- Laboratory of Respiratory Diseases; RIKEN Center for Genomic Medicine; Kanagawa Japan
| | - M. Tamari
- Laboratory of Respiratory Diseases; RIKEN Center for Genomic Medicine; Kanagawa Japan
| | - E. Noguchi
- Department of Medical Genetics; Faculty of Medicine; University of Tsukuba; Ibaraki Japan
- Core Research for Evolutional Science and Technology (AMED-CREST); Tokyo Japan
| |
Collapse
|
30
|
25-Hydroxyvitamin D concentration and all-cause mortality: the Melbourne Collaborative Cohort Study. Public Health Nutr 2016; 20:1775-1784. [DOI: 10.1017/s1368980016000501] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
AbstractObjectiveTo investigate relationships between mortality and circulating 25-hydroxyvitamin D (25(OH)D), 25-hydroxycholecalciferol (25(OH)D3) and 25-hydroxyergocalciferol (25(OH)D2).DesignCase–cohort study within the Melbourne Collaborative Cohort Study (MCCS). We measured 25(OH)D2and 25(OH)D3in archived dried blood spots by LC–MS/MS. Cox regression was used to estimate mortality hazard ratios (HR), with adjustment for confounders.SettingGeneral community.SubjectsThe MCCS included 29 206 participants, who at recruitment in 1990–1994 were aged 40–69 years, had dried blood spots collected and no history of cancer. For the present study we selected participants who died by 31 December 2007 (n2410) and a random sample (sub-cohort,n2996).ResultsThe HR per 25 nmol/l increment in concentration of 25(OH)D and 25(OH)D3were 0·86 (95 % CI 0·78, 0·96;P=0·007) and 0·85 (95 % CI 0·77, 0·95;P=0·003), respectively. Of 5108 participants, sixty-three (1·2 %) had detectable 25(OH)D2; their mean 25(OH)D concentration was 11·9 (95 % CI 7·3, 16·6) nmol/l higher (P<0·001). The HR for detectable 25(OH)D2was 1·80 (95 % CI 1·09, 2·97;P=0·023); for those with detectable 25(OH)D2, the HR per 25 nmol/l increment in 25(OH)D was 1·06 (95 % CI 0·87, 1·29;Pinteraction=0·02). HR were similar for participants who reported being in good, very good or excellent health four years after recruitment.ConclusionsTotal 25(OH)D and 25(OH)D3concentrations were inversely associated with mortality. The finding that the inverse association for 25(OH)D was restricted to those with no detectable 25(OH)D2requires confirmation in populations with higher exposure to ergocalciferol.
Collapse
|
31
|
Ehrhardt M, Gerber A, Hannemann F, Bernhardt R. Expression of human CYP27A1 in B. megaterium for the efficient hydroxylation of cholesterol, vitamin D3 and 7-dehydrocholesterol. J Biotechnol 2016; 218:34-40. [DOI: 10.1016/j.jbiotec.2015.11.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 11/20/2015] [Accepted: 11/25/2015] [Indexed: 10/22/2022]
|
32
|
Munetsuna E, Kittaka A, Chen TC, Sakaki T. Metabolism and Action of 25-Hydroxy-19-nor-Vitamin D3 in Human Prostate Cells. VITAMIN D HORMONE 2016; 100:357-77. [DOI: 10.1016/bs.vh.2015.10.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
33
|
Zitt E, Sprenger-Mähr H, Mündle M, Lhotta K. Efficacy and safety of body weight-adapted oral cholecalciferol substitution in dialysis patients with vitamin D deficiency. BMC Nephrol 2015; 16:128. [PMID: 26238347 PMCID: PMC4523023 DOI: 10.1186/s12882-015-0116-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 07/20/2015] [Indexed: 12/12/2022] Open
Abstract
Background Vitamin D deficiency is highly prevalent in dialysis patients. Whether substitution of native vitamin D in these patients is beneficial is a matter of ongoing discussion, as is the optimal dosing schedule. The purpose of this study was to investigate the efficacy and safety of a body-weight adapted oral dosing regimen of cholecalciferol in dialysis patients. Methods In a prospective single-center study 56 prevalent dialysis patients with a baseline 25OHD3 level <20 ng/mL received 100 IU of cholecalciferol per kg body weight once weekly orally for 26 weeks. 25OHD3 was measured at baseline and at study end, iPTH every three months, serum calcium and phosphorous monthly. Concurrent medication including phosphate binders, calcitriol and cinacalcet and dialysate calcium concentration remained unchanged throughout the study. Results Baseline 25OHD3 was 9.9 ± 4.1 ng/mL and increased to 26.1 ± 8.8 ng/mL (P = 0.01). Fourteen patients (27 %) achieved a level >30 ng/mL and all others above 20 ng/mL. Cinacalcet therapy was positively associated with the increase in 25OHD3 (P = 0.024). The plasma iPTH level significantly decreased from median 362 pg/mL to 297 pg/mL (P = 0.01). This decline was more pronounced in patients with higher baseline iPTH levels (P < 0.01) and differed significantly dependent on concurrent calcitriol therapy. A significant iPTH decrease was observed in patients receiving calcitriol (P = 0.031). Serum calcium and phosphorous did not change significantly throughout the study period. Cholecalciferol substitution was well tolerated without adverse effects. Conclusion The dosing regimen of oral cholecalciferol supplementation with 100 IU per kg body weight per week for 26 weeks in dialysis patients with vitamin D deficiency causes a significant increase in 25OHD3 close to the supposed target level of 30 ng/mL and a significant reduction in iPTH, without affecting serum calcium or phosphorous levels.
