1
|
Hawkins MR, Wingert RA. Zebrafish as a Model to Study Retinoic Acid Signaling in Development and Disease. Biomedicines 2023; 11:biomedicines11041180. [PMID: 37189798 DOI: 10.3390/biomedicines11041180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/06/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023] Open
Abstract
Retinoic acid (RA) is a metabolite of vitamin A (retinol) that plays various roles in development to influence differentiation, patterning, and organogenesis. RA also serves as a crucial homeostatic regulator in adult tissues. The role of RA and its associated pathways are well conserved from zebrafish to humans in both development and disease. This makes the zebrafish a natural model for further interrogation into the functions of RA and RA-associated maladies for the sake of basic research, as well as human health. In this review, we explore both foundational and recent studies using zebrafish as a translational model for investigating RA from the molecular to the organismal scale.
Collapse
Affiliation(s)
- Matthew R Hawkins
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Rebecca A Wingert
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
2
|
Gur M, Bendelac-Kapon L, Shabtai Y, Pillemer G, Fainsod A. Reduced Retinoic Acid Signaling During Gastrulation Induces Developmental Microcephaly. Front Cell Dev Biol 2022; 10:844619. [PMID: 35372345 PMCID: PMC8967241 DOI: 10.3389/fcell.2022.844619] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/24/2022] [Indexed: 12/21/2022] Open
Abstract
Retinoic acid (RA) is a central signaling molecule regulating multiple developmental decisions during embryogenesis. Excess RA induces head malformations, primarily by expansion of posterior brain structures at the expense of anterior head regions, i.e., hindbrain expansion. Despite this extensively studied RA teratogenic effect, a number of syndromes exhibiting microcephaly, such as DiGeorge, Vitamin A Deficiency, Fetal Alcohol Syndrome, and others, have been attributed to reduced RA signaling. This causative link suggests a requirement for RA signaling during normal head development in all these syndromes. To characterize this novel RA function, we studied the involvement of RA in the early events leading to head formation in Xenopus embryos. This effect was mapped to the earliest RA biosynthesis in the embryo within the gastrula Spemann-Mangold organizer. Head malformations were observed when reduced RA signaling was induced in the endogenous Spemann-Mangold organizer and in the ectopic organizer of twinned embryos. Two embryonic retinaldehyde dehydrogenases, ALDH1A2 (RALDH2) and ALDH1A3 (RALDH3) are initially expressed in the organizer and subsequently mark the trunk and the migrating leading edge mesendoderm, respectively. Gene-specific knockdowns and CRISPR/Cas9 targeting show that RALDH3 is a key enzyme involved in RA production required for head formation. These observations indicate that in addition to the teratogenic effect of excess RA on head development, RA signaling also has a positive and required regulatory role in the early formation of the head during gastrula stages. These results identify a novel RA activity that concurs with its proposed reduction in syndromes exhibiting microcephaly.
Collapse
|
3
|
Iturbide A, Ruiz Tejada Segura ML, Noll C, Schorpp K, Rothenaigner I, Ruiz-Morales ER, Lubatti G, Agami A, Hadian K, Scialdone A, Torres-Padilla ME. Retinoic acid signaling is critical during the totipotency window in early mammalian development. Nat Struct Mol Biol 2021; 28:521-532. [PMID: 34045724 PMCID: PMC8195742 DOI: 10.1038/s41594-021-00590-w] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 04/07/2021] [Indexed: 12/15/2022]
Abstract
Totipotent cells hold enormous potential for regenerative medicine. Thus, the development of cellular models recapitulating totipotent-like features is of paramount importance. Cells resembling the totipotent cells of early embryos arise spontaneously in mouse embryonic stem (ES) cell cultures. Such '2-cell-like-cells' (2CLCs) recapitulate 2-cell-stage features and display expanded cell potential. Here, we used 2CLCs to perform a small-molecule screen to identify new pathways regulating the 2-cell-stage program. We identified retinoids as robust inducers of 2CLCs and the retinoic acid (RA)-signaling pathway as a key component of the regulatory circuitry of totipotent cells in embryos. Using single-cell RNA-seq, we reveal the transcriptional dynamics of 2CLC reprogramming and show that ES cells undergo distinct cellular trajectories in response to RA. Importantly, endogenous RA activity in early embryos is essential for zygotic genome activation and developmental progression. Overall, our data shed light on the gene regulatory networks controlling cellular plasticity and the totipotency program.
Collapse
MESH Headings
- Acitretin/pharmacology
- Animals
- Blastocyst Inner Cell Mass/cytology
- Cell Differentiation
- Cells, Cultured
- Dose-Response Relationship, Drug
- Embryonic Stem Cells/cytology
- Embryonic Stem Cells/drug effects
- Female
- Gene Expression Regulation, Developmental
- Gene Regulatory Networks/genetics
- Genes, Reporter
- Isotretinoin/pharmacology
- Male
- Mice/embryology
- Mice, Inbred C57BL
- Mice, Inbred CBA
- Piperazines/pharmacology
- Pyrazoles/pharmacology
- RNA Interference
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- RNA, Small Interfering/pharmacology
- RNA-Seq
- Receptors, Retinoic Acid/antagonists & inhibitors
- Receptors, Retinoic Acid/physiology
- Signal Transduction/drug effects
- Totipotent Stem Cells/cytology
- Totipotent Stem Cells/drug effects
- Transcription, Genetic
- Tretinoin/antagonists & inhibitors
- Tretinoin/pharmacology
- Tretinoin/physiology
- Retinoic Acid Receptor gamma
Collapse
Affiliation(s)
- Ane Iturbide
- Institute of Epigenetics and Stem Cells (IES), Helmholtz Zentrum München, Munich, Germany
| | - Mayra L Ruiz Tejada Segura
- Institute of Epigenetics and Stem Cells (IES), Helmholtz Zentrum München, Munich, Germany
- Institute of Functional Epigenetics (IFE), Helmholtz Zentrum München, Neuherberg, Germany
- Institute of Computational Biology (ICB), Helmholtz Zentrum München, Neuherberg, Germany
| | - Camille Noll
- Institute of Epigenetics and Stem Cells (IES), Helmholtz Zentrum München, Munich, Germany
| | - Kenji Schorpp
- Assay Development & Screening Platform, Institute of Molecular Toxicology & Pharmacology (TOXI), Helmholtz Zentrum München, Neuherberg, Germany
| | - Ina Rothenaigner
- Assay Development & Screening Platform, Institute of Molecular Toxicology & Pharmacology (TOXI), Helmholtz Zentrum München, Neuherberg, Germany
| | - Elias R Ruiz-Morales
- Institute of Epigenetics and Stem Cells (IES), Helmholtz Zentrum München, Munich, Germany
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Gabriele Lubatti
- Institute of Epigenetics and Stem Cells (IES), Helmholtz Zentrum München, Munich, Germany
- Institute of Functional Epigenetics (IFE), Helmholtz Zentrum München, Neuherberg, Germany
- Institute of Computational Biology (ICB), Helmholtz Zentrum München, Neuherberg, Germany
| | - Ahmed Agami
- Institute of Epigenetics and Stem Cells (IES), Helmholtz Zentrum München, Munich, Germany
| | - Kamyar Hadian
- Assay Development & Screening Platform, Institute of Molecular Toxicology & Pharmacology (TOXI), Helmholtz Zentrum München, Neuherberg, Germany
| | - Antonio Scialdone
- Institute of Epigenetics and Stem Cells (IES), Helmholtz Zentrum München, Munich, Germany
- Institute of Functional Epigenetics (IFE), Helmholtz Zentrum München, Neuherberg, Germany
- Institute of Computational Biology (ICB), Helmholtz Zentrum München, Neuherberg, Germany
| | - Maria-Elena Torres-Padilla
- Institute of Epigenetics and Stem Cells (IES), Helmholtz Zentrum München, Munich, Germany.
- Faculty of Biology, Ludwig-Maximilians Universität, Munich, Germany.
| |
Collapse
|
4
|
García-Padilla C, Lozano-Velasco E, López-Sánchez C, Garcia-Martínez V, Aranega A, Franco D. Non-Coding RNAs in Retinoic Acid as Differentiation and Disease Drivers. Noncoding RNA 2021; 7:ncrna7010013. [PMID: 33671241 PMCID: PMC8005990 DOI: 10.3390/ncrna7010013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/14/2021] [Accepted: 02/15/2021] [Indexed: 12/12/2022] Open
Abstract
All-trans retinoic acid (RA) is the most active metabolite of vitamin A. Several studies have described a pivotal role for RA signalling in different biological processes such as cell growth and differentiation, embryonic development and organogenesis. Since RA signalling is highly dose-dependent, a fine-tuning regulatory mechanism is required. Thus, RA signalling deregulation has a major impact, both in development and disease, related in many cases to oncogenic processes. In this review, we focus on the impact of ncRNA post-transcriptional regulatory mechanisms, especially those of microRNAs and lncRNAs, in RA signalling pathways during differentiation and disease.
Collapse
Affiliation(s)
- Carlos García-Padilla
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (C.G.-P.); (E.L.-V.); (A.A.)
- Department of Human Anatomy and Embryology, University of Extremadura, 06006 Badajoz, Spain; (C.L.-S.); (V.G.-M.)
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain
| | - Estefanía Lozano-Velasco
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (C.G.-P.); (E.L.-V.); (A.A.)
- Fundación Medina, 18016 Granada, Spain
| | - Carmen López-Sánchez
- Department of Human Anatomy and Embryology, University of Extremadura, 06006 Badajoz, Spain; (C.L.-S.); (V.G.-M.)
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain
| | - Virginio Garcia-Martínez
- Department of Human Anatomy and Embryology, University of Extremadura, 06006 Badajoz, Spain; (C.L.-S.); (V.G.-M.)
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain
| | - Amelia Aranega
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (C.G.-P.); (E.L.-V.); (A.A.)
- Fundación Medina, 18016 Granada, Spain
| | - Diego Franco
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (C.G.-P.); (E.L.-V.); (A.A.)
