1
|
CD38–Cyclic ADP-Ribose Signal System in Physiology, Biochemistry, and Pathophysiology. Int J Mol Sci 2022; 23:ijms23084306. [PMID: 35457121 PMCID: PMC9033130 DOI: 10.3390/ijms23084306] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/02/2022] [Accepted: 04/12/2022] [Indexed: 11/16/2022] Open
Abstract
Calcium (Ca2+) is a ubiquitous and fundamental signaling component that is utilized by cells to regulate a diverse range of cellular functions, such as insulin secretion from pancreatic β-cells of the islets of Langerhans. Cyclic ADP-ribose (cADPR), synthesized from NAD+ by ADP-ribosyl cyclase family proteins, such as the mammalian cluster of differentiation 38 (CD38), is important for intracellular Ca2+ mobilization for cell functioning. cADPR induces Ca2+ release from endoplasmic reticulum via the ryanodine receptor intracellular Ca2+ channel complex, in which the FK506-binding protein 12.6 works as a cADPR-binding regulatory protein. Recently, involvements of the CD38-cADPR signal system in several human diseases and animal models have been reported. This review describes the biochemical and molecular biological basis of the CD38-cADPR signal system and the diseases caused by its abnormalities.
Collapse
|
2
|
Roles of cADPR and NAADP in pancreatic beta cell signalling. Cell Calcium 2022; 103:102562. [DOI: 10.1016/j.ceca.2022.102562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/05/2022] [Accepted: 02/09/2022] [Indexed: 11/19/2022]
|
3
|
OKAMOTO H, TAKASAWA S. Okamoto model for necrosis and its expansions, CD38-cyclic ADP-ribose signal system for intracellular Ca 2+ mobilization and Reg (Regenerating gene protein)-Reg receptor system for cell regeneration. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2021; 97:423-461. [PMID: 34629354 PMCID: PMC8553518 DOI: 10.2183/pjab.97.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/22/2021] [Indexed: 05/03/2023]
Abstract
In pancreatic islet cell culture models and animal models, we studied the molecular mechanisms involved in the development of insulin-dependent diabetes. The diabetogenic agents, alloxan and streptozotocin, caused DNA strand breaks, which in turn activated poly(ADP-ribose) polymerase/synthetase (PARP) to deplete NAD+, thereby inhibiting islet β-cell functions such as proinsulin synthesis and ultimately leading to β-cell necrosis. Radical scavengers protected against the formation of DNA strand breaks and inhibition of proinsulin synthesis. Inhibitors of PARP prevented the NAD+ depletion, inhibition of proinsulin synthesis and β-cell death. These findings led to the proposed unifying concept for β-cell damage and its prevention (the Okamoto model). The model met one proof with PARP knockout animals and was further extended by the discovery of cyclic ADP-ribose as the second messenger for Ca2+ mobilization in glucose-induced insulin secretion and by the identification of Reg (Regenerating gene) for β-cell regeneration. Physiological and pathological events found in pancreatic β-cells have been observed in other cells and tissues.
Collapse
Affiliation(s)
- Hiroshi OKAMOTO
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa, Japan
| | - Shin TAKASAWA
- Department of Biochemistry, Nara Medical University, Kashihara, Nara, Japan
| |
Collapse
|
4
|
Seminal CD38 Enhances Human Sperm Capacitation through Its Interaction with CD31. PLoS One 2015; 10:e0139110. [PMID: 26407101 PMCID: PMC4583300 DOI: 10.1371/journal.pone.0139110] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 09/09/2015] [Indexed: 11/19/2022] Open
Abstract
Human sperm have to undergo a maturational process called capacitation in the female reproductive tract. Capacitation confers upon the sperm an ability to gain hypermotility and undergo acrosome reaction. Previous studies have suggested that seminal plasma proteins induce the capacitation of sperm in the female reproductive tract for the successful fertilization of the oocyte. However, the function of seminal plasma proteins in capacitation remains largely unclear. To the end, we found that soluble CD38 (sCD38) in seminal plasma increases the capacitation of sperm via specific interactions between sCD38 and the CD31 on the sperm. Upon the association of sCD38 with CD31, tyrosine kinase Src phosphorylates CD31, a process blocked by Src inhibitors. Shc, SHP-2, Grb2, and SOS, as well as Src kinase were found to associate with the phosphorylated CD31. The sCD38-induced phosphorylation of CD31 initiates a cascade reaction through the phosphorylation of Erk1/2, which results in the acrosome reaction, and sperm hypermotility. These processes were prevented by Src, Ras and MEK inhibitors. Taken together, these data indicate that the sCD38 present in seminal plasma plays a critical role in the capacitation of sperm.
