1
|
Bisia AM, Xypolita ME, Bikoff EK, Robertson EJ, Costello I. Eomesodermin in conjunction with the BAF complex promotes expansion and invasion of the trophectoderm lineage. Nat Commun 2025; 16:5079. [PMID: 40450029 DOI: 10.1038/s41467-025-60417-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 05/23/2025] [Indexed: 06/03/2025] Open
Abstract
The T-box transcription factor (TF) Eomesodermin/Tbr2 (Eomes) is essential for maintenance of the trophectoderm (TE) lineage, but the molecular mechanisms underlying this critical role remain obscure. Here, we show in trophoblast stem cells (TSCs) that Eomes partners with several TE-specific TFs as well as chromatin remodellers, including Brg1 and other subunits of the BAF complex. Degron-mediated Eomes protein depletion results in genome-wide loss of chromatin accessibility at TSC-specific loci. These overlap with a subset of sites that lose accessibility following Brg1 inhibition, suggesting that Eomes acts as a "doorstop" controlling TSC chromatin accessibility. Eomes depletion also causes transcriptional misregulation of TSC maintenance and early differentiation markers. An additional subset of Eomes-dependent genes encode intercellular/matricellular interaction and cytoskeletal components, likely explaining the implantation defects of Eomes-null embryos. Thus, Eomes promotes TE lineage maintenance by sustaining trophectoderm-specific chromatin accessibility, while promoting the gene regulatory networks that modulate expansion and cell behaviour during implantation.
Collapse
Affiliation(s)
| | | | | | | | - Ita Costello
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| |
Collapse
|
2
|
Zang X, Zhang D, Wang W, Ding Y, Wang Y, Gu S, Shang Y, Gan J, Jiang L, Meng F, Shi J, Xu Z, Huang S, Li Z, Wu Z, Gu T, Cai G, Hong L. Cross-Species Insights into Trophoblast Invasion During Placentation Governed by Immune-Featured Trophoblast Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407221. [PMID: 39234818 PMCID: PMC11558115 DOI: 10.1002/advs.202407221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/22/2024] [Indexed: 09/06/2024]
Abstract
Proper development of the placenta, the transient support organ forms after embryo implantation, is essential for a successful pregnancy. However, the regulation of trophoblast invasion, which is most important during placentation, remains largely unknown. Here, rats, mice, and pigs are used as biomedical models, used scRNA-seq to comparatively elucidate the regulatory mechanism of placental trophoblast invasion, and verified it using a human preeclampsia disease model combined with scStereo-seq. A dual-featured type of immune-featured trophoblast (iTrophoblast) is unexpectedly discovered. Interestingly, iTrophoblast only exists in invasive placentas and regulates trophoblast invasion during placentation. In a normally developing placenta, iTrophoblast gradually transforms from an immature state into a functional mature state as it develops. Whereas in the developmentally abnormal preeclamptic placenta, disordered iTrophoblast transformation leads to the accumulation of immature iTrophoblasts, thereby disrupting trophoblast invasion and ultimately leading to the progression of preeclampsia.
Collapse
Affiliation(s)
- Xupeng Zang
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine IndustryGuangdong Provincial Key Laboratory of Agro‐Animal Genomics and Molecular BreedingCollege of Animal ScienceSouth China Agricultural UniversityGuangzhou510642P. R. China
| | - Dan Zhang
- Reproductive Medicine CenterGuangdong Provincial Key Laboratory of Reproductive MedicineThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510080P. R. China
| | - Wenjing Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine IndustryGuangdong Provincial Key Laboratory of Agro‐Animal Genomics and Molecular BreedingCollege of Animal ScienceSouth China Agricultural UniversityGuangzhou510642P. R. China
| | - Yue Ding
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine IndustryGuangdong Provincial Key Laboratory of Agro‐Animal Genomics and Molecular BreedingCollege of Animal ScienceSouth China Agricultural UniversityGuangzhou510642P. R. China
| | - Yongzhong Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine IndustryGuangdong Provincial Key Laboratory of Agro‐Animal Genomics and Molecular BreedingCollege of Animal ScienceSouth China Agricultural UniversityGuangzhou510642P. R. China
| | - Shengchen Gu
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine IndustryGuangdong Provincial Key Laboratory of Agro‐Animal Genomics and Molecular BreedingCollege of Animal ScienceSouth China Agricultural UniversityGuangzhou510642P. R. China
| | - Yijun Shang
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine IndustryGuangdong Provincial Key Laboratory of Agro‐Animal Genomics and Molecular BreedingCollege of Animal ScienceSouth China Agricultural UniversityGuangzhou510642P. R. China
| | - Jianyu Gan
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine IndustryGuangdong Provincial Key Laboratory of Agro‐Animal Genomics and Molecular BreedingCollege of Animal ScienceSouth China Agricultural UniversityGuangzhou510642P. R. China
| | - Lei Jiang
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine IndustryGuangdong Provincial Key Laboratory of Agro‐Animal Genomics and Molecular BreedingCollege of Animal ScienceSouth China Agricultural UniversityGuangzhou510642P. R. China
| | - Fanming Meng
- Guangdong Key Laboratory of Animal Breeding and NutritionInstitute of Animal ScienceGuangdong Academy of Agricultural SciencesGuangzhou510640P. R. China
| | - Junsong Shi
- Yunfu Subcenter of Guangdong Laboratory for Lingnan Modern AgricultureYunfu527300P. R. China
| | - Zheng Xu
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine IndustryGuangdong Provincial Key Laboratory of Agro‐Animal Genomics and Molecular BreedingCollege of Animal ScienceSouth China Agricultural UniversityGuangzhou510642P. R. China
- Key Laboratory of South China Modern Biological Seed IndustryMinistry of Agriculture and Rural AffairsGuangzhou510520P. R. China
| | - Sixiu Huang
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine IndustryGuangdong Provincial Key Laboratory of Agro‐Animal Genomics and Molecular BreedingCollege of Animal ScienceSouth China Agricultural UniversityGuangzhou510642P. R. China
- Key Laboratory of South China Modern Biological Seed IndustryMinistry of Agriculture and Rural AffairsGuangzhou510520P. R. China
| | - Zicong Li
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine IndustryGuangdong Provincial Key Laboratory of Agro‐Animal Genomics and Molecular BreedingCollege of Animal ScienceSouth China Agricultural UniversityGuangzhou510642P. R. China
- Key Laboratory of South China Modern Biological Seed IndustryMinistry of Agriculture and Rural AffairsGuangzhou510520P. R. China
| | - Zhenfang Wu
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine IndustryGuangdong Provincial Key Laboratory of Agro‐Animal Genomics and Molecular BreedingCollege of Animal ScienceSouth China Agricultural UniversityGuangzhou510642P. R. China
- Key Laboratory of South China Modern Biological Seed IndustryMinistry of Agriculture and Rural AffairsGuangzhou510520P. R. China
| | - Ting Gu
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine IndustryGuangdong Provincial Key Laboratory of Agro‐Animal Genomics and Molecular BreedingCollege of Animal ScienceSouth China Agricultural UniversityGuangzhou510642P. R. China
- Key Laboratory of South China Modern Biological Seed IndustryMinistry of Agriculture and Rural AffairsGuangzhou510520P. R. China
| | - Gengyuan Cai
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine IndustryGuangdong Provincial Key Laboratory of Agro‐Animal Genomics and Molecular BreedingCollege of Animal ScienceSouth China Agricultural UniversityGuangzhou510642P. R. China
- Yunfu Subcenter of Guangdong Laboratory for Lingnan Modern AgricultureYunfu527300P. R. China
- Key Laboratory of South China Modern Biological Seed IndustryMinistry of Agriculture and Rural AffairsGuangzhou510520P. R. China
| | - Linjun Hong
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine IndustryGuangdong Provincial Key Laboratory of Agro‐Animal Genomics and Molecular BreedingCollege of Animal ScienceSouth China Agricultural UniversityGuangzhou510642P. R. China
- Key Laboratory of South China Modern Biological Seed IndustryMinistry of Agriculture and Rural AffairsGuangzhou510520P. R. China
| |
Collapse
|
3
|
Basak T, Ain R. Molecular regulation of trophoblast stem cell self-renewal and giant cell differentiation by the Hippo components YAP and LATS1. Stem Cell Res Ther 2022; 13:189. [PMID: 35526072 PMCID: PMC9080189 DOI: 10.1186/s13287-022-02844-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/22/2022] [Indexed: 11/25/2022] Open
Abstract
Background Trophoblast stem cells (TSCs), the precursors of trophoblast cells of placenta, possess the potential to differentiate into various trophoblastic subtypes in vitro. Establishment of extraembryonic trophoblastic lineage is preceded by the “outside versus inside” positional information in preimplantation embryos, critically synchronized by the Hippo components. Abundant expression of Hippo effector YAP in TSCs and differentiated cells with paucity of information on Hippo regulation of TSC proliferation/differentiation led us test the hypothesis that Hippo dynamics is one of the regulators of TSC proliferation/differentiation. Methods Blastocyst-derived murine TSCs were used. Dynamics of Hippo components were analyzed using immunofluorescence, western blotting, immunoprecipitation, qRT-PCR. Interaction studies were performed using full-length and deletion constructs. BrdU incorporation assay, flow cytometry-based polyploidy analysis and confocal microscopy were used to decipher the underlying mechanism. Results YAP translocates to the nucleus in TSCs and utilizes its WW2 domain to interact with the PPQY motif of the stemness factor, CDX2. YAP limits TSC proliferation with associated effect on CDX2 target CyclinD1. Trophoblast giant cells (TGC) differentiation is associated with cytoplasmic retention of YAP, heightened pYAPSer127, decrease in the level of the core Hippo component, LATS1, which thereby impedes LATS1-LIMK2 association. Decreased LATS1-LIMK2 complex formation in TGCs was associated with elevated pLIMK2Thr505 as well as its target pCOFILINSer3. Precocious overexpression of LATS1 during trophoblast differentiation decreased TGC marker, Prl2c2, diminished pLIMK2Thr505 and inactive COFILIN (pCOFILINSer3) while COFILIN-phosphatase, CHRONOPHIN remained unchanged. LATS1 overexpression inhibited trophoblast endoreduplication with smaller-sized TGC-nuclei, lower ploidy level and disintegrated actin filaments. Inhibition of LIMK2 activity recapitulated the effects of LATS1 overexpression in trophoblast cells. Conclusion These results unveil a multilayered regulation of trophoblast self-renewal and differentiation by the Hippo components. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02844-w.
Collapse
Affiliation(s)
- Trishita Basak
- Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, West Bengal, 700032, India
| | - Rupasri Ain
- Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, West Bengal, 700032, India.
| |
Collapse
|
4
|
Abstract
Differentiation is the process by which a cell activates the expression of tissue-specific genes, downregulates the expression of potency markers, and acquires the phenotypic characteristics of its mature fate. The signals that regulate differentiation include biochemical and mechanical factors within the surrounding microenvironment. We describe recent breakthroughs in our understanding of the mechanical control mechanisms that regulate differentiation, with a specific emphasis on the differentiation events that build the early mouse embryo. Engineering approaches to reproducibly mimic the mechanical regulation of differentiation will permit new insights into early development and applications in regenerative medicine. Expected final online publication date for the Annual Review of Biomedical Engineering, Volume 24 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Celeste M Nelson
- Departments of Chemical & Biological Engineering and Molecular Biology, Princeton University, Princeton, New Jersey USA;
| |
Collapse
|
5
|
Cao C, Dai Y, Wang Z, Zhao G, Duan H, Zhu X, Wang J, Zheng M, Weng Q, Wang L, Gou W, Zhang H, Li C, Liu D, Hu Y. The role of junctional adhesion molecule-C in trophoblast differentiation and function during normal pregnancy and preeclampsia. Placenta 2022; 118:55-65. [PMID: 35032792 DOI: 10.1016/j.placenta.2022.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/19/2021] [Accepted: 01/05/2022] [Indexed: 11/23/2022]
Abstract
INTRODUCTION Junctional adhesion molecule-C (JAM-C) is an important regulator of many physiological processes, ranging from maintenance of tight junction integrity of epithelia to regulation of cell migration, homing and proliferation. Preeclampsia (PE) is a trophoblast-related syndrome with abnormal placentation and insufficient trophoblast invasion. However, the role of JAM-C in normal pregnancy and PE pathogenesis is unknown. METHODS The expression and location of JAM-C in placentas were determined by quantitative real-time PCR (qRT-PCR), western blot and immunohistochemistry. The expression of differentiation and invasion markers were detected by qRT-PCR or western blot. The effects of JAM-C on migration and invasion of trophoblasts were examined using wound-healing and invasion assays. Additionally, a mouse model was established by injection of JAM-C-positive adenovirus to explore the effects of JAM-C in vivo. RESULTS In normal pregnancy, JAM-C was preferentially expressed on cytotrophoblast (CTB) progenitors and progressively decreased when acquiring invasion properties with gestation advance. However, in PE patients, the expression of JAM-C was upregulated in extravillous trophoblasts (EVTs) and syncytiotrophoblasts (SynTs) of placentas. It was also demonstrated that JAM-C suppressed the differentiation of CTBs into EVTs in vitro. Consistently, JAM-C inhibited the migration and invasion capacities of EVTs through GSK3β/β-catenin signaling pathway. Importantly, Ad-JAMC-infected mouse model mimicked the phenotype of human PE. DISCUSSION JAM-C plays an important role in normal placentation and upregulated JAM-C in placentas contributes to PE development.
