1
|
Li X, Bai Y, Ma Y, Li Y. Ameliorating effects of berberine on sepsis-associated lung inflammation induced by lipopolysaccharide: molecular mechanisms and preclinical evidence. Pharmacol Rep 2023:10.1007/s43440-023-00492-2. [PMID: 37184743 DOI: 10.1007/s43440-023-00492-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/03/2023] [Accepted: 05/03/2023] [Indexed: 05/16/2023]
Abstract
As a life-threatening disorder, sepsis-associated lung injury is a dysregulated inflammatory response to microbial infection, characterized by the infiltration of inflammatory cells into lung tissues and excessive production of pro-inflammatory mediators. Therefore, immunomodulatory/anti-inflammatory agents are a potential treatment for sepsis-associated lung injury. Berberine, one of the well-studied medicinal plant-derived compounds, has shown promising anti-inflammatory potential in inflammatory conditions, through modulating excessive immune responses induced by various immune cells. A systematic literature search in electronic databases indicated several publications that studied the effect of berberine on lipopolysaccharide (LPS)-induced sepsis in preclinical investigations. The current review article aims to provide evidence on the effects of berberine against LPS-induced acute lung injury (ALI), together with underlying molecular mechanisms. The findings reveal that berberine through inhibiting the excessive production of multiple pro-inflammatory cytokines, suppressing the infiltration of immune cells into lung tissues, as well as preventing pulmonary edema and coagulation, can relieve pulmonary histopathological changes from LPS-mediated inflammation, thereby attenuating sepsis-associated lung injury and lethality in the experimental models. In conclusion, berberine shows great potential as a preventing and therapeutic agent for sepsis-associated lung injury, however, further proof-of-concept studies and clinical investigations are warranted for translating these preclinical findings into clinical practices.
Collapse
Affiliation(s)
- Xiaojuan Li
- Department of Critical Care Medicine, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, 750002, China
| | - Yi Bai
- Department of Critical Care Medicine, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, 750002, China
| | - Yulong Ma
- Department of Critical Care Medicine, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, 750002, China
| | - Yan Li
- Department of Critical Care Medicine, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, 750002, China.
| |
Collapse
|
2
|
Ramadan E, Basselin M, Chang L, Chen M, Ma K, Rapoport SI. Chronic lithium feeding reduces upregulated brain arachidonic acid metabolism in HIV-1 transgenic rat. J Neuroimmune Pharmacol 2012; 7:701-13. [PMID: 22760927 PMCID: PMC3478068 DOI: 10.1007/s11481-012-9381-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 06/04/2012] [Indexed: 01/09/2023]
Abstract
HIV-1 transgenic (Tg) rats, a model for human HIV-1 associated neurocognitive disorder (HAND), show upregulated markers of brain arachidonic acid (AA) metabolism with neuroinflammation after 7 months of age. Since lithium decreases AA metabolism in a rat lipopolysaccharide model of neuroinflammation, and may be useful in HAND, we hypothesized that lithium would dampen upregulated brain AA metabolism in HIV-1 Tg rats. Regional brain AA incorporation coefficients k* and rates J ( in ), markers of AA signaling and metabolism, were measured in 81 brain regions using quantitative autoradiography, after intravenous [1-(14) C]AA infusion in unanesthetized 10-month-old HIV-1 Tg and age-matched wildtype rats that had been fed a control or LiCl diet for 6 weeks. k* and J ( in ) for AA were significantly higher in HIV-1 Tg than wildtype rats fed the control diet. Lithium feeding reduced plasma unesterified AA concentration in both groups and J ( in ) in wildtype rats, and blocked increments in k* (19 of 54 regions) and J ( in ) (77 of 81 regions) in HIV-1 Tg rats. These in vivo neuroimaging data indicate that lithium treatment dampened upregulated brain AA metabolism in HIV-1 Tg rats. Lithium may improve cognitive dysfunction and be neuroprotective in HIV-1 patients with HAND through a comparable effect.
Collapse
Affiliation(s)
- Epolia Ramadan
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA
| | - Mireille Basselin
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA
| | - Lisa Chang
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA
| | - Mei Chen
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA
| | - Kaizong Ma
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA
| | - Stanley I. Rapoport
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
3
|
Basselin M, Ramadan E, Rapoport SI. Imaging brain signal transduction and metabolism via arachidonic and docosahexaenoic acid in animals and humans. Brain Res Bull 2012; 87:154-71. [PMID: 22178644 PMCID: PMC3274571 DOI: 10.1016/j.brainresbull.2011.12.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 12/01/2011] [Accepted: 12/02/2011] [Indexed: 02/05/2023]
Abstract
The polyunsaturated fatty acids (PUFAs), arachidonic acid (AA, 20:4n-6) and docosahexaenoic acid (DHA, 22:6n-3), important second messengers in brain, are released from membrane phospholipid following receptor-mediated activation of specific phospholipase A(2) (PLA(2)) enzymes. We developed an in vivo method in rodents using quantitative autoradiography to image PUFA incorporation into brain from plasma, and showed that their incorporation rates equal their rates of metabolic consumption by brain. Thus, quantitative imaging of unesterified plasma AA or DHA incorporation into brain can be used as a biomarker of brain PUFA metabolism and neurotransmission. We have employed our method to image and quantify effects of mood stabilizers on brain AA/DHA incorporation during neurotransmission by muscarinic M(1,3,5), serotonergic 5-HT(2A/2C), dopaminergic D(2)-like (D(2), D(3), D(4)) or glutamatergic N-methyl-d-aspartic acid (NMDA) receptors, and effects of inhibition of acetylcholinesterase, of selective serotonin and dopamine reuptake transporter inhibitors, of neuroinflammation (HIV-1 and lipopolysaccharide) and excitotoxicity, and in genetically modified rodents. The method has been extended for the use with positron emission tomography (PET), and can be employed to determine how human brain AA/DHA signaling and consumption are influenced by diet, aging, disease and genetics.