Collapse
Affiliation(s)
- Emanuel Zitt
- Department of Nephrology and Dialysis, Academic Teaching Hospital Feldkirch, Carinagasse 47, A-6800, Feldkirch, Austria. .,Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Academic Teaching Hospital Feldkirch, Feldkirch, Austria.
| | - Hannelore Sprenger-Mähr
- Department of Nephrology and Dialysis, Academic Teaching Hospital Feldkirch, Carinagasse 47, A-6800, Feldkirch, Austria. .,Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Academic Teaching Hospital Feldkirch, Feldkirch, Austria.
| | - Michael Mündle
- Department of Nephrology and Dialysis, Academic Teaching Hospital Feldkirch, Carinagasse 47, A-6800, Feldkirch, Austria.
| | - Karl Lhotta
- Department of Nephrology and Dialysis, Academic Teaching Hospital Feldkirch, Carinagasse 47, A-6800, Feldkirch, Austria. .,Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Academic Teaching Hospital Feldkirch, Feldkirch, Austria.
| |
Collapse
|
34
|
Slominski AT, Li W, Kim TK, Semak I, Wang J, Zjawiony JK, Tuckey RC. Novel activities of CYP11A1 and their potential physiological significance. J Steroid Biochem Mol Biol 2015; 151:25-37. [PMID: 25448732 PMCID: PMC4757911 DOI: 10.1016/j.jsbmb.2014.11.010] [Citation(s) in RCA: 243] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 10/31/2014] [Accepted: 11/10/2014] [Indexed: 01/08/2023]
Abstract
CYP11A1, found only in vertebrates, catalyzes the first step of steroidogenesis where cholesterol is converted to pregnenolone. The purified enzyme, also converts desmosterol and plant sterols including campesterol and β-sitosterol, to pregnenolone. Studies, initially with purified enzyme, reveal that 7-dehydrocholesterol (7DHC), ergosterol, lumisterol 3, and vitamins D3 and D2 also serve as substrates for CYP11A1, with 7DHC being better and vitamins D3 and D2 being poorer substrates than cholesterol. Adrenal glands, placenta, and epidermal keratinocytes can also carry out these conversions and 7-dehydropregnenolone has been detected in the epidermis, adrenal glands, and serum, and 20-hydroxyvitamin D3 was detected in human serum and the epidermis. Thus, this metabolism does appear to occur in vivo, although its quantitative importance and physiological role remain to be established. CYP11A1 action on 7DHC in vivo is further supported by detection of Δ(7)steroids in Smith-Lemli-Opitz syndrome patients. The activity of CYP11A1 is affected by the structure of the substrate with sterols having steroidal or Δ(7)-steroidal structures undergoing side chain cleavage following hydroxylations at C22 and C20. In contrast, metabolism of vitamin D involves sequential hydroxylations that start at C20 but do not lead to cleavage. Molecular modeling using the crystal structure of CYP11A1 predicts that other intermediates of cholesterol synthesis could also serve as substrates for CYP11A1. Finally, CYP11A1-derived secosteroidal hydroxy-derivatives and Δ(7)steroids are biologically active when administered in vitro in a manner dependent on the structure of the compound and the lineage of the target cells, suggesting physiological roles for these metabolites. This article is part of a special issue entitled 'SI: Steroid/Sterol signaling'.