Collapse
Affiliation(s)
- Chenrui Cao
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Yimin Dai
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Zhiyin Wang
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Guangfeng Zhao
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Honglei Duan
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Xiangyu Zhu
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Jingmei Wang
- Department of Pathology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Mingming Zheng
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Qiao Weng
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Limin Wang
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Wenjing Gou
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Haili Zhang
- Department of Obstetrics and Gynecology, The First People's Hospital of Mangya, Qinghai, China
| | - Chanjuan Li
- Department of Obstetrics, Women's Hospital of Nanjing Medical University, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Heath Care Hospital, Nanjing, China
| | - Dan Liu
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.
| | - Yali Hu
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.
| |
Collapse
|
6
|
Perez-Garcia V, Lea G, Lopez-Jimenez P, Okkenhaug H, Burton GJ, Moffett A, Turco MY, Hemberger M. BAP1/ASXL complex modulation regulates epithelial-mesenchymal transition during trophoblast differentiation and invasion. eLife 2021; 10:63254. [PMID: 34170818 PMCID: PMC8233037 DOI: 10.7554/elife.63254] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 06/14/2021] [Indexed: 12/28/2022] Open
Abstract
Normal function of the placenta depends on the earliest developmental stages when trophoblast cells differentiate and invade into the endometrium to establish the definitive maternal-fetal interface. Previously, we identified the ubiquitously expressed tumour suppressor BRCA1-associated protein 1 (BAP1) as a central factor of a novel molecular node controlling early mouse placentation. However, functional insights into how BAP1 regulates trophoblast biology are still missing. Using CRISPR/Cas9 knockout and overexpression technology in mouse trophoblast stem cells, here we demonstrate that the downregulation of BAP1 protein is essential to trigger epithelial-mesenchymal transition (EMT) during trophoblast differentiation associated with a gain of invasiveness. Moreover, we show that the function of BAP1 in suppressing EMT progression is dependent on the binding of BAP1 to additional sex comb-like (ASXL1/2) proteins to form the polycomb repressive deubiquitinase (PR-DUB) complex. Finally, both endogenous expression patterns and BAP1 overexpression experiments in human trophoblast stem cells suggest that the molecular function of BAP1 in regulating trophoblast differentiation and EMT progression is conserved in mice and humans. Our results reveal that the physiological modulation of BAP1 determines the invasive properties of the trophoblast, delineating a new role of the BAP1 PR-DUB complex in regulating early placentation.
Collapse
Affiliation(s)
- Vicente Perez-Garcia
- Epigenetics Programme, The Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom.,Centre for Trophoblast Research, Department of Physiology, Development and Neurosicence, University of Cambridge, Cambridge, United Kingdom.,Centro de Investigación Príncipe Felipe, Eduardo Primo Yúfera, Valencia, Spain.,Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Georgia Lea
- Epigenetics Programme, The Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom
| | | | - Hanneke Okkenhaug
- Epigenetics Programme, The Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom
| | - Graham J Burton
- Centre for Trophoblast Research, Department of Physiology, Development and Neurosicence, University of Cambridge, Cambridge, United Kingdom
| | - Ashley Moffett
- Centre for Trophoblast Research, Department of Physiology, Development and Neurosicence, University of Cambridge, Cambridge, United Kingdom.,Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Margherita Y Turco
- Centre for Trophoblast Research, Department of Physiology, Development and Neurosicence, University of Cambridge, Cambridge, United Kingdom.,Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Myriam Hemberger
- Epigenetics Programme, The Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom.,Centre for Trophoblast Research, Department of Physiology, Development and Neurosicence, University of Cambridge, Cambridge, United Kingdom.,Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada
| |
Collapse
|
7
|
Peng W, Liu Y, Qi H, Li Q. Alpha-actinin-4 is essential for maintaining normal trophoblast proliferation and differentiation during early pregnancy. Reprod Biol Endocrinol 2021; 19:48. [PMID: 33757527 PMCID: PMC7986381 DOI: 10.1186/s12958-021-00733-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/17/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Proper differentiation of trophoblasts in the human placenta is essential for a successful pregnancy, whereas abnormal regulation of this process may lead to adverse pregnancy outcomes, especially preeclampsia (PE). However, the underlying mechanism of trophoblast differentiation remains unclear. Previous studies have reported the involvement of alpha-actinin-4 (ACTN4) in the actin cytoskeleton dynamics and motility. Hence, we hypothesized that ACTN4 may act as an important regulator in the normal proliferation and differentiation of trophoblasts during early pregnancy. METHOD To test this hypothesis, we collected villous tissues from women undergoing a legal pregnancy termination during 6-10 weeks of gestation and explanted them for cell culture and siRNA transfection. We also obtained placental tissues from PE patients and healthy pregnant women and isolated the primary cytotrophoblast (CTB) cells. The expression of ACTN4 in the CTBs of placental villi and during the differentiation of CTBs into STBs was detected by immunofluorescence, immunohistochemistry (IHC), and EdU proliferation assays. Besides, villous explant, Matrigel invasion, transwell migration assay, and Wound-healing assay were performed to identify the possible role of ACTN4 in the outgrowth of explants and the invasion, migration, and proliferation of cell column trophoblasts (CCTs). Western blot analysis was carried out to compare the protein expression level of AKT, Snail activities, and epithelial-to-mesenchymal transition (EMT) in the villi or HTR8/SVneo cells with ACTN4 knockdown. RESULTS ACTN4 was highly expressed in CTB cells and interstitial extravillous trophoblast (iEVT) cells but not found in the syncytiotrophoblast (STB) cells in the first trimester villi. Downregulation of ACTN4 led to reduced trophoblast proliferation and explant outgrowth ex vivo, as well as iEVT invasion and migration in vitro due to disrupt of actin filaments organization. Such ACTN4 inhibition also decreased AKT and Snail activities and further impeded the EMT process. In addition, ACTN4 expression was found to be downregulated in the iEVTs from preeclamptic placentas. CONCLUSIONS Our findings suggest that ACTN4 may act as an important regulator of trophoblast proliferation and differentiation during early pregnancy, and dysregulation of this protein may contribute to preeclampsia pathogenesis.
Collapse
Affiliation(s)
- Wei Peng
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, 400016, Chongqing, China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, 400016, Chongqing, China
- Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, 400016, Chongqing, China
| | - Ying Liu
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, 400016, Chongqing, China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, 400016, Chongqing, China
- Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, 400016, Chongqing, China
| | - Hongbo Qi
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, 400016, Chongqing, China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, 400016, Chongqing, China
- Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, 400016, Chongqing, China
| | - Qingshu Li
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, 400016, Chongqing, China.
- Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, 400016, Chongqing, China.
- Department of Pathology, School of Basic Medicine, Chongqing Medical University, 1 Yixueyuan Rd, Yuzhong District, 400016, Chongqing, China.
| |
Collapse
|
8
|
Ojosnegros S, Seriola A, Godeau AL, Veiga A. Embryo implantation in the laboratory: an update on current techniques. Hum Reprod Update 2021; 27:501-530. [PMID: 33410481 DOI: 10.1093/humupd/dmaa054] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 07/18/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The embryo implantation process is crucial for the correct establishment and progress of pregnancy. During implantation, the blastocyst trophectoderm cells attach to the epithelium of the endometrium, triggering intense cell-to-cell crosstalk that leads to trophoblast outgrowth, invasion of the endometrial tissue, and formation of the placenta. However, this process, which is vital for embryo and foetal development in utero, is still elusive to experimentation because of its inaccessibility. Experimental implantation is cumbersome and impractical in adult animal models and is inconceivable in humans. OBJECTIVE AND RATIONALE A number of custom experimental solutions have been proposed to recreate different stages of the implantation process in vitro, by combining a human embryo (or a human embryo surrogate) and endometrial cells (or a surrogate for the endometrial tissue). In vitro models allow rapid high-throughput interrogation of embryos and cells, and efficient screening of molecules, such as cytokines, drugs, or transcription factors, that control embryo implantation and the receptivity of the endometrium. However, the broad selection of available in vitro systems makes it complicated to decide which system best fits the needs of a specific experiment or scientific question. To orient the reader, this review will explore the experimental options proposed in the literature, and classify them into amenable categories based on the embryo/cell pairs employed.The goal is to give an overview of the tools available to study the complex process of human embryo implantation, and explain the differences between them, including the advantages and disadvantages of each system. SEARCH METHODS We performed a comprehensive review of the literature to come up with different categories that mimic the different stages of embryo implantation in vitro, ranging from initial blastocyst apposition to later stages of trophoblast invasion or gastrulation. We will also review recent breakthrough advances on stem cells and organoids, assembling embryo-like structures and endometrial tissues. OUTCOMES We highlight the most relevant systems and describe the most significant experiments. We focus on in vitro systems that have contributed to the study of human reproduction by discovering molecules that control implantation, including hormones, signalling molecules, transcription factors and cytokines. WIDER IMPLICATIONS The momentum of this field is growing thanks to the use of stem cells to build embryo-like structures and endometrial tissues, and the use of bioengineering to extend the life of embryos in culture. We propose to merge bioengineering methods derived from the fields of stem cells and reproduction to develop new systems covering a wider window of the implantation process.
Collapse
Affiliation(s)
- Samuel Ojosnegros
- Bioengineering in Reproductive Health, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Anna Seriola
- Bioengineering in Reproductive Health, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Amélie L Godeau
- Bioengineering in Reproductive Health, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Anna Veiga
- B arcelona Stem Cell Bank, Regenerative Medicine Programme, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Hospital Duran i Reynals, Barcelona, Spain.,Reproductive Medicine Service, Dexeus Mujer, Hospital Universitari Dexeus, Barcelona, Spain
| |
Collapse
|
9
|
Ullah R, Naz A, Akram HS, Ullah Z, Tariq M, Mithani A, Faisal A. Transcriptomic analysis reveals differential gene expression, alternative splicing, and novel exons during mouse trophoblast stem cell differentiation. Stem Cell Res Ther 2020; 11:342. [PMID: 32762732 PMCID: PMC7409654 DOI: 10.1186/s13287-020-01848-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/15/2020] [Accepted: 07/22/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Differentiation of mouse trophoblast stem cells (TSCs) to trophoblast giant cells (TGCs) has been widely used as a model system to study placental development and function. While several differentially expressed genes, including regulators of TSC differentiation, have been identified, a comprehensive analysis of the global expression of genes and splice variants in the two cell types has not been reported. RESULTS Here, we report ~ 7800 differentially expressed genes in TGCs compared to TSCs which include regulators of the cell cycle, apoptosis, cytoskeleton, cell mobility, embryo implantation, metabolism, and various signaling pathways. We show that several mitotic proteins, including Aurora A kinase, were downregulated in TGCs and that the activity of Aurora A kinase is required for the maintenance of TSCs. We also identify hitherto undiscovered, cell-type specific alternative splicing events in 31 genes in the two cell types. Finally, we also report 19 novel exons in 12 genes which are expressed in both TSCs and TGCs. CONCLUSIONS Overall, our results uncover several potential regulators of TSC differentiation and TGC function, thereby providing a valuable resource for developmental and molecular biologists interested in the study of stem cell differentiation and embryonic development.
Collapse
Affiliation(s)
- Rahim Ullah
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Ambreen Naz
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Hafiza Sara Akram
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Zakir Ullah
- Virginia Commonwealth University, Richmond, USA
| | - Muhammad Tariq
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Aziz Mithani
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan.
| | - Amir Faisal
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan.
| |
Collapse
|
10
|
Wang H, Wang P, Liang X, Li W, Yang M, Ma J, Yue W, Fan S. Down-regulation of endothelial protein C receptor promotes preeclampsia by affecting actin polymerization. J Cell Mol Med 2020; 24:3370-3383. [PMID: 32003123 PMCID: PMC7131931 DOI: 10.1111/jcmm.15011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 12/06/2019] [Accepted: 12/29/2019] [Indexed: 12/21/2022] Open
Abstract
Preeclampsia is a severe pregnancy-related disease that is found in 3%-5% of pregnancies worldwide and is primarily related to the decreased proliferation and invasion of trophoblast cells and abnormal uterine spiral artery remodelling. However, studies on the pathogenesis of placental trophoblasts are insufficient, and the aetiology of PE remains unclear. Here, we report that endothelial protein C receptor (EPCR), a transmembrane glycoprotein, was down-regulated in placentas from preeclamptic patients. Moreover, lack of EPCR significantly reduced the trophoblast cell proliferation, invasion and tube formation capabilities. Microscale thermophoresis analysis showed that EPCR directly bound to protease-activated receptor 1 (PAR-1), a G protein-coupled receptor. This change resulted in a substantial reduction in active Rac1 and caused excessive actin rearrangement. Our findings reveal a previously unidentified role of EPCR in the regulation of trophoblast proliferation, invasion and tube formation through promotion of actin polymerization, which is required for normal placental development.
