1
|
Mourmans SGJ, Achten A, Hermans R, Scheepers MJE, D'Alessandro E, Swennen G, Woudstra J, Appelman Y, Goor HV, Schalkwijk C, Knackstedt C, Weerts J, Eringa EC, van Empel VPM. The effect of empagliflozin on peripheral microvascular dysfunction in patients with heart failure with preserved ejection fraction. Cardiovasc Diabetol 2025; 24:182. [PMID: 40281528 PMCID: PMC12023568 DOI: 10.1186/s12933-025-02679-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 03/10/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND Empagliflozin is an effective treatment for heart failure with preserved ejection fraction (HFpEF), but its definite mechanism of action is unclear. Systemic microvascular dysfunction strongly relates to HFpEF aetiology, and we hypothesised that empagliflozin improves microvascular function in HFpEF. OBJECTIVE To investigate the effect of the sodium-glucose cotransporter-2 inhibitor empagliflozin on peripheral microvascular function in HFpEF. METHODS This is a pre-post intervention study in patients diagnosed with HFpEF who are eligible for treatment with empagliflozin. Microvascular function assessment using laser speckle contrast analysis of the dorsal forearm during iontophoresis of vasoactive stimuli (acetylcholine, insulin sodium nitroprusside) was performed at baseline and after 3 months of empagliflozin treatment (10 mg daily). The primary outcome was the difference in blood flow measured in the forearm microvasculature between baseline and at follow-up (cutaneous vascular conductance, CVC). Secondarily we investigated quality-of-life based on the EQ-5D-5 L questionnaire at baseline and follow-up. RESULTS Twenty six patients finished the study according to protocol (mean age of 74 ± 7 years, 62% female). We observed a decreased blood flow response to acetylcholine after 3 months of empagliflozin (CVC: 0.77 ± 0.24 vs. 0.64 ± 0.20, p < 0.001). In contrast, the response to insulin improved (CVC: 0.61 ± 0.43 vs. 0.81 ± 0.32, p = 0.03), and the response to sodium nitroprusside remained stable after 3 months. No significant correlations were found between the changes in blood flow and quality of life. CONCLUSION This study shows that three months treatment with empagliflozin changed peripheral microvascular function in patients with HFpEF. Empagliflozin may enhance microvascular blood flow specifically via vascular actions of insulin, rather than a general effect on endothelial vasoregulation or smooth muscle cell function. As such, systemic microvascular dysfunction can be a modifiable factor in patients with HFpEF, while the clinical implications thereof warrant further investigations. TRIAL REGISTRATION The trial was preregistered at clinicaltrials.gov (NCT06046612).
Collapse
Affiliation(s)
- Sanne G J Mourmans
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
| | - Anouk Achten
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
| | - Raquel Hermans
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
| | - Marijne J E Scheepers
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
| | - Elisa D'Alessandro
- Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands
| | - Geertje Swennen
- Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands
| | - Janneke Woudstra
- Department of Cardiology, Amsterdam UMC Heart Centre, Amsterdam, The Netherlands
| | - Yolande Appelman
- Department of Cardiology, Amsterdam UMC Heart Centre, Amsterdam, The Netherlands
| | - Harry van Goor
- Department of Pathology and Medical Biology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Casper Schalkwijk
- Department of Internal Medicine, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
| | - Christian Knackstedt
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
| | - Jerremy Weerts
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
| | - Etto C Eringa
- Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Amsterdam, The Netherlands
| | - Vanessa P M van Empel
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands.
| |
Collapse
|
2
|
Fan L, Wang H, Kassab GS, Lee LC. Review of cardiac-coronary interaction and insights from mathematical modeling. WIREs Mech Dis 2024; 16:e1642. [PMID: 38316634 PMCID: PMC11081852 DOI: 10.1002/wsbm.1642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/10/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024]
Abstract
Cardiac-coronary interaction is fundamental to the function of the heart. As one of the highest metabolic organs in the body, the cardiac oxygen demand is met by blood perfusion through the coronary vasculature. The coronary vasculature is largely embedded within the myocardial tissue which is continually contracting and hence squeezing the blood vessels. The myocardium-coronary vessel interaction is two-ways and complex. Here, we review the different types of cardiac-coronary interactions with a focus on insights gained from mathematical models. Specifically, we will consider the following: (1) myocardial-vessel mechanical interaction; (2) metabolic-flow interaction and regulation; (3) perfusion-contraction matching, and (4) chronic interactions between the myocardium and coronary vasculature. We also provide a discussion of the relevant experimental and clinical studies of different types of cardiac-coronary interactions. Finally, we highlight knowledge gaps, key challenges, and limitations of existing mathematical models along with future research directions to understand the unique myocardium-coronary coupling in the heart. This article is categorized under: Cardiovascular Diseases > Computational Models Cardiovascular Diseases > Biomedical Engineering Cardiovascular Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Lei Fan
- Joint Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Haifeng Wang
- Department of Mechanical Engineering, Michigan State University, East Lansing, Michigan, USA
| | - Ghassan S Kassab
- California Medical Innovations Institute, San Diego, California, USA
| | - Lik Chuan Lee
- Department of Mechanical Engineering, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
3
|
Awata WMC, Alves JV, Costa RM, Bruder-Nascimento A, Singh S, Barbosa GS, Tirapelli CR, Bruder-Nascimento T. Vascular injury associated with ethanol intake is driven by AT1 receptor and mitochondrial dysfunction. Biomed Pharmacother 2023; 169:115845. [PMID: 37951022 DOI: 10.1016/j.biopha.2023.115845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/27/2023] [Accepted: 11/05/2023] [Indexed: 11/13/2023] Open
Abstract
BACKGROUND Renin-angiotensin (Ang II)-aldosterone system (RAAS) is crucial for the cardiovascular risk associated with excessive ethanol consumption. Disturbs in mitochondria have been implicated in multiple cardiovascular diseases. However, if mitochondria dysfunction contributes to ethanol-induced vascular dysfunction is still unknown. We investigated whether ethanol leads to vascular dysfunction via RAAS activation, mitochondria dysfunction, and mitochondrial reactive oxygen species (mtROS). METHODS Male C57/BL6J or mt-keima mice (6-8-weeks old) were treated with ethanol (20% vol./vol.) for 12 weeks with or without Losartan (10 mg/kg/day). RESULTS Ethanol induced aortic hypercontractility in an endothelium-dependent manner. PGC1α (a marker of biogenesis), Mfn2, (an essential protein for mitochondria fusion), as well as Pink-1 and Parkin (markers of mitophagy), were reduced in aortas from ethanol-treated mice. Disturb in mitophagy flux was further confirmed in arteries from mt-keima mice. Additionally, ethanol increased mtROS and reduced SOD2 expression. Strikingly, losartan prevented vascular hypercontractility, mitochondrial dysfunction, mtROS, and restored SOD2 expression. Both MnTMPyP (SOD2 mimetic) and CCCP (a mitochondrial uncoupler) reverted ethanol-induced vascular dysfunction. Moreover, L-NAME (NOS inhibitor) and EUK 134 (superoxide dismutase/catalase mimetic) did not affect vascular response in ethanol group, suggesting that ethanol reduces aortic nitric oxide (NO) and H2O2 bioavailability. These responses were prevented by losartan. CONCLUSION AT1 receptor modulates ethanol-induced vascular hypercontractility by promoting mitochondrial dysfunction, mtROS, and reduction of NO and H2O2 bioavailability. Our findings shed a new light in our understanding of ethanol-induced vascular toxicity and open perspectives of new therapeutic approaches for patients with disorder associated with abusive ethanol drinking.
Collapse
Affiliation(s)
- Wanessa M C Awata
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA; Center for Pediatrics Research in Obesity and Metabolism (CPROM), University of Pittsburgh, Pittsburgh, PA, USA; Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Juliano V Alves
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA; Center for Pediatrics Research in Obesity and Metabolism (CPROM), University of Pittsburgh, Pittsburgh, PA, USA; Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Rafael M Costa
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA; Center for Pediatrics Research in Obesity and Metabolism (CPROM), University of Pittsburgh, Pittsburgh, PA, USA; Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Ariane Bruder-Nascimento
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA; Center for Pediatrics Research in Obesity and Metabolism (CPROM), University of Pittsburgh, Pittsburgh, PA, USA
| | - Shubhnita Singh
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA; Center for Pediatrics Research in Obesity and Metabolism (CPROM), University of Pittsburgh, Pittsburgh, PA, USA
| | - Gabriela S Barbosa
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA; Center for Pediatrics Research in Obesity and Metabolism (CPROM), University of Pittsburgh, Pittsburgh, PA, USA; UNIPEX, Medical School, Sao Paulo State University (UNESP), Botucatu, Brazil
| | | | - Thiago Bruder-Nascimento
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA; Center for Pediatrics Research in Obesity and Metabolism (CPROM), University of Pittsburgh, Pittsburgh, PA, USA; Endocrinology Division at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA; Vascular Medicine, Institute (VMI), University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
4
|
Hu XQ, Zhang L. Oxidative Regulation of Vascular Ca v1.2 Channels Triggers Vascular Dysfunction in Hypertension-Related Disorders. Antioxidants (Basel) 2022; 11:antiox11122432. [PMID: 36552639 PMCID: PMC9774363 DOI: 10.3390/antiox11122432] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/28/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Blood pressure is determined by cardiac output and peripheral vascular resistance. The L-type voltage-gated Ca2+ (Cav1.2) channel in small arteries and arterioles plays an essential role in regulating Ca2+ influx, vascular resistance, and blood pressure. Hypertension and preeclampsia are characterized by high blood pressure. In addition, diabetes has a high prevalence of hypertension. The etiology of these disorders remains elusive, involving the complex interplay of environmental and genetic factors. Common to these disorders are oxidative stress and vascular dysfunction. Reactive oxygen species (ROS) derived from NADPH oxidases (NOXs) and mitochondria are primary sources of vascular oxidative stress, whereas dysfunction of the Cav1.2 channel confers increased vascular resistance in hypertension. This review will discuss the importance of ROS derived from NOXs and mitochondria in regulating vascular Cav1.2 and potential roles of ROS-mediated Cav1.2 dysfunction in aberrant vascular function in hypertension, diabetes, and preeclampsia.
Collapse
|
5
|
Guerra-Ojeda S, Marchio P, Rueda C, Suarez A, Garcia H, Victor VM, Juez M, Martin-Gonzalez I, Vila JM, Mauricio MD. Cerium dioxide nanoparticles modulate antioxidant defences and change vascular response in the human saphenous vein. Free Radic Biol Med 2022; 193:694-701. [PMID: 36402438 DOI: 10.1016/j.freeradbiomed.2022.11.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/18/2022]
Abstract
Nanoparticles have a promising future in biomedical applications and knowing whether they affect ex vivo vascular reactivity is a necessary step before their use in patients. In this study, we have evaluated the vascular effect of cerium dioxide nanoparticles (CeO2NPs) on the human saphenous vein in response to relaxing and contractile agonists. In addition, we have measured the protein expression of key enzymes related to vascular homeostasis and oxidative stress. We found that CeO2NPs increased expression of both SOD isoforms, and the consequent reduction of superoxide anion would enhance the bioavailability of NO explaining the increased vascular sensitivity to sodium nitroprusside in the presence of CeO2NPs. The NOX4 reduction induced by CeO2NPs may lead to lower H2O2 synthesis associated with vasodilation through potassium channels explaining the lower vasodilation to bradykinin. In addition, we showed for the first time, that CeO2NPs increase the expression of ACE2 in human saphenous vein, and it may be the cause of the reduced contraction to angiotensin II. Moreover, we ruled out that CeO2NPs have effect on the protein expression of eNOS, sGC, BKca channels and angiotensin II receptors or modify the vascular response to noradrenaline, endothelin-1 and TXA2 analogue. In conclusion, CeO2NPs show antioxidant properties, and together with their vascular effect, they could be postulated as adjuvants for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Sol Guerra-Ojeda
- Department of Physiology. InVas Research Group. University of Valencia, INCLIVA, Valencia, Spain
| | - Patricia Marchio
- Department of Physiology. InVas Research Group. University of Valencia, INCLIVA, Valencia, Spain
| | - Cristina Rueda
- Department of Cardiovascular Surgery, University General Hospital, Valencia, Spain
| | - Andrea Suarez
- Department of Physiology. InVas Research Group. University of Valencia, INCLIVA, Valencia, Spain
| | - Hermenegildo Garcia
- Instituto Universitario de Tecnología Química CSIC-UPV, Universidad Politécnica de Valencia, Valencia, Spain
| | - Victor M Victor
- Department of Physiology. InVas Research Group. University of Valencia, INCLIVA, Valencia, Spain; Service of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), CIBEREHD. Spain
| | - Marina Juez
- Department of Cardiovascular Surgery, University General Hospital, Valencia, Spain
| | - Ivan Martin-Gonzalez
- Cardiovascular Surgery Department, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - Jose M Vila
- Department of Physiology. InVas Research Group. University of Valencia, INCLIVA, Valencia, Spain
| | - Maria D Mauricio
- Department of Physiology. InVas Research Group. University of Valencia, INCLIVA, Valencia, Spain.
| |
Collapse
|
6
|
Kendrick DJ, Mishra RC, John CM, Zhu HL, Braun AP. Effects of Pharmacological Inhibitors of NADPH Oxidase on Myogenic Contractility and Evoked Vasoactive Responses in Rat Resistance Arteries. Front Physiol 2022; 12:752366. [PMID: 35140625 PMCID: PMC8818784 DOI: 10.3389/fphys.2021.752366] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 12/17/2021] [Indexed: 11/17/2022] Open
Abstract
Reactive oxygen species (ROS), such as superoxide anions and hydrogen peroxide, are reported to contribute to the dynamic regulation of contractility in various arterial preparations, however, the situation in pressurized, myogenically active resistance arteries is much less clear. In the present study, we have utilized established pharmacological inhibitors of NADPH oxidase activity to examine the potential contribution of ROS to intrinsic myogenic contractility in adult Sprague–Dawley rat resistance arteries and responses to vasoactive agents acting via the endothelium (i.e., acetylcholine, SKA-31) or smooth muscle (i.e., sodium nitroprusside, phenylephrine). In cannulated and pressurized cremaster skeletal muscle and middle cerebral arteries, the NOX inhibitors 2-acetylphenothiazine (2-APT) and VAS2870, selective for NOX1 and NOX2, respectively, evoked concentration-dependent inhibition of basal myogenic tone in a reversible and irreversible manner, respectively, whereas the non-selective inhibitor apocynin augmented myogenic contractility. The vasodilatory actions of 2-APT and VAS2870 occurred primarily via the vascular endothelium and smooth muscle, respectively. Functional responses to established endothelium-dependent and –independent vasoactive agents were largely unaltered in the presence of either 2-APT or apocynin. In cremaster arteries from Type 2 Diabetic (T2D) Goto-Kakizaki rats with endothelial dysfunction, treatment with either 2-APT or apocynin did not modify stimulus-evoked vasoactive responses, but did affect basal myogenic tone. These same NOX inhibitors produced robust inhibition of total NADPH oxidase activity in aortic tissue homogenates from control and T2D rats, and NOX isozymes 1, 2 and 4, along with superoxide dismutase 1, were detected by qPCR in cremaster arteries and aorta from both species. Based on the diverse effects that we observed for established, chemically distinct NOX inhibitors, the functional contribution of vascular NADPH oxidase activity to stimulus-evoked vasoactive signaling in myogenically active, small resistance arteries remains unclear.
