1
|
Kumar R, Vats P, Panchal P, Kumar S. Phospholipases: Paving the Way for a New Life. Reprod Sci 2025:10.1007/s43032-025-01900-z. [PMID: 40514594 DOI: 10.1007/s43032-025-01900-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 06/02/2025] [Indexed: 06/16/2025]
Abstract
Phospholipases are a large group of enzymes with ramifications on diverse physiological processes. These enzymes are involved in releasing phospholipids, which are subsequently utilized in the production of prostaglandin and calcium signaling. Calcium signaling is central to the function of phospholipases and calcium oscillations have an impact on the variety of events of embryo development. Additionally, the diverse isoforms of the enzymes can activate gene expression and regulatory factors in a stage-specific manner. Any alterations in the level of these enzymes or the pathways regulating these can have a detrimental effect on the development of the embryo and can also cause early embryonic mortality. In addition to contraction, the enzyme is also critical for the maintenance of quiescence in the uterus during pregnancy. This review discusses the crucial roles of the enzymes, starting from sperm capacitation to the parturition and the putative signaling pathways that are involved in these events. The phospholipases has a significant role in many events in the developmental biology of an animal. Any pathology associated with this enzyme group will have significant consequences on the progression of pregnancy.
Collapse
Affiliation(s)
- Rohit Kumar
- School of Nutrition and Public Health, College of Health, Oregon State University, Corvallis, OR, 97331, USA.
| | - Preeti Vats
- Cell Biology and Proteomics Lab, Animal Biotechnology Centre (ABTC), ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Priti Panchal
- Cell Biology and Proteomics Lab, Animal Biotechnology Centre (ABTC), ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Sudarshan Kumar
- Cell Biology and Proteomics Lab, Animal Biotechnology Centre (ABTC), ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| |
Collapse
|
2
|
Tokmakov AA, Sato KI. Egg Overactivation-An Overlooked Phenomenon of Gamete Physiology. Int J Mol Sci 2025; 26:4163. [PMID: 40362401 PMCID: PMC12071386 DOI: 10.3390/ijms26094163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/15/2025] [Accepted: 04/25/2025] [Indexed: 05/15/2025] Open
Abstract
In many vertebrates, mature ovulated eggs are arrested at metaphase II prior to fertilization. The eggs exit meiotic arrest after fertilization-induced or parthenogenetic activation, followed by embryo development or egg degradation, respectively. Calcium-dependent activation of meiotically-arrested eggs has been thoroughly investigated in various species. In addition, several recent studies have detailed the excessive activation of ovulated frog eggs, so-called overactivation. This overview highlights the major events of overactivation observed in mature ovulated eggs of the African clawed frog Xenopus laevis with a focus on similarities and differences between spontaneous, oxidative stress-induced, and mechanical stress-induced overactivation. The dramatically different cell death scenarios that unfold in activated and overactivated eggs are also exposed in the article.
Collapse
Affiliation(s)
- Alexander A. Tokmakov
- Faculty of Biology-Oriented Science and Technology, KinDai University, 930 Nishimitani, Kinokawa City 649-6493, Japan
| | - Ken-Ichi Sato
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-ku, Kyoto 603-8555, Japan;
| |
Collapse
|
3
|
Bainbridge RE, Rosenbaum JC, Sau P, Carlson AE. Genomic Insights into Fertilization: Tracing PLCZ1 Orthologs Across Amphibian Lineages. Genome Biol Evol 2025; 17:evaf052. [PMID: 40106576 PMCID: PMC11965574 DOI: 10.1093/gbe/evaf052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/04/2025] [Accepted: 02/26/2025] [Indexed: 03/22/2025] Open
Abstract
Fertilization triggers a cascade of events, including a rise in egg cytosolic calcium that marks the onset of embryonic development. In mammals and birds, this critical process is mediated by the sperm-derived phospholipase C zeta (PLCζ), which is pivotal in releasing calcium from the endoplasmic reticulum in the egg and initiating embryonic activation. Intriguingly, Xenopus laevis, a key model organism in reproductive biology, lacks an annotated PLCZ1 gene, prompting questions about its calcium release mechanism during fertilization. Using bioinformatics and RNA sequencing of adult X. laevis testes, we investigated the presence of a PLCZ1 ortholog in amphibians. While we identified PLCZ1 homologs in 25 amphibian species, including 14 previously uncharacterized orthologs, we found none in X. laevis or its close relative, Xenopus tropicalis. Additionally, we found no compensatory expression of other PLC isoforms in these species. Synteny analysis revealed a PLCZ1 deletion in species within the Pipidae family and another intriguing deletion of potential sperm factor PLCD4 in the mountain slow frog, Nanorana parkeri. Our findings indicate that the calcium release mechanism in frog eggs involves a signaling pathway distinct from the PLCζ-mediated process observed in mammals.
Collapse
Affiliation(s)
- Rachel E Bainbridge
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Joel C Rosenbaum
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Paushaly Sau
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Anne E Carlson
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
4
|
Komondor KM, Carlson AE. Fertilization and the fast block to polyspermy in the African Clawed Frog, Xenopus laevis: A historical perspective. Curr Top Dev Biol 2025; 162:143-163. [PMID: 40180508 DOI: 10.1016/bs.ctdb.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
The African clawed frog, Xenopus laevis, has long been a model organism for studying fertilization due to its large and abundant eggs that are easily manipulated and rapidly undergo embryonic development. Research on this model organism has provided significant insights into the mechanisms that ensure successful fertilization, including the prevention of polyspermy. Polyspermy, the fertilization of an egg by multiple sperm, poses a significant threat to successful embryonic development in most sexually reproducing animals. To counter this, eggs have evolved mechanisms known as polyspermy blocks, which prevent additional sperm from entering once fertilization has occurred. This review focuses on fertilization research in general, and specifically on studies of the fast block to polyspermy in X. laevis. We trace key discoveries and experimental advancements that have shaped our current understanding. Indeed, studies on X. laevis have revealed that fertilization triggers a depolarization of the egg membrane mediated by an efflux of Cl- through the Ca2+-activated Cl- channel TMEM16A, effectively preventing polyspermy. Despite these advances, several questions remain regarding the precise molecular interactions and signaling pathways involved. Continued research on X. laevis promises to uncover further details about the earliest events in embryogenesis and the voltage-dependent mechanisms of fertilization, offering broader insights into reproductive biology across species.
Collapse
Affiliation(s)
- Kayla M Komondor
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, United States
| | - Anne E Carlson
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
5
|
Chen C, Huang Z, Dong S, Ding M, Li J, Wang M, Zeng X, Zhang X, Sun X. Calcium signaling in oocyte quality and functionality and its application. Front Endocrinol (Lausanne) 2024; 15:1411000. [PMID: 39220364 PMCID: PMC11361953 DOI: 10.3389/fendo.2024.1411000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Calcium (Ca2+) is a second messenger for many signal pathways, and changes in intracellular Ca2+ concentration ([Ca2+]i) are an important signaling mechanism in the oocyte maturation, activation, fertilization, function regulation of granulosa and cumulus cells and offspring development. Ca2+ oscillations occur during oocyte maturation and fertilization, which are maintained by Ca2+ stores and extracellular Ca2+ ([Ca2+]e). Abnormalities in Ca2+ signaling can affect the release of the first polar body, the first meiotic division, and chromosome and spindle morphology. Well-studied aspects of Ca2+ signaling in the oocyte are oocyte activation and fertilization. Oocyte activation, driven by sperm-specific phospholipase PLCζ, is initiated by concerted intracellular patterns of Ca2+ release, termed Ca2+ oscillations. Ca2+ oscillations persist for a long time during fertilization and are coordinately engaged by a variety of Ca2+ channels, pumps, regulatory proteins and their partners. Calcium signaling also regulates granulosa and cumulus cells' function, which further affects oocyte maturation and fertilization outcome. Clinically, there are several physical and chemical options for treating fertilization failure through oocyte activation. Additionally, various exogenous compounds or drugs can cause ovarian dysfunction and female infertility by inducing abnormal Ca2+ signaling or Ca2+ dyshomeostasis in oocytes and granulosa cells. Therefore, the reproductive health risks caused by adverse stresses should arouse our attention. This review will systematically summarize the latest research progress on the aforementioned aspects and propose further research directions on calcium signaling in female reproduction.
Collapse
Affiliation(s)
- Chen Chen
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, China
| | - Zefan Huang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, China
| | - Shijue Dong
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, China
| | - Mengqian Ding
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, China
| | - Jinran Li
- Center for Reproductive Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| | - Miaomiao Wang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, China
| | - Xuhui Zeng
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, China
| | - Xiaoning Zhang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, China
| | - Xiaoli Sun
- Center for Reproductive Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| |
Collapse
|
6
|
Komondor KM, Bainbridge RE, Sharp KG, Iyer AR, Rosenbaum JC, Carlson AE. TMEM16A activation for the fast block to polyspermy in the African clawed frog does not require conventional activation of egg PLCs. J Gen Physiol 2023; 155:e202213258. [PMID: 37561060 PMCID: PMC10405425 DOI: 10.1085/jgp.202213258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 05/08/2023] [Accepted: 07/20/2023] [Indexed: 08/11/2023] Open
Abstract
Fertilization of an egg by more than one sperm, a condition known as polyspermy, leads to gross chromosomal abnormalities and is embryonic lethal for most animals. Consequently, eggs have evolved multiple processes to stop supernumerary sperm from entering the nascent zygote. For external fertilizers, such as frogs and sea urchins, fertilization signals a depolarization of the egg membrane, which serves as the fast block to polyspermy. Sperm can bind to, but will not enter, depolarized eggs. In eggs from the African clawed frog, Xenopus laevis, the fast block depolarization is mediated by the Ca2+-activated Cl- channel TMEM16A. To do so, fertilization activates phospholipase C, which generates IP3 to signal a Ca2+ release from the ER. Currently, the signaling pathway by which fertilization activates PLC during the fast block remains unknown. Here, we sought to uncover this pathway by targeting the canonical activation of the PLC isoforms present in the X. laevis egg: PLCγ and PLCβ. We observed no changes to the fast block in X. laevis eggs inseminated in inhibitors of tyrosine phosphorylation, used to stop activation of PLCγ, or inhibitors of Gαq/11 pathways, used to stop activation of PLCβ. These data suggest that the PLC that signals the fast block depolarization in X. laevis is activated by a novel mechanism.