Collapse
Affiliation(s)
- Hao Wang
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China.,Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecological Diseases, Shenzhen, China
| | - Pan Wang
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Xiaoling Liang
- Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenjing Li
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Mo Yang
- Medical Center for Human Reproduction, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Jihong Ma
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Wei Yue
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Shangrong Fan
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China.,Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecological Diseases, Shenzhen, China
| |
Collapse
|
11
|
Zhao H, Klausen C, Zhu H, Chang H, Li Y, Leung PCK. Bone morphogenetic protein 2 promotes human trophoblast cell invasion and endothelial‐like tube formation through ID1‐mediated upregulation of IGF binding protein‐3. FASEB J 2020; 34:3151-3164. [PMID: 31908038 DOI: 10.1096/fj.201902168rr] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 12/11/2019] [Accepted: 12/19/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Hong‐Jin Zhao
- Department of Cardiology Shandong Provincial Hospital affiliated to Shandong University Jinan P.R. China
- Department of Obstetrics and Gynaecology BC Children's Hospital Research Institute University of British Columbia Vancouver BC Canada
| | - Christian Klausen
- Department of Obstetrics and Gynaecology BC Children's Hospital Research Institute University of British Columbia Vancouver BC Canada
| | - Hua Zhu
- Department of Obstetrics and Gynaecology BC Children's Hospital Research Institute University of British Columbia Vancouver BC Canada
| | - Hsun‐Ming Chang
- Department of Obstetrics and Gynaecology BC Children's Hospital Research Institute University of British Columbia Vancouver BC Canada
| | - Yan Li
- School of Medicine Shandong University Jinan China
- Center for Reproductive Medicine Shandong University Jinan China
- The Key Laboratory of Reproductive Endocrinology Ministry of Education Jinan China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics Jinan China
| | - Peter C. K. Leung
- Department of Obstetrics and Gynaecology BC Children's Hospital Research Institute University of British Columbia Vancouver BC Canada
| |
Collapse
|
12
|
RITA Is Expressed in Trophoblastic Cells and Is Involved in Differentiation Processes of the Placenta. Cells 2019; 8:cells8121484. [PMID: 31766533 PMCID: PMC6953008 DOI: 10.3390/cells8121484] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/13/2019] [Accepted: 11/19/2019] [Indexed: 12/16/2022] Open
Abstract
Preeclampsia (PE) remains a leading cause of maternal and perinatal mortality and morbidity worldwide. Its pathogenesis has not been fully elucidated and no causal therapy is currently available. It is of clinical relevance to decipher novel molecular biomarkers. RITA (RBP-J (recombination signal binding protein J)-interacting and tubulin-associated protein) has been identified as a negative modulator of the Notch pathway and as a microtubule-associated protein important for cell migration and invasion. In the present work, we have systematically studied RITA’s expression in primary placental tissues from patients with early- and late-onset PE as well as in various trophoblastic cell lines. RITA is expressed in primary placental tissues throughout gestation, especially in proliferative villous cytotrophoblasts, in the terminally differentiated syncytiotrophoblast, and in migrating extravillous trophoblasts. RITA’s messenger RNA (mRNA) level is decreased in primary tissue samples from early-onset PE patients. The deficiency of RITA impairs the motility and invasion capacity of trophoblastic cell lines, and compromises the fusion ability of trophoblast-derived choriocarcinoma cells. These data suggest that RITA may play important roles in the development of the placenta and possibly in the pathogenesis of PE.
Collapse
|
13
|
Peng W, Tong C, Li L, Huang C, Ran Y, Chen X, Bai Y, Liu Y, Zhao J, Tan B, Luo X, Wang H, Wen L, Zhang C, Zhang H, Ding Y, Qi H, Baker PN. Trophoblastic proliferation and invasion regulated by ACTN4 is impaired in early onset preeclampsia. FASEB J 2019; 33:6327-6338. [PMID: 30776251 DOI: 10.1096/fj.201802058rr] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Successful pregnancy requires normal placentation, which largely depends on the tight regulation of proliferation, invasion, and migration of trophoblast cells. Abnormal functioning of trophoblast cells may cause failure of uterine spiral artery remodeling, which may be related to pregnancy-related disorders, such as preeclampsia. Here, we reported that an actin-binding protein, α-actinin (ACTN)4, was dysregulated in placentas from early onset preeclampsia. Moreover, knockdown of ACTN4 markedly inhibited trophoblast cell proliferation by reducing AKT membrane translocation. Furthermore, E-cadherin regulated ACTN4 and β-catenin colocalization on trophoblast cell podosomes, and ACTN4 down-regulation suppressed the E-cadherin-induced cell invasion increase via depolymerizing actin filaments. Moreover, loss of ACTN4 recapitulated a number of the features of human preeclampsia. Therefore, our data indicate that ACNT4 plays a role in trophoblast function and is required for normal placental development.-Peng, W., Tong, C., Li, L., Huang, C., Ran, Y., Chen, X., Bai, Y., Liu, Y., Zhao, J., Tan, B., Luo, X., Wang, H., Wen, L., Zhang, C., Zhang, H., Ding, Y., Qi, H., Baker, P. N. Trophoblastic proliferation and invasion regulated by ACTN4 is impaired in early onset preeclampsia.
Collapse
Affiliation(s)
- Wei Peng
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing Medical University, Chongqing, China.,International Collaborative Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Chao Tong
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing Medical University, Chongqing, China.,International Collaborative Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Lei Li
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing Medical University, Chongqing, China.,International Collaborative Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing, China.,Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Chengyu Huang
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Yuxin Ran
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing Medical University, Chongqing, China.,International Collaborative Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Xuehai Chen
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing Medical University, Chongqing, China.,International Collaborative Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Yuxiang Bai
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing Medical University, Chongqing, China.,International Collaborative Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Yamin Liu
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing Medical University, Chongqing, China.,International Collaborative Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Jianlin Zhao
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing Medical University, Chongqing, China.,International Collaborative Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Bin Tan
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing Medical University, Chongqing, China.,International Collaborative Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Xiaofang Luo
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing Medical University, Chongqing, China.,International Collaborative Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Hao Wang
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing Medical University, Chongqing, China.,International Collaborative Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Li Wen
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing Medical University, Chongqing, China.,International Collaborative Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Chen Zhang
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing Medical University, Chongqing, China.,International Collaborative Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Hua Zhang
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing Medical University, Chongqing, China.,International Collaborative Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Yubin Ding
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Hongbo Qi
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing Medical University, Chongqing, China.,International Collaborative Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Philip N Baker
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing Medical University, Chongqing, China.,International Collaborative Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing, China.,College of Medicine, Biological Sciences, and Psychology, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
14
|
S100P enhances the motility and invasion of human trophoblast cell lines. Sci Rep 2018; 8:11488. [PMID: 30065265 PMCID: PMC6068119 DOI: 10.1038/s41598-018-29852-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 06/26/2018] [Indexed: 01/11/2023] Open
Abstract
S100P has been shown to be a marker for carcinogenesis where its expression in solid tumours correlates with metastasis and a poor patient prognosis. This protein's role in any physiological process is, however, unknown. Here we first show that S100P is expressed both in trophoblasts in vivo as well as in some corresponding cell lines in culture. We demonstrate that S100P is predominantly expressed during the early stage of placental formation with its highest expression levels occurring during the first trimester of gestation, particularly in the invading columns and anchoring villi. Using gain or loss of function studies through overexpression or knockdown of S100P expression respectively, our work shows that S100P stimulates both cell motility and cellular invasion in different trophoblastic and first trimester EVT cell lines. Interestingly, cell invasion was seen to be more dramatically affected than cell migration. Our results suggest that S100P may be acting as an important regulator of trophoblast invasion during placentation. This finding sheds new light on a hitherto uncharacterized molecular mechanism which may, in turn, lead to the identification of novel targets that may explain why significant numbers of confirmed human pregnancies suffer complications through poor placental implantation.
Collapse
|
15
|
Chakraborty S, Ain R. NOSTRIN: A novel modulator of trophoblast giant cell differentiation. Stem Cell Res 2018; 31:135-146. [PMID: 30086473 DOI: 10.1016/j.scr.2018.07.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/21/2018] [Accepted: 07/27/2018] [Indexed: 12/13/2022] Open
Abstract
Differentiation-dependent expression of NOSTRIN in murine trophoblast cells prompted investigation on NOSTRIN's function in trophoblast differentiation. We show here that NOSTRIN levels increased in both mouse and rat placenta during gestation. NOSTRIN expression was not co-related to expression of eNOS precluding its eNOS mediated function. NOSTRIN transcripts were identified in trophoblast cells of the placenta, predominantly in trophoblast giant cells (TGC). Precocious over-expression of NOSTRIN during differentiation of trophoblast stem cells led to up-regulation of genetic markers associated with invasion (Prl4a1, Prl2a1) and TGC formation (Prl2c2, Prl3d1, Prl3b1). The functional consequence of NOSTRIN over-expression was increased TGC formation and trophoblast cell invasion. Furthermore, number of polyploid TGCs that arise by endoreduplication, were higher in presence of NOSTRIN. Early induction of NOSTRIN was associated with substantial decrease in G/F actin ratio and augmentation of N-WASP-Dynamin-NOSTRIN ternary complex formation that might be partially responsible for nucleation of actin filaments. NOSTRIN also formed a complex with Cdk1 and increased phosphorylation of T14 and Y15 residues that inhibits cytokinesis. Interestingly, SH3 domain deleted NOSTRIN was ineffective in eliciting NOSTRIN's function in differentiating trophoblast cells. These findings demonstrate that NOSTRIN potentiates trophoblast differentiation towards TGC trajectory that is critical for hemochorial placentation.
Collapse
Affiliation(s)
- Shreeta Chakraborty
- Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, West Bengal, India
| | - Rupasri Ain
- Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, West Bengal, India.
| |
Collapse
|
16
|
A Critical Role of TET1/2 Proteins in Cell-Cycle Progression of Trophoblast Stem Cells. Stem Cell Reports 2018; 10:1355-1368. [PMID: 29576538 PMCID: PMC5998911 DOI: 10.1016/j.stemcr.2018.02.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 02/21/2018] [Accepted: 02/23/2018] [Indexed: 12/25/2022] Open
Abstract
The ten-eleven translocation (TET) proteins are well known for their role in maintaining naive pluripotency of embryonic stem cells. Here, we demonstrate that, jointly, TET1 and TET2 also safeguard the self-renewal potential of trophoblast stem cells (TSCs) and have partially redundant roles in maintaining the epithelial integrity of TSCs. For the more abundantly expressed TET1, we show that this is achieved by binding to critical epithelial genes, notably E-cadherin, which becomes hyper-methylated and downregulated in the absence of TET1. The epithelial-to-mesenchymal transition phenotype of mutant TSCs is accompanied by centrosome duplication and separation defects. Moreover, we identify a role of TET1 in maintaining cyclin B1 stability, thereby acting as facilitator of mitotic cell-cycle progression. As a result, Tet1/2 mutant TSCs are prone to undergo endoreduplicative cell cycles leading to the formation of polyploid trophoblast giant cells. Taken together, our data reveal essential functions of TET proteins in the trophoblast lineage. TET1 and TET2 are critical for trophoblast stem cell (TSC) maintenance TET1 and TET2 safeguard TSC integrity by driving expression of epithelial genes TET1/2 null TSCs exhibit cell-cycle defects and become polyploid TET1 binds to and helps stabilize cyclin B1, thereby ensuring G2/M progression
Collapse
|
17
|
Lamm KYB, Johnson ML, Baker Phillips J, Muntifering MB, James JM, Jones HN, Redline RW, Rokas A, Muglia LJ. Inverted formin 2 regulates intracellular trafficking, placentation, and pregnancy outcome. eLife 2018; 7. [PMID: 29309034 PMCID: PMC5758111 DOI: 10.7554/elife.31150] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 12/12/2017] [Indexed: 12/17/2022] Open
Abstract
Healthy pregnancy depends on proper placentation-including proliferation, differentiation, and invasion of trophoblast cells-which, if impaired, causes placental ischemia resulting in intrauterine growth restriction and preeclampsia. Mechanisms regulating trophoblast invasion, however, are unknown. We report that reduction of Inverted formin 2 (INF2) alters intracellular trafficking and significantly impairs invasion in a model of human extravillous trophoblasts. Furthermore, global loss of Inf2 in mice recapitulates maternal and fetal phenotypes of placental insufficiency. Inf2-/- dams have reduced spiral artery numbers and late gestational hypertension with resolution following delivery. Inf2-/- fetuses are growth restricted and demonstrate changes in umbilical artery Doppler consistent with poor placental perfusion and fetal distress. Loss of Inf2 increases fetal vascular density in the placenta and dysregulates trophoblast expression of angiogenic factors. Our data support a critical regulatory role for INF2 in trophoblast invasion-a necessary process for placentation-representing a possible future target for improving placentation and fetal outcomes.
