1
|
Liu Q, Lin S, Liu Y, Liu K, Jia S, Wang S, Sun N. Allergenicity Reduction of Shrimp ( Penaeus vannamei) via Fucoidan-Mediated Covalent Modification: Insights from Epitope Modifying Effect. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:7482-7495. [PMID: 40073337 DOI: 10.1021/acs.jafc.5c01115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Covalent modification is an effective strategy for reducing allergenicity to individual allergens, but there are few studies on this strategy modifying specific amino acids within epitopes under the influence of food matrix. This study used fucoidan to covalently modify shrimp (Penaeus vannamei) and combined mass spectrometry and bioinformatics techniques to explore epitope modification. The results showed that lower concentrations (<2.50%) of fucoidan facilitated the covalent modification reaction and effectively modified amino acid sites in the loop regions of allergens, including lysine, asparagine, and methionine. In contrast, higher concentrations (>5.00%) of fucoidan hindered the reaction and modified amino acid sites in the helix regions of allergens, including asparagine, lysine, and methionine. The RBL-2H3 cells model confirmed that modification of hemocyanin epitopes was the main reason for reduced allergenicity. Overall, fucoidan-mediated covalent modification can effectively modify various allergenic epitopes in shrimp, which is a potential strategy to reduce shrimp allergenicity.
Collapse
Affiliation(s)
- Qiaozhen Liu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Songyi Lin
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- Engineering Research Center of Food, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, P. R. China
| | - Yao Liu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Kexin Liu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Shuqi Jia
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Shuya Wang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Na Sun
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- Engineering Research Center of Food, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, P. R. China
| |
Collapse
|
2
|
Liu Q, Lin S, Liu K, Jia S, Wang S, Sun N. Fucoidan-Mediated Covalent Modification Induces Oral Tolerance to Shrimp by Generating Tolerogenic Peptides and Reducing Antigen Responsiveness. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:5548-5561. [PMID: 39967261 DOI: 10.1021/acs.jafc.4c12218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Food allergy has become a global food safety issue, and inducing tolerance of the immune system to allergens is seen as an effective way to address this problem. In this study, shrimp (Penaeus vannamei) was covalently modified with fucoidan to explore its potential as an oral tolerance inducer. The results showed that this strategy not only had no adverse effect on the growth of mice but also achieved significant immune tolerance induction effects. Specifically, it significantly reduced specific antibody levels, improved vascular permeability and intestinal barrier function, and inhibited mast cell degranulation. Further studies showed that these positive results were related to tolerogenic peptides (SLLKANIQL, GLTEFQAV, GDFPGAFKVF, ALNLNPTLALI, and AALDIDSKPF) produced in shrimp allergens. Moreover, this strategy mainly down-regulated gene expression in exogenous substance metabolic and immune-related signaling pathways, thereby reducing immune response to antigens. Overall, fucoidan-mediated covalent modification promises to be an efficient method for producing oral tolerance inducers.
Collapse
Affiliation(s)
- Qiaozhen Liu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Songyi Lin
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- Engineering Research Center of Food, Dalian Polytechnic University, Dalian 116034, China
| | - Kexin Liu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Shuqi Jia
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Shuya Wang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Na Sun
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- Engineering Research Center of Food, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
3
|
Wang Y, Zhang K, Chen WM, Mao JH, Shao YH, Tu ZC, Liu J. Allergenicity assessment of β-lactoglobulin ferulic acid-glucose conjugates. Food Chem 2024; 460:140605. [PMID: 39068806 DOI: 10.1016/j.foodchem.2024.140605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 07/15/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
We prepared the β-lactoglobulin (BLG)-ferulic acid (FA)-glucose (Glu) conjugates by alkaline method and Maillard reaction to assess the allergenicity. FA and Glu can form a ternary covalent conjugate with BLG, as evidenced by the shortening of SEC retention time, upward migration of SDS-PAGE protein bands, considerable decrease in free amino and sulfhydryl content, and changes in multistructure. BLG-Glu-FA conjugates weakly bound to immunoglobulin E in allergic sera was weak, reduced interleukin 4 and tumor necrosis factor α levels in RBL-2H3 cells and histamin and interleukin 6 secretion levels in KU812 cells, and inhibited the nuclear factor-κB signaling pathway. In vivo experiments showed that the conjugates regulated T-cell homeostasis in mouse splenic and mesenteric lymphocytes and attenuated splenic and duodenal immune injury. Therefore, the conjugates of BLG with FA combined with Glu altered the epitope structure and exhibited low allergenicity.
Collapse
Affiliation(s)
- Yang Wang
- College of Life Science, National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Kai Zhang
- Jiangxi Cancer Hospital, Nanchang, Jiangxi 330029, China
| | - Wen-Mei Chen
- College of Life Science, National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Ji-Hua Mao
- College of Life Science, National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Yan-Hong Shao
- College of Life Science, National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Zong-Cai Tu
- College of Life Science, National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi 330022, China; State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Jun Liu
- College of Life Science, National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi 330022, China.
| |
Collapse
|
4
|
Zhang Z, Li XM, Li Z, Lin H. Investigation of glycated shrimp tropomyosin as a hypoallergen for potential immunotherapy. Food Funct 2021; 12:2750-2759. [PMID: 33683237 DOI: 10.1039/d0fo03039b] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tropomyosin (TM) is the most important allergen in shrimps that could cause food allergy. Glycation is reported to be effective in reducing TM allergenicity and produce hypoallergen; however, up to now, there are very few reports on the potential of hypoallergenic glycated TM (GTM) as allergen immunotherapy for shrimp TM-induced food allergy. This study investigated the glycation of TM-produced hypoallergen and the immunotherapeutic efficacy of GTM + Al(OH)3 as potential allergen immunotherapy. Compared to TM, the TM glycated by glucose (TM-G), maltotriose (TM-MTS), maltopentaose (TM-MPS) and maltoheptaose (TM-MHS) had weaker allergy activation on mast cells and mouse model as a hypoallergen. However, the TM glycated by maltose (TM-M) insignificantly affected the allergenicity. In addition, the GTM absorbed into Al(OH)3 could be efficacious as potential allergen immunotherapy, particularly for the TM glycated by the saccharides having larger molecular size (e.g., TM-MHS), which could provide preclinical data to develop GTM + Al(OH)3 as a candidate immunotherapy for shrimp allergic patients.
Collapse
Affiliation(s)
- Ziye Zhang
- Laboratory of Food Safety, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| | | | | | | |
Collapse
|
5
|
Kong ZL, Sudirman S, Lin HJ, Chen WN. In vitro anti-inflammatory effects of curcumin on mast cell-mediated allergic responses via inhibiting FcεRI protein expression and protein kinase C delta translocation. Cytotechnology 2019; 72:81-95. [PMID: 31773429 DOI: 10.1007/s10616-019-00359-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 11/23/2019] [Indexed: 12/18/2022] Open
Abstract
Allergy is a hypersensitivity reaction when exposed to certain environmental substances. It shows high relation between immunoglobulin E (IgE) binding to a specific receptor (FcεRI), pro-inflammatory cytokines, and mediators with allergic inflammation responses. Curcumin is a yellow pigment isolated from the turmeric. Curcumin possesses antioxidant and anti-inflammatory properties as well as exhibits significant chemopreventive activity. This study was aimed to investigate the in vitro assessment of the regulation of curcumin on allergic inflammatory responses on rat basophil leukemia (RBL)-2H3 and human pre-basophils (KU812) cell lines. Curcumin showed the activity against histamine and β-hexosaminidase releases from both IgE-mediated and A23187-induced cells degranulation. The morphological observation also confirmed that curcumin inhibits cells degranulation. IgE-mediated allergic responses and significantly induced mast cells intracellular reactive oxygen species (ROS) production. Curcumin reduced ROS production from IgE-mediated or A23187-induced cells degranulation. Curcumin also successfully reduced FcεRI expressions and some pro-inflammatory cytokines, such as interleukin (IL)-4 and IL-13. Furthermore, curcumin inhibited protein kinase C (PKC)-δ translocation from cytosolic to particulate. These results suggested that curcumin can alleviate both the IgE-mediated and calcium ionosphere A23187-stimulated allergic responses through reducing the release of the allergic mediators.
Collapse
Affiliation(s)
- Zwe-Ling Kong
- Department of Food Science, National Taiwan Ocean University, Keelung City, 202, Taiwan.
| | - Sabri Sudirman
- Department of Food Science, National Taiwan Ocean University, Keelung City, 202, Taiwan
| | - Huey-Jun Lin
- Department of Food Science, National Taiwan Ocean University, Keelung City, 202, Taiwan
| | - Wei-Ning Chen
- Department of Food Science, National Taiwan Ocean University, Keelung City, 202, Taiwan
| |
Collapse
|
6
|
Zhang Z, Xiao H, Zhang X, Zhou P. Insight into the effects of deglycosylation and glycation of shrimp tropomyosin on in vivo allergenicity and mast cell function. Food Funct 2019; 10:3934-3941. [DOI: 10.1039/c9fo00699k] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Deglycosylation of TM exacerbated allergenicity and allergy response; glycation of TM by glucose led to weaker allergenicity and allergy response.