Collapse
Affiliation(s)
- Andrzej T Slominski
- Department of Pathology and Laboratory Medicine, University of Tennessee HSC, Memphis, TN, USA; Division of Rheumatology of the Department of Medicine, University of Tennessee HSC, Memphis, TN, USA.
| | - Wei Li
- Department of Pharmaceutical Sciences, University of Tennessee HSC, Memphis, TN, USA
| | - Tae-Kang Kim
- Department of Pathology and Laboratory Medicine, University of Tennessee HSC, Memphis, TN, USA
| | - Igor Semak
- Department of Biochemistry, Belarusian State University, Minsk, Belarus
| | - Jin Wang
- Department of Pharmaceutical Sciences, University of Tennessee HSC, Memphis, TN, USA
| | - Jordan K Zjawiony
- Department of BioMolecular Sciences and Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS 38677-1848, USA
| | - Robert C Tuckey
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, WA, Australia.
| |
Collapse
|
35
|
Cheng CYS, Slominski AT, Tuckey RC. Metabolism of 20-hydroxyvitamin D3 by mouse liver microsomes. J Steroid Biochem Mol Biol 2014; 144 Pt B:286-93. [PMID: 25138634 PMCID: PMC4195795 DOI: 10.1016/j.jsbmb.2014.08.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 08/12/2014] [Accepted: 08/13/2014] [Indexed: 11/29/2022]
Abstract
20-Hydroxyvitamin D3 [20(OH)D3], the major product of CYP11A1 action on vitamin D3, is biologically active and like 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] can inhibit proliferation and promote differentiation of a range of cells, and has anti-inflammatory properties. However, unlike 1,25(OH)2D3, it does not cause toxic hypercalcemia at high doses and is therefore a good candidate for therapeutic use to treat hyperproliferative and autoimmune disorders. In this study we analyzed the ability of mouse liver microsomes to metabolize 20(OH)D3. The two major products were identified from authentic standards as 20,24-dihydroxyvitamin D3 [20,24(OH)2D3] and 20,25-dihydroxyvitamin D3 [20,25(OH)2D3]. The reactions for synthesis of these two products from 20(OH)D3 displayed similar Km values suggesting that they were catalyzed by the same cytochrome P450. Some minor metabolites were produced by reactions with higher Km values for 20(OH)D3. Some metabolites gave mass spectra suggesting that they were the result of hydroxylation followed by dehydrogenation. One product had an increase in the wavelength for maximum absorbance from 263nm seen for 20(OH)D3, to 290nm, suggesting a new double bond was interacting with the vitamin D-triene chromophore. The two major products, 20,24(OH)2D3 and 20,25(OH)2D3 have both previously been shown to have higher potency for inhibition of colony formation by melanoma cells than 20(OH)D3, thus it appears that metabolism of 20(OH)D3 by mouse liver microsomes can generate products with enhanced activity.
Collapse
Affiliation(s)
- Chloe Y S Cheng
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, WA 6009, Australia
| | - Andrzej T Slominski
- Department of Pathology and Laboratory Medicine, Center for Adult Cancer Research, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Robert C Tuckey
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, WA 6009, Australia.
| |
Collapse
|
36
|
Fabbri S, Ciuffi S, Nardone V, Gomes AR, Mavilia C, Zonefrati R, Galli G, Luzi E, Tanini A, Brandi ML. PTH-C1: a rat continuous cell line expressing the parathyroid phenotype. Endocrine 2014; 47:90-9. [PMID: 24627164 DOI: 10.1007/s12020-014-0229-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 02/26/2014] [Indexed: 01/17/2023]
Abstract
The lack of a continuous cell line of epithelial parathyroid cells able to produce parathyroid hormone (PTH) has hampered the studies on in vitro evaluation of the mechanisms involved in the control of parathyroid cell function and proliferation. The PT-r cell line was first established from rat parathyroid tissue in 1987, but these cells were known to express the parathyroid hormone-related peptide (Pthrp) gene, but not the Pth gene. In an attempt to subclone the PT-r cell line, a rat parathyroid cell strain was isolated and named PTH-C1. During 3 years, in culture, PTH-C1 cells maintained an epithelioid morphology, displaying a diploid chromosome number, a doubling time around 15 h during the exponential phase of growth, and parathyroid functional features. PTH-C1 cell line produces PTH and expresses the calcium sensing receptor (Casr) gene and other genes known to be involved in parathyroid function. Most importantly, the PTH-C1 cells also exhibit an in vitro secretory response to calcium. Altogether these findings indicate the uniqueness of the PTH-C1 cell line as an in vitro model for cellular and molecular studies on parathyroid physiopathology.