Collapse
Affiliation(s)
- Kayla M. Komondor
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rachel E. Bainbridge
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Katherine G. Sharp
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anuradha R. Iyer
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Joel C. Rosenbaum
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anne E. Carlson
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
7
|
Mostafa S, Nader N, Machaca K. Lipid Signaling During Gamete Maturation. Front Cell Dev Biol 2022; 10:814876. [PMID: 36204680 PMCID: PMC9531329 DOI: 10.3389/fcell.2022.814876] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 05/30/2022] [Indexed: 01/24/2023] Open
Abstract
Cell lipids are differentially distributed in distinct organelles and within the leaflets of the bilayer. They can further form laterally defined sub-domains within membranes with important signaling functions. This molecular and spatial complexity offers optimal platforms for signaling with the associated challenge of dissecting these pathways especially that lipid metabolism tends to be highly interconnected. Lipid signaling has historically been implicated in gamete function, however the detailed signaling pathways involved remain obscure. In this review we focus on oocyte and sperm maturation in an effort to consolidate current knowledge of the role of lipid signaling and set the stage for future directions.
Collapse
Affiliation(s)
- Sherif Mostafa
- Medical Program, WCMQ, Education City, Qatar Foundation, Doha, Qatar
| | - Nancy Nader
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar (WCMQ), Education City, Qatar Foundation, Doha, Qatar
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States
| | - Khaled Machaca
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar (WCMQ), Education City, Qatar Foundation, Doha, Qatar
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States
- *Correspondence: Khaled Machaca,
| |
Collapse
|
8
|
Yuan LM, Chen YL, Shi XH, Wu XX, Liu XJ, Liu SP, Chen N, Sai WJF. PLCζ can stably regulate Ca2+ fluctuations in early embryo. Theriogenology 2022; 191:16-21. [DOI: 10.1016/j.theriogenology.2022.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 06/05/2022] [Accepted: 06/17/2022] [Indexed: 12/01/2022]
|
9
|
Giannenas I, Grigoriadou K, Sidiropoulou E, Bonos E, Cheilari A, Vontzalidou A, Karaiskou C, Aligiannis N, Florou-Paneri P, Christaki E. Untargeted UHPLC-MS metabolic profiling as a valuable tool for the evaluation of eggs quality parameters after dietary supplementation with oregano, thyme, sideritis tea and chamomile on brown laying hens. Metabolomics 2021; 17:51. [PMID: 34021818 DOI: 10.1007/s11306-021-01801-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 05/15/2021] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Bioactive constituents of medicinal-aromatic plants used as feed additives may affect the metabolic profile and oxidative stability of hen eggs. OBJECTIVES To determine the effects of dietary supplementation with a mixture of dried oregano, thyme, sideritis tea and chamomile on laying hen performance, egg quality parameters, and oxidative stability in the egg yolk were monitored. METHODS In this trial 432 hens were allocated in two treatments (unsupplemented vs. supplemented with the mixture) and fed for 42 days. Eggs were collected at the end of the trial period, egg yolk was separated, extracted, and the total phenolic content (TPC) and oxidative stability was measured. Furthermore, LC-MS metabolic profile of eggs was studied and pathway analysis was elaborated in MetaboAnalyst to facilitate annotation of features. RESULTS Overall, egg production and feed conversion ratio were not affected by the supplementation. However, eggs from the supplemented treatment showed improved shell thickness and strength, and yolk resistance to oxidation. Moreover, LC-MS metabolomic analysis of egg yolk of supplemented and unsupplemented layers showed significant variations and tight clustering in unsupervised principal component analysis due to different chemical profiling of egg yolk. LC-MS study showed that secondary metabolites of aromatic plants did not transfer into yolk, nevertheless the feed supplementation impacted the pathway metabolism of tyrosine, phenylalanine, propanate, and the biosynthesis of aminoacyl-tRNA, phenylalanine, tyrosine and tryptophan. CONCLUSIONS The dietary supplementation of layers with a mixture of dried medicinal aromatic plants affected shell thickness and strength, the lipid and protein oxidative stability and increased tyrosine and phenylalanine content in eggs.
Collapse
Affiliation(s)
- Ilias Giannenas
- Laboratory of Animal Nutrition, School of Veterinary Medicine, Aristotle University, 54124, Thessaloniki, Greece.
| | - Katerina Grigoriadou
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization - DEMETER, P.O. Box 60458, Thermi, 570 01, Thessaloniki, Greece
- ELVIZ Hellenic Feedstuff Industry S.A, 59300, Plati-Imathia, Greece
| | - Erasmia Sidiropoulou
- Laboratory of Animal Nutrition, School of Veterinary Medicine, Aristotle University, 54124, Thessaloniki, Greece
| | - Eleftherios Bonos
- Department of Agriculture, School of Agriculture, University of Ioannina, Kostakioi, 47100, Artas, Greece
| | - Antigoni Cheilari
- Section of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece
| | - Argyro Vontzalidou
- Section of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece
| | - Chrisoula Karaiskou
- Laboratory of Animal Husbandry, School of Agriculture, Aristotle University, 54124, Thessaloniki, Greece
| | - Nektarios Aligiannis
- Section of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece
| | - Panagiota Florou-Paneri
- Laboratory of Animal Nutrition, School of Veterinary Medicine, Aristotle University, 54124, Thessaloniki, Greece
| | - Efterpi Christaki
- Laboratory of Animal Nutrition, School of Veterinary Medicine, Aristotle University, 54124, Thessaloniki, Greece
| |
Collapse
|
10
|
Diagnosis and Treatment of Male Infertility-Related Fertilization Failure. J Clin Med 2020; 9:jcm9123899. [PMID: 33271815 PMCID: PMC7761017 DOI: 10.3390/jcm9123899] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 12/22/2022] Open
Abstract
Infertility affects approximately 15% of reproductive-aged couples worldwide, of which up to 30% of the cases are caused by male factors alone. The origin of male infertility is mostly attributed to sperm abnormalities, of which many are caused by genetic defects. The development of intracytoplasmic sperm injection (ICSI) has helped to circumvent most male infertility conditions. However, there is still a challenging group of infertile males whose sperm, although having normal sperm parameters, are unable to activate the oocyte, even after ICSI treatment. While ICSI generally allows fertilization rates of 70 to 80%, total fertilization failure (FF) still occurs in 1 to 3% of ICSI cycles. Phospholipase C zeta (PLCζ) has been demonstrated to be a critical sperm oocyte activating factor (SOAF) and the absence, reduced, or altered forms of PLCζ have been shown to cause male infertility-related FF. The purpose of this review is to (i) summarize the current knowledge on PLCζ as the critical sperm factor for successful fertilization, as well as to discuss the existence of alternative sperm-induced oocyte activation mechanisms, (ii) describe the diagnostic tests available to determine the cause of FF, and (iii) summarize the beneficial effect of assisted oocyte activation (AOA) to overcome FF.
Collapse
|
11
|
Stein P, Savy V, Williams AM, Williams CJ. Modulators of calcium signalling at fertilization. Open Biol 2020; 10:200118. [PMID: 32673518 PMCID: PMC7574550 DOI: 10.1098/rsob.200118] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/18/2020] [Indexed: 12/16/2022] Open
Abstract
Calcium (Ca2+) signals initiate egg activation across the animal kingdom and in at least some plants. These signals are crucial for the success of development and, in the case of mammals, health of the offspring. The mechanisms associated with fertilization that trigger these signals and the molecules that regulate their characteristic patterns vary widely. With few exceptions, a major contributor to fertilization-induced elevation in cytoplasmic Ca2+ is release from endoplasmic reticulum stores through the IP3 receptor. In some cases, Ca2+ influx from the extracellular space and/or release from alternative intracellular stores contribute to the rise in cytoplasmic Ca2+. Following the Ca2+ rise, the reuptake of Ca2+ into intracellular stores or efflux of Ca2+ out of the egg drive the return of cytoplasmic Ca2+ back to baseline levels. The molecular mediators of these Ca2+ fluxes in different organisms include Ca2+ release channels, uptake channels, exchangers and pumps. The functions of these mediators are regulated by their particular activating mechanisms but also by alterations in their expression and spatial organization. We discuss here the molecular basis for modulation of Ca2+ signalling at fertilization, highlighting differences across several animal phyla, and we mention key areas where questions remain.
Collapse
Affiliation(s)
- Paula Stein
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Virginia Savy
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Audrey M. Williams
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Carmen J. Williams
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| |
Collapse
|
12
|
Sato K, Tokmakov AA. Toward the understanding of biology of oocyte life cycle in Xenopus Laevis: No oocytes left behind. Reprod Med Biol 2020; 19:114-119. [PMID: 32273815 PMCID: PMC7138939 DOI: 10.1002/rmb2.12314] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 12/09/2019] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND For the past more than 25 years, we have been focusing on the developmental and reproductive biology of the female gametes, oocytes, and eggs, of the African clawed frog Xenopus laevis. METHODS The events associated with the life cycle of these cells can be classified into the four main categories: first, oogenesis and cell growth in the ovary during the first meiotic arrest; second, maturation and ovulation that occur simultaneously and result in the acquisition of fertilization competence and the second meiotic arrest; third, fertilization, that is sperm-induced transition from egg to zygote; and fourth, egg death after spontaneous activation in the absence of fertilizing sperm. MAIN FINDINGS Our studies have demonstrated that signal transduction system involving tyrosine kinase Src and other oocyte/egg membrane-associated molecules such as uroplakin III and some other cytoplasmic proteins such as mitogen-activated protein kinase (MAPK) play important roles for successful ovulation, maturation, fertilization, and initiation of embryonic development. CONCLUSION We summarize recent advances in understanding cellular and molecular mechanisms underlying life cycle events of the oocytes and eggs. Our further intention is to discuss and predict potentially promising impact of the recent findings on the challenges facing reproductive biology and medicine, as well as societal contexts.