Collapse
Affiliation(s)
- Ziye Zhang
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- China
| | - Hang Xiao
- Department of Food Science
- University of Massachusetts
- Amherst
- USA
| | - Xiaofeng Zhang
- Department of Clinical Laboratory
- Wuxi People's Hospital
- Wuxi
- China
| | - Peng Zhou
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- China
| |
Collapse
|
7
|
Min A, Lee YA, Kim KA, Shin MH. BLT1-mediated O-GlcNAcylation is required for NOX2-dependent migration, exocytotic degranulation and IL-8 release of human mast cell induced by Trichomonas vaginalis-secreted LTB 4. Microbes Infect 2018; 20:376-384. [PMID: 29859938 DOI: 10.1016/j.micinf.2018.05.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 05/10/2018] [Accepted: 05/23/2018] [Indexed: 12/12/2022]
Abstract
Trichomonas vaginalis is a sexually-transmitted protozoan parasite that causes vaginitis and cervicitis. Although mast cell activation is important for provoking tissue inflammation during infection with parasites, information regarding the signaling mechanisms in mast cell activation and T. vaginalis infection is limited. O-linked N-acetylglucosamine (O-GlcNAc) is a post-translational modification of serine and threonine residues that functions as a critical regulator of intracellular signaling, regulated by O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). We investigated if O-GlcNAcylation was associated with mast cell activation induced by T. vaginalis-derived secretory products (TvSP). Modified TvSP collected from live trichomonads treated with the 5-lipooxygenase inhibitor AA861 inhibited migration of mast cells. This result suggested that mast cell migration was caused by stimulation of T. vaginalis-secreted leukotrienes. Using the BLT1 antagonist U75302 or BLT1 siRNA, we found that migration of mast cells was evoked via LTB4 receptor (BLT1). Furthermore, TvSP induced protein O-GlcNAcylation and OGT expression in HMC-1 cells, which was prevented by transfection with BLT1 siRNA. TvSP-induced migration, ROS generation, CD63 expression and IL-8 release were significantly suppressed by pretreatment with OGT inhibitor ST045849 or OGT siRNA. These results suggested that BLT1-mediated OGlcNAcylation was important for mast cell activation during trichomoniasis.
Collapse
Affiliation(s)
- Arim Min
- Department of Environmental Medical Biology, Institute of Tropical Medicine, South Korea; Yonsei University College of Medicine, Seoul 120-752, South Korea
| | - Young Ah Lee
- Department of Environmental Medical Biology, Institute of Tropical Medicine, South Korea; Yonsei University College of Medicine, Seoul 120-752, South Korea
| | - Kyeong Ah Kim
- Department of Environmental Medical Biology, Institute of Tropical Medicine, South Korea
| | - Myeong Heon Shin
- Department of Environmental Medical Biology, Institute of Tropical Medicine, South Korea; Yonsei University College of Medicine, Seoul 120-752, South Korea.
| |
Collapse
|
8
|
Chelombitko MA, Fedorov AV, Ilyinskaya OP, Zinovkin RA, Chernyak BV. Role of Reactive Oxygen Species in Mast Cell Degranulation. BIOCHEMISTRY. BIOKHIMIIA 2016; 81:1564-1577. [PMID: 28259134 DOI: 10.1134/s000629791612018x] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Mast cells are a heterogeneous multifunctional cellular population that promotes connective tissue homeostasis by slow release of biologically active substances, affecting primarily the permeability of vessels and vascular tone, maintenance of electrolyte and water balance, and composition of the extracellular matrix. Along with this, they can rapidly release inflammatory mediators and chemotactic factors that ensure the mobilization of effector innate immune cells to fight against a variety of pathogens. Furthermore, they play a key role in initiation of allergic reactions. Aggregation of high affinity receptors to IgE (FcεRI) results in rapid degranulation and release of inflammatory mediators. It is known that reactive oxygen species (ROS) participate in intracellular signaling and, in particular, stimulate production of several proinflammatory cytokines that regulate the innate immune response. In this review, we focus on known molecular mechanisms of FcεRI-dependent activation of mast cells and discuss the role of ROS in the regulation of this pathway.
Collapse
Affiliation(s)
- M A Chelombitko
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119991, Russia.
| | | | | | | | | |
Collapse
|
9
|
Kim DK, Beaven MA, Kulinski JM, Desai A, Bandara G, Bai Y, Prussin C, Schwartz LB, Komarow H, Metcalfe DD, Olivera A. Regulation of Reactive Oxygen Species and the Antioxidant Protein DJ-1 in Mastocytosis. PLoS One 2016; 11:e0162831. [PMID: 27611333 PMCID: PMC5017616 DOI: 10.1371/journal.pone.0162831] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 08/29/2016] [Indexed: 12/20/2022] Open
Abstract
Neoplastic accumulation of mast cells in systemic mastocytosis (SM) associates with activating mutations in the receptor tyrosine kinase KIT. Constitutive activation of tyrosine kinase oncogenes has been linked to imbalances in oxidant/antioxidant mechanisms in other myeloproliferative disorders. However, the impact of KIT mutations on the redox status in SM and the potential therapeutic implications are not well understood. Here, we examined the regulation of reactive oxygen species (ROS) and of the antioxidant protein DJ-1 (PARK-7), which increases with cancer progression and acts to lessen oxidative damage to malignant cells, in relationship with SM severity. ROS levels were increased in both indolent (ISM) and aggressive variants of the disease (ASM). However, while DJ-1 levels were reduced in ISM with lower mast cell burden, they rose in ISM with higher mast cell burden and were significantly elevated in patients with ASM. Studies on mast cell lines revealed that activating KIT mutations induced constant ROS production and consequent DJ-1 oxidation and degradation that could explain the reduced levels of DJ-1 in the ISM population, while IL-6, a cytokine that increases with disease severity, caused a counteracting transcriptional induction of DJ-1 which would protect malignant mast cells from oxidative damage. A mouse model of mastocytosis recapitulated the biphasic changes in DJ-1 and the escalating IL-6, ROS and DJ-1 levels as mast cells accumulate, findings which were reversed with anti-IL-6 receptor blocking antibody. Our findings provide evidence of increased ROS and a biphasic regulation of the antioxidant DJ-1 in variants of SM and implicate IL-6 in DJ-1 induction and expansion of mast cells with KIT mutations. We propose consideration of IL-6 blockade as a potential adjunctive therapy in the treatment of patients with advanced mastocytosis, as it would reduce DJ-1 levels making mutation-positive mast cells vulnerable to oxidative damage.
Collapse
Affiliation(s)
- Do-Kyun Kim
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Michael A. Beaven
- Laboratory of Molecular Immunology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Joseph M. Kulinski
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Avanti Desai
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Geethani Bandara
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Yun Bai
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Calman Prussin
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Lawrence B. Schwartz
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Hirsh Komarow
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Dean D. Metcalfe
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ana Olivera
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
10
|
Liu Q, Wang Y, Cao M, Pan T, Yang Y, Mao H, Sun L, Liu G. Anti-allergic activity of R-phycocyanin from Porphyra haitanensis in antigen-sensitized mice and mast cells. Int Immunopharmacol 2015; 25:465-73. [DOI: 10.1016/j.intimp.2015.02.032] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 02/19/2015] [Accepted: 02/20/2015] [Indexed: 11/25/2022]
|
11
|
Abstract
PURPOSE OF REVIEW The aim of the present review was to discuss the effects of pollen components on innate immune responses. RECENT FINDINGS Pollens contain numerous factors that can stimulate an innate immune response. These include intrinsic factors in pollens such as nicotinamide adenine dinucleotide phosphate oxidases, proteases, aqueous pollen proteins, lipids, and antigens. Each component stimulates innate immune response in a different manner. Pollen nicotinamide adenine dinucleotide phosphate oxidases induce reactive oxygen species generation and recruit neutrophils that stimulate subsequent allergic inflammation. Pollen proteases damage epithelial barrier function and increase antigen uptake. Aqueous pollen extract proteins and pollen lipids modulate dendritic cell function and induce Th2 polarization. Clinical studies have shown that modulation of innate immune response to pollens with toll-like receptor 9- and toll-like receptor 4-stimulating conjugates is well tolerated and induces clear immunological effects, but is not very effective in suppressing primary clinical endpoints of allergic inflammation. SUMMARY Additional research on innate immune pathways induced by pollen components is required to develop novel strategies that will mitigate the development of allergic inflammation.
Collapse
Affiliation(s)
- Koa Hosoki
- Department of Internal Medicine, Division of Allergy and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Istvan Boldogh
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Sanjiv Sur
- Department of Internal Medicine, Division of Allergy and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
12
|
The role of mast cells in ischemia and reperfusion injury. Inflamm Res 2014; 63:899-905. [PMID: 25108401 DOI: 10.1007/s00011-014-0763-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 06/04/2014] [Accepted: 07/24/2014] [Indexed: 01/05/2023] Open
Abstract
INTRODUCTION Ischemia and reperfusion (IR) injury is a challenging clinical problem that is triggered by ischemia in an organ followed by subsequent restoration of the blood supply. The effects of mast cell (MC) in IR injury are not totally clear. MATERIALS AND METHODS We review the body of literature on the role of MCs in IR injury based on an unrestricted Pubmed search for the descriptors "mast cell", "ischemia" and "reperfusion injury", as well as discuss implications for treatment and future directions. RESULTS Shortly after IR, chemicals released by MC can trigger vasoactive substance formation, tissue leakage, upregulation of adhesive molecules followed by leukocyte recruitment and infiltration, and pronecrotic pathway activation, among other physiologic changes. In the long term, MCs may influence tissue remodeling and repair as well as blood restoration after IR. Consistent with these findings, methods and drugs that target MCs have been shown to attenuate IR injury. CONCLUSION It has been demonstrated that MCs play a role in IR injury, but the mechanisms are complex and need to be further studied.