Collapse
|
7
|
Roberts AM, Moulana NZ, Jagadapillai R, Cai L, Gozal E. Intravital assessment of precapillary pulmonary arterioles of type 1 diabetic mice shows oxidative damage and increased tone in response to NOS inhibition. J Appl Physiol (1985) 2021; 131:1552-1564. [PMID: 34590907 PMCID: PMC11961051 DOI: 10.1152/japplphysiol.00395.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/07/2021] [Accepted: 09/28/2021] [Indexed: 11/22/2022] Open
Abstract
Microvascular dilation, important for peripheral tissue glucose distribution, also modulates alveolar perfusion and is inhibited by loss of bioavailable nitric oxide (NO) in diabetes mellitus (DM). We hypothesized that DM-induced oxidative stress decreases bioavailable NO and pulmonary precapillary arteriolar diameter, causing endothelial injury. We examined subpleural pulmonary arterioles after acute NO synthase (NOS) inhibition with NG-nitro-l-arginine methyl ester (l-NAME) in streptozotocin (STZ)- and saline (CTRL)-treated C57BL/6J mice. Microvascular changes were assessed by intravital microscopy in the right lung of anesthetized mice with open chest and ventilated lungs. Arteriolar tone in pulmonary arterioles (27.2-48.7 µm diameter) increased in CTRL mice (18.0 ± 11% constriction, P = 0.034, n = 5) but decreased in STZ mice (13.6 ± 7.5% dilation, P = 0.009, n = 5) after l-NAME. Lung tissue dihydroethidium (DHE) fluorescence (superoxide), inducible NOS expression, and protein nitrosylation (3-nitrotyrosine) increased in STZ mice and correlated with increased glucose levels (103.8 ± 8.8 mg/dL). Fluorescently labeled fibrinogen administration and fibrinogen immunostaining showed fibrinogen adhesion, indicating endothelial injury in STZ mice. In CTRL mice, vasoconstriction to l-NAME was likely due to the loss of bioavailable NO. Vasodilation in STZ mice may be due to decreased formation of a vasoconstrictor or emergence of a vasodilator. These findings provide novel evidence that DM targets the pulmonary microcirculation and that decreased NO bioavailability and increased precapillary arteriolar tone could potentially lead to ventilation-perfusion abnormalities, exacerbating systemic DM complications.NEW & NOTEWORTHY Diabetes pulmonary and microvascular consequences are well recognized but have not been characterized. We assessed lung microvascular changes in a live anesthetized mouse model of type 1 diabetes, using a novel intravital microscopy technique. Our results show new evidence that a diabetes-induced decrease in lung nitric oxide bioavailability underlies oxidative damage, enhanced platelet activation, and endothelial injury causing pulmonary microvascular dysfunction and altered vasoreactivity. These findings could provide novel strategies to prevent or reverse diabetes systemic consequences.
Collapse
Affiliation(s)
- Andrew M Roberts
- Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky
- Department of Pediatrics, Pediatric Research Institute, University of Louisville School of Medicine, Louisville, Kentucky
| | - Nayeem Z Moulana
- Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky
| | - Rekha Jagadapillai
- Department of Pediatrics, Pediatric Research Institute, University of Louisville School of Medicine, Louisville, Kentucky
| | - Lu Cai
- Department of Pediatrics, Pediatric Research Institute, University of Louisville School of Medicine, Louisville, Kentucky
| | - Evelyne Gozal
- Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky
- Department of Pediatrics, Pediatric Research Institute, University of Louisville School of Medicine, Louisville, Kentucky
| |
Collapse
|
8
|
Kubo Y, Drescher W, Fragoulis A, Tohidnezhad M, Jahr H, Gatz M, Driessen A, Eschweiler J, Tingart M, Wruck CJ, Pufe T. Adverse Effects of Oxidative Stress on Bone and Vasculature in Corticosteroid-Associated Osteonecrosis: Potential Role of Nuclear Factor Erythroid 2-Related Factor 2 in Cytoprotection. Antioxid Redox Signal 2021; 35:357-376. [PMID: 33678001 DOI: 10.1089/ars.2020.8163] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Significance: Osteonecrosis (ON) is characterized by bone tissue death due to disturbance of the nutrient artery. The detailed process leading to the necrotic changes has not been fully elucidated. Clinically, high-dose corticosteroid therapy is one of the main culprits behind osteonecrosis of the femoral head (ONFH). Recent Advances: Numerous studies have proposed that such ischemia concerns various intravascular mechanisms. Of all reported risk factors, the involvement of oxidative stress in the irreversible damage suffered by bone-related and vascular endothelial cells during ischemia simply cannot be overlooked. Several articles also have sought to elucidate oxidative stress in relation to ON using animal models or in vitro cell cultures. Critical Issues: However, as far as we know, antioxidant monotherapy has still not succeeded in preventing ONFH in humans. To provide this desideratum, we herein summarize the current knowledge about the influence of oxidative stress on ON, together with data about the preventive effects of administering antioxidants in corticosteroid-induced ON animal models. Moreover, oxidative stress is counteracted by nuclear factor erythroid 2-related factor 2 (Nrf2)-dependent cytoprotective network through regulating antioxidant expressions. Therefore, we also describe Nrf2 regulation and highlight its role in the pathology of ON. Future Directions: This is a review of all available literature to date aimed at developing a deeper understanding of the pathological mechanism behind ON from the perspective of oxidative stress. It may be hoped that this synthesis will spark the development of a prophylactic strategy to benefit corticosteroid-associated ONFH patients. Antioxid. Redox Signal. 35, 357-376.
Collapse
Affiliation(s)
- Yusuke Kubo
- Department of Anatomy and Cell Biology, RWTH Aachen University, Aachen, Germany
| | - Wolf Drescher
- Department of Orthopaedic Surgery, RWTH Aachen University, Aachen, Germany.,Department of Orthopaedics and Traumatology, Rummelsberg Hospital, Schwarzenbruck, Germany
| | | | | | - Holger Jahr
- Department of Anatomy and Cell Biology, RWTH Aachen University, Aachen, Germany
| | - Matthias Gatz
- Department of Orthopaedic Surgery, RWTH Aachen University, Aachen, Germany
| | - Arne Driessen
- Department of Orthopaedic Surgery, RWTH Aachen University, Aachen, Germany
| | - Jörg Eschweiler
- Department of Orthopaedic Surgery, RWTH Aachen University, Aachen, Germany
| | - Markus Tingart
- Department of Orthopaedic Surgery, RWTH Aachen University, Aachen, Germany
| | - Christoph Jan Wruck
- Department of Anatomy and Cell Biology, RWTH Aachen University, Aachen, Germany
| | - Thomas Pufe
- Department of Anatomy and Cell Biology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
9
|
Xing H, Zhang Z, Shi G, He Y, Song Y, Liu Y, Harrington EO, Sellke FW, Feng J. Chronic Inhibition of mROS Protects Against Coronary Endothelial Dysfunction in Mice With Diabetes. Front Cell Dev Biol 2021; 9:643810. [PMID: 33681229 PMCID: PMC7930489 DOI: 10.3389/fcell.2021.643810] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 01/29/2021] [Indexed: 11/13/2022] Open
Abstract
Diabetes is associated with coronary endothelial dysfunction. Persistent oxidative stress during diabetes contributes to coronary endothelial dysfunction. The mitochondria are main sources of reactive oxygen species (ROS) in diabetes, and mitochondria-targeted antioxidant mito-Tempo can prevent mitochondrial reactive oxygen species (mROS) generation in a variety of disorders. Inhibition/inactivation of small-conductance Ca2+-activated K+ (SK) channels contribute to diabetic downregulation of coronary endothelial function/relaxation. However, few investigated the role of mROS on endothelial dysfunction/vasodilation and endothelial SK channel downregulation in diabetes. The aim of present study was to investigate the chronic administration of mito-Tempo, on coronary vasodilation, and endothelial SK channel activity of mice with or without diabetes. Mito-Tempo (1 mg/kg/day) was applied to the mice with or without diabetes (n = 10/group) for 4 weeks. In vitro relaxation response of pre-contracted arteries was examined in the presence or absence of the vasodilatory agents. SK channel currents of the isolated mouse heart endothelial cells were measured using whole-cell patch clamp methods. At baseline, coronary endothelium-dependent relaxation responses to ADP and the selective SK channel activator NS309 and endothelial SK channel currents were decreased in diabetic mice compared with that in non-diabetic (ND) mice (p < 0.05). After a 4-week treatment with mito-Tempo, coronary endothelium-dependent relaxation response to ADP or NS309 and endothelial SK channel currents in the diabetic mice was significantly improved when compared with that in untreated diabetic mice (p < 0.05). Interestingly, coronary relaxation responses to ADP and NS309 and endothelial SK channel currents were not significantly changed in ND mice after mito-Tempo treatment, as compared to that of untreated control group. Chronic inhibition of endothelial mROS appears to improve coronary endothelial function/dilation and SK channel activity in diabetes, and mROS inhibitors may be a novel strategy to treat vascular complications in diabetes.
Collapse
Affiliation(s)
- Hang Xing
- Cardiothoracic Surgery Research Laboratory, Cardiovascular Research Center, Department of Surgery, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI, United States
| | - Zhiqi Zhang
- Cardiothoracic Surgery Research Laboratory, Cardiovascular Research Center, Department of Surgery, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI, United States
| | - Guangbin Shi
- Cardiothoracic Surgery Research Laboratory, Cardiovascular Research Center, Department of Surgery, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI, United States
| | - Yixin He
- Cardiothoracic Surgery Research Laboratory, Cardiovascular Research Center, Department of Surgery, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI, United States
| | - Yi Song
- Cardiothoracic Surgery Research Laboratory, Cardiovascular Research Center, Department of Surgery, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI, United States
| | - Yuhong Liu
- Cardiothoracic Surgery Research Laboratory, Cardiovascular Research Center, Department of Surgery, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI, United States
| | - Elizabeth O Harrington
- Vascular Research Laboratory, Providence VA Medical Center, Department of Medicine, Alpert Medical School of Brown University, Providence, RI, United States
| | - Frank W Sellke
- Cardiothoracic Surgery Research Laboratory, Cardiovascular Research Center, Department of Surgery, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI, United States
| | - Jun Feng
- Cardiothoracic Surgery Research Laboratory, Cardiovascular Research Center, Department of Surgery, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI, United States
| |
Collapse
|
10
|
Costa TJ, Barros PR, Arce C, Santos JD, da Silva-Neto J, Egea G, Dantas AP, Tostes RC, Jiménez-Altayó F. The homeostatic role of hydrogen peroxide, superoxide anion and nitric oxide in the vasculature. Free Radic Biol Med 2021; 162:615-635. [PMID: 33248264 DOI: 10.1016/j.freeradbiomed.2020.11.021] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/08/2020] [Accepted: 11/19/2020] [Indexed: 02/07/2023]
Abstract
Reactive oxygen and nitrogen species are produced in a wide range of physiological reactions that, at low concentrations, play essential roles in living organisms. There is a delicate equilibrium between formation and degradation of these mediators in a healthy vascular system, which contributes to maintaining these species under non-pathological levels to preserve normal vascular functions. Antioxidants scavenge reactive oxygen and nitrogen species to prevent or reduce damage caused by excessive oxidation. However, an excessive reductive environment induced by exogenous antioxidants may disrupt redox balance and lead to vascular pathology. This review summarizes the main aspects of free radical biochemistry (formation, sources and elimination) and the crucial actions of some of the most biologically relevant and well-characterized reactive oxygen and nitrogen species (hydrogen peroxide, superoxide anion and nitric oxide) in the physiological regulation of vascular function, structure and angiogenesis. Furthermore, current preclinical and clinical evidence is discussed on how excessive removal of these crucial responses by exogenous antioxidants (vitamins and related compounds, polyphenols) may perturb vascular homeostasis. The aim of this review is to provide information of the crucial physiological roles of oxidation in the endothelium, vascular smooth muscle cells and perivascular adipose tissue for developing safer and more effective vascular interventions with antioxidants.
Collapse
Affiliation(s)
- Tiago J Costa
- Pharmacology Department, Ribeirao Preto Medical School, University of São Paulo, Brazil.
| | | | - Cristina Arce
- Department of Biomedical Sciences, University of Barcelona School of Medicine and Health Sciences, Barcelona, Spain; Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS)-University of Barcelona, Barcelona, Spain; Institut de Nanociencies i Nanotecnologia (IN2UB), University of Barcelona, Barcelona, Spain
| | | | - Júlio da Silva-Neto
- Pharmacology Department, Ribeirao Preto Medical School, University of São Paulo, Brazil
| | - Gustavo Egea
- Department of Biomedical Sciences, University of Barcelona School of Medicine and Health Sciences, Barcelona, Spain; Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS)-University of Barcelona, Barcelona, Spain; Institut de Nanociencies i Nanotecnologia (IN2UB), University of Barcelona, Barcelona, Spain
| | - Ana Paula Dantas
- Institut Clínic del Tòrax, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Rita C Tostes
- Pharmacology Department, Ribeirao Preto Medical School, University of São Paulo, Brazil
| | - Francesc Jiménez-Altayó
- Department of Pharmacology, Therapeutics and Toxicology, Neuroscience Institute, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
11
|
Important Roles of Endothelium-Dependent Hyperpolarization in Coronary Microcirculation and Cardiac Diastolic Function in Mice. J Cardiovasc Pharmacol 2020; 75:31-40. [PMID: 31895878 DOI: 10.1097/fjc.0000000000000763] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Endothelium-dependent hyperpolarization (EDH) factor is one of endothelium-derived relaxing factors and plays important roles especially in microvessels. We have previously demonstrated that endothelium-derived hydrogen peroxide (H2O2) is an EDH factor produced by all types of nitric oxide synthases (NOSs), including endothelial NOS (eNOS), neuronal NOS (nNOS), and inducible NOS. Recent studies have suggested the association between coronary microvascular dysfunction and cardiac diastolic dysfunction. However, the role of EDH in this issue remains to be fully elucidated. We thus examined whether EDH plays an important role in coronary microcirculation and if so, whether endothelial dysfunction, especially impaired EDH, is involved in the pathogenesis of cardiac diastolic dysfunction in mice. Using a Langendorff-perfused heart experiment, we examined the increase in coronary flow in response to bradykinin in the presence of indomethacin and N-nitro-L-arginine (EDH condition) in wild-type, eNOS-knockout (KO), and nNOS/eNOS-double-KO mice. Compared with wild-type mice, EDH-mediated relaxations were increased in eNOS-KO mice but were significantly reduced in n/eNOS-KO mice. Catalase, a specific H2O2 scavenger, markedly inhibited EDH-mediated relaxations in all 3 genotypes, indicating compensatory roles of nNOS-derived H2O2 as an EDH factor in coronary microcirculation. Although both eNOS-KO and n/eNOS-KO mice exhibited similar extents of cardiac morphological changes, only n/eNOS-KO mice exhibited cardiac diastolic dysfunction. The expression of oxidized protein kinase G I-α (PKGIα) in the heart was significantly increased in eNOS-KO mice compared with n/eNOS-KO mice. These results indicate that EDH/H2O2 plays important roles in maintaining coronary microcirculation and cardiac diastolic function through oxidative PKGIα activation.
