1
|
Taylor OB, El‐Hodiri HM, Palazzo I, Todd L, Fischer AJ. Regulating the formation of Müller glia-derived progenitor cells in the retina. Glia 2025; 73:4-24. [PMID: 39448874 PMCID: PMC11660542 DOI: 10.1002/glia.24635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/18/2024] [Accepted: 09/28/2024] [Indexed: 10/26/2024]
Abstract
We summarize recent findings in different animal models regarding the different cell-signaling pathways and gene networks that influence the reprogramming of Müller glia into proliferating, neurogenic progenitor cells in the retina. Not surprisingly, most of the cell-signaling pathways that guide the proliferation and differentiation of embryonic retinal progenitors also influence the ability of Müller glia to become proliferating Müller glia-derived progenitor cells (MGPCs). Further, the neuronal differentiation of MGPC progeny is potently inhibited by networks of neurogenesis-suppressing genes in chick and mouse models but occurs freely in zebrafish. There are important differences between the model systems, particularly pro-inflammatory signals that are active in mature Müller glia in damaged rodent and chick retinas, but less so in fish retinas. These pro-inflammatory signals are required to initiate the process of reprogramming, but if sustained suppress the potential of Müller glia to become neurogenic MGPCs. Further, there are important differences in how activated Müller glia up- or downregulate pro-glial transcription factors in the different model systems. We review recent findings regarding regulatory cell signaling and gene networks that influence the activation of Müller glia and the transition of these glia into proliferating progenitor cells with neurogenic potential in fish, chick, and mouse model systems.
Collapse
Affiliation(s)
- Olivia B. Taylor
- Department of NeuroscienceCollege of Medicine, The Ohio State UniversityColumbusOhioUSA
- Neuroscience Graduate ProgramThe Ohio State UniversityColumbusOhioUSA
| | - Heithem M. El‐Hodiri
- Department of NeuroscienceCollege of Medicine, The Ohio State UniversityColumbusOhioUSA
| | - Isabella Palazzo
- The Solomon H. Snyder Department of NeuroscienceJohns Hopkins University School of MedicineBaltimoreMassachusettsUSA
| | - Levi Todd
- Department of Ophthalmology and Visual SciencesSUNY Upstate Medical UniversitySyracuseNew YorkUSA
| | - Andy J. Fischer
- Department of NeuroscienceCollege of Medicine, The Ohio State UniversityColumbusOhioUSA
| |
Collapse
|
2
|
Neurospheres obtained from the ciliary margin of the chicken eye possess positional values and retinal ganglion cells differentiated from them respond to EphA/ephrin-A system. Exp Eye Res 2022; 217:108965. [DOI: 10.1016/j.exer.2022.108965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 12/14/2021] [Accepted: 01/25/2022] [Indexed: 11/23/2022]
|
3
|
Nguyen-Ba-Charvet KT, Rebsam A. Neurogenesis and Specification of Retinal Ganglion Cells. Int J Mol Sci 2020; 21:ijms21020451. [PMID: 31936811 PMCID: PMC7014133 DOI: 10.3390/ijms21020451] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 12/25/2022] Open
Abstract
Across all species, retinal ganglion cells (RGCs) are the first retinal neurons generated during development, followed by the other retinal cell types. How are retinal progenitor cells (RPCs) able to produce these cell types in a specific and timely order? Here, we will review the different models of retinal neurogenesis proposed over the last decades as well as the extrinsic and intrinsic factors controlling it. We will then focus on the molecular mechanisms, especially the cascade of transcription factors that regulate, more specifically, RGC fate. We will also comment on the recent discovery that the ciliary marginal zone is a new stem cell niche in mice contributing to retinal neurogenesis, especially to the generation of ipsilateral RGCs. Furthermore, RGCs are composed of many different subtypes that are anatomically, physiologically, functionally, and molecularly defined. We will summarize the different classifications of RGC subtypes and will recapitulate the specification of some of them and describe how a genetic disease such as albinism affects neurogenesis, resulting in profound visual deficits.
Collapse
|
4
|
Seritrakul P, Gross JM. Tet-mediated DNA hydroxymethylation regulates retinal neurogenesis by modulating cell-extrinsic signaling pathways. PLoS Genet 2017; 13:e1006987. [PMID: 28926578 PMCID: PMC5621703 DOI: 10.1371/journal.pgen.1006987] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 09/29/2017] [Accepted: 08/18/2017] [Indexed: 12/28/2022] Open
Abstract
DNA hydroxymethylation has recently been shown to play critical roles in regulating gene expression and terminal differentiation events in a variety of developmental contexts. However, little is known about its function during eye development. Methylcytosine dioxygenases of the Tet family convert 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), an epigenetic mark thought to serve as a precursor for DNA demethylation and as a stable mark in neurons. Here, we report a requirement for Tet activity during zebrafish retinal neurogenesis. In tet2-/-;tet3-/- mutants, retinal neurons are specified but most fail to terminally differentiate. While differentiation of the first born retinal neurons, the retinal ganglion cells (RGCs), is less affected in tet2-/-;tet3-/- mutants than other retinal cell types, the majority of RGCs do not undergo terminal morphogenesis and form axons. Moreover, the few photoreceptors that differentiate in tet2-/-;tet3-/- mutants fail to form outer segments, suggesting that Tet function is also required for terminal morphogenesis of differentiated retinal neurons. Mosaic analyses revealed a surprising cell non-autonomous requirement for tet2 and tet3 activity in facilitating retinal neurogenesis. Through a combination of candidate gene analysis, transcriptomics and pharmacological manipulations, we identified the Notch and Wnt pathways as cell-extrinsic pathways regulated by tet2 and tet3 activity during RGC differentiation and morphogenesis. Transcriptome analyses also revealed the ectopic expression of non-retinal genes in tet2-/-;tet3-/- mutant retinae, and this correlated with locus-specific reduction in 5hmC. These data provide the first evidence that Tet-dependent regulation of 5hmC formation is critical for retinal neurogenesis, and highlight an additional layer of complexity in the progression from retinal progenitor cell to differentiated retinal neuron during development of the vertebrate retina.