Collapse
|
5
|
Arginine Thiazolidine Carboxylate Stimulates Insulin Secretion through Production of Ca2+-Mobilizing Second Messengers NAADP and cADPR in Pancreatic Islets. PLoS One 2015; 10:e0134962. [PMID: 26247205 PMCID: PMC4527757 DOI: 10.1371/journal.pone.0134962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 07/16/2015] [Indexed: 02/07/2023] Open
Abstract
Oxothiazolidine carboxylic acid is a prodrug of cysteine that acts as an anti-diabetic agent via insulin secretion and the formation of the Ca2+-mobilizing second messenger, cyclic ADP-ribose (cADPR). Here we show that a hybrid compound, arginine thiazolidine carboxylate (ATC), increases cytoplasmic Ca2+ in pancreatic β-cells, and that the ATC-induced Ca2+ signals result from the sequential formation of two Ca2+-mobilizing second messengers: nicotinic acid adenine dinucleotide phosphate (NAADP) and cADPR. Our data demonstrate that ATC has potent insulin-releasing properties, due to the additive action of its two components; thiazolidine carboxylate (TC) and L-arginine. TC increases glutathione (GSH) levels, resulting in cAMP production, followed by a cascade pathway of NAADP/nitric oxide (NO)/cGMP/cADPR synthesis. L-arginine serves as the substrate for NO synthase (NOS), which results in cADPR synthesis via cGMP formation. Neuronal NOS is specifically activated in pancreatic β-cells upon ATC treatment. These results suggest that ATC is an ideal candidate as an anti-diabetic, capable of modulating the physiological Ca2+ signalling pathway to stimulate insulin secretion.
Collapse
|
6
|
Arredouani A, Evans AM, Ma J, Parrington J, Zhu MX, Galione A. An emerging role for NAADP-mediated Ca2+ signaling in the pancreatic β-cell. Islets 2010; 2:323-330. [PMID: 21099331 PMCID: PMC3230560 DOI: 10.4161/isl.2.5.12747] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2010] [Accepted: 06/21/2010] [Indexed: 12/30/2022] Open
Abstract
Several recent reports, including one in this journal, have reignited the debate about whether the calcium-mobilizing messenger, nicotinic adenine nucleotide diphosphate (NAADP) plays a central role in the regulation of calcium signalling in pancreatic β-cell. These studies have highlighted a role for NAADP-induced Ca(2+) mobilization not only in mediating the effects of the incretin, GLP-1 and the autocrine proliferative effects of insulin, but also possibly a fundamental role in glucose-mediated insulin secretion in the pancreatic β-cell.
Collapse
Affiliation(s)
| | - A Mark Evans
- Centre for Integrative Physiology; College of Medicine and Veterinary Medicine; University of Edinburgh; Edinburgh, Scotland UK
| | - Jianjie Ma
- Department of Physiology and Biophysics; UMDNJ-Robert Wood Johnson Medical School; Piscataway, NJ USA
| | - John Parrington
- Department of Pharmacology; University of Oxford; Oxford, UK
| | - Michael X Zhu
- Department of Integrative Biology and Pharmacology; The University of Texas Health Science Center in Houston; Houston, TX USA
| | - Antony Galione
- Department of Pharmacology; University of Oxford; Oxford, UK
| |
Collapse
|
7
|
Okamoto H, Takasawa S. Recent advances in physiological and pathological significance of NAD+ metabolites: roles of poly(ADP-ribose) and cyclic ADP-ribose in insulin secretion and diabetogenesis. Nutr Res Rev 2009; 16:253-66. [PMID: 19087393 DOI: 10.1079/nrr200362] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Poly(ADP-ribose) synthetase/polymerase (PARP) activation causes NAD+ depletion in pancreatic beta-cells, which results in necrotic cell death. On the other hand, ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase (CD38) synthesizes cyclic ADP-ribose from NAD+, which acts as a second messenger, mobilizing intracellular Ca2+ for insulin secretion in response to glucose in beta-cells. PARP also acts as a regenerating gene (Reg) transcription factor to induce beta-cell regeneration. This provides the new concept that NAD+ metabolism can control the cellular function through gene expression. Clinically, PARP could be one of the most important therapeutic targets; PARP inhibitors prevent cell death, maintain the formation of a second messenger, cyclic ADP-ribose, to achieve cell function, and keep PARP functional as a transcription factor for cell regeneration.
Collapse
Affiliation(s)
- Hiroshi Okamoto
- Department of Biochemistry and Advanced Biological Sciences for Regeneration (Kotobiken Medical Laboratories) Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan.