Collapse
|
12
|
Ohura-Kajitani S, Shiroto T, Godo S, Ikumi Y, Ito A, Tanaka S, Sato K, Sugisawa J, Tsuchiya S, Suda A, Shindo T, Ikeda S, Hao K, Kikuchi Y, Nochioka K, Matsumoto Y, Takahashi J, Miyata S, Shimokawa H. Marked Impairment of Endothelium-Dependent Digital Vasodilatations in Patients With Microvascular Angina. Arterioscler Thromb Vasc Biol 2020; 40:1400-1412. [DOI: 10.1161/atvbaha.119.313704] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Objective:
It remains to be elucidated whether and how endothelial functions are impaired in peripheral circulation of patients with coronary functional disorders, such as vasospastic angina (VSA) and microvascular angina (MVA). We simultaneously examined endothelial functions of peripheral conduit and resistance arteries in patients with coronary functional disorders, with a special reference to NO and endothelium-dependent hyperpolarization factors.
Approach and Results:
Based on the results of invasive coronary acetylcholine testing and coronary physiological measurements, we divided 43 patients into 3 groups; VSA, MVA, and VSA+MVA. Endothelium-dependent vasodilatations of the brachial artery and fingertip arterioles to intra-arterial infusion of bradykinin were simultaneously evaluated by ultrasonography and peripheral arterial tonometry, respectively. To assess NO and endothelium-dependent hyperpolarization factors, measurements were repeated after oral aspirin and intra-arterial infusion of N
G
-monomethyl-L-arginine. Additionally, endothelium-independent vasodilatations to sublingual nitroglycerin and plasma levels of biomarkers for endothelial functions were measured. Surprisingly, digital vasodilatations to bradykinin were almost absent in patients with MVA alone and those with VSA+MVA compared with those with VSA alone. Mechanistically, both NO- and endothelium-dependent hyperpolarization–mediated digital vasodilatations were markedly impaired in patients with MVA alone. In contrast, endothelium-independent vasodilatations to nitroglycerin were comparable among the 3 groups. Plasma levels of soluble VCAM (vascular cell adhesion molecule)-1 were significantly higher in patients with MVA alone compared with those with VSA alone.
Conclusions:
These results provide the first evidence that both NO- and endothelium-dependent hyperpolarization–mediated digital vasodilatations are markedly impaired in MVA patients, suggesting that MVA is a cardiac manifestation of the systemic small artery disease.
Collapse
Affiliation(s)
- Shoko Ohura-Kajitani
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takashi Shiroto
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shigeo Godo
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yosuke Ikumi
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Akiyo Ito
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shuhei Tanaka
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Koichi Sato
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Jun Sugisawa
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Satoshi Tsuchiya
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Akira Suda
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomohiko Shindo
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shohei Ikeda
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kiyotaka Hao
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoku Kikuchi
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kotaro Nochioka
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yasuharu Matsumoto
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Jun Takahashi
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Satoshi Miyata
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroaki Shimokawa
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
13
|
Costa ED, Silva JF, Garcia DC, Wainstein AJ, Rezende BA, Tostes RC, Teixeira MM, Cortes SF, Lemos VS. Decreased expression of neuronal nitric oxide synthase contributes to the endothelial dysfunction associated with cigarette smoking in human. Nitric Oxide 2020; 98:20-28. [DOI: 10.1016/j.niox.2020.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 02/01/2020] [Accepted: 02/18/2020] [Indexed: 12/27/2022]
|
14
|
Shimokawa H. Reactive oxygen species in cardiovascular health and disease: special references to nitric oxide, hydrogen peroxide, and Rho-kinase. J Clin Biochem Nutr 2020; 66:83-91. [PMID: 32231403 DOI: 10.3164/jcbn.19-119] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 12/04/2019] [Indexed: 01/09/2023] Open
Abstract
The interaction between endothelial cells and vascular smooth muscle cells (VSMC) plays an important role in regulating cardiovascular homeostasis. Endothelial cells synthesize and release endothelium-derived relaxing factors (EDRFs), including vasodilator prostaglandins, nitric oxide (NO), and endothelium-dependent hyperpolarization (EDH) factors. Importantly, the contribution of EDRFs to endothelium-dependent vasodilatation markedly varies in a vessel size-dependent manner; NO mainly mediates vasodilatation of relatively large vessels, while EDH factors in small resistance vessels. We have previously identified that endothelium-derived hydrogen peroxide (H2O2) is an EDH factor especially in microcirculation. Several lines of evidence indicate the importance of the physiological balance between NO and H2O2/EDH factor. Rho-kinase was identified as the effectors of the small GTP-binding protein, RhoA. Both endothelial NO production and NO-mediated signaling in VSMC are targets and effectors of the RhoA/Rho-kinase pathway. In endothelial cells, the RhoA/Rho-kinase pathway negatively regulates NO production. On the contrary, the pathway enhances VSMC contraction with resultant occurrence of coronary artery spasm and promotes the development of oxidative stress and vascular remodeling. In this review, I will briefly summarize the current knowledge on the regulatory roles of endothelium-derived relaxing factors, with special references to NO and H2O2/EDH factor, in relation to Rho-kinase, in cardiovascular health and disease.
Collapse
Affiliation(s)
- Hiroaki Shimokawa
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| |
Collapse
|
15
|
Shimokawa H, Godo S. Nitric oxide and endothelium-dependent hyperpolarization mediated by hydrogen peroxide in health and disease. Basic Clin Pharmacol Toxicol 2020; 127:92-101. [PMID: 31846200 DOI: 10.1111/bcpt.13377] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 12/12/2019] [Indexed: 01/09/2023]
Abstract
The endothelium plays crucial roles in modulating vascular tone by synthesizing and releasing endothelium-derived relaxing factors (EDRFs), including vasodilator prostaglandins, nitric oxide (NO) and endothelium-dependent hyperpolarization (EDH) factors. Thus, endothelial dysfunction is the hallmark of atherosclerotic cardiovascular diseases. Importantly, the contribution of EDRFs to endothelium-dependent vasodilatation varies in a distinct vessel size-dependent manner; NO mainly mediates vasodilatation of relatively large, conduit vessels (eg epicardial coronary arteries), while EDH factors in small resistance vessels (eg coronary microvessels). Endothelium-derived hydrogen peroxide (H2 O2 ) is a physiological signalling molecule serving as one of the major EDH factors especially in microcirculations and has gained increasing attention in view of its emerging relevance for cardiovascular diseases. In the clinical settings, therapeutic approaches targeting NO (eg NO donors) or non-specific elimination of reactive oxygen species (eg antioxidant supplements) are disappointingly ineffective for the treatment of various cardiovascular diseases, in which endothelial dysfunction and coronary microvascular dysfunction are substantially involved. These lines of evidence indicate the potential importance of the physiological balance between NO and H2 O2 /EDH factor. Further characterization and better understanding of endothelium-dependent vasodilatations are important to develop novel therapeutic strategies in cardiovascular medicine. In this MiniReview, we will briefly summarize the current knowledge on the emerging regulatory roles of endothelium-dependent vasodilatations in the cardiovascular system, with a special reference to the two major EDRFs, NO and H2 O2 /EDH factor, in health and disease.
Collapse
Affiliation(s)
- Hiroaki Shimokawa
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shigeo Godo
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
16
|
Kozina N, Mihaljević Z, Lončar MB, Mihalj M, Mišir M, Radmilović MD, Justić H, Gajović S, Šešelja K, Bazina I, Horvatić A, Matić A, Bijelić N, Rođak E, Jukić I, Drenjančević I. Impact of High Salt Diet on Cerebral Vascular Function and Stroke in Tff3-/-/C57BL/6N Knockout and WT (C57BL/6N) Control Mice. Int J Mol Sci 2019; 20:ijms20205188. [PMID: 31635131 PMCID: PMC6829871 DOI: 10.3390/ijms20205188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/20/2019] [Accepted: 10/05/2019] [Indexed: 11/29/2022] Open
Abstract
High salt (HS) dietary intake leads to impaired vascular endothelium-dependent responses to various physiological stimuli, some of which are mediated by arachidonic acid (AA) metabolites. Transgenic Tff3−/− gene knockout mice (Tff3−/−/C57BL/6N) have changes in lipid metabolism which may affect vascular function and outcomes of stroke. We aimed to study the effects of one week of HS diet (4% NaCl) on vascular function and stroke induced by transient occlusion of middle cerebral artery in Tff3−/− and wild type (WT/C57BL/6N) mice. Flow-induced dilation (FID) of carotid artery was reduced in WT-HS mice, but not affected in Tff3−/−-HS mice. Nitric oxide (NO) mediated FID. NO production was decreased with HS diet. On the contrary, acetylcholine-induced dilation was significantly decreased in Tff3−/− mice on both diets and WT-HS mice. HS intake and Tff3 gene depletion affected the structural components of the vessels. Proteomic analysis revealed a significant effect of Tff3 gene deficiency on HS diet-induced changes in neuronal structural proteins and acute innate immune response proteins’ expression and Tff3 depletion, but HS diet did not increase the stroke volume, which is related to proteome modification and upregulation of genes involved mainly in cellular antioxidative defense. In conclusion, Tff3 depletion seems to partially impair vascular function and worsen the outcomes of stroke, which is moderately affected by HS diet.
Collapse
Affiliation(s)
- Nataša Kozina
- Faculty of Medicine Osijek, University Josip Juraj Strossmayer Osijek, Institute and Dept of Physiology and Immunology, J. Huttlera 4, HR-31000 Osijek, Croatia.
| | - Zrinka Mihaljević
- Faculty of Medicine Osijek, University Josip Juraj Strossmayer Osijek, Institute and Dept of Physiology and Immunology, J. Huttlera 4, HR-31000 Osijek, Croatia.
| | - Mirela Baus Lončar
- Ruđer Bošković Institute, Department of Molecular Medicine; Bijenička 54, HR-10000 Zagreb, Croatia.
| | - Martina Mihalj
- Faculty of Medicine Osijek, University Josip Juraj Strossmayer Osijek, Institute and Dept of Physiology and Immunology, J. Huttlera 4, HR-31000 Osijek, Croatia.
- Clinical Hospital Center Osijek, Dept of Dermatology and Venerology, J. Huttlera 4, HR-31000 Osijek, Croatia.
| | - Mihael Mišir
- Clinical Hospital Center Osijek, Neurology Clinic, J. Huttlera 4, HR-31000 Osijek, Croatia.
| | - Marina Dobrivojević Radmilović
- University of Zagreb, School of Medicine, Croatian Institute for Brain Research, Zagreb, Croatia, Šalata 12, HR-10000 Zagreb, Croatia.
| | - Helena Justić
- University of Zagreb, School of Medicine, Croatian Institute for Brain Research, Zagreb, Croatia, Šalata 12, HR-10000 Zagreb, Croatia.
| | - Srećko Gajović
- University of Zagreb, School of Medicine, Croatian Institute for Brain Research, Zagreb, Croatia, Šalata 12, HR-10000 Zagreb, Croatia.
| | - Kate Šešelja
- Ruđer Bošković Institute, Department of Molecular Medicine; Bijenička 54, HR-10000 Zagreb, Croatia.
| | - Iva Bazina
- Ruđer Bošković Institute, Department of Molecular Medicine; Bijenička 54, HR-10000 Zagreb, Croatia.
| | - Anita Horvatić
- Proteomics laboratory, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55 HR-10000 Zagreb, Croatia.
| | - Anita Matić
- Faculty of Medicine Osijek, University Josip Juraj Strossmayer Osijek, Institute and Dept of Physiology and Immunology, J. Huttlera 4, HR-31000 Osijek, Croatia.
| | - Nikola Bijelić
- Faculty of Medicine Osijek, University Josip Juraj Strossmayer Osijek, Institute and Dept of Histology and Embriology, J. Huttlera 4, HR-31000 Osijek, Croatia.
| | - Edi Rođak
- Faculty of Medicine Osijek, University Josip Juraj Strossmayer Osijek, Institute and Dept of Histology and Embriology, J. Huttlera 4, HR-31000 Osijek, Croatia.
| | - Ivana Jukić
- Faculty of Medicine Osijek, University Josip Juraj Strossmayer Osijek, Institute and Dept of Physiology and Immunology, J. Huttlera 4, HR-31000 Osijek, Croatia.
| | - Ines Drenjančević
- Faculty of Medicine Osijek, University Josip Juraj Strossmayer Osijek, Institute and Dept of Physiology and Immunology, J. Huttlera 4, HR-31000 Osijek, Croatia.
| |
Collapse
|
17
|
Mahmoud AM, Szczurek M, Hassan C, Masrur M, Gangemi A, Phillips SA. Vitamin D Improves Nitric Oxide-Dependent Vasodilation in Adipose Tissue Arterioles from Bariatric Surgery Patients. Nutrients 2019; 11:E2521. [PMID: 31635396 PMCID: PMC6835261 DOI: 10.3390/nu11102521] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 12/16/2022] Open
Abstract
There is a high prevalence of vitamin-D deficiency in obese individuals that could be attributed to vitamin-D sequestration in the adipose tissue. Associations between vitamin-D deficiency and unfavorable cardiometabolic outcomes were reported. However, the pathophysiological mechanisms behind these associations are yet to be established. In our previous studies, we demonstrated microvascular dysfunction in obese adults that was associated with reduced nitric oxide (NO) production. Herein, we examined the role of vitamin D in mitigating microvascular function in morbidly obese adults before and after weight loss surgery. We obtained subcutaneous (SAT) and visceral adipose tissue (VAT) biopsies from bariatric patients at the time of surgery (n = 15) and gluteal SAT samples three months post-surgery (n = 8). Flow-induced dilation (FID) and acetylcholine-induced dilation (AChID) and NO production were measured in the AT-isolated arterioles ± NO synthase inhibitor N(ω)-nitro-L-arginine methyl ester (L-NAME), hydrogen peroxide (H2O2) inhibitor, polyethylene glycol-modified catalase (PEG-CAT), or 1,25-dihydroxyvitamin D. Vitamin D improved FID, AChID, and NO production in AT-isolated arterioles at time of surgery; these effects were abolished by L-NAME but not by PEG-CAT. Vitamin-D-mediated improvements were of a higher magnitude in VAT compared to SAT arterioles. After surgery, significant improvements in FID, AChID, NO production, and NO sensitivity were observed. Vitamin-D-induced changes were of a lower magnitude compared to those from the time of surgery. In conclusion, vitamin D improved NO-dependent arteriolar vasodilation in obese adults; this effect was more significant before surgery-induced weight loss.
Collapse
Affiliation(s)
- Abeer M Mahmoud
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA.
- Department of Physical Therapy, University of Illinois at Chicago, Chicago, IL 60612, USA.
- Integrative Physiology Laboratory, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | - Mary Szczurek
- Department of Physical Therapy, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | - Chandra Hassan
- Department of Surgery, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | - Mario Masrur
- Department of Surgery, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | - Antonio Gangemi
- Department of Surgery, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | - Shane A Phillips
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA.
- Department of Physical Therapy, University of Illinois at Chicago, Chicago, IL 60612, USA.