- Fundación Medina, 18016 Granada, Spain
- Correspondence:
| |
Collapse
|
5
|
Yu J, Berga SL, Zou W, Rajakumar A, Man M, Sidell N, Taylor RN. Human Endometrial Stromal Cell Differentiation is Stimulated by PPARβ/δ Activation: New Targets for Infertility? J Clin Endocrinol Metab 2020; 105:dgaa413. [PMID: 32594141 PMCID: PMC7373326 DOI: 10.1210/clinem/dgaa413] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/22/2020] [Indexed: 02/06/2023]
Abstract
CONTEXT Implantation is a reproductive bottleneck in women, regulated by fluctuations in ovarian steroid hormone concentrations. However, other nuclear receptor ligands are modifiers of endometrial differentiation leading to successful pregnancy. In the present study we analyzed the effects of peroxisome-proliferator-activated receptor β/δ (PPARβ/δ) activation on established cellular biomarkers of human endometrial differentiation (decidualization). OBJECTIVE The objective of this work is to test the effects of PPARβ/δ ligation on human endometrial cell differentiation. DESIGN Isolated primary human endometrial stromal cells (ESCs) were treated with synthetic (GW0742) or natural (all trans-retinoic acid, RA) ligands of PPARβ/δ, and also with receptor antagonists (GSK0660, PT-S58, and ST247) in the absence or presence of decidualizing hormones (10 nM estradiol, 100 nM progesterone, and 0.5 mM dibutyryl cAMP [3',5'-cyclic adenosine 5'-monophosphate]). In some cases interleukin (IL)-1β was used as an inflammatory stimulus. Time course and dose-response relationships were evaluated to determine effects on panels of well characterized in vitro biomarkers of decidualization. RESULTS PPARβ/δ, along with estrogen receptor α (ERα) and PR-A and PR-B, were expressed in human endometrial tissue and isolated ESCs. GW0742 treatment enhanced hormone-mediated ESC decidualization in vitro as manifested by upregulation of prolactin, insulin-like growth factor-binding protein 1, IL-11, and vascular endothelial growth factor (VEGF) secretion and also increased expression of ERα, PR-A and PR-B, and connexin 43 (Cx43). RA treatment also increased VEGF, ERα, PR-A, and PR-B and an active, nonphosphorylated isoform of Cx43. IL-1β and PPARβ/δ antagonists inhibited biomarkers of endometrial differentiation. CONCLUSION Ligands that activate PPARβ/δ augment the in vitro expression of biomarkers of ESC decidualization. By contrast, PPARβ/δ antagonists impaired decidualization markers. Drugs activating these receptors may have therapeutic benefits for embryonic implantation.
Collapse
Affiliation(s)
- Jie Yu
- Department of Obstetrics and Gynecology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Sarah L Berga
- Department of Obstetrics and Gynecology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Wei Zou
- Department of Bioengineering, Hebei University of Science and Technology, Hebei, China
| | - Augustine Rajakumar
- Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Mingfei Man
- Department of Biology, University of North Carolina, Charlotte, North Carolina, USA
| | - Neil Sidell
- Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Robert N Taylor
- Department of Obstetrics and Gynecology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- Department of Obstetrics and Gynecology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| |
Collapse
|
6
|
Bukys MA, Mihas A, Finney K, Sears K, Trivedi D, Wang Y, Oberholzer J, Jensen J. High-Dimensional Design-Of-Experiments Extracts Small-Molecule-Only Induction Conditions for Dorsal Pancreatic Endoderm from Pluripotency. iScience 2020; 23:101346. [PMID: 32745983 PMCID: PMC7398937 DOI: 10.1016/j.isci.2020.101346] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 04/15/2020] [Accepted: 07/02/2020] [Indexed: 01/27/2023] Open
Abstract
The derivation of endoderm and descendant organs, such as pancreas, liver, and intestine, impacts disease modeling and regenerative medicine. Use of TGF-β signaling agonism is a common method for induction of definitive endoderm from pluripotency. By using a data-driven, High-Dimensional Design of Experiments (HD-DoE)-based methodology to address multifactorial problems in directed differentiation, we found instead that optimal conditions demanded BMP antagonism and retinoid input leading to induction of dorsal foregut endoderm (DFE). We demonstrate that pancreatic identity can be rapidly, and robustly, induced from DFE and that such cells are of dorsal pancreatic identity. The DFE population was highly competent to differentiate into both stomach organoids and pancreatic tissue types and able to generate fetal-type β cells through two subsequent differentiation steps using only small molecules. This alternative, rapid, and low-cost basis for generating pancreatic insulin-producing cells may have impact for the development of cell-based therapies for diabetes. Method development for addressing multifactorial problems in directed differentiation Generation of endodermal populations without the use of TGF-β agonism Small-molecule-based pancreatic differentiation protocol
Collapse
Affiliation(s)
- Michael A Bukys
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Alexander Mihas
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Krystal Finney
- Trailhead Biosystems Inc, 10000 Cedar Avenue, Cleveland, OH, USA; Cleveland Clinic, Cleveland, OH 44195, USA
| | - Katie Sears
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Divya Trivedi
- Trailhead Biosystems Inc, 10000 Cedar Avenue, Cleveland, OH, USA; Cleveland Clinic, Cleveland, OH 44195, USA
| | - Yong Wang
- Division of Transplantation, University of Virginia, Charlottesville, VA 22903, USA
| | - Jose Oberholzer
- Division of Transplantation, University of Virginia, Charlottesville, VA 22903, USA
| | - Jan Jensen
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA; Trailhead Biosystems Inc, 10000 Cedar Avenue, Cleveland, OH, USA; Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
7
|
Shannon SR, Yu J, Defnet AE, Bongfeldt D, Moise AR, Kane MA, Trainor PA. Identifying vitamin A signaling by visualizing gene and protein activity, and by quantification of vitamin A metabolites. Methods Enzymol 2020; 637:367-418. [PMID: 32359653 DOI: 10.1016/bs.mie.2020.03.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Vitamin A (retinol) is an essential nutrient for embryonic development and adult homeostasis. Signaling by vitamin A is carried out by its active metabolite, retinoic acid (RA), following a two-step conversion. RA is a small, lipophilic molecule that can diffuse from its site of synthesis to neighboring RA-responsive cells where it binds retinoic acid receptors within RA response elements of target genes. It is critical that both vitamin A and RA are maintained within a tight physiological range to protect against developmental disorders and disease. Therefore, a series of compensatory mechanisms exist to ensure appropriate levels of each. This strict regulation is provided by a number synthesizing and metabolizing enzymes that facilitate the precise spatiotemporal control of vitamin A metabolism, and RA synthesis and signaling. In this chapter we describe protocols that (1) biochemically isolate and quantify vitamin A and its metabolites and (2) visualize the spatiotemporal activity of genes and proteins involved in the signaling pathway.
Collapse
Affiliation(s)
- Stephen R Shannon
- Stowers Institute for Medical Research, Kansas City, MO, United States; University of Kansas Medical Center, Department of Anatomy and Cell Biology, Kansas City, KS, United States
| | - Jianshi Yu
- University of Maryland Baltimore, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD, United States
| | - Amy E Defnet
- University of Maryland Baltimore, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD, United States
| | - Danika Bongfeldt
- Medical Sciences Division, Northern Ontario School of Medicine, Sudbury, ON, Canada; Departments of Chemistry and Biochemistry, and Biology and Biomolecular Sciences Program, Laurentian University, Sudbury, ON, Canada
| | - Alexander R Moise
- Medical Sciences Division, Northern Ontario School of Medicine, Sudbury, ON, Canada; Departments of Chemistry and Biochemistry, and Biology and Biomolecular Sciences Program, Laurentian University, Sudbury, ON, Canada
| | - Maureen A Kane
- University of Maryland Baltimore, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD, United States
| | - Paul A Trainor
- Stowers Institute for Medical Research, Kansas City, MO, United States; University of Kansas Medical Center, Department of Anatomy and Cell Biology, Kansas City, KS, United States.
| |
Collapse
|
8
|
Abstract
The placenta, a hallmark of mammalian embryogenesis, allows nutrients to be exchanged between the mother and the fetus. Vitamin A (VA), an essential nutrient, cannot be synthesized by the embryo, and must be acquired from the maternal circulation through the placenta. Our understanding of how this transfer is accomplished is still in its infancy. In this chapter, we recapitulate the early studies about the relationship between maternal dietary/supplemental VA intake and fetal VA levels. We then describe how the discovery of retinol-binding protein (RBP or RBP4), the development of labeling and detection techniques, and the advent of knockout mice shifted this field from a macroscopic to a molecular level. The most recent data indicate that VA and its derivatives (retinoids) and the pro-VA carotenoid, β-carotene, are transferred across the placenta by distinct proteins, some of which overlap with proteins involved in lipoprotein uptake. The VA status and dietary intake of the mother influence the expression of these proteins, creating feedback signals that control the uptake of retinoids and that may also regulate the uptake of lipids, raising the intriguing possibility of crosstalk between micronutrient and macronutrient metabolism. Many questions remain about the temporal and spatial patterns by which these proteins are expressed and transferred throughout gestation. The answers to these questions are highly relevant to human health, considering that those with either limited or excessive intake of retinoids/carotenoids during pregnancy may be at risk of obtaining improper amounts of VA that ultimately impact the development and health of their offspring.
Collapse
|
9
|
Petrelli B, Bendelac L, Hicks GG, Fainsod A. Insights into retinoic acid deficiency and the induction of craniofacial malformations and microcephaly in fetal alcohol spectrum disorder. Genesis 2019; 57:e23278. [DOI: 10.1002/dvg.23278] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 12/03/2018] [Accepted: 12/04/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Berardino Petrelli
- Regenerative Medicine Program and the Department of Biochemistry & Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health SciencesUniversity of Manitoba Winnipeg Manitoba Canada
| | - Liat Bendelac
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel‐CanadaFaculty of Medicine, Hebrew University Jerusalem Israel
| | - Geoffrey G. Hicks
- Regenerative Medicine Program and the Department of Biochemistry & Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health SciencesUniversity of Manitoba Winnipeg Manitoba Canada
| | - Abraham Fainsod
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel‐CanadaFaculty of Medicine, Hebrew University Jerusalem Israel
| |
Collapse
|
10
|
Jiang Y, Chen L, Taylor RN, Li C, Zhou X. Physiological and pathological implications of retinoid action in the endometrium. J Endocrinol 2018; 236:R169-R188. [PMID: 29298821 DOI: 10.1530/joe-17-0544] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 01/03/2018] [Indexed: 01/02/2023]
Abstract
Retinol (vitamin A) and its derivatives, collectively known as retinoids, are required for maintaining vision, immunity, barrier function, reproduction, embryogenesis and cell proliferation and differentiation. Despite the fact that most events in the endometrium are predominantly regulated by steroid hormones (estrogens and progesterone), accumulating evidence shows that retinoid signaling is also involved in the development and maintenance of the endometrium, stromal decidualization and blastocyst implantation. Moreover, aberrant retinoid metabolism seems to be a critical factor in the development of endometriosis, a common gynecological disease, which affects up to 10% of reproductive age women and is characterized by the ectopic localization of endometrial-like tissue in the pelvic cavity. This review summarizes recent advances in research on the mechanisms and molecular actions of retinoids in normal endometrial development and physiological function. The potential roles of abnormal retinoid signaling in endometriosis are also discussed. The objectives are to identify limitations in current knowledge regarding the molecular actions of retinoids in endometrial biology and to stimulate new investigations toward the development potential therapeutics to ameliorate or prevent endometriosis symptoms.