Collapse
|
13
|
Hosoki K, Gandhe R, Boldogh I, Sur S. Reactive Oxygen Species (ROS) and Allergic Responses. SYSTEMS BIOLOGY OF FREE RADICALS AND ANTIOXIDANTS 2014:3239-3266. [DOI: 10.1007/978-3-642-30018-9_145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
14
|
Safaralizadeh R, Nourizadeh M, Zare A, Kardar GA, Pourpak Z. Influence of selenium on mast cell mediator release. Biol Trace Elem Res 2013; 154:299-303. [PMID: 23784732 DOI: 10.1007/s12011-013-9712-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 05/20/2013] [Indexed: 11/24/2022]
Abstract
Selenium supplementation still enhanced the immune response even in individuals who, according to current standards, would be considered as not being overtly selenium deficient. Mast cells are granulated cells that play a pivotal role in allergic reactions. In this study, we investigated the modulatory effect of sodium selenite on mediator release and degranulation of murine mast cell line (MC/9). Cells were pre-treated with selenium selenite (1, 2, 3 μg/ml) for 24 h and controls left untreated. Then, cells were sensitized overnight with anti-dinitrophenyl (DNP) IgE and challenged with DNP/HSA for degranulation induction. The histamine and prostaglandin D2 (PGD2) were measured by ELISA, and β-hexosaminidase was measured by spectrophotometery method. Selenium-treated cells revealed significant decrease in concentration of PGD2 (P = 0.019) and β-hexosaminidase (P = 0.009). In addition, a slight reduction of histamine release by the selenium-treated cells was observed, based on our intracellular and extracellular assessments. The most inhibitory effect of selenium supplementation on mediator release of MC/9 cells was obtained in the presence of 3 μg/ml of sodium selenite. The results of the present study demonstrate beneficial effects of supplemental selenium in attenuating clinical manifestations of allergy and asthma.
Collapse
Affiliation(s)
- Reza Safaralizadeh
- Department of Animal Biology, Faculty of Natural Science, University of Tabriz, 29 Bahman Blvd, Tabriz, Iran
| | | | | | | | | |
Collapse
|
15
|
Hao Y, Piao X, Piao X. Saikosaponin-d inhibits β-conglycinin induced activation of rat basophilic leukemia-2H3 cells. Int Immunopharmacol 2012; 13:257-63. [PMID: 22580215 DOI: 10.1016/j.intimp.2012.04.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Revised: 04/24/2012] [Accepted: 04/27/2012] [Indexed: 10/28/2022]
Abstract
β-Conglycinin is one of the major storage proteins in soybean and has been identified as a potential diagnostic marker for severe allergic reactions to soybean. Unfortunately, there is a lack of information on the signal transduction pathways of β-conglycinin induced mast cell activation and how to alleviate these allergic reactions. Bupleurum falcatum, a traditional oriental medicine, has been widely utilized in the treatment of influenza, fever, malaria and menstrual disorders. Furthermore, it has been reported that saikosaponins, the important principle of B. falcatum, possesses anti-allergic activities. Therefore, the present study investigated whether or not saikosaponin-d, an extract of B. falcatum, was effective in the treatment of allergic reactions cased by β-conglycinin, using a rat basophilic leukemia-2H3 cell line. There were multiple signaling pathways contributing to the development of β-conglycinin-mediated rat basophilic leukemia-2H3 cell activation. The intracellular calcium mobilization and tyrosine phosphorylation were early events, which in turn elicited reactive oxygen species production, gene activation of Cdc42 and c-Fos, and ultimately led to β-hexosaminidase release. Saikosaponin-d inhibited rat basophilic leukemia-2H3 cell degranulation by suppressing these critical incidents in the signal transduction pathway. These results suggest that saikosaponin-d exhibited anti-allergic activity and could become an effective herbal therapy for alleviating soybean allergy.
Collapse
Affiliation(s)
- Yue Hao
- State Key Laboratory of Animal Nutrition, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, China
| | | | | |
Collapse
|
16
|
Chen HJ, Lo YC, Chiang W. Inhibitory effects of adlay bran (Coix lachryma-jobi L. var. ma-yuen Stapf) on chemical mediator release and cytokine production in rat basophilic leukemia cells. JOURNAL OF ETHNOPHARMACOLOGY 2012; 141:119-127. [PMID: 22353428 DOI: 10.1016/j.jep.2012.02.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 02/03/2012] [Accepted: 02/06/2012] [Indexed: 05/31/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Adlay (Job's tears, Coix lachryma-jobi L. var. ma-yuen Stapf) has long been used in China to treat rheumatism. AIM OF THE STUDY We investigated the anti-allergic effects of adlay bran on rat basophilic leukemia (RBL)-2H3 cells. MATERIALS AND METHODS To evaluate the anti-allergic effects of adlay bran, the release of histamines and cytokines were measured using ELISA. To explore the mechanism of these effects, the protein expression levels were determined using western blotting. RESULTS A 40.8μg/mL concentration of the ethyl acetate fraction of the ethanolic extracts of adlay bran (ABE-EtOAc) effectively inhibited mast cell degranulation. The 40-100% EtOAc/Hex subfractions of ABE-EtOAc inhibited histamine release with an IC(50) of 71-87μg/mL. Moreover, the ABE-EtOAc subfractions suppressed the secretion of interleukin (IL)-4, IL-6 and tumor necrosis factor-α in the RBL-2H3 cells, indicating that adlay bran can inhibit cytokine secretion in the late phase of the allergic reaction. In addition, adlay bran reduced the intracellular production of reactive oxygen species, inhibited the phosphorylation of Akt and decreased the expression of protein kinase C. Furthermore, six phenolic acids and one flavone were isolated. Of these compounds, luteolin showed the most potent inhibitory activity (IC(50)=1.5μg/mL). CONCLUSION Adlay bran extract reduced the release of histamines and cytokines and suppressed the production of Akt. These combined effects influenced the signal transduction in RBL-2H3 cells, thereby revealing the mechanisms of the anti-allergic effects of adlay.
Collapse
Affiliation(s)
- Hong-Jhang Chen
- Graduate Institute of Food Science and Technology, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan
| | | | | |
Collapse
|
17
|
Endo S, Hochman DJ, Midoro-Horiuti T, Goldblum RM, Brooks EG. Mountain cedar pollen induces IgE-independent mast cell degranulation, IL-4 production, and intracellular reactive oxygen species generation. Cell Immunol 2011; 271:488-95. [PMID: 21944563 DOI: 10.1016/j.cellimm.2011.08.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Revised: 07/26/2011] [Accepted: 08/24/2011] [Indexed: 02/06/2023]
Abstract
Cedar pollens cause severe allergic disease throughout the world. We have previously characterized allergenic pollen glycoproteins from mountain cedar (Juniperus ashei) that bind to allergen-specific immunoglobulin E (IgE). In the present report, we investigated an alternative pathway of mast cell activation by mountain cedar pollen extract through IgE-independent mechanisms. We show that mountain cedar pollen directly induces mast cell serotonin and IL-4 release and enhances release induced by IgE cross-linking. Concomitant with mediator release, high levels of intracellular reactive oxygen species (ROS) were generated, and both ROS and serotonin release were inhibited by anti-oxidants. These findings suggest that alternative mechanisms exist whereby pollen exposure enhances allergic inflammatory mediator release through mechanisms that involve ROS. These mechanisms have the potential for enhancing the allergenic potency of pollens.
Collapse
Affiliation(s)
- Shuichiro Endo
- Department of Otolaryngology-Head and Neck Surgery, University of Yamanashi, Chuo, Yamanashi, Japan
| | | | | | | | | |
Collapse
|
18
|
Inhibitory effect of Pleurotus eryngii extracts on the activities of allergic mediators in antigen-stimulated mast cells. Food Chem Toxicol 2011; 49:1416-25. [DOI: 10.1016/j.fct.2011.03.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 03/18/2011] [Accepted: 03/19/2011] [Indexed: 01/22/2023]
|
19
|
Hayama K, Suzuki Y, Inoue T, Ochiai T, Terui T, Ra C. Gold activates mast cells via calcium influx through multiple H2O2-sensitive pathways including L-type calcium channels. Free Radic Biol Med 2011; 50:1417-28. [PMID: 21376117 DOI: 10.1016/j.freeradbiomed.2011.02.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Revised: 02/17/2011] [Accepted: 02/23/2011] [Indexed: 11/23/2022]
Abstract
Heavy metals, including gold, induce severe contact hypersensitivity and autoimmune disorders, which develop through an initial Th2-independent process followed by a Th2-dependent process. It has been shown that mast cell activation plays a role in the Th2-independent process and that gold stimulates histamine release in vitro. However, the mechanisms of the gold-induced mast cell activation remain largely unclear. Here we report that gold directly activates mast cells in a Ca2+-dependent manner. HAuCl4 [Au(III)] at nontoxic concentrations (≤50 μM) induced substantial degranulation and leukotriene C4 secretion in an extracellular Ca2+-dependent manner. Au(III) induced a robust Ca2+ influx but not Ca2+ mobilization from internal stores. Au(III) also stimulated intracellular production of reactive oxygen species, including H2O2, and blockade of the production abolished the mediator release and Ca2+ influx. Au(III) induced Ca2+ influx through multiple store-independent Ca2+ channels, including Cav1.2 L-type Ca2+ channels (LTCCs) and 2-aminoethoxydiphenyl borate (2-APB)-sensitive Ca2+ channels. The 2-APB-sensitive channel seemed to mediate Au(III)-induced degranulation. Our results indicate that gold stimulates Ca2+ influx and mediator release in mast cells through multiple H2O2-sensitive Ca2+ channels including LTCCs and 2-APB-sensitive Ca2+ channels. These findings provide insight into the roles of these Ca2+ channels in the Th2-independent process of gold-induced immunological disorders.