Collapse
Affiliation(s)
- Mireille Basselin
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Epolia Ramadan
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Stanley I. Rapoport
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
4
|
Abstract
Mood stabilizers that are approved for treating bipolar disorder (BD), when given chronically to rats, decrease expression of markers of the brain arachidonic metabolic cascade, and reduce excitotoxicity and neuroinflammation-induced upregulation of these markers. These observations, plus evidence for neuroinflammation and excitotoxicity in BD, suggest that arachidonic acid (AA) cascade markers are upregulated in the BD brain. To test this hypothesis, these markers were measured in postmortem frontal cortex from 10 BD patients and 10 age-matched controls. Mean protein and mRNA levels of AA-selective cytosolic phospholipase A(2) (cPLA(2)) IVA, secretory sPLA(2) IIA, cyclooxygenase (COX)-2 and membrane prostaglandin E synthase (mPGES) were significantly elevated in the BD cortex. Levels of COX-1 and cytosolic PGES (cPGES) were significantly reduced relative to controls, whereas Ca(2+)-independent iPLA(2)VIA, 5-, 12-, and 15-lipoxygenase, thromboxane synthase and cytochrome p450 epoxygenase protein and mRNA levels were not significantly different. These results confirm that the brain AA cascade is disturbed in BD, and that certain enzymes associated with AA release from membrane phospholipid and with its downstream metabolism are upregulated. As mood stabilizers downregulate many of these brain enzymes in animal models, their clinical efficacy may depend on suppressing a pathologically upregulated cascade in BD. An upregulated cascade should be considered as a target for drug development and for neuroimaging in BD.
Collapse
|
5
|
Montfort A, Martin PGP, Levade T, Benoist H, Ségui B. FAN (factor associated with neutral sphingomyelinase activation), a moonlighting protein in TNF-R1 signaling. J Leukoc Biol 2010; 88:897-903. [DOI: 10.1189/jlb.0410188] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
6
|
Rao JS, Harry GJ, Rapoport SI, Kim HW. Increased excitotoxicity and neuroinflammatory markers in postmortem frontal cortex from bipolar disorder patients. Mol Psychiatry 2010; 15:384-92. [PMID: 19488045 PMCID: PMC2844920 DOI: 10.1038/mp.2009.47] [Citation(s) in RCA: 343] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Accepted: 04/13/2009] [Indexed: 11/08/2022]
Abstract
Reports of cognitive decline, symptom worsening and brain atrophy in bipolar disorder (BD) suggest that the disease progresses over time. The worsening neuropathology may involve excitotoxicity and neuroinflammation. We determined protein and mRNA levels of excitotoxicity and neuroinflammatory markers in postmortem frontal cortex from 10 BD patients and 10 age-matched controls. The brain tissue was matched for age, postmortem interval and pH. The results indicated statistically significant lower protein and mRNA levels of the N-methyl-D-aspartate receptors, NR-1 and NR-3A, but significantly higher protein and mRNA levels of interleukin (IL)-1beta, the IL-1 receptor (IL-1R), myeloid differentiation factor 88, nuclear factor-kappa B subunits, and astroglial and microglial markers (glial fibrillary acidic protein, inducible nitric oxide synthase, c-fos and CD11b) in postmortem frontal cortex from BD compared with control subjects. There was no significant difference in mRNA levels of tumor necrosis factor alpha or neuronal nitric oxide synthase in the same region. These data show the presence of excitotoxicity and neuroinflammation in BD frontal cortex, with particular activation of the IL-R cascade. The changes may account for reported evidence of disease progression in BD and be a target for future therapy.
Collapse
Affiliation(s)
- J S Rao
- Brain Physiology and Metabolism Section, NIA, NIH Bethesda, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
7
|
Rosenberger TA, Villacreses NE, Weis MT, Rapoport SI. Rat brain docosahexaenoic acid metabolism is not altered by a 6-day intracerebral ventricular infusion of bacterial lipopolysaccharide. Neurochem Int 2009; 56:501-7. [PMID: 20026368 DOI: 10.1016/j.neuint.2009.12.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 11/30/2009] [Accepted: 12/16/2009] [Indexed: 11/18/2022]
Abstract
In a rat model of neuroinflammation, produced by a 6-day intracerebral ventricular infusion of bacterial lipopolysaccharide (LPS), we reported that the brain concentrations of non-esterified brain arachidonic acid (AA, 20:4 n-6) and its eicosanoid products PGE(2) and PGD(2) were increased, as were AA turnover rates in certain brain phospholipids and the activity of AA-selective cytosolic phospholipase A(2) (cPLA(2)). The activity of Ca(2+)-independent iPLA(2), which is thought to be selective for the release of docosahexaenoic acid (DHA, 22:6 n-3) from membrane phospholipid, was unchanged. In the present study, we measured parameters of brain DHA metabolism in comparable artificial cerebrospinal fluid (control) and LPS-infused rats. In contrast to the reported changes in markers of AA metabolism, the brain non-esterified DHA concentration and DHA turnover rates in individual phospholipids were not significantly altered by LPS infusion. The formation rates of AA-CoA and DHA-CoA in a microsomal brain fraction were also unaltered by the LPS infusion. These observations indicate that LPS-treatment upregulates markers of brain AA but not DHA metabolism. All of which are consistent with other evidence that suggest different sets of enzymes regulate AA and DHA recycling within brain phospholipids and that only selective increases in brain AA metabolism occur following a 6-day LPS infusion.