Collapse
Affiliation(s)
- Ken‐ichi Sato
- Laboratory of Cell Signaling and DevelopmentDepartment of Industrial Life SciencesFaculty of Life SciencesKyoto Sangyo UniversityKyotoJapan
| | - Alexander A. Tokmakov
- Laboratory of Cell Signaling and DevelopmentDepartment of Industrial Life SciencesFaculty of Life SciencesKyoto Sangyo UniversityKyotoJapan
| |
Collapse
|
13
|
Wozniak KL, Carlson AE. Ion channels and signaling pathways used in the fast polyspermy block. Mol Reprod Dev 2020; 87:350-357. [PMID: 31087507 PMCID: PMC6851399 DOI: 10.1002/mrd.23168] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/22/2019] [Accepted: 04/24/2019] [Indexed: 01/03/2023]
Abstract
Fertilization of an egg by multiple sperms, polyspermy, is lethal to most sexually reproducing species. To combat the entry of additional sperm into already fertilized eggs, organisms have developed various polyspermy blocks. One such barrier, the fast polyspermy block, uses a fertilization-activated depolarization of the egg membrane to electrically inhibit supernumerary sperm from entering the egg. The fast block is commonly used by eggs of oviparous animals with external fertilization. In this review, we discuss the history of the fast block discovery, as well as general features shared by all organisms that use this polyspermy block. Given the diversity of habitats of external fertilizers, the fine details of the fast block-signaling pathways differ drastically between species, including the identity of the depolarizing ions. We highlight the known molecular mediators of these signaling pathways in amphibians and echinoderms, with a fine focus on ion channels that signal these fertilization-evoked depolarizations. We also discuss the investigation for a fast polyspermy block in mammals and teleost fish, and we outline potential fast block triggers. Since the first electrical recordings made on eggs in the 1950s, the fields of developmental biology and electrophysiology have substantially matured, and yet we are only now beginning to discern the intricate molecular mechanisms regulating the fast block to polyspermy.
Collapse
Affiliation(s)
- Katherine L Wozniak
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Anne E Carlson
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
14
|
Sato KI, Tokmakov AA. Membrane Microdomains as Platform to Study Membrane-Associated Events During Oogenesis, Meiotic Maturation, and Fertilization in Xenopus laevis. Methods Mol Biol 2019; 1920:59-73. [PMID: 30737686 DOI: 10.1007/978-1-4939-9009-2_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Studies on the egg plasma membrane-associated tyrosine kinase Src have shed light on the identity of the molecular machinery that is responsible for gamete interaction and possibly fusion in African clawed frog Xenopus laevis. Here we describe our protocol for identifying and analyzing molecular and cellular machinery that contributes to a variety of biological processes in the course of oogenesis, oocyte maturation, egg fertilization, and early embryogenesis in Xenopus. Our current special interest is to evaluate the hypothesis that the oocyte/egg membrane microdomain (MD)-associated uroplakin III-Src system is responsible for mediating sperm-egg membrane interaction/fusion signal to the oocyte/egg cytoplasm to initiate embryonic and zygotic development in this species. Therefore, this chapter contains a brief introduction to biology of oocytes and eggs in Xenopus and addresses the following questions: (1) What is oocyte/egg MD? (2) Why do we study oocyte/egg MD? (3) How to manipulate oocyte/egg MD? (4) What has been achieved by oocyte/egg MD studies? (5) What are the next steps in oocyte/egg MD studies?
Collapse
Affiliation(s)
- Ken-Ichi Sato
- Faculty of Life Sciences, Laboratory of Cell Signaling and Development, Department of Molecular Biosciences, Kyoto Sangyo University, Kyoto, Japan.
| | - Alexander A Tokmakov
- Faculty of Life Sciences, Laboratory of Cell Signaling and Development, Department of Molecular Biosciences, Kyoto Sangyo University, Kyoto, Japan
| |
Collapse
|
15
|
Parrington J, Arnoult C, Fissore RA. The eggstraordinary story of how life begins. Mol Reprod Dev 2018; 86:4-19. [PMID: 30411426 DOI: 10.1002/mrd.23083] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 11/06/2018] [Indexed: 12/24/2022]
Abstract
More than 15 years have elapsed since the identification of phospholipase C ζ1 (PLCζ) from a genomic search for mouse testis/sperm-specific PLCs. This molecule was proposed to represent the sperm factor responsible for the initiation of calcium (Ca2+ ) oscillations required for egg activation and embryo development in mammals. Supporting evidence for this role emerged from studies documenting its expression in all mammals and other vertebrate species, the physiological Ca2+ rises induced by injection of its messenger RNA into mammalian and nonmammalian eggs, and the lack of expression in infertile males that fail intracytoplasmic sperm injection. In the last year, genetic animal models have added support to its role as the long sought-after sperm factor. In this review, we highlight the findings that demonstrated the role of Ca2+ as the universal signal of egg activation and the experimental buildup that culminated with the identification of PLCζ as the soluble sperm factor. We also discuss the structural-functional properties that make PLCζ especially suited to evoke oscillations in eggs. Lastly, we examine unresolved aspects of the function and regulation of PLCζ and whether or not it is the only sperm factor in mammalian sperm.
Collapse
Affiliation(s)
- John Parrington
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Christophe Arnoult
- Université Grenoble Alpes, Grenoble, France.,Institut pour l'Avancée des Biosciences (IAB), INSERM 1209, CNRS UMR 5309, La Tronche, France
| | - Rafael A Fissore
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts
| |
Collapse
|
16
|
Satouh Y, Ikawa M. New Insights into the Molecular Events of Mammalian Fertilization. Trends Biochem Sci 2018; 43:818-828. [PMID: 30170889 DOI: 10.1016/j.tibs.2018.08.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 07/30/2018] [Accepted: 08/04/2018] [Indexed: 12/20/2022]
Abstract
Currently, infertility affects ∼16% of couples worldwide. The causes are reported to involve both male and female factors, including fertilization failure between mature spermatozoa and eggs. However, the molecular mechanisms involved in each step of mammalian fertilization are yet to be fully elucidated. Although some of these steps can be rescued with assisted reproductive technologies, it is important to clarify the molecular mechanisms involved for the treatment and diagnosis of infertile couples. This review illustrates recent findings in mammalian fertilization, discovered by combining gene modification techniques with other new approaches, and aims to show how these findings will guide future research in mammalian fertilization.
Collapse
Affiliation(s)
- Yuhkoh Satouh
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 5650871, Japan.
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 5650871, Japan; The Institute of Medical Science, The University of Tokyo, Tokyo 1088639, Japan.
| |
Collapse
|
17
|
Abstract
Jaffe underscores new research that identifies key roles for IP3 and TMEM16a in the fast block to polyspermy.
Collapse
Affiliation(s)
- Laurinda A Jaffe
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT
| |
Collapse
|
18
|
Wozniak KL, Tembo M, Phelps WA, Lee MT, Carlson AE. PLC and IP 3-evoked Ca 2+ release initiate the fast block to polyspermy in Xenopus laevis eggs. J Gen Physiol 2018; 150:1239-1248. [PMID: 30012841 PMCID: PMC6122927 DOI: 10.1085/jgp.201812069] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 06/12/2018] [Indexed: 11/20/2022] Open
Abstract
The fast block to polyspermy is achieved in Xenopus laevis eggs by fertilization-induced depolarization. Wozniak et al. show that fertilization activates a signaling cascade involving phospholipase C, IP3, and intracellular Ca2+ release, which induces depolarization via Ca2+-activated Cl− efflux. The prevention of polyspermy is essential for the successful progression of normal embryonic development in most sexually reproducing species. In external fertilizers, the process of fertilization induces a depolarization of the egg’s membrane within seconds, which inhibits supernumerary sperm from entering an already-fertilized egg. This fast block requires an increase of intracellular Ca2+ in the African clawed frog, Xenopus laevis, which in turn activates an efflux of Cl− that depolarizes the cell. Here we seek to identify the source of this intracellular Ca2+. Using electrophysiology, pharmacology, bioinformatics, and developmental biology, we explore the requirement for both Ca2+ entry into the egg from the extracellular milieu and Ca2+ release from an internal store, to mediate fertilization-induced depolarization. We report that although eggs express Ca2+-permeant ion channels, blockade of these channels does not alter the fast block. In contrast, insemination of eggs in the presence of Xestospongin C—a potent inhibitor of inositol 1,4,5-trisphosphate (IP3)-induced Ca2+ release from the endoplasmic reticulum (ER)—completely inhibits fertilization-evoked depolarization and increases the incidence of polyspermy. Inhibition of the IP3-generating enzyme phospholipase C (PLC) with U73122 similarly prevents fertilization-induced depolarization and increases polyspermy. Together, these results demonstrate that fast polyspermy block after fertilization in X. laevis eggs is mediated by activation of PLC, which increases IP3 and evokes Ca2+ release from the ER. This ER-derived Ca2+ then activates a Cl− channel to induce the fast polyspermy block. The PLC-induced cascade of events represents one of the earliest known signaling pathways initiated by fertilization.