Collapse
Affiliation(s)
- Pawat Seritrakul
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, United States of America
- Departments of Ophthalmology, and Developmental Biology, The Louis J. Fox Center for Vision Restoration, The McGowan Institute for Regenerative Medicine, The University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Jeffrey M. Gross
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, United States of America
- Departments of Ophthalmology, and Developmental Biology, The Louis J. Fox Center for Vision Restoration, The McGowan Institute for Regenerative Medicine, The University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| |
Collapse
|
5
|
Teotia P, Van Hook MJ, Wichman CS, Allingham RR, Hauser MA, Ahmad I. Modeling Glaucoma: Retinal Ganglion Cells Generated from Induced Pluripotent Stem Cells of Patients with SIX6 Risk Allele Show Developmental Abnormalities. Stem Cells 2017; 35:2239-2252. [PMID: 28792678 DOI: 10.1002/stem.2675] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/14/2017] [Accepted: 07/18/2017] [Indexed: 01/01/2023]
Abstract
Glaucoma represents a group of multifactorial diseases with a unifying pathology of progressive retinal ganglion cell (RGC) degeneration, causing irreversible vision loss. To test the hypothesis that RGCs are intrinsically vulnerable in glaucoma, we have developed an in vitro model using the SIX6 risk allele carrying glaucoma patient-specific induced pluripotent stem cells (iPSCs) for generating functional RGCs. Here, we demonstrate that the efficiency of RGC generation by SIX6 risk allele iPSCs is significantly lower than iPSCs-derived from healthy, age- and sex-matched controls. The decrease in the number of RGC generation is accompanied by repressed developmental expression of RGC regulatory genes. The SIX6 risk allele RGCs display short and simple neurites, reduced expression of guidance molecules, and immature electrophysiological signature. In addition, these cells have higher expression of glaucoma-associated genes, CDKN2A and CDKN2B, suggesting an early onset of the disease phenotype. Consistent with the developmental abnormalities, the SIX6 risk allele RGCs display global dysregulation of genes which map on developmentally relevant biological processes for RGC differentiation and signaling pathways such as mammalian target of rapamycin that integrate diverse functions for differentiation, metabolism, and survival. The results suggest that SIX6 influences different stages of RGC differentiation and their survival; therefore, alteration in SIX6 function due to the risk allele may lead to cellular and molecular abnormalities. These abnormalities, if carried into adulthood, may make RGCs vulnerable in glaucoma. Stem Cells 2017;35:2239-2252.
Collapse
Affiliation(s)
- Pooja Teotia
- Department of Ophthalmology and Visual Sciences, College of Public Health, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Matthew J Van Hook
- Department of Ophthalmology and Visual Sciences, College of Public Health, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Christopher S Wichman
- Department of Biostatistics, College of Public Health, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - R Rand Allingham
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Michael A Hauser
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Iqbal Ahmad
- Department of Ophthalmology and Visual Sciences, College of Public Health, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
6
|
Chamling X, Sluch VM, Zack DJ. The Potential of Human Stem Cells for the Study and Treatment of Glaucoma. Invest Ophthalmol Vis Sci 2016; 57:ORSFi1-6. [PMID: 27116666 PMCID: PMC5110236 DOI: 10.1167/iovs.15-18590] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 01/05/2016] [Indexed: 01/01/2023] Open
Abstract
PURPOSE Currently, the only available and approved treatments for glaucoma are various pharmacologic, laser-based, and surgical procedures that lower IOP. Although these treatments can be effective, they are not always sufficient, and they cannot restore vision that has already been lost. The goal of this review is to briefly assess current developments in the application of stem cell biology to the study and treatment of glaucoma and other forms of optic neuropathy. METHODS A combined literature review and summary of the glaucoma-related discussion at the 2015 "Sight Restoration Through Stem Cell Therapy" meeting that was sponsored by the Ocular Research Symposia Foundation (ORSF). RESULTS Ongoing advancements in basic and eye-related developmental biology have enabled researchers to direct murine and human stem cells along specific developmental paths and to differentiate them into a variety of ocular cell types of interest. The most advanced of these efforts involve the differentiation of stem cells into retinal pigment epithelial cells, work that has led to the initiation of several human trials. More related to the glaucoma field, there have been recent advances in developing protocols for differentiation of stem cells into trabecular meshwork and retinal ganglion cells. Additionally, efforts are being made to generate stem cell-derived cells that can be used to secrete neuroprotective factors. CONCLUSIONS Advancing stem cell technology provides opportunities to improve our understanding of glaucoma-related biology and develop models for drug development, and offers the possibility of cell-based therapies to restore sight to patients who have already lost vision.
Collapse
Affiliation(s)
- Xitiz Chamling
- Department of Ophthalmology Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Valentin M. Sluch
- Department of Ophthalmology Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Donald J. Zack
- Department of Ophthalmology Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
- Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
7
|
Gill KP, Hewitt AW, Davidson KC, Pébay A, Wong RCB. Methods of Retinal Ganglion Cell Differentiation From Pluripotent Stem Cells. Transl Vis Sci Technol 2014. [DOI: 10.1167/tvst.3.4.2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
8
|
Gill KP, Hewitt AW, Davidson KC, Pébay A, Wong RCB. Methods of Retinal Ganglion Cell Differentiation From Pluripotent Stem Cells. Transl Vis Sci Technol 2014; 3:7. [PMID: 25774327 DOI: 10.1167/tvst.3.3.7] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 04/26/2014] [Indexed: 12/22/2022] Open
Abstract
Glaucoma, the worldwide leading cause of irreversible blindness, is characterized by progressive degeneration of the optic nerve and loss of retinal ganglion cells. Research into glaucoma pathogenesis has been hampered by difficulties in isolating and culturing retinal ganglion cells in vitro. However, recent improvements in laboratory techniques have enabled the generation of a variety of mature cell types from pluripotent stem cells, including retinal ganglion cells. Indeed, stem cell-based approaches have the potential to revolutionize the field by providing an unlimited source of cells for replacement therapies and by enabling development of in vitro disease models for drug screening and research. Consequently, research aimed at directing pluripotent stem cells to differentiate into retinal ganglion cells has expanded dramatically during the past decade, resulting in significant advances in technique and efficiency. In this paper, we review the methodology for retinal ganglion cell differentiation from pluripotent stem cells of both mouse and human origin and summarize how these techniques have opened up new avenues for modelling glaucoma. Generation of stem cell-derived retinal ganglion cells will have significant translational values, providing an in vitro platform to study the mechanisms responsible for pathogenesis and for drug screening to improve treatment options, as well as for the development of cell therapies for optic neuropathies such as glaucoma.