Collapse
Affiliation(s)
- Thad A Rosenberger
- Department of Pharmacology, Physiology and Therapeutics, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203, USA.
| | | | | | | |
Collapse
|
8
|
Rapoport SI, Basselin M, Kim HW, Rao JS. Bipolar disorder and mechanisms of action of mood stabilizers. BRAIN RESEARCH REVIEWS 2009; 61:185-209. [PMID: 19555719 PMCID: PMC2757443 DOI: 10.1016/j.brainresrev.2009.06.003] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Revised: 06/03/2009] [Accepted: 06/15/2009] [Indexed: 11/30/2022]
Abstract
Bipolar disorder (BD) is a major medical and social burden, whose cause, pathophysiology and treatment are not agreed on. It is characterized by recurrent periods of mania and depression (Bipolar I) or of hypomania and depression (Bipolar II). Its inheritance is polygenic, with evidence of a neurotransmission imbalance and disease progression. Patients often take multiple agents concurrently, with incomplete therapeutic success, particularly with regard to depression. Suicide is common. Of the hypotheses regarding the action of mood stabilizers in BD, the "arachidonic acid (AA) cascade" hypothesis is presented in detail in this review. It is based on evidence that chronic administration of lithium, carbamazepine, sodium valproate, or lamotrigine to rats downregulated AA turnover in brain phospholipids, formation of prostaglandin E(2), and/or expression of AA cascade enzymes, including cytosolic phospholipase A(2), cyclooxygenase-2 and/or acyl-CoA synthetase. The changes were selective for AA, since brain docosahexaenoic or palmitic acid metabolism, when measured, was unaffected, and topiramate, ineffective in BD, did not modify the rat brain AA cascade. Downregulation of the cascade by the mood stabilizers corresponded to inhibition of AA neurotransmission via dopaminergic D(2)-like and glutamatergic NMDA receptors. Unlike the mood stabilizers, antidepressants that increase switching of bipolar depression to mania upregulated the rat brain AA cascade. These observations suggest that the brain AA cascade is a common target of mood stabilizers, and that bipolar symptoms, particularly mania, are associated with an upregulated cascade and excess AA signaling via D(2)-like and NMDA receptors. This review presents ways to test these suggestions.
Collapse
Affiliation(s)
- Stanley I Rapoport
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
9
|
Montfort A, de Badts B, Douin-Echinard V, Martin PGP, Iacovoni J, Nevoit C, Therville N, Garcia V, Bertrand MA, Bessières MH, Trombe MC, Levade T, Benoist H, Ségui B. FAN stimulates TNF(alpha)-induced gene expression, leukocyte recruitment, and humoral response. THE JOURNAL OF IMMUNOLOGY 2009; 183:5369-78. [PMID: 19786552 DOI: 10.4049/jimmunol.0803384] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Factor associated with neutral sphingomyelinase activation (FAN) is an adaptor protein that constitutively binds to TNF-R1. Microarray analysis was performed in fibroblasts derived from wild-type or FAN knockout mouse embryos to evaluate the role of FAN in TNF-induced gene expression. Approximately 70% of TNF-induced genes exhibited lower expression levels in FAN-deficient than in wild-type fibroblasts. Of particular interest, TNF-induced expression of cytokines/chemokines, such as IL-6 and CXCL-2, was impaired in FAN-deficient cells. This was confirmed by real time RT-PCR and ELISA. Upon i.p. TNF or thioglycollate injection, neutrophil recruitment into the peritoneal cavity was reduced by more than 50% in FAN-deficient mice. Nevertheless, FAN-deficient animals did not exhibit an increased susceptibility to different microorganisms including bacteria and parasites, indicating that FAN is not essential for pathogen clearance. Specific Ab response to BSA was substantially impaired in FAN-deficient mice and this was associated with a reduced content of leukocytes in the spleen of BSA-challenged FAN-deficient mice as compared with their wild-type counterparts. Altogether, our results indicate the involvement of FAN in TNF-induced gene expression and leukocyte recruitment, contributing to the establishment of the specific immune response.
Collapse
|
10
|
Loos B, Smith R, Engelbrecht AM. Ischaemic preconditioning and TNF-alpha-mediated preconditioning is associated with a differential cPLA2 translocation pattern in early ischaemia. Prostaglandins Leukot Essent Fatty Acids 2008; 78:403-13. [PMID: 18579361 DOI: 10.1016/j.plefa.2008.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2007] [Revised: 04/03/2008] [Accepted: 05/04/2008] [Indexed: 10/21/2022]
Abstract
Both the cytokine tumour necrosis factor-alpha (TNF-alpha) and the enzyme cytosolic phospholipase A2 (cPLA2) have been implicated in ischaemic injury. Apart from the induction of apoptosis, TNF-alpha also mediates cytoprotection when present in low concentrations. However, the relationship between TNF-alpha and cPLA2 activities during cytoprotection is poorly understood. Therefore, we examined the role of cPLA2 in TNF-alpha-mediated (TNF-PC) and ischaemic preconditioning (IPC) in tolerance to ischaemia (SI) in C2C12 myotubes. Significant decreases in cPLA2 phosphorylation in SI compared with the preconditioned groups were observed. This was also mirrored by the p38 mitogen activated protein kinase (MAPK) phosphorylation pattern. These results correlated with fluorescence- and three-dimensional imaging, demonstrating increased translocation of phospho-cPLA2 to the nuclear region in SI compared to TNF-PC and IPC. These data suggest a p38 driven cPLA2 translocation pattern, with a possible role for cPLA2 in deciding cell fate.
Collapse
Affiliation(s)
- B Loos
- Department of Physiological Sciences, University of Stellenbosch, Meriman Street, Stellenbosch 7600, Republic of South Africa
| | | | | |
Collapse
|
11
|
Zhang HQ, Wang HD, Lu DX, Qi RB, Wang YP, Yan YX, Fu YM. Berberine inhibits cytosolic phospholipase A2 and protects against LPS-induced lung injury and lethality independent of the alpha2-adrenergic receptor in mice. Shock 2008; 29:617-22. [PMID: 18414236 DOI: 10.1097/shk.0b013e318157ea14] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Acute lung injury is still a significant clinical problem having a high mortality rate despite significant advances in antimicrobial therapy and supportive care made in the past few years. Our previous study demonstrated that berberine (Ber) remarkably decreased mortality and attenuated the lung injury in mice challenged with LPS, but the mechanism behind this remains unclear. Here, we report that pretreatment with Ber significantly reduced pulmonary edema, neutrophil infiltration, and histopathological alterations; inhibited protein expression and phosphorylation of cytosolic phospholipase A2; and decreased thromboxane A2 release induced by LPS. Yohimbine, an alpha2-adrenergic receptor antagonist, did not antagonize these actions of Ber. Furthermore, pretreatment with Ber decreased TNF-alpha production and mortality in mice challenged with LPS, which were enhanced by yohimbine, and Ber combined with yohimbine also improved survival rate in mice subjected to cecal ligation and puncture. Taken together, these observations indicate that Ber attenuates LPS-induced lung injury by inhibiting TNF-alpha production and cytosolic phospholipase A2 expression and activation in an alpha2-adrenoceptor-independent manner. Berberine combined with yohimbine might provide an effective therapeutic approach to acute lung injury during sepsis.