Collapse
Affiliation(s)
- Sergio Fabbri
- Department of Surgery and Translational Medicine, University of Florence, Largo Brambilla 3, 50134, Florence, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Whole-cell biotransformation with recombinant cytochrome P450 for the selective oxidation of Grundmann's ketone. Bioorg Med Chem 2014; 22:5586-92. [PMID: 25023538 DOI: 10.1016/j.bmc.2014.06.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 05/27/2014] [Accepted: 06/02/2014] [Indexed: 01/08/2023]
Abstract
25-Hydroxy-Grundmann's ketone is a key building block in the chemical synthesis of vitamin D3 and its derivatives through convergent routes. Generally, the chemical synthesis of this compound involves tedious procedures and results in a mixture of several products. Recently, the selective hydroxylation of Grundmann's ketone at position C25 by cytochrome P450 (CYP) 154E1 from Thermobifida fusca YX was described. In this study a recombinant whole-cell biocatalyst was developed and applied for hydroxylation of Grundmann's ketone. Biotransformation was performed by Escherichia coli cells expressing CYP154E1 along with two redox partner systems, Pdx/PdR and YkuN/FdR. The system comprising CYP154E1/Pdx/PdR showed the highest production of 25-hydroxy-Grundmann's ketone and resulted in 1.1mM (300mgL(-1)) product concentration.
Collapse
|
38
|
Endo-Umeda K, Yasuda K, Sugita K, Honda A, Ohta M, Ishikawa M, Hashimoto Y, Sakaki T, Makishima M. 7-Dehydrocholesterol metabolites produced by sterol 27-hydroxylase (CYP27A1) modulate liver X receptor activity. J Steroid Biochem Mol Biol 2014; 140:7-16. [PMID: 24269243 DOI: 10.1016/j.jsbmb.2013.11.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 10/26/2013] [Accepted: 11/12/2013] [Indexed: 01/06/2023]
Abstract
7-Dehydrocholesterol (7-DHC) is a common precursor of vitamin D3 and cholesterol. Although various oxysterols, oxygenated cholesterol derivatives, have been implicated in cellular signaling pathways, 7-DHC metabolism and potential functions of its metabolites remain poorly understood. We examined 7-DHC metabolism by various P450 enzymes and detected three metabolites produced by sterol 27-hydroxylase (CYP27A1) using high-performance liquid chromatography. Two were further identified as 25-hydroxy-7-DHC and 26/27-hydroxy-7-DHC. These 7-DHC metabolites were detected in serum of a patient with Smith-Lemli-Opitz syndrome. Luciferase reporter assays showed that 25-hydroxy-7-DHC activates liver X receptor (LXR) α, LXRβ and vitamin D receptor and that 26/27-hydroxy-7-DHC induces activation of LXRα and LXRβ, although the activities of both compounds on LXRs were weak. In a mammalian two-hybrid assay, 25-hydroxy-7-DHC and 26/27-hydroxy-7-DHC induced interaction between LXRα and a coactivator fragment less efficiently than a natural LXR agonist, 22(R)-hydroxycholesterol. These 7-DHC metabolites did not oppose agonist-induced LXR activation and interacted directly to LXRα in a manner distinct from a potent agonist. These findings indicate that the 7-DHC metabolites are partial LXR activators. Interestingly, 25-hydroxy-7-DHC and 26/27-hydroxy-7-DHC suppressed mRNA expression of sterol regulatory element-binding protein 1c, an LXR target gene, in HepG2 cells and HaCaT cells, while they weakly increased mRNA levels of ATP-binding cassette transporter A1, another LXR target, in HaCaT cells. Thus, 7-DHC is catabolized by CYP27A1 to metabolites that act as selective LXR modulators.
Collapse
Affiliation(s)
- Kaori Endo-Umeda
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, Itabashi-ku, Tokyo 173-8610, Japan
| | - Kaori Yasuda
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, Imizu, Toyama 939-0398, Japan
| | - Kazuyuki Sugita
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Akira Honda
- Joint Research Center, Tokyo Medical University Ibaraki Medical Center, Ami, Ibaraki 300-0395, Japan
| | - Miho Ohta
- Department of Nutrition and Health, Faculty of Human Development, Soai University, Suminoe-ku, Osaka 559-0033, Japan
| | - Minoru Ishikawa
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Yuichi Hashimoto
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Toshiyuki Sakaki
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, Imizu, Toyama 939-0398, Japan
| | - Makoto Makishima
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, Itabashi-ku, Tokyo 173-8610, Japan.