Collapse
Affiliation(s)
- Koremasa Hayama
- Division of Molecular Cell Immunology and Allergology, Graduate School of Medical Science, Nihon University, and Department of Dermatology, Nihon University Surugadai Hospital, Tokyo 173-8610, Japan
| | | | | | | | | | | |
Collapse
|
20
|
Schmutzler S, Bachmann L, Fuhrmann H, Schumann J. PUFA-dependent alteration of oxidative parameters of a canine mastocytoma cell line. Acta Vet Hung 2010; 58:453-64. [PMID: 21087915 DOI: 10.1556/avet.58.2010.4.6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mast cells play a key role in the immune response. Thereby, the balance of oxidative metabolism is of importance in mast cell mediator synthesis and release. Fatty acids may modify mast cell function in several ways. In this study, we investigated the influence of polyunsaturated fatty acids (PUFAs) on oxidative parameters of a canine mastocytoma cell line. C2 cells were cultured in media supplemented with linoleic acid, arachidonic acid, alpha-linolenic acid and eicosapentaenoic acid, respectively. Production of reactive oxygen species (ROS) as well as lipid peroxides was tested. Furthermore, stressor-induced DNA damage was measured. Exposure of the cells to PUFAs resulted in a significant increase in the synthesis of both ROS and lipid peroxides. Distinct differences between the PUFAs tested underline the impact of the unsaturation degree of fatty acids as well as the position of double bonds on mast cells.
Collapse
Affiliation(s)
- Sandra Schmutzler
- 1 University of Leipzig Institute of Physiological Chemistry, Faculty of Veterinary Medicine An den Tierkliniken 1 04103 Leipzig Germany
| | - Lisa Bachmann
- 1 University of Leipzig Institute of Physiological Chemistry, Faculty of Veterinary Medicine An den Tierkliniken 1 04103 Leipzig Germany
| | - Herbert Fuhrmann
- 1 University of Leipzig Institute of Physiological Chemistry, Faculty of Veterinary Medicine An den Tierkliniken 1 04103 Leipzig Germany
| | - Julia Schumann
- 1 University of Leipzig Institute of Physiological Chemistry, Faculty of Veterinary Medicine An den Tierkliniken 1 04103 Leipzig Germany
| |
Collapse
|
21
|
Han EH, Hwang YP, Kim HG, Park JH, Choi JH, Im JH, Khanal T, Park BH, Yang JH, Choi JM, Chun SS, Seo JK, Chung YC, Jeong HG. Ethyl acetate extract of Psidium guajava inhibits IgE-mediated allergic responses by blocking FcεRI signaling. Food Chem Toxicol 2010; 49:100-8. [PMID: 20934477 DOI: 10.1016/j.fct.2010.10.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2010] [Revised: 09/13/2010] [Accepted: 10/02/2010] [Indexed: 10/19/2022]
Abstract
Psidium guajava (P. guajava) is an important food crop and medicinal plant with antioxidant, anti-inflammatory, and anti-allergic activities, supporting its traditional uses. However, its precise effects remain unknown. We investigated the effects of P. guajava ethyl acetate extract (PGEA) on IgE-mediated allergic responses in rat mast RBL-2H3 cells. PGEA reduced antigen (DNP-BSA)-induced release of β-hexosaminidase and histamine in IgE-sensitized RBL-2H3 cells. In addition, it inhibited antigen-induced IL-4 and TNF-α mRNA expression and protein production in IgE-sensitized RBL-2H3 cells. PGEA also suppressed antigen-induced COX-2 mRNA and protein expression in these cells, as well as antigen-induced activation of NFAT and reactive oxygen species. Moreover, it inhibited antigen-induced activation of NF-κB and degradation of IκB-α. To identify the mechanisms underpinning the inhibition of degranulation and cytokine production by PGEA, we examined the activation of intracellular FcεRI signaling molecules. PGEA suppressed antigen-induced phosphorylation of Syk, LAT, Gab2, and PLCγ2 but not Lyn, and inhibited antigen-induced phosphorylation of downstream signaling intermediates including MAP kinases and Akt. Collectively, the anti-allergic effects of PGEA in vitro suggest its possible therapeutic application to inflammatory allergic diseases, in which its inhibition of inflammatory cytokine production and FcεRI-dependent signaling events in mast cells may be hugely beneficial.
Collapse
Affiliation(s)
- Eun Hee Han
- Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon, South Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Ballero M, Foddis C, Sanna C, Scartezzini P, Poli F, Petitto V, Serafini M, Stanzione A, Bianco A, Serilli AM, Spina L, Longoni R, Kasture S. Pharmacological activities onEphedra nebrodensisTineo. Nat Prod Res 2010; 24:1115-24. [DOI: 10.1080/14786410802680902] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
23
|
Qin HD, Shi YQ, Liu ZH, Li ZG, Wang HS, Wang H, Liu ZP. Effect of chlorogenic acid on mast cell-dependent anaphylactic reaction. Int Immunopharmacol 2010; 10:1135-41. [PMID: 20620227 DOI: 10.1016/j.intimp.2010.06.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2010] [Revised: 06/09/2010] [Accepted: 06/23/2010] [Indexed: 10/19/2022]
Abstract
Chlorogenic acid (CGA), a naturally occurring polyphenol compound, has a number of biological activities. However, roles of CGA in the mast cell-dependent anaphylactic reaction have not been fully examined. In the present study, the effect and mechanism of CGA on mast cell-dependent anaphylactic reaction were investigated using in vivo and in vitro models. CGA inhibited compound 48/80-induced systemic anaphylactic shock in mice and skin vascular permeability in rats. CGA also inhibited anti-dinitrophenyl (DNP) IgE-mediated passive cutaneous anaphylaxis (PCA). Moreover, CGA dose-dependently reduced histamine and TNF-alpha release from RBL-2H3 cells activated by anti-DNP IgE. Pretreatment with CGA suppressed IgE-antigen complex induced calcium uptake into RBL-2H3 cells. When CGA was added, the level of intracellular cyclic adenosine monophosphate (cAMP) in RBL-2H3 cells was significantly elevated compared with the untreated cells. Decreased calcium uptake and increased cAMP level might be involved in the inhibitory effect of CGA on mast cell activation. These results suggest a possible therapeutic application of CGA in allergic diseases.
Collapse
Affiliation(s)
- Hui-Di Qin
- School of Pharmaceutical Sciences, Shandong University, 44(#) Wen Hua Xi Road, Jinan, 250012, PR China
| | | | | | | | | | | | | |
Collapse
|
24
|
Han EH, Park JH, Kim JY, Jeong HG. Houttuynia cordata water extract suppresses anaphylactic reaction and IgE-mediated allergic response by inhibiting multiple steps of FcεRI signaling in mast cells. Food Chem Toxicol 2009; 47:1659-66. [DOI: 10.1016/j.fct.2009.04.025] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Revised: 03/21/2009] [Accepted: 04/15/2009] [Indexed: 01/08/2023]
|
25
|
Chodaczek G, Bacsi A, Dharajiya N, Sur S, Hazra TK, Boldogh I. Ragweed pollen-mediated IgE-independent release of biogenic amines from mast cells via induction of mitochondrial dysfunction. Mol Immunol 2009; 46:2505-14. [PMID: 19501909 DOI: 10.1016/j.molimm.2009.05.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Accepted: 05/18/2009] [Indexed: 11/16/2022]
Abstract
Normal functions of mitochondria are required for physiological dynamics of cells, while their dysfunction contributes to development of various disorders including those of immune system. Here we demonstrate that exposure of mast cells to ragweed pollen extract increases production of H(2)O(2) via mitochondrial respiratory complex III. These mitochondrial ROS (mtROS) enhance secretion of histamine and serotonin from mast cells, but not enzymes such as beta-hexosaminidase, independently from FcvarepsilonRI-generated stimuli. The release of biogenic amines is associated with inhibition of secretory granules' H(+)-ATPase activity, activation of PKC-delta and microtubule-dependent motility, and it is independent from intracellular free Ca(2+) levels. To asses differences from IgE-mediated mast cell degranulation we show that mtROS decrease antigen-triggered beta-hexosaminidase release, while they are synergistic with antigen-induced IL-4 production in sensitized cells. Taken together, these data indicate that mitochondrial dysfunction can act independently from adaptive immunity, as well as augments Th2-type responses. Pharmacological maintenance of physiological mitochondrial function could have clinical benefits in prevention and treatment of allergic diseases.