Collapse
Affiliation(s)
- Katherine Young Bezold Lamm
- Center for the Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, United States.,Molecular and Developmental Biology Graduate Program, University of Cincinnati College of Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, United States.,Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Maddison L Johnson
- Department of Biological Sciences, Vanderbilt University, Nashville, United States
| | - Julie Baker Phillips
- Department of Biological Sciences, Vanderbilt University, Nashville, United States
| | - Michael B Muntifering
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Jeanne M James
- The Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Helen N Jones
- Molecular and Developmental Biology Graduate Program, University of Cincinnati College of Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Raymond W Redline
- Department of Pathology, University Hospitals Cleveland Medical Center, Cleveland, United States
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, United States
| | - Louis J Muglia
- Center for the Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, United States.,Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| |
Collapse
|
18
|
Maruyama Y, Matsubara S, Kimura AP. Mouse prolyl oligopeptidase plays a role in trophoblast stem cell differentiation into trophoblast giant cell and spongiotrophoblast. Placenta 2017; 53:8-15. [PMID: 28487025 DOI: 10.1016/j.placenta.2017.03.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/02/2017] [Accepted: 03/07/2017] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Prolyl oligopeptidase (prolyl endopeptidase, Prep), a multifunctional protease hydrolyzing -Pro-X- peptide bonds, is highly expressed in the mouse placenta, but the function during development is not known. We explored the possibility of Prep's involvement in placental differentiation. METHODS We cultured trophoblast stem cells (TSCs) derived from the E6.5 mouse embryo and investigated the detailed expression pattern of Prep during their differentiation. Prep-specific inhibitors were added to the TSC culture, and the effect on the differentiation was assessed by microscopic observation and the expression of marker gene for each placental cell. RESULTS During TSC differentiation for 6 days, Prep was constantly detected at mRNA, protein, and activity levels, and the protein was found mainly in the cytoplasm. The addition of 30 μM and 10 μM SUAM-14746, a Prep-specific inhibitor, effectively inhibited the differentiation into spongiotrophoblasts (SpTs) and trophoblast giant cells (TGCs), while the TSC viability was not affected. 5 μM SUAM-14746 impaired the differentiation into SpTs, and 1 μM SUAM-14746 exhibited no effects. Another Prep-specific inhibitor, KYP-2047, did not affect the differentiation. We confirmed efficient inhibition of Prep enzymatic activity in TSCs by both inhibitors. CONCLUSION The dose-dependent effect of SUAM-14746 on TSCs suggests that Prep plays an important role in the differentiation into SpTs and TGCs in the mouse placenta.
Collapse
Affiliation(s)
- Yuki Maruyama
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Shin Matsubara
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Atsushi P Kimura
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan; Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan.
| |
Collapse
|
19
|
Redundant functions of I-BAR family members, IRSp53 and IRTKS, are essential for embryonic development. Sci Rep 2017; 7:40485. [PMID: 28067313 PMCID: PMC5220365 DOI: 10.1038/srep40485] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 12/06/2016] [Indexed: 12/29/2022] Open
Abstract
The insulin receptor substrate of 53 kDa, IRSp53, is an adaptor protein that works with activated GTPases, Cdc42 and Rac, to modulate actin dynamics and generate membrane protrusions in response to cell signaling. Adult mice that lack IRSp53 fail to regulate synaptic plasticity and exhibit hippocampus-associated learning deficiencies. Here, we show that 60% of IRSp53 null embryos die at mid to late gestation, indicating a vital IRSp53 function in embryonic development. We find that IRSp53 KO embryos displayed pleiotropic phenotypes such as developmental delay, oligodactyly and subcutaneous edema, and died of severely impaired cardiac and placental development. We further show that double knockout of IRSp53 and its closest family member, IRTKS, resulted in exacerbated placental abnormalities, particularly in spongiotrophoblast differentiation and development, giving rise to complete embryonic lethality. Hence, our findings demonstrate a hitherto under-appreciated IRSp53 function in embryonic development, and further establish an essential genetic interaction between IRSp53 and IRTKS in placental formation.
Collapse
|
20
|
Xiao Y, Ma H, Wan P, Qin D, Wang X, Zhang X, Xiang Y, Liu W, Chen J, Yi Z, Li L. Trp-Asp (WD) Repeat Domain 1 Is Essential for Mouse Peri-implantation Development and Regulates Cofilin Phosphorylation. J Biol Chem 2016; 292:1438-1448. [PMID: 27994054 DOI: 10.1074/jbc.m116.759886] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 12/16/2016] [Indexed: 01/18/2023] Open
Abstract
Trp-Asp (WD) repeat domain 1 (WDR1) is a highly conserved actin-binding protein across all eukaryotes and is involved in numerous actin-based processes by accelerating Cofilin severing actin filament. However, the function and the mechanism of WDR1 in mammalian early development are still largely unclear. We now report that WDR1 is essential for mouse peri-implantation development and regulates Cofilin phosphorylation in mouse cells. The disruption of maternal WDR1 does not obviously affect ovulation and female fertility. However, depletion of zygotic WDR1 results in embryonic lethality at the peri-implantation stage. In WDR1 knock-out cells, we found that WDR1 regulates Cofilin phosphorylation. Interestingly, WDR1 is overdosed to regulate Cofilin phosphorylation in mouse cells. Furthermore, we showed that WDR1 interacts with Lim domain kinase 1 (LIMK1), a well known phosphorylation kinase of Cofilin. Altogether, our results provide new insights into the role and mechanism of WDR1 in physiological conditions.
Collapse
Affiliation(s)
- Yi Xiao
- From the State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing.,the Institute of Zoology, University of Chinese Academy of Sciences, Beijing 100049
| | - Haixia Ma
- From the State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing.,the Institute of Zoology, University of Chinese Academy of Sciences, Beijing 100049
| | - Ping Wan
- the State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061, and
| | - Dandan Qin
- From the State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing.,the Institute of Zoology, University of Chinese Academy of Sciences, Beijing 100049
| | - Xiaoxiao Wang
- From the State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing.,the Institute of Zoology, University of Chinese Academy of Sciences, Beijing 100049
| | - Xiaoxin Zhang
- From the State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing
| | - Yunlong Xiang
- From the State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing
| | - Wenbo Liu
- From the State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing
| | - Jiong Chen
- the State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061, and
| | - Zhaohong Yi
- the Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, College of Biological Science and Engineering, Beijing University of Agriculture, Beijing 102206, China
| | - Lei Li
- From the State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, .,the Institute of Zoology, University of Chinese Academy of Sciences, Beijing 100049
| |
Collapse
|
21
|
Branco MR, King M, Perez-Garcia V, Bogutz AB, Caley M, Fineberg E, Lefebvre L, Cook SJ, Dean W, Hemberger M, Reik W. Maternal DNA Methylation Regulates Early Trophoblast Development. Dev Cell 2016; 36:152-63. [PMID: 26812015 PMCID: PMC4729543 DOI: 10.1016/j.devcel.2015.12.027] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 11/27/2015] [Accepted: 12/23/2015] [Indexed: 02/06/2023]
Abstract
Critical roles for DNA methylation in embryonic development are well established, but less is known about its roles during trophoblast development, the extraembryonic lineage that gives rise to the placenta. We dissected the role of DNA methylation in trophoblast development by performing mRNA and DNA methylation profiling of Dnmt3a/3b mutants. We find that oocyte-derived methylation plays a major role in regulating trophoblast development but that imprinting of the key placental regulator Ascl2 is only partially responsible for these effects. We have identified several methylation-regulated genes associated with trophoblast differentiation that are involved in cell adhesion and migration, potentially affecting trophoblast invasion. Specifically, trophoblast-specific DNA methylation is linked to the silencing of Scml2, a Polycomb Repressive Complex 1 protein that drives loss of cell adhesion in methylation-deficient trophoblast. Our results reveal that maternal DNA methylation controls multiple differentiation-related and physiological processes in trophoblast via both imprinting-dependent and -independent mechanisms. Oocyte-derived DNA methylation is an important regulator of trophoblast transcription DNA methylation controls trophoblast cell adhesion Silencing of Polycomb gene Scml2 is necessary for normal trophoblast development
Collapse
Affiliation(s)
- Miguel R Branco
- Blizard Institute, Barts and The London School of Medicine and Dentistry, QMUL, London E1 2AT, UK.
| | - Michelle King
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK
| | - Vicente Perez-Garcia
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK
| | - Aaron B Bogutz
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Matthew Caley
- Blizard Institute, Barts and The London School of Medicine and Dentistry, QMUL, London E1 2AT, UK
| | - Elena Fineberg
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK
| | - Louis Lefebvre
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Simon J Cook
- Signalling Programme, Babraham Institute, Cambridge CB22 3AT, UK
| | - Wendy Dean
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK
| | - Myriam Hemberger
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK
| | - Wolf Reik
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK; The Wellcome Trust Sanger Institute, Cambridge CB10 1SA, UK
| |
Collapse
|
22
|
Jeong W, Seo H, Sung Y, Ka H, Song G, Kim J. Lysophosphatidic Acid (LPA) Receptor 3-Mediated LPA Signal Transduction Pathways: A Possible Relationship with Early Development of Peri-Implantation Porcine Conceptus. Biol Reprod 2016; 94:104. [PMID: 27030044 DOI: 10.1095/biolreprod.115.137174] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 03/16/2016] [Indexed: 11/01/2022] Open
Abstract
Lysophosphatidic acid (LPA) is a phospholipid with a variety of fatty acyl groups that mediates diverse biological effects on various types of cells through specific G protein-coupled receptors. LPA appears to play a significant role in many reproductive processes, including luteolysis, implantation, and placentation. Our previous study in pigs demonstrated that LPA and the LPA receptor system are present at the maternal-conceptus interface and that LPA increases uterine endometrial expression of prostaglandin-endoperoxide synthase 2 (PTGS2) through LPA receptor 3 (LPAR3). However, the role of LPA in conceptuses during early pregnancy has not been determined. Therefore, this study examined the effects of LPA in cell proliferation, migration, and activation of the intracellular signaling pathway in porcine conceptuses by using an established porcine trophectoderm (pTr) cell line isolated from Day 12 conceptuses. All examined LPA species with various fatty acid lengths increased proliferation and migration of pTr cells as the dosage increased. Immunoblot analyses found that LPA activated intracellular signaling molecules, extracellular signal-regulated kinase 1/2 (ERK1/2), ribosomal protein S6 kinase 90 kDa (P90RSK), ribosomal protein S6 (RPS6), and P38 in pTr cells. Furthermore, LPA increased expression of PTGS2 and urokinase-type plasminogen activator (PLAU), and the LPA-induced increases in PTGS2 and PLAU expression were inhibited by LPAR3 siRNA. Collectively, these results showed that LPA promotes proliferation, migration, and differentiation of pTr cells by activating the ERK1/2-P90RSK-RPS6 and P38 pathways, indicating that the LPA-LPAR3 system may be involved in the development of trophoblast during early pregnancy in pigs.
Collapse
Affiliation(s)
- Wooyoung Jeong
- Department of Animal Resources Science, Dankook University, Cheonan, Republic of Korea
| | - Heewon Seo
- Division of Biological Science and Technology, Yonsei University, Wonju, Republic of Korea
| | - Yujin Sung
- Department of Animal Resources Science, Dankook University, Cheonan, Republic of Korea
| | - Hakhyun Ka
- Division of Biological Science and Technology, Yonsei University, Wonju, Republic of Korea
| | - Gwonhwa Song
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Jinyoung Kim
- Department of Animal Resources Science, Dankook University, Cheonan, Republic of Korea
| |
Collapse
|
23
|
Tuteja G, Chung T, Bejerano G. Changes in the enhancer landscape during early placental development uncover a trophoblast invasion gene-enhancer network. Placenta 2015; 37:45-55. [PMID: 26604129 DOI: 10.1016/j.placenta.2015.11.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 10/21/2015] [Accepted: 11/02/2015] [Indexed: 01/17/2023]
Abstract
INTRODUCTION Trophoblast invasion establishes adequate blood flow between mother and fetus in early placental development. However, little is known about the cis-regulatory mechanisms underlying this important process. We aimed to identify enhancer elements that are active during trophoblast invasion, and build a trophoblast invasion gene-enhancer network. METHODS We carried out ChIP-Seq for an enhancer-associated mark (H3k27Ac) at two time points during early placental development in mouse. One time point when invasion is at its peak (e7.5) and another time point shortly afterwards (e9.5). We use computational analysis to identify putative enhancers, as well as the transcription factor binding sites within them, that are specific to the time point of trophoblast invasion. RESULTS We compared read profiles at e7.5 and e9.5 to identify 1,977 e7.5-specific enhancers. Within a subset of e7.5-specific enhancers, we discovered a cell migration associated regulatory code, consisting of three transcription factor motifs: AP1, Ets, and Tcfap2. To validate differential expression of the transcription factors that bind these motifs, we performed RNA-Seq in the same context. Finally, we integrated these data with publicly available protein-protein interaction data and constructed a trophoblast invasion gene-enhancer network. DISCUSSION The data we generated and analysis we carried out improves our understanding of the regulatory mechanisms of trophoblast invasion, by suggesting a transcriptional code exists in the enhancers of cell migration genes. Furthermore, the network we constructed highlights novel candidate genes that may be critical for trophoblast invasion.