Collapse
Affiliation(s)
- Katherine P Gill
- Department of Ophthalmology, University of Melbourne, Melbourne East, VIC, Australia
| | - Alex W Hewitt
- Department of Ophthalmology, University of Melbourne, Melbourne East, VIC, Australia
| | - Kathryn C Davidson
- Department of Ophthalmology, University of Melbourne, Melbourne East, VIC, Australia ; Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital Melbourne East, VIC, Australia
| | - Alice Pébay
- Department of Ophthalmology, University of Melbourne, Melbourne East, VIC, Australia ; Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital Melbourne East, VIC, Australia
| | - Raymond C B Wong
- Department of Ophthalmology, University of Melbourne, Melbourne East, VIC, Australia ; Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital Melbourne East, VIC, Australia
| |
Collapse
|
9
|
Abstract
Blindness represents an increasing global problem with significant social and economic impact upon affected patients and society as a whole. In Europe, approximately one in 30 individuals experience sight loss and 75% of those are unemployed, a social burden which is very likely to increase as the population of Europe ages. Diseases affecting the retina account for approximately 26% of blindness globally and 70% of blindness in the United Kingdom. To date, there are no treatments to restore lost retinal cells and improve visual function, highlighting an urgent need for new therapeutic approaches. A pioneering breakthrough has demonstrated the ability to generate synthetic retina from pluripotent stem cells under laboratory conditions, a finding with immense relevance for basic research, in vitro disease modeling, drug discovery, and cell replacement therapies. This review summarizes the current achievements in pluripotent stem cell differentiation toward retinal cells and highlights the steps that need to be completed in order to generate human synthetic retinae with high efficiency and reproducibly from patient-specific pluripotent stem cells.
Collapse
|
10
|
Atkinson-Leadbeater K, Hehr CL, Mcfarlane S. Fgfr signaling is required as the early eye field forms to promote later patterning and morphogenesis of the eye. Dev Dyn 2014; 243:663-75. [PMID: 24478172 DOI: 10.1002/dvdy.24113] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 01/08/2014] [Accepted: 01/21/2014] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND A major step in eye morphogenesis is the transition from optic vesicle to optic cup, which occurs as a ventral groove forms along the base of the optic vesicle. A ventral gap in the eye, or coloboma, results when this groove fails to close. Extrinsic signals, such as fibroblast growth factors (Fgfs), play a critical role in the development and morphogenesis of the vertebrate eye. Whether these extrinsic signals are required throughout eye development, or within a defined critical period remains an unanswered question. RESULTS Here we show that an early Fgf signal, required as the eye field is first emerging, drives eye morphogenesis. In addition to triggering coloboma, inhibition of this early Fgf signal results in defects in dorsal-ventral patterning of the neural retina, particularly in the nasal retina, and development of the periocular mesenchyme (POM). These processes are unaffected by inhibition of Fgfr signaling at later time points. CONCLUSIONS We propose that Fgfs act within an early critical period as the eye field forms to promote development of the neural retina and POM, which subsequently drive eye morphogenesis.
Collapse
|
11
|
Goetz JJ, Farris C, Chowdhury R, Trimarchi JM. Making of a retinal cell: insights into retinal cell-fate determination. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 308:273-321. [PMID: 24411174 DOI: 10.1016/b978-0-12-800097-7.00007-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Understanding the process by which an uncommitted dividing cell produces particular specialized cells within a tissue remains a fundamental question in developmental biology. Many tissues are well suited for cell-fate studies, but perhaps none more so than the developing retina. Traditionally, experiments using the retina have been designed to elucidate the influence that individual environmental signals or transcription factors can have on cell-fate decisions. Despite a substantial amount of information gained through these studies, there is still much that we do not yet understand about how cell fate is controlled on a systems level. In addition, new factors such as noncoding RNAs and regulators of chromatin have been shown to play roles in cell-fate determination and with the advent of "omics" technology more factors will most likely be identified. In this chapter we summarize both the traditional view of retinal cell-fate determination and introduce some new ideas that are providing a challenge to the older way of thinking about the acquisition of cell fates.
Collapse
Affiliation(s)
- Jillian J Goetz
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, USA
| | - Caitlin Farris
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, USA
| | - Rebecca Chowdhury
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, USA
| | - Jeffrey M Trimarchi
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, USA.
| |
Collapse
|
12
|
Yip HK. Retinal stem cells and regeneration of vision system. Anat Rec (Hoboken) 2013; 297:137-60. [PMID: 24293400 DOI: 10.1002/ar.22800] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 09/13/2013] [Indexed: 12/14/2022]
Abstract
The vertebrate retina is a well-characterized model for studying neurogenesis. Retinal neurons and glia are generated in a conserved order from a pool of mutlipotent progenitor cells. During retinal development, retinal stem/progenitor cells (RPC) change their competency over time under the influence of intrinsic (such as transcriptional factors) and extrinsic factors (such as growth factors). In this review, we summarize the roles of these factors, together with the understanding of the signaling pathways that regulate eye development. The information about the interactions between intrinsic and extrinsic factors for retinal cell fate specification is useful to regenerate specific retinal neurons from RPCs. Recent studies have identified RPCs in the retina, which may have important implications in health and disease. Despite the recent advances in stem cell biology, our understanding of many aspects of RPCs in the eye remains limited. PRCs are present in the developing eye of all vertebrates and remain active in lower vertebrates throughout life. In mammals, however, PRCs are quiescent and exhibit very little activity and thus have low capacity for retinal regeneration. A number of different cellular sources of RPCs have been identified in the vertebrate retina. These include PRCs at the retinal margin, pigmented cells in the ciliary body, iris, and retinal pigment epithelium, and Müller cells within the retina. Because PRCs can be isolated and expanded from immature and mature eyes, it is possible now to study these cells in culture and after transplantation in the degenerated retinal tissue. We also examine current knowledge of intrinsic RPCs, and human embryonic stems and induced pluripotent stem cells as potential sources for cell transplant therapy to regenerate the diseased retina.