Collapse
Affiliation(s)
- Grzegorz Chodaczek
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, TX 77555, USA
| | | | | | | | | | | |
Collapse
|
26
|
Sly LM, Kalesnikoff J, Lam V, Wong D, Song C, Omeis S, Chan K, Lee CWK, Siraganian RP, Rivera J, Krystal G. IgE-induced mast cell survival requires the prolonged generation of reactive oxygen species. THE JOURNAL OF IMMUNOLOGY 2008; 181:3850-60. [PMID: 18768839 DOI: 10.4049/jimmunol.181.6.3850] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We show in this study that the ability of five different monomeric IgEs to enhance murine bone marrow-derived mast cell (BMMC) survival correlates with their ability to stimulate extracellular calcium (Ca(2+)) entry. However, whereas IgE+Ag more potently stimulates Ca(2+) entry, it does not enhance survival under our conditions. Exploring this further, we found that whereas all five monomeric IgEs stimulate a less robust Ca(2+) entry than IgE+Ag initially, they all trigger a more prolonged Ca(2+) influx, generation of reactive oxygen species (ROS), and ERK phosphorylation. These prolonged signaling events correlate with their survival-enhancing ability and positively feedback on each other to generate the prosurvival cytokine, IL-3. Interestingly, the prolonged ERK phosphorylation induced by IgE appears to be regulated by a MAPK phosphatase rather than MEK. IgE-induced ROS generation, unlike that triggered by IgE+Ag, is not mediated by 5-lipoxygenase. Moreover, ROS inhibitors, which block both IgE-induced ROS production and Ca(2+) influx, convert the prolonged ERK phosphorylation induced by IgE into the abbreviated phosphorylation pattern observed with IgE+Ag and prevent IL-3 generation. In support of the essential role that IgE-induced ROS plays in IgE-enhanced BMMC survival, we found the addition of H(2)O(2) to IgE+Ag-stimulated BMMCs leads to IL-3 secretion.
Collapse
Affiliation(s)
- Laura M Sly
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Sun Y, Chen J, Rigas B. Chemopreventive agents induce oxidative stress in cancer cells leading to COX-2 overexpression and COX-2-independent cell death. Carcinogenesis 2008; 30:93-100. [PMID: 18952595 DOI: 10.1093/carcin/bgn242] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Chemopreventive agents generate oxidative stress, which culminates in cell death and may be part of a general mechanism of chemoprevention. The redox-responsive cyclooxygenase (COX)-2, overexpressed during carcinogenesis, has been a target for cancer prevention. To assess the potential link between chemopreventive agents, oxidative stress and COX-2, we studied the chemopreventive sulindac and nitric oxide-donating aspirin (NO-ASA). Both generated oxidative stress and induced COX-2 in various cell lines, more prominently in dying cells. Two antioxidants and an inhibitor of NADPH oxidase abrogated the induction of COX-2 and cell death. Exogenous xanthine/xanthine oxidase, which produce O(2)(-)., had the same effect. Inhibition of caspases and cox-2 knockdown showed that COX-2 did not participate in reactive oxygen species (ROS) generation or cell death induction in response to NO-ASA. Our results support three potentially useful ideas: (i) the concept that ROS are a critical component of the action of chemopreventive agents; (ii) the notion that COX-2 may not be an ideal target for chemoprevention and (iii) the possibility that COX-2 may be overexpressed in cancer cells due to their state of oxidative stress. It is conceivable that, if further substantiated, these findings may inform the rational design of chemotherapeutic strategies, in particular the choice of agents in combination approaches.
Collapse
Affiliation(s)
- Yu Sun
- Division of Cancer Prevention, Stony Brook University, Life Sciences Building, Stony Brook, NY 11794-5200, USA
| | | | | |
Collapse
|
28
|
Sumiyoshi K, Mokuno H, Iesaki T, Shimada K, Miyazaki T, Kume A, Kiyanagi T, Kuremoto K, Watanabe Y, Tada N, Daida H. Deletion of the Fc receptors chain preserves endothelial function affected by hypercholesterolaemia in mice fed on a high-fat diet. Cardiovasc Res 2008; 80:463-70. [DOI: 10.1093/cvr/cvn206] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
29
|
Kim K, Kim Y, Kim HY, Ro JY, Jeoung D. Inhibitory mechanism of anti-allergic peptides in RBL2H3 cells. Eur J Pharmacol 2008; 581:191-203. [DOI: 10.1016/j.ejphar.2007.11.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Revised: 10/25/2007] [Accepted: 11/10/2007] [Indexed: 10/22/2022]
|
30
|
Swindle EJ, Coleman JW, DeLeo FR, Metcalfe DD. FcepsilonRI- and Fcgamma receptor-mediated production of reactive oxygen species by mast cells is lipoxygenase- and cyclooxygenase-dependent and NADPH oxidase-independent. THE JOURNAL OF IMMUNOLOGY 2007; 179:7059-71. [PMID: 17982097 DOI: 10.4049/jimmunol.179.10.7059] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We investigated the enzymes responsible for FcepsilonRI-dependent production of reactive oxygen species (ROS) and the influence of ROS on mast cell secretory responses. 5-Lipoxygenase (5-LO) was the primary enzyme involved in ROS production by human mast cells (huMC) and mouse bone marrow-derived mast cells (mBMMC) following FcepsilonRI aggregation because incubation with 5-LO inhibitors (AA861, nordihydroguaiaretic acid, zileuton) but not a flavoenzyme inhibitor (diphenyleneiodonium) completely abrogated Ag-induced dichlorodihydrofluorescein (DCF) fluorescence. Furthermore, 5-LO-deficient mBMMC had greatly reduced FcepsilonRI-dependent DCF fluorescence compared with wild type mBMMC or those lacking a functional NADPH oxidase (i.e., gp91(phox)- or p47(phox)-deficient cells). A minor role for cyclooxygenase (COX)-1 in FcepsilonRI-dependent ROS production was demonstrated by inhibition of Ag-mediated DCF fluorescence by a COX-1 inhibitor (FR122047) and reduced DCF fluorescence in COX-1-deficient mBMMC. Complete abrogation of FcepsilonRI-dependent ROS production in mast cells had no effect on degranulation or cytokine secretion. In response to the NADPH oxidase-stimulating agents including PMA, mBMMC and huMC produced negligible ROS. IgG-coated latex beads did stimulate ROS production in huMC, and in this experiment 5-LO and COX again appeared to be the enzymatic sources of ROS. In contrast, IgG-coated latex bead-induced ROS production in human polymorphonuclear leukocytes occurred by the NADPH oxidase pathway. Thus mBMMC and huMC generate ROS by 5-LO and COX-1 in response to FcepsilonRI aggregation; huMC generate ROS upon exposure to IgG-coated latex beads by 5-LO and COX; and ROS appear to have no significant role in FcepsilonRI-dependent degranulation and cytokine production.
Collapse
Affiliation(s)
- Emily J Swindle
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-1881, USA.
| | | | | | | |
Collapse
|
31
|
Ryan JJ, Bateman HR, Stover A, Gomez G, Norton SK, Zhao W, Schwartz LB, Lenk R, Kepley CL. Fullerene nanomaterials inhibit the allergic response. THE JOURNAL OF IMMUNOLOGY 2007; 179:665-72. [PMID: 17579089 DOI: 10.4049/jimmunol.179.1.665] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Fullerenes are a class of novel carbon allotropes that may have practical applications in biotechnology and medicine. Human mast cells (MC) and peripheral blood basophils are critical cells involved in the initiation and propagation of several inflammatory conditions, mainly type I hypersensitivity. We report an unanticipated role of fullerenes as a negative regulator of allergic mediator release that suppresses Ag-driven type I hypersensitivity. Human MC and peripheral blood basophils exhibited a significant inhibition of IgE dependent mediator release when preincubated with C(60) fullerenes. Protein microarray demonstrated that inhibition of mediator release involves profound reductions in the activation of signaling molecules involved in mediator release and oxidative stress. Follow-up studies demonstrated that the tyrosine phosphorylation of Syk was dramatically inhibited in Ag-challenged cells first incubated with fullerenes. In addition, fullerene preincubation significantly inhibited IgE-induced elevation in cytoplasmic reactive oxygen species levels. Furthermore, fullerenes prevented the in vivo release of histamine and drop in core body temperature in vivo using a MC-dependent model of anaphylaxis. These findings identify a new biological function for fullerenes and may represent a novel way to control MC-dependent diseases including asthma, inflammatory arthritis, heart disease, and multiple sclerosis.
Collapse
Affiliation(s)
- John J Ryan
- Department of Biology, Virginia Commonwealth University Health Systems, Richmond, VA 23294, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Swindle EJ, Metcalfe DD. The role of reactive oxygen species and nitric oxide in mast cell-dependent inflammatory processes. Immunol Rev 2007; 217:186-205. [PMID: 17498060 DOI: 10.1111/j.1600-065x.2007.00513.x] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Reactive oxygen species (ROS) and reactive nitrogen oxide species (RNOS), including nitric oxide, are produced in cells by a variety of enzymatic and non-enzymatic mechanisms. At high levels, both types of oxidants are used to kill ingested organisms within phagocytes. At low levels, RNOS may diffuse outside cells where they impact the vasculature and nervous system. Recent evidence suggests that low levels of ROS produced within cells are involved in cell signaling. Along with these physiological roles, many pathological conditions exist where detrimental high-level ROS and RNOS are produced. Many situations in which ROS/RNOS are associated also involve mast cell activation. In innate immunity, such mast cells are involved in the immune response toward pathogens. In acquired immunity, activation of mast cells by cross-linking of receptor-bound immunoglobulin E causes the release of mediators involved in the allergic inflammatory response. In this review, we describe the principle pathways for ROS and RNOS generation by cells and discuss the existence of such pathways in mast cells. In addition, we examine the evidence for a functional role for ROS and RNOS in mast cell secretory responses and discuss evidence for a direct relationship between ROS, RNOS, and mast cells in mast cell-dependent inflammatory conditions.