- Integrative Physiology Laboratory, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA.
| |
Collapse
|
18
|
Lauar MR, Colombari DSA, Colombari E, De Paula PM, De Luca LA, Menani JV. Catalase blockade reduces the pressor response to central cholinergic activation. Brain Res Bull 2019; 153:266-272. [PMID: 31545999 DOI: 10.1016/j.brainresbull.2019.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 09/16/2019] [Accepted: 09/18/2019] [Indexed: 02/06/2023]
Abstract
Intracerebroventricular (icv) injection of hydrogen peroxide (H2O2), a reactive oxygen species, or the blockade of catalase (enzyme that degrades H2O2 into H2O and O2) with icv injection of 3-amino-1,2,4-triazole (ATZ) reduces the pressor effects of angiotensin II also injected icv. In the present study, we investigated the effects of ATZ injected icv or intravenously (iv) on the pressor responses induced by icv injections of the cholinergic agonist carbachol, which similar to angiotensin II induces pressor responses that depend on sympathoexcitation and vasopressin release. In addition, the effects of H2O2 icv on the pressor responses to icv carbachol were also tested to compare with the effects of ATZ. Normotensive non-anesthetized male Holtzman rats (280-300 g, n = 8-9/group) with stainless steel cannulas implanted in the lateral ventricle were used. Previous injection of ATZ (5 nmol/1 μl) or H2O2 (5 μmol/1 μl) icv similarly reduced the pressor responses induced by carbachol (4 nmol/1 μl) injected icv (13 ± 4 and 12 ± 4 mmHg, respectively, vs. vehicle + carbachol: 30 ± 5 mmHg). ATZ (3.6 mmol/kg of body weight) injected iv also reduced icv carbachol-induced pressor responses (21 ± 2 mmHg). ATZ icv or iv and H2O2 icv injected alone produced no effect on baseline arterial pressure. The treatments also produced no significant change of heart rate. The results show that ATZ icv or iv reduced the pressor responses to icv carbachol, suggesting that endogenous H2O2 acting centrally inhibits the pressor mechanisms (sympathoactivation and/or vasopressin release) activated by central cholinergic stimulation.
Collapse
Affiliation(s)
- Mariana R Lauar
- Department of Physiology and Pathology, Dentistry School, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Débora S A Colombari
- Department of Physiology and Pathology, Dentistry School, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Eduardo Colombari
- Department of Physiology and Pathology, Dentistry School, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Patrícia M De Paula
- Department of Physiology and Pathology, Dentistry School, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Laurival A De Luca
- Department of Physiology and Pathology, Dentistry School, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - José V Menani
- Department of Physiology and Pathology, Dentistry School, São Paulo State University (UNESP), Araraquara, SP, Brazil.
| |
Collapse
|
19
|
Important Role of Endothelial Caveolin-1 in the Protective Role of Endothelium-dependent Hyperpolarization Against Nitric Oxide-Mediated Nitrative Stress in Microcirculation in Mice. J Cardiovasc Pharmacol 2019; 71:113-126. [PMID: 29419573 DOI: 10.1097/fjc.0000000000000552] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AIMS Nitric oxide (NO) and endothelium-dependent hyperpolarization (EDH) play important roles in maintaining cardiovascular homeostasis. We have previously demonstrated that endothelial NO synthase (eNOS) plays diverse roles depending on vessel size, as a NO generating system in conduit arteries and an EDH-mediated system in resistance arteries, for which caveolin-1 (Cav-1) is involved. However, the physiological role of endothelial Cav-1 in microvessels remains to be elucidated. METHODS AND RESULTS We newly generated endothelium-specific Cav-1-knockout (eCav-1-KO) mice. eCav-1-KO mice showed loss of endothelial Cav-1/eNOS complex and had cardiac hypertrophy despite normal blood pressure. In eCav-1-KO mice, as compared to wild-type controls, the extent of eNOS phosphorylation at inhibitory Thr495 was significantly reduced in mesenteric arteries and the heart. Isometric tension and Langendorff-perfused heart experiments showed that NO-mediated responses were enhanced, whereas EDH-mediated responses were reduced in coronary microcirculation in eCav-1-KO mice. Immunohistochemistry showed increased level of 8-nitroguanosine 3',5'-cyclic monophosphate (8-nitro-cGMP), a marker of nitrative stress, in the heart from eCav-1-KO mice. S-guanylation of cardiac H-Ras in eCav-1-KO mice was also significantly increased compared with wild-type controls. CONCLUSIONS These results suggest that eCav-1 is involved in the protective role of EDH against nitrative stress caused by excessive NO to maintain cardiac microvascular homeostasis.
Collapse
|
20
|
Chen C, Guo C, Gao J, Shi K, Cheng J, Zhang J, Chen S, Liu Y, Liu A. Vasorelaxant and antihypertensive effects of Tianshu Capsule on rats: An in vitro and in vivo approach. Biomed Pharmacother 2019; 111:188-197. [DOI: 10.1016/j.biopha.2018.12.061] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 12/02/2018] [Accepted: 12/14/2018] [Indexed: 02/06/2023] Open
|
21
|
Ito A, Shiroto T, Godo S, Saito H, Tanaka S, Ikumi Y, Kajitani S, Satoh K, Shimokawa H. Important roles of endothelial caveolin-1 in endothelium-dependent hyperpolarization and ischemic angiogenesis in mice. Am J Physiol Heart Circ Physiol 2019; 316:H900-H910. [PMID: 30707613 DOI: 10.1152/ajpheart.00589.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Although increased levels of reactive oxygen species (ROS) are involved in the pathogenesis of cardiovascular diseases, the importance of physiological ROS has also been emerging. We have previously demonstrated that endothelium-derived H2O2 is an endothelium-dependent hyperpolarization (EDH) factor and that loss of endothelial caveolin-1 reduces EDH/H2O2 in the microcirculation. Caveolin-1 (Cav-1) is a scaffolding/regulatory protein that interacts with diverse signaling pathways, including angiogenesis. However, it remains unclear whether endothelial Cav-1 plays a role in ischemic angiogenesis by modulating EDH/H2O2. In the present study, we thus addressed this issue in a mouse model of hindlimb ischemia using male endothelium-specific Cav-1 (eCav-1) knockout (KO) mice. In isometric tension experiments with femoral arteries from eCav-1-KO mice, reduced EDH-mediated relaxations to acetylcholine and desensitization of sodium nitroprusside-mediated endothelium-independent relaxations were noted ( n = 4~6). An ex vivo aortic ring assay also showed that the extent of microvessel sprouting was significantly reduced in eCav-1-KO mice compared with wild-type (WT) littermates ( n = 12 each). Blood flow recovery at 4 wk assessed with a laser speckle flowmeter after femoral artery ligation was significantly impaired in eCav-1-KO mice compared with WT littermates ( n = 10 each) and was associated with reduced capillary density and muscle fibrosis in the legs ( n = 6 each). Importantly, posttranslational protein modifications by reactive nitrogen species and ROS, as evaluated by thiol glutathione adducts and nitrotyrosine, respectively, were both increased in eCav-1-KO mice ( n = 6~7 each). These results indicate that endothelial Cav-1 plays an important role in EDH-mediated vasodilatation and ischemic angiogenesis through posttranslational protein modifications by nitrooxidative stress in mice in vivo. NEW & NOTEWORTHY Although increased levels of reactive oxygen species (ROS) are involved in the pathogenesis of cardiovascular diseases, the importance of physiological ROS has also been emerging. The present study provides a line of novel evidence that endothelial caveolin-1 plays important roles in endothelium-dependent hyperpolarization and ischemic angiogenesis in hindlimb ischemia in mice through posttranslational protein modifications by reactive nitrogen species and ROS in mice in vivo.
Collapse
Affiliation(s)
- Akiyo Ito
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine , Sendai , Japan
| | - Takashi Shiroto
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine , Sendai , Japan
| | - Shigeo Godo
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine , Sendai , Japan
| | - Hiroki Saito
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine , Sendai , Japan
| | - Shuhei Tanaka
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine , Sendai , Japan
| | - Yosuke Ikumi
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine , Sendai , Japan
| | - Shoko Kajitani
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine , Sendai , Japan
| | - Kimio Satoh
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine , Sendai , Japan
| | - Hiroaki Shimokawa
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine , Sendai , Japan
| |
Collapse
|
22
|
Park HJ, Shin KC, Yoou SK, Kang M, Kim JG, Sung DJ, Yu W, Lee Y, Kim SH, Bae YM, Park SW. Hydrogen peroxide constricts rat arteries by activating Na +-permeable and Ca 2+-permeable cation channels. Free Radic Res 2018; 53:94-103. [PMID: 30526150 DOI: 10.1080/10715762.2018.1556394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Oxidative stress is associated with many cardiovascular diseases, such as hypertension and arteriosclerosis. Oxidative stress reportedly activates the L-type voltage-gated calcium channel (VDCCL) and elevates [Ca2+]i in many cells. However, how oxidative stress activates VDCCL under clinical setting and the consequence for arteries are unclear. Here, we examined the hypothesis that hydrogen peroxide (H2O2) regulates membrane potential (Em) by altering Na+ influx through cation channels, which consequently activates VDCCL to induce vasoconstriction in rat mesenteric arteries. To measure the tone of the endothelium-denuded arteries, a conventional isometric organ chamber was used. Membrane currents and Em were recorded by the patch-clamp technique. [Ca2+]i and [Na+]i were measured with microfluorometry using Fura2-AM and SBFI-AM, respectively. We found that H2O2 (10 and 100 µM) increased arterial contraction, and nifedipine blocked the effects of H2O2 on isometric contraction. H2O2 increased [Ca2+]i as well as [Na+]i, and depolarised Em. Gd3+ (1 µM) blocked all these H2O2-induced effects including Em depolarisation and increases in [Ca2+]i and [Na+]i. Although both nifedipine (30 nM) and low Na+ bath solution completely prevented the H2O2-induced increase in [Na+], they only partly inhibited the H2O2-induced effects on [Ca2+]i and Em. Taken together, the results suggested that H2O2 constricts rat arteries by causing Em depolarisation and VDCCL activation through activating Gd3+-and nifedipine-sensitive, Na+-permeable channels as well as Gd3+-sensitive Ca2+-permeable cation channels. We suggest that unidentified Na+-permeable cation channels as well as Ca2+-permeable cation channels may function as important mediators for oxidative stress-induced vascular dysfunction.
Collapse
Affiliation(s)
- Hyun Ji Park
- a Department of Physiology, KU Open Innovation Center , Research Institute of Medical Science, Konkuk University School of Medicine , Chungju , Republic of Korea
| | - Kyung Chul Shin
- a Department of Physiology, KU Open Innovation Center , Research Institute of Medical Science, Konkuk University School of Medicine , Chungju , Republic of Korea
| | - Soon-Kyu Yoou
- b Department of Emergency Medical Services , Eulji University , Seongnam , Republic of Korea
| | - Myeongsin Kang
- b Department of Emergency Medical Services , Eulji University , Seongnam , Republic of Korea
| | - Jae Gon Kim
- a Department of Physiology, KU Open Innovation Center , Research Institute of Medical Science, Konkuk University School of Medicine , Chungju , Republic of Korea
| | - Dong Jun Sung
- c Division of Sport and Health Science, College of Biomedical and Health Science , Konkuk University , Chungju , Republic of Korea
| | - Wonjong Yu
- d Department of Physical Therapy , Eulji University , Eulji , Republic of Korea
| | - Youngjin Lee
- e Department of Radiological Science , Gachon University , Yeonsu-gu , Republic of Korea
| | - Sung Hea Kim
- f Department of Cardiology , Konkuk University School of Medicine , Seoul , Republic of Korea
| | - Young Min Bae
- a Department of Physiology, KU Open Innovation Center , Research Institute of Medical Science, Konkuk University School of Medicine , Chungju , Republic of Korea
| | - Sang Woong Park
- b Department of Emergency Medical Services , Eulji University , Seongnam , Republic of Korea
| |
Collapse
|
23
|
Socha MJ, Segal SS. Microvascular mechanisms limiting skeletal muscle blood flow with advancing age. J Appl Physiol (1985) 2018; 125:1851-1859. [PMID: 30412030 PMCID: PMC6737458 DOI: 10.1152/japplphysiol.00113.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 10/22/2018] [Accepted: 11/06/2018] [Indexed: 02/08/2023] Open
Abstract
Effective oxygen delivery to active muscle fibers requires that vasodilation initiated in distal arterioles, which control flow distribution and capillary perfusion, ascends the resistance network into proximal arterioles and feed arteries, which govern total blood flow into the muscle. With exercise onset, ascending vasodilation reflects initiation and conduction of hyperpolarization along endothelium from arterioles into feed arteries. Electrical coupling of endothelial cells to smooth muscle cells evokes the rapid component of ascending vasodilation, which is sustained by ensuing release of nitric oxide during elevated luminal shear stress. Concomitant sympathetic neural activation inhibits ascending vasodilation by stimulating α-adrenoreceptors on smooth muscle cells to constrict the resistance vasculature. We hypothesized that compromised muscle blood flow in advanced age reflects impaired ascending vasodilation through actions on both cell layers of the resistance network. In the gluteus maximus muscle of old (24 mo) vs. young (4 mo) male mice (corresponding to mid-60s vs. early 20s in humans) inhibition of α-adrenoreceptors in old mice restored ascending vasodilation, whereas even minimal activation of α-adrenoreceptors in young mice attenuated ascending vasodilation in the manner seen with aging. Conduction of hyperpolarization along the endothelium is impaired in old vs. young mice because of "leaky" membranes resulting from the activation of potassium channels by hydrogen peroxide released from endothelial cells. Exposing the endothelium of young mice to hydrogen peroxide recapitulates this effect of aging. Thus enhanced α-adrenoreceptor activation of smooth muscle in concert with electrically leaky endothelium restricts muscle blood flow by impairing ascending vasodilation in advanced age.
Collapse
Affiliation(s)
- Matthew J Socha
- Biology Department, University of Scranton , Scranton, Pennsylvania
| | - Steven S Segal
- Department of Medical Pharmacology and Physiology, University of Missouri , Columbia, Missouri
- Dalton Cardiovascular Research Center , Columbia, Missouri
| |
Collapse
|
24
|
Costa ED, Silva JF, Aires RD, Garcia DC, Kansaon MJ, Wainstein AJ, Rezende BA, Teixeira MM, Silva RF, Cortes SF, Lemos VS. Neuronal nitric oxide synthase contributes to the normalization of blood pressure in medicated hypertensive patients. Nitric Oxide 2018; 80:98-107. [PMID: 30261273 DOI: 10.1016/j.niox.2018.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/06/2018] [Accepted: 09/23/2018] [Indexed: 02/01/2023]
Abstract
Neuronal nitric oxide synthase (nNOS) is expressed in the cardiovascular system and besides NO, generates H2O2. nNOS has been proposed to contribute to the control of blood pressure in healthy humans. The aim of this study was to verify the hypothesis that nNOS can contribute to the control of vascular relaxation and blood pressure in hypertensive patients undergoing drug treatment. The study was conducted in resistance mesenteric arteries from 63 individuals, as follows: 1) normotensive patients; 2) controlled hypertensive patients (patients on antihypertensive treatment with blood pressure normalized); 3) uncontrolled hypertensive patients (patients on antihypertensive treatment that remained hypertensive). Only mesenteric arteries from uncontrolled hypertensive patients showed impaired endothelium-dependent vasorelaxation in response to acetylcholine (ACh). Selective nNOS blockade with inhibitor 1 and catalase, which decomposes H2O2, decreased vasorelaxation in the three groups. However, the inhibitory effect was greater in controlled hypertensive patients. Decreased eNOS expression was detected in both uncontrolled and controlled hypertensive groups. Interestingly nNOS expression and ACh-stimulated H2O2 production were greater in controlled hypertensive patients, than in the other groups. ACh-stimulated NO production was lower in controlled hypertensive when compared to normotensive patients, while uncontrolled hypertensive patients showed the lowest levels. Catalase and nNOS blockade inhibited ACh-induced H2O2 production. In conclusion, nNOS-derived H2O2 contributes to the endothelium-dependent vascular relaxation in human resistance mesenteric arteries. The endothelial dysfunction observed in uncontrolled hypertensive patients involves decreased eNOS expression and NO production. The normalization of vascular relaxation and blood pressure in controlled hypertensive patients involves increased nNOS-derived H2O2 and NO production.