Collapse
Affiliation(s)
- Geetu Tuteja
- Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Tisha Chung
- Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Gill Bejerano
- Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA; Department of Computer Science, Stanford University, Stanford, CA 94305, USA; Division of Medical Genetics, Department of Pediatrics, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
24
|
Moretto Zita M, Soncin F, Natale D, Pizzo D, Parast M. Gene Expression Profiling Reveals a Novel Regulatory Role for Sox21 Protein in Mouse Trophoblast Stem Cell Differentiation. J Biol Chem 2015; 290:30152-62. [PMID: 26491013 DOI: 10.1074/jbc.m115.659094] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Indexed: 11/06/2022] Open
Abstract
Appropriate self-renewal and differentiation of trophoblast stem cells (TSCs) are key factors for proper placental development and function and, in turn, for appropriate in utero fetal growth. To identify novel TSC-specific genes, we performed genome-wide expression profiling of TSCs, embryonic stem cells, epiblast stem cells, and mouse embryo fibroblasts, derived from mice of the same genetic background. Our analysis revealed a high expression of Sox21 in TSCs compared with other cell types. Sox21 levels were high in undifferentiated TSCs and were dramatically reduced upon differentiation. In addition, modulation of Sox21 expression in TSCs affected lineage-specific differentiation, based on both marker analysis and functional assessment. Our results implicate Sox21 specifically in the promotion of spongiotrophoblast and giant cell differentiation and establish a new mechanism through which trophoblast sublineages are specified.
Collapse
Affiliation(s)
| | | | - David Natale
- Reproductive Medicine, University of California San Diego, La Jolla, California 92093
| | | | | |
Collapse
|
25
|
Hashino M, Tachibana M, Nishida T, Hara H, Tsuchiya K, Mitsuyama M, Watanabe K, Shimizu T, Watarai M. Inactivation of the MAPK signaling pathway by Listeria monocytogenes infection promotes trophoblast giant cell death. Front Microbiol 2015; 6:1145. [PMID: 26528279 PMCID: PMC4607873 DOI: 10.3389/fmicb.2015.01145] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 10/05/2015] [Indexed: 12/21/2022] Open
Abstract
Listeria monocytogenes has a well-characterized ability to cross the placental barrier, resulting in spontaneous abortion and fetal infections. However, the mechanisms resulting in infection-associated abortion are not fully understood. In this study, we demonstrate that the dephosphorylation of MAPK family proteins caused by L. monocytogenes infection of trophoblast giant (TG) cells, which are placental immune cells, contributes to infectious abortion. Dephosphorylation of c-Jun, p38, and ERK1/2 was observed in infected TG cells, causing the downregulation of cytoprotective heme oxygenase (HO)-1. Blocking the dephosphorylation of proteins, including MAPK family proteins, inhibited the decrease in HO-1 expression. Treatment with MAPK inhibitors inhibited bacterial internalization into TG cells. Moreover, Toll-like receptor 2 involved in the expression of MAPK family proteins. Infection with a listeriolysin O-deleted mutant impaired dephosphorylation of MAPK family proteins in TG cells and did not induce infectious abortion in a mouse model. These results suggest that inactivation of the MAPK pathway by L. monocytogenes induces TG cell death and causes infectious abortion.
Collapse
Affiliation(s)
- Masanori Hashino
- The United Graduate School of Veterinary Science, Yamaguchi University, Yoshida Campus Yamaguchi, Japan
| | - Masato Tachibana
- The United Graduate School of Veterinary Science, Yamaguchi University, Yoshida Campus Yamaguchi, Japan ; Division of Biomedical Food Research, National Institute of Health Sciences Tokyo, Japan
| | - Takashi Nishida
- The United Graduate School of Veterinary Science, Yamaguchi University, Yoshida Campus Yamaguchi, Japan
| | - Hideki Hara
- Department of Microbiology, Graduate School of Medicine, Kyoto University Kyoto, Japan ; Department of Pathology and Comprehensive Cancer Center, University of Michigan Medical School Ann Arbor, MI, USA
| | - Kohsuke Tsuchiya
- Department of Microbiology, Graduate School of Medicine, Kyoto University Kyoto, Japan ; Division of Immunology and Molecular Biology, Cancer Research Institute, Kanazawa University Kanazawa, Japan
| | - Masao Mitsuyama
- Department of Microbiology, Graduate School of Medicine, Kyoto University Kyoto, Japan ; Graduate School of Advanced Integrated Studies in Human Survivability, Kyoto University Kyoto, Japan
| | - Kenta Watanabe
- The United Graduate School of Veterinary Science, Yamaguchi University, Yoshida Campus Yamaguchi, Japan ; Laboratory of Veterinary Public Health, Joint Faculty of Veterinary Medicine, Yamaguchi University at Yamaguchi Yamaguchi, Japan
| | - Takashi Shimizu
- The United Graduate School of Veterinary Science, Yamaguchi University, Yoshida Campus Yamaguchi, Japan ; Laboratory of Veterinary Public Health, Joint Faculty of Veterinary Medicine, Yamaguchi University at Yamaguchi Yamaguchi, Japan
| | - Masahisa Watarai
- The United Graduate School of Veterinary Science, Yamaguchi University, Yoshida Campus Yamaguchi, Japan ; Laboratory of Veterinary Public Health, Joint Faculty of Veterinary Medicine, Yamaguchi University at Yamaguchi Yamaguchi, Japan
| |
Collapse
|
26
|
Abstract
The placenta sits at the interface between the maternal and fetal vascular beds where it mediates nutrient and waste exchange to enable in utero existence. Placental cells (trophoblasts) accomplish this via invading and remodeling the uterine vasculature. Amazingly, despite being of fetal origin, trophoblasts do not trigger a significant maternal immune response. Additionally, they maintain a highly reliable hemostasis in this extremely vascular interface. Decades of research into how the placenta differentiates itself from embryonic tissues to accomplish these and other feats have revealed a previously unappreciated level of complexity with respect to the placenta's cellular composition. Additionally, novel insights with respect to roles played by the placenta in guiding fetal development and metabolism have sparked a renewed interest in understanding the interrelationship between fetal and placental well-being. Here, we present an overview of emerging research in placental biology that highlights these themes and the importance of the placenta to fetal and adult health.
Collapse
|
27
|
Zhang Q, Yu S, Huang X, Tan Y, Zhu C, Wang YL, Wang H, Lin HY, Fu J, Wang H. New insights into the function of Cullin 3 in trophoblast invasion and migration. Reproduction 2015; 150:139-49. [PMID: 26021998 DOI: 10.1530/rep-15-0126] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 05/28/2015] [Indexed: 12/27/2022]
Abstract
Cullin 3 (CUL3), a scaffold protein, assembles a large number of ubiquitin ligase complexes, similar to Skp1-Cullin 1-F-box protein complex. Several genetic models have shown that CUL3 is crucial for early embryonic development. Nevertheless, the role of CUL3 in human trophoblast function remains unclear. In this study, immunostaining revealed that CUL3 was strongly expressed in the villous cytotrophoblasts, the trophoblast column, and the invasive extravillous trophoblasts. Silencing CUL3 significantly inhibited the outgrowth of villous explant ex vivo and decreased invasion and migration of trophoblast HTR8/SVneo cells. Furthermore, CUL3 siRNA decreased pro-MMP9 activity and increased the levels of TIMP1 and 2. We also found that the level of CUL3 in the placental villi from pre-eclamptic patients was significantly lower as compared to that from their gestational age-matched controls. Moreover, in the lentiviral-mediated placenta-specific CUL3 knockdown mice, lack of CUL3 resulted in less invasive trophoblast cells in the maternal decidua. Taken together, these results suggest an essential role for CUL3 in the invasion and migration of trophoblast cells, and dysregulation of its expression may be associated with the onset of pre-eclampsia.
Collapse
Affiliation(s)
- Qian Zhang
- State Key Laboratory of Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of ChinaDepartment of ObstetricsBeijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, People's Republic of ChinaKey Laboratory of Longevity and Ageing-related DiseasesMinistry of Education, Guangxi Medical University, Nanning 530021, People's Republic of ChinaLaboratory Animal CenterChongqing Medical University, Chongqing 400016, People's Republic of ChinaSchool of Life SciencesUniversity of Chinese Academy of Sciences, Beijing 100101, People's Republic of China State Key Laboratory of Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of ChinaDepartment of ObstetricsBeijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, People's Republic of ChinaKey Laboratory of Longevity and Ageing-related DiseasesMinistry of Education, Guangxi Medical University, Nanning 530021, People's Republic of ChinaLaboratory Animal CenterChongqing Medical University, Chongqing 400016, People's Republic of ChinaSchool of Life SciencesUniversity of Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Song Yu
- State Key Laboratory of Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of ChinaDepartment of ObstetricsBeijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, People's Republic of ChinaKey Laboratory of Longevity and Ageing-related DiseasesMinistry of Education, Guangxi Medical University, Nanning 530021, People's Republic of ChinaLaboratory Animal CenterChongqing Medical University, Chongqing 400016, People's Republic of ChinaSchool of Life SciencesUniversity of Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Xing Huang
- State Key Laboratory of Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of ChinaDepartment of ObstetricsBeijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, People's Republic of ChinaKey Laboratory of Longevity and Ageing-related DiseasesMinistry of Education, Guangxi Medical University, Nanning 530021, People's Republic of ChinaLaboratory Animal CenterChongqing Medical University, Chongqing 400016, People's Republic of ChinaSchool of Life SciencesUniversity of Chinese Academy of Sciences, Beijing 100101, People's Republic of China State Key Laboratory of Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of ChinaDepartment of ObstetricsBeijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, People's Republic of ChinaKey Laboratory of Longevity and Ageing-related DiseasesMinistry of Education, Guangxi Medical University, Nanning 530021, People's Republic of ChinaLaboratory Animal CenterChongqing Medical University, Chongqing 400016, People's Republic of ChinaSchool of Life SciencesUniversity of Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Yi Tan
- State Key Laboratory of Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of ChinaDepartment of ObstetricsBeijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, People's Republic of ChinaKey Laboratory of Longevity and Ageing-related DiseasesMinistry of Education, Guangxi Medical University, Nanning 530021, People's Republic of ChinaLaboratory Animal CenterChongqing Medical University, Chongqing 400016, People's Republic of ChinaSchool of Life SciencesUniversity of Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Cheng Zhu
- State Key Laboratory of Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of ChinaDepartment of ObstetricsBeijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, People's Republic of ChinaKey Laboratory of Longevity and Ageing-related DiseasesMinistry of Education, Guangxi Medical University, Nanning 530021, People's Republic of ChinaLaboratory Animal CenterChongqing Medical University, Chongqing 400016, People's Republic of ChinaSchool of Life SciencesUniversity of Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Yan-Ling Wang
- State Key Laboratory of Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of ChinaDepartment of ObstetricsBeijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, People's Republic of ChinaKey Laboratory of Longevity and Ageing-related DiseasesMinistry of Education, Guangxi Medical University, Nanning 530021, People's Republic of ChinaLaboratory Animal CenterChongqing Medical University, Chongqing 400016, People's Republic of ChinaSchool of Life SciencesUniversity of Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Haibin Wang
- State Key Laboratory of Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of ChinaDepartment of ObstetricsBeijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, People's Republic of ChinaKey Laboratory of Longevity and Ageing-related DiseasesMinistry of Education, Guangxi Medical University, Nanning 530021, People's Republic of ChinaLaboratory Animal CenterChongqing Medical University, Chongqing 400016, People's Republic of ChinaSchool of Life SciencesUniversity of Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Hai-Yan Lin
- State Key Laboratory of Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of ChinaDepartment of ObstetricsBeijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, People's Republic of ChinaKey Laboratory of Longevity and Ageing-related DiseasesMinistry of Education, Guangxi Medical University, Nanning 530021, People's Republic of ChinaLaboratory Animal CenterChongqing Medical University, Chongqing 400016, People's Republic of ChinaSchool of Life SciencesUniversity of Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Jiejun Fu
- State Key Laboratory of Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of ChinaDepartment of ObstetricsBeijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, People's Republic of ChinaKey Laboratory of Longevity and Ageing-related DiseasesMinistry of Education, Guangxi Medical University, Nanning 530021, People's Republic of ChinaLaboratory Animal CenterChongqing Medical University, Chongqing 400016, People's Republic of ChinaSchool of Life SciencesUniversity of Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Hongmei Wang
- State Key Laboratory of Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of ChinaDepartment of ObstetricsBeijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, People's Republic of ChinaKey Laboratory of Longevity and Ageing-related DiseasesMinistry of Education, Guangxi Medical University, Nanning 530021, People's Republic of ChinaLaboratory Animal CenterChongqing Medical University, Chongqing 400016, People's Republic of ChinaSchool of Life SciencesUniversity of Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| |
Collapse
|
28
|
Interferon γ-induced GTPase promotes invasion of Listeria monocytogenes into trophoblast giant cells. Sci Rep 2015; 5:8195. [PMID: 25645570 PMCID: PMC4314643 DOI: 10.1038/srep08195] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 01/12/2015] [Indexed: 02/08/2023] Open
Abstract
Listeria monocytogenes is well known for having the ability to cross the placental barrier, leading to fetal infections and abortion. However, the mechanisms leading to infectious abortion are poorly understood. In this study, we demonstrate that interferon γ-induced GTPase (IGTP) contributes to the invasion of L. monocytogenes into trophoblast giant (TG) cells, which are placental immune cells. Knockdown of IGTP in TG cells decreased the relative efficiencies of L. monocytogenes invasion. Moreover, IGTP accumulated around infected L. monocytogenes in TG cells. Treatment of TG cells with phosphatidylinositol 3-kinase (PI3K)/Akt inhibitors also reduced bacterial invasion. PI3K/Akt inhibitor or IGTP knockdown reduced the amount of phosphorylated Akt. Monosialotetrahexosylganglioside (GM1) gangliosides, lipid raft markers, accumulated in the membrane of L. monocytogenes-containing vacuoles in TG cells. Furthermore, treatment with a lipid raft inhibitor reduced bacterial invasion. These results suggest that IGTP-induced activation of the PI3K/Akt signaling pathway promotes bacterial invasion into TG cells.