Collapse
Affiliation(s)
| | - Maiwase Tembo
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA
| | - Wesley A Phelps
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA
| | - Miler T Lee
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA
| | - Anne E Carlson
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
19
|
Anguita E, Villalobo A. Ca 2+ signaling and Src-kinases-controlled cellular functions. Arch Biochem Biophys 2018; 650:59-74. [DOI: 10.1016/j.abb.2018.05.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/26/2018] [Accepted: 05/07/2018] [Indexed: 12/16/2022]
|
20
|
Sperm-borne phospholipase C zeta-1 ensures monospermic fertilization in mice. Sci Rep 2018; 8:1315. [PMID: 29358633 PMCID: PMC5778054 DOI: 10.1038/s41598-018-19497-6] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 01/03/2018] [Indexed: 12/23/2022] Open
Abstract
Sperm entry in mammalian oocytes triggers intracellular Ca2+ oscillations that initiate resumption of the meiotic cell cycle and subsequent activations. Here, we show that phospholipase C zeta 1 (PLCζ1) is the long-sought sperm-borne oocyte activation factor (SOAF). Plcz1 gene knockout (KO) mouse spermatozoa fail to induce Ca2+ changes in intracytoplasmic sperm injection (ICSI). In contrast to ICSI, Plcz1 KO spermatozoa induced atypical patterns of Ca2+ changes in normal fertilizations, and most of the fertilized oocytes ceased development at the 1–2-cell stage because of oocyte activation failure or polyspermy. We further discovered that both zona pellucida block to polyspermy (ZPBP) and plasma membrane block to polyspermy (PMBP) were delayed in oocytes fertilized with Plcz1 KO spermatozoa. With the observation that polyspermy is rare in astacin-like metalloendopeptidase (Astl) KO female oocytes that lack ZPBP, we conclude that PMPB plays more critical role than ZPBP in vivo. Finally, we obtained healthy pups from male mice carrying human infertile PLCZ1 mutation by single sperm ICSI supplemented with Plcz1 mRNA injection. These results suggest that mammalian spermatozoa have a primitive oocyte activation mechanism and that PLCζ1 is a SOAF that ensures oocyte activation steps for monospermic fertilization in mammals.
Collapse
|
21
|
Kashir J, Nomikos M, Lai FA. Phospholipase C zeta and calcium oscillations at fertilisation: The evidence, applications, and further questions. Adv Biol Regul 2017; 67:148-162. [PMID: 29108881 DOI: 10.1016/j.jbior.2017.10.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 10/25/2017] [Accepted: 10/25/2017] [Indexed: 12/26/2022]
Abstract
Oocyte activation is a fundamental event at mammalian fertilisation, initiated by a series of characteristic calcium (Ca2+) oscillations in mammals. This characteristic pattern of Ca2+ release is induced in a species-specific manner by a sperm-specific enzyme termed phospholipase C zeta (PLCζ). Reduction or absence of functional PLCζ within sperm underlies male factor infertility in humans, due to mutational inactivation or abrogation of PLCζ protein expression. Underlying such clinical implications, a significant body of evidence has now been accumulated that has characterised the unique biochemical and biophysical properties of this enzyme, further aiding the unique clinical opportunities presented. Herein, we present and discuss evidence accrued over the past decade and a half that serves to support the identity of PLCζ as the mammalian sperm factor. Furthermore, we also discuss the potential novel avenues that have yet to be examined regarding PLCζ mechanism of action in both the oocyte, and the sperm. Finally, we discuss the advances that have been made regarding the clinical therapeutic and diagnostic applications of PLCζ in potentially treating male infertility as a result of oocyte activation deficiency (OAD), and also possibly more general cases of male subfertility.
Collapse
Affiliation(s)
- Junaid Kashir
- College of Biomedical & Life Sciences, School of Biosciences, Cardiff University, Cardiff, UK; Alfaisal University, College of Medicine, Riyadh, Saudi Arabia; King Faisal Specialist Hospital & Research Center, Department of Comparative Medicine, Riyadh, Saudi Arabia.
| | - Michail Nomikos
- College of Medicine, Member of QU Health, Qatar University, PO Box 2713, Doha, Qatar
| | - F Anthony Lai
- College of Biomedical & Life Sciences, School of Biosciences, Cardiff University, Cardiff, UK; College of Medicine, Member of QU Health, Qatar University, PO Box 2713, Doha, Qatar.
| |
Collapse
|
22
|
Fertilization 2: Polyspermic Fertilization. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1001:105-123. [DOI: 10.1007/978-981-10-3975-1_7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
23
|
Meng XQ, Dai YY, Jing LD, Bai J, Liu SZ, Zheng KG, Pan J. Subcellular localization of proline-rich tyrosine kinase 2 during oocyte fertilization and early-embryo development in mice. J Reprod Dev 2016; 62:351-8. [PMID: 27086609 PMCID: PMC5004790 DOI: 10.1262/jrd.2016-015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Proline-rich tyrosine kinase 2 (Pyk2), a non-receptor tyrosine kinase, is a member of
the focal adhesion kinase family and is highly expressed in oocytes. Using a combination
of confocal microscopy and RNAi, we localized and studied the function of both Pyk2 and
tyrosine-phosphorylated Pyk2 (p-Pyk2) during mouse oocyte fertilization and early embryo
development. At the onset of fertilization, Pyk2 and p-Pyk2 were detected predominantly in
sperm heads and the oocyte cytoplasm. Upon formation of male and female pronuclei, Pyk2
and its activated form leave the cytoplasm and accumulate in the two pronuclei. We
detected Pyk2 in blastomere nuclei and found both Pyk2 and p-Pyk2 in the pre-blastula
cytoplasm. Pyk2 and its activated form then disappeared from the blastula nuclei and
localized to the perinuclear regions, where blastula cells come into contact with each
other. Pyk2 knockdown via microinjection of siRNA into the zygote did not inhibit early
embryo development. Our results suggest that Pyk2 plays multiple functional roles in mouse
oocyte fertilization as well as throughout early embryo development.
Collapse
Affiliation(s)
- Xiao-Qian Meng
- Key Laboratory of Animal Resistance Research, College of Life Science, Shandong Normal University, Jinan 250014, China
| | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
The most fundamental unresolved issue of fertilization is to define how the sperm activates the egg to begin embryo development. Egg activation at fertilization in all species thus far examined is caused by some form of transient increase in the cytoplasmic free Ca2+ concentration. What has not been clear, however, is precisely how the sperm triggers the large changes in Ca2+ observed within the egg cytoplasm. Here, we review the studies indicating that the fertilizing sperm stimulates a cytosolic Ca2+ increase in the egg specifically by delivering a soluble factor that diffuses into the cytosolic space of the egg upon gamete membrane fusion. Evidence is primarily considered in species of eggs where the sperm has been shown to elicit a cytosolic Ca2+ increase by initiating Ca2+ release from intracellular Ca2+ stores. We suggest that our best understanding of these signaling events is in mammals, where the sperm triggers a prolonged series of intracellular Ca2+ oscillations. The strongest empirical studies to date suggest that mammalian sperm-triggered Ca2+ oscillations are caused by the introduction of a sperm-specific protein, called phospholipase C-zeta (PLCζ) that generates inositol trisphosphate within the egg. We will discuss the role and mechanism of action of PLCζ in detail at a molecular and cellular level. We will also consider some of the evidence that a soluble sperm protein might be involved in egg activation in nonmammalian species.
Collapse
Affiliation(s)
- Karl Swann
- College of Biomedical and Life Sciences, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - F. Anthony Lai
- College of Biomedical and Life Sciences, School of Medicine, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
25
|
Abstract
Vertebrate reproduction requires a myriad of precisely orchestrated events-in particular, the maternal production of oocytes, the paternal production of sperm, successful fertilization, and initiation of early embryonic cell divisions. These processes are governed by a host of signaling pathways. Protein kinase and phosphatase signaling pathways involving Mos, CDK1, RSK, and PP2A regulate meiosis during maturation of the oocyte. Steroid signals-specifically testosterone-regulate spermatogenesis, as does signaling by G-protein-coupled hormone receptors. Finally, calcium signaling is essential for both sperm motility and fertilization. Altogether, this signaling symphony ensures the production of viable offspring, offering a chance of genetic immortality.
Collapse
Affiliation(s)
- Sally Kornbluth
- Duke University School of Medicine, Durham, North Carolina 27710
| | - Rafael Fissore
- University of Massachusetts, Amherst, Veterinary and Animal Sciences, Amherst, Massachusetts 01003
| |
Collapse
|
26
|
Santella L, Limatola N, Chun JT. Calcium and actin in the saga of awakening oocytes. Biochem Biophys Res Commun 2015; 460:104-13. [PMID: 25998739 DOI: 10.1016/j.bbrc.2015.03.028] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 03/06/2015] [Indexed: 12/12/2022]
Abstract
The interaction of the spermatozoon with the egg at fertilization remains one of the most fascinating mysteries of life. Much of our scientific knowledge on fertilization comes from studies on sea urchin and starfish, which provide plenty of gametes. Large and transparent, these eggs have served as excellent model systems for studying egg activation and embryo development in seawater, a plain natural medium. Starfish oocytes allow the study of the cortical, cytoplasmic and nuclear changes during the meiotic maturation process, which can also be triggered in vitro by hormonal stimulation. These morphological and biochemical changes ensure successful fertilization of the eggs at the first metaphase. On the other hand, sea urchin eggs are fertilized after the completion of meiosis, and are particularly suitable for the study of sperm-egg interaction, early events of egg activation, and embryonic development, as a large number of mature eggs can be fertilized synchronously. Starfish and sea urchin eggs undergo abrupt changes in the cytoskeleton and ion fluxes in response to the fertilizing spermatozoon. The plasma membrane and cortex of an egg thus represent "excitable media" that quickly respond to the stimulus with the Ca(2+) swings and structural changes. In this article, we review some of the key findings on the rapid dynamic rearrangements of the actin cytoskeleton in the oocyte/egg cortex upon hormonal or sperm stimulation and their roles in the modulation of the Ca(2+) signals and in the control of monospermic fertilization.