Collapse
Affiliation(s)
- Hao-qing Zhang
- Department of Pathophysiology, Medical College of Jinan University, Guangzhou, Guangdong, China
| | | | | | | | | | | | | |
Collapse
|
12
|
Möhlig H, Mathieu S, Thon L, Frederiksen MC, Ward DM, Kaplan J, Schütze S, Kabelitz D, Adam D. The WD repeat protein FAN regulates lysosome size independent from abnormal downregulation/membrane recruitment of protein kinase C. Exp Cell Res 2007; 313:2703-18. [PMID: 17512928 PMCID: PMC2988431 DOI: 10.1016/j.yexcr.2007.04.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Revised: 04/02/2007] [Accepted: 04/16/2007] [Indexed: 11/28/2022]
Abstract
FAN (factor associated with neutral sphingomyelinase [N-SMase] activation) exhibits striking structural homologies to Lyst (lysosomal trafficking regulator), a BEACH protein whose inactivation causes formation of giant lysosomes/Chediak-Higashi syndrome. Here, we show that cells lacking FAN show a statistically significant increase in lysosome size (although less pronounced as Lyst), pointing to previously unrecognized functions of FAN in regulation of the lysosomal compartment. Since FAN regulates activation of N-SMase in complex with receptor for activated C-kinase (RACK)1, a scaffolding protein that recruits and stabilizes activated protein kinase C (PKC) isotypes at cellular membranes, and since an abnormal (calpain-mediated) downregulation/membrane recruitment of PKC has been linked to the defects observed in Lyst-deficient cells, we assessed whether PKC is also of relevance in FAN signaling. Our results demonstrate that activation of PKC is not required for regulation of N-SMase by FAN/RACK1. Conversely, activation of PKC and recruitment/stabilization by RACK1 occurs uniformly in the presence or absence of FAN (and equally, Lyst). Furthermore, regulation of lysosome size by FAN is not coupled to an abnormal downregulation/membrane recruitment of PKC by calpain. Identical results were obtained for Lyst, questioning the previously reported relevance of PKC for formation of giant lysosomes and in Chediak-Higashi syndrome. In summary, FAN mediates activation of N-SMase as well as regulation of lysosome size by signaling pathways that operate independent from activation/membrane recruitment of PKC.
Collapse
Affiliation(s)
- Heike Möhlig
- Institut für Immunologie, Universitätsklinikum Schleswig-Holstein Campus Kiel, Michaelisstr. 5, 24105 Kiel, Germany
| | - Sabine Mathieu
- Institut für Immunologie, Universitätsklinikum Schleswig-Holstein Campus Kiel, Michaelisstr. 5, 24105 Kiel, Germany
| | - Lutz Thon
- Institut für Immunologie, Universitätsklinikum Schleswig-Holstein Campus Kiel, Michaelisstr. 5, 24105 Kiel, Germany
| | - Marie-Catherine Frederiksen
- Institut für Immunologie, Universitätsklinikum Schleswig-Holstein Campus Kiel, Michaelisstr. 5, 24105 Kiel, Germany
| | - Diane M. Ward
- Department of Pathology, Utah Health Sciences Center, Salt Lake City, UT 84132, USA
| | - Jerry Kaplan
- Department of Pathology, Utah Health Sciences Center, Salt Lake City, UT 84132, USA
| | - Stefan Schütze
- Institut für Immunologie, Universitätsklinikum Schleswig-Holstein Campus Kiel, Michaelisstr. 5, 24105 Kiel, Germany
| | - Dieter Kabelitz
- Institut für Immunologie, Universitätsklinikum Schleswig-Holstein Campus Kiel, Michaelisstr. 5, 24105 Kiel, Germany
| | - Dieter Adam
- Institut für Immunologie, Universitätsklinikum Schleswig-Holstein Campus Kiel, Michaelisstr. 5, 24105 Kiel, Germany
| |
Collapse
|
13
|
Haubert D, Gharib N, Rivero F, Wiegmann K, Hösel M, Krönke M, Kashkar H. PtdIns(4,5)P-restricted plasma membrane localization of FAN is involved in TNF-induced actin reorganization. EMBO J 2007; 26:3308-21. [PMID: 17599063 PMCID: PMC1933409 DOI: 10.1038/sj.emboj.7601778] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2006] [Accepted: 06/06/2007] [Indexed: 11/08/2022] Open
Abstract
The WD-repeat protein factor associated with nSMase activity (FAN) is a member of the family of TNF receptor adaptor proteins that are coupled to specific signaling cascades. However, the precise functional involvement of FAN in specific cellular TNF responses remain unclear. Here, we report the involvement of FAN in TNF-induced actin reorganization and filopodia formation mediated by activation of Cdc42. The pleckstrin-homology (PH) domain of FAN specifically binds to phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P), which targets FAN to the plasma membrane. Site-specific mutagenesis revealed that the ability of FAN to mediate filopodia formation was blunted either by the destruction of the PtdIns(4,5)P binding motif, or by the disruption of intramolecular interactions between the PH domain and the adjacent beige and Chediak-Higashi (BEACH) domain. Furthermore, FAN was shown to interact with the actin cytoskeleton in TNF-stimulated cells via direct filamentous actin (F-actin) binding. The results of this study suggest that PH-mediated plasma membrane targeting of FAN is critically involved in TNF-induced Cdc42 activation and cytoskeleton reorganization.