Collapse
Affiliation(s)
- Yanwen Jiang
- College of Animal SciencesJilin University, Changchun, Jilin, China
| | - Lu Chen
- College of Animal SciencesJilin University, Changchun, Jilin, China
| | - Robert N Taylor
- Departments of Obstetrics and Gynecology and Molecular Medicine and Translational SciencesWake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Chunjin Li
- College of Animal SciencesJilin University, Changchun, Jilin, China
| | - Xu Zhou
- College of Animal SciencesJilin University, Changchun, Jilin, China
| |
Collapse
|
11
|
Peroxisome Proliferator-Activated Receptor α Activation Is Not the Main Contributor to Teratogenesis Elicited by Polar Compounds from Oxidized Frying Oil. Int J Mol Sci 2017; 18:ijms18030510. [PMID: 28264465 PMCID: PMC5372526 DOI: 10.3390/ijms18030510] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/16/2017] [Accepted: 02/23/2017] [Indexed: 01/28/2023] Open
Abstract
We previously reported that polar compounds (PO) in cooking oil are teratogenic and perturbed retinoic acid (RA) metabolism. Considering PO as a potent peroxisome proliferator-activated receptor α (PPARα) activator, this study aimed to investigate the role of PPARα in PO-induced teratogenesis and disturbance of RA metabolism. Female PPARα knockout or wild type mice were mated with males of the same genotype. Pregnant mice were fed a diet containing 10% fat from either fresh oil (FO) or PO from gestational day1 to day18, and killed at day18. The PO diet significantly increased the incidence of teratogenesis and fetal RA concentrations, regardless of genotype. Though PPARα deficiency disturbed maternal RA homeostasis, itself did not contribute to teratogenesis as long as FO diet was given. The mRNA profile of genes involved in RA metabolism was differentially affected by diet or genotype in mothers and fetuses. Based on hepatic mRNA levels of genes involved in xenobiotic metabolism, we inferred that PO not only activated PPARα, but also altered transactivity of other xenobiotic receptors. We concluded that PO-induced fetal anomalies and RA accumulation were independent of PPARα activation.
Collapse
|
12
|
Mammadova A, Zhou H, Carels CE, Von den Hoff JW. Retinoic acid signalling in the development of the epidermis, the limbs and the secondary palate. Differentiation 2016; 92:326-335. [DOI: 10.1016/j.diff.2016.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 04/20/2016] [Accepted: 05/02/2016] [Indexed: 01/06/2023]
|
13
|
Tan L, Green MH, Ross AC. Vitamin A kinetics in neonatal rats vs. adult rats: comparisons from model-based compartmental analysis. J Nutr 2015; 145:403-10. [PMID: 25540407 PMCID: PMC4336526 DOI: 10.3945/jn.114.204065] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 10/16/2014] [Accepted: 11/26/2014] [Indexed: 11/14/2022] Open
Abstract
A critical role for vitamin A (VA) in development is well established, but still relatively little is known about whole-body VA metabolism in early postnatal life. Recently, methods of mathematical modeling have begun to shed light on retinol kinetics in the postnatal growth period and on the effect of retinoid supplementation on retinol kinetics. Comparison of kinetic parameters from tracer studies in neonatal rats with those previously determined in models of VA metabolism in the adult suggests both similarities and differences in the relative transfer rates of plasma retinol to extrahepatic tissues, resulting in similarities and differences in kinetic parameters and inferences about physiologic processes. Similarities between neonatal and adult models include the capacity for efficient digestion and absorption of VA; characteristics of a high-response system; extensive retinol recycling among liver, plasma, and extrahepatic tissues; and comparable VA disposal rates. Differences between neonatal and adult models include that, in neonates, retinol turnover is faster and retinol recycling is much more extensive; there is a greater role for extrahepatic tissues in the uptake of chylomicron VA; and the intestine plays an important role in chylomicron VA uptake, especially in neonatal rats treated with a supplement containing VA. In summary, retinol kinetic modeling in the neonatal rat has provided a first view of whole-body VA metabolism in this age group and suggests that VA kinetics in neonatal rats differs in many ways from that in adults, perhaps reflecting an adaption to the lower VA concentration found in neonates compared with adults.
Collapse
Affiliation(s)
- Libo Tan
- Department of Nutritional Sciences, and
| | | | - A Catharine Ross
- Department of Nutritional Sciences, and The Huck Institutes for the Life Sciences, The Pennsylvania State University, University Park, PA
| |
Collapse
|
14
|
Signaling through retinoic acid receptors in cardiac development: Doing the right things at the right times. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:94-111. [PMID: 25134739 DOI: 10.1016/j.bbagrm.2014.08.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 06/19/2014] [Accepted: 08/04/2014] [Indexed: 11/23/2022]
Abstract
Retinoic acid (RA) is a terpenoid that is synthesized from vitamin A/retinol (ROL) and binds to the nuclear receptors retinoic acid receptor (RAR)/retinoid X receptor (RXR) to control multiple developmental processes in vertebrates. The available clinical and experimental data provide uncontested evidence for the pleiotropic roles of RA signaling in development of multiple embryonic structures and organs such eyes, central nervous system, gonads, lungs and heart. The development of any of these above-mentioned embryonic organ systems can be effectively utilized to showcase the many strategies utilized by RA signaling. However, it is very likely that the strategies employed to transfer RA signals during cardiac development comprise the majority of the relevant and sophisticated ways through which retinoid signals can be conveyed in a complex biological system. Here, we provide the reader with arguments indicating that RA signaling is exquisitely regulated according to specific phases of cardiac development and that RA signaling itself is one of the major regulators of the timing of cardiac morphogenesis and differentiation. We will focus on the role of signaling by RA receptors (RARs) in early phases of heart development. This article is part of a Special Issue entitled: Nuclear receptors in animal development.
Collapse
|
15
|
Esteban J, Elabbas LE, Borg D, Herlin M, Åkesson A, Barber X, Hamscher G, Nau H, Bowers WJ, Nakai JS, Viluksela M, Håkansson H. Gestational and lactational exposure to the polychlorinated biphenyl mixture Aroclor 1254 modulates retinoid homeostasis in rat offspring. Toxicol Lett 2014; 229:41-51. [PMID: 24887809 DOI: 10.1016/j.toxlet.2014.04.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 04/24/2014] [Accepted: 04/25/2014] [Indexed: 01/26/2023]
Abstract
Polychlorinated biphenyls (PCBs) induce a broad spectrum of biochemical and toxic effects in mammals including alterations of the vital retinoid (vitamin A) system. The aim of this study was to characterize alterations of tissue retinoid levels in rat offspring and their dams following gestational and lactational exposure to the PCB mixture Aroclor 1254 (A1254) and to assess the interrelationship of these changes with other established sensitive biochemical and toxicological endpoints. Sprague-Dawley rat dams were exposed orally to 0 or 15 mg/kg body weight/day of A1254 from gestational day 1 to postnatal day (PND) 23. Livers, kidneys and serum were collected from the offspring on PNDs 35, 77 and 350. Tissue and serum retinoid levels, hepatic cytochrome P450 (CYP) enzymes and serum thyroid hormones were analyzed. A multivariate regression between A1254 treatment, hepatic retinoid levels, hepatic CYP enzymes activities, thyroid hormone levels and body/liver weights was performed using an orthogonal partial least-squares (PLS) analysis. The contribution of dioxin-like (DL) components of A1254 to the observed effects was also estimated using the toxic equivalency (TEQ) concept. In both male and female offspring short-term alterations in tissue retinoid levels occurred at PND35, i.e. decreased levels of hepatic retinol and retinoic acid (RA) metabolite 9-cis-4-oxo-13,14-dihydro-RA with concurrent increases in hepatic and renal all-trans-RA levels. Long-term changes consisted of decreased hepatic retinyl palmitate and increased renal retinol levels that were apparent until PND350. Retinoid system alterations were associated with altered CYP enzyme activities and serum thyroid hormone levels as well as body and liver weights in both offspring and dams. The estimated DL activity was within an order of magnitude of the theoretical TEQ for different endpoints, indicating significant involvement of DL congeners in the observed effects. This study shows that tissue retinoid levels are affected both short- and long-term by developmental A1254 exposure and are associated with alterations of other established endpoints of toxicological concern.
Collapse
Affiliation(s)
- Javier Esteban
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Instituto de Bioingeniería, Universidad Miguel Hernández de Elche, Elche (Alicante), Spain
| | - Lubna E Elabbas
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Daniel Borg
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Maria Herlin
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Agneta Åkesson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Xavier Barber
- Centro de Investigación Operativa, Universidad Miguel Hernández, Elche (Alicante), Spain
| | - Gerd Hamscher
- Institute for Food Toxicology and Analytical Chemistry, University of Veterinary Medicine, Hannover, Germany
| | - Heinz Nau
- Institute for Food Toxicology and Analytical Chemistry, University of Veterinary Medicine, Hannover, Germany
| | - Wayne J Bowers
- Neurotoxicology Laboratory, Environmental Health Sciences and Research Bureau, Health Canada, Ottawa, Canada; Neuroscience Department, Carleton University, Ottawa, Canada
| | - Jamie S Nakai
- Neurotoxicology Laboratory, Environmental Health Sciences and Research Bureau, Health Canada, Ottawa, Canada
| | - Matti Viluksela
- Department of Environmental Health, THL - National Institute for Health and Welfare, Kuopio, Finland; Department of Environmental Science, University of Eastern Finland, Kuopio, Finland
| | - Helen Håkansson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
16
|
Affiliation(s)
- Pengxiang Huang
- Metabolic Signaling and Disease Program, Sanford-Burnham Medical Research Institute, Orlando, FL 32827, USA
| | - Vikas Chandra
- Metabolic Signaling and Disease Program, Sanford-Burnham Medical Research Institute, Orlando, FL 32827, USA
| | - Fraydoon Rastinejad
- Metabolic Signaling and Disease Program, Sanford-Burnham Medical Research Institute, Orlando, FL 32827, USA
| |
Collapse
|
17
|
Pauli SA, Session DR, Shang W, Easley K, Wieser F, Taylor RN, Pierzchalski K, Napoli JL, Kane MA, Sidell N. Analysis of follicular fluid retinoids in women undergoing in vitro fertilization: retinoic acid influences embryo quality and is reduced in women with endometriosis. Reprod Sci 2013; 20:1116-24. [PMID: 23427183 DOI: 10.1177/1933719113477487] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Retinol (ROL) and its biologically active metabolite, all-trans retinoic acid (ATRA), are essential for a number of reproductive processes. However, there is a paucity of information regarding their roles in ovarian folliculogenesis, oocyte maturation, and early embryogenesis. The objectives of this study were to quantify and compare peripheral plasma (PP) and follicular fluid (FF) retinoid levels, including ATRA in women undergoing in vitro fertilization (IVF) and to investigate the relationship between retinoid levels and embryo quality. Retinoid levels were evaluated in PP and FF from 79 women undergoing IVF at the time of oocyte retrieval and corresponding embryo quality assessed on a daily basis after retrieval for 3 days until uterine transfer. Analysis compared the retinoid levels with day 3 embryo grades and between endometriosis versus control patients. Results demonstrated distinctive levels of retinoid metabolites and isomers in FF versus PP. There was a significantly larger percentage of high-quality grade I embryos derived from the largest versus smallest follicles. An increase in follicle size also correlated with a >50% increase in FF ROL and ATRA concentrations. Independent of follicle size, FF yielding grade I versus nongrade I embryos showed higher mean levels of ATRA but not ROL. In a nested case-control analysis, control participants had 50% higher mean levels of ATRA in their FF and PP than women with endometriosis. These findings strongly support the proposition that ATRA plays a fundamental role in oocyte development and quality, and that reduced ATRA synthesis may contribute to decreased fecundity of participants with endometriosis.