Collapse
Affiliation(s)
- Luigia Santella
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale 1, Napoli, I-80121, Italy.
| | - Nunzia Limatola
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale 1, Napoli, I-80121, Italy
| | - Jong T Chun
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale 1, Napoli, I-80121, Italy
| |
Collapse
|
27
|
Stith BJ. Phospholipase C and D regulation of Src, calcium release and membrane fusion during Xenopus laevis development. Dev Biol 2015; 401:188-205. [PMID: 25748412 DOI: 10.1016/j.ydbio.2015.02.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 02/15/2015] [Accepted: 02/24/2015] [Indexed: 11/28/2022]
Abstract
This review emphasizes how lipids regulate membrane fusion and the proteins involved in three developmental stages: oocyte maturation to the fertilizable egg, fertilization and during first cleavage. Decades of work show that phosphatidic acid (PA) releases intracellular calcium, and recent work shows that the lipid can activate Src tyrosine kinase or phospholipase C during Xenopus fertilization. Numerous reports are summarized to show three levels of increase in lipid second messengers inositol 1,4,5-trisphosphate and sn 1,2-diacylglycerol (DAG) during the three different developmental stages. In addition, possible roles for PA, ceramide, lysophosphatidylcholine, plasmalogens, phosphatidylinositol 4-phosphate, phosphatidylinositol 5-phosphate, phosphatidylinositol 4,5-bisphosphate, membrane microdomains (rafts) and phosphatidylinositol 3,4,5-trisphosphate in regulation of membrane fusion (acrosome reaction, sperm-egg fusion, cortical granule exocytosis), inositol 1,4,5-trisphosphate receptors, and calcium release are discussed. The role of six lipases involved in generating putative lipid second messengers during fertilization is also discussed: phospholipase D, autotaxin, lipin1, sphingomyelinase, phospholipase C, and phospholipase A2. More specifically, proteins involved in developmental events and their regulation through lipid binding to SH3, SH4, PH, PX, or C2 protein domains is emphasized. New models are presented for PA activation of Src (through SH3, SH4 and a unique domain), that this may be why the SH2 domain of PLCγ is not required for Xenopus fertilization, PA activation of phospholipase C, a role for PA during the calcium wave after fertilization, and that calcium/calmodulin may be responsible for the loss of Src from rafts after fertilization. Also discussed is that the large DAG increase during fertilization derives from phospholipase D production of PA and lipin dephosphorylation to DAG.
Collapse
Affiliation(s)
- Bradley J Stith
- University of Colorado Denver, Department of Integrative Biology, Campus Box 171, PO Box 173364, Denver, CO 80217-3364, United States.
| |
Collapse
|
28
|
Sato KI. Transmembrane signal transduction in oocyte maturation and fertilization: focusing on Xenopus laevis as a model animal. Int J Mol Sci 2014; 16:114-34. [PMID: 25546390 PMCID: PMC4307238 DOI: 10.3390/ijms16010114] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 12/15/2014] [Indexed: 11/16/2022] Open
Abstract
Fertilization is a cell biological phenomenon of crucial importance for the birth of new life in a variety of multicellular and sexual reproduction species such as algae, animal and plants. Fertilization involves a sequence of events, in which the female gamete "egg" and the male gamete "spermatozoon (sperm)" develop, acquire their functions, meet and fuse with each other, to initiate embryonic and zygotic development. Here, it will be briefly reviewed how oocyte cytoplasmic components are orchestrated to undergo hormone-induced oocyte maturation and sperm-induced activation of development. I then review how sperm-egg membrane interaction/fusion and activation of development in the fertilized egg are accomplished and regulated through egg coat- or egg plasma membrane-associated components, highlighting recent findings and future directions in the studies using Xenopus laevis as a model experimental animal.
Collapse
Affiliation(s)
- Ken-ichi Sato
- Laboratory of Cell Signaling and Development, Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto 603-8555, Japan.
| |
Collapse
|
29
|
Iwao Y, Shiga K, Shiroshita A, Yoshikawa T, Sakiie M, Ueno T, Ueno S, Ijiri TW, Sato KI. The need of MMP-2 on the sperm surface for Xenopus fertilization: Its role in a fast electrical block to polyspermy. Mech Dev 2014; 134:80-95. [DOI: 10.1016/j.mod.2014.09.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 09/22/2014] [Accepted: 09/24/2014] [Indexed: 01/31/2023]
|
30
|
Soluble sperm extract specifically recapitulates the initial phase of the Ca2+ response in the fertilized oocyte of P. occelata following a G-protein/ PLCβ signaling pathway. ZYGOTE 2014; 23:821-35. [PMID: 25318389 DOI: 10.1017/s0967199414000501] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Matured oocytes of the annelidan worm Pseudopotamilla occelata are fertilized at the first metaphase of the meiotic division. During the activation by fertilizing spermatozoa, the mature oocyte shows a two-step intracellular Ca2+ increase. Whereas the first Ca2+ increase is localized and appears to utilize the inositol 1,4,5-trisphosphate (IP3)-sensitive Ca2+ stores, the second Ca2+ increase is global and involves Ca2+ influx via voltage-gated Ca2+ channels on the entire surface of the oocyte. To study how sperm trigger the Ca2+ increases during fertilization, we prepared soluble sperm extract (SE) and examined its ability to induce Ca2+ increases in the oocyte. The SE could evoke a Ca2+ increase in the oocyte when it was added to the medium, but not when it was delivered by microinjection. However, the second-step Ca2+ increase leading to the resumption of meiosis did not follow in these eggs. Local application of SE induced a non-propagating Ca2+ increase and formed a cytoplasmic protrusion that was similar to that created by the fertilizing sperm at the first stage of the Ca2+ response, important for sperm incorporation into the oocyte. Our results suggest that the fertilizing spermatozoon may trigger the first-step Ca2+ increase before it fuses with the oocyte in a pathway that involves the G-protein-coupled receptor and phospholipase C. Thus, the first phase of the Ca2+ response in the fertilized egg of this species is independent of the second phase of the Ca2+ increase for egg activation.
Collapse
|
31
|
Calcium signaling and meiotic exit at fertilization in Xenopus egg. Int J Mol Sci 2014; 15:18659-76. [PMID: 25322156 PMCID: PMC4227238 DOI: 10.3390/ijms151018659] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 10/01/2014] [Accepted: 10/09/2014] [Indexed: 11/16/2022] Open
Abstract
Calcium is a universal messenger that mediates egg activation at fertilization in all sexually reproducing species studied. However, signaling pathways leading to calcium generation and the mechanisms of calcium-induced exit from meiotic arrest vary substantially among species. Here, we review the pathways of calcium signaling and the mechanisms of meiotic exit at fertilization in the eggs of the established developmental model, African clawed frog, Xenopus laevis. We also discuss calcium involvement in the early fertilization-induced events in Xenopus egg, such as membrane depolarization, the increase in intracellular pH, cortical granule exocytosis, cortical contraction, contraction wave, cortical rotation, reformation of the nuclear envelope, sperm chromatin decondensation and sister chromatid segregation.
Collapse
|
32
|
Mahbub Hasan AKM, Hashimoto A, Maekawa Y, Matsumoto T, Kushima S, Ijiri TW, Fukami Y, Sato KI. The egg membrane microdomain-associated uroplakin III-Src system becomes functional during oocyte maturation and is required for bidirectional gamete signaling at fertilization in Xenopus laevis. Development 2014; 141:1705-14. [PMID: 24715460 DOI: 10.1242/dev.105510] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In Xenopus laevis, sperm-egg interaction promotes partial proteolysis and/or tyrosine phosphorylation of uroplakin III (UPIII) and the tyrosine kinase Src, which both localize to the cholesterol-enriched egg membrane microdomains (MDs). Here we show that sperm promote proteolysis and/or tyrosine phosphorylation of UPIII and Src in MDs isolated from ovulated and unfertilized eggs (UF-MDs). An antibody against the extracellular domain of UPIII interferes with these events. Inhibition of fertilization by anti-UPIII antibody is rescued by co-incubation with UF-MDs. This suggests that, like MDs in intact eggs, the isolated UF-MDs are capable of interacting with sperm, an interaction that does not interfere with normal fertilization but rather augments the ability of sperm to fertilize eggs pretreated with anti-UPIII antibody. This unexpected effect of UF-MDs on sperm requires UPIII function in UF-MDs and protein kinase activity in sperm. MDs isolated from progesterone-treated mature oocytes, but not ovarian immature oocytes, are similarly functional as UF-MDs. The anti-UPIII extracellular domain antibody binds more effectively to the surface of mature than immature ovarian oocytes. We propose that the structural and functional competency of the UPIII-Src signaling system in MDs is strictly regulated during oocyte maturation and subsequently in sperm-mediated egg activation and fertilization. The fertilization-related signaling properties seen in UF-MDs can be partially reconstituted in MDs of human embryonic kidney 293 cells (293-MDs) expressing UPIII, Src and uroplakin Ib. However, 293-MDs expressing a proteolysis-resistant mutant of UPIII are less functional, suggesting that the availability of UPIII to protease action is important for MD function.
Collapse
Affiliation(s)
- A K M Mahbub Hasan
- Laboratory of Cell Signaling and Development, Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Cragg CL, Kalisch BE. Nerve Growth Factor Enhances Tau Isoform Expression and Transcription in IMR32 Cells. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/nm.2014.52015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
34
|
Kinsey WH. SRC-family tyrosine kinases in oogenesis, oocyte maturation and fertilization: an evolutionary perspective. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 759:33-56. [PMID: 25030759 DOI: 10.1007/978-1-4939-0817-2_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The oocyte is a highly specialized cell poised to respond to fertilization with a unique set of actions needed to recognize and incorporate a single sperm, complete meiosis, reprogram maternal and paternal genomes and assemble them into a unique zygotic genome, and finally initiate the mitotic cell cycle. Oocytes accomplish this diverse series of events through an array of signal transduction pathway components that include a characteristic collection of protein tyrosine kinases. The src-family protein kinases (SFKs) figure importantly in this signaling array and oocytes characteristically express certain SFKs at high levels to provide for the unique actions that the oocyte must perform. The SFKs typically exhibit a distinct pattern of subcellular localization in oocytes and perform critical functions in different subcellular compartments at different steps during oocyte maturation and fertilization. While many aspects of SFK signaling are conserved among oocytes from different species, significant differences exist in the extent to which src-family-mediated pathways are used by oocytes from species that fertilize externally vs those which are fertilized internally. The observation that several oocyte functions which require SFK signaling appear to represent common points of failure during assisted reproductive techniques in humans, highlights the importance of these signaling pathways for human reproductive health.