Collapse
Affiliation(s)
- Dirk Haubert
- Institute for Medical Microbiology, Immunology and Hygiene, Medical Faculty, University of Cologne, Cologne, Germany
| | - Nina Gharib
- Institute for Medical Microbiology, Immunology and Hygiene, Medical Faculty, University of Cologne, Cologne, Germany
| | - Francisco Rivero
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Institute for Biochemistry I, Medical Faculty, University of Cologne, Cologne, Germany
| | - Katja Wiegmann
- Institute for Medical Microbiology, Immunology and Hygiene, Medical Faculty, University of Cologne, Cologne, Germany
| | - Marianna Hösel
- Institute for Medical Microbiology, Immunology and Hygiene, Medical Faculty, University of Cologne, Cologne, Germany
| | - Martin Krönke
- Institute for Medical Microbiology, Immunology and Hygiene, Medical Faculty, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Hamid Kashkar
- Institute for Medical Microbiology, Immunology and Hygiene, Medical Faculty, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Goldenfelsstrasse 19-21, 50935 Köln, Germany. Tel.: +49 221 478 7286; Fax: +49 221 478 7288; E-mail:
| |
Collapse
|
14
|
Basselin M, Villacreses NE, Lee HJ, Bell JM, Rapoport SI. Chronic lithium administration attenuates up-regulated brain arachidonic acid metabolism in a rat model of neuroinflammation. J Neurochem 2007; 102:761-72. [PMID: 17488274 DOI: 10.1111/j.1471-4159.2007.04593.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Neuroinflammation, caused by a 6-day intracerebroventricular infusion of lipopolysaccharide (LPS) in rats, is associated with the up-regulation of brain arachidonic acid (AA) metabolism markers. Because chronic LiCl down-regulates markers of brain AA metabolism, we hypothesized that it would attenuate increments of these markers in LPS-infused rats. Incorporation coefficients k* of AA from plasma into brain, and other brain AA metabolic markers, were measured in rats that had been fed a LiCl or control diet for 6 weeks, and subjected in the last 6 days on the diet to intracerebroventricular infusion of artificial CSF or of LPS. In rats on the control diet, LPS compared with CSF infusion increased k* significantly in 28 regions, whereas the LiCl diet prevented k* increments in 18 of these regions. LiCl in CSF infused rats increased k* in 14 regions, largely belonging to auditory and visual systems. Brain cytoplasmic phospholipase A(2) activity, and prostaglandin E(2) and thromboxane B(2) concentrations, were increased significantly by LPS infusion in rats fed the control but not the LiCl diet. Chronic LiCl administration attenuates LPS-induced up-regulation of a number of brain AA metabolism markers. To the extent that this up-regulation has neuropathological consequences, lithium might be considered for treating human brain diseases accompanied by neuroinflammation.
Collapse
Affiliation(s)
- Mireille Basselin
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda 20892-0947, Maryland, USA.
| | | | | | | | | |
Collapse
|
15
|
Kilpatrick LE, Sun S, Mackie D, Baik F, Li H, Korchak HM. Regulation of TNF mediated antiapoptotic signaling in human neutrophils: role of delta-PKC and ERK1/2. J Leukoc Biol 2007; 80:1512-21. [PMID: 17138860 DOI: 10.1189/jlb.0406284] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
TNF is implicated in the suppression of neutrophil apoptosis during sepsis. Multiple signaling pathways are involved in TNF-mediated antiapoptotic signaling; a role for the MAP kinases (MAPK), ERK1/2, and p38 MAPK has been suggested. Antiapoptotic signaling is mediated principally through TNF receptor-1 (TNFR-1), and the PKC isotype-delta (delta-PKC) is a critical regulator of TNFR-1 signaling. delta-PKC associates with TNFR-1 in response to TNF and is required for NFkappaB activation and inhibition of caspase 3. The role of delta-PKC in TNF-mediated activation of MAPK is not known. The purpose of this study was to determine whether the MAPK, ERK1/2, and p38 MAPK are involved in TNF antiapoptotic signaling and whether delta-PKC is a key regulator of MAPK activation by TNF. In human neutrophils, TNF activated both p38 MAPK and ERK1/2 principally via TNFR-1. The MEK1/2 inhibitors PD098059 and U0126, but not the p38 MAPK inhibitor SB203580, decreased TNF antiapoptotic signaling as measured by caspase 3 activity. A specific delta-PKC antagonist, V1.1delta-PKC-Tat peptide, inhibited TNF-mediated ERK1/2 activation, but not p38 MAPK. ERK1/2 inhibition did not alter recruitment of delta-PKC to TNFR-1, indicating delta-PKC is acting upstream of ERK1/2. In HL-60 cells differentiated to a neutrophilic phenotype, delta-PKC depletion by delta-PKC siRNA resulted in inhibition of TNF mediated ERK1/2 activation but not p38 MAPK. Thus, ERK1/2, but not p38 MAPK, is an essential component of TNF-mediated antiapoptotic signaling. In human neutrophils, delta-PKC is a positive regulator of ERK1/2 activation via TNFR-1 but has no role in p38 MAPK activation.