Collapse
Affiliation(s)
- Samuel A Pauli
- Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Klincumhom N, Pirity MK, Berzsenyi S, Ujhelly O, Muenthaisong S, Rungarunlert S, Tharasanit T, Techakumphu M, Dinnyes A. Generation of neuronal progenitor cells and neurons from mouse sleeping beauty transposon-generated induced pluripotent stem cells. Cell Reprogram 2012; 14:390-7. [PMID: 22917491 PMCID: PMC3459052 DOI: 10.1089/cell.2012.0010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mouse embryonic stem cells (ESCs) and induced pluripotent stem (iPS) cells can be used as models of neuronal differentiation for the investigation of mammalian neurogenesis, pharmacological testing, and development of cell-based therapies. Recently, mouse iPS cell lines have been generated by Sleeping Beauty (SB) transposon-mediated transgenesis (SB-iPS). In this study, we determined for the first time the differentiation potential of mouse SB-iPS cells to form neuronal progenitor cells (NPCs) and neurons. Undifferentiated SB-iPS and ES cells were aggregated into embryoid bodies (EBs) and cultured in neuronal differentiation medium supplemented with 5 μM all-trans retinoic acid. Thereafter, EBs were dissociated and plated to observe further neuronal differentiation. Samples were fixed on days 10 and 14 for immunocytochemistry staining using the NPC markers Pax6 and Nestin and the neuron marker βIII-tubulin/Tuj1. Nestin-labeled cells were analyzed further by flow cytometry. Our results demonstrated that SB-iPS cells can generate NPCs and differentiate further into neurons in culture, although SB-iPS cells produced less nestin-positive cells than ESCs (6.12 ± 1.61 vs. 74.36 ± 1.65, respectively). In conclusion, the efficiency of generating SB-iPS cells-derived NPCs needs to be improved. However, given the considerable potential of SB-iPS cells for drug testing and as therapeutic models in neurological disorders, continuing investigation of their neuronal differentiation ability is required.
Collapse
Affiliation(s)
- Nuttha Klincumhom
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
- Biotalentum Ltd., 2100 Godollo, Hungary
| | - Melinda K. Pirity
- Biotalentum Ltd., 2100 Godollo, Hungary
- Current address: Institute of Genetics, Biological Research Center, Hungarian Academy of Sciences, Szeged H-6726, Hungary
| | | | | | | | - Sasitorn Rungarunlert
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Preclinic and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Nakornphatom, 73170, Thailand
| | - Theerawat Tharasanit
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Mongkol Techakumphu
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Andras Dinnyes
- Biotalentum Ltd., 2100 Godollo, Hungary
- Molecular Animal Biotechnology Laboratory, Szent Istvan University, 2100 Godollo, Hungary
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands
| |
Collapse
|
19
|
Kumar S, Sandell LL, Trainor PA, Koentgen F, Duester G. Alcohol and aldehyde dehydrogenases: retinoid metabolic effects in mouse knockout models. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1821:198-205. [PMID: 21515404 PMCID: PMC3161159 DOI: 10.1016/j.bbalip.2011.04.004] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 03/25/2011] [Accepted: 04/07/2011] [Indexed: 12/11/2022]
Abstract
Retinoic acid (RA) is the active metabolite of vitamin A (retinol) that controls growth and development. The first step of RA synthesis is controlled by enzymes of the alcohol dehydrogenase (ADH) and retinol dehydrogenase (RDH) families that catalyze oxidation of retinol to retinaldehyde. The second step of RA synthesis is controlled by members of the aldehyde dehydrogenase (ALDH) family also known as retinaldehyde dehydrogenase (RALDH) that further oxidize retinaldehyde to produce RA. RA functions as a ligand for DNA-binding RA receptors that directly regulate transcription of specific target genes. Elucidation of the vitamin A metabolic pathway and investigation of the endogenous function of vitamin A metabolites has been greatly improved by development of mouse ADH, RDH, and RALDH loss-of-function models. ADH knockouts have demonstrated a postnatal role for this enzyme family in clearance of excess retinol to prevent vitamin A toxicity and in generation of RA for postnatal survival during vitamin A deficiency. A point mutation in Rdh10 generated by ethylnitrosourea has demonstrated that RDH10 generates much of the retinaldehyde needed for RA synthesis during embryonic development. Raldh1, Raldh2, and Raldh3 knockouts have demonstrated that RALDH1, RALDH2, and RALDH3 generate most of the RA needed during embryogenesis. These mouse models serve as instrumental tools for providing new insight into retinoid function. This article is part of a Special Issue entitled: Retinoid and Lipid Metabolism.
Collapse
Affiliation(s)
- Sandeep Kumar
- Sanford-Burnham Medical Research Institute, Development and Aging Program, 10901 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Lisa L. Sandell
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, Missouri 64110, USA
| | - Paul A. Trainor
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, Missouri 64110, USA
- University of Kansas Medical Center, Department of Anatomy and Cell Biology, Kansas City, Kansas 66160, USA
| | - Frank Koentgen
- Ozgene Pty Ltd, PO Box 1128, Bentley DC, WA 6983, AUSTRALIA
| | - Gregg Duester
- Sanford-Burnham Medical Research Institute, Development and Aging Program, 10901 North Torrey Pines Road, La Jolla, California 92037, USA
| |
Collapse
|
20
|
Clagett-Dame M, Knutson D. Vitamin A in reproduction and development. Nutrients 2011; 3:385-428. [PMID: 22254103 PMCID: PMC3257687 DOI: 10.3390/nu3040385] [Citation(s) in RCA: 278] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 02/28/2011] [Accepted: 03/22/2011] [Indexed: 12/12/2022] Open
Abstract
The requirement for vitamin A in reproduction was first recognized in the early 1900's, and its importance in the eyes of developing embryos was realized shortly after. A greater understanding of the large number of developmental processes that require vitamin A emerged first from nutritional deficiency studies in rat embryos, and later from genetic studies in mice. It is now generally believed that all-trans retinoic acid (RA) is the form of vitamin A that supports both male and female reproduction as well as embryonic development. This conclusion is based on the ability to reverse most reproductive and developmental blocks found in vitamin A deficiency induced either by nutritional or genetic means with RA, and the ability to recapitulate the majority of embryonic defects in retinoic acid receptor compound null mutants. The activity of the catabolic CYP26 enzymes in determining what tissues have access to RA has emerged as a key regulatory mechanism, and helps to explain why exogenous RA can rescue many vitamin A deficiency defects. In severely vitamin A-deficient (VAD) female rats, reproduction fails prior to implantation, whereas in VAD pregnant rats given small amounts of carotene or supported on limiting quantities of RA early in organogenesis, embryos form but show a collection of defects called the vitamin A deficiency syndrome or late vitamin A deficiency. Vitamin A is also essential for the maintenance of the male genital tract and spermatogenesis. Recent studies show that vitamin A participates in a signaling mechanism to initiate meiosis in the female gonad during embryogenesis, and in the male gonad postnatally. Both nutritional and genetic approaches are being used to elucidate the vitamin A-dependent pathways upon which these processes depend.
Collapse
Affiliation(s)
- Margaret Clagett-Dame
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA;
- School of Pharmacy, Pharmaceutical Sciences Division, University of Wisconsin-Madison, 777 Highland Ave., Madison, WI 53705, USA
| | - Danielle Knutson
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA;
| |
Collapse
|
21
|
Kim YK, Wassef L, Chung S, Jiang H, Wyss A, Blaner WS, Quadro L. β-Carotene and its cleavage enzyme β-carotene-15,15'-oxygenase (CMOI) affect retinoid metabolism in developing tissues. FASEB J 2011; 25:1641-52. [PMID: 21285397 DOI: 10.1096/fj.10-175448] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The mammalian embryo relies on maternal circulating retinoids (vitamin A derivatives) for development. β-Carotene is the major human dietary provitamin A. β-Carotene-15,15'-oxygenase (CMOI) has been proposed as the main enzyme generating retinoid from β-carotene in vivo. CMOI is expressed in embryonic tissues, suggesting that β-carotene provides retinoids locally during development. We performed loss of CMOI function studies in mice lacking retinol-binding protein (RBP), an established model of embryonic vitamin A deficiency (VAD). We show that, unexpectedly, lack of CMOI in the developing tissues further exacerbates the severity of VAD and thus the embryonic malformations of RBP(-/-) mice. Since β-carotene was not present in any of the mouse diets, we unveiled a novel action of CMOI independent from its β-carotene cleavage activity. We also show for the first time that CMOI exerts an additional function on retinoid metabolism by influencing retinyl ester formation via modulation of lecithin:retinol acyltransferase (LRAT) activity, at least in developing tissues. Finally, we demonstrate unequivocally that β-carotene can serve as an alternative vitamin A source for the in situ synthesis of retinoids in developing tissues by the action of CMOI.
Collapse
Affiliation(s)
- Youn-Kyung Kim
- Department of Food Science, Rutgers University, New Brunswick, New Jersey 08901, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Krispin S, Nitzan E, Kalcheim C. The dorsal neural tube: a dynamic setting for cell fate decisions. Dev Neurobiol 2011; 70:796-812. [PMID: 20683859 DOI: 10.1002/dneu.20826] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The dorsal neural tube first generates neural crest cells that exit the neural primordium following an epithelial-to-mesenchymal conversion to become sympathetic ganglia, Schwann cells, dorsal root sensory ganglia, and melanocytes of the skin. Following the end of crest emigration, the dorsal midline of the neural tube becomes the roof plate, a signaling center for the organization of dorsal neuronal cell types. Recent lineage analysis performed before the onset of crest delamination revealed that the dorsal tube is a highly dynamic region sequentially traversed by fate-restricted crest progenitors. Furthermore, prospective roof plate cells were shown to originate ventral to presumptive crest and to progressively relocate dorsalward to occupy their definitive midline position following crest delamination. These data raise important questions regarding the mechanisms of cell emigration in relation to fate acquisition, and suggest the possibility that spatial and/or temporal information in the dorsal neural tube determines initial segregation of neural crest cells into their derivatives. In addition, they emphasize the need to address what controls the end of neural crest production and consequent roof plate formation, a fundamental issue for understanding the separation between central and peripheral lineages during development of the nervous system.