Collapse
Affiliation(s)
- Eduardo D Costa
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Josiane F Silva
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Rosária D Aires
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Daniela C Garcia
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Milhem J Kansaon
- Department of Health Sciences, Post-graduate Institute, Medical Sciences College, Belo Horizonte, Brazil
| | - Alberto J Wainstein
- Department of Health Sciences, Post-graduate Institute, Medical Sciences College, Belo Horizonte, Brazil
| | - Bruno A Rezende
- Department of Health Sciences, Post-graduate Institute, Medical Sciences College, Belo Horizonte, Brazil
| | - Mauro M Teixeira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Rafaela F Silva
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Steyner F Cortes
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Virginia S Lemos
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
25
|
Matic A, Jukic I, Stupin A, Baric L, Mihaljevic Z, Unfirer S, Tartaro Bujak I, Mihaljevic B, Lombard JH, Drenjancevic I. High salt intake shifts the mechanisms of flow-induced dilation in the middle cerebral arteries of Sprague-Dawley rats. Am J Physiol Heart Circ Physiol 2018; 315:H718-H730. [DOI: 10.1152/ajpheart.00097.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The goal of the present study was to examine the effect of 1 wk of high salt (HS) intake and the role of oxidative stress in changing the mechanisms of flow-induced dilation (FID) in isolated pressurized middle cerebral arteries of male Sprague-Dawley rats ( n = 15–16 rats/group). Reduced FID in the HS group was restored by intake of the superoxide scavenger tempol (HS + tempol in vivo group). The nitric oxide (NO) synthase inhibitor Nω-nitro-l-arginine methyl ester, cyclooxygenase inhibitor indomethacin, and selective inhibitor of microsomal cytochrome P-450 epoxidase activity N-(methylsulfonyl)-2-(2-propynyloxy)-benzenehexanamide significantly reduced FID in the low salt diet-fed group, whereas FID in the HS group was mediated by NO only. Cyclooxygenase-2 mRNA (but not protein) expression was decreased in the HS and HS + tempol in vivo groups. Hypoxia-inducible factor-1α and VEGF protein levels were increased in the HS group but decreased in the HS + tempol in vivo group. Assessment by direct fluorescence of middle cerebral arteries under flow revealed significantly reduced vascular NO levels and increased superoxide/reactive oxygen species levels in the HS group. These results suggest that HS intake impairs FID and changes FID mechanisms to entirely NO dependent, in contrast to the low-salt diet-fed group, where FID is NO, prostanoid, and epoxyeicosatrienoic acid dependent. These changes were accompanied by increased lipid peroxidation products in the plasma of HS diet-fed rats, increased vascular superoxide/reactive oxygen species levels, and decreased NO levels, together with increased expression of hypoxia-inducible factor-1α and VEGF. NEW & NOTEWORTHY High-salt (HS) diet changes the mechanisms of flow-induced dilation in rat middle cerebral arteries from a combination of nitric oxide-, prostanoid-, and epoxyeicosatrienoic acid-dependent mechanisms to, albeit reduced, a solely nitric oxide-dependent dilation. In vivo reactive oxygen species scavenging restores flow-induced dilation in HS diet-fed rats and ameliorates HS-induced increases in the transcription factor hypoxia-inducible factor-1α and expression of its downstream target genes.
Collapse
Affiliation(s)
- Anita Matic
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer of Osijek, Osijek, Croatia
| | - Ivana Jukic
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer of Osijek, Osijek, Croatia
| | - Ana Stupin
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer of Osijek, Osijek, Croatia
| | - Lidija Baric
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer of Osijek, Osijek, Croatia
| | - Zrinka Mihaljevic
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer of Osijek, Osijek, Croatia
| | - Sanela Unfirer
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer of Osijek, Osijek, Croatia
| | - Ivana Tartaro Bujak
- Radiation Chemistry and Dosimetry Laboratory, Division of Materials Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | - Branka Mihaljevic
- Radiation Chemistry and Dosimetry Laboratory, Division of Materials Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | - Julian H. Lombard
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Ines Drenjancevic
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer of Osijek, Osijek, Croatia
| |
Collapse
|
26
|
Moreira LN, Silva JF, Silva GC, Lemos VS, Cortes SF. Activation of eNOS by D-pinitol Induces an Endothelium-Dependent Vasodilatation in Mouse Mesenteric Artery. Front Pharmacol 2018; 9:528. [PMID: 29872397 PMCID: PMC5972298 DOI: 10.3389/fphar.2018.00528] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 05/02/2018] [Indexed: 11/16/2022] Open
Abstract
D-pinitol is a cyclitol present in several edible plant species and extensively investigated for the treatment of metabolic diseases in humans, as food supplement, and demonstrated protective effects in the cardiovascular system. For these reasons, the present work aimed at investigating the mechanisms involved in the vascular effects of D-pinitol in mouse mesenteric artery. Mesenteric arteries from male C57BL/6 mice were mounted in a wire myograph. Nitrite was measured by the 2,3-diaminonaphthalene (DAN) method. Protein expression and phosphorylation were measured by Western blot. The systolic blood pressure (SBP) was measured by tail-cuff plethysmography. D-pinitol induced a concentration-dependent vasodilatation in endothelium-intact, but not in endothelium-denuded arteries. Nω-Nitro-L-arginine methyl ester (300 μM) abolished the effect of D-pinitol, while 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ; 10 μM) shifted the concentration-response curve to the right. KN-93 (1 μM) blunted the vasodilator effect of D-pinitol, but H-89 (0.1 μM) did not change it. 1-[2-(Trifluoromethyl) phenyl]imidazole (300 μM), indomethacin (10 μM), celecoxib (5 μM), wortmannin (1 μM), ruthenium red (10 μM), tiron (10 μM), MnTMPyP (30 μM), MPP (0.1 μM), PHTPP (0.1 μM), and atropine (1 μM) did not change the effect of D-pinitol. D-pinitol increased the concentration of nitrite, which was inhibited by L-NAME and calmidazolium (10 μM). D-pinitol increased the phosphorylation level of eNOS activation site at Ser1177 and reduced the phosphorylation level of its inactivation site at Thr495. In normotensive mice, the intraperitoneal administration of D-pinitol (10 mg/kg) induced a significant reduction of the SBP after 30 min. The present results led us to conclude that D-pinitol has an endothelium- and NO-dependent vasodilator effect in mouse mesenteric artery through a mechanism dependent on the activation of eNOS by the calcium-calmodulin complex, which can explain its hypotensive effect in mice.
Collapse
Affiliation(s)
- Luciana N Moreira
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Josiane F Silva
- Department of Physiology and Biophysics, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Grazielle C Silva
- Department of Physiology and Biophysics, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Virgínia S Lemos
- Department of Physiology and Biophysics, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Steyner F Cortes
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
27
|
Yada T, Shimokawa H, Tachibana H. Endothelium-dependent hyperpolarization-mediated vasodilatation compensates nitric oxide-mediated endothelial dysfunction during ischemia in diabetes-induced canine coronary collateral microcirculation in vivo. Microcirculation 2018; 25:e12456. [PMID: 29665152 DOI: 10.1111/micc.12456] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 04/09/2018] [Indexed: 11/29/2022]
Abstract
OBJECTIVES It has been previously demonstrated that endothelial caveolin-1 plays crucial roles to produce an endothelium-derived hyperpolarizing factor in mouse mesenteric arteries. We examined whether this mechanism is involved in the endothelium-dependent hyperpolarization-mediated responses to compensate reduced NO-mediated responses in diabetes mellitus during coronary occlusion in dogs in vivo. METHODS Canine subepicardial collateral coronary small arteries (≥100 μm) and arterioles (<100 μm) were observed by an intravital microscope. Experiments were performed during occlusion of the left anterior descending coronary artery (90 minutes) under the following conditions (n = 6 each); (i) control, (ii) diabetes mellitus, and (iii) diabetes mellitus+L-NMMA+KCa channel blockade. Vascular and myocardial levels of caveolin-1, eNOS, and caspase-3 were measured by ELISA. RESULTS Caveolin-1 levels in the ischemic area were greater in coronary microvessels than in conduit arteries in the control group. NO-mediated coronary vasodilatations of small arteries to bradykinin did not increase in diabetes mellitus associated with decreased eNOS phosphorylation at Ser1177 compared with baseline of controls and were restored by compensation of endothelium-dependent hyperpolarization and were suppressed by KCa channel blockade. CONCLUSIONS NO-mediated vasodilatations of small coronary arteries during coronary occlusion are impaired in diabetes mellitus and are compensated by endothelium-dependent hyperpolarization of arterioles in dogs in vivo.
Collapse
Affiliation(s)
- Toyotaka Yada
- Department of Biochemistry, Kawasaki Medical School, Kurashiki, Japan.,Department of Medical Engineering, Kawasaki University of Medical Welfare, Kurashiki, Japan
| | - Hiroaki Shimokawa
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroyuki Tachibana
- Department of Medical Engineering, Kawasaki University of Medical Welfare, Kurashiki, Japan
| |
Collapse
|
28
|
Rodrigo GC, Herbert KE. Regulation of vascular function and blood pressure by circadian variation in redox signalling. Free Radic Biol Med 2018; 119:115-120. [PMID: 29106991 DOI: 10.1016/j.freeradbiomed.2017.10.381] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 10/24/2017] [Accepted: 10/25/2017] [Indexed: 12/21/2022]
Abstract
There is accumulating evidence that makes the link between the circadian variation in blood pressure and circadian variations in vascular contraction. The importance of vascular endothelium-derived redox-active and redox-derived species in the signalling pathways involved in controlling vascular smooth muscle contraction are well known, and when linked to the circadian variations in the processes involved in generating these species, suggests a cellular mechanism for the circadian variations in blood pressure that links directly to the peripheral circadian clock. Relaxation of vascular smooth muscle cells involves endothelial-derived relaxing factor (EDRF) which is nitric oxide (NO) produced by endothelial NO synthase (eNOS), and endothelial-derived hyperpolarising factor (EDHF) which includes hydrogen peroxide (H2O2) produced by NADPH oxidase (Nox). Both of these enzymes appear to be under the direct control of the circadian clock mechanism in the endothelial cells, and disruption to the clock results in endothelial and vascular dysfunction. In this review, we focus on EDRF and EDHF and summarise the recent findings on the influence of the peripheral circadian clock mechanism on processes involved in generating the redox species involved and how this influences vascular contractility, which may account for some of the circadian variations in blood pressure and peripheral resistance. Moreover, the direct link between the peripheral circadian clock and redox-signalling pathways in the vasculature, has a bearing on vascular endothelial dysfunction in disease and aging, which are both known to lead to dysfunction of the circadian clock.
Collapse
Affiliation(s)
- Glenn C Rodrigo
- Department of Cardiovascular Sciences, University of Leicester, Glenfield General Hospital, Leicester, United Kingdom.
| | - Karl E Herbert
- Department of Cardiovascular Sciences, University of Leicester, Glenfield General Hospital, Leicester, United Kingdom
| |
Collapse
|
29
|
Tanaka S, Shiroto T, Godo S, Saito H, Ikumi Y, Ito A, Kajitani S, Sato S, Shimokawa H. Important role of endothelium-dependent hyperpolarization in the pulmonary microcirculation in male mice: implications for hypoxia-induced pulmonary hypertension. Am J Physiol Heart Circ Physiol 2018; 314:H940-H953. [DOI: 10.1152/ajpheart.00487.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Endothelium-dependent hyperpolarization (EDH) plays important roles in the systemic circulation, whereas its role in the pulmonary circulation remains largely unknown. Furthermore, the underlying mechanisms of pulmonary hypertension (PH) also remain to be elucidated. We thus aimed to elucidate the role of EDH in pulmonary circulation in general and in PH in particular. In isolated perfused lung and using male wild-type mice, endothelium-dependent relaxation to bradykinin (BK) was significantly reduced in the presence of Nω-nitro-l-arginine by ~50% compared with those in the presence of indomethacin, and the combination of apamin plus charybdotoxin abolished the residual relaxation, showing the comparable contributions of nitric oxide (NO) and EDH in the pulmonary microcirculation under physiological conditions. Catalase markedly inhibited EDH-mediated relaxation, indicating the predominant contribution of endothelium-derived H2O2. BK-mediated relaxation was significantly reduced at day 1 of hypoxia, whereas it thereafter remained unchanged until day 28. EDH-mediated relaxation was diminished at day 2 of hypoxia, indicating a transition from EDH to NO in BK-mediated relaxation before the development of hypoxia-induced PH. Mechanistically, chronic hypoxia enhanced endothelial NO synthase expression and activity associated with downregulation of caveolin-1. Nitrotyrosine levels were significantly higher in vascular smooth muscle of pulmonary microvessels under chronic hypoxia than under normoxia. A similar transition of the mediators in BK-mediated relaxation was also noted in the Sugen hypoxia mouse model. These results indicate that EDH plays important roles in the pulmonary microcirculation in addition to NO under normoxic conditions and that impaired EDH-mediated relaxation and subsequent nitrosative stress may be potential triggers of the onset of PH. NEW & NOTEWORTHY This study provides novel evidence that both endothelium-dependent hyperpolarization and nitric oxide play important roles in endothelium-dependent relaxation in the pulmonary microcirculation under physiological conditions in mice and that hypoxia first impairs endothelium-dependent hyperpolarization-mediated relaxation, with compensatory upregulation of nitric oxide, before the development of hypoxia-induced pulmonary hypertension.