Collapse
Affiliation(s)
- Laurie E Kilpatrick
- Department of Pediatrics, University of Pennsylvania School of Medicine and the Joseph Stokes Jr. Research Institute, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | | | | | |
Collapse
|
16
|
Davis CN, Tabarean I, Gaidarova S, Behrens MM, Bartfai T. IL-1beta induces a MyD88-dependent and ceramide-mediated activation of Src in anterior hypothalamic neurons. J Neurochem 2006; 98:1379-89. [PMID: 16771830 DOI: 10.1111/j.1471-4159.2006.03951.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The proinflammatory cytokine interleukin 1beta (IL-1beta), acting at IL-1R1 receptors, affects neuronal signaling under both physiological and pathophysiological conditions. The molecular mechanism of the rapid synaptic actions of IL-1beta in neurons is not known. We show here that within minutes of IL-1beta exposure, the firing rate of anterior hypothalamic (AH) neurons in culture was inhibited. This effect was prevented by pre-exposure of the cells to the Src family inhibitor, PP2, suggesting the involvement of Src in the hyperpolarizing effects of IL-1beta. The IL-1beta stimulation of neurons induced a rapid increase in the phosphorylation of the tyrosine kinase Src and kinase suppressor of Ras (ceramide activated protein kinase (CAPK)/KSR) in neurons grown on glia from IL-1RI(-/-) mice. These effects of IL-1beta were dependent on the association of the cytosolic adaptor protein, MyD88, to the IL-1 receptor, and on the activation of the neutral sphingomyelinase, leading to production of ceramide. A cell-permeable analog of ceramide mimicked the effects of IL-1beta on the cultured AH neurons. These results suggest that ceramide may be the second messenger of the fast IL-1beta actions in AH neurons, and that this IL-1beta/ceramide pathway may underlie the fast non-transcription-dependent, electrophysiological effects of IL-1beta observed in AH neurons in vivo.
Collapse
Affiliation(s)
- Christopher N Davis
- The Harold L. Dorris Neurological Research Institute and Molecular and Integrative Neurosciences Department, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
17
|
Lüschen S, Falk M, Scherer G, Ussat S, Paulsen M, Adam-Klages S. The Fas-associated death domain protein/caspase-8/c-FLIP signaling pathway is involved in TNF-induced activation of ERK. Exp Cell Res 2005; 310:33-42. [PMID: 16129431 DOI: 10.1016/j.yexcr.2005.07.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2005] [Revised: 07/04/2005] [Accepted: 07/12/2005] [Indexed: 01/12/2023]
Abstract
The cytokine TNF activates multiple signaling pathways leading to cellular responses ranging from proliferation and survival to apoptosis. While most of these pathways have been elucidated in detail over the past few years, the molecular mechanism leading to the activation of the MAP kinases ERK remains ill defined and is controversially discussed. Therefore, we have analyzed TNF-induced ERK activation in various human and murine cell lines and show that it occurs in a cell-type-specific manner. In addition, we provide evidence for the involvement of the signaling components Fas-associated death domain protein (FADD), caspase-8, and c-FLIP in the pathway activating ERK in response to TNF. This conclusion is based on the following observations: (I) Overexpression of FADD, caspase-8, or a c-FLIP protein containing the death effector domains only leads to enhanced and prolonged ERK activation after TNF treatment. (II) TNF-induced ERK activation is strongly diminished in the absence of FADD. Interestingly, the enzymatic function of caspase-8 is not required for TNF-induced ERK activation. Additional evidence suggests a role for this pathway in the proliferative response of murine fibroblasts to TNF.
Collapse
Affiliation(s)
- Silke Lüschen
- Institut für Immunologie, Universitätsklinikum Schleswig-Holstein Campus Kiel, Michaelisstrasse 5, 24105 Kiel, Germany
| | | | | | | | | | | |
Collapse
|
18
|
Feng X. Regulatory roles and molecular signaling of TNF family members in osteoclasts. Gene 2005; 350:1-13. [PMID: 15777737 DOI: 10.1016/j.gene.2005.01.014] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2004] [Revised: 12/15/2004] [Accepted: 01/24/2005] [Indexed: 12/21/2022]
Abstract
The tumor necrosis factor (TNF) family has been one of the most intensively studied families of proteins in the past two decades. The TNF family constitutes 19 members that mediate diverse biological functions in a variety of cellular systems. The TNF family members regulate cellular functions through binding to membrane-bound receptors belonging to the TNF receptor (TNFR) family. Members of the TNFR family lack intrinsic kinase activity and thus they initiate signaling by interacting intracellular signaling molecules such as TNFR associated factor (TRAF), TNFR associated death domain (TRADD) and Fas-associated death domain (FADD). In bone metabolism, it has been shown that numerous TNF family members including receptor activator of nuclear factor kappaB ligand (RANKL), TNF-alpha, Fas ligand (FasL) and TNF-related apoptosis-inducing ligand (TRAIL) play pivotal roles in the differentiation, function, survival and/or apoptosis of osteoclasts, the principal bone-resorbing cells. These TNF family members not only regulate physiological bone remodeling but they are also implicated in the pathogenesis of various bone diseases such as osteoporosis and bone loss in inflammatory conditions. This review will focus on our current understanding of the regulatory roles and molecular signaling of these TNF family members in osteoclasts.
Collapse
Affiliation(s)
- Xu Feng
- Department of Pathology, University of Alabama at Birmingham, 1670 University BLVD, VH G046B, Birmingham, AL 35294, USA.
| |
Collapse
|
19
|
Csehi SB, Mathieu S, Seifert U, Lange A, Zweyer M, Wernig A, Adam D. Tumor necrosis factor (TNF) interferes with insulin signaling through the p55 TNF receptor death domain. Biochem Biophys Res Commun 2005; 329:397-405. [PMID: 15721320 DOI: 10.1016/j.bbrc.2005.01.140] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2005] [Indexed: 12/21/2022]
Abstract
Tumor necrosis factor (TNF) contributes to insulin resistance by binding to the 55kDa TNF receptor (TNF-R55), resulting in serine phosphorylation of proteins such as insulin receptor (IR) substrate (IRS)-1, followed by reduced tyrosine phosphorylation of IRS-1 through the IR and, thereby, diminished IR signal transduction. Through independent receptor domains, TNF-R55 activates a neutral (N-SMase) and an acid sphingomyelinase (A-SMase), that both generate the sphingolipid ceramide. Multiple candidate kinases have been identified that serine-phosphorylate IRS-1 in response to TNF or ceramide. However, due to the fact that the receptor domain of TNF-R55 mediating inhibition of the IR has not been mapped, it is currently unknown whether TNF exerts these effects with participation of N-SMase or A-SMase. Here, we identify the death domain of TNF-R55 as responsible for the inhibitory effects of TNF on tyrosine phosphorylation of IRS-1, implicating ceramide generated by A-SMase as a downstream mediator of inhibition of IR signaling.