Collapse
Affiliation(s)
- Shlomo Krispin
- Department of Medical Neurobiology, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | | | | |
Collapse
|
23
|
Wu J, Hansen JM, Hao L, Taylor RN, Sidell N. Retinoic acid stimulation of VEGF secretion from human endometrial stromal cells is mediated by production of reactive oxygen species. J Physiol 2010; 589:863-75. [PMID: 21173077 DOI: 10.1113/jphysiol.2010.200808] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
It is widely accepted that vascular endothelial growth factor (VEGF) is involved in angiogenic functions that are necessary for successful embryonic implantation. We have shown that retinoic acid (RA), which is known to play a necessary role in early events in pregnancy, can combine with transcriptional activators of VEGF (e.g. TPA, TGF-β, IL-1β) to rapidly induce VEGF secretion from human endometrial stromal cells through a translational mechanism of action. We have now determined that this stimulation of VEGF by RA is mediated through an increased production of cellular reactive oxygen species (ROS). Results indicated that RA, but not TPA or TGF-β, directly increases ROS production in endometrial stromal cells and that the co-stimulating activity of RA on VEGF secretion can be mimicked by direct addition of H2O2. Importantly, co-treatment of RA with TPA or TGF-β further stimulated ROS production in a fashion that positively correlated with levels of VEGF secretion. The antioxidants N-acetylcysteine and glutathione monoethyl ester inhibited both RA + TPA and RA + TGF-β-stimulated secretion of VEGF, as well as RA-induced ROS production. Treatment of cells with RA resulted in a shift in the glutathione (GSH) redox potential to a more oxidative state, suggesting that the transduction pathway leading to increased VEGF secretion is at least partially mediated through the antioxidant capacity of GSH couples. The specificity of this action on GSH-sensitive signalling pathways is suggested by the determination that RA had no effect on the redox potential of thioredoxin. Together, these findings predict a redox-mediated mechanism for retinoid regulation of localized VEGF secretion in the human endometrium that may be necessary for the successful establishment of pregnancy.
Collapse
Affiliation(s)
- Juanjuan Wu
- Department of Gynecology and Obstetrics, Emory University School of Medicine, 1639 Pierce Drive, Atlanta, GA 30322, USA
| | | | | | | | | |
Collapse
|
24
|
Simandi Z, Balint BL, Poliska S, Ruhl R, Nagy L. Activation of retinoic acid receptor signaling coordinates lineage commitment of spontaneously differentiating mouse embryonic stem cells in embryoid bodies. FEBS Lett 2010; 584:3123-30. [PMID: 20621839 DOI: 10.1016/j.febslet.2010.05.052] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Revised: 05/13/2010] [Accepted: 05/24/2010] [Indexed: 10/19/2022]
Abstract
Retinoid signaling has been implicated in embryonic stem cell differentiation. Here we present a systematic analysis of gene expression changes in mouse embryonic stem cells (mESCs), during their spontaneous differentiation into embryoid bodies and the effect of all-trans retinoic acid (ATRA) on this process. We show that retinoic acid is present in the serum and is sufficient to activate retinoid signaling at a basal level in undifferentiated mESCs. This signal disappears during embryoid body formation. However exogenously added ATRA resets the spontaneous differentiation programs in embryoid bodies and initiates a distinct genetic program. These data suggest that retinoid signaling not only promotes a particular pathway but also acts as a context dependent general coordinator of the differentiation states in embryonic stem cells.
Collapse
Affiliation(s)
- Zoltan Simandi
- Department of Biochemistry and Molecular Biology, Research Center for Molecular Medicine, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
| | | | | | | | | |
Collapse
|
25
|
Zile MH. Vitamin A-not for your eyes only: requirement for heart formation begins early in embryogenesis. Nutrients 2010; 2:532-50. [PMID: 22254040 PMCID: PMC3257662 DOI: 10.3390/nu2050532] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 05/07/2010] [Accepted: 05/18/2010] [Indexed: 12/25/2022] Open
Abstract
Vitamin A insufficiency has profound adverse effects on embryonic development. Major advances in understanding the role of vitamin A in vertebrate heart formation have been made since the discovery that the vitamin A active form, all-trans-retinoic acid, regulates many genes, including developmental genes. Among the experimental models used, the vitamin A-deficient avian embryo has been an important tool to study the function of vitamin A during early heart formation. A cluster of retinoic acid-regulated developmental genes have been identified that participate in building the heart. In the absence of retinoic acid the embryonic heart develops abnormally leading to embryolethality.
Collapse
Affiliation(s)
- Maija H Zile
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
26
|
Castillo HA, Cravo RM, Azambuja AP, Simões-Costa MS, Sura-Trueba S, Gonzalez J, Slonimsky E, Almeida K, Abreu JG, de Almeida MAA, Sobreira TP, de Oliveira SHP, de Oliveira PSL, Signore IA, Colombo A, Concha ML, Spengler TS, Bronner-Fraser M, Nobrega M, Rosenthal N, Xavier-Neto J. Insights into the organization of dorsal spinal cord pathways from an evolutionarily conserved raldh2 intronic enhancer. Development 2010; 137:507-18. [PMID: 20081195 DOI: 10.1242/dev.043257] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Comparative studies of the tetrapod raldh2 (aldh1a2) gene, which encodes a retinoic acid (RA) synthesis enzyme, have led to the identification of a dorsal spinal cord enhancer. Enhancer activity is directed dorsally to the roof plate and dorsal-most (dI1) interneurons through predicted Tcf- and Cdx-homeodomain binding sites and is repressed ventrally via predicted Tgif homeobox and ventral Lim-homeodomain binding sites. Raldh2 and Math1/Cath1 expression in mouse and chicken highlights a novel, transient, endogenous Raldh2 expression domain in dI1 interneurons, which give rise to ascending circuits and intraspinal commissural interneurons, suggesting roles for RA in the ontogeny of spinocerebellar and intraspinal proprioceptive circuits. Consistent with expression of raldh2 in the dorsal interneurons of tetrapods, we also found that raldh2 is expressed in dorsal interneurons throughout the agnathan spinal cord, suggesting ancestral roles for RA signaling in the ontogenesis of intraspinal proprioception.
Collapse
Affiliation(s)
- Hozana A Castillo
- Laboratorio de Genética e Cardiologia Molecular, InCor-FMUSP, 05403-000, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Numerous physiological processes require retinoids, including development, nervous system function, immune responsiveness, proliferation, differentiation, and all aspects of reproduction. Reliable retinoid quantification requires suitable handling and, in some cases, resolution of geometric isomers that have different biological activities. Here we describe procedures for reliable and accurate quantification of retinoids, including detailed descriptions for handling retinoids, preparing standard solutions, collecting samples and harvesting tissues, extracting samples, resolving isomers, and detecting with high sensitivity. Sample-specific strategies are provided for optimizing quantification. Approaches to evaluate assay performance also are provided. Retinoid assays described here for mice also are applicable to other organisms including zebrafish, rat, rabbit, and human and for cells in culture. Retinoid quantification, especially that of retinoic acid, should provide insight into many diseases, including Alzheimer's disease, type 2 diabetes, obesity, and cancer.
Collapse
|
28
|
Warburton D, El-Hashash A, Carraro G, Tiozzo C, Sala F, Rogers O, De Langhe S, Kemp PJ, Riccardi D, Torday J, Bellusci S, Shi W, Lubkin SR, Jesudason E. Lung organogenesis. Curr Top Dev Biol 2010; 90:73-158. [PMID: 20691848 PMCID: PMC3340128 DOI: 10.1016/s0070-2153(10)90003-3] [Citation(s) in RCA: 303] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Developmental lung biology is a field that has the potential for significant human impact: lung disease at the extremes of age continues to cause major morbidity and mortality worldwide. Understanding how the lung develops holds the promise that investigators can use this knowledge to aid lung repair and regeneration. In the decade since the "molecular embryology" of the lung was first comprehensively reviewed, new challenges have emerged-and it is on these that we focus the current review. Firstly, there is a critical need to understand the progenitor cell biology of the lung in order to exploit the potential of stem cells for the treatment of lung disease. Secondly, the current familiar descriptions of lung morphogenesis governed by growth and transcription factors need to be elaborated upon with the reinclusion and reconsideration of other factors, such as mechanics, in lung growth. Thirdly, efforts to parse the finer detail of lung bud signaling may need to be combined with broader consideration of overarching mechanisms that may be therapeutically easier to target: in this arena, we advance the proposal that looking at the lung in general (and branching in particular) in terms of clocks may yield unexpected benefits.
Collapse
Affiliation(s)
- David Warburton
- The Saban Research Institute, Childrens Hospital Los Angeles, Los Angeles, California, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Sidell N, Feng Y, Hao L, Wu J, Yu J, Kane MA, Napoli JL, Taylor RN. Retinoic acid is a cofactor for translational regulation of vascular endothelial growth factor in human endometrial stromal cells. Mol Endocrinol 2009; 24:148-60. [PMID: 19910455 DOI: 10.1210/me.2009-0155] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) and endometrial angiogenesis play a critical role in successful embryonic implantation. Despite many studies of the effects of estrogen and progesterone on VEGF expression, its focal regulation at the site of implantation is unknown. Retinoic acid (RA) has been reported to regulate VEGF in a variety of cell types. Because localized RA synthesis occurs within the periimplantation endometrium, we tested the possibility that RA regulates VEGF production in endometrial stromal cells. Using primary and telomerase-immortalized human endometrial stromal cells, we determined that RA alone did not alter constitutive levels of VEGF production, but markedly amplified secretion when the cells were cotreated with activators of VEGF gene transcription (12-O-tetradecanoyl phorbol-13-acetate, TPA; TGF-beta; and IL-1beta). Whereas TPA or TGF-beta alone stimulated VEGF promoter activity and up-regulated mRNA levels, significant protein secretion was detected only after RA was added to the culture systems. Analysis of retinoids in secretory phase endometrial biopsies indicated that endogenous RA accumulated at concentrations sufficient to induce VEGF secretion. Polyribosome profile analysis showed that the addition of RA to transcriptional activators of VEGF shifted the translational suppressed VEGF mRNA transcripts into larger polyribosome complexes engaged in active translation. Although the precise mechanism(s) of the RA effect remains to be defined, it appears to be mediated by reactive oxygen species; the antioxidant N-acetylcysteine inhibited RA+TPA-stimulated secretion of VEGF by more than 80%. Together, our results demonstrate that in human endometrial stromal cells, RA can combine with transcriptional activators of VEGF to augment VEGF secretion through a translational mechanism of action mediated by reactive oxygen species. These findings suggest a link between the spatiotemporal changes of retinoid synthesis in the periimplantation stroma and the capacity to quickly up-regulate focal VEGF secretion needed to induce early angiogenic events of pregnancy.