Collapse
|
29
|
Rai A, Cross JC. Three-dimensional cultures of trophoblast stem cells autonomously develop vascular-like spaces lined by trophoblast giant cells. Dev Biol 2014; 398:110-9. [PMID: 25499676 DOI: 10.1016/j.ydbio.2014.11.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 11/12/2014] [Accepted: 11/26/2014] [Indexed: 10/24/2022]
Abstract
The maternal blood space in the mouse placenta is lined not by endothelial cells but rather by various subtypes of trophoblast giant cells (TGCs), defined by their location and different patterns of gene expression. While TGCs invade the spiral arteries to displace the maternal endothelium, the rest of the vascular space is created de novo but the mechanisms are not well understood. We cultured mouse trophoblast stem (TS) cells in suspension and found that they readily form spheroids (trophospheres). Compared to cells grown in monolayer, differentiating trophospheres showed accelerated expression of TGC-specific genes. Morphological and gene expression studies showed that cavities form within the trophospheres that are primarily lined by Prl3d1/Pl1α-positive cells analogous to parietal-TGCs (P-TGCs) which line the maternal venous blood within the placenta. Lumen formation in trophospheres and in vivo was associated with cell polarization including CD34 sialomucin deposition on the apical side and cytoskeletal rearrangement. While P-TGCs preferentially formed in trophospheres at atmospheric oxygen levels (19%), decreasing oxygen to 3% shifted differentiation towards Ctsq-positive sinusoidal and/or channel TGCs. These studies show that trophoblast cells have the intrinsic ability to form vascular channels in ways analogous to endothelial cells. The trophosphere system will be valuable for assessing mechanisms that regulate specification of different TGC subtypes and their morphogenesis into vascular spaces.
Collapse
Affiliation(s)
- Anshita Rai
- Departments of Biochemistry and Molecular Biology, Comparative Biology and Experimental Medicine, Obstetrics and Gynecology, and Medical Genetics, University of Calgary, HSC Room 2279, 3330 Hospital Drive NW, Calgary, AB, Canada T2N 4N1
| | - James C Cross
- Departments of Biochemistry and Molecular Biology, Comparative Biology and Experimental Medicine, Obstetrics and Gynecology, and Medical Genetics, University of Calgary, HSC Room 2279, 3330 Hospital Drive NW, Calgary, AB, Canada T2N 4N1.
| |
Collapse
|
30
|
Soncin F, Natale D, Parast MM. Signaling pathways in mouse and human trophoblast differentiation: a comparative review. Cell Mol Life Sci 2014; 72:1291-302. [PMID: 25430479 DOI: 10.1007/s00018-014-1794-x] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 10/02/2014] [Accepted: 11/20/2014] [Indexed: 12/01/2022]
Abstract
The mouse is often used as a model for understanding human placentation and offers multiple advantages, including the ability to manipulate gene expression in specific compartments and to derive trophoblast stem cells, which can be maintained or differentiated in vitro. Nevertheless, there are numerous differences between the mouse and human placentas, only the least of which are structural. This review aims to compare mouse and human placentation, with a focus on signaling pathways involved in trophoblast lineage-specific differentiation.
Collapse
Affiliation(s)
- Francesca Soncin
- Department of Pathology, Sanford Consortium for Regenerative Medicine, University of California San Diego, 9500 Gilman Drive, MC 0695, La Jolla, CA, 92093, USA,
| | | | | |
Collapse
|
31
|
Zhou Y, Yuge A, Rajah AM, Unek G, Rinaudo PF, Maltepe E. LIMK1 regulates human trophoblast invasion/differentiation and is down-regulated in preeclampsia. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:3321-31. [PMID: 25307528 DOI: 10.1016/j.ajpath.2014.08.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 07/09/2014] [Accepted: 08/13/2014] [Indexed: 01/08/2023]
Abstract
Successful human pregnancy requires extensive invasion of maternal uterine tissues by the placenta. Invasive extravillous trophoblasts derived from cytotrophoblast progenitors remodel maternal arterioles to promote blood flow to the placenta. In the pregnancy complication preeclampsia, extravillous trophoblasts invasion and vessel remodeling are frequently impaired, likely contributing to fetal underperfusion and maternal hypertension. We recently demonstrated in mouse trophoblast stem cells that hypoxia-inducible factor-2 (HIF-2)-dependent Lim domain kinase 1 (LIMK1) expression regulates invasive trophoblast differentiation by modulating the trophoblast cytoskeleton. Interestingly, in humans, LIMK1 activity promotes tumor cell invasion by modulating actin and microtubule integrity, as well as by modulating matrix metalloprotease processing. Here, we tested whether HIF-2α and LIMK1 expression patterns suggested similar roles in the human placenta. We found that LIMK1 immunoreactivity mirrored HIF-2α in the human placenta in utero and that LIMK1 activity regulated human cytotrophoblast cytoskeletal integrity, matrix metallopeptidase-9 secretion, invasion, and differentiation in vitro. Importantly, we also found that LIMK1 levels are frequently diminished in the preeclampsia setting in vivo. Our results therefore validate the use of mouse trophoblast stem cells as a discovery platform for human placentation disorders and suggest that LIMK1 activity helps promote human placental development in utero.
Collapse
Affiliation(s)
- Yan Zhou
- Department of Obstetrics and Gynecology, University of California, San Francisco, San Francisco, California
| | - Akitoshi Yuge
- Department of Obstetrics and Gynecology, University of California, San Francisco, San Francisco, California
| | - Anthony M Rajah
- Department of Biology, San Francisco State University, San Francisco, California
| | - Gozde Unek
- Department of Pediatrics, University of California, San Francisco, San Francisco, California
| | - Paolo F Rinaudo
- Department of Obstetrics and Gynecology, University of California, San Francisco, San Francisco, California; Department of Biomedical Sciences, University of California, San Francisco, San Francisco, California; Center for Reproductive Sciences, University of California, San Francisco, San Francisco, California
| | - Emin Maltepe
- Department of Pediatrics, University of California, San Francisco, San Francisco, California; Department of Biomedical Sciences, University of California, San Francisco, San Francisco, California; Center for Reproductive Sciences, University of California, San Francisco, San Francisco, California.
| |
Collapse
|
32
|
Cross JC. More of a good thing or less of a bad thing: gene copy number variation in polyploid cells of the placenta. PLoS Genet 2014; 10:e1004330. [PMID: 24784435 PMCID: PMC4006710 DOI: 10.1371/journal.pgen.1004330] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Affiliation(s)
- James C. Cross
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Alberta, Canada
- * E-mail:
| |
Collapse
|
33
|
Ishikawa A, Omata W, Ackerman WE, Takeshita T, Vandré DD, Robinson JM. Cell fusion mediates dramatic alterations in the actin cytoskeleton, focal adhesions, and E-cadherin in trophoblastic cells. Cytoskeleton (Hoboken) 2014; 71:241-56. [PMID: 24623684 DOI: 10.1002/cm.21165] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 12/20/2013] [Accepted: 01/07/2014] [Indexed: 01/09/2023]
Abstract
The syncytiotrophoblast of the human placenta is a unique epithelia structure with millions of nuclei sharing a common cytoplasm. The syncytiotrophoblast forms by cell-cell fusion of cytotrophoblasts (CTB), the mononuclear precursor cells. The trophoblastic BeWo cell line has been used as a surrogate for CTB since they can be induced to fuse, and subsequently display numerous syncytiotrophoblast differentiation markers following syncytial formation. In this study, we have focused on alterations in the cell-adhesion molecule E-cadherin, actin cytoskeleton, and focal adhesions following BeWo cell fusion, since these entities may be interrelated. There was a dramatic reorganization of the distribution of E-cadherin as well as a reduction in the amount of E-cadherin following cell fusion. Reorganization of the actin cytoskeleton was also observed, which was associated with a change in the globular actin (G-actin)/filamentous actin (F-actin) ratio. Concomitantly, the morphology of focal adhesions was altered, but this occurred without a corresponding change in the levels of focal adhesion marker proteins. Thus, extensive remodeling of the actin cytoskeleton and focal adhesions accompanies cell fusion and differentiation and appears related to alterations in E-cadherin in trophoblastic cells.
Collapse
Affiliation(s)
- Atsuko Ishikawa
- Department of Physiology and Cell Biology, Ohio State University, Columbus, Ohio; Department of Obstetrics and Gynecology, Nippon Medical School, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
34
|
Rai A, Cross JC. Development of the hemochorial maternal vascular spaces in the placenta through endothelial and vasculogenic mimicry. Dev Biol 2014; 387:131-41. [PMID: 24485853 DOI: 10.1016/j.ydbio.2014.01.015] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 01/14/2014] [Accepted: 01/19/2014] [Indexed: 11/27/2022]
Abstract
The maternal vasculature within the placenta in primates and rodents is unique because it is lined by fetal cells of the trophoblast lineage and not by maternal endothelial cells. In addition to trophoblast cells that invade the uterine spiral arteries that bring blood into the placenta, other trophoblast subtypes sit at different levels of the vascular space. In mice, at least five distinct subtypes of trophoblast cells have been identified which engage maternal endothelial cells on the arterial and venous frontiers of the placenta, but which also form the channel-like spaces within it through a process analogous to formation of blood vessels (vasculogenic mimicry). These cells are all large, post-mitotic trophoblast giant cells. In addition to assuming endothelial cell-like characteristics (endothelial mimicry), they produce dozens of different hormones that are thought to regulate local and systemic maternal adaptations to pregnancy. Recent work has identified distinct molecular pathways in mice that regulate the morphogenesis of trophoblast cells on the arterial and venous sides of the vascular circuit that may be analogous to specification of arterial and venous endothelial cells.
Collapse
Affiliation(s)
- Anshita Rai
- Department of Biochemistry and Molecular Biology, University of Calgary, HSC Room 2279, 3330 Hospital Drive NW, Calgary, Alta., Canada; Department of Comparative Biology and Experimental Medicine, Obstetrics and Gynecology, and Medical Genetics, University of Calgary, HSC Room 2279, 3330 Hospital Drive NW, Calgary, Alta., Canada T2N 4N1
| | - James C Cross
- Department of Biochemistry and Molecular Biology, University of Calgary, HSC Room 2279, 3330 Hospital Drive NW, Calgary, Alta., Canada; Department of Comparative Biology and Experimental Medicine, Obstetrics and Gynecology, and Medical Genetics, University of Calgary, HSC Room 2279, 3330 Hospital Drive NW, Calgary, Alta., Canada T2N 4N1.
| |
Collapse
|
35
|
Losick VP, Fox DT, Spradling AC. Polyploidization and cell fusion contribute to wound healing in the adult Drosophila epithelium. Curr Biol 2013; 23:2224-2232. [PMID: 24184101 PMCID: PMC3898104 DOI: 10.1016/j.cub.2013.09.029] [Citation(s) in RCA: 158] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 08/19/2013] [Accepted: 09/13/2013] [Indexed: 12/17/2022]
Abstract
BACKGROUND Reestablishing epithelial integrity and biosynthetic capacity is critically important following tissue damage. The adult Drosophila abdominal epithelium provides an attractive new system to address how postmitotic diploid cells contribute to repair. RESULTS Puncture wounds to the adult Drosophila epidermis close initially by forming a melanized scab. We found that epithelial cells near the wound site fuse to form a giant syncytium, which sends lamellae under the scab to re-epithelialize the damaged site. Other large cells arise more peripherally by initiating endocycles and becoming polyploid, or by cell fusion. Rac GTPase activity is needed for syncytium formation, while the Hippo signaling effector Yorkie modulates both polyploidization and cell fusion. Large cell formation is functionally important because when both polyploidization and fusion are blocked, wounds do not re-epithelialize. CONCLUSIONS Our observations indicate that cell mass lost upon wounding can be replaced by polyploidization instead of mitotic proliferation. We propose that large cells generated by polyploidization or cell fusion are essential because they are better able than diploid cells to mechanically stabilize wounds, especially those containing permanent acellular structures, such as scar tissue.