Collapse
Affiliation(s)
- Susan-Beatrice Csehi
- Institut für Immunologie, Universitätsklinikum Schleswig-Holstein Campus Kiel, Michaelisstr. 5, 24105 Kiel, Germany
| | | | | | | | | | | | | |
Collapse
|
20
|
Marchesini N, Hannun YA. Acid and neutral sphingomyelinases: roles and mechanisms of regulation. Biochem Cell Biol 2004; 82:27-44. [PMID: 15052326 DOI: 10.1139/o03-091] [Citation(s) in RCA: 271] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Ceramide, an emerging bioactive lipid and second messenger, is mainly generated by hydrolysis of sphingomyelin through the action of sphingomyelinases. At least two sphingomyelinases, neutral and acid sphingomyelinases, are activated in response to many extracellular stimuli. Despite extensive studies, the precise cellular function of each of these sphingomyelinases in sphingomyelin turnover and in the regulation of ceramide-mediated responses is not well understood. Therefore, it is essential to elucidate the factors and mechanisms that control the activation of acid and neutral sphingomyelinases to understand their the roles in cell regulation. This review will focus on the molecular mechanisms that regulate these enzymes in vivo and in vitro, especially the roles of oxidants (glutathione, peroxide, nitric oxide), proteins (saposin, caveolin 1, caspases), and lipids (diacylglycerol, arachidonic acid, and ceramide).
Collapse
Affiliation(s)
- Norma Marchesini
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, 29425, USA
| | | |
Collapse
|
21
|
Lüschen S, Scherer G, Ussat S, Ungefroren H, Adam-Klages S. Inhibition of p38 mitogen-activated protein kinase reduces TNF-induced activation of NF-kappaB, elicits caspase activity, and enhances cytotoxicity. Exp Cell Res 2004; 293:196-206. [PMID: 14729457 DOI: 10.1016/j.yexcr.2003.10.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Among other cellular responses, tumor necrosis factor (TNF) induces different forms of cell death and the activation of the p38 mitogen-activated protein kinase (MAPK). The influence of p38 MAPK activation on TNF-induced apoptosis or necrosis is controversially discussed. Here, we demonstrate that pharmacological inhibition of p38 MAPK enhances TNF-induced cell death in murine fibroblast cell lines L929 and NIH3T3. Furthermore, overexpression of dominant-negative versions of p38 MAPK or its upstream kinase MKK6 led to increased cell death in L929 cells. While overexpression of the p38 isoforms alpha and beta did not protect L929 cells from TNF-induced toxicity, overexpression of constitutively active MKK6 decreased TNF-induced cell death. Although the used inhibitors of p38 MAPK decreased the phosphorylation of the survival kinase PKB/Akt, this effect could be ruled out as cause of the observed sensitization to TNF-induced cytotoxicity. Finally, we demonstrate that the nuclear factor kappaB (NF-kappaB)-dependent gene expression, shown as an example for the anti-apoptotic gene cellular inhibitor of apoptosis (c-IAP2), was reduced by p38 MAPK inhibition. In consequence, we found that inhibition of p38 MAPK led to the activation of the executioner caspase-3.
Collapse
Affiliation(s)
- Silke Lüschen
- Institute of Immunology, Christian-Albrechts-University, Michaelisstrasse 5, D-24105 Kiel, Germany
| | | | | | | | | |
Collapse
|
22
|
Malagarie-Cazenave S, Ségui B, Lévêque S, Garcia V, Carpentier S, Altié MF, Brouchet A, Gouazé V, Andrieu-Abadie N, Barreira Y, Benoist H, Levade T. Role of FAN in tumor necrosis factor-alpha and lipopolysaccharide-induced interleukin-6 secretion and lethality in D-galactosamine-sensitized mice. J Biol Chem 2004; 279:18648-55. [PMID: 14985352 DOI: 10.1074/jbc.m314294200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Tumor necrosis factor (TNF) alpha-induced neutral sphingomyelinase-mediated generation of ceramide, a bioactive lipid molecule, is transduced by the adaptor protein FAN, which binds to the intracellular region of the CD120a TNFalpha receptor. FAN-deficient mice do not exhibit any gross abnormality. To further explore the functions of FAN in vivo and because CD120a-deficient mice are resistant to endotoxin-induced liver failure and lethality, we investigated the susceptibility of FAN-deficient animals to lipopolysaccharide (LPS). We show that after d-galactosamine sensitization, FAN-deficient mice were partially resistant to LPS- and TNFalpha-induced lethality. Although LPS challenge resulted in a hepatic ceramide content lower in mutant mice than in control animals, it triggered similar histological alterations, caspase activation, and DNA fragmentation in the liver. Interestingly, LPS-induced elevation of IL-6 (but not TNFalpha) serum concentrations was attenuated in FAN-deficient mice. A less pronounced secretion of IL-6 was also observed after LPS or TNFalpha treatment of cultured peritoneal macrophages and embryonic fibroblasts isolated from FAN-deficient mice, as well as in human fibroblasts expressing a mutated FAN. Finally, we show that d-galactosamine-sensitized IL-6-deficient mice were partially resistant to endotoxin-induced liver apoptosis and lethality. These findings highlight the role of FAN and IL-6 in the inflammatory response initiated by endotoxin, implicating TNFalpha.