Collapse
Affiliation(s)
- Emily J Swindle
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-6961, USA.
| | | |
Collapse
|
33
|
Frossi B, Rivera J, Hirsch E, Pucillo C. Selective Activation of Fyn/PI3K and p38 MAPK Regulates IL-4 Production in BMMC under Nontoxic Stress Condition. THE JOURNAL OF IMMUNOLOGY 2007; 178:2549-55. [PMID: 17277164 DOI: 10.4049/jimmunol.178.4.2549] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mast cells have the ability to react to multiple stimuli, implicating these cells in many immune responses. Specific signals from the microenvironment in which mast cells reside can activate different molecular events that govern distinct mast cells responses. We previously demonstrated that hydrogen peroxide (H(2)O(2)) promotes IL-4 and IL-6 mRNA production and potentates FcepsilonRI-induced cytokine release in rat basophilic leukemia RBL-2H3 cells. To further evaluate the effect of an oxidative microenvironment (which is physiologically present in an inflammatory site) on mast cell function and the molecular events responsible for mast cell cytokine production in this environment, we analyzed the effect of H(2)O(2) treatment on IL-4 production in bone marrow-derived, cultured mast cells. Our findings show that nanomolar concentrations of H(2)O(2) induce cytokine secretion and enhance IL-4 production upon FcepsilonRI triggering. Oxidative stimulation activates a distinct signal transduction pathway that induces Fyn/PI3K/Akt activation and the selective phosphorylation of p38 MAP kinase. Moreover, H(2)O(2) induces AP-1 and NFAT complexes that recognize the IL-4 promoter. The absence of Fyn and PI3K or the inhibition of p38 MAPK activity demonstrated that they are essential for H(2)O(2)-driven IL-4 production. These findings show that mast cells can respond to an oxidative microenvironment by initiating specific signals capable of eliciting a selective response. The findings also demonstrate the dominance of the Fyn/p38 MAPK pathway in driving IL-4 production.
Collapse
Affiliation(s)
- Barbara Frossi
- Dipartimento di Scienze e Tecnologie Biomediche, Università di Udine, Udine, Italy
| | | | | | | |
Collapse
|
34
|
Ossum CG, Wulff T, Hoffmann EK. Regulation of the mitogen-activated protein kinase p44 ERK activity during anoxia/recovery in rainbow trout hypodermal fibroblasts. J Exp Biol 2006; 209:1765-76. [PMID: 16621957 DOI: 10.1242/jeb.02152] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
SUMMARY
It is well known from various mammalian cells that anoxia has a major impact on the mitogen-activated protein kinase ERK, but a possible similar effect in fish cells has not been investigated. Here we characterise a p44ERK-like protein in the rainbow trout cell line RTHDF and study the effect of (i) serum stimulation, (ii) sodium azide (chemical anoxia) and removal of azide (recovery) and (iii) anoxia (PO2<0.1%) and recovery. During both chemical and true anoxia p44ERK was inhibited and recovery resulted in robust reactivation of p44ERK activity, far above the initial level. The inhibition was secondary to activation of p38MAPK and the increase was MEK dependent, as SB203580 inhibited the dephosphorylation during anoxia and the presence of PD98059 inhibited phosphorylation of p44ERK during recovery. In addition, we demonstrated that the reactivation of p44ERK during recovery also was dependent on reactive oxygen species and a PP1/PP2A-like phosphatase.
Collapse
Affiliation(s)
- Carlo G Ossum
- Institute of Molecular Biology and Physiology, Department of Biochemistry, The August Krogh Building, University of Copenhagen, Universitetsparken 13, DK-2100 Copenhagen Ø, Denmark.
| | | | | |
Collapse
|
35
|
Screening of Korean marine plants for their inhibitory effect on histamine release from RPMCin vitro. BIOTECHNOL BIOPROC E 2006. [DOI: 10.1007/bf02931873] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
36
|
Niide O, Suzuki Y, Yoshimaru T, Inoue T, Takayama T, Ra C. Fungal metabolite gliotoxin blocks mast cell activation by a calcium- and superoxide-dependent mechanism: implications for immunosuppressive activities. Clin Immunol 2005; 118:108-16. [PMID: 16213796 DOI: 10.1016/j.clim.2005.08.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2005] [Revised: 08/18/2005] [Accepted: 08/18/2005] [Indexed: 11/23/2022]
Abstract
Fungal secondary metabolites such as gliotoxin, an epipolythiodioxopiperazine toxin produced by pathogenic fungi like Candida and Aspergillus, possess immunosuppressive activities and have been thought to contribute to pathology of fungal infections in animals and humans. Since recent studies show that mast cell plays a crucial role in the front of host defense, we examined whether fungal secondary metabolites affected mast cell activation. We found that gliotoxin had suppressive effects on FcepsilonRI-dependent or -independent mast cell activation, including degranulation, leukotriene C4 secretion, and TNF-alpha and IL-13 production. Gliotoxin also suppressed intracellular Ca2+ rise through store-operated Ca2+ channels with a minimal effect on depletion of internal Ca2+ stores. Finally, gliotoxin induced intracellular production of superoxide possibly through a thiol redox cycling, which appeared to mediate suppressive effects on mast cell activation. These findings suggest that suppression of mast cell activation might contribute to the establishment of infections with gliotoxin-producing fungi.
Collapse
Affiliation(s)
- Osamu Niide
- Division of Molecular Cell Immunology and Allergology, Advanced Medical Research Center, Nihon University Graduate School of Medical Sciences, 30-1 Oyaguchikami-cho Itabashi-ku, Tokyo 173-8610, Japan
| | | | | | | | | | | |
Collapse
|
37
|
Kim JY, Ro JY. Signal Pathway of Cytokines Produced by Reactive Oxygen Species Generated from Phorbol Myristate Acetate-Stimulated HMC-1 Cells. Scand J Immunol 2005; 62:25-35. [PMID: 16091123 DOI: 10.1111/j.1365-3083.2005.01636.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The relationship of cytokine production and reactive oxygen species (ROS) generated in mast cells has not been reported yet. This study aimed to examine the signal pathway in the production of cytokines [interleukin-8 (IL-8) and tumour necrosis factor-alpha (TNF-alpha)] by ROS generated from phorbol myristate acetate (PMA)-stimulated human mast cell line-1 cells (HMC-1). HMC-1 cells were stimulated with 25 ng/ml of PMA. The ROS generation and production of cytokines (IL-8 and TNF-alpha) were measured by fluorescence-activated cell sorter and enzyme-linked immunosorbent assay method, respectively. Phosphorylation of mitogen-activated protein kinase family (extracellular signal-regulated kinase, p38 and c-Jun N-terminal kinase) was detected by the Western blotting method. The expression of cytokine's mRNA was measured by reverse transcriptase--polymerase chain reaction, and the DNA-binding activity of the transcription factors [nuclear factor-kappaB (NF-kappaB) and activator protein-1] was detected by electrophoretic mobility shift assay. PMA-stimulated HMC-1 cells immediately generated ROS, and the generated ROS was inhibited by 1,3-dimethyl-2-thiourea (DMTU), but partially inhibited by catalase or N-acetyl-L-cysteine. The production of cytokines in PMA-stimulated HMC-1 cells reached the maximum at 3-5 h and was inhibited by DMTU and specific kinase inhibitor for p38, SB203580. DMTU and SB203580 also inhibited the expressed cytokine's mRNA level and the increased DNA-binding activity of transcription factors, NF-kappaB in PMA-stimulated HMC-1 cells. These data suggest that intracellular ROS generated from PMA-stimulated HMC-1 cells contributes to the production of inflammatory cytokines via p38 kinase/NF-kappaB.
Collapse
Affiliation(s)
- J Y Kim
- Department of Pharmacology, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | | |
Collapse
|
38
|
Kim JY, Lee KH, Lee BK, Ro JY. Peroxynitrite Modulates Release of Inflammatory Mediators from Guinea Pig Lung Mast Cells Activated by Antigen-Antibody Reaction. Int Arch Allergy Immunol 2005; 137:104-14. [PMID: 15855792 DOI: 10.1159/000085465] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2004] [Accepted: 01/19/2005] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Peroxynitrite (ONOO-), the product of the reaction between the superoxide anion (*O2-) and nitric oxide (NO), is produced during inflammatory disease and may be a major cytotoxic agent. No reports are available as to whether ONOO- generates or modulates inflammatory mediator release from activated guinea pig lung mast cells. In this study, we explored the modulatory role of intracellular ONOO- on inflammatory mediator release (histamine and leukotrienes) from activated mast cells. METHODS Guinea pig lung mast cells were purified by the enzyme digestion, and by using the rough and discontinuous Percoll density gradients. Mast cells were sensitized with IgG1 (anti-ovalbumin) antibody and challenged with ovalbumin (OVA). The intracellular ROS formation was determined by following the oxidative production of 2', 7'-dichlorofluorescein diacetate (DCFH-DA), dihydrorhodamine 123 (DHR), and anti-nitrotyrosine antibody immunofluorescence. Histamine was assayed using a fluorometric analyzer, leukotrienes by radioimmunoassay, intracellular Ca2+ levels by confocal scanning microscopy, and PLA(2) activity using prelabeling of [3H]arachidonic acid. RESULTS ROS detected by DCFH-DA weakly increased in mast cells activated with OVA (1.0 g/ml), and the ROS so generated was inhibited by ebselen (50 microM). However, the ROS detected by DHR increased 3-fold under the same conditions. Peroxynitrite scavengers sL-MT, DMTU, and inhibitor FeTPPS inhibited ROS formation but the NADPH oxidase inhibitor diphenyleneiodonium (DPI) only partially inhibited this formation. Dimethyl thiourea (DMTU) and seleno-L-methionine (sL-MT) inhibited the tyrosine nitration of cytosolic proteins, the release of histamine and leukotrienes, Ca2+ influx, and the PLA(2) activity evoked by mast cell activation. CONCLUSION The data obtained suggests that the ROS generated by the antigen/antibody reaction activated mast cells is ONOO-, and that this modulates the release of inflammatory mediators via Ca2+ -dependent PLA(2) activity.