| | | |
Collapse
|
8
|
Ohtsuji M, Yagi K, Shintaku-Kubota M, Kojima-Koba Y, Ito N, Sugihara M, Yamaaki N, Chujo D, Nohara A, Takeda Y, Kobayashi J, Yamagishi M, Higashida H. Decreased ADP-ribosyl cyclase activity in peripheral blood mononuclear cells from diabetic patients with nephropathy. EXPERIMENTAL DIABETES RESEARCH 2009; 2008:897508. [PMID: 19300526 PMCID: PMC2656910 DOI: 10.1155/2008/897508] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Accepted: 12/12/2008] [Indexed: 12/22/2022]
Abstract
AIMS/HYPOTHESIS ADP-ribosyl-cyclase activity (ADPRCA) of CD38 and other ectoenzymes mainly generate cyclic adenosine 5'diphosphate-(ADP-) ribose (cADPR) as a second messenger in various mammalian cells, including pancreatic beta cells and peripheral blood mononuclear cells (PBMCs). Since PBMCs contribute to the pathogenesis of diabetic nephropathy, ADPRCA of PBMCs could serve as a clinical prognostic marker for diabetic nephropathy. This study aimed to investigate the connection between ADPRCA in PBMCs and diabetic complications. METHODS PBMCs from 60 diabetic patients (10 for type 1 and 50 for type 2) and 15 nondiabetic controls were fluorometrically measured for ADPRCA based on the conversion of nicotinamide guanine dinucleotide (NGD(+)) into cyclic GDP-ribose. RESULTS ADPRCA negatively correlated with the level of HbA1c (P = .040, R(2) = .073), although ADPRCA showed no significant correlation with gender, age, BMI, blood pressure, level of fasting plasma glucose and lipid levels, as well as type, duration, or medication of diabetes. Interestingly, patients with nephropathy, but not other complications, presented significantly lower ADPRCA than those without nephropathy (P = .0198) and diabetes (P = .0332). ANCOVA analysis adjusted for HbA1c showed no significant correlation between ADPRCA and nephropathy. However, logistic regression analyses revealed that determinants for nephropathy were systolic blood pressure and ADPRCA, not HbA1c. CONCLUSION/INTERPRETATION Decreased ADPRCA significantly correlated with diabetic nephropathy. ADPRCA in PBMCs would be an important marker associated with diabetic nephropathy.
Collapse
Affiliation(s)
- Michio Ohtsuji
- Division of Endocrinology and Diabetology, Kanazawa University Graduate School of Medicine, 13-1 Takaramachi, Kanazawa 920 8640, Japan
| | - Kunimasa Yagi
- Division of Endocrinology and Diabetology, Kanazawa University Graduate School of Medicine, 13-1 Takaramachi, Kanazawa 920 8640, Japan
| | - Miyuki Shintaku-Kubota
- Division of Endocrinology and Diabetology, Kanazawa University Graduate School of Medicine, 13-1 Takaramachi, Kanazawa 920 8640, Japan
| | - Yukiko Kojima-Koba
- Division of Endocrinology and Diabetology, Kanazawa University Graduate School of Medicine, 13-1 Takaramachi, Kanazawa 920 8640, Japan
| | - Naoko Ito
- Division of Endocrinology and Diabetology, Kanazawa University Graduate School of Medicine, 13-1 Takaramachi, Kanazawa 920 8640, Japan
| | - Masako Sugihara
- Division of Endocrinology and Diabetology, Kanazawa University Graduate School of Medicine, 13-1 Takaramachi, Kanazawa 920 8640, Japan
| | - Naoto Yamaaki
- Division of Endocrinology and Diabetology, Kanazawa University Graduate School of Medicine, 13-1 Takaramachi, Kanazawa 920 8640, Japan
| | - Daisuke Chujo
- Division of Endocrinology and Diabetology, Kanazawa University Graduate School of Medicine, 13-1 Takaramachi, Kanazawa 920 8640, Japan
| | - Atsushi Nohara
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kanazawa University Graduate School of Medicine, 13-1 Takaramachi, Kanazawa 920 8640, Japan
| | - Yoshiyu Takeda
- Division of Endocrinology and Diabetology, Kanazawa University Graduate School of Medicine, 13-1 Takaramachi, Kanazawa 920 8640, Japan
| | - Junji Kobayashi
- Division of Endocrinology and Diabetology, Kanazawa University Graduate School of Medicine, 13-1 Takaramachi, Kanazawa 920 8640, Japan
| | - Masakazu Yamagishi
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kanazawa University Graduate School of Medicine, 13-1 Takaramachi, Kanazawa 920 8640, Japan
| | - Haruhiro Higashida
- Department of Biophysical Genetics, Kanazawa University Graduate School of Medicine, 13-1 Takaramachi, Kanazawa 920 8640, Japan
| |
Collapse
|
9
|