| |
Collapse
|
39
|
Munetsuna E, Kawanami R, Nishikawa M, Ikeda S, Nakabayashi S, Yasuda K, Ohta M, Kamakura M, Ikushiro S, Sakaki T. Anti-proliferative activity of 25-hydroxyvitamin D3 in human prostate cells. Mol Cell Endocrinol 2014; 382:960-70. [PMID: 24291609 DOI: 10.1016/j.mce.2013.11.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 11/19/2013] [Accepted: 11/20/2013] [Indexed: 11/17/2022]
Abstract
1α-Hydroxylation of 25-hydroxyvitamin D3 is believed to be essential for its biological effects. In this study, we evaluated the biological activity of 25(OH)D3 itself comparing with the effect of cell-derived 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3). First, we measured the cell-derived 1α,25(OH)2D3 level in immortalized human prostate cell (PZ-HPV-7) using [(3)H]-25(OH)D3. The effects of the cell-derived 1α,25(OH)2D3 on vitamin D3 24-hydroxylase (CYP24A1) mRNA level and the cell growth inhibition were significantly lower than the effects of 25(OH)D3 itself added to cell culture. 25-Hydroxyvitamin D3 1α-hydroxylase (CYP27B1) gene knockdown had no significant effects on the 25(OH)D3-dependent effects, whereas vitamin D receptor (VDR) gene knockdown resulted in a significant decrease in the 25(OH)D3-dependent effects. These results strongly suggest that 25(OH)D3 can directly bind to VDR and exerts its biological functions. DNA microarray and real-time RT-PCR analyses suggest that semaphorin 3B, cystatin E/M, and cystatin D may be involved in the antiproliferative effect of 25(OH)D3.
Collapse
Affiliation(s)
- Eiji Munetsuna
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan; Department of Biochemistry, Fujita Health University for Medical Science, Toyoake 470-1192, Japan
| | - Rie Kawanami
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Miyu Nishikawa
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Shinnosuke Ikeda
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Sachie Nakabayashi
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Kaori Yasuda
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Miho Ohta
- Development Nourishment Department, Soai University, 4-4-1 Nankonaka, Suminoe, Osaka 559-0033, Japan
| | - Masaki Kamakura
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Shinichi Ikushiro
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Toshiyuki Sakaki
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan.
| |
Collapse
|
40
|
Yasutake Y, Nishioka T, Imoto N, Tamura T. A Single Mutation at the Ferredoxin Binding Site of P450 Vdh Enables Efficient Biocatalytic Production of 25-Hydroxyvitamin D3. Chembiochem 2013; 14:2284-91. [DOI: 10.1002/cbic.201300386] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Indexed: 01/08/2023]
|
41
|
CYP2R1 is a major, but not exclusive, contributor to 25-hydroxyvitamin D production in vivo. Proc Natl Acad Sci U S A 2013; 110:15650-5. [PMID: 24019477 DOI: 10.1073/pnas.1315006110] [Citation(s) in RCA: 214] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bioactivation of vitamin D consists of two sequential hydroxylation steps to produce 1α,25-dihydroxyvitamin D3. It is clear that the second or 1α-hydroxylation step is carried out by a single enzyme, 25-hydroxyvitamin D 1α-hydroxylase CYP27B1. However, it is not certain what enzyme or enzymes are responsible for the initial 25-hydroxylation. An excellent case has been made for vitamin D 25-hydroxylase CYP2R1, but this hypothesis has not yet been tested. We have now produced Cyp2r1 (-/-) mice. These mice had greater than 50% reduction in serum 25-hydroxyvitamin D3. Curiously, the 1α,25-dihydroxyvitamin D3 level in the serum remained unchanged. These mice presented no health issues. A double knockout of Cyp2r1 and Cyp27a1 maintained a similar circulating level of 25-hydroxyvitamin D3 and 1α,25-dihydroxyvitamin D3. Our results support the idea that the CYP2R1 is the major enzyme responsible for 25-hydroxylation of vitamin D, but clearly a second, as-yet unknown, enzyme is another contributor to this important step in vitamin D activation.
Collapse
|
42
|
UV-dependent production of 25-hydroxyvitamin D2 in the recombinant yeast cells expressing human CYP2R1. Biochem Biophys Res Commun 2013; 434:311-5. [DOI: 10.1016/j.bbrc.2013.02.124] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 02/25/2013] [Indexed: 11/17/2022]
|
43
|
Kopic S, Geibel JP. Gastric acid, calcium absorption, and their impact on bone health. Physiol Rev 2013; 93:189-268. [PMID: 23303909 DOI: 10.1152/physrev.00015.2012] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Calcium balance is essential for a multitude of physiological processes, ranging from cell signaling to maintenance of bone health. Adequate intestinal absorption of calcium is a major factor for maintaining systemic calcium homeostasis. Recent observations indicate that a reduction of gastric acidity may impair effective calcium uptake through the intestine. This article reviews the physiology of gastric acid secretion, intestinal calcium absorption, and their respective neuroendocrine regulation and explores the physiological basis of a potential link between these individual systems.