Collapse
Affiliation(s)
- Henry K Yip
- Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Adminstrative Region, People's Republic of China; Research Center of Heart, Brain, Hormone and Healthy Aging, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Adminstrative Region, People's Republic of China; State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong Special Adminstrative Region, People's Republic of China
| |
Collapse
|
13
|
Nakamoto C, Kuan SL, Findlay AS, Durward E, Ouyang Z, Zakrzewska ED, Endo T, Nakamoto M. Nel positively regulates the genesis of retinal ganglion cells by promoting their differentiation and survival during development. Mol Biol Cell 2013; 25:234-44. [PMID: 24258025 PMCID: PMC3890344 DOI: 10.1091/mbc.e13-08-0453] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
For correct functioning of the nervous system, the appropriate number and complement of neuronal cell types must be produced during development. However, the molecular mechanisms that regulate the production of individual classes of neurons are poorly understood. In this study, we investigate the function of the thrombospondin-1-like glycoprotein, Nel (neural epidermal growth factor [EGF]-like), in the generation of retinal ganglion cells (RGCs) in chicks. During eye development, Nel is strongly expressed in the presumptive retinal pigment epithelium and RGCs. Nel overexpression in the developing retina by in ovo electroporation increases the number of RGCs, whereas the number of displaced amacrine cells decreases. Conversely, knockdown of Nel expression by transposon-mediated introduction of RNA interference constructs results in decrease in RGC number and increase in the number of displaced amacrine cells. Modifications of Nel expression levels do not appear to affect proliferation of retinal progenitor cells, but they significantly alter the progression rate of RGC differentiation from the central retina to the periphery. Furthermore, Nel protects RGCs from apoptosis during retinal development. These results indicate that Nel positively regulates RGC production by promoting their differentiation and survival during development.
Collapse
Affiliation(s)
- Chizu Nakamoto
- Aberdeen Developmental Biology Group, School of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, United Kingdom Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, and Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Willardsen M, Hutcheson DA, Moore KB, Vetter ML. The ETS transcription factor Etv1 mediates FGF signaling to initiate proneural gene expression during Xenopus laevis retinal development. Mech Dev 2013; 131:57-67. [PMID: 24219979 DOI: 10.1016/j.mod.2013.10.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 09/27/2013] [Accepted: 10/25/2013] [Indexed: 11/28/2022]
Abstract
Fibroblast growth factor signaling plays a significant role in the developing eye, regulating both patterning and neurogenesis. Members of the Pea3/Etv4-subfamily of ETS-domain transcription factors (Etv1, Etv4, and Etv5) are transcriptional activators that are downstream targets of FGF/MAPK signaling, but whether they are required for eye development is unknown. We show that in the developing Xenopus laevis retina, etv1 is transiently expressed at the onset of retinal neurogenesis. We found that etv1 is not required for eye specification, but is required for the expression of atonal-related proneural bHLH transcription factors, and is also required for retinal neuron differentiation. Using transgenic reporters we show that the distal atoh7 enhancer, which is required for the initiation of atoh7 expression in the Xenopus retina, is responsive to both FGF signaling and etv1 expression. Thus, we conclude that Etv1 acts downstream of FGF signaling to regulate the initiation of neurogenesis in the Xenopus retina.
Collapse
Affiliation(s)
- Minde Willardsen
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - David A Hutcheson
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Kathryn B Moore
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Monica L Vetter
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84132, USA.
| |
Collapse
|
15
|
West EL, Pearson RA, Duran Y, Gonzalez-Cordero A, MacLaren RE, Smith AJ, Sowden JC, Ali RR. Manipulation of the recipient retinal environment by ectopic expression of neurotrophic growth factors can improve transplanted photoreceptor integration and survival. Cell Transplant 2012; 21:871-87. [PMID: 22325046 DOI: 10.3727/096368911x623871] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Degeneration of the neural retina is the leading cause of untreatable blindness in the developed world. Stem cell replacement therapy offers a novel strategy for retinal repair. Postmitotic photoreceptor precursors derived from the early postnatal (P) retina are able to migrate and integrate into the adult mouse retina following transplantation into the subretinal space, but it is likely that a large number of these cells would be required to restore vision. The adult recipient retina presents a very different environment to that from which photoreceptor precursor donor cells isolated from the developing postnatal retina are derived. Here we considered the possibility that modulation of the recipient environment by ectopic expression of developmentally regulated growth factors, normally present during photoreceptor development, might enhance the migration and integration of transplanted cells into the adult neural retina. Adeno-associated viral (AAV) vectors were used to introduce three growth factors previously reported to play a role in photoreceptor development, IGF1, FGF2, and CNTF, into the adult retina, prior to transplantation of P4 cells derived from the Nrl.GFP(+ve) neural retina. At 3 weeks posttransplantation the number of integrated, differentiated photoreceptor cells present in AAV-mediated neurotrophic factor-treated eyes was assessed and compared to control treated contralateral eyes. We show, firstly, that it is possible to manipulate the recipient retinal microenvironment via rAAV-mediated gene transfer with respect to these developmentally relevant growth factors. Moreover, when combined with cell transplantation, AAV-mediated expression of IGF1 led to significantly increased levels of cell integration, while overexpression of FGF2 had no significant effect on integrated cell number. Conversely, expression of CNTF led to a significant decrease in cell integration and an exacerbated glial response that led to glial scarring. Together, these findings demonstrate the importance of the extrinsic environment of the recipient retina for photoreceptor cell transplantation and show for the first time that it is possible to manipulate this environment using viral vectors to influence photoreceptor transplantation efficiency.
Collapse
Affiliation(s)
- E L West
- Department of Genetics, University College London Institute of Ophthalmology, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Zaghloul NA, Yan B, Moody SA. Step-wise specification of retinal stem cells during normal embryogenesis. Biol Cell 2012; 97:321-37. [PMID: 15836431 DOI: 10.1042/bc20040521] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The specification of embryonic cells to produce the retina begins at early embryonic stages as a multi-step process that gradually restricts fate potentials. First, a subset of embryonic cells becomes competent to form retina by their lack of expression of endo-mesoderm-specifying genes. From these cells, a more restricted subset is biased to form retina by virtue of their close proximity to sources of bone morphogenetic protein antagonists during neural induction. During gastrulation, the definitive RSCs (retinal stem cells) are specified as the eye field by interactions with underlying mesoderm and the expression of a network of retina-specifying genes. As the eye field is transformed into the optic vesicle and optic cup, a heterogeneous population of RPCs (retinal progenitor cells) forms to give rise to the different domains of the retina: the optic stalk, retinal pigmented epithelium and neural retina. Further diversity of RPCs appears to occur under the influences of cell-cell interactions, cytokines and combinations of regulatory genes, leading to the differentiation of a multitude of different retinal cell types. This review examines what is known about each sequential step in retinal specification during normal vertebrate development, and how that knowledge will be important to understand how RSCs might be manipulated for regenerative therapies to treat retinal diseases.