Collapse
Affiliation(s)
- Neil Sidell
- Division of Research, Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Kane M, Chen N, Sparks S, Napoli J. Quantification of endogenous retinoic acid in limited biological samples by LC/MS/MS. Biochem J 2009; 388:363-9. [PMID: 15628969 PMCID: PMC1186726 DOI: 10.1042/bj20041867] [Citation(s) in RCA: 176] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We report a sensitive LC (liquid chromatography)/MS/MS assay using selected reaction monitoring to quantify RA (retinoic acid), which is applicable to biological samples of limited size (10-20 mg of tissue wet weight), requires no sample derivatization, provides mass identification and resolves atRA (all-trans-RA) from its geometric isomers. The assay quantifies over a linear range of 20 fmol to 10 pmol, and has a 10 fmol limit of detection at a signal/noise ratio of 3. Coefficients of variation are: instrumental, 0.5-2.9%; intra-assay, 5.4+/-0.4%; inter-assay 8.9+/-1.0%. An internal standard (all-trans-4,4-dimethyl-RA) improves accuracy by confirming extraction efficiency and revealing handling-induced isomerization. Tissues of 2-4-month-old C57BL/6 male mice had atRA concentrations of 7-9.6 pmol/g and serum atRA of 1.9+/-0.6 pmol/ml (+/-S.E.M.). Tissue 13-cis-RA ranged from 2.9 to 4.2 pmol/g, and serum 13-cis-RA was 1.2+/-0.3 pmol/ml. CRBP (cellular retinol-binding protein)-null mouse liver had atRA approximately 30% lower than wild-type (P<0.05), but kidney, testis, brain and serum atRA were similar to wild-type. atRA in brain areas of 12-month-old female C57BL/6 mice were (+/-S.E.M.): whole brain, 5.4+/-0.4 pmol/g; cerebellum, 10.7+/-0.3 pmol/g; cortex, 2.6+/-0.4 pmol/g; hippocampus, 8.4+/-1.2 pmol/g; striatum, 15.3+/-4.7 pmol/g. These data provide the first analytically robust quantification of atRA in animal brain and in CRBP-null mice. Direct measurements of endogenous RA should have a substantial impact on investigating target tissues of RA, mechanisms of RA action, and the relationship between RA and chronic disease.
Collapse
Affiliation(s)
- Maureen A. Kane
- Department of Nutritional Sciences and Toxicology, University of California Berkeley, Berkeley, CA 94720-3104, U.S.A
| | - Na Chen
- Department of Nutritional Sciences and Toxicology, University of California Berkeley, Berkeley, CA 94720-3104, U.S.A
| | - Susan Sparks
- Department of Nutritional Sciences and Toxicology, University of California Berkeley, Berkeley, CA 94720-3104, U.S.A
| | - Joseph L. Napoli
- Department of Nutritional Sciences and Toxicology, University of California Berkeley, Berkeley, CA 94720-3104, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
31
|
Dollé P. Developmental expression of retinoic acid receptors (RARs). NUCLEAR RECEPTOR SIGNALING 2009; 7:e006. [PMID: 19471585 PMCID: PMC2686085 DOI: 10.1621/nrs.07006] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Accepted: 04/21/2009] [Indexed: 12/11/2022]
Abstract
Here, I review the developmental expression features of genes encoding the retinoic acid receptors (RARs) and the 'retinoid X' or rexinoid receptors (RXRs). The first detailed expression studies were performed in the mouse over two decades ago, following the cloning of the murine Rar genes. These studies revealed complex expression features at all stages of post-implantation development, one receptor gene (Rara) showing widespread expression, the two others (Rarb and Rarg) with highly regionalized and/or cell type-specific expression in both neural and non-neural tissues. Rxr genes also have either widespread (Rxra, Rxrb), or highly-restricted (Rxrg) expression patterns. Studies performed in zebrafish and Xenopus demonstrated expression of Rar and Rxr genes (both maternal and zygotic), at early pre-gastrulation stages. The eventual characterization of specific enzymes involved in the synthesis of retinoic acid (retinol/retinaldehyde dehydrogenases), or the triggering of its catabolism (CYP26 cytochrome P450s), all of them showing differential expression patterns, led to a clearer understanding of the phenomenons regulated by retinoic acid signaling during development. Functional studies involving targeted gene disruptions in the mouse, and additional approaches such as dominant negative receptor expression in other models, have pinpointed the specific, versus partly redundant, roles of the RARs and RXRs in many developing organ systems. These pleiotropic roles are summarized hereafter in relationship to the receptors' expression patterns.
Collapse
Affiliation(s)
- Pascal Dollé
- IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), France.
| |
Collapse
|
32
|
Hopkins PM, Durica D, Washington T. RXR isoforms and endogenous retinoids in the fiddler crab, Uca pugilator. Comp Biochem Physiol A Mol Integr Physiol 2008; 151:602-14. [DOI: 10.1016/j.cbpa.2008.07.021] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Revised: 07/15/2008] [Accepted: 07/21/2008] [Indexed: 10/21/2022]
|
33
|
Wang R, Liang J, Yu HM, Liang H, Shi YJ, Yang HT. Retinoic acid maintains self-renewal of murine embryonic stem cells via a feedback mechanism. Differentiation 2008; 76:931-45. [PMID: 18637026 DOI: 10.1111/j.1432-0436.2008.00272.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Embryonic stem cells (ESCs) are pluripotent cells derived from the inner cell mass (ICM) that are able to self-renew or undergo differentiation depending on a complex interplay of extracellular signals and intracellular factors. However, the feedback regulation of differentiation-dependent ESC self-renewal is poorly understood. Retinoic acid (RA), a derivative of vitamin A, plays a critical role in ESC differentiation and embryogenesis. In the present study, we demonstrate that short-term treatment of murine (m) ESCs with RA during the early differentiation stage prevented spontaneous differentiation of mESCs. The RA-treated cells maintained self-renewal capacity and could differentiate into neuronal cells, cardiomyocytes, and visceral endoderm cells derived from three germ layers. The differentiation-inhibitory effect of RA was mimicked by conditioned medium from RA-treated ESCs and was accompanied with up-regulated expression of leukemia inhibitory factor (LIF), Wnt3a, Wnt5a, and Wnt6. Such RA-induced prevention of ESC differentiation was attenuated by a neutralizing antibody against LIF or by a specific Wnt antagonist Fz8-Fc and was totally reversed in the presence of both of them. Furthermore, knock-down of beta-catenin, a component of the Wnt signaling pathway, by small interfering RNA counteracted the effect of RA. In addition, RA treatment enhanced expression of endodermal markers GATA4 and AFP but inhibited expression of primitive ectodermal marker Fgf-5 and mesodermal marker Brachyury. These findings reveal a novel role of RA in ESC self-renewal and provide new insight into the regulatory mechanism of differentiation-dependent self-renewal of ESCs, in which Wnt proteins and LIF induced by RA have the synergistic action. The short-term treatment of ESCs with RA also offers a unique model system for study of the regulatory mechanism that controls self-renewal and specific germ-layer differentiation of ESCs.
Collapse
Affiliation(s)
- Rong Wang
- Laboratory of Molecular Cardiology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | | | | | | | | | | |
Collapse
|
34
|
See AWM, Kaiser ME, White JC, Clagett-Dame M. A nutritional model of late embryonic vitamin A deficiency produces defects in organogenesis at a high penetrance and reveals new roles for the vitamin in skeletal development. Dev Biol 2008; 316:171-90. [DOI: 10.1016/j.ydbio.2007.10.018] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Revised: 09/18/2007] [Accepted: 10/16/2007] [Indexed: 10/22/2022]
|
35
|
Brodeur H, Parisotto M, Chagnon S, Mader S, Bhat PV. Isomer-specific retinoic acid biosynthesis in HeLa cells expressing recombinant class I aldehyde dehydrogenases. Biochim Biophys Acta Gen Subj 2007; 1770:1548-56. [DOI: 10.1016/j.bbagen.2007.07.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2007] [Revised: 07/28/2007] [Accepted: 07/30/2007] [Indexed: 10/22/2022]
|
36
|
Suh MJ, Tang XH, Gudas LJ. Structure elucidation of retinoids in biological samples using postsource decay laser desorption/ionization mass spectrometry after high-performance liquid chromatography separation. Anal Chem 2007; 78:5719-28. [PMID: 16906716 DOI: 10.1021/ac060492j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Retinoids [retinol (vitamin A) and its metabolites] function in the visual cycle, embryonic development, cellular differentiation, and tissue homeostasis. Notwithstanding pivotal roles of retinoids in mammals, the limited number of commercially available retinoid standards is a major roadblock to identifying and studying retinoids in biological samples. Therefore, a need exists for improved methods to identify retinoid metabolites. We analyzed polar and nonpolar retinoids, including retinoic acid, retinol, retinyl acetate, and other retinyl esters, using postsource decay laser desorption/ionization mass spectrometry (PSD-LDI MS). PSD analysis was employed to examine the PSD fragmentation patterns of retinoids, as these patterns can be used for the characterization of retinoids from biological samples without the need for matching retention time with a commercially available or synthetic retinoid. Mechanisms for the formation of these PSD fragment ions are proposed. The feasibility of employing PSD after HPLC separation was demonstrated by characterizing the endogenous retinoids in canine kidney epithelial cell extracts and in mouse lung. We show that the PSD-LDI MS approach described here can facilitate the identification and characterization of retinoids from mammalian cells and tissues.
Collapse
Affiliation(s)
- Moo-Jin Suh
- Department of Pharmacology, Weill Medical College of Cornell University, 1300 York Avenue, New York, New York 10021, USA
| | | | | |
Collapse
|
37
|
Song XH, Liang B, Liu GF, Li R, Xie JP, Du K, Huang DY. Expression of a novel alternatively spliced variant of NADP(H)-dependent retinol dehydrogenase/reductase with deletion of exon 3 in cervical squamous carcinoma. Int J Cancer 2007; 120:1618-26. [PMID: 17230527 DOI: 10.1002/ijc.22306] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
NADP(H)-dependent retinol dehydrogenase/reductase (NRDR) plays an important role in maintaining the homeostasis of retinoid. Aberrations in retinoid metabolism are considered as early events in carcinogenesis. We identified a novel alternatively spliced variant, NRDRB1, in HeLa cell and human cervical squamous carcinoma tissues, which is characterized by a complete deletion of exon 3. The latter resulted in changes in subcellular localization of NRDRB1 when compared with the peroxisomal localization of NRDR. To clarify the clinical significance of NRDRB1, we investigated its mRNA and protein expressions in normal cervical and cervical squamous carcinoma tissues, using RT-PCR, quantitative real-time PCR, Gateway expressing system, immunoprecipitation, immunoblotting, MALDI-TOF mass spectrometry and immunohistochemistry. We detected NRDRB1 mRNA in 14 of 26 (53.9%) cervical cancer tissues, but in none of the 12 normal cervical tissues. NRDRB1 protein was expressed in NRDRB1 mRNA-positive cases. While the full-length NRDR mRNA was observed in both normal and neoplastic cervical tissues, its protein was only expressed in normal cervical epithelium. The results presented here provide evidence that metabolic disturbances of retinal and retinoic acid, due to abnormal splicing and functional disorder of NRDR, may be involved in cervical tumorigenesis.