Collapse
Affiliation(s)
- Sascha Kopic
- Department of Surgery and Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut, USA
| | | |
Collapse
|
44
|
Nesterova G, Malicdan MC, Yasuda K, Sakaki T, Vilboux T, Ciccone C, Horst R, Huang Y, Golas G, Introne W, Huizing M, Adams D, Boerkoel CF, Collins MT, Gahl WA. 1,25-(OH)2D-24 Hydroxylase (CYP24A1) Deficiency as a Cause of Nephrolithiasis. Clin J Am Soc Nephrol 2013; 8:649-57. [PMID: 23293122 DOI: 10.2215/cjn.05360512] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND AND OBJECTIVES Elevated serum vitamin D with hypercalciuria can result in nephrocalcinosis and nephrolithiasis. This study evaluated the cause of excess 1,25-dihydroxycholecalciferol (1α,25(OH)2D3) in the development of those disorders in two individuals. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS Two patients with elevated vitamin D levels and nephrocalcinosis or nephrolithiasis were investigated at the National Institutes of Health (NIH) Clinical Center and the NIH Undiagnosed Diseases Program, by measuring calcium, phosphate, and vitamin D metabolites, and by performing CYP24A1 mutation analysis. RESULTS Both patients exhibited hypercalciuria, hypercalcemia, low parathyroid hormone, elevated vitamin D (1α,25(OH)2D3), normal 25-OHD3, decreased 24,25(OH)2D, and undetectable activity of 1,25(OH)2D-24-hydroxylase (CYP24A1), the enzyme that inactivates 1α,25(OH)2D3. Both patients had bi-allelic mutations in CYP24A1 leading to loss of function of this enzyme. On the basis of dbSNP data, the frequency of predicted deleterious bi-allelic CYP24A1 variants in the general population is estimated to be as high as 4%-20%. CONCLUSIONS The results of this study show that 1,25(OH)2D-24-hydroxylase deficiency due to bi-allelic mutations in CYP24A1 causes elevated serum vitamin D, hypercalciuria, nephrocalcinosis, and renal stones.
Collapse
Affiliation(s)
- Galina Nesterova
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Zhu J, DeLuca HF. Vitamin D 25-hydroxylase – Four decades of searching, are we there yet? Arch Biochem Biophys 2012; 523:30-6. [DOI: 10.1016/j.abb.2012.01.013] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 01/21/2012] [Indexed: 11/16/2022]
|
46
|
Tieu EW, Li W, Chen J, Baldisseri DM, Slominski AT, Tuckey RC. Metabolism of cholesterol, vitamin D3 and 20-hydroxyvitamin D3 incorporated into phospholipid vesicles by human CYP27A1. J Steroid Biochem Mol Biol 2012; 129:163-71. [PMID: 22210453 PMCID: PMC3303980 DOI: 10.1016/j.jsbmb.2011.11.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 11/28/2011] [Accepted: 11/30/2011] [Indexed: 10/14/2022]
Abstract
CYP27A1 is a mitochondrial cytochrome P450 which can hydroxylate vitamin D3 and cholesterol at carbons 25 and 26, respectively. The product of vitamin D3 metabolism, 25-hydroxyvitamin D3, is the precursor to the biologically active hormone, 1α,25-dihydroxyvitamin D3. CYP27A1 is attached to the inner mitochondrial membrane and substrates appear to reach the active site through the membrane phase. We have therefore examined the ability of bacterially expressed and purified CYP27A1 to metabolize substrates incorporated into phospholipid vesicles which resemble the inner mitochondrial membrane. We also examined the ability of CYP27A1 to metabolize 20-hydroxyvitamin D3 (20(OH)D3), a novel non-calcemic form of vitamin D derived from CYP11A1 action on vitamin D3 which has anti-proliferative activity on keratinocytes, leukemic and myeloid cells. CYP27A1 displayed high catalytic activity towards cholesterol with a turnover number (k(cat)) of 9.8 min(-1) and K(m) of 0.49 mol/mol phospholipid (510 μM phospholipid). The K(m) value of vitamin D3 was similar for that of cholesterol, but the k(cat) was 4.5-fold lower. 20(OH)D3 was metabolized by CYP27A1 to two major products with a k(cat)/K(m) that was 2.5-fold higher than that for vitamin D3, suggesting that 20(OH)D3 could effectively compete with vitamin D3 for catalysis. NMR and mass spectrometric analyses revealed that the two major products were 20,25-dihydroxyvitamin D3 and 20,26-dihydroxyvitamin D3, in almost equal proportions. Thus, the presence of the 20-hydroxyl group on the vitamin D3 side chain enables it to be metabolized more efficiently than vitamin D3, with carbon 26 in addition to carbon 25 becoming a major site of hydroxylation. Our study reports the highest k(cat) for the 25-hydroxylation of vitamin D3 by any human cytochrome P450 suggesting that CYP27A1 might be an important contributor to the synthesis of 25-hydroxyvitamin D3, particularly in tissues where it is highly expressed.