Collapse
Affiliation(s)
- Norann A Zaghloul
- Department of Anatomy and Cell Biology, The George Washington University, 2300 Eye Street, NW, Washington, DC 20037, USA
| | | | | |
Collapse
|
17
|
Hutley LJ, Newell FS, Kim YH, Luo X, Widberg CH, Shurety W, Prins JB, Whitehead JP. A putative role for endogenous FGF-2 in FGF-1 mediated differentiation of human preadipocytes. Mol Cell Endocrinol 2011; 339:165-71. [PMID: 21539890 DOI: 10.1016/j.mce.2011.04.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Revised: 04/14/2011] [Accepted: 04/15/2011] [Indexed: 11/27/2022]
Abstract
The defining characteristic of obesity is increased adipose tissue (AT) mass following chronic positive energy supply. AT mass is determined by adipocyte number and size, which reflect proliferation and differentiation of preadipocytes and hypertrophy of pre-existing adipocytes. The molecular pathways governing AT expansion are incompletely defined. We previously reported that FGF-1 primes proliferating primary human preadipocytes (phPA), thereby increasing adipogenesis. Here we examined whether FGF-1's adipogenic actions were due to modulation of other FGFs. Treatment of phPA with FGF-1 reduced FGF-2 mRNA/protein by 80%. To examine a putative functional role we performed siRNA knockdown studies. Following FGF-2 knockdown preadipocyte proliferation was decreased and expression of adipogenic genes (PPARγ, G3PDH and adiponectin) was increased at day 1 of differentiation. These results suggest that changes in endogenous FGF-2 levels contribute to FGF-1's early adipogenic effects and highlight the complexity of the paracrine interplay between FGFs within human AT.
Collapse
Affiliation(s)
- Louise J Hutley
- Metabolic Program, Mater Medical Research Institute, Mater Health Services, South Brisbane, Queensland 4101, Australia
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Perkins BD, Fadool JM. Photoreceptor structure and development analyses using GFP transgenes. Methods Cell Biol 2011; 100:205-18. [PMID: 21111218 DOI: 10.1016/b978-0-12-384892-5.00007-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In recent years, studies of zebrafish rod and cone photoreceptors have yielded novel insights into the differentiation of distinct photoreceptor cell types and the mechanisms guiding photoreceptor regeneration following cell death, and they have provided models of human retinal degeneration. These studies were facilitated by the use of transgenic zebrafish expressing fluorescent reporter genes under the control of various cell-specific promoters. Improvements in transgenesis techniques (e.g., Tol2 transposition), the availability of numerous fluorescent reporter genes with different localization properties, and the ability to generate transgenes via recombineering (e.g., Gateway technology) have enabled researchers to quickly develop transgenic lines that improve our understanding of the causes of human blindness and ways to mitigate its effects.
Collapse
Affiliation(s)
- Brian D Perkins
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | | |
Collapse
|
19
|
Catalani E, Tomassini S, Dal Monte M, Bosco L, Casini G. Localization patterns of fibroblast growth factor 1 and its receptors FGFR1 and FGFR2 in postnatal mouse retina. Cell Tissue Res 2009; 336:423-38. [DOI: 10.1007/s00441-009-0787-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Accepted: 02/23/2009] [Indexed: 11/29/2022]
|
20
|
In vitro differentiation of retinal ganglion-like cells from embryonic stem cell derived neural progenitors. Biochem Biophys Res Commun 2009; 380:230-5. [DOI: 10.1016/j.bbrc.2009.01.038] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Accepted: 01/12/2009] [Indexed: 01/14/2023]
|
21
|
Willardsen MI, Suli A, Pan Y, Marsh-Armstrong N, Chien CB, El-Hodiri H, Brown NL, Moore KB, Vetter ML. Temporal regulation of Ath5 gene expression during eye development. Dev Biol 2008; 326:471-81. [PMID: 19059393 DOI: 10.1016/j.ydbio.2008.10.046] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2008] [Revised: 10/29/2008] [Accepted: 10/30/2008] [Indexed: 12/11/2022]
Abstract
During central nervous system development the timing of progenitor differentiation must be precisely controlled to generate the proper number and complement of neuronal cell types. Proneural basic helix-loop-helix (bHLH) transcription factors play a central role in regulating neurogenesis, and thus the timing of their expression must be regulated to ensure that they act at the appropriate developmental time. In the developing retina, the expression of the bHLH factor Ath5 is controlled by multiple signals in early retinal progenitors, although less is known about how these signals are coordinated to ensure correct spatial and temporal pattern of gene expression. Here we identify a key distal Xath5 enhancer and show that this enhancer regulates the early phase of Xath5 expression, while the proximal enhancer we previously identified acts later. The distal enhancer responds to Pax6, a key patterning factor in the optic vesicle, while FGF signaling regulates Xath5 expression through sequences outside of this region. In addition, we have identified an inhibitory element adjacent to the conserved distal enhancer region that is required to prevent premature initiation of expression in the retina. This temporal regulation of Xath5 gene expression is comparable to proneural gene regulation in Drosophila, whereby separate enhancers regulate different temporal phases of expression.