Collapse
Affiliation(s)
- William H Kinsey
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS, 66160, USA,
| |
Collapse
|
35
|
Bates RC, Fees CP, Holland WL, Winger CC, Batbayar K, Ancar R, Bergren T, Petcoff D, Stith BJ. Activation of Src and release of intracellular calcium by phosphatidic acid during Xenopus laevis fertilization. Dev Biol 2013; 386:165-80. [PMID: 24269904 DOI: 10.1016/j.ydbio.2013.11.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 10/24/2013] [Accepted: 11/08/2013] [Indexed: 01/03/2023]
Abstract
We report a new step in the fertilization in Xenopus laevis which has been found to involve activation of Src tyrosine kinase to stimulate phospholipase C-γ (PLC-γ) which increases inositol 1,4,5-trisphosphate (IP3) to release intracellular calcium ([Ca](i)). Molecular species analysis and mass measurements suggested that sperm activate phospholipase D (PLD) to elevate phosphatidic acid (PA). We now report that PA mass increased 2.7 fold by 1 min after insemination and inhibition of PA production by two methods inhibited activation of Src and PLCγ, increased [Ca](i) and other fertilization events. As compared to 14 other lipids, PA specifically bound Xenopus Src but not PLCγ. Addition of synthetic PA activated egg Src (an action requiring intact lipid rafts) and PLCγ as well as doubling the amount of PLCγ in rafts. In the absence of elevated [Ca](i), PA addition elevated IP3 mass to levels equivalent to that induced by sperm (but twice that achieved by calcium ionophore). Finally, PA induced [Ca](i) release that was blocked by an IP3 receptor inhibitor. As only PLD1b message was detected, and Western blotting did not detect PLD2, we suggest that sperm activate PLD1b to elevate PA which then binds to and activates Src leading to PLCγ stimulation, IP3 elevation and [Ca](i) release. Due to these and other studies, PA may also play a role in membrane fusion events such as sperm-egg fusion, cortical granule exocytosis, the elevation of phosphatidylinositol 4,5-bisphosphate and the large, late increase in sn 1,2-diacylglycerol in fertilization.
Collapse
Key Words
- 1,2-dicapryloyl-sn-glycero-3-phosphate
- 1,2-dioctanoyl-sn-glycero-3-[phospho-l-serine]
- 5-fluoro-2-indolyl des-chlorohalopemide
- DAG
- ELSD
- Exocytosis
- FIPI
- IP3
- LPA
- LPC
- Membrane fusion
- Membrane rafts
- PA
- PC
- PE
- PI
- PI3
- PI345P3
- PI34P2
- PI35P2
- PI4
- PI45P2
- PI5
- PKC
- PLC
- PLCγ
- PLD
- PS
- Phospholipase Cγ
- Phospholipase D
- RT-PCR
- S1P
- [Ca](i)
- dPA
- dPS
- evaporative light scattering detector
- inositol 1,4,5-trisphosphate
- intracellular calcium
- lysophosphatidic acid
- lysophosphatidylcholine
- phosphatidic acid
- phosphatidylcholine
- phosphatidylethanolamine
- phosphatidylinositol
- phosphatidylinositol 3,4,5-trisphosphate
- phosphatidylinositol 3,4-bisphosphate
- phosphatidylinositol 3,5-bisphosphate
- phosphatidylinositol 3-phosphate
- phosphatidylinositol 4,5-bisphosphate
- phosphatidylinositol 4-phosphate
- phosphatidylinositol 5-phosphate
- phosphatidylserine
- phospholipase C
- phospholipase C-γ
- phospholipase D
- protein kinase C
- reverse transcriptase polymerase chain reaction
- sn 1,2-diacylglycerol
- sphingosine-1-phosphate
Collapse
Affiliation(s)
- Ryan C Bates
- University of Colorado Denver, Denver, CO 80217-3364, USA
| | - Colby P Fees
- University of Colorado Denver, Denver, CO 80217-3364, USA
| | | | | | | | - Rachel Ancar
- University of Colorado Denver, Denver, CO 80217-3364, USA
| | | | | | | |
Collapse
|
36
|
Identification of phospholipase activity in Rhinella arenarum sperm extract capable of inducing oocyte activation. ZYGOTE 2013; 22:483-95. [PMID: 24016596 DOI: 10.1017/s0967199413000348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Egg activation, which includes cortical granule exocytosis, resumption and completion of meiosis and pronuclear formation culminates in the first mitotic cleavage. However, the mechanism through which the fertilizing sperm induces this phenomenon is still controversial. We investigated the effect of the microinjection of homologous sperm soluble fractions obtained by fast protein liquid chromatography (FPLC) from reacted sperm (without acrosome) and non-reacted sperm on the activation of Rhinella arenarum oocytes matured in vitro. The FPLC-purified sperm fraction obtained from reacted or non-reacted sperm is able to induce oocyte activation when it is microinjected. This fraction has a 24 kDa protein and showed phospholipase C (PLC) activity in vitro, which was inhibited by D-609 but not by n-butanol or neomycin, suggesting that it is a PLC that is specific for phosphatidylcholine (PC-PLC). The assays conducted using inhibitors of inositol triphosphate (IP3) and ryanodine receptors (RyRs) indicate that the fraction with biological activity would act mainly through the cADPr (cyclic ADP ribose) pathway. Moreover, protein kinase C (PKC) inhibition blocks the activation produced by the same fraction. Immunocytochemical studies indicate that this PC-PLC can be found throughout the sperm head.
Collapse
|
37
|
Kashir J, Deguchi R, Jones C, Coward K, Stricker SA. Comparative biology of sperm factors and fertilization-induced calcium signals across the animal kingdom. Mol Reprod Dev 2013; 80:787-815. [PMID: 23900730 DOI: 10.1002/mrd.22222] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 07/23/2013] [Indexed: 11/08/2022]
Abstract
Fertilization causes mature oocytes or eggs to increase their concentrations of intracellular calcium ions (Ca²⁺) in all animals that have been examined, and such Ca²⁺ elevations, in turn, provide key activating signals that are required for non-parthenogenetic development. Several lines of evidence indicate that the Ca²⁺ transients produced during fertilization in mammals and other taxa are triggered by soluble factors that sperm deliver into oocytes after gamete fusion. Thus, for a broad-based analysis of Ca²⁺ dynamics during fertilization in animals, this article begins by summarizing data on soluble sperm factors in non-mammalian species, and subsequently reviews various topics related to a sperm-specific phospholipase C, called PLCζ, which is believed to be the predominant activator of mammalian oocytes. After characterizing initiation processes that involve sperm factors or alternative triggering mechanisms, the spatiotemporal patterns of Ca²⁺ signals in fertilized oocytes or eggs are compared in a taxon-by-taxon manner, and broadly classified as either a single major transient or a series of repetitive oscillations. Both solitary and oscillatory types of fertilization-induced Ca²⁺ signals are typically propagated as global waves that depend on Ca²⁺ release from the endoplasmic reticulum in response to increased concentrations of inositol 1,4,5-trisphosphate (IP₃). Thus, for taxa where relevant data are available, upstream pathways that elevate intraoocytic IP3 levels during fertilization are described, while other less-common modes of producing Ca²⁺ transients are also examined. In addition, the importance of fertilization-induced Ca²⁺ signals for activating development is underscored by noting some major downstream effects of these signals in various animals.
Collapse
Affiliation(s)
- Junaid Kashir
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Level 3, Women's Centre, John Radcliffe Hospital, Headington, Oxford, UK
| | | | | | | | | |
Collapse
|
38
|
Nader N, Kulkarni RP, Dib M, Machaca K. How to make a good egg!: The need for remodeling of oocyte Ca(2+) signaling to mediate the egg-to-embryo transition. Cell Calcium 2012; 53:41-54. [PMID: 23266324 DOI: 10.1016/j.ceca.2012.11.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 11/26/2012] [Accepted: 11/27/2012] [Indexed: 11/19/2022]
Abstract
The egg-to-embryo transition marks the initiation of multicellular organismal development and is mediated by a specialized Ca(2+) transient at fertilization. This explosive Ca(2+) signal has captured the interest and imagination of scientists for many decades, given its cataclysmic nature and necessity for the egg-to-embryo transition. Learning how the egg acquires the competency to generate this Ca(2+) transient at fertilization is essential to our understanding of the mechanisms controlling egg and the transition to embryogenesis. In this review we discuss our current knowledge of how Ca(2+) signaling pathways remodel during oocyte maturation in preparation for fertilization with a special emphasis on the frog oocyte as additional reviews in this issue will touch on this in other species.