Collapse
Affiliation(s)
- Sophie Malagarie-Cazenave
- INSERM U.466, Laboratoire de Biochimie, Institut Louis Bugnard, Centre Hospitalier Universitaire Rangueil, Toulouse, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
A single mouse click on the topic tumor necrosis factor (TNF) in PubMed reveals about 50,000 articles providing one or the other information about this pleiotropic cytokine or its relatives. This demonstrates the enormous scientific and clinical interest in elucidating the biology of a molecule (or rather a large family of molecules), which began now almost 30 years ago with the description of a cytokine able to exert antitumoral effects in mouse models. Although our understanding of the multiple functions of TNF in vivo and of the respective underlying mechanisms at a cellular and molecular level has made enormous progress since then, new aspects are steadily uncovered and it appears that still much needs to be learned before we can conclude that we have a full comprehension of TNF biology. This review shortly covers some general aspects of this fascinating molecule and then concentrates on the molecular mechanisms of TNF signal transduction. In particular, the multiple facets of crosstalk between the various signalling pathways engaged by TNF will be addressed.
Collapse
Affiliation(s)
- H Wajant
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring, Germany.
| | | | | |
Collapse
|
24
|
Pettus BJ, Chalfant CE, Hannun YA. Ceramide in apoptosis: an overview and current perspectives. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1585:114-25. [PMID: 12531544 DOI: 10.1016/s1388-1981(02)00331-1] [Citation(s) in RCA: 588] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Recent years have witnessed significant advances in the understanding of the role of ceramide in apoptosis. This review summarizes these recent findings and discusses insights from studies of ceramide metabolism, topology, and effector actions. The recent identification of several genes for enzymes of ceramide metabolism, the development of mass spectrometric methods for ceramide analysis, and the increasing molecular and pharmacological tools to probe ceramide metabolism and function promise an accelerated phase in defining the molecular and biochemical details of the role of ceramide in apoptosis.
Collapse
Affiliation(s)
- Benjamin J Pettus
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | | | | |
Collapse
|
25
|
Abstract
A major part of the proinflammatory activity of tumor necrosis factor (TNF) is brought about by cytosolic phospholipase A(2) (cPLA(2)) that generates arachidonic acid, the precursor for the production of leukotrienes and prostaglandins. The activation of cPLA(2) and induction of proinflammatory lipid mediators is in striking contrast to the teleologic meaning of apoptosis, which is to avoid an inflammatory reaction. In this review we highlight the evidence for a caspase-mediated cleavage and inactivation of cPLA(2), which seems to be an important mechanism by which TNF downregulates cPLA(2) activity in cells undergoing apoptosis.
Collapse
Affiliation(s)
- Martin Krönke
- Institute for Medical Microbiology, Immunology, and Hygiene, Medical Center, University of Cologne, Goldenfelsstr. 19-21, 50935, Cologne, Germany.
| | | |
Collapse
|
26
|
Islam S, Kermode T, Sultana D, Moskowitz RW, Mukhtar H, Malemud CJ, Goldberg VM, Haqqi TM. Expression profile of protein tyrosine kinase genes in human osteoarthritis chondrocytes. Osteoarthritis Cartilage 2001; 9:684-93. [PMID: 11795987 DOI: 10.1053/joca.2001.0465] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To determine the expression profile of protein kinase (PK) and protein tyrosine kinase (PTK) genes in human primary osteoarthritis (OA) chondrocytes and to compare it with that of immortalized human chondrocytes T/C 28a4 with a view to learning whether T/C 28a4 cells can be used for elucidating signal transduction pathways in human chondrocytes. DESIGN We used the Atlas Human cDNA Array and a method based on PCR with degenerate primers to analyse the expression profile of protein kinase genes in primary human OA chondrocytes and compared it with that of immortalized human chondrocyte cell line T/C 28a4 using RT-PCR and Western blotting. RESULTS A total of 21 PTK genes were identified and several of these have never been shown to be expressed in human OA chondrocytes. Comparative expression analysis of some selected kinase genes showed that the mRNA expression pattern of many protein kinase genes in OA chondrocytes was identical to that of T/C 28a4 cells. However, there were differences in the level of protein expression of selected protein kinases in these cells. For example, mRNA expression of the novel kinase HCK was detected in OA chondrocytes and in the cell lines analysed but by Western blotting HCK protein was not detected in OA chondrocytes. In these studies, we also identified a novel mutant form of the discoidin domain receptor 2 (DDR2) transcript from chondrocyte-like cell line HTB-94. CONCLUSIONS Our results provide novel information about protein kinase gene expression in OA chondrocytes and indicate that the transformed chondrocyte cell line T/C 28a4 may be suitable for elucidating signal transduction pathways in chondrocytes and to investigate how they regulate chondrocyte function in inflammatory and degenerative joint diseases.
Collapse
Affiliation(s)
- S Islam
- Department of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Ségui B, Cuvillier O, Adam-Klages S, Garcia V, Malagarie-Cazenave S, Lévêque S, Caspar-Bauguil S, Coudert J, Salvayre R, Krönke M, Levade T. Involvement of FAN in TNF-induced apoptosis. J Clin Invest 2001; 108:143-51. [PMID: 11435466 PMCID: PMC209337 DOI: 10.1172/jci11498] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
TNF-alpha is a pleiotropic cytokine activating several signaling pathways initiated at distinct intracellular domains of the TNF receptors. Although the C-terminal region is believed to be responsible for apoptosis induction, the functions of more membrane-proximal domains, including the domain that couples to neutral sphingomyelinase activation, are not yet fully elucidated. The roles of this region and of the associated adapter protein FAN (factor associated with neutral SMase activation) in the cytotoxic response to TNF have been investigated. We have now shown that stable expression in human fibroblasts of a dominant negative form of FAN abrogates TNF-induced ceramide generation from sphingomyelin hydrolysis and reduces caspase processing, thus markedly inhibiting TNF-triggered apoptosis. However, the cytotoxic responses to daunorubicin and exogenous ceramide remain unaltered, as do the TNF-induced p42/p44 MAPK activation and CD54 expression. Fibroblasts from FAN-knockout mice also proved to be resistant to TNF toxicity. These findings highlight the previously unrecognized role of the adapter protein FAN in signaling cell death induction by TNF.
Collapse
Affiliation(s)
- B Ségui
- Institut National de la Santé et de la Recherche Médicale U466, Centre Hospitalier Universitaire Rangueil, Toulouse, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|