Collapse
Affiliation(s)
- Minde I Willardsen
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Freeman SD, Moore WM, Guiral EC, Holme AD, Turnbull JE, Pownall ME. Extracellular regulation of developmental cell signaling by XtSulf1. Dev Biol 2008; 320:436-45. [PMID: 18617162 DOI: 10.1016/j.ydbio.2008.05.554] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Revised: 05/28/2008] [Accepted: 05/28/2008] [Indexed: 02/06/2023]
Abstract
Heparan sulfate proteoglycans (HSPGs) are synthesised and modified in the Golgi before they are presented at the cell surface. Modifications include the addition of sulfate groups at specific positions on sugar residues along the heparan sulfate (HS) chain which results in a structural heterogeneity that underpins the ability of HSPGs to bind with high affinity to many different proteins, including growth factors and their receptors. Sulf1 codes for a 6-0-endosulfatase that is present and active extracellularly, providing a further mechanism to generate structural diversity through the post-synthetic remodelling of HS. Here we use Xenopus embryos to demonstrate in vivo that Xtsulf1 plays an important role in modulating cell signaling during development. We show that while XtSulf1 can enhance the axis-inducing activity of Wnt11, XtSulf1 acts during embryogenesis to restrict BMP and FGF signaling.
Collapse
|
23
|
McCabe KL, McGuire C, Reh TA. Pea3 expression is regulated by FGF signaling in developing retina. Dev Dyn 2006; 235:327-35. [PMID: 16273524 PMCID: PMC2575118 DOI: 10.1002/dvdy.20631] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
FGF signaling has been implicated as an important regulator of retinal development. As a first step in characterizing potential downstream targets of FGF signaling in the retina, we have analyzed expression of Pea3, a member of the Pea3 class of Ets-domain transcription factors, in the developing eye. We find that Pea3 is expressed in the developing retina, and its transcription is regulated by FGF receptor activation. In addition, FGF signaling activates Cath5, a gene necessary for retinal ganglion cell differentiation. These results suggest that FGF signaling via MAPK up-regulates transcription factors that in turn control retinal ganglion cell differentiation.
Collapse
Affiliation(s)
- Kathryn Leigh McCabe
- Department of Biology, California Institute of Technology, Pasadena, California 91125, USA.
| | | | | |
Collapse
|
24
|
Kurose H, Bito T, Adachi T, Shimizu M, Noji S, Ohuchi H. Expression of Fibroblast growth factor 19 (Fgf19) during chicken embryogenesis and eye development, compared with Fgf15 expression in the mouse. Gene Expr Patterns 2005; 4:687-93. [PMID: 15465490 DOI: 10.1016/j.modgep.2004.04.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2004] [Revised: 04/08/2004] [Accepted: 04/08/2004] [Indexed: 11/21/2022]
Abstract
The normal development of eyes relies on proper signaling through Fibroblast growth factor (FGF) receptors, but the source and identity of cognate ligands have remained largely unknown. We have found that Fgf19 is expressed in the developing chicken retina. In situ hybridization discloses dynamic expression patterns for Fgf19 in the optic vesicle, lens primordia and retinal horizontal cells. Overall expression pattern of Fgf19 during chicken embryogenesis was also examined: Fgf19 is expressed in the regions associated with cranial placodes induction, boundary regions of rhombomeres, somites, specific groups of neural cells in midbrain, hindbrain, and those derived from epibranchial placodes, and the apical ectodermal ridge of limb buds. Expression pattern of the Fgf19-orthologous gene Fgf15 was further examined in the mouse developing eye. Fgf15 is expressed in the optic vesicle, a subset of progenitor cells of neural retina, and emerging ganglion and amacrine cells during retinogenesis.
Collapse
Affiliation(s)
- Hitomi Kurose
- Department of Biological Science and Technology, Faculty of Engineering, The University of Tokushima, Minami-Jyosanjima, Tokushima 770-8506, Japan
| | | | | | | | | | | |
Collapse
|
25
|
Sapieha PS, Peltier M, Rendahl KG, Manning WC, Di Polo A. Fibroblast growth factor-2 gene delivery stimulates axon growth by adult retinal ganglion cells after acute optic nerve injury. Mol Cell Neurosci 2004; 24:656-72. [PMID: 14664816 DOI: 10.1016/s1044-7431(03)00228-8] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Basic fibroblast growth factor (or FGF-2) has been shown to be a potent stimulator of retinal ganglion cell (RGC) axonal growth during development. Here we investigated if FGF-2 upregulation in adult RGCs promoted axon regrowth in vivo after acute optic nerve injury. Recombinant adeno-associated virus (AAV) was used to deliver the FGF-2 gene to adult RGCs providing a sustained source of this neurotrophic factor. FGF-2 gene transfer led to a 10-fold increase in the number of axons that extended past 0.5 mm from the lesion site compared to control nerves. Detection of AAV-mediated FGF-2 protein in injured RGC axons correlated with growth into the distal optic nerve. The response to FGF-2 upregulation was supported by our finding that FGF receptor-1 (FGFR-1) and heparan sulfate (HS), known to be essential for FGF-2 signaling, were expressed by adult rat RGCs. FGF-2 transgene expression led to only transient protection of injured RGCs. Thus the effect of this neurotrophic factor on axon extension could not be solely attributed to an increase in neuronal survival. Our data indicate that selective upregulation of FGF-2 in adult RGCs stimulates axon regrowth within the optic nerve, an environment that is highly inhibitory for regeneration. These results support the hypothesis that key factors involved in axon outgrowth during neural development may promote regeneration of adult injured neurons.
Collapse
Affiliation(s)
- Przemyslaw S Sapieha
- Department of Pathology and Cell Biology, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | | | | | | | | |
Collapse
|
26
|
Abstract
Formation of the vertebrate visual system involves complex interplays of cell-extrinsic cues and cell-intrinsic determinants. Studies in several vertebrate species demonstrate that multiple classes of signaling molecules participate in pattern formation of the eye and neurogenesis of the retina. Certain signals, such as hedgehog, BMP, and FGF molecules, are repeatedly deployed at varying concentration thresholds and in different cellular contexts. Accumulating evidence reveals a striking conservation of molecular mechanisms regulating the neurogenic process between Drosophila and vertebrate retinas. The remaining challenge is to understand how these well-characterized signaling pathways are activated and integrated to impact eye morphogenesis and retinal progenitor cell fate determination.