Jia SJ, Jin S, Zhang F, Yi F, Dewey WL, Li PL. Formation and function of ceramide-enriched membrane platforms with CD38 during M1-receptor stimulation in bovine coronary arterial myocytes. Am J Physiol Heart Circ Physiol 2008; 295:H1743-52. [PMID: 18723763 DOI: 10.1152/ajpheart.00617.2008] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
CD38 contains an ADP ribosylcyclase domain that mediates intracellular Ca(2+) signaling by the production of cyclic ADP-ribose (cADPR), but the mechanisms by which the agonists activate this enzyme remain unclear. The present study tested a hypothesis that a special lipid-raft (LR) form, ceramide-enriched lipid platform, contributes to CD38 activation to produce cADPR in response to muscarinic type 1 (M(1)) receptor stimulation in bovine coronary arterial myocytes (CAMs). By confocal microscopic analysis, oxotremorine (Oxo), an M(1) receptor agonist, was found to increase LR clustering on the membrane with the formation of a complex of CD38 and LR components such as GM(1), acid sphingomyelinase (ASMase), and ceramide, a typical ceramide-enriched macrodomain. At 80 microM, Oxo increased LR clustering by 78.8%, which was abolished by LR disruptors, methyl-beta-cyclodextrin (MCD), or filipin. With the use of a fluorescence resonance energy transfer (FRET) technique, 15.5+/-1.9% energy transfer rate (vs. 5.3+/-0.9% of control) between CD38 and LR component, ganglioside M(1) was detected, further confirming the proximity of both molecules. In the presence of MCD or filipin, there were no FRET signals detected. In floated detergent-resistant membrane fractions, CD38 significantly increased in LR fractions of CAMs treated by Oxo. Moreover, MCD or filipin attenuated Oxo-induced production of cADPR via CD38. Functionally, Oxo-induced intracellular Ca(2+) release and coronary artery constriction via cADPR were also blocked by LR disruption or ASMase inhibition. These results provide the first evidence that the formation of ceramide-enriched lipid macrodomains is crucial for Oxo-induced activation of CD38 to produce cADPR in CAMs, and these lipid macrodomains mediate transmembrane signaling of M(1) receptor activation to produce second messenger cADPR.
Collapse
Affiliation(s)
- Su-Jie Jia
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | | | | | | | | | | |
Collapse
|
10
|
Kim BJ, Park KH, Yim CY, Takasawa S, Okamoto H, Im MJ, Kim UH. Generation of nicotinic acid adenine dinucleotide phosphate and cyclic ADP-ribose by glucagon-like peptide-1 evokes Ca2+ signal that is essential for insulin secretion in mouse pancreatic islets. Diabetes 2008; 57:868-78. [PMID: 18184929 DOI: 10.2337/db07-0443] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Glucagon-like peptide-1 (GLP-1) increases intracellular Ca(2+) concentrations ([Ca(2+)](i)), resulting in insulin secretion from pancreatic beta-cells. The molecular mechanism(s) of the GLP-1-mediated regulation of [Ca(2+)](i) was investigated. RESEARCH DESIGN AND METHODS GLP-1-induced changes in [Ca(2+)](i) were measured in beta-cells isolated from Cd38(+/+) and Cd38(-/-) mice. Calcium-mobilizing second messengers were identified by measuring levels of nicotinic acid adenine dinucleotide phosphate (NAADP) and cyclic ADP-ribose (ADPR), using a cyclic enzymatic assay. To locate NAADP- and cyclic ADPR-producing enzyme(s), cellular organelles were separated using the sucrose gradient method. RESULTS A GLP-1-induced [Ca(2+)](i) increase showed a cooperative Ca(2+) signal, i.e., an initial [Ca(2+)](i) rise mediated by the action of NAADP that was produced in acidic organelles and a subsequent long-lasting increase of [Ca(2+)](i) by the action of cyclic ADPR that was produced in plasma membranes and secretory granules. GLP-1 sequentially stimulated production of NAADP and cyclic ADPR in the organelles through protein kinase A and cAMP-regulated guanine nucleotide exchange factor II. Furthermore, the results showed that NAADP production from acidic organelles governed overall Ca(2+) signals, including insulin secretion by GLP-1, and that in addition to CD38, enzymes capable of synthesizing NAADP and/or cyclic ADPR were present in beta-cells. These observations were supported by the study with Cd38(-/-) beta-cells, demonstrating production of NAADP, cyclic ADPR, and Ca(2+) signal with normal insulin secretion stimulated by GLP-1. CONCLUSIONS Our findings demonstrate that the GLP-1-mediated Ca(2+) signal for insulin secretion in pancreatic beta-cells is a cooperative action of NAADP and cyclic ADPR spatiotemporally formed by multiple enzymes.