Collapse
Affiliation(s)
- Nancy Nader
- Department of Physiology and Biophysics, Weill Cornell Medical College in Qatar (WCMC-Q), Education City, Qatar Foundation, Qatar
| | | | | | | |
Collapse
|
39
|
Kinsey WH. Intersecting roles of protein tyrosine kinase and calcium signaling during fertilization. Cell Calcium 2012. [PMID: 23201334 DOI: 10.1016/j.ceca.2012.11.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The oocyte is a highly specialized cell that must respond to fertilization with a preprogrammed series of signal transduction events that establish a block to polyspermy, trigger resumption of the cell cycle and execution of a developmental program. The fertilization-induced calcium transient is a key signal that initiates the process of oocyte activation and studies over the last several years have examined the signaling pathways that act upstream and downstream of this calcium transient. Protein tyrosine kinase signaling was found to be an important component of the upstream pathways that stimulated calcium release at fertilization in oocytes from animals that fertilize externally, but a similar pathway has not been found in mammals which fertilize internally. The following review will examine the diversity of signaling in oocytes from marine invertebrates, amphibians, fish and mammals in an attempt to understand the basis for the observed differences. In addition to the pathways upstream of the fertilization-induced calcium transient, recent studies are beginning to unravel the role of protein tyrosine kinase signaling downstream of the calcium transient. The PYK2 kinase was found to respond to fertilization in the zebrafish system and seems to represent a novel component of the response of the oocyte to fertilization. The potential impact of impaired PTK signaling in oocyte quality will also be discussed.
Collapse
Affiliation(s)
- William H Kinsey
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, United States.
| |
Collapse
|
40
|
Protein-tyrosine kinase signaling in the biological functions associated with sperm. JOURNAL OF SIGNAL TRANSDUCTION 2012; 2012:181560. [PMID: 23209895 PMCID: PMC3503396 DOI: 10.1155/2012/181560] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 05/17/2012] [Accepted: 05/31/2012] [Indexed: 01/07/2023]
Abstract
In sexual reproduction, two gamete cells (i.e., egg and sperm) fuse (fertilization) to create a newborn with a genetic identity distinct from those of the parents. In the course of these developmental processes, a variety of signal transduction events occur simultaneously in each of the two gametes, as well as in the fertilized egg/zygote/early embryo. In particular, a growing body of knowledge suggests that the tyrosine kinase Src and/or other protein-tyrosine kinases are important elements that facilitate successful implementation of the aforementioned processes in many animal species. In this paper, we summarize recent findings on the roles of protein-tyrosine phosphorylation in many sperm-related processes (from spermatogenesis to epididymal maturation, capacitation, acrosomal exocytosis, and fertilization).
Collapse
|
41
|
Clulow J, Clulow S, Guo J, French AJ, Mahony MJ, Archer M. Optimisation of an oviposition protocol employing human chorionic and pregnant mare serum gonadotropins in the barred frog Mixophyes fasciolatus (Myobatrachidae). Reprod Biol Endocrinol 2012; 10:60. [PMID: 22909256 PMCID: PMC3488330 DOI: 10.1186/1477-7827-10-60] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 08/03/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Protocols for the hormonal induction of ovulation and oviposition are essential tools for managing threatened amphibians with assisted reproduction, but responses vary greatly between species and even broad taxon groups. Consequently, it is necessary to assess effectiveness of such protocols in representative species when new taxa become targets for induction. The threatened genus Mixophyes (family Myobatrachidae) has amongst the highest proportion of endangered species of all the Australian amphibians. This study developed and optimised the induction of oviposition in a non-threatened member of this taxon, the great barred frog (Mixophyes fasciolatus). METHODS Gravid female M. fasciolatus were induced to oviposit on one or more occasions by administration of human chorionic gonadotropin (hCG) with or without priming with pregnant mare serum gonadotropin (PMSG). Treatments involved variations in hormone doses and combinations (administered via injection into the dorsal lymph sacs), and timing of administration. Pituitary homogenates from an unrelated bufonid species (Rhinella marina) were also examined with hCG. RESULTS When injected alone, hCG (900 to 1400 IU) induced oviposition. However, priming with two time dependent doses of PMSG (50 IU, 25 IU) increased responses, with lower doses of hCG (200 IU). Priming increased response rates in females from around 30% (hCG alone) to more than 50% (p = 0.035), and up to 67%. Increasing the interval between the first PMSG dose and first hCG dose from 3 to 6 days also produced significant improvement (p<0.001). Heterologous pituitary extracts administered with hCG were no more effective than hCG alone (p = 0.628). CONCLUSIONS This study found that M. fasciolatus is amongst the few amphibian species (including Xenopus (Silurana) and some bufonids) that respond well to the induction of ovulation utilising mammalian gonadotropins (hCG). The optimal protocol for M. fasciolatus involved two priming doses of PMSG (50 IU and 25 IU) administered at 6 and 4 days respectively, prior to two doses of hCG (100 IU), 24 hours apart. This study is also the first to demonstrate in an amphibian species that responds to mammalian gonadotropins that an increase in the ovulation rate occurs after priming with a gonadotropin (PMSG) with FSH activity.
Collapse
Affiliation(s)
- John Clulow
- School of Environmental and Life Sciences, University of Newcastle, Callaghan Drive, Callaghan, NSW, 2308, Australia
| | - Simon Clulow
- School of Environmental and Life Sciences, University of Newcastle, Callaghan Drive, Callaghan, NSW, 2308, Australia
| | - Jitong Guo
- Inner Mongolia Saikexing Reproductive Biotechnology Co., Ltd. 6 F, Mengniu Dairy R&D Center, Shengle Economic Zone of Helingeer County, Hohhot, 011517, Inner Mongolia, People's Republic of China
| | - Andrew J French
- Centre for Animal Biotechnology, Faculty of Veterinary Science, The University of Melbourne, Parkville, 3010, VIC, Australia
| | - Michael J Mahony
- School of Environmental and Life Sciences, University of Newcastle, Callaghan Drive, Callaghan, NSW, 2308, Australia
| | - Michael Archer
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, 2052, Australia
| |
Collapse
|
42
|
Nomikos M, Swann K, Lai FA. Starting a new life: sperm PLC-zeta mobilizes the Ca2+ signal that induces egg activation and embryo development: an essential phospholipase C with implications for male infertility. Bioessays 2011; 34:126-34. [PMID: 22086556 DOI: 10.1002/bies.201100127] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We have discovered that a single sperm protein, phospholipase C-zeta (PLCζ), can stimulate intracellular Ca(2+) signalling in the unfertilized oocyte ('egg') culminating in the initiation of embryonic development. Upon fertilization by a spermatozoon, the earliest observed signalling event in the dormant egg is a large, transient increase in free Ca(2+) concentration. The fertilized egg responds to the intracellular Ca(2+) rise by completing meiosis. In mammalian eggs, the Ca(2+) signal is delivered as a train of long-lasting cytoplasmic Ca(2+) oscillations that begin soon after gamete fusion and persist beyond the completion of meiosis. Sperm PLCζ effects Ca(2+) release from egg intracellular stores by hydrolyzing the membrane lipid PIP(2) and consequent stimulation of the inositol 1,4,5-trisphosphate (InsP(3) ) receptor Ca(2+) -signalling pathway, leading to egg activation and early embryogenesis. Recent advances have refined our understanding of how PLCζ induces Ca(2+) oscillations in the egg and also suggest its potential dysfunction as a cause of male infertility.
Collapse
Affiliation(s)
- Michail Nomikos
- Cell Signalling Laboratory, WHRI, Institute of Molecular and Experimental Medicine, Cardiff University School of Medicine, Cardiff, UK
| | | | | |
Collapse
|
43
|
Zhang YH, Kays J, Hodgdon KE, Sacktor TC, Nicol GD. Nerve growth factor enhances the excitability of rat sensory neurons through activation of the atypical protein kinase C isoform, PKMζ. J Neurophysiol 2011; 107:315-35. [PMID: 21975456 DOI: 10.1152/jn.00030.2011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Our previous work showed that nerve growth factor (NGF) increased the excitability of small-diameter capsaicin-sensitive sensory neurons by activating the p75 neurotrophin receptor and releasing sphingolipid-derived second messengers. Whole cell patch-clamp recordings were used to establish the signaling pathways whereby NGF augments action potential (AP) firing (i.e., sensitization). Inhibition of MEK1/2 (PD-98059), PLC (U-73122, neomycin), or conventional/novel isoforms of PKC (bisindolylmaleimide I) had no effect on the sensitization produced by NGF. Pretreatment with a membrane-permeable, myristoylated pseudosubstrate inhibitor of atypical PKCs (aPKCs: PKMζ, PKCζ, and PKCλ/ι) blocked the NGF-induced increase in AP firing. Inhibitors of phosphatidylinositol 3-kinase (PI3K) also blocked the sensitization produced by NGF. Isolated sensory neurons were also treated with small interfering RNA (siRNA) targeted to PKCζ. Both Western blots and quantitative real-time PCR established that PKMζ, but neither full-length PKCζ nor PKCλ/ι, was significantly reduced after siRNA exposure. Treatment with these labeled siRNA prevented the NGF-induced enhancement of excitability. Furthermore, consistent with the high degree of catalytic homology for aPKCs, internal perfusion with active recombinant PKCζ or PKCι augmented excitability, recapitulating the sensitization produced by NGF. Internal perfusion with recombinant PKCζ suppressed the total potassium current and enhanced the tetrodotoxin-resistant sodium current. Pretreatment with the myristoylated pseudosubstrate inhibitor blocked the increased excitability produced by ceramide or internal perfusion with recombinant PKCζ. These results demonstrate that NGF leads to the activation of PKMζ that ultimately enhances the capacity of small-diameter capsaicin-sensitive sensory neurons to fire APs through a PI3K-dependent signaling cascade.