Collapse
Affiliation(s)
- Elaine W. Tieu
- School of Biomedical, Biomolecular and Chemical Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Wei Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Jianjun Chen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | | - Andrzej T. Slominski
- Department of Pathology and Laboratory Medicine and the Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Robert C. Tuckey
- School of Biomedical, Biomolecular and Chemical Sciences, The University of Western Australia, Crawley, WA 6009, Australia
- Corresponding author. Tel.: +61 864883040; fax.: +61 864881148., Postal address: 35 Stirling Highway, Crawley, WA 6009, Australia., address:
| |
Collapse
|
47
|
McMillan A, Hicks J, Isabella C, Higa GM. A critical analysis of the (near) legendary status of vitamin D. Expert Rev Endocrinol Metab 2012; 7:103-119. [PMID: 30736115 DOI: 10.1586/eem.11.81] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Labels such as food constituent, nutrient and supplement do not convey a sense of being essential. Yet these rather mundane descriptors, even if correct, belie the true significance of vitamin D. Long believed to be merely a functioning cofactor akin to vitamin C, deficiency of this secosteroid hormone is clearly associated with morbid complications of calcium and bone mineral metabolism, and because the hormonal effects are mediated by nuclear receptors that regulate the expression of many subordinate genes, the vitamin's pleiotropic mode of action can influence numerous metabolic pathways and, possibly, a number of different diseases. Although the vitamin is under intensive investigation, much still remains unknown, even in bone health, as the identity of osteoporosis susceptibility genes remains uncertain. This article focuses on various aspects of the basic science and molecular biology of the vitamin D endocrine system. The primary goal is to critically examine the evidence supporting its role in bone metabolism, diabetes and cancer.
Collapse
Affiliation(s)
- Ashlee McMillan
- a School of Pharmacy, West Virginia University, Morgantown, WV 26506, USA
| | - Jason Hicks
- a School of Pharmacy, West Virginia University, Morgantown, WV 26506, USA
| | | | - Gerald M Higa
- b Schools of Pharmacy and Medicine and the Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26506, USA.
| |
Collapse
|
48
|
Munetsuna E, Nakabayashi S, Kawanami R, Yasuda K, Ohta M, Arai MA, Kittaka A, Chen TC, Kamakura M, Ikushiro S, Sakaki T. Mechanism of the anti-proliferative action of 25-hydroxy-19-nor-vitamin D(3) in human prostate cells. J Mol Endocrinol 2011; 47:209-18. [PMID: 21693624 DOI: 10.1530/jme-11-0008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
According to the prevailing paradigm, 1α-hydroxylation of 25-hydroxyvitamin D(3) (25(OH)D(3)) and its analogs is a pre-requisite step for their biological effects. We previously reported that 25-hydroxy-19-nor-vitamin D(3) (25(OH)-19-nor-D(3)) had anti-proliferative activity in a cell line, PZ-HPV-7, which was derived from human non-cancerous prostate tissue, and suggested that 25(OH)-19-nor-D(3) acted after 1α-hydroxylation by vitamin D 1α-hydroxylase (CYP27B1). However, metabolic studies of 25(OH)-19-nor-D(3) using recombinant CYP27B1 revealed that 25(OH)-19-nor-D(3) was rarely subjected to 1α-hydroxylation. Therefore, in this report, we attempted to clarify the mechanism of 25(OH)-19-nor-D(3) action in intact cells using PZ-HPV-7 prostate cells. After incubating the cells with 25(OH)-19-nor-D(3), eight metabolites of 24-hydroxylase (CYP24A1) were detected, whereas no products of CYP27B1 including 1α,25-dihydroxy-19-nor-vitamin D(3) (1α,25(OH)(2)-19-nor-D(3)) were found. Furthermore, the time-dependent nuclear translocation of vitamin D receptor (VDR) and the subsequent transactivation of cyp24A1 gene in the presence of 25(OH)-19-nor-D(3) were almost identical as those induced by 1α,25(OH)(2)-19-nor-D(3). These results strongly suggest that 25(OH)-19-nor-D(3) directly binds to VDR as a ligand and transports VDR into the nucleus to induce transcription of cyp24A1 gene. In addition, knock down of cyp27B1 gene did not affect the anti-proliferative activity of 25(OH)-19-nor-D(3), whereas knock down of VDR attenuated the inhibitory effect. Thus, our results clearly demonstrate that the anti-proliferative activity of 25(OH)-19-nor-D(3) is VDR dependent but 1α-hydroxylation independent, suggesting that 25(OH)D(3) analogs such as 25(OH)-19-nor-D(3) could be attractive candidates for anticancer therapy.