Collapse
Affiliation(s)
- Xian-Jie Yang
- Department of Ophthalmology, Jules Stein Eye Institute, Molecular Biology Institute, University of California, 100 Stein Plaza, Los Angeles, CA 90095, USA.
| |
Collapse
|
27
|
Webber CA, Hyakutake MT, McFarlane S. Fibroblast growth factors redirect retinal axons in vitro and in vivo. Dev Biol 2003; 263:24-34. [PMID: 14568544 DOI: 10.1016/s0012-1606(03)00435-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Growth factors have been shown previously to participate in the process of axon target recognition. We showed that fibroblast growth factor receptor (FGFR) signaling is required for Xenopus laevis retinal ganglion cell (RGC) axons to recognize their major midbrain target, the optic tectum [neuron 17 (1996), 245]. Therefore, we have hypothesized that a change in expression of a fibroblast growth factor (FGF) at the entrance of the optic tectum, the border between the diencephalon and mesencephalon, may serve as a signal to RGC axons that they have reached their target. To determine whether RGC axons can sense changes in FGF levels, we asked whether they altered their behavior upon encountering an ectopic source of FGF. We found that in vivo RGC growth cones avoided FGF-misexpressing cells along their path, and that FGF-2 directly repelled RGC growth cones in an in vitro growth cone turning assay. These data support the idea that RGC axons can sense changes in FGF levels, and as such provide a mechanism by which FGFR signaling is involved in RGC axon target recognition.
Collapse
Affiliation(s)
- C A Webber
- Department of Cell Biology and Anatomy, Genes and Development Research Group, University of Calgary, Calgary, Alberta, Canada, T2N 4N1
| | | | | |
Collapse
|
28
|
Abstract
The ciliary body of the eye is a nonneural tissue that is derived from the anterior rim of the optic cup, an extension of the neural tube. This tissue normally does not contain neurons and functions to produce components of the aqueous humor. We found that intraocular injections of insulin, EGF, or FGF2 stimulate NPE cells to proliferate and differentiate into neurons. These growth factors had region-specific effects along the radial axis of the ciliary body, with insulin and EGF stimulating proliferation of NPE cells close to the retina, while FGF2 stimulated the proliferation of NPE cells further toward the lens. Similar region-specific effects were observed for accumulations of neurons in the NPE in response to injections of different growth factors. The neurons derived from NPE cells express neurofilament, beta3 tubulin, RA4, calretinin, Islet1, or Hu, and a few produced long axonal projections, several millimeters in length that extend across the ciliary body. Our results suggest that the ciliary body has the capacity to generate retinal neurons, but normally neurogenesis is actively inhibited.
Collapse
Affiliation(s)
- Andy J Fischer
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | | |
Collapse
|
29
|
Esteve P, Trousse F, Rodríguez J, Bovolenta P. SFRP1 modulates retina cell differentiation through a beta-catenin-independent mechanism. J Cell Sci 2003; 116:2471-81. [PMID: 12724355 DOI: 10.1242/jcs.00452] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Secreted frizzled related proteins (SFRPs) are soluble molecules capable of binding WNTS and preventing the activation of their canonical signalling cascade. Here we show that Sfrp1 contributes to chick retina differentiation with a mechanism that does not involve modifications in the transcriptional activity of beta-catenin. Thus, addition of SFRP1 to dissociated retinal cultures or retroviral mediated overexpression of the molecule consistently promoted retinal ganglion and cone photoreceptor cell generation, while decreasing the number of amacrine cells. Measure of the activity of the beta-catenin-responsive Tcf-binding site coupled to a luciferase reporter in transiently transfected retinal cells showed that Sfrp1 was unable to modify the basal beta-catenin transcriptional activity of the retina cells. Interestingly, a dominant-negative form of GSK3beta gave similar results to those of Sfrp1, and a phosphorylation-dependent inhibition of GSK3beta activity followed SFRP1 treatment of retina cells. Furthermore, retroviral mediated expression of a dominant-negative form of GSK3beta induced a retina phenotype similar to that observed after Sfrp1 overexpression, suggesting a possible involvement of this kinase in SFRP1 function.
Collapse
Affiliation(s)
- Pilar Esteve
- Departamento de Neurobiología del Desarrollo, Instituto Cajal, CSIC, Dr Arce 37, Madrid 28002, Spain
| | | | | | | |
Collapse
|
30
|
Russell C. The roles of Hedgehogs and Fibroblast Growth Factors in eye development and retinal cell rescue. Vision Res 2003; 43:899-912. [PMID: 12668059 DOI: 10.1016/s0042-6989(02)00416-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Knowledge of normal eye development is crucial for the development of retinal rescue strategies. I shall focus on two signalling pathways that affect retinal development. Fibroblast growth factors function in retinal cell proliferation, retinal ganglion cell axon guidance and target recognition, craniofacial patterning and lens induction. Hedgehog proteins are required for progression of the neurogenic wave, cell proliferation, photoreceptor differentiation, retinal ganglion cell axon growth and craniofacial patterning. These signalling pathways have pleiotropic effects, can interact and have the potential to be used therapeutically. The zebrafish model organism may be well suited to studying how signalling pathways interact.
Collapse
Affiliation(s)
- Claire Russell
- Department of Anatomy and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
31
|
Ohnuma SI, Mann F, Boy S, Perron M, Harris WA. Lipofection strategy for the study of Xenopus retinal development. Methods 2002; 28:411-9. [PMID: 12507459 DOI: 10.1016/s1046-2023(02)00260-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The analysis of gene function during retinal development can be addressed by perturbing gene expression either by inhibition or by overexpression in desired regions and at defined stages of development. An in vivo lipofection strategy has been applied for stage-specific and region-specific expression of genes in Xenopus retina. Due to colipofection efficiency, this strategy enables us to study functional interaction of genes by lipofecting multiple expression constructs. This lipofection technique also allows us to transfect morpholino oligonucleotides into retinoblasts to block gene function. We present here various aspects of this technique, including recent improvements and modifications.