Collapse
Affiliation(s)
- Ji Young Kim
- Department of Pharmacology,Center for Molecular Medicine, SBRI,Sungkyunkwan University School of Medicine, Suwon, Korea
| | | | | | | |
Collapse
|
39
|
Lee SB, Cho ES, Yang HS, Kim H, Um HD. Serum withdrawal kills U937 cells by inducing a positive mutual interaction between reactive oxygen species and phosphoinositide 3-kinase. Cell Signal 2005; 17:197-204. [PMID: 15494211 DOI: 10.1016/j.cellsig.2004.07.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2004] [Revised: 07/05/2004] [Accepted: 07/05/2004] [Indexed: 11/30/2022]
Abstract
Reactive oxygen species (ROS) can be generated following cell stimulation and function as intracellular signaling molecules. To determine signaling components involved in ROS induction, human U937 blood cells grown in 10% serum were exposed to serum-free media. It was previously reported that serum withdrawal (SW) killed cells by elevating cellular ROS levels. This study showed that SW activates phosphoinositide 3-kinase (PI3K). PI3K activation was evident after the ROS levels began increasing, and an antioxidant blockade of this increase resulted in PI3K activation suppression. Interestingly, the inhibition of PI3K activity/activation using either its specific inhibitor or dominant-negative mutant attenuated the subsequent additional increase in the ROS levels. These results suggest that SW-induced ROS activate PI3K, which in turn promotes the process leading to ROS accumulation. The present study also revealed that both ROS and PI3K support SW-induced cell death by activating stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK). Overall, it appears that SW triggers a positive mutual interaction between ROS and PI3K, which amplifies signals required for the induction of an SAPK-dependent death pathway.
Collapse
Affiliation(s)
- Seung Bum Lee
- Laboratory of Experimental Pathology, Korea Institute of Radiological and Medical Sciences, 215-4 Gongneung-dong, Nowon-gu, Seoul 139-706, South Korea
| | | | | | | | | |
Collapse
|
40
|
Kim CD, Lee WK, Lee MH, Cho HS, Lee YK, Roh SS. Inhibition of Mast Cell‐Dependent Allergy Reaction by Extract of Black Cohosh (Cimicifuga racemosa). Immunopharmacol Immunotoxicol 2004; 26:299-308. [PMID: 15209365 DOI: 10.1081/iph-120037728] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Black cohosh (Cimicifuga racemosa) has been used as therapeutics for pain and inflammation in Korean folk medicine. The potential effects of black cohosh extract (BCE) on mast cell-dependent allergy reaction, however, have not been well elucidated yet. In the present study, we investigated the effect of BCE on the allergy reaction using mast cell-dependent in vivo and in vitro models. BCE showed no potential of skin sensitization in local lymph node assay (LLNA). The oral administration of BCE significantly inhibited the anti-IgE-induced passive cutaneous anaphylaxis (PCA) reaction. BCE also showed inhibitory potential on the compound 48/80-induced histamine release from rat peritoneal mast cells. In addition, BCE inhibited the IL-4, IL-5 and TNF-alpha mRNA induction by PMA and A23187 in human leukemia mast cells, HMC-1. These results demonstrated that BCE has an anti-allergic potential and it may be due to the inhibition of histamine release and cytokine gene expression in the mast cells.
Collapse
Affiliation(s)
- Chang Deok Kim
- Oriental Hospital, Oriental Medical College of Daejeon University, Daejeon, South Korea
| | | | | | | | | | | |
Collapse
|
41
|
Swindle EJ, Metcalfe DD, Coleman JW. Rodent and human mast cells produce functionally significant intracellular reactive oxygen species but not nitric oxide. J Biol Chem 2004; 279:48751-9. [PMID: 15361524 DOI: 10.1074/jbc.m409738200] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
In immunity, reactive oxygen species (ROS) and nitric oxide (NO) are important antimicrobial agents and regulators of cell signaling and activation pathways. However, the cellular sources of ROS and NO are much debated. Particularly, there is contention over whether mast cells, key secretory cells in allergy and immunity, can generate these chemical species, and if so, whether they are of functional significance. We therefore examined directly by flow cytometry the capacity of mast cells to generate intracellular ROS and NO using the respective cell-permeable fluorescent probes dichlorodihydrofluorescein and diaminofluorescein and evaluated the effects of inhibitors of ROS and NO synthesis on cell degranulation. For each of three mast cell types (rat peritoneal mast cells, mouse bone marrow-derived mast cells, and human blood-derived mast cells), degranulation stimulated by IgE/antigen was accompanied by production of intracellular ROS but not NO. Inhibition of ROS production led to reduced degranulation, indicating a facilitatory role for ROS, whereas NO synthase inhibitors were without effect. Likewise, bacterial lipopolysaccharide and interferon-gamma over a wide range of conditions failed to generate intracellular NO in mast cells, whereas these agents readily induced intracellular NO in macrophages. NO synthase protein, as assessed by Western blotting, was readily induced in macrophages but not mast cells. We conclude that rodent and human mast cells generate intracellular ROS but not NO and that intracellular ROS but not intracellular NO are functionally linked to mast cell degranulation.
Collapse
Affiliation(s)
- Emily J Swindle
- Department of Pharmacology, University of Liverpool, Liverpool L69 3GE, United Kingdom.
| | | | | |
Collapse
|
42
|
Suzuki Y, Yoshimaru T, Matsui T, Inoue T, Niide O, Nunomura S, Ra C. Fc epsilon RI signaling of mast cells activates intracellular production of hydrogen peroxide: role in the regulation of calcium signals. THE JOURNAL OF IMMUNOLOGY 2004; 171:6119-27. [PMID: 14634127 DOI: 10.4049/jimmunol.171.11.6119] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Earlier studies, including our own, revealed that activation of mast cells is accompanied by production of reactive oxygen species (ROS) that help to mediate the release of the inflammatory mediators, including histamine and eicosanoids. However, little is known about the mechanisms of ROS production, including the species of oxidants produced. In this study we show that in both the RBL-2H3 mast cell line and bone marrow-derived mast cells, FcepsilonRI cross-linking stimulates intracellular oxidative burst, including hydrogen peroxide (H(2)O(2)) production, as defined with the oxidant-sensitive dyes dichlorofluorescein and scopoletin and the selective scavenger ebselen (2-phenyl-1,2-benzisoselenazol-3(2H)-one). The oxidative burst was observed immediately after stimulation and was most likely due to an NAD(P)H oxidase. Experiments using selective pharmacological inhibitors demonstrated that activation of tyrosine kinases and phosphatidylinositol-3-kinase is required for induction of the oxidative burst. Blockade of the oxidative burst by diphenyleneiodonium impaired the release of preformed granular mediators, such as histamine and beta-hexosaminidase, and the secretion of newly synthesized leukotriene C(4), whereas selective scavenging H(2)O(2) by ebselen impaired leukotriene C(4) secretion, but not degranulation. Sustained elevation of cytosolic calcium through store-operated calcium entry was totally abolished when ROS production was blocked. In contrast, selective depletion of H(2)O(2) caused a considerable decrease and delay of the calcium response. Finally, tyrosine phosphorylation of phospholipase Cgamma and the linker for activation of T cells, an event required for calcium influx, was suppressed by diphenyleneiodonium and ebselen. These studies demonstrate that activation of the intracellular oxidative burst is an important regulatory mechanism of mast cell responses.
Collapse
Affiliation(s)
- Yoshihiro Suzuki
- Division of Molecular Cell Immunology and Allergology, Nihon University Graduate School of Medical Sciences, Tokyo, Japan.
| | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
We investigated the influence of vitamin E on mediator activity and release in a canine mastocytoma cell line (C2) as a model for canine atopic dermatitis. Cells were incubated without and with vitamin E (100 microm) for 24 h. The histamine and prostaglandin D2 (PGD2) release as well as the chymase and tryptase activity were measured. To stimulate the PGD2 and histamine release, cells were incubated with the wasp venom peptide mastoparan (50 microm) for 30 or 45 min. Nonstimulated as well as mastoparan-stimulated histamine and PGD2 release was reduced significantly in vitamin E-treated cells. The activity of chymase tended to decrease, but the tryptase activity of C2 cells was not influenced by vitamin E. These results indicate that vitamin E decreased the production and release of inflammatory mediators in C2 cells, suggesting that vitamin E might have a possible beneficial effect in inflammatory diseases.