Collapse
Affiliation(s)
- Byung-Ju Kim
- Department of Biochemistry, Chonbuk National University Medical School, Keum-am dong, Jeonju, 561-182, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
11
|
Johnson JD, Ford EL, Bernal-Mizrachi E, Kusser KL, Luciani DS, Han Z, Tran H, Randall TD, Lund FE, Polonsky KS. Suppressed insulin signaling and increased apoptosis in CD38-null islets. Diabetes 2006; 55:2737-46. [PMID: 17003338 DOI: 10.2337/db05-1455] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CD38 is a multifunctional enzyme capable of generating metabolites that release Ca2+ from intracellular stores, including nicotinic acid adenine dinucleotide phosphate (NAADP). A number of studies have led to the controversial proposal that CD38 mediates an alternate pathway for glucose-stimulated insulin release and contributes to the pathogenesis of diabetes. It has recently been shown that NAADP mediates Ca2+ mobilization by insulin in human pancreatic beta-cells. In the present study, we report altered Ca2+ homeostasis and reduced responsiveness to insulin, but not glucose, in Cd38-/- beta-cells. In keeping with the antiapoptotic role of insulin signaling, Cd38-/- islets were significantly more susceptible to apoptosis compared with islets isolated from littermate controls. This finding correlated with disrupted islet architecture and reduced beta-cell mass in Cd38-/- mice, both in the context of a normal lab diet and a high-fat diet. Nevertheless, we did not find robust differences in glucose homeostasis in vivo or glucose signaling in vitro in Cd38-/- mice on the C57BL/6 genetic background, in contrast to previous studies by others of Cd38 knockout mice on the ICR background. Thus, our results suggest that CD38 plays a role in novel antiapoptotic signaling pathways but does not directly control glucose signaling in pancreatic beta-cells.
Collapse
Affiliation(s)
- James D Johnson
- Division of Metabolism, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Hassa PO, Haenni SS, Elser M, Hottiger MO. Nuclear ADP-ribosylation reactions in mammalian cells: where are we today and where are we going? Microbiol Mol Biol Rev 2006; 70:789-829. [PMID: 16959969 PMCID: PMC1594587 DOI: 10.1128/mmbr.00040-05] [Citation(s) in RCA: 519] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Since poly-ADP ribose was discovered over 40 years ago, there has been significant progress in research into the biology of mono- and poly-ADP-ribosylation reactions. During the last decade, it became clear that ADP-ribosylation reactions play important roles in a wide range of physiological and pathophysiological processes, including inter- and intracellular signaling, transcriptional regulation, DNA repair pathways and maintenance of genomic stability, telomere dynamics, cell differentiation and proliferation, and necrosis and apoptosis. ADP-ribosylation reactions are phylogenetically ancient and can be classified into four major groups: mono-ADP-ribosylation, poly-ADP-ribosylation, ADP-ribose cyclization, and formation of O-acetyl-ADP-ribose. In the human genome, more than 30 different genes coding for enzymes associated with distinct ADP-ribosylation activities have been identified. This review highlights the recent advances in the rapidly growing field of nuclear mono-ADP-ribosylation and poly-ADP-ribosylation reactions and the distinct ADP-ribosylating enzyme families involved in these processes, including the proposed family of novel poly-ADP-ribose polymerase-like mono-ADP-ribose transferases and the potential mono-ADP-ribosylation activities of the sirtuin family of NAD(+)-dependent histone deacetylases. A special focus is placed on the known roles of distinct mono- and poly-ADP-ribosylation reactions in physiological processes, such as mitosis, cellular differentiation and proliferation, telomere dynamics, and aging, as well as "programmed necrosis" (i.e., high-mobility-group protein B1 release) and apoptosis (i.e., apoptosis-inducing factor shuttling). The proposed molecular mechanisms involved in these processes, such as signaling, chromatin modification (i.e., "histone code"), and remodeling of chromatin structure (i.e., DNA damage response, transcriptional regulation, and insulator function), are described. A potential cross talk between nuclear ADP-ribosylation processes and other NAD(+)-dependent pathways is discussed.
Collapse
Affiliation(s)
- Paul O Hassa
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | | | | | | |
Collapse
|
13
|
Xie GH, Rah SY, Kim SJ, Nam TS, Ha KC, Chae SW, Im MJ, Kim UH. ADP-ribosyl cyclase couples to cyclic AMP signaling in the cardiomyocytes. Biochem Biophys Res Commun 2005; 330:1290-8. [PMID: 15823583 DOI: 10.1016/j.bbrc.2005.03.114] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2005] [Indexed: 11/29/2022]
Abstract
ADP-ribosyl cyclase (ADPR-cyclase) produces a Ca(2+)-mobilizing second messenger cyclic ADP-ribose (cADPR) from beta-NAD(+). In this study, we examined the molecular basis of which beta-adrenergic receptor (betaAR) stimulation induces cADPR formation and characterized cardiac ADPR-cyclase. The results revealed that isoproterenol-mediated increase of [Ca(2+)](i) in rat cardiomyocytes was blocked by pretreatment with a cADPR antagonistic derivative 8-Br-cADPR, a PKA inhibitor H89 or high concentration of ryanodine. Moreover, incubation of ventricular lysates with isoproterenol, forskolin or cAMP resulted in activation of ADPR-cyclase that was inhibited by pretreatment with H89. Supporting the observations, the cADPR antagonist and H89 blocked 8-CPT-cAMP, a cell-permeant cAMP analog-induced increase in [Ca(2+)](i) but not cGMP-mediated increase. Characterization of partially purified cardiac ADPR-cyclase showed a molecular mass of approximately 42 kDa and no cross-activity with CD38 antibodies, and the enzyme activity was inhibited by Zn(2+) but not dithiothreitol. Microinjection of the enzyme into rat cardiomyocytes increased the level of [Ca(2+)](i) in a concentration-dependent manner. The enzyme-mediated increase of [Ca(2+)](i) was blocked by the cADPR antagonist. These findings suggest that betaAR-mediated regulation of [Ca(2+)](i) in rat cardiomyocytes is primed by activation of cardiac ADPR-cyclase via cAMP/PKA signaling and that cardiac ADPR-cyclase differs from CD38 in biochemical and immunological properties.