Collapse
Affiliation(s)
- Xu-Hong Song
- Center for Molecular Biology, Shantou University Medical College, Shantou, Guangdong 515041, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
38
|
Fritzsche B, Vermot J, Neumann U, Schmidt A, Schweigert FJ, Dollé P, Rühl R. Regulation of expression of the retinoic acid metabolizing enzyme CYP26A1 in uteri of ovariectomized mice after treatment with ovarian steroid hormones. Mol Reprod Dev 2007; 74:258-64. [PMID: 16955405 DOI: 10.1002/mrd.20526] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The retinoic acid (RA) synthesizing enzymes, retinaldehyde dehydrogenases (RALDH), are expressed in specific spatial and temporal patterns in uterine tissues during estrous cycle and early pregnancy in mice. Expression of RALDH1 and 2 has been shown to be induced by estrogen treatment within the uterus. In this study, we determined the influence of progesterone and 17-ss-estradiol on the uterine expression of the RA-metabolizing enzyme CYP26A1 after specific time intervals (1, 4, 24, and 48 hr after treatment of ovariectomized mice). In a following experiment, we investigated the influence of gestagen (promegestone 0.3 mg/kg body weight), estrogen (estradiol 3 microg/kg), their combination, as well as the antagonizing anti-progesterone hormone (RU 486 10 mg/kg) on the uterine expression of CYP26A1. Expression of CYP26A1 was localized using in situ hybridization and quantified using RT-PCR. CYP26A1 mRNA expression was strongly--although transiently--induced in uterine endometrial epithelial and glandular cells after administration of gestagen or the combination of gestagen + estrogen, but not by estrogen alone. These observations were confirmed by semi-quantitative RT-PCR experiments on whole uteri. Thus, we show that the expression of CYP26A1 in endometrial epithelial cells is regulated by progesterone and not significantly influenced by co-administration of estrogen. These data indicate an additional level of hormonal control of endogenous RA levels in the mouse uterus, where its synthesis would rely on estrogen-dependent expression of RALDH enzymes, whereas its active metabolism would be triggered by progesterone-induced CYP26A1 expression.
Collapse
Affiliation(s)
- Britta Fritzsche
- Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
| | | | | | | | | | | | | |
Collapse
|
39
|
Marceau G, Gallot D, Lemery D, Sapin V. Metabolism of retinol during mammalian placental and embryonic development. VITAMINS AND HORMONES 2007; 75:97-115. [PMID: 17368313 DOI: 10.1016/s0083-6729(06)75004-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Retinol (vitamin A) is a fat-soluble nutrient indispensable for a harmonious mammalian gestation. The absence or excess of retinol and its active derivatives [i.e., the retinoic acids (RAs)] can lead to abnormal development of embryonic and extraembryonic (placental) structures. The embryo is unable to synthesize the retinol and is strongly dependent on the maternal delivery of retinol itself or precursors: retinyl esters or carotenoids. Before reaching the embryonic tissue, the retinol or the precursors have to pass through the placental structures. During this placental step, a simple diffusion of retinol can occur between maternal and fetal compartments; but retinol can also be used in situ after its activation into RA(1) or stored as retinyl esters. Using retinol-binding protein knockout model, an alternative way of embryonic retinol supply was described using retinyl esters incorporated into maternal chylomicrons. In the embryo, the principal metabolic event occurring for retinol is its conversion into RAs, the active molecules implicated on the molecular control of embryonic morphogenesis and organogenesis. All these placental and embryonic events of retinol transport and metabolism are highly regulated. Nevertheless, some genetic and/or environmental abnormalities in the transport and/or metabolism of retinol can be related to developmental pathologies during mammalian development.
Collapse
Affiliation(s)
- Geoffroy Marceau
- Université d'Auvergne, JE 2447, ARDEMO, F-63000, Clermont-Ferrand, France
| | | | | | | |
Collapse
|
40
|
Ribes V, Fraulob V, Petkovich M, Dollé P. The oxidizing enzyme CYP26a1 tightly regulates the availability of retinoic acid in the gastrulating mouse embryo to ensure proper head development and vasculogenesis. Dev Dyn 2007; 236:644-53. [PMID: 17211890 DOI: 10.1002/dvdy.21057] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Retinoic acid (RA) has been implicated as one of the signals providing a posterior character to the developing vertebrate central nervous system. Embryonic RA first appears in the posterior region of the gastrulating embryo up to the node level, where it may signal within the adjacent epiblast and/or newly induced neural plate to induce a hindbrain and spinal cord fate. Conversely, rostral head development requires forebrain-inducing signals produced by the anterior visceral endoderm and/or prechordal mesoderm, and there is evidence that RA receptors must be in an unliganded state to ensure proper head development. As RA is a diffusible lipophilic molecule, some mechanism(s) must therefore have evolved to prevent activation of RA targets in anterior regions of the embryo. This might result from RA catabolism mediated by the CYP26A1 oxidizing enzyme, which is transiently expressed in anteriormost embryonic tissues; however, previous analysis of Cyp26a1(-/-) mouse mutants did not clearly support this hypothesis. Here we show that Cyp26a1(-/-) null mutants undergo head truncations when exposed to maternally-derived RA, at doses that do not affect wild-type head development. These anomalies are linked to a widespread ectopic RA signaling activity in rostral head tissues of CYP26A1-deficient embryos. Thus, CYP26A1 is required in the anterior region of the gastrulating mouse embryo to prevent teratological effects that may result from RA signaling. We also report a novel role of CYP26A1 during early development of the intra- and extra-embryonic vascular networks.
Collapse
Affiliation(s)
- Vanessa Ribes
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, BP 10142, Illkirch, France
| | | | | | | |
Collapse
|
41
|
Gundersen TE, Bastani NE, Blomhoff R. Quantitative high-throughput determination of endogenous retinoids in human plasma using triple-stage liquid chromatography/tandem mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2007; 21:1176-86. [PMID: 17330217 DOI: 10.1002/rcm.2946] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
A high-throughput ultrasensitive analytical method based on liquid chromatography with positive ion atmospheric pressure chemical ionization (APCI) coupled to tandem mass spectrometric detection (LC/MS/MS) was developed for the determination of all-trans-4-oxo-retinoic acid (at4oxoRA), 13-cis-4-oxo-retinoic acid (13c4oxoRA), 13-cis-retinoic acid (13cRA), all-trans-retinoic acid (atRA) and all-trans-retinol (atROH) in human plasma. A stable isotope of atRA was used as internal standard (IS). The analytes and IS were isolated from 100 microL plasma by acetonitrile mono-phase extraction (MPE) performed in black 96-well microtiterplates. A 100 microL injection was focused on-column and chromatographed on an Agilent ZORBAX SB-C18 rapid-resolution high-throughput (RRHT) column with 1.8-microm particles (4.6 mmx50 mm) maintained at 60 degrees C. The initial mobile phase composition was acetonitrile/water/formic acid (10:90:0.1, v/v/v) delivered at 1.8 mL/min. Elution was accomplished by a fast gradient to acetonitrile/methanol/formic acid (90:10:0.1, v/v/v). The method had a chromatographic total run time of 7 min. An Applied Biosystems 4000 Q TRAP linear tandem mass spectrometer equipped with a heated nebulizer (APCI) ionization source was operated in multiple reaction monitoring (MRM) mode with the precursor-to-product ion transitions m/z 315.4-->297 (4-oxo-retinoic acids), 301.2-->205 (retinoic acids), 305.0-->209 (IS) and 269.2-->93 (retinol) used for quantification. The assay was fully validated and found to have acceptable accuracy, precision, linearity, sensitivity and selectivity. The mean extraction recoveries from spiked plasma samples were 80-105% for the various retinoids at three different levels. The intra-day accuracy of the assay was within 8% of nominal and intra-day precision was better than 8% coefficient of variance (CV) for retinoic acids. Inter-day precision results for quality control samples run over a 12-day period alongside clinical samples showed mean precision better than 12.5% CV. The limit of quantification was in the range of 0.1-0.2 ng/mL and the mass limit of detection (mLOD) was in the range 1-4 pg on column for the retinoic acids. The assay has been successfully applied to the analysis of 1700 plasma samples.
Collapse
Affiliation(s)
- Thomas E Gundersen
- Institute of Basic Medical Sciences, University of Oslo, P. O. Box 1046 Blindern, N-0316 Oslo, Norway.
| | | | | |
Collapse
|
42
|
Clagett-Dame M, McNeill EM, Muley PD. Role of all-trans retinoic acid in neurite outgrowth and axonal elongation. ACTA ACUST UNITED AC 2006; 66:739-56. [PMID: 16688769 DOI: 10.1002/neu.20241] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The vitamin A metabolite, all-trans retinoic acid (atRA) plays essential roles in nervous system development, including neuronal patterning, survival, and neurite outgrowth. Our understanding of how the vitamin A acid functions in neurite outgrowth comes largely from cultured embryonic neurons and model neuronal cell systems including human neuroblastoma cells. Specifically, atRA has been shown to increase neurite outgrowth from embryonic DRG, sympathetic, spinal cord, and olfactory receptor neurons, as well as dissociated cerebra and retina explants. A role for atRA in axonal elongation is also supported by a limited number of studies in vivo, in which a deficiency in retinoid signaling produced either by dietary or genetic means has been shown to alter neurite outgrowth from the spinal cord and hindbrain regions. Human neuroblastoma cells also show enhanced numbers of neurites and longer processes in response to atRA. The mechanism whereby retinoids regulate neurite outgrowth includes, but is not limited to, the regulation of the transcription of neurotrophin receptors. More recent evidence supports a role for atRA in regulating components of other signaling pathways or candidate neurite-regulating factors. Some of these effects, such as that on neuron navigator 2 (NAV2), may be direct, whereas others may be secondary to other atRA-induced changes in the cell. This review focuses on what is currently known about neurite initiation and growth, with emphasis on the manner in which atRA may influence these events.
Collapse
Affiliation(s)
- Margaret Clagett-Dame
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, Wisconsin 53706, USA.
| | | | | |
Collapse
|
43
|
Abstract
Methods for retinoid analysis in tissue include direct spectrophotometry or fluorometry and retinoid responsive reporter constructs in the form of cell reporter assays or transgenic reporter animals, but chromatographic methods dominate and posses several superior features in quantitative analysis. The multitude of extraction protocols used can coarsely be divided into manual liquid-liquid extraction protocols and semi- or fully automated solid phase extraction-based protocols. Liquid chromatographic separation in reversed phase dominates although normal phase is also used. Detection is mainly performed with UV detectors although electrochemical and fluorescence detection is also used. Mass spectrometry in combination with LC is more often used in retinoid analysis and is likely to dominate in the future.
Collapse
Affiliation(s)
- Thomas E Gundersen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1046, Blindern, N-0316 Oslo, Norway.
| |
Collapse
|
44
|
Molecular mediators of retinoic acid signaling during development. ACTA ACUST UNITED AC 2006. [DOI: 10.1016/s1574-3349(06)16004-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
45
|
Ali-Khan SE, Hales BF. Retinoid Receptor Antagonists Alter the Pattern of Apoptosis in Organogenesis Stage Mouse Limbs. Toxicol Sci 2005; 90:208-20. [PMID: 16322074 DOI: 10.1093/toxsci/kfj060] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Exposure of murine limbs in vitro to vitamin A (retinol) induces limb reduction defects and apoptosis. To assess the relative roles of the retinoic acid receptors (RARs) and the retinoid X receptors (RXRs), embryonic-day-12 murine limbs were cultured with selective RAR or RXR antagonists in the presence or absence of teratogenic concentrations of retinol. Both antagonists alone impaired limb development; in the presence of teratogenic concentrations of retinol, both attenuated limb malformations. Abnormal limb morphology, whether caused by excessive or attenuated retinoid signaling by retinol or either antagonist, respectively, was correlated with increased apoptosis after 24 h of drug exposure. We conclude that, in the developing limb, antagonists selective for either member of the RAR/RXR heterodimer attenuate retinoid signaling and block the teratogenic signaling of excess retinol. Improvements in limb morphology in the presence of either the RAR or the RXR antagonist coincided with restoration of the extent and localization of limb bud apoptosis to control patterns.