Collapse
Affiliation(s)
- Thomas Gueck
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 1, 04103 Leipzig, Germany.
| | | | | |
Collapse
|
44
|
Swindle EJ, Hunt JA, Coleman JW. A comparison of reactive oxygen species generation by rat peritoneal macrophages and mast cells using the highly sensitive real-time chemiluminescent probe pholasin: inhibition of antigen-induced mast cell degranulation by macrophage-derived hydrogen peroxide. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:5866-73. [PMID: 12421969 DOI: 10.4049/jimmunol.169.10.5866] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Mast cells and macrophages live in close proximity in vivo and reciprocally regulate one another's function in various ways. Although activated macrophages possess a powerful reactive oxygen species (ROS) generating system, there is conflicting evidence regarding whether mast cells can produce ROS. We used the highly sensitive real-time chemiluminescent probe Pholasin to examine ROS release by peritoneal macrophages and mast cells isolated from OVA-sensitized rats. Macrophages stimulated with PMA (0.8 microM) or ionomycin (1 microM), but not OVA (1 microg/ml), released high-level ROS, levels of which peaked after 3-7 min and declined to baseline levels within 1 h. Superoxide was identified as the major ROS species induced by PMA but not by ionomycin. In contrast, purified mast cells stimulated with PMA released low-level ROS, which was entirely due to the contaminating (2%) macrophages, and did not release any detectable ROS in response to ionomycin or OVA at concentrations that induced degranulation. Stimulation of mixed cell populations with PMA to induce macrophage ROS release led to 50% inhibition of serotonin release from mast cells stimulated 5 min later with OVA. The PMA-induced inhibitory factor was identified as hydrogen peroxide. In conclusion, activated rat peritoneal macrophages but not mast cells produce ROS, and macrophage-derived hydrogen peroxide inhibits mast cell degranulation. The latter could be an important mechanism whereby phagocytic cells regulate mast cell activation and promote resolution of IgE-mediated inflammation.
Collapse
Affiliation(s)
- Emily J Swindle
- Department of Pharmacology and Therapeutics, Department of Clinical Engineering, University of Liverpool, Liverpool L69 3GE, United Kingdom
| | | | | |
Collapse
|
45
|
Kim CJ, Lee SJ, Seo MH, Cho NY, Sohn UD, Lee MY, Shin YK, Sim SS. Histamine release by hydrochloric acid is mediated via reactive oxygen species generation and phospholipase D in RBL-2H3 mast cells. Arch Pharm Res 2002; 25:675-80. [PMID: 12433204 DOI: 10.1007/bf02976943] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In order to investigate the underlying mechanism of HCl in oesophagitis, the inflammatory response to HCl was observed in RBL-2H3 mast cells. Rat basophilic leukemia (RBL-2H3) cells were used to measure histamine release, arachidonic acid (AA) release, reactive oxygen species (ROS) and peroxynitrite generation induced by HCl. Exogenous HCl increased the level of histamine release and ROS generation in a dose dependent manner, whereas it decreased the spontaneous release of [3H] AA and the spontaneous production of peroxynitrite. Mepacrine (10 microM), oleyloxyethyl phosphorylcholine (10 microM) and bromoenol lactone (10 microM) did not affect both the level of histamine release and ROS generation induced by HCl. U73122 (1 microM), a specific phospholipase C (PLC) inhibitor did not have any influence on level of histamine release and ROS generation. Propranolol (200 microM), a phospholipase D (PLD) inhibitor, and neomycin (1 mM), a nonspecific PLC and PLD inhibitor, significantly inhibited both histamine release and ROS generation. Diphenyleneiodonium (10 microM), a NADPH oxidase inhibitor, and tiron (5 mM), an intracellular ROS scavenger significantly inhibited the HCl-induced histamine release and ROS generation. These findings suggest that the inflammatory responses to HCl is related to histamine release and ROS generation, and that the ROS generation by HCl may be involved in histamine release via the PLD pathway in RBL-2H3 cells.
Collapse
Affiliation(s)
- Chang Jong Kim
- Department of Pathophysiology and Pharmacology, Chung-Ang University, Dongjak-gu, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Hanson DA, Ziegler SF. Regulation of ionomycin-mediated granule release from rat basophil leukemia cells. Mol Immunol 2002; 38:1329-35. [PMID: 12217403 DOI: 10.1016/s0161-5890(02)00083-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Cross-linking the high affinity IgE receptor on the rat basophil leukemia clone 2H3 (RBL-2H3) cell line, an vitro model for mast cell signaling, results in granule release. A great deal of research has focused on the earliest steps in this signaling cascade resulting in models which include the participation of lyn, syk, phospholipase C (PLC), protein kinase C (PKC) and intracellular calcium mobilization. In an effort to look at pathways downstream of calcium mobilization, ionomycin-mediated granule release was studied. The kinase inhibitors PP1 (src family), GF109203X (PKC), PD98059 (MEK1/2), and U0126 (MEK1/2) substantially inhibited ionomycin-mediated granule release, while the p38 kinase inhibitor SB203580 did not. Both p38 and erk were phosphorylated upon ionomycin treatment, but only extracellular regulated kinase (erk) activation was completely inhibited by PP1 treatment and partially inhibited by the MEK inhibitors, thus, correlating with the granule release data. Interestingly, while GF109203X alone had no affect on erk activation, combining it with U0126 completely blocked this response. This suggests the existence an alternate pathway for erk activation that is MEK independent and PKC dependent. Experiments in which ionomycin and PP1 were titrated (independently) demonstrated a correlation between erk phosphorylation and granule release, implicating erk in a PP1-inhibitable pathway operating downstream of calcium and controlling mast cell degranulation.
Collapse
Affiliation(s)
- Dennis A Hanson
- Virginia Mason Research Center, 1201 Ninth Avenue, Seattle, WA 98105, USA
| | | |
Collapse
|
47
|
Yoshimaru T, Suzuki Y, Matsui T, Yamashita K, Ochiai T, Yamaki M, Shimizu K. Blockade of superoxide generation prevents high-affinity immunoglobulin E receptor-mediated release of allergic mediators by rat mast cell line and human basophils. Clin Exp Allergy 2002; 32:612-8. [PMID: 11972610 DOI: 10.1046/j.0954-7894.2002.01263.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Previous studies have shown that rat peritoneal mast cells and mast cell model rat basophilic leukaemia (RBL-2H3) cells generate intracellular reactive oxygen species (ROS) in response to antigen challenge. However, the physiological significance of the burst of ROS is poorly understood. OBJECTIVE The present study was undertaken to investigate the role of superoxide anion in mediator release in rat and human cell systems. METHODS RBL-2H3 cells were directly stimulated with anti-rat FcepsilonRI alpha-subunit monoclonal antibody (mAb). For the analysis of human cell system, leucocytes were isolated by dextran sedimentation from healthy volunteers or from patients, and challenged either with anti-human FcepsilonRI mAb or with the relevant antigens. Superoxide generation was determined by chemiluminescence-based methods. The releases of histamine and leukotrienes (LT)s were determined by enzyme-linked immunosorben assay (ELISA). RESULTS Cross-linking of FcepsilonRI on RBL-2H3 cells or on human leucocytes from healthy donors by the anti-FcepsilonRI mAb resulted in a rapid generation of superoxide anion, as determined by chemiluminescence using superoxide-specific probes. Similarly, leucocytes from patients generated superoxide anion in response to the challenge with the relevant allergen but not with the irrelevant allergen. Furthermore, diphenyleneiodonium (DPI), a well-known inhibitor of flavoenzymes suppressed the superoxide generation and the release of histamine and LTC4 induced by the anti-FcepsilonRI mAb or by allergen in parallel. CONCLUSION These results indicate that both RBL-2H3 cells and human basophils generate superoxide anion upon FcepsilonRI cross-linking either by antibody or by allergen challenge and that blockade of the generation prevents the release of allergic mediators. The findings strongly support the role of superoxide generation in the activation of mast cells and basophils under both physiological and pathological conditions. The findings suggest that drugs regulating the superoxide generation have potential therapeutic use for allergic disorders.
Collapse
Affiliation(s)
- T Yoshimaru
- Department of Immunology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
48
|
Suzuki Y, Yoshimaru T, Yamashita K, Matsui T, Yamaki M, Shimizu K. Exposure of RBL-2H3 mast cells to Ag(+) induces cell degranulation and mediator release. Biochem Biophys Res Commun 2001; 283:707-14. [PMID: 11341783 DOI: 10.1006/bbrc.2001.4844] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
There is a growing need to understand the impact of environmental sulfhydryl group-reactive heavy metals on the immune system. Here we show that Ag(+) induces mast cell degranulation, as does the aggregation of the high affinity immunoglobulin E receptor (FcepsilonRI). Micromolar quantities of Ag(+) specifically induced degranulation of mast cell model rat basophilic leukemia (RBL-2H3) cells without showing cytotoxicity. The Ag(+)-mediated degranulation could be observed as rapidly as 5 min after the addition of the ions. Ag(+) also induced a rapid change in tyrosine phosphorylation of multiple cellular proteins including the focal adhesion kinase but not Syk kinase. The Syk-selective inhibitor piceatannol and the Src family-selective tyrosine kinase inhibitor PP1 dose-dependently inhibited FcepsilonRI-mediated degranulation, whereas neither compound inhibited the Ag(+)-mediated degranulation. Furthermore, likewise FcepsilonRI aggregation, Ag(+) also induced leukotriene secretion. These results show that Ag(+) activates RBL-2H3 mast cells through a tyrosine phosphorylation-linked mechanism, which is distinct from that involved in FcepsilonRI-mediated activation.
Collapse
Affiliation(s)
- Y Suzuki
- Department of Immunology and Microbiology, Nihon University School of Medicine, Tokyo, 173-8610, Japan.
| | | | | | | | | | | |
Collapse
|