Collapse
Affiliation(s)
- Vicki P Losick
- Department of Embryology, Carnegie Institution for Science, Howard Hughes Medical Institute, 3520 San Martin Drive, Baltimore, MD 21218, USA
| | - Donald T Fox
- Department of Pharmacology and Cancer Biology and Department of Cell Biology, Duke University Medical Center, C318 LSRC Box 3813, Durham, NC 27710, USA
| | - Allan C Spradling
- Department of Embryology, Carnegie Institution for Science, Howard Hughes Medical Institute, 3520 San Martin Drive, Baltimore, MD 21218, USA.
| |
Collapse
|
36
|
Matrix metalloproteinase-9 deficiency phenocopies features of preeclampsia and intrauterine growth restriction. Proc Natl Acad Sci U S A 2013; 110:11109-14. [PMID: 23776237 DOI: 10.1073/pnas.1309561110] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The pregnancy complication preeclampsia (PE), which occurs in approximately 3% to 8% of human pregnancies, is characterized by placental pathologies that can lead to significant fetal and maternal morbidity and mortality. Currently, the only known cure is delivery of the placenta. As the etiology of PE remains unknown, it is vital to find models to study this common syndrome. Here we show that matrix metalloproteinase-9 (MMP9) deficiency causes physiological and placental abnormalities in mice, which mimic features of PE. As with the severe cases of this syndrome, which commence early in gestation, MMP9-null mouse embryos exhibit deficiencies in trophoblast differentiation and invasion shortly after implantation, along with intrauterine growth restriction or embryonic death. Reciprocal embryo transfer experiments demonstrated that embryonic MMP9 is a major contributor to normal implantation, but maternal MMP9 also plays a role in embryonic trophoblast development. Pregnant MMP9-null mice bearing null embryos exhibited clinical features of PE as VEGF dysregulation and proteinuria accompanied by preexisting elevated blood pressure and kidney pathology. Thus, our data show that fetal and maternal MMP9 play a role in the development of PE and establish the MMP9-null mice as a much-needed model to study the clinical course of this syndrome.
Collapse
|
37
|
Choi HJ, Sanders TA, Tormos KV, Ameri K, Tsai JD, Park AM, Gonzalez J, Rajah AM, Liu X, Quinonez DM, Rinaudo PF, Maltepe E. ECM-dependent HIF induction directs trophoblast stem cell fate via LIMK1-mediated cytoskeletal rearrangement. PLoS One 2013; 8:e56949. [PMID: 23437279 PMCID: PMC3578927 DOI: 10.1371/journal.pone.0056949] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 01/16/2013] [Indexed: 01/24/2023] Open
Abstract
The Hypoxia-inducible Factor (HIF) family of transcriptional regulators coordinates the expression of dozens of genes in response to oxygen deprivation. Mammalian development occurs in a hypoxic environment and HIF-null mice therefore die in utero due to multiple embryonic and placental defects. Mouse embryonic stem cells do not differentiate into placental cells; therefore, trophoblast stem cells (TSCs) are used to study mouse placental development. Consistent with a requirement for HIF activity during placental development in utero, TSCs derived from HIF-null mice exhibit severe differentiation defects and fail to form trophoblast giant cells (TGCs) in vitro. Interestingly, differentiating TSCs induce HIF activity independent of oxygen tension via unclear mechanisms. Here, we show that altering the extracellular matrix (ECM) composition upon which TSCs are cultured changes their differentiation potential from TGCs to multinucleated syncytiotropholasts (SynTs) and blocks oxygen-independent HIF induction. We further find that modulation of Mitogen Activated Protein Kinase Kinase-1/2 (MAP2K1/2, MEK-1/2) signaling by ECM composition is responsible for this effect. In the absence of ECM-dependent cues, hypoxia-signaling pathways activate this MAPK cascade to drive HIF induction and redirect TSC fate along the TGC lineage. In addition, we show that integrity of the microtubule and actin cytoskeleton is critical for TGC fate determination. HIF-2α ensures TSC cytoskeletal integrity and promotes invasive TGC formation by interacting with c-MYC to induce non-canonical expression of Lim domain kinase 1-an enzyme that regulates microtubule and actin stability, as well as cell invasion. Thus, we find that HIF can integrate positional and metabolic cues from within the TSC niche to regulate placental development by modulating the cellular cytoskeleton via non-canonical gene expression.
Collapse
Affiliation(s)
- Hwa J. Choi
- Department of Pediatrics, University of California San Francisco, San Francisco, California, United States of America
| | - Timothy A. Sanders
- Department of Pediatrics, University of California San Francisco, San Francisco, California, United States of America
| | - Kathryn V. Tormos
- Department of Pediatrics, University of California San Francisco, San Francisco, California, United States of America
- Center for Reproductive Sciences, University of California San Francisco, San Francisco, California, United States of America
| | - Kurosh Ameri
- Department of Pediatrics, University of California San Francisco, San Francisco, California, United States of America
| | - Justin D. Tsai
- Department of Pediatrics, University of California San Francisco, San Francisco, California, United States of America
| | - Angela M. Park
- Department of Pediatrics, University of California San Francisco, San Francisco, California, United States of America
| | - Julissa Gonzalez
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Anthony M. Rajah
- Department of Pediatrics, University of California San Francisco, San Francisco, California, United States of America
| | - Xiaowei Liu
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Francisco, San Francisco, California, United States of America
- Center for Reproductive Sciences, University of California San Francisco, San Francisco, California, United States of America
| | - Diana M. Quinonez
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Paolo F. Rinaudo
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Francisco, San Francisco, California, United States of America
- Center for Reproductive Sciences, University of California San Francisco, San Francisco, California, United States of America
| | - Emin Maltepe
- Department of Pediatrics, University of California San Francisco, San Francisco, California, United States of America
- Center for Reproductive Sciences, University of California San Francisco, San Francisco, California, United States of America
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, California, United States of America
- Developmental and Stem Cell Biology Program, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
38
|
Hemberger M. Health during pregnancy and beyond: Fetal trophoblast cells as chief co-ordinators of intrauterine growth and reproductive success. Ann Med 2012; 44:325-37. [PMID: 22409432 DOI: 10.3109/07853890.2012.663930] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Abstract Differentiation of extra-embryonic tissues and organs, notably the placenta, is vital for embryonic development and growth throughout gestation, starting from a few days after fertilization when the trophoblast cell lineage arises until parturition. In utero metabolic programming events may even extend the impact of placental function well into adulthood as they may predispose the offspring to common pathologies such as diabetes and cardiovascular disease. This review summarizes key steps that lead up to formation of a functional placenta. It highlights recent insights that have advanced our view of how early trophoblast expansion is achieved and how sufficient maternal blood supply to the developing fetus is secured. Exciting cumulative data have revealed the importance of a close cross-talk between the embryo proper and extra-embryonic trophoblast cells that involves extracellular matrix components in the establishment of a stem cell-like niche and proliferation compartment. Remarkably, placental function also relies on beneficial interactions between trophoblast cells and maternal immune cells at the implantation site. Our growing knowledge of the molecular mechanisms involved in trophoblast differentiation and function will help to devise informed approaches aimed at deciphering how placentation is controlled in humans as an essential process for reproductive success and long-term health.
Collapse
|
39
|
RhoE is regulated by cyclic AMP and promotes fusion of human BeWo choriocarcinoma cells. PLoS One 2012; 7:e30453. [PMID: 22272352 PMCID: PMC3260294 DOI: 10.1371/journal.pone.0030453] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 12/16/2011] [Indexed: 11/19/2022] Open
Abstract
Fusion of placental villous cytotrophoblasts with the overlying syncytiotrophoblast is essential for the maintenance of successful pregnancy, and disturbances in this process have been implicated in pathological conditions such as pre-eclampsia and intra-uterine growth retardation. In this study we examined the role of the Rho GTPase family member RhoE in trophoblast differentiation and fusion using the BeWo choriocarcinoma cell line, a model of villous cytotrophoblast fusion. Treatment of BeWo cells with the cell permeable cyclic AMP analogue dibutyryl cyclic AMP (dbcAMP) resulted in a strong upregulation of RhoE at 24h, coinciding with the onset of fusion. Using the protein kinase A (PKA)-specific cAMP analogue N6-phenyl-cAMP, and a specific inhibitor of PKA (14–22 amide, PKI), we found that upregulation of RhoE by cAMP was mediated through activation of PKA signalling. Silencing of RhoE expression by RNA interference resulted in a significant decrease in dbcAMP-induced fusion. However, expression of differentiation markers human chorionic gonadotrophin and placental alkaline phosphatase was unaffected by RhoE silencing. Finally, we found that RhoE upregulation by dbcAMP was significantly reduced under hypoxic conditions in which cell fusion is impaired. These results show that induction of RhoE by cAMP is mediated through PKA and promotes BeWo cell fusion but has no effect on functional differentiation, supporting evidence that these two processes may be controlled by separate or diverging pathways.
Collapse
|
40
|
Watson ED, Hughes M, Simmons DG, Natale DR, Sutherland AE, Cross JC. Cell-cell adhesion defects in Mrj mutant trophoblast cells are associated with failure to pattern the chorion during early placental development. Dev Dyn 2011; 240:2505-19. [DOI: 10.1002/dvdy.22755] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2011] [Indexed: 11/12/2022] Open
|
41
|
Suckale J, Wendling O, Masjkur J, Jäger M, Münster C, Anastassiadis K, Stewart AF, Solimena M. PTBP1 is required for embryonic development before gastrulation. PLoS One 2011; 6:e16992. [PMID: 21423341 PMCID: PMC3040740 DOI: 10.1371/journal.pone.0016992] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 01/18/2011] [Indexed: 12/27/2022] Open
Abstract
Polypyrimidine-tract binding protein 1 (PTBP1) is an important cellular regulator of messenger RNAs influencing the alternative splicing profile of a cell as well as its mRNA stability, location and translation. In addition, it is diverted by some viruses to facilitate their replication. Here, we used a novel PTBP1 knockout mouse to analyse the tissue expression pattern of PTBP1 as well as the effect of its complete removal during development. We found evidence of strong PTBP1 expression in embryonic stem cells and throughout embryonic development, especially in the developing brain and spinal cord, the olfactory and auditory systems, the heart, the liver, the kidney, the brown fat and cartilage primordia. This widespread distribution points towards a role of PTBP1 during embryonic development. Homozygous offspring, identified by PCR and immunofluorescence, were able to implant but were arrested or retarded in growth. At day 7.5 of embryonic development (E7.5) the null mutants were about 5x smaller than the control littermates and the gap in body size widened with time. At mid-gestation, all homozygous embryos were resorbed/degraded. No homozygous mice were genotyped at E12 and the age of weaning. Embryos lacking PTBP1 did not display differentiation into the 3 germ layers and cavitation of the epiblast, which are hallmarks of gastrulation. In addition, homozygous mutants displayed malformed ectoplacental cones and yolk sacs, both early supportive structure of the embryo proper. We conclude that PTBP1 is not required for the earliest isovolumetric divisions and differentiation steps of the zygote up to the formation of the blastocyst. However, further post-implantation development requires PTBP1 and stalls in homozygous null animals with a phenotype of dramatically reduced size and aberration in embryonic and extra-embryonic structures.
Collapse
Affiliation(s)
- Jakob Suckale
- Molecular Diabetology, Paul Langerhans Institute Dresden, School of Medicine and University Clinic ‘Carl Gustav Carus,’ Dresden University of Technology, Dresden, Germany
| | - Olivia Wendling
- Department of Functional Genomics, IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire) & ICS (Institut Clinique de la Souris), Illkirch, France
| | - Jimmy Masjkur
- Molecular Diabetology, Paul Langerhans Institute Dresden, School of Medicine and University Clinic ‘Carl Gustav Carus,’ Dresden University of Technology, Dresden, Germany
| | - Melanie Jäger
- Molecular Diabetology, Paul Langerhans Institute Dresden, School of Medicine and University Clinic ‘Carl Gustav Carus,’ Dresden University of Technology, Dresden, Germany
| | - Carla Münster
- Molecular Diabetology, Paul Langerhans Institute Dresden, School of Medicine and University Clinic ‘Carl Gustav Carus,’ Dresden University of Technology, Dresden, Germany
| | - Konstantinos Anastassiadis
- Center for Regenerative Therapies Dresden, BioInnovationsZentrum Dresden University of Technology, Dresden, Germany
| | - A. Francis Stewart
- Genomics, BioInnovationsZentrum, Dresden University of Technology, Dresden, Germany
| | - Michele Solimena
- Molecular Diabetology, Paul Langerhans Institute Dresden, School of Medicine and University Clinic ‘Carl Gustav Carus,’ Dresden University of Technology, Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- * E-mail:
| |
Collapse
|
42
|
Endocannabinoid signaling directs differentiation of trophoblast cell lineages and placentation. Proc Natl Acad Sci U S A 2010; 107:16887-92. [PMID: 20837524 DOI: 10.1073/pnas.1010892107] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In most mammals, placentation is critical for fetal development and pregnancy success. Exposure to marijuana during pregnancy has adverse effects, but whether the placenta is a target of cannabinoid/endocannabinoid signaling is not known. Using mice as a model system, we found that the endocannabinoid system is present in the ectoplacental cone and spongiotrophoblast cells. We also observed that aberrant endocannabinoid signaling confers premature trophoblast stem cell differentiation, and defective trophoblast development and invasion. These defects are reflected in retarded fetal development and compromised pregnancy outcome. Because the endocannabinoid system is conserved in mice and humans, our study suggests that endocannabinoid signaling is critical to placentation and pregnancy success in humans and implicates its potential significance in stem cell biology.