Collapse
Affiliation(s)
- Sarah E Ali-Khan
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada H3G 1Y6
| | | |
Collapse
|
46
|
Yu Z, Han J, Lin J, Xiao Y, Zhang X, Li Y. Apoptosis Induced by atRA in MEPM Cells Is Mediated through Activation of Caspase and RAR. Toxicol Sci 2005; 89:504-9. [PMID: 16291826 DOI: 10.1093/toxsci/kfj046] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
We have previously demonstrated that all-trans retinoic (atRA) induced growth inhibition and apoptosis in mouse embryonic palate mesenchymal cells (MEPM). In the present study, we investigated the molecular mechanisms of atRA-induced apoptosis and its putative action pathway. atRA-induced apoptosis is associated with activation of the initiator caspase-9 and the effector caspase-3, but not of the effector caspase-8. A broad caspase inhibitor (z-VAD-fmk), caspase-9 inhibitor z-LEHD-fmk and caspase-3 inhibitor (z-DEVD-fmk) blocked atRA-induced DNA fragmentation and sub-G1 fraction, but not caspase-8 inhibitor z-IETD-fmk. We further showed that atRA dose-dependently promoted mRNA expression of retinoic acid receptor beta (RAR-beta) and gamma. A weaker increase in RAR-alpha mRNA was seen only at the highest concentration of atRA (5 muM). The pan RAR antagonist, BMS493, completely abrogated atRA-induced DNA fragmentation, Sub-G1 fraction, and caspase-3 activation. Taken together, these findings show that caspase-mediated induction of apoptosis by atRA is an RAR-dependent signaling pathway.
Collapse
Affiliation(s)
- Zengli Yu
- School of Stomatology, Peking University Health Science Center, Beijing, China
| | | | | | | | | | | |
Collapse
|
47
|
Molotkov A, Ghyselinck N, Chambon P, Duester G. Opposing actions of cellular retinol-binding protein and alcohol dehydrogenase control the balance between retinol storage and degradation. Biochem J 2005; 383:295-302. [PMID: 15193143 PMCID: PMC1134070 DOI: 10.1042/bj20040621] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Vitamin A homoeostasis requires the gene encoding cellular retinol-binding protein-1 (Crbp1) which stimulates conversion of retinol into retinyl esters that serve as a storage form of vitamin A. The gene encoding alcohol dehydrogenase-1 (Adh1) greatly facilitates degradative metabolism of excess retinol into retinoic acid to protect against toxic effects of high dietary vitamin A. Crbp1-/-/Adh1-/- double mutant mice were generated to explore whether the stimulatory effect of CRBP1 on retinyl ester formation is due to limitation of retinol oxidation by ADH1, and whether ADH1 limits retinyl ester formation by opposing CRBP1. Compared with wild-type mice, liver retinyl ester levels were greatly reduced in Crbp1-/- mice, but Adh1-/- mice exhibited a significant increase in liver retinyl esters. Importantly, relatively normal liver retinyl ester levels were restored in Crbp1-/-/Adh1-/- mice. During vitamin A deficiency, the additional loss of Adh1 completely prevented the excessive loss of liver retinyl esters observed in Crbp1-/- mice for the first 5 weeks of deficiency and greatly minimized this loss for up to 13 weeks. Crbp1-/- mice also exhibited increased metabolism of a dose of retinol into retinoic acid, and this increased metabolism was not observed in Crbp1-/-/Adh1-/- mice. Our findings suggest that opposing actions of CRBP1 and ADH1 enable a large fraction of liver retinol to remain esterified due to CRBP1 action, while continuously allowing some retinol to be oxidized to retinoic acid by ADH1 for degradative retinoid turnover under any dietary vitamin A conditions.
Collapse
Affiliation(s)
- Andrei Molotkov
- *OncoDevelopmental Biology Program, Burnham Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, U.S.A
| | - Norbert B. Ghyselinck
- †Institut de Genetique et de Biologie Moleculaire et Cellulaire, CNRS/INSERM/Universite Louis Pasteur, College de France, 67404 Illkirch Cedex, Communaute Urbaine de Strasbourg, France
| | - Pierre Chambon
- †Institut de Genetique et de Biologie Moleculaire et Cellulaire, CNRS/INSERM/Universite Louis Pasteur, College de France, 67404 Illkirch Cedex, Communaute Urbaine de Strasbourg, France
| | - Gregg Duester
- *OncoDevelopmental Biology Program, Burnham Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
48
|
Yang YM, Huang DY, Liu GF, Zhong JC, Du K, Li YF, Song XH. Effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin on vitamin A metabolism in mice. J Biochem Mol Toxicol 2005; 19:327-35. [PMID: 16292751 DOI: 10.1002/jbt.20097] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
This study aimed to clarify the effects of single and repeated administration of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on the activities or expression of some metabolic enzymes of retinoids and the influence of supplemental vitamin A on changed vitamin A homeostasis by TCDD. In Experiment I, the mice were given a single oral dose of 40 mug TCDD/kg body weight, with or without continuous administration of 2,500 IU vitamin A/kg body weight/day, and were killed on day 1, 3, 7, 14, and 28. In Experiment II, the mice were daily given 0.1 microg TCDD/kg body weight, with or without supplemental 2,000 IU vitamin A/kg body weight, and were killed on day 14, 28, and 42. In both experiments, TCDD significantly decreased the hepatic all-trans-retinol level and increased the hepatic all-trans-retinoic acid (RA) content, increased the mRNA and enzymatic activities of retinal oxidase. In TCDD + vitamin A mice, the all-trans retinol content was significantly higher, and the retinal oxidase mRNA was significantly lower on day 3 or 7 in Experiment I and on day 14 in Experiment II, compared to TCDD-treated mice. The induction of the retinal oxidase may contribute to the decrease in hepatic all-trans-retinol level and the increase in hepatic all-trans-RA caused by TCDD. Supplemental vitamin A might decelerate the effect of TCDD on retinal oxidase mRNA.
Collapse
Affiliation(s)
- Yan-Mei Yang
- Molecular Biology Center, Medical College of Shantou University, 22 Xin Ling Road, Shantou 515041, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
49
|
Zile MH. Vitamin a requirement for early cardiovascular morphogenesis specification in the vertebrate embryo: insights from the avian embryo. Exp Biol Med (Maywood) 2004; 229:598-606. [PMID: 15229353 DOI: 10.1177/153537020422900703] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Vitamin A is required throughout the life cycle, including crucial stages of embryonic and fetal development. With the identification of retinoic acid-specific nuclear transcription factors, the retinoid receptors, considerable advances have been made in understanding the molecular function of vitamin A. The requirement for vitamin A during early embryogenesis has successfully been examined in the vitamin A-deficient avian embryo during neurulation, when in the vertebrates crucial developmental decisions take place. These studies revealed that retinoic acid is essential during these early stages of embryogenesis for the initiation of organogenesis (i.e., formation of the heart). If retinoic acid is not present at this time, abnormal development ensues, leading to early embryonic death. Though the initial insult of the absence of vitamin A appears to be on the specification of cardiovascular tissues, subsequently all development is adversely affected and the embryo dies. Molecular and functional studies revealed that retinoic acid regulates the expression of the cardiogenic transcription factor GATA-4 and several heart asymmetry genes, which explains why the heart position is random in vitamin A-deficient quail embryos. During the crucial retinoic acid-requiring developmental window, retinoic acid transduces its signals to genes for heart morphogenesis via the receptors RARalpha2, RARgamma, and RXRalpha. Elucidation of the function of vitamin A during early embryonic development may lead to a better understanding of the cardiovascular birth defects prevalent in the Western world.
Collapse
Affiliation(s)
- Maija H Zile
- Department of Food Science and Human Nutrition, Michigan State University, 234 G.M. Trout Bldg., East Lansing, MI 48824, USA.
| |
Collapse
|
50
|
Carlsen H, Alexander G, Austenaa LMI, Ebihara K, Blomhoff R. Molecular imaging of the transcription factor NF-kappaB, a primary regulator of stress response. Mutat Res 2004; 551:199-211. [PMID: 15225593 DOI: 10.1016/j.mrfmmm.2004.02.024] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2003] [Revised: 02/23/2004] [Accepted: 02/23/2004] [Indexed: 04/30/2023]
Abstract
A wide range of environmental stress and human disorders involves inappropriate regulation of NF-kappaB, including cancers and numerous inflammatory conditions. We have developed transgenic mice that express luciferase under the control of NF-kappaB, enabling real-time non-invasive imaging of NF-kappaB activity in intact animals. We show that, in the absence of stimulation, strong, intrinsic luminescence is evident in lymph nodes in the neck region, thymus, and Peyer's patches. Treating mice with stressors, such as TNF-alpha, IL-1alpha, or lipopolysaccharide (LPS) increases the luminescence in a tissue-specific manner, with the strongest activity observable in the skin, lungs, spleen, Peyer's patches, and the wall of the small intestine. Liver, kidney, heart, muscle, and adipose tissue exhibit less intense activities. Exposure of the skin to a low dose of UV-B radiation increases luminescence in the exposed areas. In ocular experiments, LPS- and TNF-alpha injected NF-kappaB-luciferase transgenic mice exhibit a 20-40-fold increase in lens NF-kappaB activity, similar to other LPS- and TNF-alpha-responsive organs. Peak NF-kappaB activity occurs 6h after injection of TNF-alpha and 12h after injection of LPS. Peak activities occur, respectively, 3 and 6h later than that in other tissues. Mice exposed to 360J/m(2) of UV-B exhibit a 16-fold increase in NF-kappaB activity 6h after exposure, characteristically similar to TNF-alpha-exposed mice. Thus, in NF-kappaB-luciferase transgenic mice, NF-kappaB activity also occurs in lens epithelial tissue and is activated when the intact mouse is exposed to classical stressors. Furthermore, as revealed by real-time non-invasive imaging, induction of chronic inflammation resembling rheumatoid arthritis produces strong NF-kappaB activity in the affected joints. Finally, we have used the model to demonstrate NF-kappaB regulation by manipulating the Vitamin A status in mice. NF-kappaB activity is elevated in mice fed a Vitamin A deficient (VAD) diet, and suppressed by surplus doses of retinoic acid (RA). We thus demonstrate the development and use of a versatile model for monitoring NF-kappaB activation both in tissue homogenates and in intact animals after the use of classical activators, during disease progression and after dietary intervention.
Collapse
Affiliation(s)
- Harald Carlsen
- Department of Nutrition, Faculty of Medicine, University of Oslo, P.O. Box 1046 Blindern, N-0316 Oslo, Norway
| | | | | | | | | |
Collapse
|