Collapse
Affiliation(s)
- Guang-Hua Xie
- Department of Biochemistry, Chonbuk National University Medical School, Jeonju 561-182, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Shervani NJ, Takasawa S, Uchigata Y, Akiyama T, Nakagawa K, Noguchi N, Takada H, Takahashi I, Yamauchi A, Ikeda T, Iwamoto Y, Nata K, Okamoto H. Autoantibodies to REG, a beta-cell regeneration factor, in diabetic patients. Eur J Clin Invest 2004; 34:752-8. [PMID: 15530148 DOI: 10.1111/j.1365-2362.2004.01419.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Regenerating gene (Reg) product, Reg, acts as an autocrine/paracrine growth factor for beta-cell regeneration. The presence of autoimmunity against REG may affect the operative of the regenerative mechanisms in beta cells of Type 1 and Type 2 diabetes patients. We screened sera from Type 1 and Type 2 diabetes subjects for anti-REG autoantibodies, searched for correlations in the general characteristics of the subjects with the presence of anti-REG autoimmunity, and tested the attenuation of REG-induced beta-cell proliferation by the autoanitibodies. MATERIAL AND METHODS We examined the occurrence of anti-REG autoantibodies in patients' sera (265 Type 1, 368 Type 2 diabetes patients, and 75 unrelated control subjects) by Western blot analysis, and evaluated inhibitory effects of the sera on REG-stimulated beta-cell proliferation by a 5'-Bromo-2'-deoxyuridine (BrdU) incorporation assay in vitro. RESULTS Anti-REG autoantibodies were found in 24.9% of Type 1, 14.9% of Type 2 and 2.7% of control subjects (P = 0.0004). There were significant differences between the autoantibody positive and negative groups in the duration of disease in the Type 1 subjects (P = 0.0035), and the age of onset in the Type 2 subjects (P = 0.0274). The patient sera containing anti-REG autoantibodies significantly attenuated the BrdU incorporation by REG (35.6 +/- 4.06% of the control), whereas the nondiabetic sera without anti-REG autoantibodies scarcely reduced the incorporation (88.8 +/- 5.10%). CONCLUSION Anti-REG autoantibodies, which retard beta-cell proliferation in vitro, are found in some diabetic patients. Thus, autoimmunity to REG may be associated with the development/acceleration of diabetes in at least some patients.
Collapse
Affiliation(s)
- N J Shervani
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Human CD38 is a protein which catalyzes the synthesis of nicotinic acid adenine dinucleotide (NAADP+) and the conversion of NAD+ to cADPR. Both cADPR and NAADP+ are powerful intracellular Ca2+ ([Ca2+]i) mobilizers in different cell types. Recently, the presence of CD38 autoantibodies has been found in a significant number (9-15%) of patients with Type 2 or long-standing Type 1 diabetes. These autoantibodies are biologically active, the majority of them (-60%) displaying agonistic properties, i.e., [Ca2+]i mobilization in lymphocytic cell lines and in pancreatic islets. In cultured rat pancreatic islets, the human autoantibodies inhibit glucose-induced insulin release, whereas, in human pancreatic islets CD38 autoantibodies stimulate glucose-mediated insulin secretion. The clinical phenotype of anti-CD38-positive Type 2 diabetes differs from the LADA (latent autoimmune diabetes of adults) phenotype. When accurately matched for age and obesity, only LADA patients with anti-GAD antibodies, but not GAD-negative/ CD38-positive patients, have reduced in vivo beta-cell function in comparison to antibody-negative patients. Transgenic mice overexpressing CD38 show enhanced glucose-induced insulin release, whereas, conversely, CD38 knockout mice display a severe impairment in beta-cell function. Few Japanese diabetic patients carry a missense mutation in the CD38 gene; in Caucasian patients mutations in the CD38 gene have not been found. Collectively, these findings suggest that activation of CD38 represents an alternative signaling pathway for glucose-induced insulin secretion in human beta-cells. More information, however, is necessary to gauge the role of CD38 autoimmunity in the context of the natural history of human Type 1 or Type 2 diabetes.