Collapse
Affiliation(s)
- Shuhei Tanaka
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takashi Shiroto
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shigeo Godo
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroki Saito
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yosuke Ikumi
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Akiyo Ito
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shoko Kajitani
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Saori Sato
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroaki Shimokawa
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
30
|
Davel AP, Lu Q, Moss ME, Rao S, Anwar IJ, DuPont JJ, Jaffe IZ. Sex-Specific Mechanisms of Resistance Vessel Endothelial Dysfunction Induced by Cardiometabolic Risk Factors. J Am Heart Assoc 2018; 7:JAHA.117.007675. [PMID: 29453308 PMCID: PMC5850194 DOI: 10.1161/jaha.117.007675] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background The incidence of obesity is rising, particularly among women. Microvascular dysfunction is more common with female sex, obesity, and hyperlipidemia and predicts adverse cardiovascular outcomes, but the molecular mechanisms are unclear. Because obesity is associated with mineralocorticoid receptor (MR) activation, we tested the hypothesis that MR in endothelial cells contribute to sex differences in resistance vessel dysfunction in response to cardiometabolic risk factors. Methods and Results Male and female endothelial cell–specific MR knockout mice and MR‐intact littermates were randomized to high‐fat‐diet–induced obesity or obesity with hyperlipidemia induced by adeno‐associated virus–based vector targeting transfer of the mutant stable form (DY mutation) of the human PCSK9 (proprotein convertase subtilisin/kexin type 9) gene and compared with control diet. Female but not male mice were sensitive to obesity‐induced endothelial dysfunction, whereas endothelial function was impaired in obese hyperlipidemic males and females. In males, obesity or hyperlipidemia decreased the nitric oxide component of vasodilation without altering superoxide production or endothelial nitric oxide synthase expression or phosphorylation. Decreased nitric oxide content in obese males was overcome by enhanced endothelium‐derived hyperpolarization–mediated relaxation along with increased SK3 expression. Conversely, in females, endothelium‐derived hyperpolarization was significantly impaired by obesity with lower IK1 expression and by hyperlipidemia with lower IK1 and SK3 expression, loss of H2O2‐mediated vasodilation, and increased superoxide production. Endothelial cell–MR deletion prevented endothelial dysfunction induced by risk factors only in females. Rather than restoring endothelium‐derived hyperpolarization in females, endothelial cell–MR deletion enhanced nitric oxide and prevented hyperlipidemia‐induced oxidative stress. Conclusions These data reveal distinct mechanisms driving resistance vessel dysfunction in males versus females and suggest that personalized treatments are needed to prevent the progression of vascular disease in the setting of obesity, depending on both the sex and the metabolic profile of each patient.
Collapse
Affiliation(s)
- Ana P Davel
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA.,Department of Structural and Functional Biology, Institute of Biology, University of Campinas, São Paulo, Brazil
| | - Qing Lu
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA
| | - M Elizabeth Moss
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA
| | - Sitara Rao
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA
| | - Imran J Anwar
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA
| | - Jennifer J DuPont
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA
| | - Iris Z Jaffe
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA
| |
Collapse
|
31
|
Zaborska KE, Wareing M, Austin C. Comparisons between perivascular adipose tissue and the endothelium in their modulation of vascular tone. Br J Pharmacol 2017; 174:3388-3397. [PMID: 27747871 PMCID: PMC5610163 DOI: 10.1111/bph.13648] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 09/16/2016] [Accepted: 09/28/2016] [Indexed: 01/06/2023] Open
Abstract
The endothelium is an established modulator of vascular tone; however, the recent discovery of the anti-contractile nature of perivascular adipose tissue (PVAT) suggests that the fat, which surrounds many blood vessels, can also modulate vascular tone. Both the endothelium and PVAT secrete vasoactive substances, which regulate vascular function. Many of these factors are common to both the endothelium and PVAT; therefore, this review will highlight the potential shared mechanisms in the modulation of vascular tone. Endothelial dysfunction is a hallmark of many vascular diseases, including hypertension and obesity. Moreover, PVAT dysfunction is now being reported in several cardio-metabolic disorders. Thus, this review will also discuss the mechanistic insights into endothelial and PVAT dysfunction in order to evaluate whether PVAT modulation of vascular contractility is similar to that of the endothelium in health and disease. LINKED ARTICLES This article is part of a themed section on Molecular Mechanisms Regulating Perivascular Adipose Tissue - Potential Pharmacological Targets? To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.20/issuetoc.
Collapse
Affiliation(s)
- K E Zaborska
- Institute of Cardiovascular SciencesUniversity of ManchesterUK
| | - M Wareing
- Maternal and Fetal Health Research Centre, Institute of Human DevelopmentUniversity of ManchesterUK
| | - C Austin
- Faculty of Health and Social CareEdge Hill UniversityUK
| |
Collapse
|
32
|
Abstract
Endothelium-dependent relaxations are predominantly regulated by nitric oxide (NO) in large conduit arteries and by endothelium-dependent hyperpolarization (EDH) in small resistance vessels. Although the nature of EDH factors varies depending on species and vascular beds, we have previously demonstrated that endothelial NO synthases (eNOS)-derived hydrogen peroxide (H2O2) is an EDH factor in animals and humans. This vessel size-dependent contribution of NO and EDH is, at least in part, attributable to the diverse roles of endothelial NOSs system; in large conduit arteries, eNOS mainly serves as a NO-generating system to elicit soluble guanylate cyclase–cyclic guanosine monophosphate-mediated relaxations, whereas in small resistance vessels, it serves as a superoxide-generating system to cause EDH/H2O2-mediated relaxations. Endothelial caveolin-1 may play an important role for the diverse roles of NOSs. Although reactive oxygen species are generally regarded harmful, the physiological roles of H2O2 have attracted much attention as accumulating evidence has shown that endothelium-derived H2O2 contributes to cardiovascular homeostasis. The diverse functions of endothelial NOSs system with NO and EDH/H2O2 could account for a compensatory mechanism in the setting of endothelial dysfunction. In this review, we will briefly summarize the current knowledge on the diverse functions of endothelial NOSs system: NO and EDH/H2O2.
Collapse
|
33
|
Godo S, Shimokawa H. Divergent roles of endothelial nitric oxide synthases system in maintaining cardiovascular homeostasis. Free Radic Biol Med 2017; 109:4-10. [PMID: 27988339 DOI: 10.1016/j.freeradbiomed.2016.12.019] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 12/11/2016] [Accepted: 12/13/2016] [Indexed: 12/14/2022]
Abstract
Accumulating evidence has demonstrated the importance of reactive oxygen species (ROS) as an essential second messenger in health and disease. Endothelial dysfunction is the hallmark of atherosclerotic cardiovascular diseases, in which pathological levels of ROS are substantially involved. The endothelium plays a crucial role in modulating tone of underlying vascular smooth muscle by synthesizing and releasing nitric oxide (NO) and endothelium-dependent hyperpolarization (EDH) factors in a distinct vessel size-dependent manner through the diverse roles of the endothelial NO synthases (NOSs) system. Endothelium-derived hydrogen peroxide (H2O2) is a physiological signaling molecule serving as one of the major EDH factors especially in microcirculations and has gained increasing attention in view of its emerging relevance for cardiovascular homeostasis. In the clinical settings, it has been reported that antioxidant supplements are unexpectedly ineffective to prevent cardiovascular events. These lines of evidence indicate the potential importance of the physiological balance between NO and H2O2/EDH through the diverse functions of endothelial NOSs system in maintaining cardiovascular homeostasis. A better understanding of cardiovascular redox signaling is certainly needed to develop novel therapeutic strategies in cardiovascular medicine. In this review, we will briefly summarize the current knowledge on the emerging regulatory roles of redox signaling pathways in cardiovascular homeostasis, with particular focus on the two endothelial NOSs-derived mediators, NO and H2O2/EDH.
Collapse
Affiliation(s)
- Shigeo Godo
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroaki Shimokawa
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan.
| |
Collapse
|
34
|
Leurgans TM, Bloksgaard M, Irmukhamedov A, Riber LP, De Mey JGR. Relaxing Responses to Hydrogen Peroxide and Nitric Oxide in Human Pericardial Resistance Arteries Stimulated with Endothelin-1. Basic Clin Pharmacol Toxicol 2017; 122:74-81. [PMID: 28686356 DOI: 10.1111/bcpt.12843] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 07/04/2017] [Indexed: 12/13/2022]
Abstract
In human pericardial resistance arteries, effects of the endothelium-dependent vasodilator bradykinin are mediated by NO during contraction induced by K+ or the TxA2 analogue U46619 and by H2 O2 during contraction by endothelin-1 (ET-1), respectively. We tested the hypotheses that ET-1 reduces relaxing effects of NO and increases those of H2 O2 in resistance artery smooth muscle of patients with cardiovascular disease. Arterial segments, dissected from the parietal pericardium of 39 cardiothoracic surgery patients, were studied by myography during amplitude-matched contractions induced by K+ , the TXA2 analogue U46619 or ET-1. Effects of the NO donor Na-nitroprusside (SNP) and of exogenous H2 O2 were recorded in the absence and presence of inhibitors of cyclooxygenases, NO synthases and small and intermediate conductance calcium-activated K+ channels. During contractions induced by either of the three stimuli, the potency of SNP did not differ and was not modified by the inhibitors. In vessels contracted with ET-1, the potency of H2 O2 was on average and in terms of interindividual variability considerably larger than in K+ -contracted vessels. Both differences were not statistically significant in the presence of inhibitors of mechanisms of endothelium-dependent vasodilatation. In resistance arteries from patients with cardiovascular disease, ET-1 does not selectively modify smooth muscle relaxing responses to NO or H2 O2 . Furthermore, the candidate endothelium-derived relaxing factor H2 O2 also acts as an endothelium-dependent vasodilator.
Collapse
Affiliation(s)
- Thomas M Leurgans
- Department of Cardiovascular and Renal Research, Centre for Individualized Medicine in Arterial Diseases (CIMA), Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Maria Bloksgaard
- Department of Cardiovascular and Renal Research, Centre for Individualized Medicine in Arterial Diseases (CIMA), Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Akhmadjon Irmukhamedov
- Department of Cardiac, Thoracic and Vascular Surgery, Centre for Individualized Medicine in Arterial Diseases (CIMA), Odense University Hospital, Odense, Denmark
| | - Lars P Riber
- Department of Cardiac, Thoracic and Vascular Surgery, Centre for Individualized Medicine in Arterial Diseases (CIMA), Odense University Hospital, Odense, Denmark
| | - Jo G R De Mey
- Department of Cardiovascular and Renal Research, Centre for Individualized Medicine in Arterial Diseases (CIMA), Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.,Department of Cardiac, Thoracic and Vascular Surgery, Centre for Individualized Medicine in Arterial Diseases (CIMA), Odense University Hospital, Odense, Denmark.,Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
35
|
Greven J, Pfeifer R, Zhi Q, Pape HC. Update on the role of endothelial cells in trauma. Eur J Trauma Emerg Surg 2017; 44:667-677. [PMID: 28674817 DOI: 10.1007/s00068-017-0812-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 06/21/2017] [Indexed: 12/23/2022]
Abstract
PURPOSE This review gives an overview of physiological processes, mainly regarding vascular endothelial cells and their important role in hemostasis, information processing, and communication during trauma. An insight is given into molecules and cells involved in the first innate immune response through to the behavior of endothelial cells in developing trauma. The goal of this review is to show the overlap of crucial factors related to the endothelium and the development of trauma. METHODS A systemic literature search was performed using Google scholar and PubMed. RESULTS The results of the literature search showed that the endothelium, especially the vascular endothelium, is involved in various cellular and subcellular pathways of activation, suppression, and transfer of information. A variety of molecules and cells are orchestrated, subsequently the endothelium gets in contact with a traumatizing event. CONCLUSION The endothelium is one of the first barriers that comes into contact with exo- and endogenous trauma-related signals and is a pivotal point in activating subsequent pathways and cascades by transfer of information.
Collapse
Affiliation(s)
- J Greven
- Department of Trauma and Reconstructive Surgery, University of Aachen Medical Center, Pauwelsstr 30, 52074, Aachen, Germany.
| | - R Pfeifer
- Department for Traumatology, University of Zürich Medical Center, Rämistrasse 100, 8091, Zurich, Switzerland
| | - Q Zhi
- Department of Trauma and Reconstructive Surgery, University of Aachen Medical Center, Pauwelsstr 30, 52074, Aachen, Germany
| | - H C Pape
- Department for Traumatology, University of Zürich Medical Center, Rämistrasse 100, 8091, Zurich, Switzerland
| |
Collapse
|
36
|
Diniz MC, Olivon VC, Tavares LD, Simplicio JA, Gonzaga NA, de Souza DG, Bendhack LM, Tirapelli CR, Bonaventura D. Mechanisms underlying sodium nitroprusside-induced tolerance in the mouse aorta: Role of ROS and cyclooxygenase-derived prostanoids. Life Sci 2017; 176:26-34. [DOI: 10.1016/j.lfs.2017.03.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 03/15/2017] [Accepted: 03/20/2017] [Indexed: 01/15/2023]
|
37
|
Chuaiphichai S, Crabtree MJ, Mcneill E, Hale AB, Trelfa L, Channon KM, Douglas G. A key role for tetrahydrobiopterin-dependent endothelial NOS regulation in resistance arteries: studies in endothelial cell tetrahydrobiopterin-deficient mice. Br J Pharmacol 2017; 174:657-671. [PMID: 28128438 PMCID: PMC5368052 DOI: 10.1111/bph.13728] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 01/22/2017] [Accepted: 01/23/2017] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND AND PURPOSE The cofactor tetrahydrobiopterin (BH4) is a critical regulator of endothelial NOS (eNOS) function, eNOS-derived NO and ROS signalling in vascular physiology. To determine the physiological requirement for de novo endothelial cell BH4 synthesis for the vasomotor function of resistance arteries, we have generated a mouse model with endothelial cell-specific deletion of Gch1, encoding GTP cyclohydrolase 1 (GTPCH), an essential enzyme for BH4 biosynthesis, and evaluated BH4-dependent eNOS regulation, eNOS-derived NO and ROS generation. EXPERIMENTAL APPROACH The reactivity of mouse second-order mesenteric arteries was assessed by wire myography. High performance liquid chromatography was used to determine BH4, BH2 and biopterin. Western blotting was used for expression analysis. KEY RESULTS Gch1fl/fl Tie2cre mice demonstrated reduced GTPCH protein and BH4 levels in mesenteric arteries. Deficiency in endothelial cell BH4 leads to eNOS uncoupling, increased ROS production and loss of NO generation in mesenteric arteries of Gch1fl/fl Tie2cre mice. Gch1fl/fl Tie2cre mesenteric arteries had enhanced vasoconstriction to U46619 and phenylephrine, which was abolished by L-NAME. Endothelium-dependent vasodilatations to ACh and SLIGRL were impaired in mesenteric arteries from Gch1fl/fl Tie2cre mice, compared with those from wild-type littermates. Loss of eNOS-derived NO-mediated vasodilatation was associated with increased eNOS-derived H2 O2 and cyclooxygenase-derived vasodilator in Gch1fl/fl Tie2cre mesenteric arteries. CONCLUSIONS AND IMPLICATIONS Endothelial cell Gch1 and BH4-dependent eNOS regulation play pivotal roles in maintaining vascular homeostasis in resistance arteries. Therefore, targeting vascular Gch1 and BH4 biosynthesis may provide a novel therapeutic target for the prevention and treatment of microvascular dysfunction in patients with cardiovascular disease.