Collapse
Affiliation(s)
- Y H Zhang
- Dept. of Pharmacology and Toxicology, Indiana Univ. School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | |
Collapse
|
44
|
Kushima S, Mammadova G, Mahbub Hasan AKM, Fukami Y, Sato KI. Characterization of Lipovitellin 2 as a Tyrosine-Phosphorylated Protein in Oocytes, Eggs and Early Embryos ofXenopus laevis. Zoolog Sci 2011; 28:550-9. [DOI: 10.2108/zsj.28.550] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
45
|
Hasan AKMM, Fukami Y, Sato KI. Gamete membrane microdomains and their associated molecules in fertilization signaling. Mol Reprod Dev 2011; 78:814-30. [PMID: 21688335 DOI: 10.1002/mrd.21336] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2011] [Accepted: 05/15/2011] [Indexed: 12/19/2022]
Abstract
Fertilization is the fundamental system of biological reproduction in many organisms, including animals, plants, and algae. A growing body of knowledge has emerged to explain how fertilization and activation of development are accomplished. Studies on the molecular mechanisms of fertilization are in progress for a wide variety of multicellular organisms. In this review, we summarize recent findings and debates about the long-standing questions concerning fertilization: how egg and sperm become competent for their interaction with each other, how the binding and fusion of these gamete cells are made possible, and how the fertilized eggs initiate development to a newborn. We will focus on the structure and function of the membrane microdomains (MDs) of egg and sperm that may serve as a platform or signaling center for the aforementioned cellular functions. In particular, we provide evidence that MDs of eggs from the African clawed frog, Xenopus laevis, play a pivotal role in receiving extracellular signals from fertilizing sperm and then transmitting them to the egg cytoplasm, where the tyrosine kinase Src is present and responsible for the subsequent signaling events collectively called egg activation. The presence of a new signaling axis involving uroplakin III, an MD-associated transmembrane protein, and Src in this system will be highlighted and discussed.
Collapse
Affiliation(s)
- A K M Mahbub Hasan
- Laboratory of Cell Signaling and Development, Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | | | | |
Collapse
|
46
|
Ca2+ signaling during mammalian fertilization: requirements, players, and adaptations. Cold Spring Harb Perspect Biol 2011; 3:cshperspect.a006767. [PMID: 21441584 DOI: 10.1101/cshperspect.a006767] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Changes in the intracellular concentration of calcium ([Ca(2+)](i)) represent a vital signaling mechanism enabling communication among cells and between cells and the environment. The initiation of embryo development depends on a [Ca(2+)](i) increase(s) in the egg, which is generally induced during fertilization. The [Ca(2+)](i) increase signals egg activation, which is the first stage in embryo development, and that consist of biochemical and structural changes that transform eggs into zygotes. The spatiotemporal patterns of [Ca(2+)](i) at fertilization show variability, most likely reflecting adaptations to fertilizing conditions and to the duration of embryonic cell cycles. In mammals, the focus of this review, the fertilization [Ca(2+)](i) signal displays unique properties in that it is initiated after gamete fusion by release of a sperm-derived factor and by periodic and extended [Ca(2+)](i) responses. Here, we will discuss the events of egg activation regulated by increases in [Ca(2+)](i), the possible downstream targets that effect these egg activation events, and the property and identity of molecules both in sperm and eggs that underpin the initiation and persistence of the [Ca(2+)](i) responses in these species.
Collapse
|
47
|
Campanella C, Caputo M, Vaccaro MC, De Marco N, Tretola L, Romano M, Prisco M, Camardella L, Flagiello A, Carotenuto R, Limatola E, Polzonetti-Magni A, Infante V. Lipovitellin constitutes the protein backbone of glycoproteins involved in sperm-egg interaction in the amphibian Discoglossus pictus. Mol Reprod Dev 2011; 78:161-71. [PMID: 21308852 DOI: 10.1002/mrd.21282] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 12/23/2010] [Indexed: 11/08/2022]
Abstract
Our knowledge of the molecules that interact with sperm at the egg membrane is restricted to a short list. In the eggs of Discoglossus pictus, fusion with sperm is limited to a differentiated structure, the dimple, offering several advantages for detecting molecules involved in fertilization. Previous studies have identified fucosylated glycoproteins of 200, 260, and 270 kDa located at the surface of the dimple that are able to bind sperm in vitro. Here, we show that dimple glycoproteins and a protein represented by a 120-kDa band released following gel-into-gel SDS-PAGE of both glycoproteins share the same N-terminal amino acid sequence, which itself is similar to the N-termini of Xenopus liver-synthesized vitellogenin (VTG) and the lipovitellin 1. MALDI/MS mass spectrometry indicated that the 120-kDa band is part of both gps 200 and 270/260. A 117-kDa major protein of the egg lysate exhibits the same MALDI/MS spectrum, and LC-MSMS indicates that this is a lipovitellin 1 (DpLIV) that coincides with the 120-kDa band and is responsible for the formation of the 200-270-kDa dimers. Therefore, lipovitellin 1 constitutes the protein backbone of the dimple glycoconjugates. In vitro assays using polystyrene beads coated with DpLIV or with its dimers indicate that significant sperm binding occurs only with DpLIV dimers. In amphibians, VTG is taken up by the oocyte, where it releases lipovitellins destined to form yolk. In Discoglossus, our data suggest that yolk proteins are also synthesized by the oocyte. The dimple forms in the ovulated oocyte following the exocytosis of vesicles that likely expose DpLIVs at their membrane. Indeed, in whole mounts of immunostained eggs, anti-vitellogenin antibodies label only the surface of the dimple.
Collapse
Affiliation(s)
- C Campanella
- Department of Structural and Functional Biology, University of Naples Federico II, MSA, Naples, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Panagiotaki N, Dajas-Bailador F, Amaya E, Papalopulu N, Dorey K. Characterisation of a new regulator of BDNF signalling, Sprouty3, involved in axonal morphogenesis in vivo. Development 2010; 137:4005-15. [PMID: 21062861 PMCID: PMC2976284 DOI: 10.1242/dev.053173] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2010] [Indexed: 01/19/2023]
Abstract
During development, many organs, including the kidney, lung and mammary gland, need to branch in a regulated manner to be functional. Multicellular branching involves changes in cell shape, proliferation and migration. Axonal branching, however, is a unicellular process that is mediated by changes in cell shape alone and as such appears very different to multicellular branching. Sprouty (Spry) family members are well-characterised negative regulators of Receptor tyrosine kinase (RTK) signalling. Knockout of Spry1, 2 and 4 in mouse result in branching defects in different organs, indicating an important role of RTK signalling in controlling branching pattern. We report here that Spry3, a previously uncharacterised member of the Spry family plays a role in axonal branching. We found that spry3 is expressed specifically in the trigeminal nerve and in spinal motor and sensory neurons in a Brain-derived neurotrophin factor (BDNF)-dependent manner. Knockdown of Spry3 expression causes an excess of axonal branching in spinal cord motoneurons in vivo. Furthermore, Spry3 inhibits the ability of BDNF to induce filopodia in Xenopus spinal cord neurons. Biochemically, we show that Spry3 represses calcium release downstream of BDNF signalling. Altogether, we have found that Spry3 plays an important role in the regulation of axonal branching of motoneurons in vivo, raising the possibility of unexpected conservation in the involvement of intracellular regulators of RTK signalling in multicellular and unicellular branching.
Collapse
Affiliation(s)
- Niki Panagiotaki
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Federico Dajas-Bailador
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Enrique Amaya
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
- The Healing Foundation Centre, Michael Smith Building, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Nancy Papalopulu
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Karel Dorey
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
- The Healing Foundation Centre, Michael Smith Building, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| |
Collapse
|
49
|
Levi M, Shalgi R. The role of Fyn kinase in the release from metaphase in mammalian oocytes. Mol Cell Endocrinol 2010; 314:228-33. [PMID: 19733625 DOI: 10.1016/j.mce.2009.08.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Accepted: 08/30/2009] [Indexed: 01/06/2023]
Abstract
Meiosis in mammalian oocytes starts during embryonic life and arrests for the first time before birth, at prophase of the first meiotic division. The second meiotic arrest occurs after spindle formation at metaphase of the second meiotic division (MII) in selected oocytes designated for ovulation. The fertilizing spermatozoon induces the release from MII arrest only after the oocyte's spindle assembly checkpoint (SAC) was deactivated. Src family kinases (SFKs) are nine non-receptor protein tyrosine kinases that regulate many key cellular functions. Fyn is an SFK expressed in many cell types, including oocytes. Recent studies, including ours, imply a role for Fyn in exit from meiotic and mitotic metaphases. Other studies demonstrate that SFKs, particularly Fyn, are required for regulation of microtubules polymerization and spindle stabilization. Altogether, Fyn is suggested to play an essential role in signaling events that implicate SAC pathway and hence in regulating the exit from metaphase in oocytes and zygote.
Collapse
Affiliation(s)
- M Levi
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Ramat-Aviv, Tel-Aviv, Israel
| | | |
Collapse
|
50
|
Tokmakov AA, Iwasaki T, Sato KI, Fukami Y. Analysis of signal transduction in cell-free extracts and rafts of Xenopus eggs. Methods 2010; 51:177-82. [PMID: 20079845 DOI: 10.1016/j.ymeth.2010.01.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 01/10/2010] [Accepted: 01/12/2010] [Indexed: 10/19/2022] Open
Abstract
Intracellular signaling during egg activation/fertilization has been extensively studied using intact eggs, which can be manipulated by microinjection of different mRNAs, proteins, or chemical drugs. Furthermore, egg extracts, which retain high CSF activity (CSF-arrested extracts), were developed for studying fertilization/activation signal transduction, which have significant advantages as a model system. The addition of calcium to CSF-arrested extracts initiates a plethora of signaling events that take place during egg activation. Hence, the signaling downstream of calcium mobilization has been successfully studied in the egg extracts. Moreover, despite disruption of membrane-associated signaling compartments and ordered compartmentalization during extract preparation, CSF-arrested extracts can be successfully used to study early signaling events, which occur upstream of calcium release during egg activation/fertilization. In combination with the CSF-arrested extracts, activated egg rafts can reproduce some events of egg activation, including PLCgamma activation, IP3 production, transient calcium release, MAPK inactivation, and meiotic exit. This becomes possible due to complementation of the sperm-induced egg activation signaling machinery present in the rafts with the components of signal transduction system localized in the extracts. Herein, we describe protocols for studying molecular mechanisms of egg fertilization/activation using cell-free extracts and membrane rafts prepared from metaphase-arrested Xenopus eggs.
Collapse
|