Collapse
Affiliation(s)
- Shin-ichi Ohnuma
- The Hutchison/MRC Research Centre, Department of Oncology, University of Cambridge, Hills Road, UK.
| | | | | | | | | |
Collapse
|
32
|
Insulin and fibroblast growth factor 2 activate a neurogenic program in Müller glia of the chicken retina. J Neurosci 2002. [PMID: 12417664 DOI: 10.1523/jneurosci.22-21-09387.2002] [Citation(s) in RCA: 152] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We have reported previously that neurotoxic damage to the chicken retina causes Müller glia to dedifferentiate, proliferate, express transcription factors common to retinal progenitors, and generate new neurons and glia, whereas the majority of newly produced cells remain undifferentiated (Fischer and Reh, 2001). Because damaged retinal cells have been shown to produce increased levels of insulin-related factors and FGFs, in the current study we tested whether intraocular injections of growth factors stimulate Müller glia to proliferate and produce new neurons. We injected growth factors and bromodeoxyuridine into the vitreous chamber of the eyes of chickens and assayed for changes in glial phenotype and proliferation within the retina. Although insulin or FGF2 alone had no effect, the combination of insulin and FGF2 caused Müller glia to coexpress transcription factors common to retinal progenitors (Pax6 and Chx10) and initiated a wave of proliferation in Müller cells that began at the retinal margin and spread into peripheral regions of the retina. Most of the newly formed cells remain undifferentiated, expressing Pax6 and Chx10, whereas some differentiate into Müller glia, and a few differentiate into neurons that express the neuronal markers Hu or calretinin. There was no evidence of retinal damage in eyes treated with insulin and FGF2. We conclude that the combination of insulin and FGF2 stimulated Müller glia to dedifferentiate, proliferate, and generate new neurons. These findings imply that exogenous growth factors might be used to stimulate endogenous glial cells to regenerate neurons in the CNS.
Collapse
|
33
|
Lin L, Taylor JSH, Chan SO. Changes in expression of fibroblast growth factor receptors during development of the mouse retinofugal pathway. J Comp Neurol 2002; 451:22-32. [PMID: 12209838 DOI: 10.1002/cne.10337] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Retinal axons undergo several changes in organization as they pass through the region of the optic chiasm and optic tract. We used immunocytochemistry to examine the possible involvement of fibroblast growth factor receptors (FGFR) in these changes in retinal axon growth. In the retina, at all ages examined, prominent staining for FGFR was seen in the optic fiber layer and at the optic disk. At embryonic day 15 (E15), FGFR immunoreactivity was also detected in the ganglion cell layer, as defined by immunoreactivity for islet-1. At later developmental stages (E16 to postnatal day 0), FGFR were found in the optic fiber layer and the inner plexiform layer. In the ventral diencephalon, immunostaining for FGFR was first detected at E13 in a group of cells posterior to the chiasm. These cells appeared to match the neurons that are immunopositive for the stage-specific embryonic antigen-1 (SSEA-1). FGFR staining was also found on the retinal axons at E13. At E14-E16, when most axons are growing across the chiasm and the tract, a dynamic pattern of FGFR immunoreactivity was observed on the retinal axons. The staining was reduced when axons reached the midline but was increased when axons reached the threshold of the optic tract. These results suggest that axon growth and fiber patterning in distinct regions of the retinofugal pathway are in part controlled by a regulated expression of FGFR. Furthermore, the axons with elevated FGFR expression in the optic tract have a posterior border of rich FGFR expression in the lateral part of the diencephalon. This region overlaps with a lateral extension of the SSEA-1-positive cells, suggesting a possible relation of these cells to the elevated expression of FGFR.
Collapse
Affiliation(s)
- Ling Lin
- Department of Anatomy, The Chinese University of Hong Kong, Shatin, Hong Kong, People's Republic of China
| | | | | |
Collapse
|
34
|
Fischer AJ, Dierks BD, Reh TA. Exogenous growth factors induce the production of ganglion cells at the retinal margin. Development 2002; 129:2283-91. [PMID: 11959835 DOI: 10.1242/dev.129.9.2283] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Neural progenitors at the retinal margin of the post-hatch chicken normally produce amacrine and bipolar cells, but not photoreceptor or ganglion cells. The purpose of this study was to test whether exogenous growth factors influence the types of cells produced by progenitors at the retinal margin. We injected insulin, FGF2 or a combination of insulin and FGF2 into the vitreous chamber of post-hatch chickens. To assay for growth factor-induced changes at the retinal margin, we used in situ hybridization and immunocytochemistry on cryosections. One day after the final injection, we found that insulin alone stimulated the addition of cells to the retinal margin, but this was not further increased when FGF2 was applied with insulin. Insulin alone increased the number of cells in the progenitor zone that expressed neurofilament, and this was further increased when FGF2 was applied with insulin. These neurofilament-expressing cells in the progenitor zone included differentiating neurons that expressed Islet1 or Hu. Four days after the final dose of growth factor, we found that the production of ganglion cells was induced by co-injection of insulin and FGF2, but not by either insulin or FGF2 alone. We conclude that the types of cells produced by progenitors at the retinal margin can be altered by exogenous growth factors and that normally the microenvironment imposes limitations on the types of neurons produced.
Collapse
Affiliation(s)
- Andy J Fischer
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | | | | |
Collapse
|
35
|
Rapaport DH, Patheal SL, Harris WA. Cellular competence plays a role in photoreceptor differentiation in the developing Xenopus retina. JOURNAL OF NEUROBIOLOGY 2001; 49:129-41. [PMID: 11598920 DOI: 10.1002/neu.1070] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Factors in the environment appear to be responsible for inducing many of the cell fates in the retina, including, for example, photoreceptors. Further, there is a conserved order of histogenesis in the vertebrate retina, suggesting that a temporal mechanism interacts in the control of cellular determination. The temporal mechanism involved could result from different inducing signals being released at different times. Alternatively, the inducing signals might be present at many stages, but an autonomous clock could regulate the competence of cells to respond to them. To differentiate between these mechanisms, cells from young embryonic retinas were dissociated and grown together with those from older embryos, and the timing of photoreceptor determination assayed. Young cells appeared uninfluenced by older cells, expressing photoreceptor markers on the same time schedule as when cultured alone. A similar result was obtained when the heterochronic mixing was done in vivo by grafting a small plug of optic vesicle from younger embryos into older hosts. Even the graft cells at the immediate margin of the transplant failed to express photoreceptor markers earlier than normal, despite their being in contact with older, strongly expressing host cells. We conclude that retinal progenitors intrinsically acquire the ability to respond to photoreceptor-inducing cues by a mechanism that runs on a cell autonomous schedule, and that the conserved order of histogenesis is based in part on this competence clock.
Collapse
Affiliation(s)
- D H Rapaport
- Division of Anatomy, Department of Surgery, University of California San Diego, La Jolla, CA 92093-0604, USA.
| | | | | |
Collapse
|