Collapse
Affiliation(s)
- A Antonelli
- Metabolism Unit, Department of Internal Medicine and CNR Institute of Clinical Physiology, University of Pisa School of Medicine, Pisa, Italy.
| | | |
Collapse
|
16
|
Xie GH, Rah SY, Yi KS, Han MK, Chae SW, Im MJ, Kim UH. Increase of intracellular Ca(2+) during ischemia/reperfusion injury of heart is mediated by cyclic ADP-ribose. Biochem Biophys Res Commun 2003; 307:713-8. [PMID: 12893282 DOI: 10.1016/s0006-291x(03)01240-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
While the molecular mechanisms by which oxidants cause cytotoxicity are still poorly understood, disruption of Ca(2+) homeostasis appears to be one of the critical alterations during the oxidant-induced cytotoxic process. Here, we examined the possibility that oxidative stress may alter the metabolism of cyclic ADP-ribose (cADPR), a potent Ca(2+)-mobilizing second messenger in the heart. Isolated heart perfused by Langendorff technique was subjected to ischemia/reperfusion injury and endogenous cADPR level was determined using a specific radioimmunoassay. Following ischemia/reperfusion injury, a significant increase in intracellular cADPR level was observed. The elevation of cADPR content was closely correlated with the increase in ADP-ribosyl cyclase activity. Inclusion of oxygen free radical scavengers, 2,2,6,6-tetramethyl-1-piperidinyloxy and mannitol, in the reperfusate prevented the ischemia/reperfusion-induced increases in cADPR level and the ADP-ribosyl cyclase activity. Exposure of isolated cardiomyocytes to t-butyl hydroperoxide increased the ADP-ribosyl cyclase activity, cADPR level, and intracellular Ca(2+) concentration ([Ca(2+)](i)) and consequently resulting in cell lethal damage. The oxidant-induced elevation of [Ca(2+)](i) as well as cell lethal damage was blocked by a cADPR antagonist, 8-bromo-cADPR. These results provide evidence for involvement of cADPR and its producing enzyme in alteration of Ca(2+) homeostasis during the ischemia/reperfusion injury of the heart.
Collapse
Affiliation(s)
- Guang-Hua Xie
- Department of Biochemistry, Chonbuk National University Medical School, Chonju 561-182, South Korea
| | | | | | | | | | | | | |
Collapse
|
17
|
Song EK, Hur H, Han MK. Epigallocatechin gallate prevents autoimmune diabetes induced by multiple low doses of streptozotocin in mice. Arch Pharm Res 2003; 26:559-63. [PMID: 12934649 DOI: 10.1007/bf02976881] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Cytokines produced by immune cells infiltrating pancreatic islets have been incriminated as important mediators of beta-cell destruction in insulin-dependent diabetes mellitus. In non insulin-dependent diabetes, cytokines are also associated with impaired beta-cell function in high glucose condition. By the screening of various natural products blocking beta-cell destruction, we have recently found that epigallocatechin gallate (EGCG) can prevent the in vitro destruction of RINm5F cell, an insulinoma cell line, that is induced by cytokines. In that study we suggested that EGCG could prevent cytokine-induced beta-cell destruction by down-regulation of nitric oxide synthase (NOS) through inhibition of NF-kappaB activation. Here, to verify the in vivo antidiabetogenic effect of EGCG, we examined the possibility that EGCG could also prevent the experimental autoimmune diabetes induced by the treatment of multiple low doses of streptozotocin (MLD-STZ), which is recognized as an inducer of type I autoimmune diabetes. Administration of EGCG (100 mg/day/kg for 10 days) during the MLD-STZ induction of diabetes reduced the increase of blood glucose levels caused by MLD-STZ. Ex vivo analysis of beta-islets showed that EGCG downregulates the MLD-STZ-induced expression of inducible NOS (iNOS). In addition, morphological examination showed that EGCG treatment ameliorated the decrease of islet mass induced by MLD-STZ. In combination these results suggest that EGCG could prevent the onset of MLD-STZ-induced diabetes by protecting pancreatic islets. Our results therefore revealed the possible therapeutic value of EGCG for the prevention of diabetes mellitus progression.