Collapse
Affiliation(s)
- Eiji Munetsuna
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Fukunishi H, Yagi H, Kamijo K, Shimada J. Role of a Mutated Residue at the Entrance of the Substrate Access Channel in Cytochrome P450 Engineered for Vitamin D3 Hydroxylation Activity. Biochemistry 2011; 50:8302-10. [DOI: 10.1021/bi2006493] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Hiroaki Fukunishi
- Green Innovation Research Laboratories, NEC Corporation, 34, Miyukigaoka, Tsukuba, Ibaraki
305-8501, Japan
| | - Hirotaka Yagi
- VALWAY
Technology Center, NEC Soft, Ltd., 1-18-7,
Shinkiba, Koto-ku, Tokyo 136-8627,
Japan
| | - Ken’ichi Kamijo
- Green Innovation Research Laboratories, NEC Corporation, 34, Miyukigaoka, Tsukuba, Ibaraki
305-8501, Japan
| | - Jiro Shimada
- Green Innovation Research Laboratories, NEC Corporation, 34, Miyukigaoka, Tsukuba, Ibaraki
305-8501, Japan
| |
Collapse
|
50
|
Binkley N, Gemar D, Engelke J, Gangnon R, Ramamurthy R, Krueger D, Drezner MK. Evaluation of ergocalciferol or cholecalciferol dosing, 1,600 IU daily or 50,000 IU monthly in older adults. J Clin Endocrinol Metab 2011; 96:981-8. [PMID: 21289249 PMCID: PMC3417158 DOI: 10.1210/jc.2010-0015] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Whether ergocalciferol (D(2)) and cholecalciferol (D(3)) are equally effective to increase and maintain serum 25-hydroxyvitamin D [25(OH)D] concentration is controversial. OBJECTIVE The aim of the study was to evaluate the effect of daily and once monthly dosing of D(2) or D(3) on circulating 25(OH)D and serum and urinary calcium. DESIGN, SETTING AND PARTICIPANTS In a university clinical research setting, 64 community dwelling adults age 65+ were randomly assigned to receive daily (1,600 IU) or once-monthly (50,000 IU) D(2) or D(3) for 1 yr. MAIN OUTCOME MEASURES Serum 25(OH)D, serum calcium, and 24-h urinary calcium were measured at months 0, 1, 2, 3, 6, 9, and 12. Serum PTH, bone-specific alkaline phosphatase, and N-telopeptide were measured at months 0, 3, 6, and 12. RESULTS Serum 25(OH)D was less than 30 ng/ml in 40% of subjects at baseline; after 12 months of vitamin D dosing, levels in 19% of subjects (n = 12, seven receiving daily doses and five monthly doses) remained low, despite compliance of more than 91%. D(2) dosing increased 25(OH)D(2) but produced a decline (P < 0.0001) in 25(OH)D(3). Substantial between-individual variation in 25(OH)D response was observed for both D(2) and D(3). The highest 25(OH)D observed was 72.5 ng/ml. Vitamin D administration did not alter serum calcium, PTH, bone-specific alkaline phosphatase, N-telopeptide, or 24-h urine calcium. CONCLUSIONS Overall, D(3) is slightly, but significantly, more effective than D(2) to increase serum 25(OH)D. One year of D(2) or D(3) dosing (1,600 IU daily or 50,000 IU monthly) does not produce toxicity, and 25(OH)D levels of less than 30 ng/ml persist in approximately 20% of individuals. Substantial between-individual response to administered vitamin D(2) or D(3) is observed.
Collapse
Affiliation(s)
- N Binkley
- Osteoporosis Clinical Center and Research Program,University of Wisconsin, Madison, Wisconsin 53705, USA.
| | | | | | | | | | | | | |
Collapse
|