Collapse
Affiliation(s)
- Surawee Chuaiphichai
- British Heart Foundation Centre of Research Excellence, Division of Cardiovascular MedicineUniversity of OxfordOxfordUK
- Wellcome Trust Centre for Human GeneticsUniversity of OxfordOxfordUK
| | - Mark J Crabtree
- British Heart Foundation Centre of Research Excellence, Division of Cardiovascular MedicineUniversity of OxfordOxfordUK
- Wellcome Trust Centre for Human GeneticsUniversity of OxfordOxfordUK
| | - Eileen Mcneill
- British Heart Foundation Centre of Research Excellence, Division of Cardiovascular MedicineUniversity of OxfordOxfordUK
- Wellcome Trust Centre for Human GeneticsUniversity of OxfordOxfordUK
| | - Ashley B Hale
- British Heart Foundation Centre of Research Excellence, Division of Cardiovascular MedicineUniversity of OxfordOxfordUK
- Wellcome Trust Centre for Human GeneticsUniversity of OxfordOxfordUK
| | - Lucy Trelfa
- British Heart Foundation Centre of Research Excellence, Division of Cardiovascular MedicineUniversity of OxfordOxfordUK
- Wellcome Trust Centre for Human GeneticsUniversity of OxfordOxfordUK
| | - Keith M Channon
- British Heart Foundation Centre of Research Excellence, Division of Cardiovascular MedicineUniversity of OxfordOxfordUK
- Wellcome Trust Centre for Human GeneticsUniversity of OxfordOxfordUK
| | - Gillian Douglas
- British Heart Foundation Centre of Research Excellence, Division of Cardiovascular MedicineUniversity of OxfordOxfordUK
- Wellcome Trust Centre for Human GeneticsUniversity of OxfordOxfordUK
| |
Collapse
|
38
|
Neuronal nitric oxide synthase-derived hydrogen peroxide effect in grafts used in human coronary bypass surgery. Clin Sci (Lond) 2017; 131:1015-1026. [PMID: 28360194 DOI: 10.1042/cs20160642] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 03/13/2017] [Accepted: 03/30/2017] [Indexed: 11/17/2022]
Abstract
Recently, H2O2 has been identified as the endothelium-dependent hyperpolarizing factor (EDHF), which mediates flow-induced dilation in human coronary arteries. Neuronal nitric oxide synthase (nNOS) is expressed in the cardiovascular system and, besides NO, generates H2O2 The role of nNOS-derived H2O2 in human vessels is so far unknown. The present study was aimed at investigating the relevance of nNOS/H2O2 signaling in the human internal mammary artery (IMA) and saphenous vein (SV), the major conduits used in coronary artery bypass grafting. In the IMA, but not in the SV, ACh (acetylcholine)-induced vasodilatation was decreased by selective nNOS inhibition with TRIM or Inhibitor 1, and by catalase, which specifically decomposes H2O2 Superoxide dismutase (SOD), which generates H2O2 from superoxide, decreased the vasodilator effect of ACh on SV. In the IMA, SOD diminished phenylephrine-induced contraction in endothelium-containing, but not in endothelium-denuded vessels. Importantly, while exogenous H2O2 produced vasodilatation in IMA, it constricted SV. ACh increased H2O2 production in both sets of vessels. In the IMA, the increase in H2O2 was inhibited by catalase and nNOS blockade. In SV, H2O2 production was abolished by catalase and reduced by nNOS inhibition. Immunofluorescence experiments showed the presence of nNOS in the vascular endothelium and smooth muscle cells of both the IMA and SV. Together, our results clearly show that H2O2 induced endothelium-dependent vascular relaxation in the IMA, whereas, in the SV, H2O2 was a vasoconstrictor. Thus, H2O2 produced in the coronary circulation may contribute to the susceptibility to accelerated atherosclerosis and progressive failure of the SV used as autogenous graft in coronary bypass surgery.
Collapse
|
39
|
Schinzari F, Tesauro M, Cardillo C. Vascular hyperpolarization in human physiology and cardiovascular risk conditions and disease. Acta Physiol (Oxf) 2017; 219:124-137. [PMID: 28009486 DOI: 10.1111/apha.12630] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 10/05/2015] [Accepted: 11/05/2015] [Indexed: 12/11/2022]
Abstract
Hyperpolarization causing smooth muscle relaxation contributes to the maintenance of vascular homeostasis, particularly in small-calibre arteries and arterioles. It may also become a compensatory vasodilator mechanism upregulated in states with impaired nitric oxide (NO) availability. Bioassay of vascular hyperpolarization in the human circulation has been hampered by the complexity of mechanisms involved and the limited availability of investigational tools. Firm evidence, however, supports the notion that hyperpolarization participates in the regulation of resting vasodilator tone and vascular reactivity in healthy subjects. In addition, an enhanced endothelium-derived hyperpolarization contributes to both resting and agonist-stimulated vasodilation in a variety of cardiovascular risk conditions and disease. Thus, hyperpolarization mediated by epoxyeicosatrienoic acids (EETs) and H2 O2 has been observed in coronary arterioles of patients with coronary artery disease. Similarly, ouabain-sensitive and EETs-mediated hyperpolarization has been observed to compensate for NO deficiency in patients with essential hypertension. Moreover, in non-hypertensive patients with multiple cardiovascular risk factors and in hypercholesterolaemia, KCa channel-mediated vasodilation appears to be activated. A novel paradigm establishes that perivascular adipose tissue (PVAT) is an additional regulator of vascular tone/function and endothelium is not the only agent in vascular hyperpolarization. Indeed, some PVAT-derived relaxing substances, such as adiponectin and angiotensin 1-7, may exert anticontractile and vasodilator actions by the opening of KCa channels in smooth muscle cells. Conversely, PVAT-derived factors impair coronary vasodilation via differential inhibition of some K+ channels. In view of adipose tissue abnormalities occurring in human obesity, changes in PVAT-dependent hyperpolarization may be relevant for vascular dysfunction also in this condition.
Collapse
Affiliation(s)
- F. Schinzari
- Department of Internal Medicine; Catholic University; Rome Italy
| | - M. Tesauro
- Department of Internal Medicine; Tor Vergata University; Rome Italy
| | - C. Cardillo
- Department of Internal Medicine; Catholic University; Rome Italy
| |
Collapse
|
40
|
Effect of tempol and tempol plus catalase on intra-renal haemodynamics in spontaneously hypertensive stroke-prone (SHSP) and Wistar rats. J Physiol Biochem 2016; 73:207-214. [PMID: 27933463 DOI: 10.1007/s13105-016-0541-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 11/24/2016] [Indexed: 02/07/2023]
Abstract
Vasoconstriction within the renal medulla contributes to the development of hypertension. This study investigated the role of reactive oxygen species (ROS) in regulating renal medullary and cortical blood perfusion (MBP and CBP respectively) in both stroke-prone spontaneously hypertensive rats (SHRSP) and Wistar rats. CBP and MBP were measured using a laser-Doppler flow meter before and after intra-renal infusion of tempol, the superoxide dismutase (SOD) mimetic or tempol plus catalase, the hydrogen peroxide-degrading enzyme. Tempol infusion significantly elevated blood perfusion within the renal medulla (MBP) in both SHRSP (by 43 ± 7%, P < 0.001) and Wistar rats (by 17 ± 2%, P < 0.05) but the magnitude of the increase was significantly greater in the SHRSP (P < 0.01). When the enzyme catalase and tempol were co-infused, MBP was again significantly increased in SHRSP (by 57 ± 6%, P < 0.001) and Wistar rats (by 33 ± 6%, P < 0.001), with a significantly greater increase in perfusion being induced in the SHRSP relative to the Wistar rats (P < 0.01). Notably, this increase was significantly greater than in those animals infused with tempol alone (P < 0.01). These results suggest that ROS plays a proportionally greater role in reducing renal vascular compliance, particularly within the renal medulla, in normotensive and hypertensive animals, with effects being greater in the hypertensive animals. This supports the hypothesis that SHRSP renal vasculature might be subjected to elevated level of oxidative stress relative to normotensive animals.
Collapse
|
41
|
Ardanaz N, Pagano PJ. Hydrogen Peroxide as a Paracrine Vascular Mediator: Regulation and Signaling Leading to Dysfunction. Exp Biol Med (Maywood) 2016; 231:237-51. [PMID: 16514169 DOI: 10.1177/153537020623100302] [Citation(s) in RCA: 166] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Numerous studies have demonstrated the ability of a variety of vascular cells, including endothelial cells, smooth muscle cells, and fibroblasts, to produce reactive oxygen species (ROS). Until recently, major emphasis was placed on the production of superoxide anion (O2–) in the vasculature as a result of its ability to directly attenuate the biological activity of endothelium-derived nitric oxide (NO). The short half-life and radius of diffusion of O2– drastically limit the role of this ROS as an important paracrine hormone in vascular biology. On the contrary, in recent years, the O2– metabolite hydrogen peroxide (H2O2) has increasingly been viewed as an important cellular signaling agent in its own right, capable of modulating both contractile and growth-promoting pathways with more far-reaching effects. In this review, we will assess the vascular production of H2O2, its regulation by endogenous scavenger systems, and its ability to activate a variety of vascular signaling pathways, thereby leading to vascular contraction and growth. This discussion will include the ability of H2O2 to (i) Initiate calcium flux as well as (ii) stimulate pathways leading to sensitization of contractile elements to calcium. The latter involves a variety of protein kinases that have also been strongly implicated in vascular hypertrophy. Previous Intensive study has emphasized the ability of NADPH oxidase-derived O2– and H2O2 to activate these pathways in cultured smooth muscle cells. However, growing evidence indicates a considerably more complex array of unique oxidase systems in the endothelium, media, and adventitia that appear to participate in these deleterious effects in a sequential and temporal manner. Taken together, these findings seem consistent with a paracrine effect of H2O2 across the vascular wall.
Collapse
Affiliation(s)
- Noelia Ardanaz
- Hypertension and Vascular Research Division, RM 7044, E&R Building, Henry Ford Hospital, 2799 West Grand Boulevard, Detroit, MI 48202-2689, USA
| | | |
Collapse
|
42
|
Gutterman DD, Chabowski DS, Kadlec AO, Durand MJ, Freed JK, Ait-Aissa K, Beyer AM. The Human Microcirculation: Regulation of Flow and Beyond. Circ Res 2016; 118:157-72. [PMID: 26837746 DOI: 10.1161/circresaha.115.305364] [Citation(s) in RCA: 209] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The microcirculation is responsible for orchestrating adjustments in vascular tone to match local tissue perfusion with oxygen demand. Beyond this metabolic dilation, the microvasculature plays a critical role in modulating vascular tone by endothelial release of an unusually diverse family of compounds including nitric oxide, other reactive oxygen species, and arachidonic acid metabolites. Animal models have provided excellent insight into mechanisms of vasoregulation in health and disease. However, there are unique aspects of the human microcirculation that serve as the focus of this review. The concept is put forth that vasculoparenchymal communication is multimodal, with vascular release of nitric oxide eliciting dilation and preserving normal parenchymal function by inhibiting inflammation and proliferation. Likewise, in disease or stress, endothelial release of reactive oxygen species mediates both dilation and parenchymal inflammation leading to cellular dysfunction, thrombosis, and fibrosis. Some pathways responsible for this stress-induced shift in mediator of vasodilation are proposed. This paradigm may help explain why microvascular dysfunction is such a powerful predictor of cardiovascular events and help identify new approaches to treatment and prevention.
Collapse
Affiliation(s)
- David D Gutterman
- From the Cardiovascular Center (A.M.B., A.O.K., D.D.G., D.S.C., J.K.F., K.A.-A., M.J.D.), Departments of Medicine (A.M.B., A.O.K., D.D.G., D.S.C., J.K.F., K.A.-A.), Pharmacology and Toxicology (D.S.C., J.K.F.), Physiology (A.M.B., A.O.K.), Physical Medicine and Rehabilitation (M.J.D.), and Anesthesiology (J.K.F.), Medical College of Wisconsin, Milwaukee.
| | - Dawid S Chabowski
- From the Cardiovascular Center (A.M.B., A.O.K., D.D.G., D.S.C., J.K.F., K.A.-A., M.J.D.), Departments of Medicine (A.M.B., A.O.K., D.D.G., D.S.C., J.K.F., K.A.-A.), Pharmacology and Toxicology (D.S.C., J.K.F.), Physiology (A.M.B., A.O.K.), Physical Medicine and Rehabilitation (M.J.D.), and Anesthesiology (J.K.F.), Medical College of Wisconsin, Milwaukee
| | - Andrew O Kadlec
- From the Cardiovascular Center (A.M.B., A.O.K., D.D.G., D.S.C., J.K.F., K.A.-A., M.J.D.), Departments of Medicine (A.M.B., A.O.K., D.D.G., D.S.C., J.K.F., K.A.-A.), Pharmacology and Toxicology (D.S.C., J.K.F.), Physiology (A.M.B., A.O.K.), Physical Medicine and Rehabilitation (M.J.D.), and Anesthesiology (J.K.F.), Medical College of Wisconsin, Milwaukee
| | - Matthew J Durand
- From the Cardiovascular Center (A.M.B., A.O.K., D.D.G., D.S.C., J.K.F., K.A.-A., M.J.D.), Departments of Medicine (A.M.B., A.O.K., D.D.G., D.S.C., J.K.F., K.A.-A.), Pharmacology and Toxicology (D.S.C., J.K.F.), Physiology (A.M.B., A.O.K.), Physical Medicine and Rehabilitation (M.J.D.), and Anesthesiology (J.K.F.), Medical College of Wisconsin, Milwaukee
| | - Julie K Freed
- From the Cardiovascular Center (A.M.B., A.O.K., D.D.G., D.S.C., J.K.F., K.A.-A., M.J.D.), Departments of Medicine (A.M.B., A.O.K., D.D.G., D.S.C., J.K.F., K.A.-A.), Pharmacology and Toxicology (D.S.C., J.K.F.), Physiology (A.M.B., A.O.K.), Physical Medicine and Rehabilitation (M.J.D.), and Anesthesiology (J.K.F.), Medical College of Wisconsin, Milwaukee
| | - Karima Ait-Aissa
- From the Cardiovascular Center (A.M.B., A.O.K., D.D.G., D.S.C., J.K.F., K.A.-A., M.J.D.), Departments of Medicine (A.M.B., A.O.K., D.D.G., D.S.C., J.K.F., K.A.-A.), Pharmacology and Toxicology (D.S.C., J.K.F.), Physiology (A.M.B., A.O.K.), Physical Medicine and Rehabilitation (M.J.D.), and Anesthesiology (J.K.F.), Medical College of Wisconsin, Milwaukee
| | - Andreas M Beyer
- From the Cardiovascular Center (A.M.B., A.O.K., D.D.G., D.S.C., J.K.F., K.A.-A., M.J.D.), Departments of Medicine (A.M.B., A.O.K., D.D.G., D.S.C., J.K.F., K.A.-A.), Pharmacology and Toxicology (D.S.C., J.K.F.), Physiology (A.M.B., A.O.K.), Physical Medicine and Rehabilitation (M.J.D.), and Anesthesiology (J.K.F.), Medical College of Wisconsin, Milwaukee
| |
Collapse
|
43
|
Cosic A, Jukic I, Stupin A, Mihalj M, Mihaljevic Z, Novak S, Vukovic R, Drenjancevic I. Attenuated flow-induced dilatation of middle cerebral arteries is related to increased vascular oxidative stress in rats on a short-term high salt diet. J Physiol 2016; 594:4917-31. [PMID: 27061200 DOI: 10.1113/jp272297] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 04/05/2016] [Indexed: 01/20/2023] Open
Abstract
KEY POINTS Recent studies have shown that high salt (HS) intake leads to endothelial dysfunction and impaired vascular reactivity in different vascular beds in both animal and human models, due to increased oxidative stress. The objective of this study was to assess vascular response to flow-induced dilatation (FID) and to elucidate the role of vascular oxidative stress/antioxidative capacity in middle cerebral arteries (MCAs) of HS-fed rats in vitro. The novelty of this study is in demonstrating impaired flow-induced dilatation of MCAs and down-regulation of vascular antioxidant genes with HS intake, leading to increased levels of oxidative stress in blood vessels and peripheral lymph organs, which together contribute to impaired FID. In addition, results show increased oxidative stress in leukocytes of peripheral lymph organs, suggesting the occurrence of inflammatory processes due to HS intake. Recirculation of leukocytes might additionally increase vascular oxidative stress in vivo. ABSTRACT The aim of this study was to determine flow-induced dilatation (FID) and the role of oxidative stress/antioxidative capacity in isolated, pressurized middle cerebral arteries (MCAs) of high salt (HS)-fed rats. Healthy male Sprague-Dawley rats (11 weeks old) were fed low salt (0.4% NaCl; LS group) or high salt (4% NaCl; HS group) diets for 1 week. Reactivity of MCAs in response to stepwise increases in pressure gradient (Δ10-Δ100 mmHg) was determined in the absence or presence of the superoxide dismutase (SOD) mimetic TEMPOL and/or the nitric oxide synthases (NOS) inhibitor N(ω) -nitro-l-arginine methyl ester (l-NAME). mRNA levels of antioxidative enzymes, NAPDH-oxidase components, inducible (iNOS) and endothelial nitric oxide synthases (eNOS) were determined by quantitative real-time PCR. Blood pressure (BP), antioxidant enzymes activity, oxidative stress in peripheral leukocytes, lipid peroxidation products and the antioxidant capacity of plasma were measured for both groups. FID was reduced in the HS group compared to the LS group. The presence of TEMPOL restored dilatation in the HS group, with no effect in the LS group. Expression of glutathione peroxidase 4 (GPx4) and iNOS in the HS group was significantly decreased; oxidative stress was significantly higher in the HS group compared to the LS group. HS intake significantly induced basal reactive oxygen species production in the leukocytes of mesenteric lymph nodes and splenocytes, and intracellular production after stimulation in peripheral lymph nodes. Antioxidant enzyme activity and BP were not affected by HS diet. Low GPx4 expression, increased superoxide production in leukocytes, and decreased iNOS expression are likely to underlie increased oxidative stress and reduced nitric oxide bioavailability, leading to impairment of FID in the HS group without changes in BP values.