Collapse
Affiliation(s)
- Eun-Kyung Song
- Department of Microbiology & Immunology, Chonbuk national University Medical School, Chonju 560-756, Korea
| | | | | |
Collapse
|
18
|
Okamoto H. Recent advances in physiological and pathological significance of tryptophan-NAD+ metabolites: lessons from insulin-producing pancreatic beta-cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 527:243-52. [PMID: 15206738 DOI: 10.1007/978-1-4615-0135-0_28] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In the early 1980s we found that streptozotocin and alloxan, typical diabetogenic agents, induce pancreatic beta-cell DNA strand breaks through the formation of free radicals. The breaks induce DNA repair involving the activation of poly(ADP-ribose) polymerase (PARP), which uses NAD+ as a substrate. As a result, the intracellular levels of NAD+ fall dramatically. The fall in NAD+ inhibits cellular functions including insulin synthesis and secretion, and thus the beta-cell ultimately dies. We subsequently proposed that maintenance of the NAD+ level is essential for the synthesis and secretion of insulin, and presented a unifying model for beta-cell damage and its prevention (The Okamoto model), in which PARP activation plays an essential role. Recently, the model was reconfirmed by experiments using PARP knockout mice and has been recognized as providing the basis for necrotic death of various cells and tissues. In 1993, we found that cyclic ADP-ribose (cADPR), a metabolite of NAD+, is a second messenger for intracellular Ca2+ mobilization for insulin secretion by glucose, and proposed a novel mechanism of insulin secretion, the CD38-cADPR signal system. Recently, various physiological phenomena from animal to plant cells become understandable in terms of this signal system. In 1984, we demonstrated that the administration of PARP inhibitors to 90% depancreatized rats induces islet regeneration. From the regenerating islet-derived cDNA library we found a novel beta-cell growth factor gene, Reg (Regenerating Gene), and elucidated the mechanism of Reg gene expression in beta-cells, in which PARP acts as a transcription factor for Reg gene expression. PARP bound to the cis-element of Reg promoter and formed the active transcriptional DNA/protein complex. The complex formation was inhibited depending on the autopoly(ADP-ribosyl)ation of PARP in the complex. Thus, PARP inhibitors enhance and stabilize the complex formation for Reg gene transcription. Reg protein acts as an autocrine/paracrine growth factor to induce beta-cell replication via the Reg receptor and ameliorates experimental diabetes.
Collapse
Affiliation(s)
- Hiroshi Okamoto
- Department of Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan.
| |
Collapse
|
19
|
Okamoto H, Takasawa S. Recent advances in the Okamoto model: the CD38-cyclic ADP-ribose signal system and the regenerating gene protein (Reg)-Reg receptor system in beta-cells. Diabetes 2002; 51 Suppl 3:S462-73. [PMID: 12475791 DOI: 10.2337/diabetes.51.2007.s462] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Twenty years ago, we first proposed our hypothesis on beta-cell damage and its prevention (the Okamoto model), according to which poly(ADP-ribose) synthetase/polymerase (PARP) activation is critically involved in the consumption of NAD(+), leading to energy depletion and cell death by necrosis. Recently, the model was reconfirmed by results using PARP knockout mice and has been recognized as providing the basis for necrotic death of various cells and tissues. Based on the model, we proposed two signal systems in beta-cells: one is the CD38-cyclic ADP-ribose (cADPR) signal system for insulin secretion, and the other is the regenerating gene protein (Reg)-Reg receptor system for beta-cell regeneration. The physiological and pathological significance of the two signal systems in a variety of cells and tissues as well as in pancreatic beta-cells has recently been recognized. Here, we describe the Okamoto model and its descendents, the CD38-cADPR signal system and the Reg-Reg receptor system, focusing on recent advances and how their significance came to light. Because PARP is involved in Reg gene transcription to induce beta-cell regeneration, and the PARP activation reduces the cellular NAD(+) to decrease the formation of cADPR (a second messenger for insulin secretion) and further to cause necrotic beta-cell death, PARP and its inhibitors have key roles in the induction of beta-cell regeneration, the maintenance of insulin secretion, and the prevention of beta-cell death.
Collapse
Affiliation(s)
- Hiroshi Okamoto
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.
| | | |
Collapse
|
20
|
Abstract
The list of Ca(2+) channels involved in stimulus-secretion coupling in beta-cells is increasing. In this respect the roles of the voltage-gated Ca(2+) channels and IP(3) receptors are well accepted. There is a lack of consensus about the significance of a third group of Ca(2+) channels called ryanodine (RY) receptors. These are large conduits located on Ca(2+) storage organelle. Ca(2+) gates these channels in a concentration- and time-dependent manner. Activation of these channels by Ca(2+) leads to fast release of Ca(2+) from the stores, a process called Ca(2+)-induced Ca(2+) release (CICR). A substantial body of evidence confirms that beta-cells have RY receptors. CICR by RY receptors amplifies Ca(2+) signals. Some properties of RY receptors ensure that this amplification process is engaged in a context-dependent manner. Several endogenous molecules and processes that modulate RY receptors determine the appropriate context. Among these are several glycolytic intermediates, long-chain acyl CoA, ATP, cAMP, cADPR, NO, and high luminal Ca(2+) concentration, and all of these have been shown to sensitize RY receptors to the trigger action of Ca(2+). RY receptors, thus, detect co-incident signals and integrate them. These Ca(2+) channels are targets for the action of cAMP-linked incretin hormones that stimulate glucose-dependent insulin secretion. In beta-cells some RY receptors are located on the secretory vesicles. Thus, despite their low abundance, RY receptors are emerging as distinct players in beta-cell function by virtue of their large conductance, strategic locations, and their ability to amplify Ca(2+) signals in a context-dependent manner.
Collapse
Affiliation(s)
- Md Shahidul Islam
- Department of Molecular Medicine, Karolinska Institutet, Department of Endocrinology, Karolinska Hospital, Stockholm, Sweden.
| |
Collapse
|