Collapse
|
43
|
El-Hashash AHK, Warburton D, Kimber SJ. Genes and signals regulating murine trophoblast cell development. Mech Dev 2009; 127:1-20. [PMID: 19755154 DOI: 10.1016/j.mod.2009.09.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2009] [Revised: 09/05/2009] [Accepted: 09/08/2009] [Indexed: 11/25/2022]
Abstract
A fundamental step in embryonic development is cell differentiation whereby highly specialised cell types are developed from a single undifferentiated, fertilised egg. One of the earliest lineages to form in the mammalian conceptus is the trophoblast, which contributes exclusively to the extraembryonic structures that form the placenta. Trophoblast giant cells (TGCs) in the rodent placenta form the outermost layer of the extraembryonic compartment, establish direct contact with maternal cells, and produce a number of pregnancy-specific cytokine hormones. Giant cells differentiate from proliferative trophoblasts as they exit the cell cycle and enter a genome-amplifying endocycle. Normal differentiation of secondary TGCs is a critical step toward the formation of the placenta and normal embryonic development. Trophoblast development is also of particular interest to the developmental biologist and immunobiologist, as these cells constitute the immediate cellular boundary between the embryonic and maternal tissues. Abnormalities in the development of secondary TGCs results in severe malfunction of the placenta. Herein we review new information that has been accumulated recently regarding the molecular and cellular regulation of trophoblast and placenta development. In particular, we discuss the molecular aspects of murine TGC differentiation. We also focus on the role of growth and transcription factors in TGC development.
Collapse
Affiliation(s)
- Ahmed H K El-Hashash
- Developmental Biology, Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine of University of Southern California, Los Angeles, CA 90027, USA
| | | | | |
Collapse
|
44
|
Watanabe K, Tachibana M, Kim S, Watarai M. Participation of ezrin in bacterial uptake by trophoblast giant cells. Reprod Biol Endocrinol 2009; 7:95. [PMID: 19737422 PMCID: PMC2748081 DOI: 10.1186/1477-7827-7-95] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Accepted: 09/09/2009] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Trophoblast giant (TG) cells are involved in systematic removal of bacterial pathogens from the maternal-fetal interface of the placenta. In particular, TG cells have the ability to take up extracellular antigens by active phagocytosis induced by interferon-gamma (IFN-gamma). We previously reported that heat shock cognate protein 70 (Hsc70) present on the surface of TG cells mediated the uptake of Brucella abortus. However, the mechanism of bacterial uptake by TG cells is not completely understood. Here we identified ezrin, a member of ezrin-radixin-moesin (ERM) protein family, as a molecule associated with Hsc70. METHODS Mouse TG cells were employed in all experiments, and B. abortus was used as the bacterial antigen. Confirmation of the binding capacity of ERM protein was assessed by pull-down assay and ELISA using recombinant Hsc70 and ERM proteins. Ezrin was depleted using siRNA and the depletion examined by immunoblotting or immunofluorescence staining. RESULTS The expression level of ezrin was higher in TG cells than in trophoblast stem (TS) cells, and ezrin knockdown TG cells showed a reduction in bacterial uptake ability. Although tyrosine phosphorylation of ezrin was not related to bacterial uptake activity, localization of Hsc70 on the membrane was affected by the depletion of ezrin in TG cells. CONCLUSION Ezrin associates with Hsc70 that locates on the membrane of TG cells and participates in the bacterial uptake by TG cells.
Collapse
Affiliation(s)
- Kenta Watanabe
- Department of Veterinary Public Health, Faculty of Agriculture, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Masato Tachibana
- Department of Veterinary Public Health, Faculty of Agriculture, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Suk Kim
- Department of Veterinary Public Health, Gyeongsang National University, Gyeongnam 660-701, Korea
| | - Masahisa Watarai
- Department of Veterinary Public Health, Faculty of Agriculture, Yamaguchi University, Yamaguchi 753-8515, Japan
| |
Collapse
|
45
|
Burghardt RC, Burghardt JR, Taylor JD, Reeder AT, Nguen BT, Spencer TE, Bayless KJ, Johnson GA. Enhanced focal adhesion assembly reflects increased mechanosensation and mechanotransduction at maternal–conceptus interface and uterine wall during ovine pregnancy. Reproduction 2009; 137:567-82. [DOI: 10.1530/rep-08-0304] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The integrity of the fetal–maternal interface is critical for proper fetal nourishment during pregnancy. Integrins are important adhesion molecules present at the interface during implantation; however,in vivoevidence for integrin activation and focal adhesion formation at the maternal–conceptus interface is limited. We hypothesized that focal adhesion assembly in uterine luminal epithelium (LE) and conceptus trophectoderm (Tr) results from integrin binding of extracellular matrix (ECM) at this interface to provide increased tensile forces and signaling to coordinate utero-placental development. An ovine model of unilateral pregnancy was used to evaluate mechanotransduction events leading to focal adhesion assembly at the maternal–conceptus interface and within the uterine wall. Animals were hysterectomized on days 40, 80, or 120 of pregnancy, and uteri immunostained for integrins (ITGAV, ITGA4, ITGA5, ITGB1, ITGB3, and ITGB5), ECM proteins (SPP1, LGALS15, fibronectin (FN), and vitronectin (VTN)), cytoskeletal molecules (ACTN and TLN1), and a signal generator (PTK2). Focal adhesion assembly in myometrium and stroma was also studied to provide a frame of reference for mechanical stretch of the uterine wall. Large focal adhesions containing aggregates of ITGAV, ITGA4, ITGA5, ITGB1, ITGB5, ACTN, and PTK2 were detected in interplacentomal uterine LE and Tr of gravid but not non-gravid uterine horns and increased during pregnancy. SPP1 and LGALS15, but not FN or VTN, were present along LE and Tr interfaces in both uterine horns. These data support the idea that focal adhesion assembly at the maternal–conceptus interface reflects adaptation to increasing forces caused by the growing fetus. Cooperative binding of multiple integrins to SPP1 deposited at the maternal–conceptus interface forms an adhesive mosaic to maintain a tight connection between uterine and placental surfaces along regions of epitheliochorial placentation in sheep.
Collapse
|
46
|
Schulz LC, Widmaier EP, Qiu J, Roberts RM. Effect of leptin on mouse trophoblast giant cells. Biol Reprod 2009; 80:415-24. [PMID: 19038858 PMCID: PMC2805391 DOI: 10.1095/biolreprod.108.073130] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Revised: 09/08/2008] [Accepted: 10/20/2008] [Indexed: 01/29/2023] Open
Abstract
Leptin plays a role in both energy homeostasis and reproduction, and it is required in early pregnancy. It stimulates metalloproteinase activity in cultured human trophoblasts and invasiveness of cultured mouse trophoblasts. Our goal has been to examine mechanisms that underpin the ability of leptin to promote trophoblast invasiveness in primary cultures of mouse trophoblasts. Leptin stimulated the phosphorylation of MEK (MAP2K1) but not signal transducer and activator of transcription 3 (STAT3) in the cultures, increased the concentration of the suppressor of cytokine signaling 3 (SOCS3) protein, and upregulated metalloproteinase activity. Microarray analysis revealed that leptin stimulated select genes with roles in cell motility, including Stmn, a gene linked to invasiveness in other cell types. There was also an increase in activity of several genes associated with MAPK and RhoGTPase signaling. In addition, leptin muted expression of genes correlated with terminal differentiation of trophoblast giant cells, including ones associated with the TGFbeta signaling pathway and endoreduplication of DNA, and upregulated selected prolactin-related family members. Feulgen staining of leptin-treated cells revealed a loss of cells with low ploidy. The data suggest that leptin accelerates disappearance of non-giant cells while inhibiting terminal differentiation of committed giant cells, possibly by maintaining cells in an intermediate stage of differentiation.
Collapse
Affiliation(s)
- L C Schulz
- Division of Animal Sciences, University of Missouri, Columbia, Missouri 65211, USA.
| | | | | | | |
Collapse
|
47
|
Proctor L, Dunk C, Baczyk D, Kingdom J, Lee Adamson S. Early Gene Expression and Morphogenesis of the Murine Chorioallantoic Placenta In vivo and In vitro. Placenta 2009; 30:96-104. [DOI: 10.1016/j.placenta.2008.09.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Revised: 09/22/2008] [Accepted: 09/25/2008] [Indexed: 10/21/2022]
|
48
|
Liszewska E, Reinaud P, Billon-Denis E, Dubois O, Robin P, Charpigny G. Lysophosphatidic acid signaling during embryo development in sheep: involvement in prostaglandin synthesis. Endocrinology 2009; 150:422-34. [PMID: 18772233 DOI: 10.1210/en.2008-0749] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We investigated the lysophosphatidic acid (LPA) pathway during early pregnancy in sheep. LPA was detected in the uteri of early-stage pregnant ewes. Using quantitative RT-PCR, the expression of autotaxin, the LPA-generating enzyme, was found in the endometrium and conceptus. In the latter autotaxin, transcript levels were low on d 12-14 and increased on d 15-16, in parallel with the level of LPA. Autotaxin was localized in the luminal epithelium and superficial glands of the endometrium and in trophectoderm cells of the conceptus. The expression of G protein-coupled receptors for LPA was also examined in the ovine conceptus. LPA receptor LPAR1 and LPAR3 transcripts were expressed during early pregnancy and displayed a peak on d 14, whereas the highest level of protein for both receptors was observed at d 17. LPAR1 was localized in cellular membranes and nuclear compartments of the trophectoderm cells, whereas LPAR3 was revealed only in membranes. LPA activated phosphorylation of the MAPK ERK1/2 in ovine trophectoderm-derived cells. Moreover, the bioactive lipid increased the proliferation of trophectoderm cells in culture, as shown by thymidine and bromodeoxyuridine incorporation. Furthermore, LPA induced changes to the organization of beta-actin and alpha-tubulin, suggesting a role for it in rearrangement of trophectoderm cells cytoskeleton. Because a link had previously been established between prostaglandin and LPA pathways, we analyzed the effect of LPA on prostaglandin synthesis. LPA induced an increase in the release of prostaglandin F2alpha and prostaglandin E2, with no significant modifications to cytosolic phospholipase A2alpha and prostaglandin synthase-2 expression. Taken together, our results suggest a new role for LPA-mediated signaling in the ovine conceptus at the time of implantation.
Collapse
Affiliation(s)
- Ewa Liszewska
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1198 Biologie du Développement et Reproduction, F-78350 Jouy en Josas, France
| | | | | | | | | | | |
Collapse
|
49
|
Watanabe K, Tachibana M, Tanaka S, Furuoka H, Horiuchi M, Suzuki H, Watarai M. Heat shock cognate protein 70 contributes to Brucella invasion into trophoblast giant cells that cause infectious abortion. BMC Microbiol 2008; 8:212. [PMID: 19055850 PMCID: PMC2607286 DOI: 10.1186/1471-2180-8-212] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Accepted: 12/05/2008] [Indexed: 11/21/2022] Open
Abstract
Background The cell tropism of Brucella abortus, a causative agent of brucellosis and facultative intracellular pathogen, in the placenta is thought to be a key event of infectious abortion, although the molecular mechanism for this is largely unknown. There is a higher degree of bacterial colonization in the placenta than in other organs and many bacteria are detected in trophoblast giant (TG) cells in the placenta. In the present study, we investigated mechanism of B. abortus invasion into TG cells. Results We observed internalization and intracellular growth of B. abortus in cultured TG cells. A monoclonal antibody that inhibits bacterial internalization was isolated and this reacted with heat shock cognate protein 70 (Hsc70). Depletion and over expression of Hsc70 in TG cells inhibited and promoted bacterial internalization, respectively. IFN-γ receptor was expressed in TG cells and IFN-γ treatment enhanced the uptake of bacteria by TG cells. Administering the anti-Hsc70 antibody to pregnant mice served to prevent infectious abortion. Conclusion B. abortus infection of TG cells in placenta is mediated by Hsc70, and that such infection leads to infectious abortion.
Collapse
Affiliation(s)
- Kenta Watanabe
- Department of Veterinary Public Health, Faculty of Agriculture, Yamaguchi University, Yamaguchi, Japan.
| | | | | | | | | | | | | |
Collapse
|
50
|
Hemberger M. IFPA award in placentology lecture - characteristics and significance of trophoblast giant cells. Placenta 2008; 29 Suppl A:S4-9. [PMID: 18083226 DOI: 10.1016/j.placenta.2007.11.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2007] [Revised: 11/05/2007] [Accepted: 11/13/2007] [Indexed: 11/29/2022]
Abstract
Extraembryonic development in rodents depends on the differentiation and function of trophoblast giant cells. Morphologically striking, giant cells exhibit many extraordinary characteristics adapted to ensure the success of pregnancy. This review summarizes some of the intriguing aspects of giant cell morphology and function. Giant cells are highly polyploid as a result of a switch from a mitotic to an endoreduplicative cell cycle. They further partition their genome content into various fragments which may represent a mechanism to maximize protein synthesis. Similar to metastatic tumour cells, they breach basement membranes and invade deeply into a foreign tissue, the maternal decidualized uterine stroma. Their angiogenic and vasodilatory properties, combined with the ability to remodel arterial walls, enable them to redirect maternal blood flow towards the implantation site. Recent advances have recognized that the giant cell population is more diverse than previously recognized and future studies will have to show how these subtypes differ functionally and how their differentiation is controlled.
Collapse
Affiliation(s)
- M Hemberger
- Laboratory of Developmental Genetics and Imprinting, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK.
| |
Collapse
|