Collapse
Affiliation(s)
- Anita Cosic
- Department of Physiology and Immunology, Faculty of Medicine, J. J. Strossmayer University of Osijek, Osijek, Croatia
| | - Ivana Jukic
- Department of Physiology and Immunology, Faculty of Medicine, J. J. Strossmayer University of Osijek, Osijek, Croatia
| | - Ana Stupin
- Department of Physiology and Immunology, Faculty of Medicine, J. J. Strossmayer University of Osijek, Osijek, Croatia
| | - Martina Mihalj
- Department of Physiology and Immunology, Faculty of Medicine, J. J. Strossmayer University of Osijek, Osijek, Croatia
| | - Zrinka Mihaljevic
- Department of Physiology and Immunology, Faculty of Medicine, J. J. Strossmayer University of Osijek, Osijek, Croatia
| | - Sanja Novak
- Department of Physiology and Immunology, Faculty of Medicine, J. J. Strossmayer University of Osijek, Osijek, Croatia
| | - Rosemary Vukovic
- Department of Biology, J. J. Strossmayer University of Osijek, Croatia
| | - Ines Drenjancevic
- Department of Physiology and Immunology, Faculty of Medicine, J. J. Strossmayer University of Osijek, Osijek, Croatia
| |
Collapse
|
44
|
Pai I, Lo S, Brown S, Toma AG. Does Hydrogen Peroxide Mouthwash Improve the Outcome of Secondary Post-Tonsillectomy Bleed? A 10-year Review. Otolaryngol Head Neck Surg 2016; 133:202-5. [PMID: 16087015 DOI: 10.1016/j.otohns.2005.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2004] [Indexed: 12/16/2022]
Abstract
Objective: To determine whether hydrogen peroxide (H2O2) mouthwash influences the outcome of secondary post-tonsillectomy hemorrhage in children. Study Design: Ten-year retrospective study of all children with secondary post-tonsillectomy hemorrhage. Setting: Tertiary otolaryngology center. Results: Of the 156 patients, 59 received H2O2 and 97 did not. All patients received broad-spectrum intravenous antibiotics. The average rehospitalization duration due to hemorrhage was 1.7 days (H2O2 group) and 1.6 days (control group). In the H2O2 group, 8.5% required surgery, compared with 10.3% in the control group. Further hemorrhage episodes requiring readmission occurred in 3.4% of the H2O2 group and 3.1% of controls. There was no difference between the 2 groups in rehospitalization duration ( P = 0.49), rate of surgical intervention ( P = 0.85), and rate of readmission with further hemorrhage ( P = 0.92). Conclusion: Hydrogen peroxide mouthwash does not improve the outcome of secondary post-tonsillectomy hemorrhage in pediatric patients. Significance: This study does not support the common practice of treating post-tonsillectomy hemorrhage with H2O2.
Collapse
Affiliation(s)
- Irumee Pai
- Department of Otolaryngology-Head and Neck Surgery, St. George's Hospital Medical School, University of London, London, UK.
| | | | | | | |
Collapse
|
45
|
Leurgans TM, Bloksgaard M, Brewer JR, Bagatolli LA, Fredgart MH, Rosenstand K, Hansen ML, Rasmussen LM, Irmukhamedov A, De Mey JG. Endothelin-1 shifts the mediator of bradykinin-induced relaxation from NO to H2 O2 in resistance arteries from patients with cardiovascular disease. Br J Pharmacol 2016; 173:1653-64. [PMID: 26914408 DOI: 10.1111/bph.13467] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 02/04/2016] [Accepted: 02/14/2016] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE We tested the hypothesis that in resistance arteries from cardiovascular disease (CVD) patients, effects of an endothelium-dependent vasodilator depend on the contractile stimulus. EXPERIMENTAL APPROACH Arteries dissected from parietal pericardium of cardiothoracic surgery patients were studied by myography and imaging techniques. Segments were sub-maximally contracted by K(+) , the TxA2 analogue U46619 or endothelin-1 (ET-1). KEY RESULTS Relaxing effects of Na-nitroprusside were comparable, but those of bradykinin (BK) were bigger in the presence of ET-1 compared with K(+) or U46619. BK-induced relaxation was (i) abolished by L-NAME in K(+) -contracted arteries, (ii) partly inhibited by L-NAME in the presence of U46619 and (iii) not altered by indomethacin, L-NAME plus inhibitors of small and intermediate conductance calcium-activated K(+) channels, but attenuated by catalase, in ET-1-contracted arteries. This catalase-sensitive relaxation was unaffected by inhibitors of NADPH oxidases or allopurinol. Exogenous H2 O2 caused a larger relaxation of ET-1-induced contractions than those evoked by K(+) or U46619 in the presence of inhibitors of other endothelium-derived relaxing factors. Catalase-sensitive staining of cellular ROS with CellROX Deep Red was significantly increased in the presence of both 1 μM BK and 2 nM ET-1 but not either peptide alone. CONCLUSIONS AND IMPLICATIONS In resistance arteries from patients with CVD, exogenous ET-1 shifts the mediator of relaxing responses to the endothelium-dependent vasodilator BK from NO to H2 O2 and neither NADPH oxidases, xanthine oxidase nor NOS appear to be involved in this effect. This might have consequences for endothelial dysfunction in conditions where intra-arterial levels of ET-1 are enhanced.
Collapse
Affiliation(s)
- Thomas M Leurgans
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Maria Bloksgaard
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Jonathan R Brewer
- Department of Biochemistry and Molecular Biology, MEMPHYS-Center for Biomembrane Physics, University of Southern Denmark, Odense, Denmark
| | - Luis A Bagatolli
- Department of Biochemistry and Molecular Biology, MEMPHYS-Center for Biomembrane Physics, University of Southern Denmark, Odense, Denmark
| | - Maise H Fredgart
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Kristoffer Rosenstand
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Maria L Hansen
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
| | - Lars M Rasmussen
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark.,Center for Individualized Medicine in Arterial Diseases (CIMA), Odense University Hospital, Odense, Denmark
| | - Akhmadjon Irmukhamedov
- Center for Individualized Medicine in Arterial Diseases (CIMA), Odense University Hospital, Odense, Denmark.,Department of Cardiac, Thoracic and Vascular Surgery, Odense University Hospital, Odense, Denmark
| | - Jo Gr De Mey
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.,Center for Individualized Medicine in Arterial Diseases (CIMA), Odense University Hospital, Odense, Denmark.,Department of Cardiac, Thoracic and Vascular Surgery, Odense University Hospital, Odense, Denmark.,Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands
| |
Collapse
|
46
|
Endothelial dysfunction in DOCA-salt-hypertensive mice: role of neuronal nitric oxide synthase-derived hydrogen peroxide. Clin Sci (Lond) 2016; 130:895-906. [PMID: 26976926 DOI: 10.1042/cs20160062] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 03/14/2016] [Indexed: 02/07/2023]
Abstract
Endothelial dysfunction is a common problem associated with hypertension and is considered a precursor to the development of micro- and macro-vascular complications. The present study investigated the involvement of nNOS (neuronal nitric oxide synthase) and H2O2 (hydrogen peroxide) in the impaired endothelium-dependent vasodilation of the mesenteric arteries of DOCA (deoxycorticosterone acetate)-salt-hypertensive mice. Myograph studies were used to investigate the endothelium-dependent vasodilator effect of ACh (acetylcholine). The expression and phosphorylation of nNOS and eNOS (endothelial nitric oxide synthase) were studied by Western blot analysis. Immunofluorescence was used to examine the localization of nNOS and eNOS in the endothelial layer of the mesenteric artery. The vasodilator effect of ACh is strongly impaired in mesenteric arteries of DOCA-salt-hypertensive mice. Non-selective inhibition of NOS sharply reduced the effect of ACh in both DOCA-salt-hypertensive and sham mice. Selective inhibition of nNOS and catalase led to a higher reduction in the effect of ACh in sham than in DOCA-salt-hypertensive mice. Production of H2O2 induced by ACh was significantly reduced in vessels from DOCA-salt-hypertensive mice, and it was blunted after nNOS inhibition. The expression of both eNOS and nNOS was considerably lower in DOCA-salt-hypertensive mice, whereas phosphorylation of their inhibitory sites was increased. The presence of nNOS was confirmed in the endothelial layer of mesenteric arteries from both sham and DOCA-salt-hypertensive mice. These results demonstrate that endothelial dysfunction in the mesenteric arteries of DOCA-salt-hypertensive mice is associated with reduced expression and functioning of nNOS and impaired production of nNOS-derived H2O2 Such findings offer a new perspective for the understanding of endothelial dysfunction in hypertension.
Collapse
|
47
|
Differential regulation of TRPV1 channels by H2O2: implications for diabetic microvascular dysfunction. Basic Res Cardiol 2016; 111:21. [PMID: 26907473 DOI: 10.1007/s00395-016-0539-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 02/11/2016] [Indexed: 12/21/2022]
Abstract
We demonstrated previously that TRPV1-dependent coupling of coronary blood flow (CBF) to metabolism is disrupted in diabetes. A critical amount of H2O2 contributes to CBF regulation; however, excessive H2O2 impairs responses. We sought to determine the extent to which differential regulation of TRPV1 by H2O2 modulates CBF and vascular reactivity in diabetes. We used contrast echocardiography to study TRPV1 knockout (V1KO), db/db diabetic, and wild type C57BKS/J (WT) mice. H2O2 dose-dependently increased CBF in WT mice, a response blocked by the TRPV1 antagonist SB366791. H2O2-induced vasodilation was significantly inhibited in db/db and V1KO mice. H2O2 caused robust SB366791-sensitive dilation in WT coronary microvessels; however, this response was attenuated in vessels from db/db and V1KO mice, suggesting H2O2-induced vasodilation occurs, in part, via TRPV1. Acute H2O2 exposure potentiated capsaicin-induced CBF responses and capsaicin-mediated vasodilation in WT mice, whereas prolonged luminal H2O2 exposure blunted capsaicin-induced vasodilation. Electrophysiology studies re-confirms acute H2O2 exposure activated TRPV1 in HEK293A and bovine aortic endothelial cells while establishing that H2O2 potentiate capsaicin-activated TRPV1 currents, whereas prolonged H2O2 exposure attenuated TRPV1 currents. Verification of H2O2-mediated activation of intrinsic TRPV1 specific currents were found in isolated mouse coronary endothelial cells from WT mice and decreased in endothelial cells from V1KO mice. These data suggest prolonged H2O2 exposure impairs TRPV1-dependent coronary vascular signaling. This may contribute to microvascular dysfunction and tissue perfusion deficits characteristic of diabetes.
Collapse
|
48
|
Mokhtar SS, Vanhoutte PM, Leung SWS, Yusof MI, Wan Sulaiman WA, Mat Saad AZ, Suppian R, Rasool AHG. Endothelium dependent hyperpolarization-type relaxation compensates for attenuated nitric oxide-mediated responses in subcutaneous arteries of diabetic patients. Nitric Oxide 2016; 53:35-44. [DOI: 10.1016/j.niox.2015.12.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 12/23/2015] [Accepted: 12/28/2015] [Indexed: 01/17/2023]
|
49
|
Disruption of Physiological Balance Between Nitric Oxide and Endothelium-Dependent Hyperpolarization Impairs Cardiovascular Homeostasis in Mice. Arterioscler Thromb Vasc Biol 2016; 36:97-107. [DOI: 10.1161/atvbaha.115.306499] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 10/26/2015] [Indexed: 01/09/2023]
|
50
|
Wu J, Saleh MA, Kirabo A, Itani HA, Montaniel KRC, Xiao L, Chen W, Mernaugh RL, Cai H, Bernstein KE, Goronzy JJ, Weyand CM, Curci JA, Barbaro NR, Moreno H, Davies SS, Roberts LJ, Madhur MS, Harrison DG. Immune activation caused by vascular oxidation promotes fibrosis and hypertension. J Clin Invest 2015; 126:50-67. [PMID: 26595812 DOI: 10.1172/jci80761] [Citation(s) in RCA: 158] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 10/09/2015] [Indexed: 12/31/2022] Open
Abstract
Vascular oxidative injury accompanies many common conditions associated with hypertension. In the present study, we employed mouse models with excessive vascular production of ROS (tg(sm/p22phox) mice, which overexpress the NADPH oxidase subunit p22(phox) in smooth muscle, and mice with vascular-specific deletion of extracellular SOD) and have shown that these animals develop vascular collagen deposition, aortic stiffening, renal dysfunction, and hypertension with age. T cells from tg(sm/p22phox) mice produced high levels of IL-17A and IFN-γ. Crossing tg(sm/p22phox) mice with lymphocyte-deficient Rag1(-/-) mice eliminated vascular inflammation, aortic stiffening, renal dysfunction, and hypertension; however, adoptive transfer of T cells restored these processes. Isoketal-protein adducts, which are immunogenic, were increased in aortas, DCs, and macrophages of tg(sm/p22phox) mice. Autologous pulsing with tg(sm/p22phox) aortic homogenates promoted DCs of tg(sm/p22phox) mice to stimulate T cell proliferation and production of IFN-γ, IL-17A, and TNF-α. Treatment with the superoxide scavenger tempol or the isoketal scavenger 2-hydroxybenzylamine (2-HOBA) normalized blood pressure; prevented vascular inflammation, aortic stiffening, and hypertension; and prevented DC and T cell activation. Moreover, in human aortas, the aortic content of isoketal adducts correlated with fibrosis and inflammation severity. Together, these results define a pathway linking vascular oxidant stress to immune activation and aortic stiffening and provide insight into the systemic inflammation encountered in common vascular diseases.
Collapse
|